WO2011027731A1 - Planar waveguide laser device - Google Patents

Planar waveguide laser device Download PDF

Info

Publication number
WO2011027731A1
WO2011027731A1 PCT/JP2010/064703 JP2010064703W WO2011027731A1 WO 2011027731 A1 WO2011027731 A1 WO 2011027731A1 JP 2010064703 W JP2010064703 W JP 2010064703W WO 2011027731 A1 WO2011027731 A1 WO 2011027731A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
laser medium
solid
medium
Prior art date
Application number
PCT/JP2010/064703
Other languages
French (fr)
Japanese (ja)
Inventor
武司 崎村
平野 嘉仁
俊行 安藤
山本 修平
拓哉 高崎
柳澤 隆行
陽介 秋野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2009/065577 external-priority patent/WO2011027471A1/en
Priority claimed from PCT/JP2010/050698 external-priority patent/WO2011027579A1/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/064703 priority Critical patent/WO2011027731A1/en
Publication of WO2011027731A1 publication Critical patent/WO2011027731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • H01S3/0623Antireflective [AR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light

Definitions

  • the present invention relates to a measurement device using a laser, a processing laser device, a high-power laser device suitable for a light source such as a printer or a projection television, and more particularly to a planar waveguide laser device.
  • the shape of a solid-state laser medium used in a solid-state laser as shown in Non-Patent Document 1 below generally includes a rod type, a slab type, a disk type, a planar waveguide type, a two-dimensional waveguide type, and a fiber type.
  • rod type, slab type, disk type, planar waveguide type, etc. introduce pumping light from the side surface or laser end face, generate gain, configure laser oscillator or laser amplifier, and obtain laser output .
  • the cause of parasitic amplification and parasitic oscillation is that the optical path length of laser light passing through the laser medium is shorter than the optical path length of parasitic oscillation and parasitic amplified light in a laser oscillator or laser amplifier.
  • the total reflection part in the laser medium is used as a roughened surface so that parasitic oscillation and parasitic amplification do not occur, and the propagation path length of parasitic oscillation and parasitic amplified light is shortened. May be suppressed.
  • the two-dimensional waveguide type or fiber type light confinement is performed by the refractive index distribution in the two-dimensional direction of the cross section of the laser beam, and the light propagation direction is the one-dimensional direction.
  • the optical path of parasitic oscillation or parasitic amplification is equal to the optical path of laser oscillation or laser amplification, there is a feature that parasitic oscillation or parasitic amplification is difficult to occur.
  • the cross-sectional area of the laser medium is small, it is difficult to introduce excitation light, and a complicated configuration is required. Therefore, there are features such as high cost and low reliability.
  • the disk type As a form using a flat plate laser medium.
  • laser light is introduced from a flat plate surface, and the laser light is amplified when passing through a thin laser medium or reflecting and reciprocating.
  • the laser amplification gain is small because the passing distance of the laser medium is short.
  • the optimum output mirror reflectivity is increased in the laser oscillator.
  • the output is reduced by a slight loss in the resonator.
  • the amplification factor is small, so that the efficiency is low, or multipath may be used for the purpose of improving the efficiency, but the configuration is complicated.
  • excitation light is introduced from the side or end face, and laser light is introduced from the end face. Further, the laser beam is output from the end surface facing the end surface to which the laser beam is introduced.
  • laser light propagates in a zigzag manner in the slab type laser medium to increase the optical path length. Further, by propagating in this zigzag manner, the thermal lens effect generated in the laser medium may be averaged and reduced.
  • the optical path of parasitic oscillation or parasitic amplification is higher than the optical path of laser oscillation or laser amplification. Since it is long, parasitic oscillation and parasitic amplification occur at the time of high output excitation, and there are problems such as a decrease in laser output and efficiency. Furthermore, when the laser medium has a two-dimensional waveguide type or fiber type, since the cross-sectional area of the laser medium is small, it is difficult to introduce pumping light and a complicated configuration is required. There was a problem such as low.
  • the present invention has been made to solve the above-described problems, by suppressing parasitic oscillation and parasitic amplification, obtaining the longest laser amplification optical path, and performing high output excitation with a simple excitation configuration.
  • Another object of the present invention is to provide a planar waveguide laser device that obtains high-efficiency and high-power laser output.
  • the present invention has a pair of main surfaces opposed along a predetermined direction, a pair of side surfaces on both sides of the main surface, and a pair of end surfaces opposed to each other in the predetermined direction, and one side surface of the pair of side surfaces is A flat plate-shaped laser medium that is inclined at a predetermined taper angle with respect to the predetermined direction so that a distance from the other side surface extending along the predetermined direction gradually increases, and a side surface distance on the pair of side surfaces An antireflection film that transmits at least the laser light provided at at least one location on the wide side, and a total reflection film that reflects the laser light provided on the pair of side surfaces other than the antireflection film.
  • a flat surface comprising: a solid-state laser module that is returned and propagated to the antireflection film on the side having a larger side surface spacing and output; and an excitation light source that is excited by irradiating the laser medium with excitation light It is in a waveguide type laser device.
  • a planar waveguide laser that suppresses parasitic oscillation and parasitic amplification, obtains the longest laser amplification optical path, and obtains high-efficiency and high-power laser output by performing high-output pumping with a simple pumping configuration.
  • An apparatus can be provided.
  • FIG. 1 is a top view of a planar waveguide laser device according to Embodiment 1 of the present invention.
  • FIG. FIG. 2 is a side view of the planar waveguide laser device of FIG. It is a side view of the planar waveguide type laser apparatus by Embodiment 2 of this invention. It is a side view of the planar waveguide type laser apparatus by Embodiment 3 of this invention. It is a side view of the planar waveguide type laser apparatus by Embodiment 4 of this invention. It is a side view of the planar waveguide type laser apparatus by Embodiment 5 of this invention. It is a top view of the planar waveguide type laser apparatus by Embodiment 6 of this invention.
  • FIG. 25 is a side view of the planar waveguide laser device of FIG. 24 from the lower side of the drawing.
  • Embodiment 12 of this invention It is a top view of the planar waveguide type laser apparatus by Embodiment 12 of this invention. It is a top view of the planar waveguide type laser apparatus by Embodiment 13 of this invention. It is a side view of the planar waveguide type laser apparatus by Embodiment 14 of this invention. It is a side view of the planar waveguide type laser apparatus by Embodiment 15 of this invention. It is a top view of the planar waveguide type laser apparatus by Embodiment 16 of this invention. It is a side view of the planar waveguide type laser apparatus by Embodiment 17 of this invention. It is a side view of the modification of the planar waveguide type laser apparatus by Embodiment 17 of this invention.
  • FIG. 35 is a top view of the planar waveguide laser device of FIG. 34. It is a top view of the planar waveguide type laser apparatus by Embodiment 18 of this invention. It is the side view of the planar waveguide type laser apparatus by Embodiment 18 of this invention, and the figure which showed the heat-generation distribution of the y direction, temperature distribution, and refractive index distribution of a laser medium.
  • planar waveguide type laser apparatus by Embodiment 19 of this invention. It is a top view of the planar waveguide type laser apparatus by Embodiment 20 of this invention. It is the side view shown with the partial cross section of the planar waveguide type laser apparatus by Embodiment 20 of this invention. It is the figure which showed the expanded sectional view of the planar waveguide type laser apparatus by Embodiment 20 of this invention, the temperature difference of the y direction of a laser medium, and a refractive index difference. It is a top view of the planar waveguide type laser apparatus by Embodiment 21 of this invention. It is the side view shown by the partial cross section of the planar waveguide type laser apparatus by Embodiment 21 of this invention.
  • planar waveguide laser device according to the present invention will be described with reference to the drawings based on preferred embodiments. Note that the same or corresponding parts in the respective embodiments are denoted by the same reference numerals and redundant description is omitted.
  • FIG. 1 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 1 of the present invention
  • FIG. 2 is a side view of the planar waveguide laser device of FIG.
  • the solid-state laser module 100 between the semiconductor lasers 1 serving as excitation light sources on both sides in both figures is a cross-sectional view taken along the line AA in FIG. 2, and in FIG. 2 is taken along the line BB in FIG. It is shown in a sectional view along.
  • a solid-state laser module 100 includes a laser medium 3, clads 4 a and 4 b respectively bonded to a pair of main surfaces 31 and 32 facing the parallel of the laser medium 3, and a pair of side surfaces facing each other.
  • a total reflection film 6 that reflects the laser light bonded to each of the layers 33 and 34 and an antireflection film 7 that transmits the laser light provided in place of the total reflection film 6 on a part of the side surface 34 are provided.
  • a pair of end faces 35 and 36 of the laser medium 3 facing each other in parallel introduce the excitation light 2 from the semiconductor laser 1.
  • a general solid laser material can be used as the laser medium 3.
  • Nd: YVO4, Nd: GdVO4, Yb: YAG, Yb: YLF, Yb: KGW, Yb: KYW, Er: Glass, Er: YAG, Tm: YAG, Tm: YLF, Ho: YAG, Ho: YLF, Tm, Ho: YAG, Tm, Ho: YLF, Ti: Sapphire, Cr: LiSAF, etc. are used.
  • These solid laser materials may be ceramics in addition to crystals. Moreover, glass may be sufficient.
  • a solid laser material in which an active medium not described above is added to a base material not described above may be used.
  • the laser medium 3 is a planar waveguide type and has a shape of a flat plate having a thin thickness in one axial direction.
  • the thickness direction of the laser medium 3 is taken as the z axis, and the two axes in the plane of the laser medium 3 are called the x axis and the y axis as shown in FIG. 1, and the three axes are orthogonal to each other.
  • the laser medium 3 has a quadrangular shape in the xy plane parallel to the main surfaces 31 and 32.
  • the pair of opposing side surfaces 33 and 34 are not parallel, and the side surface 33 is inclined with respect to the side surface 34 along a predetermined direction at a taper angle ⁇ 1 in the xy plane. That is, the one side surface 33 is inclined at a predetermined taper angle with respect to the predetermined direction so that the interval between the one side surface 33 and the other side surface 34 extending along the predetermined direction gradually increases.
  • a total reflection film 6 that reflects laser light is provided on the side surface 34 of the laser medium 3, and an antireflection film 7 that transmits laser light is further provided in part.
  • a total reflection film 6 for reflecting laser light is applied to the entire surface. With this structure, as will be described later, the laser light propagates in one round-trip while being reflected between the side surfaces 33 and 34 in the laser medium 3.
  • the clads 4a and 4b shown in FIG. 2 have a refractive index smaller than that of the laser medium 3, and are respectively joined to main surfaces 31 and 32 parallel to the xy plane of the laser medium 3.
  • the clads 4a and 4b are configured by, for example, depositing a film made of an optical material as a raw material, or optically bonding the optical material to the laser medium 3 by optical contact or diffusion bonding.
  • the clads 4a and 4b may be bonded to a substrate (not shown). Further, the substrate may be bonded to a heat sink (not shown). The substrate and the heat sink may be on one side of the xy plane of the laser medium 3 or may be bonded to both sides of the two opposing surfaces.
  • the laser medium 3, the substrate, the heat sink, and the like are bonded with a bonding material (preferably a bonding material with good thermal conductivity) (the same applies hereinafter).
  • the semiconductor lasers 1 on both sides are arranged close to the end faces 35 and 36 of the laser medium 3, and although not shown, a cooling heat sink is joined as necessary.
  • the size of the semiconductor laser 1 in the x-axis direction is substantially equal to the size of the laser medium 3 in the x-axis direction, and pumping light is output substantially uniformly in the x-axis direction.
  • the semiconductor laser 1 outputs excitation light 2.
  • the semiconductor laser 1 that outputs the excitation light 2 may be a multi-emitter semiconductor laser in which a plurality of active layers are arranged in the x-axis direction.
  • the active layer of the semiconductor laser 1 may be a broad area LD that is wide in the x direction.
  • the excitation light 2 output from the semiconductor laser 1 enters the laser medium 3 from the end faces 35 and 36 of the laser medium 3 and is absorbed by the laser medium 3 while propagating in the y direction (corresponding to a predetermined direction).
  • a gain for the laser light is generated inside the laser medium 3. Due to the gain generated inside the laser medium 3, the passing laser beam is amplified and the laser output is increased.
  • a laser seed light is prepared, introduced into the laser medium 3 and amplified so that it becomes a laser amplifier, and an output mirror (not shown) that reflects a part of the laser light is arranged on the laser optical axis so as to be perpendicular to the axis. By doing so, it becomes a laser oscillator. For this reason, the following description applies to both the laser oscillator and the laser amplifier unless otherwise specified.
  • the laser incident light 8 is introduced into the laser medium 3 from the antireflection film 7 that transmits the laser light on the side surface 34.
  • the laser incident light 8 is inclined by ⁇ in0 in the xy plane with respect to the vertical line of the antireflection film 7.
  • the laser incident light 8 is introduced with an inclination with respect to the vertical line of the side surfaces 33 and 34 in the xy plane.
  • the laser incident light 8 that has entered the laser medium 3 is reflected by the total reflection film 6 that propagates in the laser medium and reflects the laser light applied to the side surface 34 and the side surface 33 facing the side surface 34. Since the laser incident light 8 is introduced with an inclination with respect to the vertical line of the side surfaces 33 and 34 in the xy plane, the laser light reflected by the side surface 33 does not return to the antireflection film 7 but the antireflection film on the side surface 34. 7 hits the total reflection film 6 at a position adjacent to 7 and reflects again. As described above, the laser beam propagating through the laser medium 3 is reflected by the total reflection film 6 on the side surfaces 33 and 34 while being repeatedly reflected between the side surfaces 33 and 34 as indicated by the laser reflected light 10 in FIG. Is done.
  • the side surface 33 is within the xy plane with respect to the side surface 34 so that the distance between the side surfaces 33 and 34 is wider at one end side where the antireflection film 7 of the side surface 34 is applied than at the other end side of the side surface 34.
  • Inclination angle (taper angle) ⁇ 1 is inclined. For this reason, every time the laser beam incident from the antireflection film 7 is reflected by the side surface 33, the sum of the incident angle and the reflection angle at the side surface 34 of the laser reflected light 10 is reduced by 2 ⁇ 1.
  • the laser reflected light 10 is repeatedly reflected while the interval between the reflection positions of the laser reflected light 10 on the side surfaces 33 and 34 is narrowed, and the reflection angle at the side surface 34 approaches 0, that is, perpendicular to the side surface 34. .
  • the laser reflected light 10 When the reflection angle at the side surface 34 becomes vertical, the laser reflected light 10 is folded back within the laser medium 3 by the taper angle ⁇ 1 of the side surface 33. The reflected laser reflected light 10 is repeatedly reflected between the side surfaces 33 and 34 by the total reflection film 6 again. In the return path, the sum of the incident angle and the reflection angle at the side surface 34 increases 2 ⁇ 1 each time the side surface 33 reflects. Then, the laser reflected light 10 is propagated while increasing the interval between the reflection positions of the laser reflected light 10 on the side surfaces 33 and 34. In this way, the return path is finally output as the laser output light 9 from the antireflection film 7 on the side surface 34 while passing through the optical path substantially the same as the forward path.
  • the angle in the xy plane of the laser incident light 8 introduced from the antireflection film 7 with respect to the vertical line of the antireflection film 7 is ⁇ in1, and the refractive index of the laser medium 3 is n.
  • the laser medium 3 is Nd: YAG
  • the maximum internal incident angle ⁇ in1max 33.3 degrees.
  • the inclination angle ⁇ 1 of the side surface 33 with respect to the side surface 34 is ⁇ 1 ⁇ in1 / (2 (m ⁇ 1)).
  • An angle satisfying ( ⁇ : substantially equal) is set.
  • the laser medium is Nd: YAG
  • the internal incident angle of the laser beam is the maximum angle ⁇ in1max
  • the number of reflections is 10
  • the incident angle of the laser incident light 8 should be small.
  • it is better that the number of reflections m is larger. For this reason, for example, when the internal incident angle ⁇ in1 of the laser incident light 8 is 5 degrees and the number of reflections is 20, the inclination is ⁇ 1 ⁇ 0.13 degrees.
  • the inclination angle ⁇ 1 between the side surfaces 33 and 34 depends on the length in the y direction in the xy plane of the laser medium 3, the width in the x direction, the beam width w of the laser light, the width of the antireflection film 7, and the like.
  • the wrap efficiency is set to be high and the number of reflections is increased.
  • such an angle is mainly set to an inclination angle ⁇ 1 ⁇ 2 degrees between the side surfaces 33 and 34.
  • the inclination angle between the side surfaces 33 and 34 is set to ⁇ 1
  • the interval at which the laser beam is reflected by the side surface 33 or the side surface 34 in the forward path becomes shorter as the reflection is repeated.
  • the beam overlap efficiency between the laser medium 3 and the laser light is increased.
  • the laser beam passes many times through the adjacent points, so that the beam overlap efficiency is higher, and as a result, the extraction efficiency of the laser is increased, resulting in high efficiency and high output. Laser light is obtained.
  • the main axis of the laser beam is displayed.
  • the laser beam is introduced from the antireflection film 7 with a wide beam as shown in FIG.
  • the optical path length of the laser light (laser reflected light 10) in the laser medium 3 can be maximized, so that there is a feature that parasitic oscillation and parasitic amplification are difficult to occur. Since the side surfaces 33 and 34 are inclined at an angle ⁇ 1, there is no optical path that circulates between the two opposing surfaces. For this reason, the optical path in the laser medium 3 having the longest parasitic oscillation or parasitic amplified light is the same optical path as the laser reflected light 10 from the vicinity of the antireflection film 7 on the side surface 34.
  • the optical path length of parasitic oscillation and parasitic amplification light is longer than the optical path of laser light, when a large gain is generated with an increase in excitation output, extraction of energy due to parasitic oscillation and parasitic amplification becomes large, and laser output power is increased. Incurs efficiency loss.
  • the longest optical path of parasitic oscillation and parasitic amplification is substantially the same as the laser reflected light optical path, so that even when the gain increases as the pumping output increases, the amplification of the laser light increases as well. Therefore, the amplification factor of the laser beam is not exceeded. For this reason, high-efficiency and high-power laser light can be obtained even during high-power excitation.
  • the separating means 50 may transmit the laser incident light 8 and reflect and separate the laser output light 9. Alternatively, the separating means 50 may reflect the laser incident light 8 and transmit the laser output light 9 to be separated. You may do.
  • the separating means 50 can be composed of a polarizer 51 and a quarter wavelength plate 52 as shown in FIG. 15, for example.
  • the linearly polarized laser incident light 8 is circularly polarized by the quarter wavelength plate 52 and introduced into the laser medium 3.
  • the laser incident light 8 When the laser incident light 8 is output, it passes through the quarter-wave plate 52 again, so that the laser output light 9 becomes a polarization direction of linearly polarized light whose polarization direction is orthogonal to the laser incident light 8. For this reason, it becomes separable by the polarizer 51.
  • the separating means 50 may be constituted by an isolator 54.
  • an isolator 54 including a polarizer 51 and a 45 degree Faraday rotator 53
  • laser light is introduced into the laser medium 3.
  • the laser light amplified by reciprocating in the laser medium 3 exits the laser medium 3 and passes through the 45 degree Faraday rotator 53 again. Since the polarization of the laser light that has passed through the Faraday rotator is rotated by 90 degrees with respect to the incident light, it is separated from the incident light by the polarizer.
  • incident light passes through the polarizer, the output light is reflected by the polarizer, and when incident light is reflected by the polarizer, the output light passes through the polarizer. Further, the laser light introduced into the laser medium 3 becomes linearly polarized light inclined by 45 degrees by the 45 degree Faraday rotator 53.
  • a half-wave plate 55 may be further disposed between the 45-degree Faraday rotator 53 and the laser medium 3 in the configuration of FIG.
  • the linearly polarized light inclined at 45 degrees can be converted into linearly polarized light that is parallel or orthogonal to the flat plate surface (main surface) of the laser medium 3. Since the half-wave plate is reversible, the incident light before passing through the half-wave plate and the output light passing through the half-wave plate 55 have the same polarization direction and a polarization direction inclined by 45 degrees. . For this reason, polarization separation can be performed by the isolator 54 as in the case where the half-wave plate 55 is not disposed. As described above, since the linearly polarized light is parallel or orthogonal to the main surface of the laser medium 3, for example, even when the laser medium 3 has different gains or different amplification wavelengths with respect to different polarization directions, Can be amplified.
  • the separating means 50 it is possible to separate the laser incident light and the laser output light which are substantially the same optical path. Such separation can be used in both laser oscillator and laser amplification configurations, but is particularly effective when used as a laser amplifier.
  • a high reflectance is set with respect to the wavelength for laser oscillation.
  • the active medium of the laser medium 3 is Nd
  • these wavelengths have transmission characteristics so that lasers with high gain in the 1.0 ⁇ m band and 1.3 ⁇ m band do not oscillate.
  • the desired laser oscillation light in the 0.9 ⁇ m band can be obtained by giving total reflection characteristics to the wavelength to be performed, in this case, the 0.9 ⁇ m band.
  • the total reflection film 6 may have total reflection characteristics with respect to a wavelength band in which laser oscillation is desired, and may have transmission characteristics with respect to other gain wavelengths. With this configuration, there is a feature that laser oscillation light having a desired wavelength can be obtained. Similarly, even when used as a laser amplifier, it may be totally reflected at the wavelength of the laser beam to be amplified and may have transmission characteristics for other wavelengths. By configuring in this way, it is possible to amplify a desired wavelength at which the laser medium 3 has gain. For this reason, there is no extraction of energy by parasitic amplification at other wavelengths, and a high-efficiency, high-power laser amplifier can be obtained.
  • FIG. 2 is a side view of the planar waveguide laser device including the solid state laser module of FIG.
  • the pumping light 2 output from the semiconductor laser 1 is incident on the laser medium 3 from one end face 35 of both end faces 35 and 36 in the propagation direction of the laser light traveling while reflecting between the side faces of the laser medium 3, and is in the y direction. And is absorbed by the laser medium 3 while propagating to.
  • the excitation light 2 propagates while spreading, but is reflected by the clads 4a and 4b having a refractive index lower than that of the laser medium 3, so that it is confined by the clads 4a and 4b facing each other in the z direction and propagates in the y direction.
  • the laser light incident from the antireflection film 7 is reflected by the clads 4a and 4b in the z direction, it is confined by the clads 4a and 4b in the z direction and propagated in the xy plane. Strictly speaking, the propagation direction of the laser light is shifted from the y-axis defined as a predetermined direction because one of the side surfaces is inclined, but here the propagation direction is the same as the y-axis.
  • a substrate (not shown) may be bonded to the outside of the clads 4a and 4b.
  • rigidity can be improved by joining a board
  • a heat sink (not shown) may be disposed outside the clads 4a and 4b or outside the substrate.
  • the heat sink By arranging the heat sink in this way, the temperature rise of the laser medium can be suppressed, so that high output excitation is possible and high output laser light can be obtained.
  • the laser medium 3 has a quasi-3 level, a quasi-4 level, and a 3 level, the gain decreases due to the temperature rise, and therefore it is important to reduce the temperature rise for high efficiency. In this way, by joining the heat sink directly to the clads 4a and 4b to reduce the thermal resistance and to suppress the temperature rise of the laser medium 3, it is possible to obtain a laser beam with high efficiency and high output.
  • FIG. 3 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 2 of the present invention, viewed from the same direction as FIG.
  • the configuration viewed from above is basically the same as that of FIG.
  • the first cladding 20 is disposed on the xy plane of the laser medium 3, that is, the main surfaces 31 and 32, respectively, and the second claddings 4 a and 4 b are disposed outside the first cladding 20.
  • each refractive index of the first cladding 20 is lower than the refractive index of the laser medium 3, and the refractive indexes of the second claddings 4 a and 4 b are lower than the refractive index of the first cladding 20. .
  • the pumping light 2 is confined in the z direction between the opposing second claddings 4a and 4b, and propagates through the combined portion of the laser medium 3 and the first cladding 20 on both sides thereof.
  • the laser beam since the laser beam is configured to be reflected by the first clad 20, it propagates through the laser medium 3.
  • FIG. 3 shows a configuration example using the single-layer semiconductor laser 1, but a stack LD 60 in which semiconductor lasers are stacked in the z direction can be used as shown in FIG.
  • a high-output excitation light source such as a stack LD can also be used.
  • the excitation light 2 propagating through the first clad 20 and the laser medium 3 is absorbed when passing through the laser medium 3, and propagates without being absorbed by the first clad 20.
  • high-power excitation can be easily performed, so that high-power laser light can be easily obtained.
  • the high-power pumping light source includes a broad area LD, an array LD, a stack LD, a single mode fiber, a multimode fiber, a large core fiber, a bundle fiber, and a fiber in which these fibers are arranged in the x direction.
  • An array or the like can be used.
  • the excitation light 2 is condensed by the lens 61 as shown in FIG. It may be introduced from 36a). By configuring in this way, the beam diameter and divergence angle of the excitation light 2 can be arbitrarily adjusted, so that the angle can be adjusted to reflect by the clad. For this reason, since the excitation light can be absorbed by the laser medium 3 with high efficiency, high-efficiency and high-power laser light can be obtained.
  • the beam diameter and divergence angle of the excitation light 2 may be adjusted by a lens group 62 including a plurality of lenses 61.
  • a lens group 62 including a plurality of lenses 61 can minimize the spread of the excitation light due to the aberration, so that the excitation light can be introduced from the end face with higher efficiency. For this reason, high-efficiency and high-power laser light can be obtained.
  • the excitation light 2 output from the stack LD 60 may be collimated by the microlens array 63 and then collectively collected by the lens 61.
  • the pumping light 2 with higher output can be introduced into the laser medium 3, so that laser light with higher output can be obtained.
  • the pump light 2 that has been collimated is introduced from the wide surface of the tapered slab waveguide 64 and output from the narrow surface, thereby reducing the cross-sectional area. 2 may be used.
  • the pumping light 2 with higher output can be introduced into the laser medium 3, so that laser light with higher output can be obtained.
  • excitation light 2 having a large divergence angle is introduced from a narrow surface of a tapered slab waveguide 64 and output from a wide surface, thereby reducing the divergence angle.
  • Light 2 may be used. With this configuration, the excitation light 2 can be adjusted to an angle that can be reflected by the clad 20. For this reason, since the excitation light can be absorbed by the laser medium 3 with high efficiency, high-efficiency and high-power laser light can be obtained.
  • FIG. 4 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 3 of the present invention, viewed from the same direction as FIG.
  • the configuration viewed from above is basically the same as that of FIG.
  • the first clad 20 is disposed on one side of the xy plane of the laser medium 3, that is, the main surface 31, and the second clad 4 a is disposed outside the first clad 20.
  • the second clad 4 b is disposed on the main surface 32 of the laser medium 3 opposite to the first clad 20.
  • the pumping light 2 can be introduced from the end face where the first clad 20 and the laser medium 3 are combined, the end face is enlarged, so that high-power pumping can be easily performed, and high-power laser light can be easily obtained.
  • the temperature rise of the laser medium 3 can be reduced by bonding a heat sink (not shown) to the lower surface of the second cladding 4b.
  • the thermal resistance can be remarkably lowered, and the temperature rise of the laser medium 3 can be reduced. Can be suppressed. For this reason, a laser beam with higher efficiency and higher output can be obtained.
  • FIG. 5 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 4 of the present invention, viewed from the same direction as FIG.
  • the configuration viewed from above is basically the same as that of FIG.
  • the first clad 20 is disposed on one surface of the xy plane of the laser medium 3, that is, the main surface 31, as shown in FIG. 4, and the second clad 4 a is disposed outside the first clad 20.
  • the second clad 4b is disposed on the main surface 32 opposite to the first clad 20 of the laser medium 3.
  • FIG. 1 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 4 of the present invention, viewed from the same direction as FIG.
  • the first clad 20 is disposed on one surface of the xy plane of the laser medium 3, that is, the main surface 31, as shown in FIG. 4
  • the second clad 4 a is disposed outside the first
  • the present invention may be applied to a configuration in which the first clad 20 is disposed on the main surfaces 31 and 32 of the laser medium 3. Furthermore, you may arrange
  • At least the end face of the laser medium 3 for introducing the excitation light 2 and the first clad 20 are yz. It is configured to be inclined in a plane (a plane perpendicular to the main surfaces 31 and 32 of the laser medium 3 and along the predetermined direction).
  • the excitation light 2 is introduced from the end faces 35a and 36a and is absorbed when passing through the laser medium 3 while propagating between the second claddings 4a and 4b.
  • the end surfaces 35a and 36a are inclined in the yz plane, the two end surfaces 35a and 36a facing each other and the laser medium 3, or between the end surfaces 35a and 36a and the first cladding 20, or the end surface 35a. , 36a and the second clad 4a, 4b can be eliminated by a parasitic oscillation path confined by total reflection.
  • the end faces 35a and 36a are inclined, there is no parasitic oscillation in the yz plane and the parasitic amplification path length can be shortened. Therefore, energy extraction by parasitic oscillation and parasitic amplification can be performed during high output excitation. Since it is small and gain reduction is small, a high-power laser beam can be obtained.
  • FIG. 6 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 5 of the present invention, viewed from the same direction as FIG.
  • the configuration viewed from above is basically the same as that of FIG.
  • FIG. 6 shows a case where the present invention is applied to the configuration shown in FIG. 4 as an example, as in FIG.
  • the configuration of the solid-state laser module 100 is the same as that of FIG. 5, but the position of the semiconductor laser 1 for introducing the pumping light 2 is different.
  • the present invention can be applied to the configurations shown in FIGS. Further, a substrate or a heat sink may be arranged.
  • the laser medium 3 that reflects the pumping light 2 and the end face of the first clad 20 are inclined in the yz plane.
  • the semiconductor laser 1 is arranged so as to introduce the excitation light 2 from the xy plane of the second cladding 4a (the outermost surface of the solid-state laser module 100).
  • the excitation light 2 introduced from the xy plane of the first cladding 4a is reflected by the inclined end surface.
  • the reflected excitation light 2 propagates through the laser medium 3 and the second cladding 4a and is absorbed when passing through the laser medium 3 while propagating.
  • the inclination angle of the end face can be greatly inclined.
  • the angle can be 45 degrees. Since the inclination angle is increased to about 45 degrees in this way, when the spontaneous emission light generated in the laser medium 3 is totally reflected by the end face, it is not totally reflected by the second claddings 4a and 4b but is transmitted. For this reason, parasitic oscillation does not occur, and the parasitic amplification path cannot reciprocate the laser medium 3 once. Therefore, even when a higher pumping power is introduced, extraction of energy due to parasitic oscillation or parasitic amplification is small, and gain reduction is small, so that high-power laser light can be obtained.
  • FIG. 7 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 6 of the present invention.
  • FIG. 8 is an enlarged view of a region C indicated by a broken line in FIG. 7, and the scale in the y-axis direction is enlarged.
  • the positions of the side surface 33 provided with the inclination angle ⁇ 1 and the side surface 34 extending along a predetermined direction (y-axis direction) are interchanged as compared with the module 100 of FIG.
  • An antireflection film 7 is provided on a part of the side having a wide side interval.
  • the laser reflected light 10 incident on the laser medium 3 from the antireflection film 7 is repeatedly reflected between the side surfaces 33 and 34 facing each other, so that the reflection angle approaches perpendicular to the side surface.
  • the incident angle of the laser incident light 8 on the antireflection film 7 is adjusted so that the incident angle of the laser reflected light 10 immediately before turning back to the side surface 33 or the side surface 34 is not 0, that is, the incident light is not perpendicular to the side surface. By doing so, it is possible to prevent the optical paths from overlapping on the forward path and the return path.
  • the optical path is inverted between the forward path and the return path.
  • the laser medium 3 that does not pass in the forward path can pass through the return path, so that the beam overlap efficiency is improved, the efficiency of the laser oscillator and the laser amplifier is improved, and the high output laser Light is obtained.
  • the gain remaining in the laser medium 3 is reduced, so that parasitic oscillation and parasitic amplification are less likely to occur. For this reason, it is possible to perform excitation with higher output, and it is possible to obtain laser light with higher output.
  • the optical paths of the laser incident light 8 and the laser output light 9 are not the same. For this reason, since the laser incident light 8 and the laser output light 9 are spatially easily separated, it is not necessary to use a polarization separation means. For this reason, it is possible to reduce the number of components, particularly in a laser amplifier, and the reliability is also improved.
  • FIG. FIG. 9 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 7 of the present invention.
  • the antireflection film 7 that transmits the laser light is provided on a part of the side 33 on the side where the side surface interval is wide, and the other part reflects the laser light and emits the excitation light 2.
  • a narrow-band reflective film 30 is provided for transmission.
  • a narrow band reflecting film 30 is provided on the entire side surface 34.
  • Two pairs of semiconductor lasers 1 are also provided on the side surface side. As a result, the excitation light 2 is introduced not only from the end faces 35 and 36 of the laser medium 3 but also from the side faces 33 and 34.
  • the narrow-band reflecting film 30 is designed to reflect the 1064 nm laser beam and transmit the 808 nm or 880 nm excitation light 2.
  • a film having such characteristics can be manufactured by laminating dielectric films.
  • FIG. 10 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 8 of the present invention.
  • the antireflection film 7 a is disposed on a part of the side surface 34 facing the antireflection film 7 on the side surface 33.
  • the antireflection film 7a is a film that transmits laser light. Laser light introduced from the antireflection film 7 into the laser medium 3 propagates while being reflected between the side surfaces 33 and 34.
  • the angle of the laser incident light 8 is adjusted so that the same optical path is not used in the forward path and the return path. For this reason, the laser beam propagating along the return path is not output from the antireflection film 7 but is output from the antireflection film 7 a on the opposite side surface 34.
  • the laser output light 9 that has been amplified through the laser medium 3 can be input to another laser medium 3 or the solid-state laser module 100 for further amplification.
  • a plurality of laser media or solid-state laser modules can be easily arranged in the resonator of one laser oscillator, and higher output laser light can be obtained.
  • FIG. FIG. 11 is a top view of a solid-state laser module of a planar waveguide laser device according to Embodiment 9 of the present invention.
  • the pumping light 2 used in the solid-state laser module 100 in FIG. 11 is, for example, light obtained by collimating fiber output light with a collimating lens (both not shown).
  • the pumping light 2 is generally manufactured by coupling a semiconductor laser beam to a fiber. Alternatively, the output of fiber laser light (not shown) may be used.
  • the excitation light 2 and the laser incident light 8 are introduced from the antireflection film 7 of the laser medium 3 through substantially the same optical path.
  • the excitation light 2 incident on the laser medium 3 through the antireflection film 7 propagates between the side surfaces 33 and 34 facing each other in the same manner as the laser light and is folded back in the laser medium 3.
  • the propagation optical path of the pumping light 2 in the laser medium 3 can be made long, so that the pumping light 2 can be absorbed by the laser medium 3 with high efficiency and with high efficiency and high output.
  • Laser beam can be obtained.
  • the laser active medium is a quasi-3 level, a quasi-4 level, or a 3 level, it absorbs the laser beam when it is not excited because of the lower level absorption. For this reason, high-density excitation is required to generate a gain for the laser light in the laser medium 3.
  • the high-power excitation light 2 is necessary to generate a gain for the laser light.
  • the excitation output for generating a gain for the laser light may be small.
  • the absorption coefficient of the excitation light 2 also decreases. Therefore, in order to keep the absorption rate constant, it is necessary to increase the absorption length. There is. According to the said structure, since the excitation light 2 reciprocates between the side surfaces which have the inclined side surface, absorption length is long. For this reason, even when a low-concentration laser medium 3 is used, a high absorption rate of the excitation light 2 can be obtained. As described above, since the low-concentration laser medium 3 is used, the loss of the pumping light 2 due to lower level absorption is small, and high-efficiency and high-power laser light is obtained.
  • the low-concentration laser medium 3 has a small number of active media that generate gain, the gain for the laser light is small.
  • the laser light is reciprocally propagated between the side surfaces having the inclined side surfaces. Long propagation length. For this reason, even when the gain of the laser medium 3 per unit length is small, high-efficiency and high-power laser light can be obtained.
  • FIG. 12 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 10 of the present invention.
  • the laser medium 3 is not rectangular, and the side surface 33 is angled in the xy plane with respect to the portion where the antireflection film 7 is provided and the portion where the total reflection film 6 is provided. (Sloped).
  • the portion provided with the antireflection film 7 on the side surface 33 has an angle so that the laser incident light and the laser output light of the laser reflected light 10 having the same optical path in the reciprocating optical path are perpendicular to the antireflection film 7. It is attached.
  • the wavelength conversion element 40 is disposed outside the laser medium 3 and close to the antireflection film 7.
  • the wavelength conversion element 40 is a nonlinear optical material, and may be a nonlinear optical material such as periodic polarization inversion LuNb 3 (PPLN) or LBO, for example.
  • An incident film 42 is provided on the input side, and an output film 41 is provided on the output side on the end faces of both ends of the wavelength conversion element 40 in the propagation direction of laser light or the like.
  • the output film 41 exhibits reflection characteristics with respect to laser light having a wavelength amplified by the laser medium 3, and exhibits transmission characteristics with respect to wavelength converted light.
  • the incident film 42 on the antireflection film 7 side also shows transmission characteristics with respect to the wavelength of the laser light and the wavelength converted light.
  • the laser light is confined by the reciprocating optical path in the output film 41 and the laser medium 3.
  • the wavelength conversion element 40 the wavelength is converted, and the laser light amplified by the laser medium 3 and the wavelength conversion laser light 43 of other wavelengths are obtained.
  • the wavelength conversion laser beam 43 is reflected by the incident film 42 and transmitted through the output film 41 to be output.
  • the wavelength conversion element 40 is arranged in combination with the laser medium 3 having the above-described configuration to obtain an internal wavelength conversion method. Since the laser medium 3 has a long reciprocal optical path length and no parasitic oscillation or parasitic amplification occurs, high-power excitation is possible, and high-efficiency and high-power laser light can be obtained. Further, laser light that has been wavelength-converted by the internal wavelength conversion method is output, and the laser light that has not been converted is again propagated back and forth through the laser medium 3 and amplified. For this reason, highly efficient and high output wavelength conversion output can be obtained.
  • the wavelength conversion may be the generation of the second harmonic that makes the wavelength of the laser light 1 ⁇ 2, or the generation of the third harmonic that makes the wavelength 1 /. Further, it may be converted into a wavelength longer than the wavelength of the laser beam by optical parametric.
  • FIG. FIG. 24 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 11 of the present invention
  • FIG. 25 is a side view of the planar waveguide laser device of FIG.
  • the solid-state laser module 100 is shown in cross section. Since the propagation of the laser light of the planar waveguide laser device is the same as that of the above embodiment, the description thereof is omitted here.
  • the heat sink 102 is bonded to the lower main surface of the solid-state laser module 100, and the position of the heat sink 102 is indicated by a broken line in FIG.
  • the length of each side of the heat sink 102 is shorter than the solid laser module 100 by a predetermined value.
  • the solid-state laser module 100 does not have a heat sink 102 in contact with the periphery, and has non-installation regions 103a to 103d of the heat sink 102. That is, the heat sink 102 is sized so as to be offset inward by a predetermined value from the side surface and end surface of the solid-state laser module 100 (the outer surface including the total reflection film and the like of the side surface and end surface of the laser medium 3). Has a shape.
  • non-installed areas 103a to 103d are made as uniform and small as possible. However, the non-installed area of the part where the side surface on the inclined side surface 106 side of the solid-state laser module 100 spreads may be not less than the predetermined value.
  • the heat sink 102 efficiently exhausts heat from the laser medium 3 of the solid-state laser module 100, and the temperature rise of the solid-state laser module 100 can be reduced. Further, by making the non-installation regions 103a to 103d uniform, the solid surface is formed on the main surface of the solid-state laser module 100 (the outer surface including the cladding of the main surface of the laser medium 3 described above) or the main surface of the laser medium 3. The temperature difference of the temperature distribution can be reduced, and the influence of stress generation due to the in-plane temperature gradient can be mitigated. Further, reducing the non-installation areas 103a to 103d leads to a reduction in the temperature difference between the installation area of the heat sink 102 and the non-installation area, and is effective in mitigating stress generation.
  • the predetermined width of the non-installed regions 103a to 103d is not limited to the case where the adhesive does not wrap around the side surface and end surface of the solid state laser module 100 when the solid state laser module 100 and the heat sink 102 are adhered. Use a level that can be removed by wiping. Thereby, reflection and scattering when laser light and excitation light are input and output can be prevented.
  • the offset width of the non-installed areas 103a to 103d is about 100 ⁇ m.
  • the non-installation regions 103a to 103d in the solid-state laser module 100 and bonding the heat sink 102 when the laser light and the excitation light are input / output, the laser light and the excitation light do not hit the heat sink 102, and the input / output laser The problem of beam vignetting is eliminated.
  • the excitation light 2 is input so as not to pass over the non-installation regions 103a and 103c in the vicinity of the incident end of the excitation light 2. That is, the edge of the solid laser module 100 or the peripheral edge of the side surface is avoided and input is performed from the center side. Similarly, the other side (103b side) should not be allowed to pass through the non-installed area near the incident end.
  • the temperature rise of the solid state laser module 100 at the corner portion of the heat sink 102 can be prevented, and generation of a large stress due to a difference in thermal expansion coefficient between the solid state laser module 100 and the heat sink 102 can be prevented.
  • the heat dissipation efficiency is reduced on the surface in contact with the air, but since the exhaust heat is efficiently performed at the portion where the heat sink 102 is installed, only the portion where the heat sink 102 is installed. By inputting the excitation light 2, the temperature rise of the solid-state laser module 100 can be reduced and the influence of stress generation and the like can be mitigated.
  • the excitation light 2 input to the solid-state laser module 100 is absorbed by the laser medium 3 and has a reduced intensity in the propagation process. Therefore, even if it reaches the non-installation area after propagation for a certain length, the generated heat is small, so the influence is ignored. It will be as small as possible.
  • the corners of the heat sink 102 are removed by using excitation light having a width smaller than that of the heat sink 102 and spreading in the laser medium 3 near the incident end. The entire region can be excited.
  • the length of each side of the heat sink 102 is made smaller than the solid laser module 100 by a predetermined value, the heat sink non-installation areas 103a to 103d are provided in the solid laser module 100, and these non-installation areas 103a to 103a are provided.
  • the temperature rise of the laser medium 3 of the solid-state laser module 100 can be reduced, and the occurrence of stress due to the difference in thermal expansion coefficient and in-plane temperature distribution can be avoided.
  • the central portion side of the heat sink 102 where the exhaust heat is efficiently performed the central side of the end face of the solid-state laser module 100 when viewed from the incident direction of the excitation light 2).
  • FIG. FIG. 26 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 12 of the present invention.
  • the solid-state laser module 100 and the semiconductor laser 1 are the same as those in the eleventh embodiment shown in FIG.
  • the heat sink 102 in FIG. 24 is a rectangular parallelepiped, whereas the heat sink 102a in FIG. 26 is different in that the shape is the same as that of the solid-state laser module 100.
  • the heat sink 102a is bonded to the lower main surface of the solid-state laser module 100.
  • the position of the heat sink 102a is indicated by a broken line.
  • the heat sink 102a has a length of each side shorter than the solid laser module 100 by a predetermined value, and the solid laser module 100 has heat sink non-installation regions 103a, 103b, 103d, and 103e. These non-installed areas 103a, 103b, 103d, and 103e are made as uniform and small as possible.
  • the non-installed areas 103a, 103b, 103d, and 103e on each side can be made uniform, and all four corners of the laser medium 3 can be uniformly cooled.
  • the temperature difference of the temperature distribution on the main surface of the solid-state laser module 100 can be reduced.
  • FIG. FIG. 27 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 13 of the present invention.
  • the solid-state laser module 100 and the heat sink 102 are the same as those of the eleventh embodiment shown in FIG. 24, but a lens 108 is provided between the semiconductor laser 1 serving as an excitation light source and the solid-state laser module 100 (laser medium 3). Different points.
  • the excitation light 2 output from the semiconductor laser 1 by the lens 108 is condensed in a plane parallel to the main surface of the solid-state laser module 100 (the lateral direction perpendicular to the propagation direction of the excitation light 2: the x-axis direction).
  • the semiconductor laser 1 that outputs the excitation light 2 that is wider than the laser medium 3 of the heat sink 102 and the solid state laser module 100 is used, or the semiconductor that generates the excitation light 2 having a large spread angle in the x-axis direction. Even when the laser 1 is used, excitation light can be input to the center of the heat sink 102 while avoiding the corner of the heat sink 102.
  • a spherical lens, an aspherical lens, a microlens array, or the like can be used as the lens 108, but the width of the excitation light 2 incident on the laser medium 3 of the solid-state laser module 100 in the x-axis direction is smaller than the width of the heat sink 102. As such, it is selected and installed in consideration of the light collecting function and the focal length.
  • the excitation light 2 is accurately obtained in the direction of the surface parallel to the side surface of the solid-state laser module 100 (laser medium 3) of the excitation light 2 (the vertical direction of the surface orthogonal to the propagation direction of the excitation light 2: the z-axis direction). It is necessary to enable input to the end face of the laser medium 3, and it may be necessary to provide the lens with a condensing function in the z-axis direction.
  • a lens having a condensing function in each of the x-axis direction and the z-axis direction can be used in combination.
  • a lens 108 having a collimating function in the x-axis direction can be used.
  • the lens 108 by installing the lens 108 so that the focal position in the x-axis direction is closer to the incident end (end face) of the solid-state laser module 100 to the laser medium 3, x of the excitation light 2 inside the laser medium 3 can be obtained.
  • the spread in the axial direction can be increased, and the excited region of the laser medium 3 can be increased.
  • FIG. FIG. 28 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 14 of the present invention (however, solid-state laser module 100 is shown in cross section).
  • the heat sink 102 is the same as that of the eleventh embodiment shown in FIG. 25, for example.
  • the solid-state laser module 100 has a double-clad structure in which the upper and lower main surfaces of the laser medium 3 are provided with the grad 20 and the cladding 4a, and the grad 20 and the grad 4b, respectively.
  • the semiconductor laser 1 is installed with an inclination of an angle ⁇ p with respect to the y-axis direction in the yz plane with respect to the solid-state laser module 100 extending in the xy plane.
  • the excitation light 2 output from the semiconductor laser 1 installed with an inclination of the angle ⁇ p is incident on the solid-state laser module 100 at a predetermined spread angle.
  • the incident angle of the excitation light 2 to the solid-state laser module 100 can be changed by the angle ⁇ p.
  • the excitation light 2 can be prevented from being input to the laser medium 3 in the heat sink non-installation region 103 a at the excitation light incident end of the solid-state laser module 100.
  • region 103a can be prevented.
  • the excitation light 2 can be absorbed by the laser medium 3 and the laser medium 3 can be in an excited state. In the excited state, exhaust heat from the heat sink 102 is efficiently performed, so that the influence of temperature rise can be reduced.
  • the tilt angle ⁇ p of the semiconductor laser 1 is set so as to satisfy the total reflection condition in the propagation optical path 109 of the excitation light 2 that allows the excitation light 2 to propagate in the double clad solid-state laser module 100.
  • the semiconductor laser 1 is installed with an upward angle, but the semiconductor laser 1 can also be installed downward.
  • the inclination angle in this case is also set to an angle at which the excitation light 2 is not input to the laser medium 3 in the non-installation region 103a and the excitation light 2 can propagate in the double-clad solid laser module 100.
  • FIG. 29 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 15 of the present invention (however, solid-state laser module 100 is shown in cross section). 29 differs from FIG. 28 in that the semiconductor laser 1 is installed in parallel to the y-axis direction, like the solid-state laser module 100, and the excitation light 2 is condensed using the lens 110.
  • FIG. 28 differs from FIG. 28 in that the semiconductor laser 1 is installed in parallel to the y-axis direction, like the solid-state laser module 100, and the excitation light 2 is condensed using the lens 110.
  • the excitation light 2 output from the semiconductor laser 1 enters the solid-state laser module 100 while being condensed by the lens 110.
  • the excitation light 2 can be input to the laser medium 3 without being absorbed in the heat sink non-installation region 103 a at the excitation light incident end of the solid-state laser module 100.
  • region 103a can be prevented.
  • the lens 110 sets the condensing condition so that the excitation light 2 can propagate in the double clad solid-state laser module 100 so as to satisfy the total reflection condition of the propagation light path 109 of the excitation light 2.
  • the excitation light 2 is incident from the upper side of the laser medium 3 in the solid-state laser module 100.
  • the excitation light 2 may be incident from the lower side of the laser medium 3.
  • FIG. FIG. 30 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 16 of the present invention.
  • a heat sink 111 having a width (length in the x-axis direction) wider than that of the solid-state laser module 100 protrudes beyond the inclined side surface 106 provided with the total reflection film in FIG. In this way, they are bonded.
  • the side surface 106 which is a laser light high reflectivity surface, is provided with a total reflection film as indicated by reference numeral 6 in FIG. 1, and reflects the laser light on the side surface of the laser medium 3 provided with the total reflection film, thereby There is no input / output.
  • the heat sink 111 can be contacted (installed) to the end of the solid-state laser module 100, that is, the laser medium 3 on the side surface 106 side, the efficiency of exhaust heat can be increased, and the temperature rise can be suppressed.
  • the temperature difference of the temperature distribution on the main surface of the module 100 can be reduced.
  • the heat sink 111 is bonded to the solid-state laser module 100 and the heat sink 111 is bonded to the laser medium 3. Reflection and scattering by the adhesive attached to the surface of the laser beam can be prevented, and vignetting of the input / output laser beam can also be prevented.
  • the non-installation areas 103a, 103b, and 103d are made as uniform and small as possible.
  • FIG. FIG. 31 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 17 of the present invention.
  • the solid laser module 100 including the respective end surfaces of the laser medium 3 and the claddings 20, 4a, and 4b has an end surface on which the excitation light is incident, and is in the y axis within the yz plane with respect to the main surface extending in the xy plane direction.
  • the semiconductor laser 1 is installed in the y-axis direction and receives the excitation light 2.
  • the excitation light 2 output from the semiconductor laser 1 is incident on the solid-state laser module 100 at a predetermined spread angle.
  • the excitation light 2 is refracted by the inclination angle ⁇ tp of the excitation light incident surface.
  • the excitation light 2 is refracted in the upward direction, and the excitation light 2 can be prevented from being input to the heat sink non-installation region 103a at the excitation light incident end of the solid-state laser module 100.
  • region 103a can be prevented.
  • the excitation light 2 can be absorbed by the laser medium 3, and the laser medium 3 can be in the excitation state. In this part, since the exhaust heat from the heat sink 102 is efficiently performed, the influence of the temperature rise can be reduced.
  • the inclination angle ⁇ tp of the surface on which the excitation light of the solid-state laser module 100 is incident also has a role of suppressing parasitic amplification light due to the circular path in the planar waveguide laser device.
  • the semiconductor laser 1 is inclined and installed as in the fourteenth embodiment shown in FIG. 32, the excitation light is condensed using the lens 110 as in the fifteenth embodiment, or these Both can be applied.
  • FIG. 32 the semiconductor laser 1 is inclined and installed as in the fourteenth embodiment shown in FIG. 32, the excitation light is condensed using the lens 110 as in the fifteenth embodiment, or these Both can be applied.
  • the excitation light 2 is incident from the upper part of the laser medium 3, but the excitation light 2 may be incident from the lower part of the laser medium 3.
  • the input of the pumping light 2 is set so that the pumping light 2 can propagate in the double clad solid-state laser module 100.
  • an optimal adhesive for bonding the heat sink and the solid laser module is used in consideration of the thermal expansion coefficient, thermal resistance, curing conditions, usage conditions, and the like.
  • an optimum material for the heat sink is used in consideration of the thermal expansion coefficient, thermal conductivity, processing conditions, and the like.
  • the case where the heat sink is bonded to the lower surface side of the solid-state laser module has been described.
  • the heat sink can be bonded to the upper surface side of the laser medium, and as shown in FIG. You may adhere to both sides.
  • FIG. 34 is a side view of the planar waveguide laser device provided with the heat sink shown in FIG. 25 and the distribution characteristics of the laser medium.
  • 34A is a side view of the planar waveguide laser device
  • FIGS. 34B to 34E are heat generation distributions and temperatures along the y-axis direction of the laser medium of the planar waveguide laser device of FIG. A distribution, a positive refractive index distribution, and a negative refractive index distribution are shown.
  • FIG. 35 is a top view of the planar waveguide laser device of FIG. However, in FIG. 34A and FIG. 35, the solid-state laser module 100 is shown in a cross-sectional view.
  • the pumping light 2 output from the semiconductor laser 1 that is a pumping light source is incident from the end face of the laser medium 3, and the clad 4 b disposed on the lower main surface side of the laser medium 3 and the upper main surface side of the laser medium 3. It is totally reflected by the arranged clad 4 a and propagates in the laser medium 3.
  • the excitation light 2 is absorbed while propagating through the laser medium 3.
  • the semiconductor laser 1 is provided on each end face side of the laser medium 3 and excited oppositely.
  • the absorption amount of the excitation light 2 in the laser medium 3 is large in the portion near the excitation light incident end face, and the absorption amount is the smallest in the central portion in the y-axis direction. Since the heat generated in the laser medium 3 is proportional to the amount of absorption of the excitation light 2, the amount of heat generation is high near the excitation light incident end face as shown in FIG. Less.
  • the lower main surface of the laser medium 3 is bonded to the heat sink 102 with a clad 4b and a bonding material (not shown) interposed therebetween to dissipate heat.
  • the temperature of the periphery of the laser medium 3 is higher than that at the center.
  • the exhaust heat resistance is large at the end portion of the heat sink 102, the peripheral portion of the surface of the heat sink 102 that contacts the laser medium 3 through the clad 4b has a higher temperature than the central portion. For this reason, the temperature of the laser medium 3 becomes high in the vicinity of the excitation light incident end face as shown in FIG. 34C, and becomes constant at the central portion of the heat sink 102 where exhaust heat is sufficiently performed.
  • the refractive index of the laser medium 3 changes depending on the temperature.
  • a coefficient of temperature dependence of refractive index variation is represented by dn / dT.
  • dn / dT varies depending on the type of the laser medium 3.
  • the refractive index increases as the temperature increases, and in a laser medium with negative dn / dT, the refractive index decreases as the temperature increases.
  • the laser medium 3 since the temperature rises at the peripheral portion of the laser medium 3, the laser medium 3 has a temperature change region 121 of the laser medium near the excitation light incident end face, and a constant temperature region 120 of the laser medium near the center.
  • the laser incident light 8 that enters the laser medium 3 from the antireflection film 7 propagates through the laser medium 3 while being repeatedly reflected between the opposing total reflection films 6 that reflect the laser light.
  • the two side surfaces of the laser medium 3 to which the total reflection film 6 is applied are inclined with respect to the other at an angle ⁇ 1, the incident angle to the total reflection film 6 is gradually increased while repeating the reflection.
  • the light approaches the vertical direction and further propagates, the light is perpendicularly incident on the total reflection film 6 to be propagated.
  • the angle is close to perpendicular to the total reflection film 6, so that the laser light propagates more densely than in the vicinity of the antireflection film 7, and the light is reflected many times in a small region.
  • the returned laser light from the return path returns along the optical path substantially the same as the forward path, and the laser output light 9 is output from the antireflection film 7.
  • the excitation light 2 is absorbed by the laser medium 3 to generate a gain for the laser light.
  • the laser beam 3 is amplified by the propagation of the laser beam through the gain laser medium 3, and the energy is extracted to become a large output laser output beam 9.
  • the turning point in the laser medium is set in the vicinity of the excitation light incident end face.
  • the setting of the turning point is adjusted by the incident angle of the laser beam to the laser medium 3 (incident angle of the laser incident light 8), the outer shape of the laser medium 3, and the angle ⁇ 1 formed by the both side surfaces of the laser medium 3.
  • the vicinity of the excitation light incident end face of the laser medium 3 becomes a temperature change region 121 of the laser medium as shown in FIG.
  • a refractive index change depending on dn / dT of the laser material occurs.
  • the laser light has a characteristic that the traveling direction is bent in a direction in which the refractive index is high.
  • the refractive index temperature dependence coefficient dn / dT is positive, the temperature increases near the excitation light incident end face in the vicinity of the turning point in the laser medium. Bend toward the excitation light incident end face.
  • the propagation angle is shifted by the angle bent in the temperature change region of the laser medium, which does not coincide with the forward optical axis. Since the propagation angle is deviated, the difference in the propagation position becomes larger as the propagation length becomes longer, and may be greatly different in the vicinity of the antireflection film 7. Further, the output angle of the laser beam is obtained by receiving the change in the refractive index of the temperature change region 121 of the laser medium with respect to the laser output beam 9 that is not affected by the temperature change. The laser output light 9a whose position is changed is obtained. Since the change in the angle and position of the laser output light 9a depends on temperature, it depends on the output of the excitation light 2. Therefore, the angle and position of the laser output light 9a may change depending on the excitation output, which is not preferable for use of the laser.
  • FIG. 36 is a top view of the planar waveguide laser device including the solid-state laser module according to the eighteenth embodiment of the present invention, taking the above into consideration.
  • FIG. 37 is a side view of the planar waveguide laser device of FIG. 36 and the distribution characteristics of the laser medium.
  • FIG. 37 (a) is a side view
  • FIGS. 37 (b) to (e) are respectively a heat generation distribution, a temperature distribution, and a positive refractive index distribution along the y-axis direction of the laser medium of the planar waveguide laser device of FIG. And a negative refractive index profile.
  • the solid-state laser module 100 is shown in a sectional view.
  • a narrow band which is a laser light high reflection / excitation light antireflection film that transmits the excitation light and reflects the laser light is provided on the side surface 33 of the pair of opposite side surfaces 33 and 34 of the planar waveguide type laser medium 3.
  • the reflection film 30 is applied, and the side surface 34 is provided with a laser light high reflection / excitation light high reflection film 126 that reflects both excitation light and laser light.
  • a part of the side surface 34 is provided with an antireflection film 7 that transmits laser light instead of the laser light high reflection / excitation light high reflection film 126.
  • only the portion that transmits the excitation light may be the narrow-band reflection film 30, and the remaining portion may be the laser light high reflection / excitation light high reflection film 126.
  • the semiconductor laser 1 is disposed on the side surface 33 side, outputs the excitation light 2, passes through the narrow-band reflecting film 30, propagates in the laser medium 3 along the optical axis substantially parallel to the x direction in the laser medium 3 and absorbs it.
  • the heat sink 102 has a clad 4b on the lower main surface side of the laser medium 3, and a bonding material for the clad 4b and the heat sink 102 (not shown). It is arranged to be bonded with a sandwich.
  • the excitation light 2 is introduced into the laser medium 3 from a part of the approximate center of the side surface 33.
  • the central portion in the y direction of the laser medium is an excitation region 127 to be excited, and both ends of the excitation region 127 in the y direction are two unexcited regions 128a and 128b that are not excited.
  • the heat sink 102 is bonded to both the excitation region 127 and the non-excitation regions 128a and 128b of the laser medium 3 through the cladding 4b and a bonding material (not shown), and exhausts heat generated in the laser medium 3. Alternatively, heat is exhausted using a heat radiating means (not shown).
  • the excitation light 2 propagates in the laser medium 3 in the substantially x direction, an absorption distribution accompanying absorption occurs in the x direction, but a uniform excitation distribution depending on the uniformity of the excitation source, that is, the semiconductor laser 1, occurs in the y direction. Is obtained. Therefore, a substantially uniform excitation distribution is obtained in the y direction of the excitation region 127, and a substantially uniform heat generation distribution is obtained in the y direction of the excitation region 127 of the laser medium 3 as shown in FIG.
  • the lower main surface of the excitation region 127 of the laser medium 3 is joined to the central portion of the heat sink 102 in the y direction with the clad 4b and the joining material interposed therebetween.
  • the excitation region 127 of the laser medium 3 is uniform as shown in FIG. Temperature.
  • the excitation region 127 of the laser medium 3 having an amplification gain of the laser beam by the excitation has a uniform refraction regardless of whether dn / dT is positive or negative, as shown in (d) and (e) of FIG. Become a rate.
  • the unexcited regions 128a and 128b have a temperature increase smaller than that of the excitation region due to heat conduction from the excitation region 127, and the temperature increase becomes smaller as the distance from the excitation region increases.
  • the refractive index of the unexcited regions 128a and 128b is lower than the refractive index of the excitation region 127 when dn / dT is positive, and is higher than the refractive index of the excitation region 127 when dn / dT is negative.
  • the unexcited regions 128a and 128b are regions in which laser amplification is not performed, the laser light is not propagated to the unexcited region, and the position and angle of the laser output light change depending on the excitation output. Absent.
  • the laser light introduced from the antireflection film 7 into the first unexcited region 128a of the laser medium 3 is reflected between the opposing narrow band reflective film 30 and the laser light high reflection / excitation light high reflection film 126, The light enters the excitation region 127.
  • the light is reflected between the narrow-band reflection film 30 and the high reflection / excitation light reflection film 126 of the laser beam to propagate while narrowing the distance between reflection points in the y direction, and is further turned back to be substantially the same as the forward path.
  • the light travels in the same optical path and is output from the antireflection film 7.
  • the beam overlap is achieved by matching the excitation region 127 of the laser medium 3 with the propagation region of the laser light as much as possible. It is desirable to improve efficiency. For this reason, the turning point of the laser medium 3 is set at the boundary between the excitation region 127 and the second non-excitation region 128b. The setting of the turning point is adjusted by the incident angle of the laser beam to the laser medium 3, the outer shape of the laser medium 3, and the relative angle ⁇ 1 between the side surfaces 33 and 34.
  • the configuration is such that the excitation region 127 of the laser medium 3 is folded near the boundary with the second non-excitation region 128b, the beam overlap efficiency is increased, and a high-power and high-efficiency laser can be obtained.
  • the refractive index distribution of the excitation region having the amplification gain is made uniform in the y direction, there is no change in the propagation angle due to the change in the refractive index of the laser light, and there is no output angle and position shift of the laser output light 9. For this reason, there is a feature that a stable laser output angle and a laser output position can be obtained.
  • the excitation light 2 introduced into the laser medium 3 through the narrow-band reflection film 30 that reflects the laser light and transmits the excitation light 2 propagates in the substantially x direction while being absorbed.
  • a laser beam high reflection / excitation light high reflection film 126 is provided on the side surface 34 facing the side surface 33 and reflects the excitation light, so that the propagation length of the excitation light in the laser medium 101 is doubled. Thus, a higher absorption rate can be obtained. Therefore, there is a feature that the laser output light 122 with high efficiency and high output can be obtained.
  • FIG. 38 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 19 of the present invention.
  • the solid-state laser module 100 is shown in a sectional view.
  • the basic configuration of the side view is the same as that shown in FIG.
  • a pair of side surfaces 33 and 34 facing each other of the planar waveguide type laser medium 3 is provided with a narrow band reflecting film 30 that transmits the excitation light and reflects the laser light.
  • an antireflection film 7 is provided on a part of the side surface 34 in place of the narrow-band reflection film 30 in order to make the laser light incident.
  • the semiconductor laser 1 that is an excitation light generation source is disposed so as to face each other, and each passes through the narrow-band reflection film 30 and is approximately in the x direction in the laser medium 3.
  • the pumping light 2 that propagates and is absorbed in the laser medium 3 along the parallel optical axis is output.
  • a heat sink 102 is installed and fixed on the lower main surface side of the laser medium 3 with a clad and a bonding material interposed therebetween, as in FIG.
  • the excitation light 2 is introduced by the semiconductor laser 1 from the outside of the pair of side surfaces 33 and 34 facing each other of the laser medium 3.
  • excitation higher than the case where excitation is performed from 1 side surface is possible, and a higher output laser beam can be obtained.
  • the y direction width of the heat sink 102 is larger in the y direction than the excitation region 127, the temperature distribution in the y direction of the excitation region 127 is uniform and the dn / dT of the laser medium 3 is also uniform. There is no change in the propagation angle due to the change in the refractive index, and there is no deviation in the output angle and position of the laser output light 9. For this reason, there is a feature that a stable laser output angle and a laser output position can be obtained.
  • FIG. FIG. 39 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 20 of the present invention
  • FIG. 40 is a side view of the planar waveguide laser device of FIG.
  • the solid-state laser module 100 shows the structure of the thermal lens effect generating means 150 through the laser medium 3 and the clads 4a and 4b.
  • FIG. 40 shows the solid-state laser module 100 and the thermal lens effect generating means 150 in a sectional view taken along the line CC of FIG.
  • FIG. 41 shows an enlarged cross section of the portion D of FIG. 40 and the characteristics of the laser medium 3.
  • FIG. 39 shows an enlarged cross section of the portion D
  • FIGS. 41 (b) and (c) show the temperature difference and refractive index difference of the portion D of the laser medium 3 in FIG.
  • the clad 4 b disposed on the lower principal surface side of the planar waveguide type laser medium 3 is bonded to the contact portion 152 of the thermal lens effect generating means 150 by the bonding material 160.
  • dn / dT of the laser medium 3 is positive.
  • the thermal lens effect generating means 150 includes a contact portion 152 joined to the clad 4d disposed on the lower principal surface side of the laser medium 3 by the joining material 160, and a clad 4b recessed from the contact portion 152 in the z direction.
  • the heat sink is configured by the non-contact portion 153 that is not in contact, and the cross-sectional shape along the xy plane of the contact portion 152 is a reverse pattern of the laser light propagation path 89 on the laser medium 3. That is, the laser light incident on the laser medium 3 from the antireflection film 7 propagates while reflecting between the two side surfaces 33 and 34 facing each other, but as shown in FIG.
  • the lower side of the laser light propagation path region 89 a is a non-contact portion 153 of the thermal lens effect generating means 150. Further, the lower side of the region where the laser light does not propagate is a contact portion 152 of the thermal lens effect generating means 150, and the contact portion 152 of the thermal lens effect generating means 150 is located on the lower clad 4b where the laser light does not propagate. Bonded and fixed by a bonding material 160. The heat generated in the laser medium 3 is transmitted to, for example, the heat radiating means 102b indicated by the broken line in FIG. 40 disposed on the lower main surface of the thermal lens effect generating means 150, and is exhausted.
  • the laser medium 3 generates heat, but the temperature of the laser medium 3 above the contact portion 152 is lowered as shown in FIG. 41B, and the laser medium 3 above the non-contact portion 153 is in contact with the contact portion 152.
  • the temperature rises because the transmission distance becomes longer.
  • the temperature of the laser light propagation path region 89a is higher than the surroundings.
  • this configuration uses a material with a positive dn / dT for the laser medium 3, as shown in FIG. 41C, the laser light propagation path region 89a has a refractive index higher than that of the surrounding laser medium. Becomes higher.
  • the laser light can be confined in the upper portion of the non-contact portion 153 having a high temperature of the laser medium 3 and can propagate through the laser medium along the optical path along the non-contact portion 153.
  • the convex lens effect of the laser medium by the contact portion 152 and the non-contact portion 153 increases.
  • the laser beam confinement effect at the upper part is enhanced, and a more stable laser output angle and laser output position can be obtained.
  • the excitation light 2 is introduced into the laser medium 3 from the two end face sides of the laser medium 3 substantially orthogonal to the side surfaces 33 and 34 in the xy plane.
  • the number of semiconductor lasers 1 and the pumping configuration are not limited to this. For this reason, the above-described effects can be obtained by the laser medium 3 that generates heat by excitation and the thermal lens effect generating means 150 regardless of the illustrated excitation configuration.
  • FIG. 42 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 21 of the present invention.
  • FIG. 43 is a side view of the planar waveguide laser device of FIG.
  • the solid-state laser module 100 shows the structure of the thermal lens effect generating means 150a through the laser medium 3a and the clads 4a and 4b.
  • FIG. 43 shows the solid-state laser module 100 and the thermal lens effect generating means 150a in a sectional view taken along the line EE of FIG.
  • FIG. 44 shows an enlarged cross section of the portion F of FIG.
  • FIG. 42 shows an enlarged cross section of the portion F
  • FIGS. 44 (b) and (c) show the temperature difference and refractive index difference of the portion F of the laser medium 3a of FIG.
  • the clad 4b disposed on the lower principal surface side of the planar waveguide type laser medium 3a is bonded to the contact portion 152 of the thermal lens effect generating means 150a by the bonding material 160.
  • dn / dT of the laser medium 3a is negative.
  • the thermal lens effect generating means 150a includes a contact part 152 joined to the clad 4d disposed on the lower principal surface side of the laser medium 3 by the joining material 160, and a clad 4b recessed from the contact part 152 in the z direction.
  • the heat sink is configured by a non-contact portion 153 that is not in contact, and the cross-sectional shape along the xy plane of the contact portion 152 has the same pattern as the laser light propagation path 89 on the laser medium 3a. That is, the laser light incident on the laser medium 3a from the antireflection film 7 propagates while being reflected between the two opposing side surfaces 33 and 34, but as shown in FIG.
  • the lower side of the laser light propagation path region 89a is a contact portion 152 of the thermal lens effect generation means 150a, and the contact portion 152 of the thermal lens effect generation means 150a is joined to the clad 4b below the laser light propagation path region 89a.
  • the material 160 is joined and fixed.
  • the lower side of the region where the laser beam does not propagate is a non-contact portion 153 of the thermal lens effect generating means 150a.
  • the heat generated in the laser medium 3a is transmitted to, for example, the heat dissipating means 102b indicated by a broken line in FIG. 43 disposed on the lower main surface of the thermal lens effect generating means 150a to be exhausted.
  • the laser medium 3a generates heat, but the temperature of the laser medium 3 above the contact portion 152 is lowered as shown in FIG. 44B, and the laser medium 3a above the non-contact portion 153 is in contact with the contact portion 152.
  • the temperature rises because the transmission distance becomes longer.
  • the temperature of the laser beam propagation path region 89a is lower than the surroundings.
  • this configuration uses a material having a negative dn / dT of the laser medium 3a, the laser light propagation path region 89a has a refractive index higher than that of the surrounding laser medium, as shown in FIG. Becomes higher.
  • the laser beam is confined in the upper part of the contact portion 152 having a low temperature of the laser medium 3 a and can propagate through the laser medium along the optical path along the contact portion 152.
  • the convex lens effect of the laser medium by the contact part 152 and the non-contact part 153 increases as the temperature rise of the laser medium increases with high output excitation, the confinement effect of the laser light at the upper part of the contact part becomes higher.
  • Features include stable laser output angle and laser output position.
  • the excitation light 2 is introduced into the laser medium 3a from the two end face sides of the laser medium 3 substantially orthogonal to the side surfaces 33 and 34 in the xy plane.
  • the number of semiconductor lasers 1 and the pumping configuration are not limited to this. For this reason, the above-described effects can be obtained by the laser medium 3a that generates heat by excitation and the thermal lens effect generating means 150a regardless of the illustrated excitation configuration.
  • Embodiment 22 a more detailed specific example of the reflection characteristics of the total reflection film 6 bonded on the side surface of the laser medium 3 described in the paragraphs 0036 and 0037 in the first embodiment will be described as the twenty-second embodiment.
  • the solid-state laser material may be a solid-state laser material using a crystal such as YAG, glass, or other base material, but the wavelength range or gain intensity in which the active medium has gain may differ depending on the solid-state laser material. In Er, when the solid laser material is glass, it has a large gain in the 1535 nm band. Further, the solid-state laser material may be one in which other atoms having a sensitizing action such as Yb are added in addition to the active medium.
  • the active medium of the laser medium 3 is Er
  • Yb having an absorption in a wavelength band of 900 to 1000 nm is co-doped, so that Yb atoms are excited using a semiconductor laser or the like in the above wavelength band, and the Er from the Yb atoms. Er atoms can be excited by energy transfer to the atoms.
  • a high-power semiconductor laser having a wavelength of 940 nm or a wavelength of 975 nm, which is generally available as an excitation light source, can be used.
  • an optimum kind is selected according to the energy level of the active medium of the laser medium 3.
  • the addition concentration is set so that the sensitizing action can be obtained most efficiently.
  • FIG. 45 shows the wavelength dependence characteristics of the reflectance of the total reflection film 6 of the planar waveguide laser device including the solid-state laser module according to Embodiment 22 of the present invention.
  • the horizontal axis of the graph represents the wavelength (unit: nm)
  • the left vertical axis represents the gain intensity of the laser medium 3
  • the right vertical axis represents the reflectance of the total reflection film 6.
  • the curve 200 in the figure is the gain distribution of the laser medium 3 (left vertical axis)
  • the curve 201 is the reflectance characteristic of the total reflection film 6 with respect to an incident angle of 0 ° (right vertical axis)
  • the curve 202 is the incident angle ( ⁇ in1- ⁇ 1).
  • the reflectance characteristics (right vertical axis) of the total reflection film 6 with respect to ° are shown.
  • the shape of the solid-state laser module is, for example, the same as that shown in FIG. 1. Here, a case is considered where the wavelength of the laser incident light 8 is 1550 nm using this solid-state laser module.
  • Er is a three-level system active medium, and there are stimulated emission from the upper level and absorption from the lower level. Here, for simplicity of explanation, the absorption from the lower level is ignored. .
  • the density of excited Er ions per unit volume is N [1 / m 3 ].
  • the stimulated emission cross section at the wavelength ⁇ [nm] is represented as ⁇ ( ⁇ ) [m 2 ].
  • g0 ( ⁇ ) ⁇ ( ⁇ ) ⁇ N [1 / m].
  • the laser incident light 8 having the power P0 [W] incident from the antireflection film 7 is the side surface. It is amplified by G0 ( ⁇ ) times before reaching 33, and becomes P0 ⁇ G0 ( ⁇ ) ⁇ R ( ⁇ ) after reflection at the side surface 33, and is further amplified by G0 ( ⁇ ) times before returning to the side surface 34. The Thereafter, the laser beam is amplified in the laser medium 3 by repeating reflection and amplification.
  • the gain distribution of the laser medium 3 has a wavelength characteristic as shown by a curve 200 in FIG. 45 and is maximum in the wavelength 1535 nm band. That is, the small signal gain G0 ( ⁇ ) with respect to the optical path until one reflection occurs is maximum in the wavelength 1535 nm band, and the laser light in the wavelength 1535 nm band is most easily amplified.
  • the wavelength band where the gain of the laser medium 3 is maximized is equal to the laser wavelength band. If this is the case, even when the gain increases as the pumping output increases, the amplification of the laser beam also increases, so that the parasitic oscillation and the parasitic amplification light do not exceed the amplification factor of the laser beam.
  • the wavelength band (wavelength 1535 nm band) at which the gain of the laser medium 3 is maximized is different from the laser wavelength band (1550 nm) as in this embodiment, and the gain difference due to these wavelengths is large, Spontaneous emission light generated in the laser medium 3 is easily amplified in a wavelength band in which gain is increased, and energy accumulated in the laser medium is consumed by this amplification, and amplification efficiency of the laser incident light 8 is lowered. . Further, when spontaneous emission light is amplified, parasitic oscillation light and parasitic amplification light are easily generated.
  • the laser incident light 8 of 1550 nm can be efficiently amplified.
  • the reflectivity is increased as much as possible to reduce the loss with respect to 1550 nm (R (1550) ⁇ 1), and the reflectivity is decreased with respect to 1535 nm to reduce the loss (R ( 1535) ⁇ 0).
  • the spontaneous emission light in the 1535 nm band amplified in the optical path until one reflection occurs is transmitted through the total reflection film 6 and emitted to the outside, so that the reflection between the side surfaces 33 and 34 is repeated. It is possible to eliminate the occurrence of continuous amplification.
  • the laser incident light 8 of 1550 nm is reflected on the side surface 33 and the side surface 34 without loss and the extraction of energy by the amplified light in the 1535 nm band is reduced, so that a reduction in amplification efficiency can be prevented.
  • the reflectance R (1535) ⁇ 0 is set to make the reflectance of the total reflection film 6 with respect to 1535 nm as small as possible, but amplification in the optical path until one reflection occurs. Since the gain is G0 (1535), R (1535) ⁇ 1 / G0 (1535) may be set in order to prevent an increase in power due to amplification. As a result, the laser light in the 1535 nm band having the power P0 [W] incident from the side surface 33 or the side surface 34 becomes P0 ⁇ G0 (1535) by the time it reaches the opposing side surface. Since ⁇ G0 (1535) ⁇ R (1535) ⁇ P0, it does not become larger than P0 ⁇ G0 (1535) even if reflection is repeated.
  • the reflectance of the total reflection film 6 is lowered for a wavelength band having a large gain different from the wavelength band of the laser incident light 8, and reflection is performed between the side surfaces 33 and 34 in the wavelength band other than the laser incident light 8.
  • the total reflection film 6 is within the range where the incident angle ( ⁇ in1- ⁇ 1) ° with respect to the side surface 33 of the laser incident light 8 (internal incident angle ⁇ in1) incident from the antireflection film 7 is perpendicularly incident (angle 0 °). That is, with respect to an angle of 0 ° to ( ⁇ in1 ⁇ 1) °, in the wavelength band of the laser incident light 8, it is necessary to increase the reflectivity in order to reduce the loss and perform the amplification efficiently.
  • the total reflection film 6 having such wavelength characteristics and incident angle characteristics can be manufactured by laminating dielectric films as described above, and the conditions such as the thickness of the dielectric films to be laminated are controlled. By doing so, it is possible to control the reflection characteristics with respect to the wavelength and the incident angle.
  • the reflectance characteristics with respect to the wavelength change when the incident angle of the laser beam changes as shown by the curves 202 and 201 in FIG.
  • the reflectance in the laser light wavelength band is set to be high with respect to a wide range of incident angles.
  • the total reflection film 6 is difficult to adjust the thickness of the dielectric film to be laminated, and the number of laminations increases, so that the configuration becomes complicated and it may be difficult to manufacture.
  • the reflectance of the total reflection film 6 may have a wavelength characteristic as shown in FIG.
  • curve 203 is the reflectance characteristic of total reflection film 6 with respect to an incident angle of 0 ° (right vertical axis)
  • curve 204 is the reflectance characteristic of total reflection film 6 with respect to incident angle ( ⁇ in1- ⁇ 1) ° (right vertical axis).
  • 45 differs from FIG. 45 in that the reflectance in the 1535 nm band is larger than 1 / G0 (1535) at both incident angles.
  • the reflectance in the 1535 nm band is larger than 1 / G0 (1535) at any incident angle, but the reflectance is smaller than 1 and is not totally reflected.
  • the amplification factor for the emitted light can be reduced.
  • the laser beam is reflected and amplified a number of times in the laser medium 3, so that the amplification factor of spontaneous emission light can be reduced even if the rate of decrease in the reflectance with respect to the wavelength 1535 nm band is small. Will grow.
  • the total reflectance is reduced so that the reflectance is somewhat reduced.
  • the reflectance of the total reflection film 6 is totally reflected at the wavelength of the laser light, and the wavelength band in which the gain is maximized.
  • the amplification of spontaneous emission light can be suppressed, and the laser light can be efficiently amplified.
  • the optical path with the longest parasitic oscillation or parasitic amplification is substantially the same as the laser reflected light optical path. Since amplification of spontaneous emission light is suppressed by the amplification of light, the amplification factor of laser light does not decrease.
  • the wavelength of the laser incident light 8 is 1550 nm is considered.
  • the wavelength of the laser incident light may be within a range in which Er which is an active medium of the laser medium 3 has a gain, and this wavelength is required. It is selected according to the oscillation wavelength. Further, when this solid-state laser is used as an amplifier, it is determined by the wavelength of a laser light source used as a reference light source.
  • FIG. FIG. 47 shows the wavelength dependence characteristics of the reflectivity of the total reflection film 6 of the planar waveguide laser device including the solid-state laser module according to Embodiment 23 of the present invention.
  • the active medium of the laser medium 3 is Yb and the wavelength of the laser incident light 8 is 1064 nm.
  • the shape of the solid-state laser module is the same as that shown in FIG.
  • the horizontal axis of the graph represents the wavelength (unit: nm)
  • the left vertical axis represents the gain intensity of the laser medium 3
  • the right vertical axis represents the reflectance of the total reflection film 6.
  • a curve 205 in the figure indicates the gain distribution (left vertical axis) of the laser medium 3
  • a curve 206 indicates the reflectance characteristic (right vertical axis) of the total reflection film 6.
  • the solid-state laser material of the laser medium 3 may be a solid-state laser material using crystals such as YAG, glass, or other base materials, but the wavelength range and gain intensity in which the active medium has a gain differ depending on the solid-state laser material.
  • the solid-state laser material is YAG. Since Yb has absorption in the wavelength band of 900 to 1000 nm, a high-power semiconductor laser having a wavelength of 940 nm or 975 nm that is generally available as an excitation light source can be used. Further, since the wavelength band of these excitation light sources is close to the wavelength band having a gain (1000 to 1100 nm), the quantum defect is small, and efficient laser oscillation and laser light amplification can be performed.
  • the gain distribution of the laser medium 3 has a wavelength characteristic as shown by a curve 205 in FIG. 47, and is maximum in the wavelength 1030 nm band. That is, the small signal gain G0 ( ⁇ ) is also maximized in the wavelength 1030 nm band, and laser light in the wavelength 1030 nm band is most easily amplified.
  • the wavelength of the laser incident light is 1064 nm, which is different from the wavelength band in which the maximum gain is obtained, the spontaneous emission light is amplified in the wavelength 1030 nm band where the gain becomes large as in the case of the twenty-second embodiment.
  • the energy stored in the laser medium is consumed by this amplification, and the amplification efficiency of the laser incident light 8 is lowered.
  • spontaneous emission light is amplified, parasitic oscillation light and parasitic amplification light are easily generated.
  • the 1064 nm laser incident light 8 can be efficiently amplified.
  • the reflectance of the total reflection film 6 is set in the same manner as in the case of the twenty-second embodiment, and thus the description thereof is omitted here. The same applies to the angle characteristics. Further, even when the reflectance for the wavelength band where the amplification gain is maximum becomes larger than the reciprocal of the amplification gain in the optical path until one reflection occurs, it is the same as in the case of the twenty-second embodiment.
  • the reflectance of the total reflection film 6 is totally reflected at the wavelength of the laser light, and the wavelength band in which the gain is maximized.
  • the amplification of spontaneous emission light can be suppressed, and the laser light can be efficiently amplified.
  • the wavelength of the laser incident light 8 is 1064 nm is considered.
  • the wavelength of the laser incident light may be within a range in which Yb as the active medium of the laser medium 3 has a gain.
  • a wavelength band of 1048 nm may be used. This wavelength is selected according to the required oscillation wavelength.
  • this solid-state laser is used as an amplifier, it is determined by the wavelength of a laser light source used as a reference light source.
  • the reflectance of the total reflection film 6 has a wavelength characteristic within the wavelength band in which the laser medium 3 has gain has been described.
  • the active medium of the laser medium 3 is Nd.
  • desired laser oscillation light can be obtained by providing total reflection characteristics only for the required wavelength band.
  • the reflectance of the total reflection film is set to total reflection at the wavelength of the laser light even within this wavelength band.
  • the wavelength characteristics of the total reflection film 6 may have transmission characteristics with respect to the excitation light wavelength in addition to the wavelength characteristics described above.
  • planar waveguide laser device can be applied to laser oscillators and laser amplifiers used in many fields.
  • 1 semiconductor laser excitation light source
  • 2 excitation light 3, 3a laser medium, 4a, 4b, 20 clad, 6 total reflection film, 7, 7a antireflection film, 8 laser incident light, 9, 9a laser output light
  • 10 Laser reflected light 30 narrow-band reflective film, 31, 32 main surface, 33, 34 side surface, 35, 36 end surface, 40 wavelength conversion element, 41 output film, 42 incident film, 43 wavelength conversion laser light, 50 separation means, 51 Polarizer, 52 1/4 wavelength plate, 53 45 degree Faraday rotator, 54 isolator, 55 1/2 wavelength plate, 60 stack LD, 61 lens, 62 lens group, 63 microlens array, 64 slab waveguide, 89 laser light Propagation path, 89a Laser light propagation path area, 100 Solid laser module, 102, 102a, 111 Heat sink, 103a to 103e not installed area, 106 side surface, 108, 108a, 110 lens, 109 propagation optical path, 120 temperature constant area, 121 temperature change area, 126 laser light high reflection /

Abstract

Disclosed is a planar waveguide laser device comprised of a solid-state laser module (100) and an excitation light source (1). The solid-state laser module (100) is comprised of a pair of main surfaces (31, 32) which are opposed in a predetermined direction, a pair of side surfaces (33, 34) provided on both sides of each main surface, a pair of end surfaces (35, 36) which are opposed at both ends in the predetermined direction, a laser medium (3) in which one side surface (33) is inclined at a predetermined taper angle with respect the other side surface (34) extending in the predetermined direction, an antireflection film (7) which is provided on the largely-spaced side of the side surfaces and which allows laser light to pass therethrough, and a total reflection film (6) provided on the portions of the side surfaces, which are not provided with the antireflection film. In the solid-state laser module (100), the laser light introduced into the laser medium through the portion of the side surfaces, which is provided with the antireflection film is transmitted within the laser medium while being reflected repeatedly by the side surfaces, and is returned by the narrowly-spaced side within the laser medium and, then, is transmitted to the antireflection film on the largely-spaced side, and is output through the antireflection film. The excitation light source (1) irradiates the laser medium with excitation light to excite the laser medium.

Description

平面導波路型レーザ装置Planar waveguide laser device
 この発明は、レーザを用いた計測装置、加工用レーザ装置、プリンターやプロジェクションテレビ等の光源に好適な高出力レーザ装置、特に平面導波路型レーザ装置に関する。 The present invention relates to a measurement device using a laser, a processing laser device, a high-power laser device suitable for a light source such as a printer or a projection television, and more particularly to a planar waveguide laser device.
 例えば下記非特許文献1に示されるような固体レーザにおいて用いられる固体レーザ媒質の形状は、一般にロッド型、スラブ型、ディスク型、平面導波路型、2次元導波路型、ファイバ型等がある。この中でロッド型、スラブ型、ディスク型、平面導波路型等では、側面又はレーザ端面から励起光を導入し、利得を発生させ、レーザ発振器、又は、レーザ増幅器を構成し、レーザ出力を得る。 For example, the shape of a solid-state laser medium used in a solid-state laser as shown in Non-Patent Document 1 below generally includes a rod type, a slab type, a disk type, a planar waveguide type, a two-dimensional waveguide type, and a fiber type. Among these, rod type, slab type, disk type, planar waveguide type, etc. introduce pumping light from the side surface or laser end face, generate gain, configure laser oscillator or laser amplifier, and obtain laser output .
 ここで、高出力のレーザ出力を得るために高出力励起を行った場合、レーザ媒質内での増幅利得が高くなることから寄生発振や、寄生増幅が生じ、エネルギーの消費が行われることから、レーザ出力や効率が低下することがある。寄生増幅や寄生発振が生じる原因として、レーザ発振器やレーザ増幅器において、レーザ媒質を通過するレーザ光の光路長が、寄生発振や寄生増幅光の光路長よりも短いことがあげられる。このため、一般には寄生発振や寄生増幅が起こらないようにレーザ媒質内の全反射部を荒らし面として周回ができないように工夫をして、寄生発振や寄生増幅光の伝播光路長を短くすることで抑制することがある。 Here, when high-power excitation is performed to obtain a high-power laser output, since the amplification gain in the laser medium increases, parasitic oscillation and parasitic amplification occur, and energy is consumed. Laser power and efficiency may be reduced. The cause of parasitic amplification and parasitic oscillation is that the optical path length of laser light passing through the laser medium is shorter than the optical path length of parasitic oscillation and parasitic amplified light in a laser oscillator or laser amplifier. For this reason, in general, the total reflection part in the laser medium is used as a roughened surface so that parasitic oscillation and parasitic amplification do not occur, and the propagation path length of parasitic oscillation and parasitic amplified light is shortened. May be suppressed.
 しかし、このように構成することで、荒らし面を全反射面として、増幅を行いたいレーザ光を反射させることができなくなり、この結果、レーザ媒質内でのレーザ光路が制限され、長い光路長が取れないことから高い増幅率が得られず、レーザ出力や効率が低くなることがあった。さらに、レーザの増幅率が低いことから、寄生発振や寄生増幅の発生しきい値が低く、寄生発振や寄生増幅が起こり易い等の特徴があった。 However, with this configuration, it becomes impossible to reflect the laser beam to be amplified by using the roughening surface as a total reflection surface. As a result, the laser optical path in the laser medium is limited, and a long optical path length is obtained. Since it cannot be obtained, a high amplification factor cannot be obtained, and the laser output and efficiency may be lowered. Furthermore, since the amplification factor of the laser is low, parasitic oscillation and parasitic amplification generation threshold are low, and parasitic oscillation and parasitic amplification are likely to occur.
 一方、2次元導波路型やファイバ型では、レーザ光の断面の2次元方向に屈折率分布による光閉じ込めが行われており、光の伝播方向は1次元方向となる。このため、寄生発振や寄生増幅の光路とレーザ発振やレーザ増幅の光路が等しいため、寄生発振や寄生増幅が起こり難いといった特徴がある。しかし、レーザ媒質の断面積が小さいため、励起光の導入が困難であり、複雑な構成が必要となることから、高価で信頼性が低い等の特徴がある。 On the other hand, in the two-dimensional waveguide type or fiber type, light confinement is performed by the refractive index distribution in the two-dimensional direction of the cross section of the laser beam, and the light propagation direction is the one-dimensional direction. For this reason, since the optical path of parasitic oscillation or parasitic amplification is equal to the optical path of laser oscillation or laser amplification, there is a feature that parasitic oscillation or parasitic amplification is difficult to occur. However, since the cross-sectional area of the laser medium is small, it is difficult to introduce excitation light, and a complicated configuration is required. Therefore, there are features such as high cost and low reliability.
 一般に平板状のレーザ媒質を利用する形態として、ディスク型がある。ディスク型ではレーザ光は平板面から導入され、薄いレーザ媒質を通過、又は、反射して往復伝播する際にレーザ光の増幅が行われる。このような場合、レーザ媒質の通過距離が短いためレーザ増幅利得が小さいといった特徴がある。このため、レーザ発振器では最適な出力鏡反射率が高くなる。このような場合、僅かな共振器内の損失で出力が低下する等の特徴がある。また、増幅器として用いた場合、増幅率が小さいため低効率であったり、効率を改善する目的でマルチパスさせることがあるが、構成が複雑になる等の特徴がある。さらに、ディスク型の平板面内の伝播長は厚さ方向よりも長いため、平板面内の寄生発振や寄生増幅が起こり易いといった特徴がある。このため、高出力化が困難である等の特徴がある。このように、ディスク型では寄生発振や寄生増幅が起こり易いため、高出力化は困難であり、複雑な寄生発振抑制構造が必要である等の特徴があった。 Generally, there is a disk type as a form using a flat plate laser medium. In the disk type, laser light is introduced from a flat plate surface, and the laser light is amplified when passing through a thin laser medium or reflecting and reciprocating. In such a case, the laser amplification gain is small because the passing distance of the laser medium is short. For this reason, the optimum output mirror reflectivity is increased in the laser oscillator. In such a case, there is a feature that the output is reduced by a slight loss in the resonator. Further, when used as an amplifier, the amplification factor is small, so that the efficiency is low, or multipath may be used for the purpose of improving the efficiency, but the configuration is complicated. Further, since the propagation length in the disk-shaped flat plate surface is longer than the thickness direction, parasitic oscillation and parasitic amplification in the flat plate surface are likely to occur. For this reason, there is a feature that it is difficult to increase the output. As described above, since the disk type is likely to cause parasitic oscillation and parasitic amplification, it is difficult to increase the output, and a complicated parasitic oscillation suppressing structure is required.
 一般に、スラブ型のレーザ媒質では、側面、又は、端面から励起光を導入し、端面からレーザ光を導入する。さらに、レーザ光を導入する端面と対向する端面からレーザ光を出力する。レーザ光はスラブ型レーザ媒質内をジグザグに伝播して光路長を長くする手法が用いられることがある。さらに、このようにジグザグに伝播させることで、レーザ媒質内で発生した熱レンズ効果を平均化して低減することがある。 Generally, in a slab type laser medium, excitation light is introduced from the side or end face, and laser light is introduced from the end face. Further, the laser beam is output from the end surface facing the end surface to which the laser beam is introduced. In some cases, laser light propagates in a zigzag manner in the slab type laser medium to increase the optical path length. Further, by propagating in this zigzag manner, the thermal lens effect generated in the laser medium may be averaged and reduced.
 しかし、このような場合、ジグザグに伝播することからレーザ光とレーザ媒質のオーバーラップのない領域が発生する。このため、抽出効率が低いといった特徴がある。さらに、エネルギーの抽出されない部分での利得が高いことから寄生発振や寄生増幅が起こり易い等の特徴もある。また、ジグザグ反射面の対向する2面間での往復光路において寄生発振が起こり易いといった特徴がある。このように、ジグザグスラブ型では寄生発振や寄生増幅が起こり易いため、高出力化は困難であり、複雑な寄生発振抑制構造が必要である等の特徴があった。 However, in such a case, a region where there is no overlap between the laser beam and the laser medium is generated due to propagation in a zigzag manner. For this reason, the extraction efficiency is low. Furthermore, since the gain in a portion where energy is not extracted is high, parasitic oscillation and parasitic amplification are likely to occur. Further, there is a feature that parasitic oscillation is likely to occur in a reciprocating optical path between two opposing surfaces of the zigzag reflecting surface. As described above, the zigzag slab type is prone to parasitic oscillation and parasitic amplification, so that it is difficult to increase the output, and a complicated parasitic oscillation suppressing structure is required.
 従来のこの種の高出力レーザ装置において、レーザ媒質の形状がロッド型、スラブ型、ディスク型、平面導波路型等の場合、寄生発振や寄生増幅の光路がレーザ発振やレーザ増幅の光路よりも長いことから、高出力励起時に寄生発振や寄生増幅が生じ、レーザ出力や効率が低下する等の問題があった。
 さらに、レーザ媒質の形状が2次元導波路型やファイバ型では、レーザ媒質の断面積が小さいため、励起光の導入が困難であり、複雑な構成が必要となることから、高価で信頼性が低い等の問題があった。
In this type of conventional high-power laser device, when the laser medium has a rod type, slab type, disk type, planar waveguide type, etc., the optical path of parasitic oscillation or parasitic amplification is higher than the optical path of laser oscillation or laser amplification. Since it is long, parasitic oscillation and parasitic amplification occur at the time of high output excitation, and there are problems such as a decrease in laser output and efficiency.
Furthermore, when the laser medium has a two-dimensional waveguide type or fiber type, since the cross-sectional area of the laser medium is small, it is difficult to introduce pumping light and a complicated configuration is required. There was a problem such as low.
 この発明は、上記のような課題を解決するためになされたものであり、寄生発振や寄生増幅を抑制し、最も長いレーザ増幅光路を得て、簡単な励起構成により高出力励起を行うことで、高効率で高出力のレーザ出力を得る平面導波路型レーザ装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, by suppressing parasitic oscillation and parasitic amplification, obtaining the longest laser amplification optical path, and performing high output excitation with a simple excitation configuration. Another object of the present invention is to provide a planar waveguide laser device that obtains high-efficiency and high-power laser output.
 この発明は、所定方向に沿って対向する一対の主面、前記主面の両側の一対の側面及び前記所定方向の両端の対向する一対の端面を有し、前記一対の側面の一方の側面が前記所定方向に沿って延びる他方の側面との間隔が徐々に広がるように前記所定方向に対して所定のテーパー角度で傾斜している、平板状のレーザ媒質と、前記一対の側面上の側面間隔が広い側の少なくとも1カ所に設けられた少なくとも前記レーザ光を透過させる反射防止膜と、前記反射防止膜以外の前記一対の側面上に設けられたレーザ光を反射させる全反射膜と、を含み、前記一対の側面の前記反射防止膜の部分から前記レーザ媒質内に導入されたレーザ光を側面間を反射させながら前記レーザ媒質内を伝播させ、さらに前記レーザ媒質内の側面間隔が狭い側で折り返させて再び側面間隔が広い側の前記反射防止膜まで伝播させて出力させる固体レーザモジュールと、前記レーザ媒質に励起光を照射して励起させる励起光源と、を備えたことを特徴とする平面導波路型レーザ装置にある。 The present invention has a pair of main surfaces opposed along a predetermined direction, a pair of side surfaces on both sides of the main surface, and a pair of end surfaces opposed to each other in the predetermined direction, and one side surface of the pair of side surfaces is A flat plate-shaped laser medium that is inclined at a predetermined taper angle with respect to the predetermined direction so that a distance from the other side surface extending along the predetermined direction gradually increases, and a side surface distance on the pair of side surfaces An antireflection film that transmits at least the laser light provided at at least one location on the wide side, and a total reflection film that reflects the laser light provided on the pair of side surfaces other than the antireflection film. The laser light introduced into the laser medium from the part of the antireflection film on the pair of side surfaces is propagated in the laser medium while reflecting between the side surfaces, and further, on the side where the side surface spacing in the laser medium is narrow. Occasionally A flat surface comprising: a solid-state laser module that is returned and propagated to the antireflection film on the side having a larger side surface spacing and output; and an excitation light source that is excited by irradiating the laser medium with excitation light It is in a waveguide type laser device.
 この発明では、寄生発振や寄生増幅を抑制し、最も長いレーザ増幅光路を得て、簡単な励起構成により高出力励起を行うことで、高効率で高出力のレーザ出力を得る平面導波路型レーザ装置を提供することができる。 In the present invention, a planar waveguide laser that suppresses parasitic oscillation and parasitic amplification, obtains the longest laser amplification optical path, and obtains high-efficiency and high-power laser output by performing high-output pumping with a simple pumping configuration. An apparatus can be provided.
この発明の実施の形態1による平面導波路型レーザ装置の上面図である。1 is a top view of a planar waveguide laser device according to Embodiment 1 of the present invention. FIG. 図1の平面導波路型レーザ装置の紙面下側からの側面図である。FIG. 2 is a side view of the planar waveguide laser device of FIG. この発明の実施の形態2による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 2 of this invention. この発明の実施の形態3による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 3 of this invention. この発明の実施の形態4による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 4 of this invention. この発明の実施の形態5による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 5 of this invention. この発明の実施の形態6による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 6 of this invention. 図7の破線で示した領域Cの拡大図である。It is an enlarged view of the area | region C shown with the broken line of FIG. この発明の実施の形態7による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 7 of this invention. この発明の実施の形態8による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 8 of this invention. この発明の実施の形態9による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 9 of this invention. この発明の実施の形態10による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 10 of this invention. 実際のレーザ光のビームを説明するための図である。It is a figure for demonstrating the beam of an actual laser beam. この発明による固体レーザモジュールのレーザ光の入出力部分の構成を説明するための上面図である。It is a top view for demonstrating the structure of the input / output part of the laser beam of the solid-state laser module by this invention. この発明による固体レーザモジュールのレーザ光の入出力部分の構成の別の例を示す部分図である。It is a fragmentary figure which shows another example of a structure of the input / output part of the laser beam of the solid-state laser module by this invention. この発明による固体レーザモジュールのレーザ光の入出力部分の構成のさらに別の例を示す部分図である。It is a fragmentary figure which shows another example of the structure of the input / output part of the laser beam of the solid-state laser module by this invention. この発明による固体レーザモジュールのレーザ光の入出力部分の構成のさらに別の例を示す部分図である。It is a fragmentary figure which shows another example of the structure of the input / output part of the laser beam of the solid-state laser module by this invention. この発明による固体レーザモジュールの励起光の導入部分の構成の一例を示す部分側面図である。It is a partial side view which shows an example of a structure of the introduction part of the excitation light of the solid-state laser module by this invention. この発明による固体レーザモジュールの励起光の導入部分の構成の別の例を示す部分側面図である。It is a partial side view which shows another example of a structure of the introduction part of the excitation light of the solid-state laser module by this invention. この発明による固体レーザモジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of the structure of the introduction part of the excitation light of the solid-state laser module by this invention. この発明による固体レーザモジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of the structure of the introduction part of the excitation light of the solid-state laser module by this invention. この発明による固体レーザモジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of the structure of the introduction part of the excitation light of the solid-state laser module by this invention. この発明による固体レーザモジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of the structure of the introduction part of the excitation light of the solid-state laser module by this invention. この発明の実施の形態11による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 11 of this invention. 図24の平面導波路型レーザ装置の紙面下側からの側面図である。FIG. 25 is a side view of the planar waveguide laser device of FIG. 24 from the lower side of the drawing. この発明の実施の形態12による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 12 of this invention. この発明の実施の形態13による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 13 of this invention. この発明の実施の形態14による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 14 of this invention. この発明の実施の形態15による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 15 of this invention. この発明の実施の形態16による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 16 of this invention. この発明の実施の形態17による平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus by Embodiment 17 of this invention. この発明の実施の形態17による平面導波路型レーザ装置の変形例の側面図である。It is a side view of the modification of the planar waveguide type laser apparatus by Embodiment 17 of this invention. この発明による平面導波路型レーザ装置のさらなる変形例の側面図である。It is a side view of the further modification of the planar waveguide type laser apparatus by this invention. この発明の実施の形態18における課題を説明するための平面導波路型レーザ装置の側面図、レーザ媒質のy方向の発熱分布、温度分布、屈折率分布を示した図である。It is the side view of the planar waveguide type laser device for demonstrating the subject in Embodiment 18 of this invention, and the figure which showed the heat-generation distribution of the y direction, temperature distribution, and refractive index distribution of a laser medium. 図34の平面導波路型レーザ装置の上面図である。FIG. 35 is a top view of the planar waveguide laser device of FIG. 34. この発明の実施の形態18による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 18 of this invention. この発明の実施の形態18による平面導波路型レーザ装置の側面図、レーザ媒質のy方向の発熱分布、温度分布、屈折率分布を示した図である。It is the side view of the planar waveguide type laser apparatus by Embodiment 18 of this invention, and the figure which showed the heat-generation distribution of the y direction, temperature distribution, and refractive index distribution of a laser medium. この発明の実施の形態19による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 19 of this invention. この発明の実施の形態20による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 20 of this invention. この発明の実施の形態20による平面導波路型レーザ装置の一部断面で示された側面図である。It is the side view shown with the partial cross section of the planar waveguide type laser apparatus by Embodiment 20 of this invention. この発明の実施の形態20による平面導波路型レーザ装置の拡大断面図、レーザ媒質のy方向の温度差、屈折率差を示した図である。It is the figure which showed the expanded sectional view of the planar waveguide type laser apparatus by Embodiment 20 of this invention, the temperature difference of the y direction of a laser medium, and a refractive index difference. この発明の実施の形態21による平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus by Embodiment 21 of this invention. この発明の実施の形態21による平面導波路型レーザ装置の一部断面で示された側面図である。It is the side view shown by the partial cross section of the planar waveguide type laser apparatus by Embodiment 21 of this invention. この発明の実施の形態21による平面導波路型レーザ装置の拡大断面図、レーザ媒質のy方向の温度差、屈折率差を示した図である。It is the expanded sectional view of the planar waveguide type laser apparatus by Embodiment 21 of this invention, the figure which showed the temperature difference of the y direction of a laser medium, and a refractive index difference. この発明の実施の形態22による固体レーザモジュールを含む平面導波路型レーザ装置の全反射膜の反射率の波長依存特性の例を示す図である。It is a figure which shows the example of the wavelength dependence characteristic of the reflectance of the total reflection film of the planar waveguide type laser apparatus containing the solid state laser module by Embodiment 22 of this invention. この発明の実施の形態22による固体レーザモジュールを含む平面導波路型レーザ装置の全反射膜の反射率の波長依存特性の別の例を示す図である。It is a figure which shows another example of the wavelength dependence characteristic of the reflectance of the total reflection film of the planar waveguide type laser apparatus containing the solid state laser module by Embodiment 22 of this invention. この発明の実施の形態23による固体レーザモジュールを含む平面導波路型レーザ装置の全反射膜の反射率の波長依存特性の例を示す図である。It is a figure which shows the example of the wavelength dependence characteristic of the reflectance of the total reflection film of the planar waveguide type laser apparatus containing the solid state laser module by Embodiment 23 of this invention.
 以下、この発明による平面導波路型レーザ装置を好適な各実施の形態に基づき図面を用いて説明する。なお、各実施の形態で同一もしくは相当する部分は同一符号で示し重複する説明は省略する。 Hereinafter, a planar waveguide laser device according to the present invention will be described with reference to the drawings based on preferred embodiments. Note that the same or corresponding parts in the respective embodiments are denoted by the same reference numerals and redundant description is omitted.
 実施の形態1.
 図1はこの発明の実施の形態1による固体レーザモジュールを含む平面導波路型レーザ装置の上面図、図2は図1の平面導波路型レーザ装置の紙面下側からの側面図である。但し、両図において両側の励起光源である半導体レーザ1の間にある固体レーザモジュール100は図1では図2のA-A線に沿った断面図、図2では図1のB-B線に沿った断面図で示されている。
Embodiment 1 FIG.
1 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 1 of the present invention, and FIG. 2 is a side view of the planar waveguide laser device of FIG. However, the solid-state laser module 100 between the semiconductor lasers 1 serving as excitation light sources on both sides in both figures is a cross-sectional view taken along the line AA in FIG. 2, and in FIG. 2 is taken along the line BB in FIG. It is shown in a sectional view along.
 図1、図2において、固体レーザモジュール100は、レーザ媒質3、レーザ媒質3の互いに平行に対向する一対の主面31、32上にそれぞれ接合されたクラッド4a,4b、互いに対向する一対の側面33、34上にそれぞれ接合されたレーザ光を反射する全反射膜6、側面34の一部に全反射膜6の代わりに設けられたレーザ光を透過する反射防止膜7を有する。レーザ媒質3の互いに平行に対向する一対の端面35,36は半導体レーザ1から励起光2を導入する。 1 and 2, a solid-state laser module 100 includes a laser medium 3, clads 4 a and 4 b respectively bonded to a pair of main surfaces 31 and 32 facing the parallel of the laser medium 3, and a pair of side surfaces facing each other. A total reflection film 6 that reflects the laser light bonded to each of the layers 33 and 34 and an antireflection film 7 that transmits the laser light provided in place of the total reflection film 6 on a part of the side surface 34 are provided. A pair of end faces 35 and 36 of the laser medium 3 facing each other in parallel introduce the excitation light 2 from the semiconductor laser 1.
 レーザ媒質3としては、一般的な固体レーザ材料を使用することができる。例えば、Nd:YAG、Nd:YLF、Nd:Glass、Nd:YVO4、Nd:GdVO4、Yb:YAG、Yb:YLF、Yb:KGW、Yb:KYW、Er:Glass、Er:YAG、Tm:YAG、Tm:YLF、Ho:YAG、Ho:YLF、Tm、Ho:YAG、Tm、Ho:YLF、Ti:Sapphire、Cr:LiSAF等を用いる。これら、固体レーザ材料は結晶の他に、セラミックであっても良い。また、ガラスであっても良い。また、上述せぬ母材に上述せぬ活性媒質を添加した固体レーザ材料であっても良い。 As the laser medium 3, a general solid laser material can be used. For example, Nd: YAG, Nd: YLF, Nd: Glass, Nd: YVO4, Nd: GdVO4, Yb: YAG, Yb: YLF, Yb: KGW, Yb: KYW, Er: Glass, Er: YAG, Tm: YAG, Tm: YLF, Ho: YAG, Ho: YLF, Tm, Ho: YAG, Tm, Ho: YLF, Ti: Sapphire, Cr: LiSAF, etc. are used. These solid laser materials may be ceramics in addition to crystals. Moreover, glass may be sufficient. Further, a solid laser material in which an active medium not described above is added to a base material not described above may be used.
 レーザ媒質3は平面導波路型であり、1軸方向に厚さの薄い平板の形状である。ここで説明のために、レーザ媒質3の厚さ方向をz軸とし、図1に示すようにレーザ媒質3の平面内の2軸をx軸、y軸と呼び、3軸がそれぞれ互いに直交した座標系を用いる。 The laser medium 3 is a planar waveguide type and has a shape of a flat plate having a thin thickness in one axial direction. Here, for the sake of explanation, the thickness direction of the laser medium 3 is taken as the z axis, and the two axes in the plane of the laser medium 3 are called the x axis and the y axis as shown in FIG. 1, and the three axes are orthogonal to each other. Use a coordinate system.
 レーザ媒質3は主面31,32に平行なxy面内の形状が4角形である。ここで、対向する一対の側面33,34は平行ではなく、所定の方向に沿った側面34に対して側面33がxy面内でテーパー角θ1で傾斜している。すなわち、一方の側面33が所定方向に沿って延びる他方の側面34との間隔が徐々に広がるように前記所定方向に対して所定のテーパー角度で傾斜している。レーザ媒質3の側面34上にはレーザ光を反射する全反射膜6が施されており、さらに一部にレーザ光を透過する反射防止膜7が施されている。また側面33上は全面にレーザ光を反射する全反射膜6が施されている。この構造により、後述するように、レーザ光はレーザ媒質3内を側面33,34間で反射されながら一往復伝播される。 The laser medium 3 has a quadrangular shape in the xy plane parallel to the main surfaces 31 and 32. Here, the pair of opposing side surfaces 33 and 34 are not parallel, and the side surface 33 is inclined with respect to the side surface 34 along a predetermined direction at a taper angle θ1 in the xy plane. That is, the one side surface 33 is inclined at a predetermined taper angle with respect to the predetermined direction so that the interval between the one side surface 33 and the other side surface 34 extending along the predetermined direction gradually increases. A total reflection film 6 that reflects laser light is provided on the side surface 34 of the laser medium 3, and an antireflection film 7 that transmits laser light is further provided in part. On the side surface 33, a total reflection film 6 for reflecting laser light is applied to the entire surface. With this structure, as will be described later, the laser light propagates in one round-trip while being reflected between the side surfaces 33 and 34 in the laser medium 3.
 図2に示すクラッド4a,4bは、レーザ媒質3に比べて小さな屈折率を有し、レーザ媒質3のxy平面に平行な主面31,32上にそれぞれ接合されている。クラッド4a,4bは、例えば、光学材料を原料とした膜を蒸着するか、光学材料をオプティカルコンタクト又は拡散接合等によってレーザ媒質3と光学的に接合することにより構成される。なおクラッド4a,4bは図示せぬ基板に接合されていても良い。さらに該基板は図示せぬヒートシンクに接合されていても良い。基板及びヒートシンクはレーザ媒質3のxy平面の片側であっても良いし、対向する2面の両側に接合されていてもよい。なおレーザ媒質3、基板、ヒートシンク等は接合材(好ましくは熱伝導率の良い接合材)で接合される(以下同様)。 The clads 4a and 4b shown in FIG. 2 have a refractive index smaller than that of the laser medium 3, and are respectively joined to main surfaces 31 and 32 parallel to the xy plane of the laser medium 3. The clads 4a and 4b are configured by, for example, depositing a film made of an optical material as a raw material, or optically bonding the optical material to the laser medium 3 by optical contact or diffusion bonding. The clads 4a and 4b may be bonded to a substrate (not shown). Further, the substrate may be bonded to a heat sink (not shown). The substrate and the heat sink may be on one side of the xy plane of the laser medium 3 or may be bonded to both sides of the two opposing surfaces. The laser medium 3, the substrate, the heat sink, and the like are bonded with a bonding material (preferably a bonding material with good thermal conductivity) (the same applies hereinafter).
 両側の半導体レーザ1は、レーザ媒質3の端面35,36にそれぞれ近接して配置され、図示は省略したが必要に応じて冷却用のヒートシンクが接合される。半導体レーザ1のx軸方向の大きさは、レーザ媒質3のx軸方向の大きさとほぼ等しく、x軸方向にほぼ一様に励起光を出力する。半導体レーザ1は、励起光2を出力する。ここで、励起光2を出力する半導体レーザ1は、活性層をx軸方向に複数配置したマルチエミッタ半導体レーザであっても良い。この場合、複数の活性層から複数のLD(レーザダイオード)光が出力するので、x軸方向に複数並んだレーザ出力光(励起光)が得られる。また、半導体レーザ1の活性層がx方向に幅の広いブロードエリアLDであっても良い。 The semiconductor lasers 1 on both sides are arranged close to the end faces 35 and 36 of the laser medium 3, and although not shown, a cooling heat sink is joined as necessary. The size of the semiconductor laser 1 in the x-axis direction is substantially equal to the size of the laser medium 3 in the x-axis direction, and pumping light is output substantially uniformly in the x-axis direction. The semiconductor laser 1 outputs excitation light 2. Here, the semiconductor laser 1 that outputs the excitation light 2 may be a multi-emitter semiconductor laser in which a plurality of active layers are arranged in the x-axis direction. In this case, since a plurality of LD (laser diode) lights are output from the plurality of active layers, a plurality of laser output lights (excitation light) arranged in the x-axis direction can be obtained. Further, the active layer of the semiconductor laser 1 may be a broad area LD that is wide in the x direction.
 次に動作について説明する。半導体レーザ1より出力された励起光2は、レーザ媒質3の端面35,36からレーザ媒質3に入射して、y方向(所定方向に相当する)に伝播しながらレーザ媒質3に吸収される。レーザ媒質3で励起光2が吸収されることで、レーザ媒質3内部でレーザ光に対する利得を発生する。レーザ媒質3内部で発生した利得により、通過するレーザ光は増幅作用を受けて、レーザ出力が増加する。レーザ種光を準備してレーザ媒質3に導入し増幅を行わせることでレーザ増幅器になり、レーザ光の一部を反射する図示せぬ出力鏡をレーザ光軸上に軸と直行するように配置することで、レーザ発振器となる。このため、以降の説明は、特に説明がない限り、レーザ発振器及びレーザ増幅器の両方に適用される。 Next, the operation will be described. The excitation light 2 output from the semiconductor laser 1 enters the laser medium 3 from the end faces 35 and 36 of the laser medium 3 and is absorbed by the laser medium 3 while propagating in the y direction (corresponding to a predetermined direction). When the pumping light 2 is absorbed by the laser medium 3, a gain for the laser light is generated inside the laser medium 3. Due to the gain generated inside the laser medium 3, the passing laser beam is amplified and the laser output is increased. A laser seed light is prepared, introduced into the laser medium 3 and amplified so that it becomes a laser amplifier, and an output mirror (not shown) that reflects a part of the laser light is arranged on the laser optical axis so as to be perpendicular to the axis. By doing so, it becomes a laser oscillator. For this reason, the following description applies to both the laser oscillator and the laser amplifier unless otherwise specified.
 ここで、側面34のレーザ光を透過する反射防止膜7からレーザ入射光8をレーザ媒質3内に導入する。レーザ入射光8は反射防止膜7の垂直線に対してxy平面内にθin0傾斜している。ここで、レーザ媒質3の屈折率をnとすると、レーザ媒質3内に導入されたレーザ入射光8の反射防止膜7の垂直線に対するxy平面内の傾斜角は、θin1=Sin-1(1/n・Sinθin0)である。レーザ入射光8はxy平面内で側面33,34の垂直線に対して傾斜して導入される。レーザ媒質3内に入射したレーザ入射光8は、レーザ媒質内で伝播され側面34とこれと対向する側面33にそれぞれ施してあるレーザ光を反射する全反射膜6で反射される。レーザ入射光8はxy平面内で側面33,34の垂直線に対して傾斜して導入されたので、側面33で反射したレーザ光は反射防止膜7には戻らず、側面34の反射防止膜7に隣接する位置の全反射膜6に当たり再び反射する。このように、レーザ媒質3内を伝播されるレーザ光は図1にレーザ反射光10で示すように、側面33,34の全反射膜6で反射され側面33,34間で反射を繰り返しながら伝播される。 Here, the laser incident light 8 is introduced into the laser medium 3 from the antireflection film 7 that transmits the laser light on the side surface 34. The laser incident light 8 is inclined by θin0 in the xy plane with respect to the vertical line of the antireflection film 7. Here, when the refractive index of the laser medium 3 is n, the inclination angle of the laser incident light 8 introduced into the laser medium 3 in the xy plane with respect to the vertical line of the antireflection film 7 is θin1 = Sin −1 (1 / N · Sinθin0). The laser incident light 8 is introduced with an inclination with respect to the vertical line of the side surfaces 33 and 34 in the xy plane. The laser incident light 8 that has entered the laser medium 3 is reflected by the total reflection film 6 that propagates in the laser medium and reflects the laser light applied to the side surface 34 and the side surface 33 facing the side surface 34. Since the laser incident light 8 is introduced with an inclination with respect to the vertical line of the side surfaces 33 and 34 in the xy plane, the laser light reflected by the side surface 33 does not return to the antireflection film 7 but the antireflection film on the side surface 34. 7 hits the total reflection film 6 at a position adjacent to 7 and reflects again. As described above, the laser beam propagating through the laser medium 3 is reflected by the total reflection film 6 on the side surfaces 33 and 34 while being repeatedly reflected between the side surfaces 33 and 34 as indicated by the laser reflected light 10 in FIG. Is done.
 側面33は側面34に対してxy平面内で、側面33,34間の距離が、側面34の反射防止膜7が施してある一端側の方が側面34の他端側よりも広くなるように傾斜角度(テーパー角)θ1、傾斜している。このため、反射防止膜7から入射したレーザ光が側面33で反射する度に、レーザ反射光10の側面34での入射角と反射角の和が2θ1小さくなる。このためレーザ反射光10は、各側面33,34でのレーザ反射光10の反射位置の間隔を狭めながら反射を繰り返し、側面34での反射角は側面34に対して0すなわち垂直に近づいていく。 The side surface 33 is within the xy plane with respect to the side surface 34 so that the distance between the side surfaces 33 and 34 is wider at one end side where the antireflection film 7 of the side surface 34 is applied than at the other end side of the side surface 34. Inclination angle (taper angle) θ1 is inclined. For this reason, every time the laser beam incident from the antireflection film 7 is reflected by the side surface 33, the sum of the incident angle and the reflection angle at the side surface 34 of the laser reflected light 10 is reduced by 2θ1. Therefore, the laser reflected light 10 is repeatedly reflected while the interval between the reflection positions of the laser reflected light 10 on the side surfaces 33 and 34 is narrowed, and the reflection angle at the side surface 34 approaches 0, that is, perpendicular to the side surface 34. .
 側面34での反射角が垂直になると側面33のテーパー角θ1により、レーザ反射光10はレーザ媒質3内を折り返す。折り返されたレーザ反射光10は再び全反射膜6間により側面33,34間で反射を繰り返す。復路においては、側面34での入射角と反射角の和が側面33で反射するたびに2θ1大きくなる。そして各側面33,34でのレーザ反射光10の反射位置の間隔を広げながらレーザ反射光10を伝播する。このように復路では往路と略同一の光路を通過しながら、最終的には側面34の反射防止膜7からレーザ出力光9として出力される。 When the reflection angle at the side surface 34 becomes vertical, the laser reflected light 10 is folded back within the laser medium 3 by the taper angle θ1 of the side surface 33. The reflected laser reflected light 10 is repeatedly reflected between the side surfaces 33 and 34 by the total reflection film 6 again. In the return path, the sum of the incident angle and the reflection angle at the side surface 34 increases 2θ1 each time the side surface 33 reflects. Then, the laser reflected light 10 is propagated while increasing the interval between the reflection positions of the laser reflected light 10 on the side surfaces 33 and 34. In this way, the return path is finally output as the laser output light 9 from the antireflection film 7 on the side surface 34 while passing through the optical path substantially the same as the forward path.
 ここで、反射防止膜7から導入されたレーザ入射光8の反射防止膜7の垂直線に対するxy面内の角度をθin1、レーザ媒質3の屈折率をnとする。このとき、レーザ入射光8の内部入射角度θin1の最大値は内部全反射角と等しくθin1max=Sin-1(1/n)となる。例えば、レーザ媒質3がNd:YAGの場合、最大内部入射角度θin1max=33.3度となる。ここで、レーザ媒質3内での片側の側面(33,34)当たりの反射回数をm回とすると、側面33の側面34に対する傾斜角度θ1は、θ1≒θin1/(2(m-1))(≒:略等しい)を満たす角度に設定される。例えば、レーザ媒質をNd:YAG、レーザ光の内部入射角度を最大の角度θin1max、反射回数を10回とすると、θ1≒1.85度となる。レーザ媒質3内でのビームオーバーラップ効率を向上させるためには、レーザ入射光8の入射角度は小さいほうがよい。また、反射回数mは多いほうがよい。このため、例えば、レーザ入射光8の内部入射角度θin1=5度、反射回数20回の場合、θ1≒0.13度の傾斜となる。 Here, the angle in the xy plane of the laser incident light 8 introduced from the antireflection film 7 with respect to the vertical line of the antireflection film 7 is θin1, and the refractive index of the laser medium 3 is n. At this time, the maximum value of the internal incident angle θin1 of the laser incident light 8 is equal to the internal total reflection angle and θin1max = Sin −1 (1 / n). For example, when the laser medium 3 is Nd: YAG, the maximum internal incident angle θin1max = 33.3 degrees. Here, if the number of reflections per side surface (33, 34) on one side in the laser medium 3 is m, the inclination angle θ1 of the side surface 33 with respect to the side surface 34 is θ1≈θin1 / (2 (m−1)). An angle satisfying (≈: substantially equal) is set. For example, if the laser medium is Nd: YAG, the internal incident angle of the laser beam is the maximum angle θin1max, and the number of reflections is 10, then θ1≈1.85 degrees. In order to improve the beam overlap efficiency in the laser medium 3, the incident angle of the laser incident light 8 should be small. In addition, it is better that the number of reflections m is larger. For this reason, for example, when the internal incident angle θin1 of the laser incident light 8 is 5 degrees and the number of reflections is 20, the inclination is θ1≈0.13 degrees.
 このように側面33,34間の傾斜角度θ1は、レーザ媒質3のxy面内のy方向の長さ、x方向の幅、レーザ光のビーム幅w、反射防止膜7の幅等によりビームオーバーラップ効率が高く、反射回数が多くなるように設定される。このような角度は前述したように主に側面33,34間の傾斜角度θ1<2度に設定される。 As described above, the inclination angle θ1 between the side surfaces 33 and 34 depends on the length in the y direction in the xy plane of the laser medium 3, the width in the x direction, the beam width w of the laser light, the width of the antireflection film 7, and the like. The wrap efficiency is set to be high and the number of reflections is increased. As described above, such an angle is mainly set to an inclination angle θ1 <2 degrees between the side surfaces 33 and 34.
 このように側面33,34間の傾斜角度をθ1としたことから、往路では側面33や側面34でレーザ光を反射する間隔が反射を繰り返すに従い短くなる。このため、レーザ媒質3とレーザ光とのビームオーバーラップ効率が高くなる。さらに、レーザ光の折り返し点付近では、近接した箇所をレーザ光が何度も通過するため、ビームオーバーラップ効率がより高くなり、この結果、レーザの抽出効率が高くなり、高効率で高出力なレーザ光が得られる。 As described above, since the inclination angle between the side surfaces 33 and 34 is set to θ1, the interval at which the laser beam is reflected by the side surface 33 or the side surface 34 in the forward path becomes shorter as the reflection is repeated. For this reason, the beam overlap efficiency between the laser medium 3 and the laser light is increased. Further, near the turning point of the laser beam, the laser beam passes many times through the adjacent points, so that the beam overlap efficiency is higher, and as a result, the extraction efficiency of the laser is increased, resulting in high efficiency and high output. Laser light is obtained.
 なお、図1、図7~図12においてはレーザ光の主軸線を表示しているが、実際にはレーザ光は図13のように幅のあるビームが反射防止膜7から導入される。 1 and FIGS. 7 to 12, the main axis of the laser beam is displayed. In practice, however, the laser beam is introduced from the antireflection film 7 with a wide beam as shown in FIG.
 この構成によれば、レーザ媒質3内でのレーザ光(レーザ反射光10)の光路長を最も長くすることができるので、寄生発振や寄生増幅が起こり難い等の特長がある。側面33,34を角度θ1で傾斜させているため、上記対向する2面間で周回する光路はない。このため、寄生発振や寄生増幅光の最も長いレーザ媒質3内の光路は、側面34の反射防止膜7付近からレーザ反射光10と同一の光路となる。一般にはレーザ光の光路よりも寄生発振や寄生増幅光の光路長が長いために、励起出力の増大とともに大きな利得が生じた場合に寄生発振や寄生増幅によるエネルギーの抽出が大きくなり、レーザ出力の効率低下を招く。一方、この構成では、寄生発振や寄生増幅の最も長い光路がレーザ反射光光路と略同一となることから、励起出力の増大とともに利得が大きくなった場合でも、レーザ光の増幅も同様に大きくなることから、レーザ光の増幅率を超えることがない。このため、高出力励起時でも高効率で高出力なレーザ光を得ることができる。 According to this configuration, the optical path length of the laser light (laser reflected light 10) in the laser medium 3 can be maximized, so that there is a feature that parasitic oscillation and parasitic amplification are difficult to occur. Since the side surfaces 33 and 34 are inclined at an angle θ1, there is no optical path that circulates between the two opposing surfaces. For this reason, the optical path in the laser medium 3 having the longest parasitic oscillation or parasitic amplified light is the same optical path as the laser reflected light 10 from the vicinity of the antireflection film 7 on the side surface 34. In general, since the optical path length of parasitic oscillation and parasitic amplification light is longer than the optical path of laser light, when a large gain is generated with an increase in excitation output, extraction of energy due to parasitic oscillation and parasitic amplification becomes large, and laser output power is increased. Incurs efficiency loss. On the other hand, in this configuration, the longest optical path of parasitic oscillation and parasitic amplification is substantially the same as the laser reflected light optical path, so that even when the gain increases as the pumping output increases, the amplification of the laser light increases as well. Therefore, the amplification factor of the laser beam is not exceeded. For this reason, high-efficiency and high-power laser light can be obtained even during high-power excitation.
 レーザ光の往路と復路が略同一であることから、図14に示すように分離手段50を用いて、レーザ光の偏光を利用した分離を行うことができる。分離手段50は、レーザ入射光8を透過させ、レーザ出力光9を反射させて分離するものであってもよいし、また、レーザ入射光8を反射させ、レーザ出力光9を透過させて分離するものであってもよい。分離手段50は、例えば図15に示すように偏光子51と1/4波長板52で構成し得る。直線偏光のレーザ入射光8を1/4波長板52で円偏光にしてレーザ媒質3内に導入させる。レーザ入射光8は出力時、再び1/4波長板52を通過することで、レーザ出力光9はレーザ入射光8と偏光方向が直交した直線偏光の偏光方向となる。このため、偏光子51で分離可能となる。 Since the forward path and the return path of the laser beam are substantially the same, separation using the polarization of the laser beam can be performed using the separation means 50 as shown in FIG. The separating means 50 may transmit the laser incident light 8 and reflect and separate the laser output light 9. Alternatively, the separating means 50 may reflect the laser incident light 8 and transmit the laser output light 9 to be separated. You may do. The separating means 50 can be composed of a polarizer 51 and a quarter wavelength plate 52 as shown in FIG. 15, for example. The linearly polarized laser incident light 8 is circularly polarized by the quarter wavelength plate 52 and introduced into the laser medium 3. When the laser incident light 8 is output, it passes through the quarter-wave plate 52 again, so that the laser output light 9 becomes a polarization direction of linearly polarized light whose polarization direction is orthogonal to the laser incident light 8. For this reason, it becomes separable by the polarizer 51.
 また、図16に示すように分離手段50をアイソレータ54で構成してもよい。例えば、偏光子51と45度ファラデーローテータ53で構成されるアイソレータ54を通過させた後、レーザ媒質3にレーザ光を導入する。レーザ媒質3内を往復して増幅されたレーザ光はレーザ媒質3を出射し再び45度ファラデーローテータ53を通過する。ファラデーローテータを通過したレーザ光は、入射光に対して偏光が90度回転するため、偏光子で入射光と分離される。入射光が偏光子を通過する場合、出力光は偏光子で反射され、入射光が偏光子で反射される場合は、出力光は偏光子を透過する。また、レーザ媒質3に導入されるレーザ光は45度ファラデーローテータ53により45度傾いた直線偏光となる。 Further, as shown in FIG. 16, the separating means 50 may be constituted by an isolator 54. For example, after passing through an isolator 54 including a polarizer 51 and a 45 degree Faraday rotator 53, laser light is introduced into the laser medium 3. The laser light amplified by reciprocating in the laser medium 3 exits the laser medium 3 and passes through the 45 degree Faraday rotator 53 again. Since the polarization of the laser light that has passed through the Faraday rotator is rotated by 90 degrees with respect to the incident light, it is separated from the incident light by the polarizer. When incident light passes through the polarizer, the output light is reflected by the polarizer, and when incident light is reflected by the polarizer, the output light passes through the polarizer. Further, the laser light introduced into the laser medium 3 becomes linearly polarized light inclined by 45 degrees by the 45 degree Faraday rotator 53.
 また、図17に示すように、図16の構成にさらに45度ファラデーローテータ53とレーザ媒質3の間に1/2波長板55を配置しても良い。1/2波長板55により45度に傾いた直線偏光をレーザ媒質3の平板面(主面)に対し平行や直交する直線偏光にすることができる。1/2波長板は可逆性であるため、1/2波長板を通過する前の入射光と、1/2波長板55を通過した出力光は同じ偏光方向の45度傾斜した偏光方向となる。このため、1/2波長板55を配置しないときと同様に、アイソレータ54で偏光分離ができる。このように、レーザ媒質3の主面に対して平行又は直交する直線偏光としたため、例えば、レーザ媒質3が異なる偏光方向に対する利得や増幅波長が異なる場合でも、意図する増幅や、意図する波長の増幅ができる。 Further, as shown in FIG. 17, a half-wave plate 55 may be further disposed between the 45-degree Faraday rotator 53 and the laser medium 3 in the configuration of FIG. With the half-wave plate 55, the linearly polarized light inclined at 45 degrees can be converted into linearly polarized light that is parallel or orthogonal to the flat plate surface (main surface) of the laser medium 3. Since the half-wave plate is reversible, the incident light before passing through the half-wave plate and the output light passing through the half-wave plate 55 have the same polarization direction and a polarization direction inclined by 45 degrees. . For this reason, polarization separation can be performed by the isolator 54 as in the case where the half-wave plate 55 is not disposed. As described above, since the linearly polarized light is parallel or orthogonal to the main surface of the laser medium 3, for example, even when the laser medium 3 has different gains or different amplification wavelengths with respect to different polarization directions, Can be amplified.
 このように分離手段50を用いることで略同一の光路であるレーザ入射光とレーザ出力光を分離することができる。このような分離はレーザ発振器及びレーザ増幅のどちらの構成でも利用可能であるが、特にレーザ増幅器として用いる場合に特に有効である。 Thus, by using the separating means 50, it is possible to separate the laser incident light and the laser output light which are substantially the same optical path. Such separation can be used in both laser oscillator and laser amplification configurations, but is particularly effective when used as a laser amplifier.
 全反射膜6は、レーザ発振器として用いる場合は、レーザ発振を行う波長に対して高い反射率を設定する。例えば、レーザ媒質3の活性媒質がNdである場合には、0.9μm帯、1.06μm帯、1.3μm帯に利得があり、利得が高い順に、1.06μm帯、1.3μm帯、0.9μm帯である。ここで、0.9μm帯のレーザ発振を得たい場合には、1.0μm帯、1.3μm帯の利得が高いレーザが発振しないように、これらの波長には透過特性を持たせ、レーザ発振を行いたい波長、この場合、0.9μm帯に対して全反射特性を持たせることで所望の0.9μm帯のレーザ発振光を得ることができる。 When the total reflection film 6 is used as a laser oscillator, a high reflectance is set with respect to the wavelength for laser oscillation. For example, when the active medium of the laser medium 3 is Nd, there are gains in the 0.9 μm band, 1.06 μm band, and 1.3 μm band, and the 1.06 μm band, 1.3 μm band, The 0.9 μm band. Here, when it is desired to obtain laser oscillation in the 0.9 μm band, these wavelengths have transmission characteristics so that lasers with high gain in the 1.0 μm band and 1.3 μm band do not oscillate. The desired laser oscillation light in the 0.9 μm band can be obtained by giving total reflection characteristics to the wavelength to be performed, in this case, the 0.9 μm band.
 このように、全反射膜6はレーザ発振を行いたい波長帯域に対して全反射特性があり、他の利得波長に対しては透過特性を持たせても良い。このように構成することで所望の波長のレーザ発振光が得られる等の特長がある。同様に、レーザ増幅器として用いる場合でも、増幅を行いたいレーザ光の波長で全反射であり、他の波長に対して透過特性を持たせても良い。このように構成することで、レーザ媒質3が利得をもつ所望の波長を増幅させることができる。このため、他の波長での寄生増幅によるエネルギーの抽出がなく、高効率、高出力のレーザ増幅器が得られる As described above, the total reflection film 6 may have total reflection characteristics with respect to a wavelength band in which laser oscillation is desired, and may have transmission characteristics with respect to other gain wavelengths. With this configuration, there is a feature that laser oscillation light having a desired wavelength can be obtained. Similarly, even when used as a laser amplifier, it may be totally reflected at the wavelength of the laser beam to be amplified and may have transmission characteristics for other wavelengths. By configuring in this way, it is possible to amplify a desired wavelength at which the laser medium 3 has gain. For this reason, there is no extraction of energy by parasitic amplification at other wavelengths, and a high-efficiency, high-power laser amplifier can be obtained.
 図2は図1の固体レーザモジュールを含む平面導波路型レーザ装置を紙面の下側から見た側面図である。半導体レーザ1より出力された励起光2は、レーザ媒質3の側面間を反射しながら進むレーザ光の伝播方向の両端の端面35,36の一方の端面35からレーザ媒質3に入射され、y方向に伝播しながらレーザ媒質3に吸収される。励起光2は広がりながら伝播するが、レーザ媒質3よりも低屈折率のクラッド4a,4bで反射することからz方向で互いに対向するクラッド4a,4bで閉じ込められ、y方向に伝播される。同様に反射防止膜7から入射したレーザ光はz方向ではクラッド4a,4bで反射することから、z方向ではクラッド4a,4bで閉じ込められ、xy面内に伝播される。なお、側面の一方が傾いていることでレーザ光の伝播方向は厳密には、所定方向と定義するy軸とずれるが、ここでは伝播方向はy軸と同じ方向とする。 FIG. 2 is a side view of the planar waveguide laser device including the solid state laser module of FIG. The pumping light 2 output from the semiconductor laser 1 is incident on the laser medium 3 from one end face 35 of both end faces 35 and 36 in the propagation direction of the laser light traveling while reflecting between the side faces of the laser medium 3, and is in the y direction. And is absorbed by the laser medium 3 while propagating to. The excitation light 2 propagates while spreading, but is reflected by the clads 4a and 4b having a refractive index lower than that of the laser medium 3, so that it is confined by the clads 4a and 4b facing each other in the z direction and propagates in the y direction. Similarly, since the laser light incident from the antireflection film 7 is reflected by the clads 4a and 4b in the z direction, it is confined by the clads 4a and 4b in the z direction and propagated in the xy plane. Strictly speaking, the propagation direction of the laser light is shifted from the y-axis defined as a predetermined direction because one of the side surfaces is inclined, but here the propagation direction is the same as the y-axis.
 ここで、クラッド4a,4bの外側には図示せぬ基板を接合してもよい。このように基板を接合することで剛性を向上させることができる。また、クラッド4a,4bの外側又は上記基板の外側に図示せぬヒートシンクを配置してもよい。このようにヒートシンクを配置することでレーザ媒質の温度上昇を抑えることができるので、高出力励起が可能となり高出力なレーザ光が得られる。また、レーザ媒質3が準3準位、準4準位及び3準位である場合には、温度上昇により利得が低下するため、高効率化のために温度上昇の低減が重要である。このように、クラッド4a,4bに直接ヒートシンクを接合し熱抵抗の低減を図りレーザ媒質3の温度上昇を抑えることで、高効率で高出力なレーザ光を得ることができる。 Here, a substrate (not shown) may be bonded to the outside of the clads 4a and 4b. Thus, rigidity can be improved by joining a board | substrate. Further, a heat sink (not shown) may be disposed outside the clads 4a and 4b or outside the substrate. By arranging the heat sink in this way, the temperature rise of the laser medium can be suppressed, so that high output excitation is possible and high output laser light can be obtained. In addition, when the laser medium 3 has a quasi-3 level, a quasi-4 level, and a 3 level, the gain decreases due to the temperature rise, and therefore it is important to reduce the temperature rise for high efficiency. In this way, by joining the heat sink directly to the clads 4a and 4b to reduce the thermal resistance and to suppress the temperature rise of the laser medium 3, it is possible to obtain a laser beam with high efficiency and high output.
 実施の形態2.
 図3はこの発明の実施の形態2による固体レーザモジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。レーザ媒質3のxy面、すなわち主面31,32上にはそれぞれ第1のクラッド20がそれぞれ配置され、さらに各第1のクラッド20の外側に第2のクラッド4a,4bがそれぞれ配置されている。ここで、レーザ媒質3の屈折率よりも各第1のクラッド20の屈折率は低く、第1のクラッド20の屈折率よりも第2のクラッド4a,4bの屈折率が低いように構成される。励起光2は対向する第2のクラッド4a,4b間でz方向に閉じ込められ、レーザ媒質3とその両側の第1のクラッド20を合わせた部分を伝播する。一方、レーザ光は第1のクラッド20で反射するように構成されているため、レーザ媒質3を伝播する。
Embodiment 2. FIG.
3 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 2 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. The first cladding 20 is disposed on the xy plane of the laser medium 3, that is, the main surfaces 31 and 32, respectively, and the second claddings 4 a and 4 b are disposed outside the first cladding 20. . Here, each refractive index of the first cladding 20 is lower than the refractive index of the laser medium 3, and the refractive indexes of the second claddings 4 a and 4 b are lower than the refractive index of the first cladding 20. . The pumping light 2 is confined in the z direction between the opposing second claddings 4a and 4b, and propagates through the combined portion of the laser medium 3 and the first cladding 20 on both sides thereof. On the other hand, since the laser beam is configured to be reflected by the first clad 20, it propagates through the laser medium 3.
 以上のように構成したため、固体レーザモジュール100のレーザ光の伝播方向の両側の端面35a,36aにおいて、励起光2を導入する端面はレーザ媒質3とその上下の2つの第1のクラッド20を合わせた端面となる。このため、励起光2を導入する端面は大きな面積となることから、励起光2の導入が容易になる。また、図3では単層の半導体レーザ1を用いた構成例を示しているが、図18に示すようにz方向に半導体レーザを積層したスタックLD60を用いることができる。このように励起光2の導入面を広く取ることができるので、容易に側面からの励起が可能であり、また、スタックLD等のような高出力な励起光源を用いることもできる。ここで、第1のクラッド20とレーザ媒質3を伝播する励起光2はレーザ媒質3を通過する際に吸収され、第1のクラッド20では吸収されずに伝播する。このように構成したことで容易に高出力励起が可能となることから、容易に高出力なレーザ光が得られる。 Due to the above-described configuration, the end surfaces 35a and 36a on both sides of the laser beam propagation direction of the solid-state laser module 100 are combined with the laser medium 3 and the first cladding 20 above and below the laser medium 3. It becomes the end face. For this reason, since the end surface which introduces the excitation light 2 has a large area, the introduction of the excitation light 2 is facilitated. FIG. 3 shows a configuration example using the single-layer semiconductor laser 1, but a stack LD 60 in which semiconductor lasers are stacked in the z direction can be used as shown in FIG. Thus, since the introduction surface of the excitation light 2 can be widened, excitation from the side surface can be easily performed, and a high-output excitation light source such as a stack LD can also be used. Here, the excitation light 2 propagating through the first clad 20 and the laser medium 3 is absorbed when passing through the laser medium 3, and propagates without being absorbed by the first clad 20. With this configuration, high-power excitation can be easily performed, so that high-power laser light can be easily obtained.
 なお、高出力な励起光源(半導体レーザ1)としてはブロードエリアLD,アレイLD,スタックLD、シングルモードファイバ、マルチモードファイバ、ラージコアファイバ、バンドルファイバ、また、これらファイバをx方向に並べたファイバアレイ等を用いることができる。また、これら励起光源をレーザ媒質3の側面33,34に近接して直接励起する構成の他に、図19に示すように励起光2をレンズ61で集光して端面35,35a(36,36a)から導入してもよい。このように構成することで励起光2のビーム径や広がり角を任意に調整できるので、クラッドで反射可能な角度に調整することができる。このため、高効率に励起光をレーザ媒質3に吸収させることができるため高効率で高出力のレーザ光が得られる。 The high-power pumping light source (semiconductor laser 1) includes a broad area LD, an array LD, a stack LD, a single mode fiber, a multimode fiber, a large core fiber, a bundle fiber, and a fiber in which these fibers are arranged in the x direction. An array or the like can be used. In addition to the configuration in which these excitation light sources are directly excited close to the side surfaces 33 and 34 of the laser medium 3, the excitation light 2 is condensed by the lens 61 as shown in FIG. It may be introduced from 36a). By configuring in this way, the beam diameter and divergence angle of the excitation light 2 can be arbitrarily adjusted, so that the angle can be adjusted to reflect by the clad. For this reason, since the excitation light can be absorbed by the laser medium 3 with high efficiency, high-efficiency and high-power laser light can be obtained.
 また、図20に示すように複数のレンズ61で構成されるレンズ群62で励起光2のビーム径や広がり角を調整しても良い。このような複数のレンズ61により、収差による励起光の広がりを最小限にすることができるので、より高効率で端面から励起光を導入できる。このため、高効率で高出力なレーザ光が得られる。 Further, as shown in FIG. 20, the beam diameter and divergence angle of the excitation light 2 may be adjusted by a lens group 62 including a plurality of lenses 61. Such a plurality of lenses 61 can minimize the spread of the excitation light due to the aberration, so that the excitation light can be introduced from the end face with higher efficiency. For this reason, high-efficiency and high-power laser light can be obtained.
 また、図21に示すようにスタックLD60から出力される励起光2をそれぞれマイクロレンズアレイ63で平行化した後、レンズ61で一括集光してもよい。このように構成することでより高出力な励起光2をレーザ媒質3に導入することができるので、より高出力なレーザ光が得られる。 Further, as shown in FIG. 21, the excitation light 2 output from the stack LD 60 may be collimated by the microlens array 63 and then collectively collected by the lens 61. With such a configuration, the pumping light 2 with higher output can be introduced into the laser medium 3, so that laser light with higher output can be obtained.
 また、図22に示すように平行化した励起光2をテーパーのついたスラブ導波路64の幅の広い面から導入して、幅の狭い面から出力することで、断面積を縮小した励起光2を用いてもよい。このように構成することでより高出力な励起光2をレーザ媒質3に導入することができるので、より高出力なレーザ光が得られる。 Also, as shown in FIG. 22, the pump light 2 that has been collimated is introduced from the wide surface of the tapered slab waveguide 64 and output from the narrow surface, thereby reducing the cross-sectional area. 2 may be used. With such a configuration, the pumping light 2 with higher output can be introduced into the laser medium 3, so that laser light with higher output can be obtained.
 また、図23に示すように広がり角の大きい励起光2をテーパーのついたスラブ導波路64の幅の狭い面から導入して、幅の広い面から出力することで、広がり角を小さくした励起光2を用いてもよい。このように構成することで、励起光2をクラッド20で反射可能な角度に調整することができる。このため、高効率に励起光をレーザ媒質3に吸収させることができるため高効率で高出力なレーザ光が得られる。 Further, as shown in FIG. 23, excitation light 2 having a large divergence angle is introduced from a narrow surface of a tapered slab waveguide 64 and output from a wide surface, thereby reducing the divergence angle. Light 2 may be used. With this configuration, the excitation light 2 can be adjusted to an angle that can be reflected by the clad 20. For this reason, since the excitation light can be absorbed by the laser medium 3 with high efficiency, high-efficiency and high-power laser light can be obtained.
 実施の形態3.
 図4はこの発明の実施の形態3による固体レーザモジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。レーザ媒質3のxy面の片面、すなわち主面31上に第1のクラッド20を配置し、第1のクラッド20の外側に第2のクラッド4aを配置する。また、レーザ媒質3の第1のクラッド20と反対側の主面32上に第2のクラッド4bを配置する。このように構成することで、励起光2はレーザ媒質3と第1のクラッド20間を伝播し、レーザ光はレーザ媒質3を伝播する。
Embodiment 3 FIG.
4 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 3 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. The first clad 20 is disposed on one side of the xy plane of the laser medium 3, that is, the main surface 31, and the second clad 4 a is disposed outside the first clad 20. In addition, the second clad 4 b is disposed on the main surface 32 of the laser medium 3 opposite to the first clad 20. With this configuration, the excitation light 2 propagates between the laser medium 3 and the first cladding 20, and the laser light propagates through the laser medium 3.
 また、励起光2は第1のクラッド20とレーザ媒質3を合わせた端面から導入できるので、端面が拡大されるので容易に高出力な励起が可能となり、容易に高出力なレーザ光が得られる。さらに、第2のクラッド4bの下面に図示せぬヒートシンクを接合することで、レーザ媒質3の温度上昇を低減できる。このように第1のクラッド20や基板等の材料を挟まずに第2のクラッド4bを直接ヒートシンクに接合しているため、熱抵抗を著しく下げることが可能であり、レーザ媒質3の温度上昇を抑えることができる。このため、より高効率で高出力なレーザ光を得ることができる。 Further, since the pumping light 2 can be introduced from the end face where the first clad 20 and the laser medium 3 are combined, the end face is enlarged, so that high-power pumping can be easily performed, and high-power laser light can be easily obtained. . Furthermore, the temperature rise of the laser medium 3 can be reduced by bonding a heat sink (not shown) to the lower surface of the second cladding 4b. As described above, since the second cladding 4b is directly bonded to the heat sink without sandwiching materials such as the first cladding 20 and the substrate, the thermal resistance can be remarkably lowered, and the temperature rise of the laser medium 3 can be reduced. Can be suppressed. For this reason, a laser beam with higher efficiency and higher output can be obtained.
 実施の形態4.
 図5はこの発明の実施の形態4による固体レーザモジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。ここでは一例として図4に示した、レーザ媒質3のxy面の片方の面、すなわち主面31上に第1のクラッド20を配置し、第1のクラッド20の外側に第2のクラッド4aを配置し、またレーザ媒質3の第1のクラッド20と反対側の主面32上に第2のクラッド4bを配置する構成に適用した例を示した。なお、図2に示すようにレーザ媒質3の主面31,32上にそれぞれ第2のクラッド4a,4bを接合する構成に適用しても良い。さらに、図示せぬ基板やヒートシンクを配置しても良い。また、図3に示すようにレーザ媒質3の主面31,32上にそれぞれ第1のクラッド20を配置した構成に適用しても良い。さらに、図示せぬ基板やヒートシンクを配置しても良い。
Embodiment 4 FIG.
5 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 4 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. Here, as an example, the first clad 20 is disposed on one surface of the xy plane of the laser medium 3, that is, the main surface 31, as shown in FIG. 4, and the second clad 4 a is disposed outside the first clad 20. In this example, the second clad 4b is disposed on the main surface 32 opposite to the first clad 20 of the laser medium 3. In addition, as shown in FIG. 2, you may apply to the structure which joins the 2nd clads 4a and 4b on the main surfaces 31 and 32 of the laser medium 3, respectively. Furthermore, you may arrange | position the board | substrate and heat sink which are not shown in figure. Further, as shown in FIG. 3, the present invention may be applied to a configuration in which the first clad 20 is disposed on the main surfaces 31 and 32 of the laser medium 3. Furthermore, you may arrange | position the board | substrate and heat sink which are not shown in figure.
 この実施の形態では、固体レーザモジュール100の上記所定方向(y軸方向)の両端の端面35a,36aのうち、少なくとも励起光2を導入するレーザ媒質3と第1のクラッド20の端面を、yz面(レーザ媒質3の主面31,32に垂直で上記所定方向に沿った面)内で傾斜させるように構成する。励起光2は端面35a,36aから導入され、第2のクラッド4a,4b間を伝播しながらレーザ媒質3を通過する際に吸収される。ここで、端面35a,36aをyz面内で傾斜させたため、対向する2つの端面35a,36aとレーザ媒質3との間、又は端面35a,36aと第1のクラッド20との間、又は端面35a,36aと第2のクラッド4a,4bとの間を全反射で閉じ込める寄生発振パスをなくすことができる。このように、端面35a,36aを傾斜させたことでyz面内での寄生発振がなく、寄生増幅パス長も短くすることができるので、高出力励起時に寄生発振や寄生増幅によるエネルギーの抽出が小さく、利得の減少が小さいことから高出力なレーザ光が得られる。 In this embodiment, among the end faces 35a and 36a at both ends in the predetermined direction (y-axis direction) of the solid-state laser module 100, at least the end face of the laser medium 3 for introducing the excitation light 2 and the first clad 20 are yz. It is configured to be inclined in a plane (a plane perpendicular to the main surfaces 31 and 32 of the laser medium 3 and along the predetermined direction). The excitation light 2 is introduced from the end faces 35a and 36a and is absorbed when passing through the laser medium 3 while propagating between the second claddings 4a and 4b. Here, since the end surfaces 35a and 36a are inclined in the yz plane, the two end surfaces 35a and 36a facing each other and the laser medium 3, or between the end surfaces 35a and 36a and the first cladding 20, or the end surface 35a. , 36a and the second clad 4a, 4b can be eliminated by a parasitic oscillation path confined by total reflection. As described above, since the end faces 35a and 36a are inclined, there is no parasitic oscillation in the yz plane and the parasitic amplification path length can be shortened. Therefore, energy extraction by parasitic oscillation and parasitic amplification can be performed during high output excitation. Since it is small and gain reduction is small, a high-power laser beam can be obtained.
 実施の形態5.
 図6はこの発明の実施の形態5による固体レーザモジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。図6では図5と同様、一例として図4に示した構成に適用した場合を示した。固体レーザモジュール100の構成は図5のものと同じであるが、励起光2を導入する半導体レーザ1の位置が異なる。なお実施の形態4と同様に、図2、図3に示す構成に適用することも可能である。また基板やヒートシンクを配置してもよい。
Embodiment 5 FIG.
6 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 5 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. FIG. 6 shows a case where the present invention is applied to the configuration shown in FIG. 4 as an example, as in FIG. The configuration of the solid-state laser module 100 is the same as that of FIG. 5, but the position of the semiconductor laser 1 for introducing the pumping light 2 is different. Note that, similarly to the fourth embodiment, the present invention can be applied to the configurations shown in FIGS. Further, a substrate or a heat sink may be arranged.
 実施の形態4と同様、固体レーザモジュール100の端面35a,36aのうち、少なくとも励起光2を反射させるレーザ媒質3と第1のクラッド20の端面を、yz面内で傾斜させるように構成されている。半導体レーザ1は励起光2を第2のクラッド4aのxy面(固体レーザモジュール100の最外面)から導入するように配置されている。第1のクラッド4aのxy面から導入された励起光2は、傾斜した端面で反射される。反射した励起光2はレーザ媒質3と第2のクラッド4aを伝播し、伝播しながらレーザ媒質3を通過する際に吸収される。このように励起光2をxy面から導入し傾斜させた端面に反射させるように構成したため、端面の傾斜角度を大きく傾斜させることができる。例えば、45度の角度にすることができる。このように傾斜角度を45度前後に大きくしたため、レーザ媒質3内で発生した自然放出光が端面で全反射した場合、第2のクラッド4a,4bでは全反射することができずに透過する。このため、寄生発振は発生せず、寄生増幅パスもレーザ媒質3を1往復できない。したがって、より高い励起出力を導入しても寄生発振や寄生増幅によるエネルギーの抽出が小さく、利得の減少が小さいことから高出力なレーザ光が得られる。 As in the fourth embodiment, of the end faces 35a and 36a of the solid-state laser module 100, at least the laser medium 3 that reflects the pumping light 2 and the end face of the first clad 20 are inclined in the yz plane. Yes. The semiconductor laser 1 is arranged so as to introduce the excitation light 2 from the xy plane of the second cladding 4a (the outermost surface of the solid-state laser module 100). The excitation light 2 introduced from the xy plane of the first cladding 4a is reflected by the inclined end surface. The reflected excitation light 2 propagates through the laser medium 3 and the second cladding 4a and is absorbed when passing through the laser medium 3 while propagating. Since the excitation light 2 is thus introduced from the xy plane and reflected by the inclined end face, the inclination angle of the end face can be greatly inclined. For example, the angle can be 45 degrees. Since the inclination angle is increased to about 45 degrees in this way, when the spontaneous emission light generated in the laser medium 3 is totally reflected by the end face, it is not totally reflected by the second claddings 4a and 4b but is transmitted. For this reason, parasitic oscillation does not occur, and the parasitic amplification path cannot reciprocate the laser medium 3 once. Therefore, even when a higher pumping power is introduced, extraction of energy due to parasitic oscillation or parasitic amplification is small, and gain reduction is small, so that high-power laser light can be obtained.
 実施の形態6.
 図7はこの発明の実施の形態6による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図8は図7の破線で示した領域Cの拡大図であり、y軸方向の縮尺を拡大している。図7の固体レーザモジュール100では図1のモジュール100と比べ、傾斜角度θ1が付けられた側面33と所定方向(y軸方向)に沿って延びる側面34の位置が入れ替えられており、さらに側面33側の側面間隔が広い側の一部に反射防止膜7が設けられている。反射防止膜7からレーザ媒質3内に入射したレーザ反射光10は、対向する側面33,34間で反射を繰り返すことで、反射角が側面に対して垂直に近づいていく。折り返し直前のレーザ反射光10の側面33又は側面34への入射角が0ではないように、すなわち入射光が側面に垂直ではないようにレーザ入射光8の反射防止膜7への入射角度を調整することで、往路と復路では光路が重ならないようにすることができる。
Embodiment 6 FIG.
FIG. 7 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 6 of the present invention. FIG. 8 is an enlarged view of a region C indicated by a broken line in FIG. 7, and the scale in the y-axis direction is enlarged. In the solid-state laser module 100 of FIG. 7, the positions of the side surface 33 provided with the inclination angle θ1 and the side surface 34 extending along a predetermined direction (y-axis direction) are interchanged as compared with the module 100 of FIG. An antireflection film 7 is provided on a part of the side having a wide side interval. The laser reflected light 10 incident on the laser medium 3 from the antireflection film 7 is repeatedly reflected between the side surfaces 33 and 34 facing each other, so that the reflection angle approaches perpendicular to the side surface. The incident angle of the laser incident light 8 on the antireflection film 7 is adjusted so that the incident angle of the laser reflected light 10 immediately before turning back to the side surface 33 or the side surface 34 is not 0, that is, the incident light is not perpendicular to the side surface. By doing so, it is possible to prevent the optical paths from overlapping on the forward path and the return path.
 ここで図8に示すように、折り返し時のレーザ反射光10の側面34と側面33での入射角と反射角の和がそれぞれθ1のとき、往路と復路で光路が反転する。このように構成することで、往路で通過していないレーザ媒質3上を復路で通過することができるので、ビームオーバーラップ効率が向上しレーザ発振器及びレーザ増幅器の効率が向上し、高出力なレーザ光が得られる。また、レーザ光により効率的にエネルギーの抽出を行うことができるので、レーザ媒質3に残存する利得が小さくなることから寄生発振や寄生増幅が起こり難くなる。このため、より高出力な励起をおこなうことが可能であり、より高出力なレーザ光を得ることができる。 Here, as shown in FIG. 8, when the sum of the incident angle and the reflection angle at the side surface 34 and the side surface 33 of the laser reflected light 10 at the time of turning is θ1, the optical path is inverted between the forward path and the return path. With this configuration, the laser medium 3 that does not pass in the forward path can pass through the return path, so that the beam overlap efficiency is improved, the efficiency of the laser oscillator and the laser amplifier is improved, and the high output laser Light is obtained. In addition, since energy can be extracted efficiently with laser light, the gain remaining in the laser medium 3 is reduced, so that parasitic oscillation and parasitic amplification are less likely to occur. For this reason, it is possible to perform excitation with higher output, and it is possible to obtain laser light with higher output.
 この構成によれば、レーザ媒質3内でのレーザ反射光10の往路と復路が同じではないため、レーザ入射光8とレーザ出力光9の光路も同一ではない。このため、レーザ入射光8とレーザ出力光9は空間的に分離が容易となることから偏光分離手段を用いる必要がない。このため、特にレーザ増幅器において構成部材を低減可能であり、信頼性も向上する。 According to this configuration, since the forward path and the return path of the laser reflected light 10 in the laser medium 3 are not the same, the optical paths of the laser incident light 8 and the laser output light 9 are not the same. For this reason, since the laser incident light 8 and the laser output light 9 are spatially easily separated, it is not necessary to use a polarization separation means. For this reason, it is possible to reduce the number of components, particularly in a laser amplifier, and the reliability is also improved.
 実施の形態7.
 図9はこの発明の実施の形態7による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図9の固体レーザモジュール100では、側面33上の側面間隔が広い側の一部にレーザ光を透過する反射防止膜7が施されており、その他部分にはレーザ光を反射し励起光2を透過させる狭帯域反射膜30が施されている。また側面34上には全体に狭帯域反射膜30が施されている。そして側面側にも2対の半導体レーザ1が設けられている。これにより励起光2はレーザ媒質3の端面35,36のみならず、側面33,34からも導入される。
Embodiment 7 FIG.
FIG. 9 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 7 of the present invention. In the solid-state laser module 100 of FIG. 9, the antireflection film 7 that transmits the laser light is provided on a part of the side 33 on the side where the side surface interval is wide, and the other part reflects the laser light and emits the excitation light 2. A narrow-band reflective film 30 is provided for transmission. A narrow band reflecting film 30 is provided on the entire side surface 34. Two pairs of semiconductor lasers 1 are also provided on the side surface side. As a result, the excitation light 2 is introduced not only from the end faces 35 and 36 of the laser medium 3 but also from the side faces 33 and 34.
 狭帯域反射膜30は、例えばレーザ媒質がNd:YAGである場合には、1064nmのレーザ光を反射し、808nm又は880nmの励起光2を透過するように設計される。このような特性の膜は誘電体膜を積層することで製作することが可能である。このようにレーザ媒質3のxy面の四方から励起を行う構成としたため、より高出力な励起が可能であり、より高出力なレーザ光を得ることができる。 For example, when the laser medium is Nd: YAG, the narrow-band reflecting film 30 is designed to reflect the 1064 nm laser beam and transmit the 808 nm or 880 nm excitation light 2. A film having such characteristics can be manufactured by laminating dielectric films. Thus, since it was set as the structure which pumps from four directions of the xy plane of the laser medium 3, higher output pumping is possible and a higher output laser beam can be obtained.
 実施の形態8.
 図10はこの発明の実施の形態8による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図10の固体レーザモジュール100では、側面33の反射防止膜7と対向する側面34の一部に反射防止膜7aが配置されている。反射防止膜7aはレーザ光を透過させる膜である。反射防止膜7からレーザ媒質3内に導入されたレーザ光は側面33,34間を反射しながら伝播する。ここで、往路と復路では同じ光路にならないようにレーザ入射光8の角度を調整している。このため、復路を伝播してきたレーザ光が反射防止膜7から出力せずに、対向する側面34の反射防止膜7aから出力される。
Embodiment 8 FIG.
10 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 8 of the present invention. In the solid-state laser module 100 of FIG. 10, the antireflection film 7 a is disposed on a part of the side surface 34 facing the antireflection film 7 on the side surface 33. The antireflection film 7a is a film that transmits laser light. Laser light introduced from the antireflection film 7 into the laser medium 3 propagates while being reflected between the side surfaces 33 and 34. Here, the angle of the laser incident light 8 is adjusted so that the same optical path is not used in the forward path and the return path. For this reason, the laser beam propagating along the return path is not output from the antireflection film 7 but is output from the antireflection film 7 a on the opposite side surface 34.
 このように、レーザ入射光8とレーザ出力光9の位置を分離したため、レーザ増幅器の場合にはレーザ入射光とレーザ出力光の分離が容易である。また、レーザ発振器の場合には、レーザ媒質3を通過して増幅したレーザ出力光9を別のレーザ媒質3もしくは固体レーザモジュール100に入力してさらにて増幅することができる。これにより1つのレーザ発振器の共振器内に複数のレーザ媒質もしくは固体レーザモジュールを容易に配置することができ、より高出力なレーザ光が得られる。 As described above, since the positions of the laser incident light 8 and the laser output light 9 are separated, in the case of a laser amplifier, it is easy to separate the laser incident light and the laser output light. In the case of a laser oscillator, the laser output light 9 that has been amplified through the laser medium 3 can be input to another laser medium 3 or the solid-state laser module 100 for further amplification. As a result, a plurality of laser media or solid-state laser modules can be easily arranged in the resonator of one laser oscillator, and higher output laser light can be obtained.
 実施の形態9.
 図11はこの発明の実施の形態9による平面導波路型レーザ装置の固体レーザモジュールの上面図である。図11の固体レーザモジュール100で使用される励起光2は、例えばファイバ出力光をコリメートレンズ(共に図示省略)で平行化した光である。励起光2は一般には半導体レーザ光をファイバに結合して製作される。又はファイバレーザ光(図示省略)の出力を用いてもよい。励起光2とレーザ入射光8は略同一の光路でレーザ媒質3の反射防止膜7から導入される。
Embodiment 9 FIG.
FIG. 11 is a top view of a solid-state laser module of a planar waveguide laser device according to Embodiment 9 of the present invention. The pumping light 2 used in the solid-state laser module 100 in FIG. 11 is, for example, light obtained by collimating fiber output light with a collimating lens (both not shown). The pumping light 2 is generally manufactured by coupling a semiconductor laser beam to a fiber. Alternatively, the output of fiber laser light (not shown) may be used. The excitation light 2 and the laser incident light 8 are introduced from the antireflection film 7 of the laser medium 3 through substantially the same optical path.
 反射防止膜7を介してレーザ媒質3内に入射された励起光2は、レーザ光と同じように対向する側面33,34間を伝播しレーザ媒質3内で折り返される。このように構成することで、励起光2のレーザ媒質3内での伝播光路を長くとることができるので、高効率で励起光2をレーザ媒質3に吸収させることができ、高効率で高出力なレーザ光が得られる。ここで、レーザ活性媒質が準3準位、準4準位、3準位の場合には下準位吸収のため、未励起時にはレーザ光に対する吸収がある。このため、レーザ媒質3にレーザ光に対する利得を発生させるために高密度励起が必要となる。言い換えれば、レーザ媒質3内に活性媒質が多く含まれる場合には、レーザ光に対する利得を発生させるために高出力の励起光2が必要である。レーザ媒質3内の活性媒質が少ない場合には、レーザ光に対する利得を発生させるための励起出力は少なくてよい。 The excitation light 2 incident on the laser medium 3 through the antireflection film 7 propagates between the side surfaces 33 and 34 facing each other in the same manner as the laser light and is folded back in the laser medium 3. By configuring in this way, the propagation optical path of the pumping light 2 in the laser medium 3 can be made long, so that the pumping light 2 can be absorbed by the laser medium 3 with high efficiency and with high efficiency and high output. Laser beam can be obtained. Here, when the laser active medium is a quasi-3 level, a quasi-4 level, or a 3 level, it absorbs the laser beam when it is not excited because of the lower level absorption. For this reason, high-density excitation is required to generate a gain for the laser light in the laser medium 3. In other words, when the laser medium 3 contains a large amount of active medium, the high-power excitation light 2 is necessary to generate a gain for the laser light. When the number of active media in the laser medium 3 is small, the excitation output for generating a gain for the laser light may be small.
 一方、レーザ媒質が少ない、つまり、活性媒質が低濃度のレーザ媒質3の場合には、励起光2の吸収係数も減少することから、吸収率を一定に保つためには吸収長を長くする必要がある。上記構成によれば、励起光2は傾斜した側面をもつ側面間で往復伝播するため吸収長が長い。このため、低濃度のレーザ媒質3を用いた場合でも励起光2の高い吸収率を得ることができる。このように、低濃度のレーザ媒質3を用いたため、下準位吸収による励起光2の損失が小さく、高効率で高出力なレーザ光が得られる。また、低濃度のレーザ媒質3では利得を発生させる活性媒質が少ないため、レーザ光に対する利得も小さいが、上記構成ではレーザ光は傾斜した側面をもつ側面間で往復伝播されるため、レーザ光の伝播長が長い。このため、単位長さあたりのレーザ媒質3の利得が小さい場合でも高効率に高出力なレーザ光が得られる。 On the other hand, when the laser medium is small, that is, when the active medium is a low-concentration laser medium 3, the absorption coefficient of the excitation light 2 also decreases. Therefore, in order to keep the absorption rate constant, it is necessary to increase the absorption length. There is. According to the said structure, since the excitation light 2 reciprocates between the side surfaces which have the inclined side surface, absorption length is long. For this reason, even when a low-concentration laser medium 3 is used, a high absorption rate of the excitation light 2 can be obtained. As described above, since the low-concentration laser medium 3 is used, the loss of the pumping light 2 due to lower level absorption is small, and high-efficiency and high-power laser light is obtained. In addition, since the low-concentration laser medium 3 has a small number of active media that generate gain, the gain for the laser light is small. However, in the above configuration, the laser light is reciprocally propagated between the side surfaces having the inclined side surfaces. Long propagation length. For this reason, even when the gain of the laser medium 3 per unit length is small, high-efficiency and high-power laser light can be obtained.
 実施の形態10.
 図12はこの発明の実施の形態10による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図12の固体レーザモジュール100では、レーザ媒質3は4角形ではなく、側面33は反射防止膜7を設けた部分が全反射膜6が設けられた部分に対してxy面内で角度が付けられている(傾斜している)。ここで、側面33の反射防止膜7を設けた部分は、往復光路で同一な光路を持つレーザ反射光10のレーザ入射光とレーザ出力光が反射防止膜7に対して垂直になるよう角度が付けられている。
Embodiment 10 FIG.
12 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 10 of the present invention. In the solid-state laser module 100 of FIG. 12, the laser medium 3 is not rectangular, and the side surface 33 is angled in the xy plane with respect to the portion where the antireflection film 7 is provided and the portion where the total reflection film 6 is provided. (Sloped). Here, the portion provided with the antireflection film 7 on the side surface 33 has an angle so that the laser incident light and the laser output light of the laser reflected light 10 having the same optical path in the reciprocating optical path are perpendicular to the antireflection film 7. It is attached.
 また、波長変換素子40がレーザ媒質3の外側で反射防止膜7に近接して配置されている。波長変換素子40は非線形光学材料であり、例えば、周期的分極反転LuNb3(PPLN)や、LBO等の非線形光学材料であっても良い。波長変換素子40のレーザ光等の伝播方向の両端の端面には、入力側に入射膜42、出力側に出力膜41がそれぞれ設けられている。出力膜41は、レーザ媒質3で増幅される波長のレーザ光に対し反射特性を示し、波長変換光に対し透過特性を示す。また、反射防止膜7側の入射膜42は、レーザ光の波長及び波長変換光に対しても透過特性を示す。このように構成したことで、レーザ光は出力膜41とレーザ媒質3内の往復光路で閉じ込められる。レーザ光が波長変換素子40を通過する際に波長変換され、レーザ媒質3で増幅されるレーザ光と他の波長の波長変換レーザ光43が得られる。波長変換レーザ光43は入射膜42で反射され出力膜41を透過し出力される。 Further, the wavelength conversion element 40 is disposed outside the laser medium 3 and close to the antireflection film 7. The wavelength conversion element 40 is a nonlinear optical material, and may be a nonlinear optical material such as periodic polarization inversion LuNb 3 (PPLN) or LBO, for example. An incident film 42 is provided on the input side, and an output film 41 is provided on the output side on the end faces of both ends of the wavelength conversion element 40 in the propagation direction of laser light or the like. The output film 41 exhibits reflection characteristics with respect to laser light having a wavelength amplified by the laser medium 3, and exhibits transmission characteristics with respect to wavelength converted light. Further, the incident film 42 on the antireflection film 7 side also shows transmission characteristics with respect to the wavelength of the laser light and the wavelength converted light. With this configuration, the laser light is confined by the reciprocating optical path in the output film 41 and the laser medium 3. When the laser light passes through the wavelength conversion element 40, the wavelength is converted, and the laser light amplified by the laser medium 3 and the wavelength conversion laser light 43 of other wavelengths are obtained. The wavelength conversion laser beam 43 is reflected by the incident film 42 and transmitted through the output film 41 to be output.
 このように例えばレーザ共振器内で、上記構成のレーザ媒質3に波長変換素子40を組み合わせて配置して内部波長変換方式とする。レーザ媒質3では往復光路長が長く、寄生発振や寄生増幅が起こらないことから、高出力励起が可能であり、高効率で高出力なレーザ光が得られる。また、内部波長変換方式により波長変換されたレーザ光が出力され、変換されなかったレーザ光は再びレーザ媒質3を往復伝播して増幅される。このため、高効率で高出力な波長変換出力が得られる。ここで、波長変換は、レーザ光の波長を1/2にする2次高調波の発生でも良いし、1/3の波長にする3次高調波の発生でもよい。また、光パラメトリックによりレーザ光の波長よりも長波長に変換しても良い。 In this way, for example, in the laser resonator, the wavelength conversion element 40 is arranged in combination with the laser medium 3 having the above-described configuration to obtain an internal wavelength conversion method. Since the laser medium 3 has a long reciprocal optical path length and no parasitic oscillation or parasitic amplification occurs, high-power excitation is possible, and high-efficiency and high-power laser light can be obtained. Further, laser light that has been wavelength-converted by the internal wavelength conversion method is output, and the laser light that has not been converted is again propagated back and forth through the laser medium 3 and amplified. For this reason, highly efficient and high output wavelength conversion output can be obtained. Here, the wavelength conversion may be the generation of the second harmonic that makes the wavelength of the laser light ½, or the generation of the third harmonic that makes the wavelength 1 /. Further, it may be converted into a wavelength longer than the wavelength of the laser beam by optical parametric.
 上記各実施の形態では、平面導波路型レーザ装置内におけるレーザ光および励起光の伝搬、入力等について述べてきたが、以下では固体レーザモジュールに設置されるヒートシンク、さらに平面導波路型レーザ装置における平面内での励起光分布に係る実施の形態について説明する。 In each of the above embodiments, propagation and input of laser light and excitation light in a planar waveguide laser device have been described. In the following, a heat sink installed in a solid-state laser module, and further in a planar waveguide laser device An embodiment relating to the excitation light distribution in the plane will be described.
 実施の形態11.
 図24はこの発明の実施の形態11による固体レーザモジュールを含む平面導波路型レーザ装置の上面図、図25は図24の平面導波路型レーザ装置の紙面下側からの側面図である。但し固体レーザモジュール100は断面で示されている。平面導波路型レーザ装置のレーザ光の伝搬に関しては上記実施の形態と同様であるため、ここでは説明を省略する。
Embodiment 11 FIG.
FIG. 24 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 11 of the present invention, and FIG. 25 is a side view of the planar waveguide laser device of FIG. However, the solid-state laser module 100 is shown in cross section. Since the propagation of the laser light of the planar waveguide laser device is the same as that of the above embodiment, the description thereof is omitted here.
 図24,25において、ヒートシンク102は固体レーザモジュール100の下側主面に接着されており、図24では紙面の裏側になるためヒートシンク102の位置を破線で示している。ヒートシンク102は、各辺の長さが固体レーザモジュール100よりも所定値だけそれぞれ短い。固体レーザモジュール100は周縁にヒートシンク102が接触されておらずヒートシンク102の未設置領域103a~dを有する。すなわちヒートシンク102は固体レーザモジュール100の側面および端面(上述のレーザ媒質3の側面および端面の全反射膜等を含めた外側の面)から所定値だけ内側にオフセットされて設けられるような大きさ、形状を有する。これらの未設置領域103a~dは、できる限り均等で小さくする。但し、固体レーザモジュール100の傾斜した側面106側の側面間が広がった部分の未設置領域は上記所定値以上であればよい。 24 and 25, the heat sink 102 is bonded to the lower main surface of the solid-state laser module 100, and the position of the heat sink 102 is indicated by a broken line in FIG. The length of each side of the heat sink 102 is shorter than the solid laser module 100 by a predetermined value. The solid-state laser module 100 does not have a heat sink 102 in contact with the periphery, and has non-installation regions 103a to 103d of the heat sink 102. That is, the heat sink 102 is sized so as to be offset inward by a predetermined value from the side surface and end surface of the solid-state laser module 100 (the outer surface including the total reflection film and the like of the side surface and end surface of the laser medium 3). Has a shape. These non-installed areas 103a to 103d are made as uniform and small as possible. However, the non-installed area of the part where the side surface on the inclined side surface 106 side of the solid-state laser module 100 spreads may be not less than the predetermined value.
 未設置領域103a~dを小さくすることにより、ヒートシンク102による固体レーザモジュール100のレーザ媒質3からの排熱が効率よく行われ、固体レーザモジュール100の温度上昇を低減できる。また、未設置領域103a~dを均等にすることにより、固体レーザモジュール100の主面(上述のレーザ媒質3の主面のクラッド等を含めた外側の面)あるいはレーザ媒質3の主面に生じる温度分布の温度差を小さくでき、面内の温度勾配による応力発生などの影響を緩和できる。さらに、未設置領域103a~dを小さくすることは、ヒートシンク102の設置領域と未設置領域の温度差を小さくすることにつながり、応力発生の緩和に有効である。 By reducing the non-installation areas 103a to 103d, the heat sink 102 efficiently exhausts heat from the laser medium 3 of the solid-state laser module 100, and the temperature rise of the solid-state laser module 100 can be reduced. Further, by making the non-installation regions 103a to 103d uniform, the solid surface is formed on the main surface of the solid-state laser module 100 (the outer surface including the cladding of the main surface of the laser medium 3 described above) or the main surface of the laser medium 3. The temperature difference of the temperature distribution can be reduced, and the influence of stress generation due to the in-plane temperature gradient can be mitigated. Further, reducing the non-installation areas 103a to 103d leads to a reduction in the temperature difference between the installation area of the heat sink 102 and the non-installation area, and is effective in mitigating stress generation.
 未設置領域103a~dの上記所定の幅は、固体レーザモジュール100とヒートシンク102との接着の際に、接着剤が固体レーザモジュール100の側面、端面に回りこまず、仮に回り込んだ場合においても拭き取り作業などで除去可能な程度とする。これにより、レーザ光および励起光を入出力させる場合の反射および散乱を防ぐことができる。通常の製作技術では、未設置領域103a~dのオフセット幅は100μm程度になる。 The predetermined width of the non-installed regions 103a to 103d is not limited to the case where the adhesive does not wrap around the side surface and end surface of the solid state laser module 100 when the solid state laser module 100 and the heat sink 102 are adhered. Use a level that can be removed by wiping. Thereby, reflection and scattering when laser light and excitation light are input and output can be prevented. In a normal manufacturing technique, the offset width of the non-installed areas 103a to 103d is about 100 μm.
 また、固体レーザモジュール100に未設置領域103a~dを設けてヒートシンク102を接着することにより、レーザ光および励起光を入出力させる場合にレーザ光および励起光がヒートシンク102に当たらず、入出力レーザビームのケラレが生じるという問題がなくなる。励起光2は、励起光2の入射端付近において、未設置領域103aおよび103c上を通過しないように入力する。すなわち固体レーザモジュール100の端面あるいは側面の周縁をさけ中央側より入力させる。反対側(103b側)も同様に入射端付近で未設置領域を通過させないようにする。これにより、ヒートシンク102のコーナー部での固体レーザモジュール100の温度上昇を防ぐことができ、固体レーザモジュール100とヒートシンク102の熱膨張係数の差による局所的に大きな応力の発生を防ぐことができる。また、固体レーザモジュール100において、空気と接した面では放熱の効率が低下するが、ヒートシンク102が設置されている部分では排熱が効率よく行われるために、ヒートシンク102が設置されている部分のみ励起光2を入力させることにより、固体レーザモジュール100の温度上昇を低減でき、応力発生などの影響を緩和できる。 Further, by providing the non-installation regions 103a to 103d in the solid-state laser module 100 and bonding the heat sink 102, when the laser light and the excitation light are input / output, the laser light and the excitation light do not hit the heat sink 102, and the input / output laser The problem of beam vignetting is eliminated. The excitation light 2 is input so as not to pass over the non-installation regions 103a and 103c in the vicinity of the incident end of the excitation light 2. That is, the edge of the solid laser module 100 or the peripheral edge of the side surface is avoided and input is performed from the center side. Similarly, the other side (103b side) should not be allowed to pass through the non-installed area near the incident end. Thereby, the temperature rise of the solid state laser module 100 at the corner portion of the heat sink 102 can be prevented, and generation of a large stress due to a difference in thermal expansion coefficient between the solid state laser module 100 and the heat sink 102 can be prevented. Further, in the solid-state laser module 100, the heat dissipation efficiency is reduced on the surface in contact with the air, but since the exhaust heat is efficiently performed at the portion where the heat sink 102 is installed, only the portion where the heat sink 102 is installed. By inputting the excitation light 2, the temperature rise of the solid-state laser module 100 can be reduced and the influence of stress generation and the like can be mitigated.
 固体レーザモジュール100に入力された励起光2は、レーザ媒質3によって吸収され、伝搬過程で強度が小さくなるため、一定長伝搬後に未設置領域に到達しても発生熱量は小さいために影響は無視できる程に小さくなる。レーザ媒質3の励起状態を均一な分布に近づけるために、入射端付近ではヒートシンク102よりも幅が小さくレーザ媒質3内部で広がりを持つような励起光を用いることにより、ヒートシンク102のコーナー部を除く領域全体を励起することができる。 The excitation light 2 input to the solid-state laser module 100 is absorbed by the laser medium 3 and has a reduced intensity in the propagation process. Therefore, even if it reaches the non-installation area after propagation for a certain length, the generated heat is small, so the influence is ignored. It will be as small as possible. In order to bring the excitation state of the laser medium 3 closer to a uniform distribution, the corners of the heat sink 102 are removed by using excitation light having a width smaller than that of the heat sink 102 and spreading in the laser medium 3 near the incident end. The entire region can be excited.
 上記のように、ヒートシンク102の各辺の長さを固体レーザモジュール100よりもそれぞれ所定値だけ小さくし、固体レーザモジュール100にヒートシンクの未設置領域103a~dを設け、これらの未設置領域103a~dを均等で小さくすることにより、固体レーザモジュール100のレーザ媒質3の温度上昇を低減でき、熱膨張係数の差および面内温度分布による応力の発生を回避できる。また、局所的な応力の発生しやすいヒートシンク102のコーナー部を避け、排熱が効率よく行われるヒートシンク102の中央部側(励起光2の入射方向からみて固体レーザモジュール100の端面の中央側)から励起光を入力させることにより、効果的に排熱を行うことができ、レーザ媒質3の温度上昇およびそれに伴う応力発生を緩和できる。また、以上の構成により固体レーザモジュール100の主面ひいてはレーザ媒質3の主面での温度分布の温度の差異を低減できるため、レーザ光の増幅や発振によるレーザ媒質3の温度変化が把握しやすくなり、レーザ媒質3の温度制御を行う際の精度の向上が期待できる。 As described above, the length of each side of the heat sink 102 is made smaller than the solid laser module 100 by a predetermined value, the heat sink non-installation areas 103a to 103d are provided in the solid laser module 100, and these non-installation areas 103a to 103a are provided. By making d equal and small, the temperature rise of the laser medium 3 of the solid-state laser module 100 can be reduced, and the occurrence of stress due to the difference in thermal expansion coefficient and in-plane temperature distribution can be avoided. Further, avoiding the corner portion of the heat sink 102 where local stress is likely to occur, the central portion side of the heat sink 102 where the exhaust heat is efficiently performed (the central side of the end face of the solid-state laser module 100 when viewed from the incident direction of the excitation light 2). By inputting the excitation light from, exhaust heat can be effectively removed, and the temperature rise of the laser medium 3 and the accompanying stress generation can be mitigated. Further, since the temperature difference of the temperature distribution on the main surface of the solid-state laser module 100 and the main surface of the laser medium 3 can be reduced by the above configuration, it is easy to grasp the temperature change of the laser medium 3 due to amplification and oscillation of the laser light. Thus, improvement in accuracy when controlling the temperature of the laser medium 3 can be expected.
 実施の形態12.
 図26はこの発明の実施の形態12による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図26において固体レーザモジュール100および半導体レーザ1は図24に示す上記実施の形態11のものと同じである。図24のヒートシンク102は直方体であったのに対し、図26ではヒートシンク102aは形状が固体レーザモジュール100と同じ形状である点が異なる。ヒートシンク102aは図24と同様に、固体レーザモジュール100の下側主面に接着されており、図26でもヒートシンク102aの位置を破線で示している。
Embodiment 12 FIG.
FIG. 26 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 12 of the present invention. In FIG. 26, the solid-state laser module 100 and the semiconductor laser 1 are the same as those in the eleventh embodiment shown in FIG. The heat sink 102 in FIG. 24 is a rectangular parallelepiped, whereas the heat sink 102a in FIG. 26 is different in that the shape is the same as that of the solid-state laser module 100. Similarly to FIG. 24, the heat sink 102a is bonded to the lower main surface of the solid-state laser module 100. In FIG. 26, the position of the heat sink 102a is indicated by a broken line.
 ヒートシンク102aは各辺の長さが固体レーザモジュール100よりもそれぞれ所定値だけ短く、固体レーザモジュール100はヒートシンクの未設置領域103a,103b,103d,103eを有する。これらの未設置領域103a,103b,103d,103eは、できる限り均等で小さくする。固体レーザモジュール100とヒートシンク102aを同一形状にすることにより、各辺での未設置領域103a,103b,103d,103eを均等にでき、レーザ媒質3の四方のコーナー部をすべて均等に冷却させることが可能となり、固体レーザモジュール100の主面の温度分布の温度の差異を小さくすることができる。 The heat sink 102a has a length of each side shorter than the solid laser module 100 by a predetermined value, and the solid laser module 100 has heat sink non-installation regions 103a, 103b, 103d, and 103e. These non-installed areas 103a, 103b, 103d, and 103e are made as uniform and small as possible. By making the solid-state laser module 100 and the heat sink 102a the same shape, the non-installed areas 103a, 103b, 103d, and 103e on each side can be made uniform, and all four corners of the laser medium 3 can be uniformly cooled. Thus, the temperature difference of the temperature distribution on the main surface of the solid-state laser module 100 can be reduced.
 実施の形態13.
 図27はこの発明の実施の形態13による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図27では固体レーザモジュール100およびヒートシンク102は図24に示す上記実施の形態11と同じであるが、励起光源である半導体レーザ1と固体レーザモジュール100(レーザ媒質3)の間にレンズ108を設けた点が異なる。レンズ108によって半導体レーザ1から出力される励起光2を、固体レーザモジュール100の主面と平行な面内(励起光2の伝播方向と直交する面の横方向:x軸方向)で集光を行いながらレーザ媒質3の端面の中央側より入力させることにより、ヒートシンク102のコーナー部を避けてヒートシンク102の中央部側に励起光を入力させることができる。
Embodiment 13 FIG.
FIG. 27 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 13 of the present invention. In FIG. 27, the solid-state laser module 100 and the heat sink 102 are the same as those of the eleventh embodiment shown in FIG. 24, but a lens 108 is provided between the semiconductor laser 1 serving as an excitation light source and the solid-state laser module 100 (laser medium 3). Different points. The excitation light 2 output from the semiconductor laser 1 by the lens 108 is condensed in a plane parallel to the main surface of the solid-state laser module 100 (the lateral direction perpendicular to the propagation direction of the excitation light 2: the x-axis direction). By performing the input from the center side of the end face of the laser medium 3 while performing the excitation light can be input to the center portion side of the heat sink 102 while avoiding the corner portion of the heat sink 102.
 この構成により、ヒートシンク102および固体レーザモジュール100のレーザ媒質3よりも幅の広い励起光2を出力する半導体レーザ1を使用する場合や、x軸方向の広がり角の大きい励起光2を発生させる半導体レーザ1を用いた場合でも、ヒートシンク102のコーナー部を避けてヒートシンク102の中央部側に励起光を入力させるができる。 With this configuration, the semiconductor laser 1 that outputs the excitation light 2 that is wider than the laser medium 3 of the heat sink 102 and the solid state laser module 100 is used, or the semiconductor that generates the excitation light 2 having a large spread angle in the x-axis direction. Even when the laser 1 is used, excitation light can be input to the center of the heat sink 102 while avoiding the corner of the heat sink 102.
 レンズ108には、球面レンズ、非球面レンズ、マイクロレンズアレイなどが使用できるが、固体レーザモジュール100のレーザ媒質3へ入射する励起光2のx軸方向の幅がヒートシンク102の幅よりも小さくなるように、集光機能、焦点距離を考慮して選定し設置する。 A spherical lens, an aspherical lens, a microlens array, or the like can be used as the lens 108, but the width of the excitation light 2 incident on the laser medium 3 of the solid-state laser module 100 in the x-axis direction is smaller than the width of the heat sink 102. As such, it is selected and installed in consideration of the light collecting function and the focal length.
 また、励起光2の固体レーザモジュール100(レーザ媒質3)の側面と平行な面の方向(励起光2の伝播方向と直交する面の縦方向:z軸方向)について、励起光2が正確にレーザ媒質3の端面に入力できるようにする必要があり、レンズにz軸方向の集光機能を持たせることが必要となる場合がある。この場合、図27に破線108aで示すようにx軸方向とz軸方向のそれぞれの集光機能を持ったレンズを組み合わせて用いることもできる。また、半導体レーザ1から出力される励起光2のx軸方向のビーム幅および広がり角が小さい場合には、レンズ108にはx軸方向のコリメート機能を持つものを用いることもできる。 In addition, the excitation light 2 is accurately obtained in the direction of the surface parallel to the side surface of the solid-state laser module 100 (laser medium 3) of the excitation light 2 (the vertical direction of the surface orthogonal to the propagation direction of the excitation light 2: the z-axis direction). It is necessary to enable input to the end face of the laser medium 3, and it may be necessary to provide the lens with a condensing function in the z-axis direction. In this case, as shown by a broken line 108a in FIG. 27, a lens having a condensing function in each of the x-axis direction and the z-axis direction can be used in combination. When the beam width and divergence angle in the x-axis direction of the excitation light 2 output from the semiconductor laser 1 are small, a lens 108 having a collimating function in the x-axis direction can be used.
 またレンズ108を、x軸方向の焦点位置が固体レーザモジュール100のレーザ媒質3への入射端(端面)よりも手前になるように設置することで、レーザ媒質3内部での励起光2のx軸方向の広がりを大きくすることができ、レーザ媒質3の励起される領域を広くすることができる。 Further, by installing the lens 108 so that the focal position in the x-axis direction is closer to the incident end (end face) of the solid-state laser module 100 to the laser medium 3, x of the excitation light 2 inside the laser medium 3 can be obtained. The spread in the axial direction can be increased, and the excited region of the laser medium 3 can be increased.
 実施の形態14.
 図28はこの発明の実施の形態14による固体レーザモジュールを含む平面導波路型レーザ装置の側面図である(但し固体レーザモジュール100は断面で示されている)。図28では、ヒートシンク102は例えば図25に示す実施の形態11と同じである。異なる点は、固体レーザモジュール100がレーザ媒質3の上下主面にグラッド20とクラッド4a、グラッド20とグラッド4bをそれぞれ設けたダブルクラッド型の構造となっている。また、半導体レーザ1がxy平面内に延びる固体レーザモジュール100に対してyz平面内でy軸方向に対し角度θpの傾きをつけて設置されている。
Embodiment 14 FIG.
FIG. 28 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 14 of the present invention (however, solid-state laser module 100 is shown in cross section). In FIG. 28, the heat sink 102 is the same as that of the eleventh embodiment shown in FIG. 25, for example. The difference is that the solid-state laser module 100 has a double-clad structure in which the upper and lower main surfaces of the laser medium 3 are provided with the grad 20 and the cladding 4a, and the grad 20 and the grad 4b, respectively. In addition, the semiconductor laser 1 is installed with an inclination of an angle θp with respect to the y-axis direction in the yz plane with respect to the solid-state laser module 100 extending in the xy plane.
 角度θpの傾きをつけて設置された半導体レーザ1から出力された励起光2は所定の広がり角で固体レーザモジュール100へと入射される。このとき、角度θpによって励起光2の固体レーザモジュール100への入射角を変化させることができる。これにより、図28に示すように、固体レーザモジュール100の励起光入射端部のヒートシンクの未設置領域103aにおいて、レーザ媒質3に励起光2を入力させないようにすることができる。これにより、未設置領域103aでの発熱を防ぐことができる。ヒートシンク102を設置した部分では励起光2をレーザ媒質3に吸収させることができ、レーザ媒質3を励起状態にできる。励起状態の部分では、ヒートシンク102からの排熱が効率よく行われるため、温度上昇の影響が低減できる。 The excitation light 2 output from the semiconductor laser 1 installed with an inclination of the angle θp is incident on the solid-state laser module 100 at a predetermined spread angle. At this time, the incident angle of the excitation light 2 to the solid-state laser module 100 can be changed by the angle θp. As a result, as shown in FIG. 28, the excitation light 2 can be prevented from being input to the laser medium 3 in the heat sink non-installation region 103 a at the excitation light incident end of the solid-state laser module 100. Thereby, the heat_generation | fever in the non-installation area | region 103a can be prevented. In the portion where the heat sink 102 is installed, the excitation light 2 can be absorbed by the laser medium 3 and the laser medium 3 can be in an excited state. In the excited state, exhaust heat from the heat sink 102 is efficiently performed, so that the influence of temperature rise can be reduced.
 なお、半導体レーザ1の傾き角θpは、励起光2がダブルクラッド型の固体レーザモジュール100内で伝搬可能となる励起光2の伝搬光路109での全反射条件を満たすように設定する。また、図28では上向きの角度をつけて半導体レーザ1を設置しているが、半導体レーザ1は下向きに設置することもできる。この場合の傾き角も、未設置領域103aにおいてレーザ媒質3に励起光2が入力されず、かつ励起光2がダブルクラッド型の固体レーザモジュール100内で伝搬可能となる角度に設定する。 The tilt angle θp of the semiconductor laser 1 is set so as to satisfy the total reflection condition in the propagation optical path 109 of the excitation light 2 that allows the excitation light 2 to propagate in the double clad solid-state laser module 100. In FIG. 28, the semiconductor laser 1 is installed with an upward angle, but the semiconductor laser 1 can also be installed downward. The inclination angle in this case is also set to an angle at which the excitation light 2 is not input to the laser medium 3 in the non-installation region 103a and the excitation light 2 can propagate in the double-clad solid laser module 100.
 実施の形態15.
 図29はこの発明の実施の形態15による固体レーザモジュールを含む平面導波路型レーザ装置の側面図である(但し固体レーザモジュール100は断面で示されている)。図29では図28に対し、半導体レーザ1が固体レーザモジュール100と同様にy軸方向に平行に設置され、レンズ110を用いて励起光2を集光している点が異なる。
Embodiment 15 FIG.
FIG. 29 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 15 of the present invention (however, solid-state laser module 100 is shown in cross section). 29 differs from FIG. 28 in that the semiconductor laser 1 is installed in parallel to the y-axis direction, like the solid-state laser module 100, and the excitation light 2 is condensed using the lens 110. FIG.
 半導体レーザ1から出力された励起光2はレンズ110により集光されながら固体レーザモジュール100へと入射される。この構成により、図29に示すように、固体レーザモジュール100の励起光入射端部におけるヒートシンクの未設置領域103aにおいて、レーザ媒質3に励起光2を吸収させずに入力させることができる。これにより、未設置領域103aでの発熱を防ぐことができる。 The excitation light 2 output from the semiconductor laser 1 enters the solid-state laser module 100 while being condensed by the lens 110. With this configuration, as shown in FIG. 29, the excitation light 2 can be input to the laser medium 3 without being absorbed in the heat sink non-installation region 103 a at the excitation light incident end of the solid-state laser module 100. Thereby, the heat_generation | fever in the non-installation area | region 103a can be prevented.
 なお、レンズ110は、励起光2がダブルクラッド型の固体レーザモジュール100内で伝搬可能となる励起光2の伝搬光路109の全反射条件を満たすように集光条件を設定する。また、図29では固体レーザモジュール100内のレーザ媒質3の上部側から励起光2を入射させているが、励起光2はレーザ媒質3の下部側から入射させてもよい。 The lens 110 sets the condensing condition so that the excitation light 2 can propagate in the double clad solid-state laser module 100 so as to satisfy the total reflection condition of the propagation light path 109 of the excitation light 2. In FIG. 29, the excitation light 2 is incident from the upper side of the laser medium 3 in the solid-state laser module 100. However, the excitation light 2 may be incident from the lower side of the laser medium 3.
 実施の形態16.
 図30はこの発明の実施の形態16による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。図30では図24に対し、固体レーザモジュール100より幅(x軸方向の長さ)の広いヒートシンク111が、固体レーザモジュール100に、全反射膜を設けた傾斜している側面106を超えてはみ出すようにして接着されている。レーザ光高反射率面である側面106は図1に符号6で示されるように全反射膜が設けられ、全反射膜が設けられたレーザ媒質3の側面でレーザ光を反射させ、レーザ光の入出力を行うことがない。このため、側面106の外側には接着剤等が付着しても問題とならない。また、入出力レーザビームのケラレも生じることはない。このため、ヒートシンク111を側面106側にはみ出すように接着しても使用上の問題はない。
Embodiment 16 FIG.
FIG. 30 is a top view of a planar waveguide laser device including a solid-state laser module according to Embodiment 16 of the present invention. In FIG. 30, a heat sink 111 having a width (length in the x-axis direction) wider than that of the solid-state laser module 100 protrudes beyond the inclined side surface 106 provided with the total reflection film in FIG. In this way, they are bonded. The side surface 106, which is a laser light high reflectivity surface, is provided with a total reflection film as indicated by reference numeral 6 in FIG. 1, and reflects the laser light on the side surface of the laser medium 3 provided with the total reflection film, thereby There is no input / output. For this reason, there is no problem even if an adhesive or the like adheres to the outside of the side surface 106. In addition, vignetting of the input / output laser beam does not occur. For this reason, there is no problem in use even if the heat sink 111 is bonded so as to protrude to the side surface 106 side.
 このように構成することにより、側面106側では固体レーザモジュール100すなわちレーザ媒質3の端までヒートシンク111を接触(設置)させることができ、排熱の効率が上がり温度上昇が抑えられるうえ、固体レーザモジュール100の主面の温度分布の温度の差異を小さくできる。 With this configuration, the heat sink 111 can be contacted (installed) to the end of the solid-state laser module 100, that is, the laser medium 3 on the side surface 106 side, the efficiency of exhaust heat can be increased, and the temperature rise can be suppressed. The temperature difference of the temperature distribution on the main surface of the module 100 can be reduced.
 励起光2を入力する面および信号光としてのレーザ光を入出力する面では、固体レーザモジュール100にヒートシンクの未設置領域103a,103b,103dを設けてヒートシンク111を接着することにより、レーザ媒質3の表面に付着した接着剤による反射および散乱を防ぐことができ、入出力レーザビームのケラレも防ぐことができる。未設置領域103a,103b,103dはできる限り均等でかつ小さくする。 On the surface for inputting the excitation light 2 and the surface for inputting / outputting the laser light as the signal light, the heat sink 111 is bonded to the solid-state laser module 100 and the heat sink 111 is bonded to the laser medium 3. Reflection and scattering by the adhesive attached to the surface of the laser beam can be prevented, and vignetting of the input / output laser beam can also be prevented. The non-installation areas 103a, 103b, and 103d are made as uniform and small as possible.
 なお、励起光、レーザ光等の入出力を行わない面では、同様にヒートシンクが固体レーザモジュールよりもはみ出すようにして接着することが可能であり、このような面を増やすことによって、排熱の効率が上がり温度上昇が抑えられ、固体レーザモジュール100の主面での温度分布の温度の差異を小さくできる効果がある。 In addition, it is possible to bond the heat sink so that it protrudes beyond the solid laser module on the surface where excitation light, laser light, etc. are not input / output. The efficiency is increased and the temperature rise is suppressed, and there is an effect that the temperature difference of the temperature distribution on the main surface of the solid-state laser module 100 can be reduced.
 実施の形態17.
 図31はこの発明の実施の形態17による固体レーザモジュールを含む平面導波路型レーザ装置の側面図である。図31では、レーザ媒質3、クラッド20,4a,4bのそれぞれの端面を含む固体レーザモジュール100の励起光を入射する端面に、xy面方向に延びる主面に対してyz面内でy軸に対して角度θtpの傾きをつけており、半導体レーザ1はy軸方向を向けて設置され励起光2を入力している。
Embodiment 17. FIG.
FIG. 31 is a side view of a planar waveguide laser device including a solid-state laser module according to Embodiment 17 of the present invention. In FIG. 31, the solid laser module 100 including the respective end surfaces of the laser medium 3 and the claddings 20, 4a, and 4b has an end surface on which the excitation light is incident, and is in the y axis within the yz plane with respect to the main surface extending in the xy plane direction. The semiconductor laser 1 is installed in the y-axis direction and receives the excitation light 2.
 以上の構成では、半導体レーザ1から出力された励起光2は所定の広がり角で固体レーザモジュール100へと入射される。このとき励起光2は、励起光入射面の傾き角度θtpによって屈折される。励起光2は上向きの方向へ屈折されることになり、固体レーザモジュール100の励起光入射端部のヒートシンクの未設置領域103aには、励起光2を入力させないようにすることができる。これにより、未設置領域103aでの発熱を防ぐことができる。ヒートシンク102が設置された部分では励起光2をレーザ媒質3に吸収させることができ、レーザ媒質3を励起状態にできる。この部分では、ヒートシンク102からの排熱が効率よく行われるため、温度上昇の影響が低減できる。 With the above configuration, the excitation light 2 output from the semiconductor laser 1 is incident on the solid-state laser module 100 at a predetermined spread angle. At this time, the excitation light 2 is refracted by the inclination angle θtp of the excitation light incident surface. The excitation light 2 is refracted in the upward direction, and the excitation light 2 can be prevented from being input to the heat sink non-installation region 103a at the excitation light incident end of the solid-state laser module 100. Thereby, the heat_generation | fever in the non-installation area | region 103a can be prevented. In the portion where the heat sink 102 is installed, the excitation light 2 can be absorbed by the laser medium 3, and the laser medium 3 can be in the excitation state. In this part, since the exhaust heat from the heat sink 102 is efficiently performed, the influence of the temperature rise can be reduced.
 ここで、固体レーザモジュール100の励起光を入射する面の傾き角度θtpは、平面導波路型レーザ装置での周回パスによる寄生増幅光を抑圧する役割も持つ。また励起光入射面の傾き角度θtpによる励起光2の屈折のみで未設置領域103aにおけるレーザ媒質3への励起光2の入射を避けることができない場合がある。その場合にはさらに、図32に示す実施の形態14のように半導体レーザ1を傾けて設置すること、実施の形態15のようにレンズ110を用いて励起光を集光させること、またはこれらの両方を適用することもできる。また、図31ではレーザ媒質3の上部から励起光2を入射させているが、励起光2はレーザ媒質3の下部から入射させても良い。なお、励起光2の入力については、励起光2がダブルクラッド型の固体レーザモジュール100内で伝搬可能となるように設定する。 Here, the inclination angle θtp of the surface on which the excitation light of the solid-state laser module 100 is incident also has a role of suppressing parasitic amplification light due to the circular path in the planar waveguide laser device. In some cases, it is not possible to avoid the incidence of the excitation light 2 on the laser medium 3 in the non-installed region 103a only by refraction of the excitation light 2 with the inclination angle θtp of the excitation light incident surface. In that case, further, the semiconductor laser 1 is inclined and installed as in the fourteenth embodiment shown in FIG. 32, the excitation light is condensed using the lens 110 as in the fifteenth embodiment, or these Both can be applied. In FIG. 31, the excitation light 2 is incident from the upper part of the laser medium 3, but the excitation light 2 may be incident from the lower part of the laser medium 3. The input of the pumping light 2 is set so that the pumping light 2 can propagate in the double clad solid-state laser module 100.
 なお、以上の実施の形態において、ヒートシンクと固体レーザモジュールを接着するための接着剤は、熱膨張係数、熱抵抗、硬化条件、使用条件などを考慮し、最適なものを用いる。また、ヒートシンクの材質についても、熱膨張係数、熱伝導率、加工条件などを考慮し、最適なものを用いる。また、以上の実施の形態では、固体レーザモジュールの下面側にヒートシンクを接着した場合について述べているが、ヒートシンクはレーザ媒質の上面側に接着することができ、図33に示すように上下面の両面に接着してもよい。 In the above embodiment, an optimal adhesive for bonding the heat sink and the solid laser module is used in consideration of the thermal expansion coefficient, thermal resistance, curing conditions, usage conditions, and the like. In addition, an optimum material for the heat sink is used in consideration of the thermal expansion coefficient, thermal conductivity, processing conditions, and the like. In the above embodiment, the case where the heat sink is bonded to the lower surface side of the solid-state laser module has been described. However, the heat sink can be bonded to the upper surface side of the laser medium, and as shown in FIG. You may adhere to both sides.
 実施の形態18.
 図34は図25にも示したヒートシンクを設けた平面導波路型レーザ装置の側面図とそのレーザ媒質の分布特性を示す図である。図34の(a)は平面導波路型レーザ装置の側面図、(b)~(e)が(a)の平面導波路型レーザ装置のレーザ媒質のy軸方向に沿ったそれぞれ発熱分布、温度分布、正の屈折率分布および負の屈折率分布を示す。また、図35は図34の平面導波路型レーザ装置の上面図である。但し図34の(a)および図35において固体レーザモジュール100は断面図で示されている。
Embodiment 18 FIG.
FIG. 34 is a side view of the planar waveguide laser device provided with the heat sink shown in FIG. 25 and the distribution characteristics of the laser medium. 34A is a side view of the planar waveguide laser device, and FIGS. 34B to 34E are heat generation distributions and temperatures along the y-axis direction of the laser medium of the planar waveguide laser device of FIG. A distribution, a positive refractive index distribution, and a negative refractive index distribution are shown. FIG. 35 is a top view of the planar waveguide laser device of FIG. However, in FIG. 34A and FIG. 35, the solid-state laser module 100 is shown in a cross-sectional view.
 励起光源である半導体レーザ1から出力した励起光2は、レーザ媒質3の端面から入射し、レーザ媒質3の下側主面側に配置されたクラッド4bと、レーザ媒質3の上側主面側に配置されたクラッド4aで全反射してレーザ媒質3内を伝播する。励起光2はレーザ媒質3を伝播しながら吸収される。ここではレーザ媒質3の両側の端面側にそれぞれ半導体レーザ1を設けて対向励起した構成である。レーザ媒質3における励起光2の吸収量は、励起光入射端面に近い部分では多く、y軸方向の中央部分で吸収量が最も少なくなる。レーザ媒質3で発生する発熱は励起光2の吸収量に比例しているため、図34の(b)で示すように励起光入射端面に近い部分で発熱量が高く、y軸方向の中央部分で少なくなる。 The pumping light 2 output from the semiconductor laser 1 that is a pumping light source is incident from the end face of the laser medium 3, and the clad 4 b disposed on the lower main surface side of the laser medium 3 and the upper main surface side of the laser medium 3. It is totally reflected by the arranged clad 4 a and propagates in the laser medium 3. The excitation light 2 is absorbed while propagating through the laser medium 3. In this case, the semiconductor laser 1 is provided on each end face side of the laser medium 3 and excited oppositely. The absorption amount of the excitation light 2 in the laser medium 3 is large in the portion near the excitation light incident end face, and the absorption amount is the smallest in the central portion in the y-axis direction. Since the heat generated in the laser medium 3 is proportional to the amount of absorption of the excitation light 2, the amount of heat generation is high near the excitation light incident end face as shown in FIG. Less.
 レーザ媒質3の下側主面はクラッド4bと接合材(図示省略)を挟んでヒートシンク102に接合して放熱している。ここで、レーザ媒質3の周縁にヒートシンク102が設置されていない未設置領域103a~d(図24,25も参照)を有するため、レーザ媒質3の周縁部の温度は中央部よりも高くなる。また、ヒートシンク102の端の部分では排熱抵抗が大きいことから、クラッド4bを介してレーザ媒質3と接触するヒートシンク102の面の周縁部分は中央部よりも温度が高くなる。このため、レーザ媒質3の温度は図34の(c)に示すように励起光入射端面付近で温度が高くなり、排熱が十分に行われるヒートシンク102の中央部分では一定温度になる。 The lower main surface of the laser medium 3 is bonded to the heat sink 102 with a clad 4b and a bonding material (not shown) interposed therebetween to dissipate heat. Here, since there are non-installed regions 103a to 103d (see also FIGS. 24 and 25) where the heat sink 102 is not installed at the periphery of the laser medium 3, the temperature of the periphery of the laser medium 3 is higher than that at the center. Further, since the exhaust heat resistance is large at the end portion of the heat sink 102, the peripheral portion of the surface of the heat sink 102 that contacts the laser medium 3 through the clad 4b has a higher temperature than the central portion. For this reason, the temperature of the laser medium 3 becomes high in the vicinity of the excitation light incident end face as shown in FIG. 34C, and becomes constant at the central portion of the heat sink 102 where exhaust heat is sufficiently performed.
 レーザ媒質3は温度に依存して屈折率が変わる。一般に、屈折率の変化量の温度依存性(屈折率の温度依存性)の係数をdn/dTで表す。dn/dTはレーザ媒質3の種類により異なっている。dn/dTが正のレーザ媒質では温度が高くなることで屈折率が高くなり、dn/dTが負のレーザ媒質では温度が高くなることで屈折率は低くなる。このため、レーザ媒質3の周縁部では温度が高くなるため、レーザ媒質3は励起光入射端面付近ではレーザ媒質の温度変化領域121を持ち、中央付近ではレーザ媒質の温度一定領域120を持つ。レーザ媒質の温度一定領域120では屈折率の変化がなく、レーザ媒質の温度変化領域121では、dn/dTが正の場合は図34の(d)に示すように、レーザ媒質の端面付近で屈折率が高くなる。また、dn/dTが負の場合には図34の(e)に示すように、レーザ媒質の端面付近で屈折率が低くなる。 The refractive index of the laser medium 3 changes depending on the temperature. In general, a coefficient of temperature dependence of refractive index variation (refractive index temperature dependence) is represented by dn / dT. dn / dT varies depending on the type of the laser medium 3. In a laser medium with positive dn / dT, the refractive index increases as the temperature increases, and in a laser medium with negative dn / dT, the refractive index decreases as the temperature increases. For this reason, since the temperature rises at the peripheral portion of the laser medium 3, the laser medium 3 has a temperature change region 121 of the laser medium near the excitation light incident end face, and a constant temperature region 120 of the laser medium near the center. In the temperature constant region 120 of the laser medium, there is no change in the refractive index, and in the temperature change region 121 of the laser medium, when dn / dT is positive, as shown in FIG. 34 (d), refraction occurs near the end face of the laser medium. The rate is high. When dn / dT is negative, as shown in FIG. 34 (e), the refractive index is low near the end face of the laser medium.
 図35に示すように、反射防止膜7からレーザ媒質3内に入射するレーザ入射光8は、レーザ光を反射する対向する全反射膜6間で反射を繰り返しながらレーザ媒質3内を伝播する。ここで、レーザ媒質3の全反射膜6が施された2つの側面は、一方に対して他方が角度θ1で傾斜していることから、反射を繰り返しながら全反射膜6への入射角度が徐々に垂直に近づき、さらに伝播することで全反射膜6に垂直入射して折り返して伝搬する。折り返し点付近では全反射膜6に対して垂直に近い角度となるために、反射防止膜7付近よりもレーザ光が密に伝播しており、小さな領域で多数回の反射をする。折り返された復路のレーザ光は往路と略同一の光路で戻り、反射防止膜7からレーザ出力光9が出力される。 As shown in FIG. 35, the laser incident light 8 that enters the laser medium 3 from the antireflection film 7 propagates through the laser medium 3 while being repeatedly reflected between the opposing total reflection films 6 that reflect the laser light. Here, since the two side surfaces of the laser medium 3 to which the total reflection film 6 is applied are inclined with respect to the other at an angle θ1, the incident angle to the total reflection film 6 is gradually increased while repeating the reflection. When the light approaches the vertical direction and further propagates, the light is perpendicularly incident on the total reflection film 6 to be propagated. In the vicinity of the turning point, the angle is close to perpendicular to the total reflection film 6, so that the laser light propagates more densely than in the vicinity of the antireflection film 7, and the light is reflected many times in a small region. The returned laser light from the return path returns along the optical path substantially the same as the forward path, and the laser output light 9 is output from the antireflection film 7.
 ここで、励起光2がレーザ媒質3に吸収されて、レーザ光に対する利得を発生する。利得のあるレーザ媒質3をレーザ光が伝播することで増幅され、エネルギーが抽出されて大きな出力のレーザ出力光9となる。このため、レーザ媒質3の励起領域とレーザ光の伝播領域を一致させて、ビームオーバーラップ効率を向上させることが高出力・高効率化のために重要である。このため、レーザ媒質内での折り返し点を励起光入射端面の近傍に設定している。折り返し点の設定は、レーザ媒質3へのレーザ光の入射角(レーザ入射光8の入射角)と、レーザ媒質3の外形と、レーザ媒質3の両側側面のなす角度θ1により調整される。このように、励起光入射端面付近で折り返す構成としたため、ビームオーバーラップ効率が高くなり、高出力で高効率なレーザが得られるなどの特長がある。 Here, the excitation light 2 is absorbed by the laser medium 3 to generate a gain for the laser light. The laser beam 3 is amplified by the propagation of the laser beam through the gain laser medium 3, and the energy is extracted to become a large output laser output beam 9. For this reason, it is important for improving the beam overlap efficiency by making the excitation region of the laser medium 3 coincide with the propagation region of the laser light in order to improve the output and efficiency. For this reason, the turning point in the laser medium is set in the vicinity of the excitation light incident end face. The setting of the turning point is adjusted by the incident angle of the laser beam to the laser medium 3 (incident angle of the laser incident light 8), the outer shape of the laser medium 3, and the angle θ1 formed by the both side surfaces of the laser medium 3. As described above, since the configuration is such that it is folded back in the vicinity of the excitation light incident end face, the beam overlap efficiency is increased, and a high-power and high-efficiency laser can be obtained.
 一方、レーザ媒質3の励起光入射端面付近は図34に示すようにレーザ媒質の温度変化領域121となる。レーザ媒質の温度変化領域では、レーザ材料のdn/dTに依存した屈折率変化が生じる。レーザ光は、レーザ光の進行方向と直行する断面方向に屈折率変化がある場合、進行方向が屈折率の高い方向に曲がる特性がある。屈折率温度依存性係数dn/dTが正の場合は、レーザ媒質内の折り返し点付近では、励起光入射端面付近に温度が高くなることから、略x方向に伝播するレーザ光は、伝播角度が励起光入射端面側に曲がる。曲げられたレーザ光が折り返して復路の光路を伝播するときは、往路の光軸とは一致せず、レーザ媒質の温度変化領域で曲げられた角度分だけ伝播角度がずれる。伝播角度がずれていることから、伝播位置の差は伝播長が長くなるほどに大きくなり、反射防止膜7付近では大きく異なることがある。また、出力されるレーザ出力光は、温度変化の影響を仮に受けない場合のレーザ出力光9に対して、レーザ媒質の温度変化領域121の屈折率の変化をうけることで、レーザ光の出力角度と位置が変わったレーザ出力光9aが得られる。レーザ出力光9aの角度と位置の変化は温度に依存するため、励起光2の出力に依存する。したがって、励起出力に依存してレーザ出力光9aの角度と位置が変わることがあり、レーザの利用上好ましくない。 On the other hand, the vicinity of the excitation light incident end face of the laser medium 3 becomes a temperature change region 121 of the laser medium as shown in FIG. In the temperature change region of the laser medium, a refractive index change depending on dn / dT of the laser material occurs. When there is a refractive index change in the cross-sectional direction perpendicular to the traveling direction of the laser light, the laser light has a characteristic that the traveling direction is bent in a direction in which the refractive index is high. When the refractive index temperature dependence coefficient dn / dT is positive, the temperature increases near the excitation light incident end face in the vicinity of the turning point in the laser medium. Bend toward the excitation light incident end face. When the bent laser light returns and propagates in the return optical path, the propagation angle is shifted by the angle bent in the temperature change region of the laser medium, which does not coincide with the forward optical axis. Since the propagation angle is deviated, the difference in the propagation position becomes larger as the propagation length becomes longer, and may be greatly different in the vicinity of the antireflection film 7. Further, the output angle of the laser beam is obtained by receiving the change in the refractive index of the temperature change region 121 of the laser medium with respect to the laser output beam 9 that is not affected by the temperature change. The laser output light 9a whose position is changed is obtained. Since the change in the angle and position of the laser output light 9a depends on temperature, it depends on the output of the excitation light 2. Therefore, the angle and position of the laser output light 9a may change depending on the excitation output, which is not preferable for use of the laser.
 図36は以上のことを考慮した、この発明の実施の形態18による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。また図37は図36の平面導波路型レーザ装置の側面図とそのレーザ媒質の分布特性を示す図である。図37の(a)は側面図、(b)~(e)が(a)の平面導波路型レーザ装置のレーザ媒質のy軸方向に沿ったそれぞれ発熱分布、温度分布、正の屈折率分布および負の屈折率分布を示す。但し図36および図37の(a)において固体レーザモジュール100は断面図で示されている。 FIG. 36 is a top view of the planar waveguide laser device including the solid-state laser module according to the eighteenth embodiment of the present invention, taking the above into consideration. FIG. 37 is a side view of the planar waveguide laser device of FIG. 36 and the distribution characteristics of the laser medium. FIG. 37 (a) is a side view, and FIGS. 37 (b) to (e) are respectively a heat generation distribution, a temperature distribution, and a positive refractive index distribution along the y-axis direction of the laser medium of the planar waveguide laser device of FIG. And a negative refractive index profile. However, in FIG. 36 and FIG. 37A, the solid-state laser module 100 is shown in a sectional view.
 平面導波路型のレーザ媒質3の互いに対向する一対の側面33、34のうちの側面33には、励起光を透過しレーザ光を反射させるレーザ光高反射/励起光反射防止膜である狭帯域反射膜30が施され、側面34には励起光とレーザ光の両方を反射させるレーザ光高反射/励起光高反射膜126が施されている。また側面34の一部には、レーザ光高反射/励起光高反射膜126の代わりにレーザ光を透過する反射防止膜7が設けられている。なお側面33において、励起光を透過させる部分だけを狭帯域反射膜30とし残りの部分はレーザ光高反射/励起光高反射膜126としてもよい。 A narrow band which is a laser light high reflection / excitation light antireflection film that transmits the excitation light and reflects the laser light is provided on the side surface 33 of the pair of opposite side surfaces 33 and 34 of the planar waveguide type laser medium 3. The reflection film 30 is applied, and the side surface 34 is provided with a laser light high reflection / excitation light high reflection film 126 that reflects both excitation light and laser light. A part of the side surface 34 is provided with an antireflection film 7 that transmits laser light instead of the laser light high reflection / excitation light high reflection film 126. In the side surface 33, only the portion that transmits the excitation light may be the narrow-band reflection film 30, and the remaining portion may be the laser light high reflection / excitation light high reflection film 126.
 半導体レーザ1は側面33側に配置され、励起光2を出力して狭帯域反射膜30を透過させてレーザ媒質3内のx方向に略平行な光軸でレーザ媒質3内を伝播させて吸収させる。また図37の(a)に示すように(図36では図示省略)ヒートシンク102が、レーザ媒質3の下側主面側にクラッド4bと、このクラッド4bとヒートシンク102との接合材(図示省略)を挟んで接着されて配置されている。 The semiconductor laser 1 is disposed on the side surface 33 side, outputs the excitation light 2, passes through the narrow-band reflecting film 30, propagates in the laser medium 3 along the optical axis substantially parallel to the x direction in the laser medium 3 and absorbs it. Let Further, as shown in FIG. 37A (not shown in FIG. 36), the heat sink 102 has a clad 4b on the lower main surface side of the laser medium 3, and a bonding material for the clad 4b and the heat sink 102 (not shown). It is arranged to be bonded with a sandwich.
 ここで、励起光2は側面33の略中央の一部からレーザ媒質3内に導入される。このため、レーザ媒質のy方向の中央部が励起される励起領域127となり、励起領域127のy方向の両端は励起されない2つの未励起領域128a,128bとなる。ヒートシンク102は、レーザ媒質3の励起領域127と未励起領域128a,128bの両方にクラッド4bと接合材(図示省略)を介して接合されており、レーザ媒質3で発生した熱を排熱する、または図示せぬ放熱手段を使用して排熱する。 Here, the excitation light 2 is introduced into the laser medium 3 from a part of the approximate center of the side surface 33. For this reason, the central portion in the y direction of the laser medium is an excitation region 127 to be excited, and both ends of the excitation region 127 in the y direction are two unexcited regions 128a and 128b that are not excited. The heat sink 102 is bonded to both the excitation region 127 and the non-excitation regions 128a and 128b of the laser medium 3 through the cladding 4b and a bonding material (not shown), and exhausts heat generated in the laser medium 3. Alternatively, heat is exhausted using a heat radiating means (not shown).
 励起光2はレーザ媒質3内を略x方向に伝播するため、x方向には吸収に伴う吸収分布が生じるが、y方向には励起源すなわち半導体レーザ1の均一性に依存した均一な励起分布が得られる。このため、励起領域127のy方向に略均一な励起分布が得られ、図37の(b)に示すようにレーザ媒質3の励起領域127のy方向に略均一な発熱分布が得られる。ここで、レーザ媒質3の励起領域127の下側主面は、クラッド4bと接合材を挟んでy方向にはヒートシンク102の中央部分が接合している。このようにレーザ媒質3の励起領域127のy方向は排熱抵抗の高いヒートシンク102の周縁部に接合されていないため、レーザ媒質3の励起領域127は図37の(c)に示すように均一な温度となる。このため、励起によりレーザ光の増幅利得のあるレーザ媒質3の励起領域127は、図37の(d)および(e)に示すように、dn/dTの正、負によらず、均一な屈折率となる。ただし、未励起領域128a,128bは励起領域127からの熱伝導により励起領域よりも小さい温度上昇があり励起領域から離れるに従い温度上昇は小さくなる。このため、未励起領域128a,128bの屈折率はdn/dTが正の場合、励起領域127の屈折率よりも低くなり、dn/dTが負の場合は励起領域127の屈折率よりも高くなる。しかし、未励起領域128a,128bはレーザ増幅が行われない領域のため、未励起領域にレーザ光を伝播させることはなく、レーザ出力光の位置と角度が励起出力に依存して変化することはない。 Since the excitation light 2 propagates in the laser medium 3 in the substantially x direction, an absorption distribution accompanying absorption occurs in the x direction, but a uniform excitation distribution depending on the uniformity of the excitation source, that is, the semiconductor laser 1, occurs in the y direction. Is obtained. Therefore, a substantially uniform excitation distribution is obtained in the y direction of the excitation region 127, and a substantially uniform heat generation distribution is obtained in the y direction of the excitation region 127 of the laser medium 3 as shown in FIG. Here, the lower main surface of the excitation region 127 of the laser medium 3 is joined to the central portion of the heat sink 102 in the y direction with the clad 4b and the joining material interposed therebetween. Thus, since the y direction of the excitation region 127 of the laser medium 3 is not joined to the peripheral portion of the heat sink 102 having high heat exhaustion resistance, the excitation region 127 of the laser medium 3 is uniform as shown in FIG. Temperature. For this reason, the excitation region 127 of the laser medium 3 having an amplification gain of the laser beam by the excitation has a uniform refraction regardless of whether dn / dT is positive or negative, as shown in (d) and (e) of FIG. Become a rate. However, the unexcited regions 128a and 128b have a temperature increase smaller than that of the excitation region due to heat conduction from the excitation region 127, and the temperature increase becomes smaller as the distance from the excitation region increases. For this reason, the refractive index of the unexcited regions 128a and 128b is lower than the refractive index of the excitation region 127 when dn / dT is positive, and is higher than the refractive index of the excitation region 127 when dn / dT is negative. . However, since the unexcited regions 128a and 128b are regions in which laser amplification is not performed, the laser light is not propagated to the unexcited region, and the position and angle of the laser output light change depending on the excitation output. Absent.
 反射防止膜7からレーザ媒質3の第1の未励起領域128aに導入されたレーザ光は、対向する狭帯域反射膜30とレーザ光高反射/励起光高反射膜126間を反射することで、励起領域127に入射する。励起領域127内でも同様に狭帯域反射膜30とレーザ光高反射/励起光高反射膜126間を反射することでy方向の反射点間隔を狭めながら伝播して、さらには折り返して往路と略同一の光路で復路伝播し、反射防止膜7から出力される。ここで、レーザ光は励起光2により励起されたレーザ媒質3を伝播することで増幅されるため、レーザ媒質3の励起領域127とレーザ光の伝播領域を可能な限り一致させて、ビームオーバーラップ効率を向上させることが望ましい。このため、レーザ媒質3の折り返し点を、励起領域127と第2の未励起領域128b境界に設定する。折り返し点の設定は、レーザ媒質3へのレーザ光の入射角と、レーザ媒質3の外形と、側面33と34の相対角度θ1により調整される。このように、レーザ媒質3の励起領域127の第2の未励起領域128bとの境界付近で折り返す構成としたため、ビームオーバーラップ効率が高くなり、高出力で高効率なレーザが得られるなどの特長がある。また、増幅利得のある励起領域の屈折率分布をy方向に均一にしたため、レーザ光の屈折率の変化に伴う伝播角度の変化がなく、レーザ出力光9の出力角度および位置ずれがない。このため、安定したレーザ出力角度とレーザ出力位置が得られるなどの特長がある。 The laser light introduced from the antireflection film 7 into the first unexcited region 128a of the laser medium 3 is reflected between the opposing narrow band reflective film 30 and the laser light high reflection / excitation light high reflection film 126, The light enters the excitation region 127. Similarly, in the excitation region 127, the light is reflected between the narrow-band reflection film 30 and the high reflection / excitation light reflection film 126 of the laser beam to propagate while narrowing the distance between reflection points in the y direction, and is further turned back to be substantially the same as the forward path. The light travels in the same optical path and is output from the antireflection film 7. Here, since the laser light is amplified by propagating through the laser medium 3 excited by the excitation light 2, the beam overlap is achieved by matching the excitation region 127 of the laser medium 3 with the propagation region of the laser light as much as possible. It is desirable to improve efficiency. For this reason, the turning point of the laser medium 3 is set at the boundary between the excitation region 127 and the second non-excitation region 128b. The setting of the turning point is adjusted by the incident angle of the laser beam to the laser medium 3, the outer shape of the laser medium 3, and the relative angle θ1 between the side surfaces 33 and 34. As described above, since the configuration is such that the excitation region 127 of the laser medium 3 is folded near the boundary with the second non-excitation region 128b, the beam overlap efficiency is increased, and a high-power and high-efficiency laser can be obtained. There is. In addition, since the refractive index distribution of the excitation region having the amplification gain is made uniform in the y direction, there is no change in the propagation angle due to the change in the refractive index of the laser light, and there is no output angle and position shift of the laser output light 9. For this reason, there is a feature that a stable laser output angle and a laser output position can be obtained.
 また、レーザ光を反射し励起光2を透過させる狭帯域反射膜30を通してレーザ媒質3内に導入された励起光2は、吸収されながら略x方向に伝播する。ここで、側面33に対向する側面34にはレーザ光高反射/励起光高反射膜126が施されており、励起光を反射するため、レーザ媒質101内での励起光の伝播長が2倍になり、より高い吸収率が得られる。このため、高効率で高出力なレーザ出力光122が得られるなどの特長がある。 Further, the excitation light 2 introduced into the laser medium 3 through the narrow-band reflection film 30 that reflects the laser light and transmits the excitation light 2 propagates in the substantially x direction while being absorbed. Here, a laser beam high reflection / excitation light high reflection film 126 is provided on the side surface 34 facing the side surface 33 and reflects the excitation light, so that the propagation length of the excitation light in the laser medium 101 is doubled. Thus, a higher absorption rate can be obtained. Therefore, there is a feature that the laser output light 122 with high efficiency and high output can be obtained.
 実施の形態19.
 図38はこの発明の実施の形態19による固体レーザモジュールを含む平面導波路型レーザ装置の上面図である。但し図38において固体レーザモジュール100は断面図で示されている。また側面図は上記実施の形態で図37に示したものと基本的構成は同じである。平面導波路型のレーザ媒質3の互いに対向する一対の側面33、34には、励起光を透過しレーザ光を反射させる狭帯域反射膜30が施されている。また側面34の一部には、レーザ光を入射させるために狭帯域反射膜30の代わりに反射防止膜7が設けられている。一対の側面33、34の両側にはそれぞれに励起光発生源である半導体レーザ1が対向して配置され、ぞれぞれ狭帯域反射膜30を透過させてレーザ媒質3内のx方向に略平行な光軸でレーザ媒質3内を伝播し吸収される励起光2を出力する。レーザ媒質3の下側主面側には図37と同様にクラッドと接合材を挟んでヒートシンク102が設置固定されている。
Embodiment 19. FIG.
38 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 19 of the present invention. However, in FIG. 38, the solid-state laser module 100 is shown in a sectional view. Further, the basic configuration of the side view is the same as that shown in FIG. A pair of side surfaces 33 and 34 facing each other of the planar waveguide type laser medium 3 is provided with a narrow band reflecting film 30 that transmits the excitation light and reflects the laser light. Further, an antireflection film 7 is provided on a part of the side surface 34 in place of the narrow-band reflection film 30 in order to make the laser light incident. On both sides of the pair of side surfaces 33, 34, the semiconductor laser 1 that is an excitation light generation source is disposed so as to face each other, and each passes through the narrow-band reflection film 30 and is approximately in the x direction in the laser medium 3. The pumping light 2 that propagates and is absorbed in the laser medium 3 along the parallel optical axis is output. A heat sink 102 is installed and fixed on the lower main surface side of the laser medium 3 with a clad and a bonding material interposed therebetween, as in FIG.
 励起光2は、レーザ媒質3の互いに対向する一対の側面33、34のそれぞれの外側から半導体レーザ1により導入される。このように2側面から励起を行う構成としたため、1側面から励起を行う場合よりも高出力な励起が可能であり、より高出力なレーザ光を得ることができる。また、y方向には励起領域127よりもヒートシンク102のy方向の幅が大きいことから、励起領域127のy方向の温度分布は均一となりレーザ媒質3のdn/dTも均一となるため、レーザ光の屈折率の変化に伴う伝播角度の変化がなく、レーザ出力光9の出力角度および位置のずれがない。このため、安定したレーザ出力角度とレーザ出力位置が得られるなどの特長がある。 The excitation light 2 is introduced by the semiconductor laser 1 from the outside of the pair of side surfaces 33 and 34 facing each other of the laser medium 3. Thus, since it was set as the structure which pumps from 2 side surfaces, excitation higher than the case where excitation is performed from 1 side surface is possible, and a higher output laser beam can be obtained. In addition, since the y direction width of the heat sink 102 is larger in the y direction than the excitation region 127, the temperature distribution in the y direction of the excitation region 127 is uniform and the dn / dT of the laser medium 3 is also uniform. There is no change in the propagation angle due to the change in the refractive index, and there is no deviation in the output angle and position of the laser output light 9. For this reason, there is a feature that a stable laser output angle and a laser output position can be obtained.
 実施の形態20.
 図39はこの発明の実施の形態20による固体レーザモジュールを含む平面導波路型レーザ装置の上面図、図40は図39の平面導波路型レーザ装置の紙面下側からの側面図である。但し、図39では説明のために、固体レーザモジュール100はレーザ媒質3、クラッド4a,4bを透過して熱レンズ効果発生手段150の構造を示している。図40は固体レーザモジュール100および熱レンズ効果発生手段150が図39のC-C線に沿った断面図で示されている。さらに図41は図40の部分Dの拡大断面とレーザ媒質3の特性を示す。図41の(a)は部分Dの拡大断面、(b)(c)は(a)のレーザ媒質3の部分Dの温度差と屈折率差を示す。図39において、平面導波路型のレーザ媒質3の下側主面側に配置されたクラッド4bは熱レンズ効果発生手段150の接触部152と接合材160で接合されている。そして本構成ではレーザ媒質3のdn/dTは正である。
Embodiment 20. FIG.
FIG. 39 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 20 of the present invention, and FIG. 40 is a side view of the planar waveguide laser device of FIG. However, in FIG. 39, for the sake of explanation, the solid-state laser module 100 shows the structure of the thermal lens effect generating means 150 through the laser medium 3 and the clads 4a and 4b. FIG. 40 shows the solid-state laser module 100 and the thermal lens effect generating means 150 in a sectional view taken along the line CC of FIG. Further, FIG. 41 shows an enlarged cross section of the portion D of FIG. 40 and the characteristics of the laser medium 3. 41 (a) shows an enlarged cross section of the portion D, and FIGS. 41 (b) and (c) show the temperature difference and refractive index difference of the portion D of the laser medium 3 in FIG. In FIG. 39, the clad 4 b disposed on the lower principal surface side of the planar waveguide type laser medium 3 is bonded to the contact portion 152 of the thermal lens effect generating means 150 by the bonding material 160. In this configuration, dn / dT of the laser medium 3 is positive.
 熱レンズ効果発生手段150は、接合材160によりレーザ媒質3の下側主面側に配置されたクラッド4dに接合している接触部152と、z方向に接触部152よりも凹んだクラッド4bと接触していない非接触部153により構成されたヒートシンクであり、接触部152のxy面に沿った断面形状がレーザ媒質3上でのレーザ光伝播経路89の逆パターンとなる。すなわち、反射防止膜7からレーザ媒質3に入射したレーザ光は対向する2つの側面33,34間を反射しながら伝播するが、図41の(a)に示すように、レーザ光伝播経路89のレーザ光伝播経路領域89aの下側は熱レンズ効果発生手段150の非接触部153になっている。またレーザ光が伝播しない領域の下側は熱レンズ効果発生手段150の接触部152になっており、レーザ光が伝播しない領域の下側のクラッド4bに熱レンズ効果発生手段150の接触部152が接合材160により接合固定されている。レーザ媒質3で発生した熱は、熱レンズ効果発生手段150の下側主面に配置した例えば図40に破線で示した放熱手段102bに伝達し、排熱する。 The thermal lens effect generating means 150 includes a contact portion 152 joined to the clad 4d disposed on the lower principal surface side of the laser medium 3 by the joining material 160, and a clad 4b recessed from the contact portion 152 in the z direction. The heat sink is configured by the non-contact portion 153 that is not in contact, and the cross-sectional shape along the xy plane of the contact portion 152 is a reverse pattern of the laser light propagation path 89 on the laser medium 3. That is, the laser light incident on the laser medium 3 from the antireflection film 7 propagates while reflecting between the two side surfaces 33 and 34 facing each other, but as shown in FIG. The lower side of the laser light propagation path region 89 a is a non-contact portion 153 of the thermal lens effect generating means 150. Further, the lower side of the region where the laser light does not propagate is a contact portion 152 of the thermal lens effect generating means 150, and the contact portion 152 of the thermal lens effect generating means 150 is located on the lower clad 4b where the laser light does not propagate. Bonded and fixed by a bonding material 160. The heat generated in the laser medium 3 is transmitted to, for example, the heat radiating means 102b indicated by the broken line in FIG. 40 disposed on the lower main surface of the thermal lens effect generating means 150, and is exhausted.
 このため、レーザ媒質3は発熱するが、図41の(b)に示すように接触部152の上部のレーザ媒質3は温度が低くなり、非接触部153の上部のレーザ媒質3は接触部152までの伝達距離が長くなるために温度が高くなる。このため、レーザ光伝播経路領域89aが周囲よりも温度が高くなる。ここで、本構成はレーザ媒質3にdn/dTが正の材料を使用しているため、図41の(c)に示すように、レーザ光伝播経路領域89aは周囲のレーザ媒質よりも屈折率が高くなる。屈折率が高くなると凸レンズ効果が生じ屈折率の高い側にレーザ光は曲げられて伝播する。このため、レーザ光はレーザ媒質3の温度の高い非接触部153の上部の部分に閉じ込められ、非接触部153に沿った光路でレーザ媒質内を伝播することができる。特に高出力励起を行いレーザ媒質の温度上昇が大きくなるに従い接触部152と非接触部153によるレーザ媒質の凸レンズ効果が大きくなるため非接触部によるレーザ媒質の凸レンズ効果が大きくなるため、より非接触部上部でのレーザ光の閉じ込め効果が高くなり、より安定したレーザ出力角度とレーザ出力位置が得られるなどの特長がある。なお、図39、40では励起光2は側面33、34とxy面内で略直交するレーザ媒質3の2端面側からレーザ媒質3内に導入しているが、励起光の導入面、励起光源である半導体レーザ1の数、励起構成はこれに限定されない。このため図示した励起構成に関わらず励起により発熱するレーザ媒質3と熱レンズ効果発生手段150により前述の効果が得られる。 For this reason, the laser medium 3 generates heat, but the temperature of the laser medium 3 above the contact portion 152 is lowered as shown in FIG. 41B, and the laser medium 3 above the non-contact portion 153 is in contact with the contact portion 152. The temperature rises because the transmission distance becomes longer. For this reason, the temperature of the laser light propagation path region 89a is higher than the surroundings. Here, since this configuration uses a material with a positive dn / dT for the laser medium 3, as shown in FIG. 41C, the laser light propagation path region 89a has a refractive index higher than that of the surrounding laser medium. Becomes higher. When the refractive index increases, a convex lens effect occurs, and the laser light is bent and propagates to the higher refractive index side. Therefore, the laser light can be confined in the upper portion of the non-contact portion 153 having a high temperature of the laser medium 3 and can propagate through the laser medium along the optical path along the non-contact portion 153. In particular, as the temperature of the laser medium increases with high output excitation, the convex lens effect of the laser medium by the contact portion 152 and the non-contact portion 153 increases. The laser beam confinement effect at the upper part is enhanced, and a more stable laser output angle and laser output position can be obtained. 39 and 40, the excitation light 2 is introduced into the laser medium 3 from the two end face sides of the laser medium 3 substantially orthogonal to the side surfaces 33 and 34 in the xy plane. The number of semiconductor lasers 1 and the pumping configuration are not limited to this. For this reason, the above-described effects can be obtained by the laser medium 3 that generates heat by excitation and the thermal lens effect generating means 150 regardless of the illustrated excitation configuration.
 実施の形態21.
 この実施の形態は、実施の形態20のレーザ媒質のdn/dTが負の場合の例である。図42はこの発明の実施の形態21による固体レーザモジュールを含む平面導波路型レーザ装置の上面図、図43は図42の平面導波路型レーザ装置の紙面下側からの側面図である。但し、図42では説明のために、固体レーザモジュール100はレーザ媒質3a、クラッド4a,4bを透過して熱レンズ効果発生手段150aの構造を示している。図43は固体レーザモジュール100および熱レンズ効果発生手段150aが図42のE-E線に沿った断面図で示されている。さらに図44は図43の部分Fの拡大断面とレーザ媒質3aの特性を示す。図44の(a)は部分Fの拡大断面、(b)(c)は(a)のレーザ媒質3aの部分Fの温度差と屈折率差を示す。図42において、平面導波路型のレーザ媒質3aの下側主面側に配置されたクラッド4bは熱レンズ効果発生手段150aの接触部152と接合材160で接合されている。そして本構成ではレーザ媒質3aのdn/dTは負である。
Embodiment 21. FIG.
This embodiment is an example where dn / dT of the laser medium of the twentieth embodiment is negative. 42 is a top view of a planar waveguide laser device including a solid state laser module according to Embodiment 21 of the present invention. FIG. 43 is a side view of the planar waveguide laser device of FIG. However, in FIG. 42, for the sake of explanation, the solid-state laser module 100 shows the structure of the thermal lens effect generating means 150a through the laser medium 3a and the clads 4a and 4b. FIG. 43 shows the solid-state laser module 100 and the thermal lens effect generating means 150a in a sectional view taken along the line EE of FIG. Further, FIG. 44 shows an enlarged cross section of the portion F of FIG. 43 and the characteristics of the laser medium 3a. 44 (a) shows an enlarged cross section of the portion F, and FIGS. 44 (b) and (c) show the temperature difference and refractive index difference of the portion F of the laser medium 3a of FIG. In FIG. 42, the clad 4b disposed on the lower principal surface side of the planar waveguide type laser medium 3a is bonded to the contact portion 152 of the thermal lens effect generating means 150a by the bonding material 160. In this configuration, dn / dT of the laser medium 3a is negative.
 熱レンズ効果発生手段150aは、接合材160によりレーザ媒質3の下側主面側に配置されたクラッド4dに接合している接触部152と、z方向に接触部152よりも凹んだクラッド4bと接触していない非接触部153により構成されたヒートシンクであり、接触部152のxy面に沿った断面形状がレーザ媒質3a上でのレーザ光伝播経路89と同じパターンとなる。すなわち、反射防止膜7からレーザ媒質3aに入射したレーザ光は対向する2つの側面33,34間を反射しながら伝播するが、図44の(a)に示すように、レーザ光伝播経路89のレーザ光伝播経路領域89aの下側は熱レンズ効果発生手段150aの接触部152になっており、レーザ光伝播経路領域89aの下側のクラッド4bに熱レンズ効果発生手段150aの接触部152が接合材160により接合固定されている。またレーザ光が伝播しない領域の下側は熱レンズ効果発生手段150aの非接触部153になっている。レーザ媒質3aで発生した熱は、熱レンズ効果発生手段150aの下側主面に配置した例えば図43に破線で示した放熱手段102bに伝達し、排熱する。 The thermal lens effect generating means 150a includes a contact part 152 joined to the clad 4d disposed on the lower principal surface side of the laser medium 3 by the joining material 160, and a clad 4b recessed from the contact part 152 in the z direction. The heat sink is configured by a non-contact portion 153 that is not in contact, and the cross-sectional shape along the xy plane of the contact portion 152 has the same pattern as the laser light propagation path 89 on the laser medium 3a. That is, the laser light incident on the laser medium 3a from the antireflection film 7 propagates while being reflected between the two opposing side surfaces 33 and 34, but as shown in FIG. The lower side of the laser light propagation path region 89a is a contact portion 152 of the thermal lens effect generation means 150a, and the contact portion 152 of the thermal lens effect generation means 150a is joined to the clad 4b below the laser light propagation path region 89a. The material 160 is joined and fixed. Further, the lower side of the region where the laser beam does not propagate is a non-contact portion 153 of the thermal lens effect generating means 150a. The heat generated in the laser medium 3a is transmitted to, for example, the heat dissipating means 102b indicated by a broken line in FIG. 43 disposed on the lower main surface of the thermal lens effect generating means 150a to be exhausted.
 このため、レーザ媒質3aは発熱するが、図44の(b)に示すように接触部152の上部のレーザ媒質3は温度が低くなり、非接触部153の上部のレーザ媒質3aは接触部152までの伝達距離が長くなるために温度が高くなる。このため、レーザ光伝播経路領域89aが周囲よりも温度が低くなる。ここで、本構成はレーザ媒質3aのdn/dTが負の材料を使用しているため、図44の(c)に示すように、レーザ光伝播経路領域89aは周囲のレーザ媒質よりも屈折率が高くなる。屈折率が高くなると凸レンズ効果が生じ屈折率の高い側にレーザ光は曲げられて伝播する。このため、レーザ光はレーザ媒質3aの温度の低い接触部152の上部の部分に閉じ込められ、接触部152に沿った光路でレーザ媒質内を伝播することができる。特に高出力励起を行いレーザ媒質の温度上昇が大きくなるに従い接触部152と非接触部153によるレーザ媒質の凸レンズ効果が大きくなるため、より接触部上部でのレーザ光の閉じ込め効果が高くなり、より安定したレーザ出力角度とレーザ出力位置が得られるなどの特長がある。なお、図42、43では励起光2は側面33、34とxy面内で略直交するレーザ媒質3の2端面側からレーザ媒質3a内に導入しているが、励起光の導入面、励起光源である半導体レーザ1の数、励起構成はこれに限定されない。このため図示した励起構成に関わらず励起により発熱するレーザ媒質3aと熱レンズ効果発生手段150aにより前述の効果が得られる。 For this reason, the laser medium 3a generates heat, but the temperature of the laser medium 3 above the contact portion 152 is lowered as shown in FIG. 44B, and the laser medium 3a above the non-contact portion 153 is in contact with the contact portion 152. The temperature rises because the transmission distance becomes longer. For this reason, the temperature of the laser beam propagation path region 89a is lower than the surroundings. Here, since this configuration uses a material having a negative dn / dT of the laser medium 3a, the laser light propagation path region 89a has a refractive index higher than that of the surrounding laser medium, as shown in FIG. Becomes higher. When the refractive index increases, a convex lens effect occurs, and the laser light is bent and propagates to the higher refractive index side. For this reason, the laser beam is confined in the upper part of the contact portion 152 having a low temperature of the laser medium 3 a and can propagate through the laser medium along the optical path along the contact portion 152. In particular, since the convex lens effect of the laser medium by the contact part 152 and the non-contact part 153 increases as the temperature rise of the laser medium increases with high output excitation, the confinement effect of the laser light at the upper part of the contact part becomes higher. Features include stable laser output angle and laser output position. 42 and 43, the excitation light 2 is introduced into the laser medium 3a from the two end face sides of the laser medium 3 substantially orthogonal to the side surfaces 33 and 34 in the xy plane. The number of semiconductor lasers 1 and the pumping configuration are not limited to this. For this reason, the above-described effects can be obtained by the laser medium 3a that generates heat by excitation and the thermal lens effect generating means 150a regardless of the illustrated excitation configuration.
 実施の形態22.
 ところで上記実施の形態1において段落0036および0037で述べたレーザ媒質3の側面上に接合された全反射膜6の反射特性について、より詳細な具体例を実施の形態22として説明する。ここでは、レーザ媒質3の活性媒質がEr(エルビウム:Erbium)であり、固体レーザ材料がガラスの場合について説明する。固体レーザ材料はYAGなどの結晶、ガラス、または他の母材を用いた固体レーザ材料であっても良いが、固体レーザ材料によって活性媒質が利得を持つ波長範囲や利得強度が異なる場合がある。Erでは固体レーザ材料がガラスの場合に、1535nm帯に大きな利得を持つ。また、固体レーザ材料は、活性媒質に加えてYbなど増感作用のある他の原子を添加したものでも良い。
Embodiment 22. FIG.
By the way, a more detailed specific example of the reflection characteristics of the total reflection film 6 bonded on the side surface of the laser medium 3 described in the paragraphs 0036 and 0037 in the first embodiment will be described as the twenty-second embodiment. Here, the case where the active medium of the laser medium 3 is Er (Erbium) and the solid laser material is glass will be described. The solid-state laser material may be a solid-state laser material using a crystal such as YAG, glass, or other base material, but the wavelength range or gain intensity in which the active medium has gain may differ depending on the solid-state laser material. In Er, when the solid laser material is glass, it has a large gain in the 1535 nm band. Further, the solid-state laser material may be one in which other atoms having a sensitizing action such as Yb are added in addition to the active medium.
 レーザ媒質3の活性媒質がErの場合、波長900~1000nm帯に吸収を持つYbが共添加されていることにより、上記波長帯の半導体レーザ等を用いてYb原子を励起し、Yb原子からEr原子へのエネルギーの移動によりEr原子を励起させることができる。これにより、励起光源として一般的に市販されているような波長940nmまたは波長975nm帯の高出力な半導体レーザを用いることができる。増感作用を得るために共添加する原子の種類は、レーザ媒質3の活性媒質のエネルギー準位に合わせて最適なものが選択される。また、添加濃度は増感作用が最も効率よく得られるように設定される。 When the active medium of the laser medium 3 is Er, Yb having an absorption in a wavelength band of 900 to 1000 nm is co-doped, so that Yb atoms are excited using a semiconductor laser or the like in the above wavelength band, and the Er from the Yb atoms. Er atoms can be excited by energy transfer to the atoms. Thereby, a high-power semiconductor laser having a wavelength of 940 nm or a wavelength of 975 nm, which is generally available as an excitation light source, can be used. As the kind of atoms to be co-doped to obtain a sensitizing action, an optimum kind is selected according to the energy level of the active medium of the laser medium 3. The addition concentration is set so that the sensitizing action can be obtained most efficiently.
 図45はこの発明の実施の形態22による固体レーザモジュールを含む平面導波路型レーザ装置の全反射膜6の反射率の波長依存特性を示している。図45において、グラフの横軸は波長(単位はnm)、左側の縦軸はレーザ媒質3の利得強度、右側の縦軸は全反射膜6の反射率を表している。図中の曲線200はレーザ媒質3の利得分布(左縦軸)、曲線201は入射角度0°に対する全反射膜6の反射率特性(右縦軸)、曲線202は入射角度(θin1-θ1)°に対する全反射膜6の反射率特性(右縦軸)を示している。固体レーザモジュールの形状については例えば図1と同等とし、ここでは、この固体レーザモジュールを用いて、レーザ入射光8の波長を1550nmとする場合を考える。 FIG. 45 shows the wavelength dependence characteristics of the reflectance of the total reflection film 6 of the planar waveguide laser device including the solid-state laser module according to Embodiment 22 of the present invention. In FIG. 45, the horizontal axis of the graph represents the wavelength (unit: nm), the left vertical axis represents the gain intensity of the laser medium 3, and the right vertical axis represents the reflectance of the total reflection film 6. The curve 200 in the figure is the gain distribution of the laser medium 3 (left vertical axis), the curve 201 is the reflectance characteristic of the total reflection film 6 with respect to an incident angle of 0 ° (right vertical axis), and the curve 202 is the incident angle (θin1-θ1). The reflectance characteristics (right vertical axis) of the total reflection film 6 with respect to ° are shown. The shape of the solid-state laser module is, for example, the same as that shown in FIG. 1. Here, a case is considered where the wavelength of the laser incident light 8 is 1550 nm using this solid-state laser module.
 Erは3準位系の活性媒質であり、上準位からの誘導放出と下準位からの吸収が存在するが、ここでは説明を簡単にするため下準位からの吸収を無視して考える。単位体積当たりの励起されているErイオンの密度をN[1/m3]とする。また、波長λ[nm]における誘導放出断面積をσ(λ)[ m2]として表す。吸収を無視した場合、波長λ[nm]に対する小信号利得係数はg0(λ)=σ(λ)×N[1/m]と表される。 Er is a three-level system active medium, and there are stimulated emission from the upper level and absorption from the lower level. Here, for simplicity of explanation, the absorption from the lower level is ignored. . The density of excited Er ions per unit volume is N [1 / m 3 ]. The stimulated emission cross section at the wavelength λ [nm] is represented as σ (λ) [m 2 ]. When the absorption is ignored, the small signal gain coefficient with respect to the wavelength λ [nm] is expressed as g0 (λ) = σ (λ) × N [1 / m].
 側面33、34間の距離(反射防止膜7から入射されるレーザ入射光8が側面34から出発して対向する側面33で反射されるまでの光路長)をL[m]とする。厳密には側面33,34間の傾斜角度θ1により端面35側に近いほど側面33,34間の距離は短くなるが、傾斜角度θ1が十分小さい場合を想定しLを一定として考える。また、入射したレーザ光は側面33,34に対して垂直入射となる角度からずれた角度で伝播するが光路長は略同一と考える。このとき、1回の反射が起こるまでの光路に対する小信号利得はG0(λ)=exp(g0(λ)×L)となる。 The distance between the side surfaces 33 and 34 (the optical path length until the laser incident light 8 incident from the antireflection film 7 is reflected from the opposite side surface 33 starting from the side surface 34) is L [m]. Strictly speaking, the distance between the side surfaces 33 and 34 becomes shorter as it is closer to the end surface 35 side due to the inclination angle θ1 between the side surfaces 33 and 34. However, assuming that the inclination angle θ1 is sufficiently small, L is considered to be constant. Further, the incident laser light propagates at an angle shifted from the angle at which the side surfaces 33 and 34 are perpendicularly incident, but the optical path lengths are considered to be substantially the same. At this time, the small signal gain for the optical path until one reflection occurs is G0 (λ) = exp (g0 (λ) × L).
 側面33および側面34に施してある全反射膜6の波長λ[nm]における反射率をR(λ)とすると、反射防止膜7から入射されるパワーP0[W]のレーザ入射光8は側面33に到達するまでにG0(λ)倍に増幅され、側面33で反射後はP0×G0(λ)×R(λ)となり、これが側面34に戻るまでにさらにG0(λ)倍に増幅される。以降、反射と増幅の繰り返しによりレーザ媒質3内でレーザ光の増幅が行われる。このため、全反射膜6の反射率が全反射(反射率100%)つまりR(λ)=1であるときには、伝播距離に対してレーザ光のパワーは連続的に増大する。一方、全反射膜6の反射率が全反射とならない、つまりR(λ)≠1であるときには、レーザ光は側面33または側面34で反射されるたびに損失を受けるため、伝播距離に対して距離Lごとにパワーの減少が起こりながら増幅されてゆく。 When the reflectance at the wavelength λ [nm] of the total reflection film 6 applied to the side surface 33 and the side surface 34 is R (λ), the laser incident light 8 having the power P0 [W] incident from the antireflection film 7 is the side surface. It is amplified by G0 (λ) times before reaching 33, and becomes P0 × G0 (λ) × R (λ) after reflection at the side surface 33, and is further amplified by G0 (λ) times before returning to the side surface 34. The Thereafter, the laser beam is amplified in the laser medium 3 by repeating reflection and amplification. For this reason, when the reflectance of the total reflection film 6 is total reflection (reflectance 100%), that is, R (λ) = 1, the power of the laser beam continuously increases with respect to the propagation distance. On the other hand, when the reflectance of the total reflection film 6 is not total reflection, that is, R (λ) ≠ 1, the laser light is lost every time it is reflected by the side surface 33 or the side surface 34, and therefore, the propagation distance is The power is amplified while decreasing the power for each distance L.
 励起光パワーが十分に入力されている場合、レーザ媒質3の利得分布は図45における曲線200のような波長特性を持ち、波長1535nm帯において最大となる。つまり、1回の反射が起こるまでの光路に対する小信号利得G0(λ)は波長1535nm帯において最大となり、波長1535nm帯のレーザ光が最も増幅されやすいことになる。 When the pumping light power is sufficiently input, the gain distribution of the laser medium 3 has a wavelength characteristic as shown by a curve 200 in FIG. 45 and is maximum in the wavelength 1535 nm band. That is, the small signal gain G0 (λ) with respect to the optical path until one reflection occurs is maximum in the wavelength 1535 nm band, and the laser light in the wavelength 1535 nm band is most easily amplified.
 前述のように、この発明の構成では、寄生発振や寄生増幅の最も長い光路がレーザ反射光光路と略同一となることから、レーザ媒質3の利得が最大になる波長帯域とレーザ波長帯域が一致していれば、励起出力の増大とともに利得が大きくなった場合でも、レーザ光の増幅も同様に大きくなることから、寄生発振や寄生増幅光がレーザ光の増幅率を超えることがない。 As described above, in the configuration of the present invention, since the longest path of parasitic oscillation and parasitic amplification is substantially the same as the laser reflected light path, the wavelength band where the gain of the laser medium 3 is maximized is equal to the laser wavelength band. If this is the case, even when the gain increases as the pumping output increases, the amplification of the laser beam also increases, so that the parasitic oscillation and the parasitic amplification light do not exceed the amplification factor of the laser beam.
 しかし、この実施の形態のようにレーザ媒質3の利得が最大になる波長帯域(波長1535nm帯)とレーザ波長帯域(1550nm)が異なり、またこれらの波長による利得の差が大きくなる場合には、レーザ媒質3で発生した自然放出光が利得の大きくなる波長帯で増幅されやすくなり、この増幅によってレーザ媒質内に蓄積されたエネルギーが消費され、レーザ入射光8の増幅効率が低下することになる。また、自然放出光が増幅されることにより、寄生発振光や寄生増幅光が発生しやすくなる。 However, when the wavelength band (wavelength 1535 nm band) at which the gain of the laser medium 3 is maximized is different from the laser wavelength band (1550 nm) as in this embodiment, and the gain difference due to these wavelengths is large, Spontaneous emission light generated in the laser medium 3 is easily amplified in a wavelength band in which gain is increased, and energy accumulated in the laser medium is consumed by this amplification, and amplification efficiency of the laser incident light 8 is lowered. . Further, when spontaneous emission light is amplified, parasitic oscillation light and parasitic amplification light are easily generated.
 全反射膜6の反射率に波長特性がない場合、すなわちR(1535)=R(1550)≒1の場合、自然放出光から発生した1535nm光の増幅を防ぐことができず、レーザ入射光8の増幅効率が低下することになる。 When the reflectance of the total reflection film 6 has no wavelength characteristic, that is, when R (1535) = R (1550) ≈1, amplification of 1535 nm light generated from spontaneous emission light cannot be prevented, and laser incident light 8 As a result, the amplification efficiency decreases.
 ここで、全反射膜6の反射率に、図45における曲線201のような波長特性を持たせることにより、1550nmのレーザ入射光8を効率よく増幅させることが可能となる。図45に示すように1550nmに対しては損失を少なくするため可能な限り反射率を大きくし(R(1550)≒1)、1535nmに対しては損失を与えるため反射率を小さくする(R(1535)≒0)。これにより、1回の反射が起こるまでの光路で増幅された1535nm帯の自然放出光は、全反射膜6を透過して外部へと放出されるため、側面33、34間で反射を繰り返しながら行われる連続的な増幅の発生を無くすことができる。これに対し、1550nmのレーザ入射光8は側面33および側面34で損失なく反射し、1535nm帯の増幅光によるエネルギーの抜き出しが低下するため、増幅効率の低下を防ぐことができる。 Here, by giving the reflectance of the total reflection film 6 the wavelength characteristic as shown by the curve 201 in FIG. 45, the laser incident light 8 of 1550 nm can be efficiently amplified. As shown in FIG. 45, the reflectivity is increased as much as possible to reduce the loss with respect to 1550 nm (R (1550) ≈1), and the reflectivity is decreased with respect to 1535 nm to reduce the loss (R ( 1535) ≈0). As a result, the spontaneous emission light in the 1535 nm band amplified in the optical path until one reflection occurs is transmitted through the total reflection film 6 and emitted to the outside, so that the reflection between the side surfaces 33 and 34 is repeated. It is possible to eliminate the occurrence of continuous amplification. On the other hand, the laser incident light 8 of 1550 nm is reflected on the side surface 33 and the side surface 34 without loss and the extraction of energy by the amplified light in the 1535 nm band is reduced, so that a reduction in amplification efficiency can be prevented.
 また、図45では曲線201のように、全反射膜6の1535nmに対する反射率をできる限り小さくするために反射率R(1535)≒0としているが、1回の反射が起こるまでの光路における増幅利得がG0(1535)であるため、増幅によるパワーの増大を防ぐためにはR(1535)≦1/G0(1535)とすればよい。これにより、側面33または側面34から入射されたパワーP0[W]の1535nm帯のレーザ光は対向する側面に到達するまでにP0×G0(1535)となるが、対向する側面で反射後はP0×G0(1535)×R(1535)≦P0となるため、反射を繰り返してもP0×G0(1535)以上に大きくなることがなくなる。 In FIG. 45, as indicated by a curve 201, the reflectance R (1535) ≈0 is set to make the reflectance of the total reflection film 6 with respect to 1535 nm as small as possible, but amplification in the optical path until one reflection occurs. Since the gain is G0 (1535), R (1535) ≦ 1 / G0 (1535) may be set in order to prevent an increase in power due to amplification. As a result, the laser light in the 1535 nm band having the power P0 [W] incident from the side surface 33 or the side surface 34 becomes P0 × G0 (1535) by the time it reaches the opposing side surface. Since × G0 (1535) × R (1535) ≦ P0, it does not become larger than P0 × G0 (1535) even if reflection is repeated.
 このように、レーザ入射光8の波長帯と異なる利得の大きい波長帯に対して全反射膜6の反射率を低下させ、レーザ入射光8以外の波長帯での側面33、34間で反射を繰り返しながら行われる連続的な増幅が起こらないようにすることにより、レーザ入射光8の増幅利得の低下を防ぐことができる。 In this way, the reflectance of the total reflection film 6 is lowered for a wavelength band having a large gain different from the wavelength band of the laser incident light 8, and reflection is performed between the side surfaces 33 and 34 in the wavelength band other than the laser incident light 8. By preventing the continuous amplification performed while being repeated, a decrease in the amplification gain of the laser incident light 8 can be prevented.
 全反射膜6の最も良い反射率特性は、レーザ入射光8の波長帯だけを全反射(R=1)とし、それ以外の波長帯では無反射(R=0)となることであるが、無反射(R=0)にできない場合でも反射が起こるまでの光路における増幅利得に合せて反射率を低下させるだけでレーザ入射光8の波長帯以外の波長での自然放出光の増幅を抑えることができる。 The best reflectivity characteristic of the total reflection film 6 is that only the wavelength band of the laser incident light 8 is total reflection (R = 1) and non-reflection (R = 0) in other wavelength bands. Suppressing amplification of spontaneously emitted light at wavelengths other than the wavelength band of the laser incident light 8 only by lowering the reflectivity in accordance with the amplification gain in the optical path until reflection occurs even when non-reflection (R = 0) cannot be achieved. Can do.
 また、全反射膜6は、反射防止膜7から入射されるレーザ入射光8(内部入射角θin1)の側面33に対する入射角(θin1-θ1)°から垂直入射(角度0°)となる範囲内、すなわち0°~(θin1-θ1)°の角度に対して、レーザ入射光8の波長帯では損失を低下させ効率よく増幅を行うために高反射率とする必要がある。 Further, the total reflection film 6 is within the range where the incident angle (θin1-θ1) ° with respect to the side surface 33 of the laser incident light 8 (internal incident angle θin1) incident from the antireflection film 7 is perpendicularly incident (angle 0 °). That is, with respect to an angle of 0 ° to (θin1−θ1) °, in the wavelength band of the laser incident light 8, it is necessary to increase the reflectivity in order to reduce the loss and perform the amplification efficiently.
 このような波長特性と入射角度特性をもつ全反射膜6は、前述のように誘電体膜を積層することにより製作することが可能であり、積層する誘電体膜の厚さ等の条件を制御することにより、波長および入射角度に対する反射特性を制御することが可能である。 The total reflection film 6 having such wavelength characteristics and incident angle characteristics can be manufactured by laminating dielectric films as described above, and the conditions such as the thickness of the dielectric films to be laminated are controlled. By doing so, it is possible to control the reflection characteristics with respect to the wavelength and the incident angle.
 ただし、このように誘電体膜を積層することにより作製した全反射膜6は、図45における曲線202と曲線201のようにレーザ光の入射角度が変化すると、波長に対する反射率特性が変化する。また、高反射率(R=1)とする波長に対して短い波長間隔で反射率を低下させようとする場合や、広範囲の入射角度に対してレーザ光波長帯の反射率を高反射率にしようとする場合など、全反射膜6は誘電体膜の積層する厚さの調整が難しくなり、また積層数が増加することによって構成が複雑となり、製作が困難になることがある。 However, in the total reflection film 6 produced by laminating the dielectric films in this way, the reflectance characteristics with respect to the wavelength change when the incident angle of the laser beam changes as shown by the curves 202 and 201 in FIG. In addition, when the reflectance is decreased at a short wavelength interval with respect to the wavelength having a high reflectance (R = 1), the reflectance in the laser light wavelength band is set to be high with respect to a wide range of incident angles. In some cases, for example, the total reflection film 6 is difficult to adjust the thickness of the dielectric film to be laminated, and the number of laminations increases, so that the configuration becomes complicated and it may be difficult to manufacture.
 このような場合、全反射膜6の反射率は、図46に示すような波長特性となることがある。図46において、曲線203は入射角度0°に対する全反射膜6の反射率特性(右縦軸)、曲線204は入射角度(θin1-θ1)°に対する全反射膜6の反射率特性(右縦軸)を示している。図45と異なるのは、1535nm帯における反射率が、どちらの入射角度においても1/G0(1535)よりも大きくなっている部分である。ただし、この場合においても、レーザ入射光8の波長帯(1550nm)における反射率は、どちらの入射角度についても高反射率(R=1)となっており、反射損失によりレーザ入射光8の増幅率が低下することはない。 In such a case, the reflectance of the total reflection film 6 may have a wavelength characteristic as shown in FIG. In FIG. 46, curve 203 is the reflectance characteristic of total reflection film 6 with respect to an incident angle of 0 ° (right vertical axis), and curve 204 is the reflectance characteristic of total reflection film 6 with respect to incident angle (θin1-θ1) ° (right vertical axis). ). 45 differs from FIG. 45 in that the reflectance in the 1535 nm band is larger than 1 / G0 (1535) at both incident angles. However, also in this case, the reflectance in the wavelength band (1550 nm) of the laser incident light 8 is high (R = 1) at both incident angles, and the laser incident light 8 is amplified by the reflection loss. The rate will not drop.
 図46の場合、1535nm帯における反射率がどちらの入射角度においても1/G0(1535)よりも大きくなっているが、反射率は1よりも小さくなっており全反射にはなっていない。これにより、レーザ媒質3内で自然放出光が発生し増幅されたとしても、波長1535nm帯では側面33および側面34の全反射膜6で反射されるたびに損失を受けるため、波長1535nm帯の自然放出光に対する増幅率を低下させることができる。この発明の構成では、レーザ媒質3内でレーザ光を多数回反射させて増幅させる構成となっているため、波長1535nm帯に対する反射率の低下割合が小さくても自然放出光の増幅率の低減効果は大きくなる。 In the case of FIG. 46, the reflectance in the 1535 nm band is larger than 1 / G0 (1535) at any incident angle, but the reflectance is smaller than 1 and is not totally reflected. As a result, even if spontaneous emission light is generated and amplified in the laser medium 3, it is lost every time it is reflected by the total reflection film 6 on the side surface 33 and the side surface 34 in the wavelength 1535 nm band. The amplification factor for the emitted light can be reduced. In the configuration of the present invention, the laser beam is reflected and amplified a number of times in the laser medium 3, so that the amplification factor of spontaneous emission light can be reduced even if the rate of decrease in the reflectance with respect to the wavelength 1535 nm band is small. Will grow.
 このように、増幅利得が最大となる波長帯に対する反射率が1回の反射が起こるまでの光路における増幅利得の逆数よりも大きくなってしまう場合においても、多少でも反射率を低下させるように全反射膜6の反射率に波長特性を持たせることにより、自然放出光の増幅率の低減させることができ、レーザ入射光8に対する増幅利得の減少を防ぐことができる。 Thus, even when the reflectance for the wavelength band where the amplification gain is maximum becomes larger than the reciprocal of the amplification gain in the optical path until one reflection occurs, the total reflectance is reduced so that the reflectance is somewhat reduced. By providing the reflectance of the reflective film 6 with wavelength characteristics, the amplification factor of spontaneous emission light can be reduced, and a decrease in amplification gain with respect to the laser incident light 8 can be prevented.
 このように、レーザ媒質3の利得帯域内において利得が最大になる波長とレーザ波長が異なる場合、全反射膜6の反射率をレーザ光の波長で全反射とし、利得が最大になる波長帯で反射率を低下させることにより、自然放出光の増幅を抑えることができ、レーザ光を効率よく増幅させることができる。利得が最大になる波長とレーザ波長が略同一な場合には、前述のように、この発明の構成では寄生発振や寄生増幅の最も長い光路がレーザ反射光光路と略同一となることから、レーザ光の増幅により自然放出光の増幅が抑えられるため、レーザ光の増幅率が低下することはない。 As described above, when the wavelength at which the gain is maximum within the gain band of the laser medium 3 and the laser wavelength are different, the reflectance of the total reflection film 6 is totally reflected at the wavelength of the laser light, and the wavelength band in which the gain is maximized. By reducing the reflectance, the amplification of spontaneous emission light can be suppressed, and the laser light can be efficiently amplified. When the wavelength at which the gain is maximized and the laser wavelength are substantially the same, as described above, in the configuration of the present invention, the optical path with the longest parasitic oscillation or parasitic amplification is substantially the same as the laser reflected light optical path. Since amplification of spontaneous emission light is suppressed by the amplification of light, the amplification factor of laser light does not decrease.
 ここでは、レーザ入射光8の波長が1550nmの場合を考えたが、レーザ入射光の波長はレーザ媒質3の活性媒質であるErが利得を持つ範囲内であればよく、この波長は必要とされる発振波長に応じて選択される。また、この固体レーザを増幅器として使用する場合には、基準光源として使用されるレーザ光源の波長により決定される。 Here, the case where the wavelength of the laser incident light 8 is 1550 nm is considered. However, the wavelength of the laser incident light may be within a range in which Er which is an active medium of the laser medium 3 has a gain, and this wavelength is required. It is selected according to the oscillation wavelength. Further, when this solid-state laser is used as an amplifier, it is determined by the wavelength of a laser light source used as a reference light source.
 実施の形態23.
 図47はこの発明の実施の形態23による固体レーザモジュールを含む平面導波路型レーザ装置の全反射膜6の反射率の波長依存特性を示している。ここでは、レーザ媒質3の活性媒質がYbであり、レーザ入射光8の波長を1064nmとする場合を考える。また、固体レーザモジュールの形状については例えば図1と同等とする。図47において、グラフの横軸は波長(単位はnm)、左側の縦軸はレーザ媒質3の利得強度、右側の縦軸は全反射膜6の反射率を表している。図中の曲線205はレーザ媒質3の利得分布(左縦軸)、曲線206は全反射膜6の反射率特性(右縦軸)を示している。
Embodiment 23. FIG.
FIG. 47 shows the wavelength dependence characteristics of the reflectivity of the total reflection film 6 of the planar waveguide laser device including the solid-state laser module according to Embodiment 23 of the present invention. Here, consider a case where the active medium of the laser medium 3 is Yb and the wavelength of the laser incident light 8 is 1064 nm. The shape of the solid-state laser module is the same as that shown in FIG. In FIG. 47, the horizontal axis of the graph represents the wavelength (unit: nm), the left vertical axis represents the gain intensity of the laser medium 3, and the right vertical axis represents the reflectance of the total reflection film 6. A curve 205 in the figure indicates the gain distribution (left vertical axis) of the laser medium 3, and a curve 206 indicates the reflectance characteristic (right vertical axis) of the total reflection film 6.
 レーザ媒質3の固体レーザ材料はYAGなどの結晶、ガラス、または他の母材を用いた固体レーザ材料であっても良いが、固体レーザ材料によって活性媒質が利得を持つ波長範囲や利得強度が異なる場合がある。ここでは、固体レーザ材料がYAGであるものとする。Ybは波長900~1000nm帯に吸収を持つため、励起光源として一般的に市販されているような波長940nmまたは波長975nm帯の高出力な半導体レーザを用いることができる。また、これらの励起光源の波長帯が利得を持つ波長帯(1000~1100nm)に近いため、量子欠損が小さく、効率の良いレーザ発振、レーザ光の増幅を行うことができる。 The solid-state laser material of the laser medium 3 may be a solid-state laser material using crystals such as YAG, glass, or other base materials, but the wavelength range and gain intensity in which the active medium has a gain differ depending on the solid-state laser material. There is a case. Here, it is assumed that the solid-state laser material is YAG. Since Yb has absorption in the wavelength band of 900 to 1000 nm, a high-power semiconductor laser having a wavelength of 940 nm or 975 nm that is generally available as an excitation light source can be used. Further, since the wavelength band of these excitation light sources is close to the wavelength band having a gain (1000 to 1100 nm), the quantum defect is small, and efficient laser oscillation and laser light amplification can be performed.
 レーザ媒質3の利得分布は図47における曲線205のような波長特性を持ち、波長1030nm帯において最大となる。すなわち、小信号利得G0(λ)も波長1030nm帯において最大となり、波長1030nm帯のレーザ光が最も増幅されやすいことになる。 The gain distribution of the laser medium 3 has a wavelength characteristic as shown by a curve 205 in FIG. 47, and is maximum in the wavelength 1030 nm band. That is, the small signal gain G0 (λ) is also maximized in the wavelength 1030 nm band, and laser light in the wavelength 1030 nm band is most easily amplified.
 これに対して、レーザ入射光の波長が1064nmであり最大の利得が得られる波長帯と異なるため、上記実施の形態22の場合と同様に、自然放出光が利得の大きくなる波長1030nm帯で増幅されやすくなり、この増幅によってレーザ媒質内に蓄積されたエネルギーが消費され、レーザ入射光8の増幅効率が低下することになる。また、自然放出光が増幅されることにより、寄生発振光や寄生増幅光が発生しやすくなる。 On the other hand, since the wavelength of the laser incident light is 1064 nm, which is different from the wavelength band in which the maximum gain is obtained, the spontaneous emission light is amplified in the wavelength 1030 nm band where the gain becomes large as in the case of the twenty-second embodiment. As a result, the energy stored in the laser medium is consumed by this amplification, and the amplification efficiency of the laser incident light 8 is lowered. Further, when spontaneous emission light is amplified, parasitic oscillation light and parasitic amplification light are easily generated.
 ここで、全反射膜6の反射率に、図47における曲線206のような波長特性を持たせることにより、1064nmのレーザ入射光8を効率よく増幅させることが可能となる。全反射膜6の反射率は、上記実施の形態22の場合と同様にして設定されるため、ここでは説明を省略する。また、角度特性についても同様である。さらに、増幅利得が最大となる波長帯に対する反射率が1回の反射が起こるまでの光路における増幅利得の逆数よりも大きくなってしまう場合においても、上記実施の形態22の場合と同様になる。 Here, by giving the reflectance of the total reflection film 6 a wavelength characteristic as shown by a curve 206 in FIG. 47, the 1064 nm laser incident light 8 can be efficiently amplified. The reflectance of the total reflection film 6 is set in the same manner as in the case of the twenty-second embodiment, and thus the description thereof is omitted here. The same applies to the angle characteristics. Further, even when the reflectance for the wavelength band where the amplification gain is maximum becomes larger than the reciprocal of the amplification gain in the optical path until one reflection occurs, it is the same as in the case of the twenty-second embodiment.
 このように、レーザ媒質3の利得帯域内において利得が最大になる波長とレーザ波長が異なる場合、全反射膜6の反射率をレーザ光の波長で全反射とし、利得が最大になる波長帯で反射率を低下させることにより、自然放出光の増幅を抑えることができ、レーザ光を効率よく増幅させることができる。 As described above, when the wavelength at which the gain is maximum within the gain band of the laser medium 3 and the laser wavelength are different, the reflectance of the total reflection film 6 is totally reflected at the wavelength of the laser light, and the wavelength band in which the gain is maximized. By reducing the reflectance, the amplification of spontaneous emission light can be suppressed, and the laser light can be efficiently amplified.
 ここでは、レーザ入射光8の波長が1064nmの場合を考えたが、レーザ入射光の波長はレーザ媒質3の活性媒質であるYbが利得を持つ範囲内であればよく、例えば利得が小さなピークを持つ波長1048nm帯でも良い。この波長は必要とされる発振波長に応じて選択される。また、この固体レーザを増幅器として使用する場合には、基準光源として使用されるレーザ光源の波長により決定される。 Here, the case where the wavelength of the laser incident light 8 is 1064 nm is considered. However, the wavelength of the laser incident light may be within a range in which Yb as the active medium of the laser medium 3 has a gain. A wavelength band of 1048 nm may be used. This wavelength is selected according to the required oscillation wavelength. Further, when this solid-state laser is used as an amplifier, it is determined by the wavelength of a laser light source used as a reference light source.
 また、上記実施の形態22、23.では、レーザ媒質3が利得を持つ波長帯域内で全反射膜6の反射率に波長特性を持たせる場合について述べたが、前述のようにレーザ媒質3の活性媒質がNdである場合のように異なる波長帯域に渡って利得を持つ場合などには、必要とする波長帯だけに対して全反射特性を持たせることで所望のレーザ発振光を得ることができる。さらに、このとき全反射特性を持たせる波長帯域内で、利得が最大になる波長とレーザ波長が異なる場合には、この波長帯域内でも全反射膜の反射率をレーザ光の波長で全反射とし、それ以外の波長帯で反射率を低下させることにより、自然放出光の増幅を抑えることができ、レーザ光を効率よく増幅させることができる。 Also, the above-described Embodiments 22, 23. In the above description, the case where the reflectance of the total reflection film 6 has a wavelength characteristic within the wavelength band in which the laser medium 3 has gain has been described. However, as described above, the active medium of the laser medium 3 is Nd. When gain is obtained over different wavelength bands, desired laser oscillation light can be obtained by providing total reflection characteristics only for the required wavelength band. Furthermore, if the wavelength at which the gain is maximized and the laser wavelength are different within the wavelength band where the total reflection characteristics are given at this time, the reflectance of the total reflection film is set to total reflection at the wavelength of the laser light even within this wavelength band. By reducing the reflectance in other wavelength bands, the spontaneous emission light can be prevented from being amplified, and the laser light can be efficiently amplified.
 また、側面33、34から励起光を入力する場合には、全反射膜6の波長特性に上記の波長特性に加えて励起光波長に対して透過特性を持たせても良い。 In addition, when excitation light is input from the side surfaces 33 and 34, the wavelength characteristics of the total reflection film 6 may have transmission characteristics with respect to the excitation light wavelength in addition to the wavelength characteristics described above.
 なお、この発明は上記の各実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含むことは云うまでもない。 It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that all possible combinations thereof are included.
産業上の利用の可能性Industrial applicability
 この発明による平面導波路型レーザ装置は、多くの分野で使用されているレーザ発振器やレーザ増幅器に適用可能である。 The planar waveguide laser device according to the present invention can be applied to laser oscillators and laser amplifiers used in many fields.
 1 半導体レーザ(励起光源)、2 励起光、3,3a レーザ媒質、4a,4b,20 クラッド、6 全反射膜、7,7a 反射防止膜、8 レーザ入射光、9,9a レーザ出力光、10 レーザ反射光、30 狭帯域反射膜、31,32 主面、33,34 側面、35,36 端面、40 波長変換素子、41 出力膜、42 入射膜、43 波長変換レーザ光、50 分離手段、51 偏光子、52 1/4波長板、53 45度ファラデーローテータ、54 アイソレータ、55 1/2波長板、60 スタックLD、61 レンズ、62 レンズ群、63 マイクロレンズアレイ、64 スラブ導波路、89 レーザ光伝播経路、89a レーザ光伝播経路領域、100 固体レーザモジュール、102,102a,111 ヒートシンク、103a~103e 未設置領域、106 側面、108,108a,110 レンズ、109 伝搬光路、120 温度一定領域、121 温度変化領域、126 レーザ光高反射/励起光高反射膜、127 励起領域 128 未励起領域、150,150a 熱レンズ効果発生手段、152 接触部、153 非接触部、160 接合材。 1 semiconductor laser (excitation light source), 2 excitation light, 3, 3a laser medium, 4a, 4b, 20 clad, 6 total reflection film, 7, 7a antireflection film, 8 laser incident light, 9, 9a laser output light, 10 Laser reflected light, 30 narrow-band reflective film, 31, 32 main surface, 33, 34 side surface, 35, 36 end surface, 40 wavelength conversion element, 41 output film, 42 incident film, 43 wavelength conversion laser light, 50 separation means, 51 Polarizer, 52 1/4 wavelength plate, 53 45 degree Faraday rotator, 54 isolator, 55 1/2 wavelength plate, 60 stack LD, 61 lens, 62 lens group, 63 microlens array, 64 slab waveguide, 89 laser light Propagation path, 89a Laser light propagation path area, 100 Solid laser module, 102, 102a, 111 Heat sink, 103a to 103e not installed area, 106 side surface, 108, 108a, 110 lens, 109 propagation optical path, 120 temperature constant area, 121 temperature change area, 126 laser light high reflection / excitation light high reflection film, 127 excitation area 128 not yet Excitation region, 150, 150a Thermal lens effect generating means, 152 contact portion, 153 non-contact portion, 160 bonding material.

Claims (27)

  1.  所定方向に沿って対向する一対の主面、前記主面の両側の一対の側面及び前記所定方向の両端の対向する一対の端面を有し、前記一対の側面の一方の側面が前記所定方向に沿って延びる他方の側面との間隔が徐々に広がるように前記所定方向に対して所定のテーパー角度で傾斜している、平板状のレーザ媒質と、
     前記一対の側面上の側面間隔が広い側の少なくとも1カ所に設けられた少なくとも前記レーザ光を透過させる反射防止膜と、
     前記反射防止膜以外の前記一対の側面上に設けられたレーザ光を反射させる全反射膜と、
     を含み、前記一対の側面の前記反射防止膜の部分から前記レーザ媒質内に導入されたレーザ光を側面間を反射させながら前記レーザ媒質内を伝播させ、さらに前記レーザ媒質内の側面間隔が狭い側で折り返させて再び側面間隔が広い側の前記反射防止膜まで伝播させて出力させる固体レーザモジュールと、
     前記レーザ媒質に励起光を照射して励起させる励起光源と、
     を備えたことを特徴とする平面導波路型レーザ装置。
    A pair of main surfaces facing along a predetermined direction, a pair of side surfaces on both sides of the main surface, and a pair of end surfaces facing each other in the predetermined direction, and one side surface of the pair of side surfaces in the predetermined direction A flat plate-shaped laser medium that is inclined at a predetermined taper angle with respect to the predetermined direction so that an interval with the other side surface extending along the side gradually increases;
    An antireflection film that transmits at least the laser beam provided in at least one place on the wide side of the pair of side surfaces;
    A total reflection film that reflects laser light provided on the pair of side surfaces other than the antireflection film, and
    And the laser light introduced into the laser medium from the part of the antireflection film on the pair of side surfaces is propagated through the laser medium while reflecting between the side surfaces, and further, the distance between the side surfaces in the laser medium is narrow. A solid-state laser module that is folded back and propagates again to the antireflection film on the side where the side surface spacing is wide;
    An excitation light source for irradiating the laser medium with excitation light to excite the laser medium;
    A planar waveguide laser device comprising:
  2.  前記レーザ媒質の主面に垂直な方向に導波路を形成するために前記一対の主面上にそれぞれ配置された一対のクラッドを備え、主面に垂直の方向では前記レーザ光と前記励起光は前記一対のクラッド間のレーザ媒質を伝播することを特徴とする請求項1に記載の平面導波路型レーザ装置。 In order to form a waveguide in a direction perpendicular to the main surface of the laser medium, the laser medium includes a pair of clads disposed on the pair of main surfaces, and in the direction perpendicular to the main surface, the laser light and the excitation light are The planar waveguide laser device according to claim 1, wherein the planar waveguide laser device propagates through a laser medium between the pair of clads.
  3.  前記固体レーザモジュールが、
     前記レーザ媒質の前記一対の主面上にそれぞれ配置された一対の第1のクラッドと、
     前記一対の第1のクラッドのそれぞれ外側に配置された一対の第2のクラッドと、
     を備え、
     前記レーザ光は前記一対の第1のクラッドの間の前記レーザ媒質を伝播し、前記励起光は前記一対の第2のクラッドの間の前記一対の第1のクラッド及び前記レーザ媒質を伝播することを特徴とする請求項1に記載の平面導波路型レーザ装置。
    The solid-state laser module is
    A pair of first clads respectively disposed on the pair of main surfaces of the laser medium;
    A pair of second claddings disposed respectively outside the pair of first claddings;
    With
    The laser light propagates through the laser medium between the pair of first clads, and the excitation light propagates through the pair of first clads and the laser medium between the pair of second clads. The planar waveguide laser device according to claim 1.
  4.  前記固体レーザモジュールが、
     前記レーザ媒質の前記一対の主面の一方の主面上に配置された第1のクラッドと、
     前記第1のクラッドと前記一対の主面の他方の主面上にそれぞれ配置された一対の第2のクラッドと、
     を備え、
     前記レーザ光は前記第1のクラッドと前記一対の第2のクラッドの一方の間の前記レーザ媒質を伝播し、前記励起光は前記一対の第2のクラッドの間の前記第1のクラッド及び前記レーザ媒質を伝播することを特徴とする請求項1に記載の平面導波路型レーザ装置。
    The solid-state laser module is
    A first clad disposed on one main surface of the pair of main surfaces of the laser medium;
    A pair of second clads respectively disposed on the other main surface of the first clad and the pair of main surfaces;
    With
    The laser light propagates through the laser medium between one of the first clad and the pair of second clads, and the excitation light passes through the first clad between the pair of second clads and the second clad. 2. The planar waveguide laser device according to claim 1, wherein the planar waveguide laser device propagates through a laser medium.
  5.  前記固体レーザモジュールの前記所定方向の両端の一対の端面のうち前記励起光を導入する部分が、前記レーザ媒質の主面に垂直な面に対して傾斜しており、前記傾斜した端面から励起光を導入することを特徴とする請求項1から4までのいずれか1項に記載の平面導波路型レーザ装置。 Of the pair of end faces at both ends in the predetermined direction of the solid-state laser module, a portion for introducing the excitation light is inclined with respect to a plane perpendicular to the main surface of the laser medium, and excitation light is emitted from the inclined end faces. 5. The planar waveguide laser device according to claim 1, wherein the planar waveguide laser device is introduced.
  6.  前記固体レーザモジュールの前記所定方向の両端の一対の端面のうち前記励起光を導入する部分が、前記レーザ媒質の主面に垂直な面に対して傾斜しており、前記励起光を一番外側の前記クラッドから入射させ傾斜した前記端面で反射させて導入することを特徴とする請求項2から4までのいずれか1項に記載の平面導波路型レーザ装置。 Of the pair of end faces at both ends in the predetermined direction of the solid-state laser module, a portion for introducing the excitation light is inclined with respect to a plane perpendicular to the main surface of the laser medium, and the excitation light is disposed at the outermost side. 5. The planar waveguide laser device according to claim 2, wherein the planar waveguide laser device is introduced by being reflected from the inclined end face incident from the clad.
  7.  前記レーザ媒質の一対の側面上に設けられた全反射膜をレーザ光を反射させ励起光を透過させる狭帯域の反射膜とし、前記側面からレーザ媒質内に励起光を導入することを特徴とする請求項2から4までのいずれか1項に記載の平面導波路型レーザ装置。 A total reflection film provided on a pair of side surfaces of the laser medium is a narrow-band reflection film that reflects laser light and transmits excitation light, and the excitation light is introduced into the laser medium from the side surfaces. The planar waveguide laser device according to any one of claims 2 to 4.
  8.  前記固体レーザモジュールが、前記一対の側面の側面間隔が広い側の異なる箇所に、前記レーザ光をレーザ媒質に導入する第1の反射防止膜と、前記レーザ光をレーザ媒質から出力させる第2の反射防止膜とを設けたことを特徴とする請求項1から4までのいずれか1項に記載の平面導波路型レーザ装置。 The solid-state laser module has a first antireflection film for introducing the laser beam into a laser medium at a different location on the side where the side-surface distance between the pair of side surfaces is wide, and a second for outputting the laser beam from the laser medium. The planar waveguide laser device according to any one of claims 1 to 4, further comprising an antireflection film.
  9.  前記励起光が前記レーザ光と略同一な光路で前記反射防止膜から導入され励起を行うことを特徴とする請求項1から4までのいずれか1項に記載の平面導波路型レーザ装置。 The planar waveguide laser device according to any one of claims 1 to 4, wherein the excitation light is introduced from the antireflection film through an optical path substantially the same as the laser light to perform excitation.
  10.  前記反射防止膜に近接して配置された波長変換素子を備え、前記レーザ媒質で発生したレーザ光が前記波長変換素子を通過する際に他の波長に変換されて波長変換レーザ光を出力することを特徴とする請求項1から4までのいずれか1項に記載の平面導波路型レーザ装置。 A wavelength conversion element disposed in the vicinity of the antireflection film, wherein the laser beam generated in the laser medium is converted to another wavelength when passing through the wavelength conversion element and outputs a wavelength conversion laser beam; The planar waveguide laser device according to any one of claims 1 to 4, wherein the planar waveguide laser device is characterized in that:
  11.  前記レーザ光の折り返し直前におけるレーザ光の前記側面への入射角が側面に垂直にならないような入射角度でレーザ光が前記反射防止膜へ入射されることを特徴とする請求項1から4までのいずれか1項に記載の平面導波路型レーザ装置。 5. The laser beam is incident on the antireflection film at an incident angle such that an incident angle of the laser beam on the side surface immediately before the laser beam is not folded is perpendicular to the side surface. The planar waveguide laser device according to any one of the above.
  12.  前記固体レーザモジュールの少なくとも一方の主面上に設置されたヒートシンクをさらに備え、前記ヒートシンクは前記固体レーザモジュールの主面上で、固体レーザモジュールの側面および端面の少なくとも1つの側で前記側面または端面から所定の長さだけ内側にオフセットして設置されていることを特徴とする請求項1から11までのいずれか1項に記載の平面導波路型レーザ装置。 The heat sink further provided on at least one main surface of the solid-state laser module, the heat sink on the main surface of the solid-state laser module, on the side surface or the end surface on at least one side of a side surface and an end surface of the solid-state laser module. The planar waveguide laser device according to any one of claims 1 to 11, wherein the planar waveguide laser device is installed offset from the inside by a predetermined length to the inside.
  13.  前記ヒートシンクが前記固体レーザモジュールの全ての端面と側面で内側にオフセットして設置され前記固体レーザモジュールと形状が同一であることを特徴とする請求項12に記載の平面導波路型レーザ装置。 13. The planar waveguide laser device according to claim 12, wherein the heat sink is installed with an offset inward at all end faces and side surfaces of the solid laser module and has the same shape as the solid laser module.
  14.  前記固体レーザモジュールの側面および端面のうち励起光を入力する面側およびレーザ光を入出力する面側において前記ヒートシンクが内側にオフセットして設置されていることを特徴とする請求項12に記載の平面導波路型レーザ装置。 13. The heat sink according to claim 12, wherein the heat sink is disposed offset to the inside on a surface side for inputting excitation light and a surface side for inputting / outputting laser light among side surfaces and end surfaces of the solid-state laser module. Planar waveguide laser device.
  15.  前記固体レーザモジュールの側面および端面のうち励起光の入力またはレーザ光の入出力がない面側において前記ヒートシンクが前記固体レーザモジュールの側面または端面まで延びてまたは側面または端面を越えて延びて設置されていることを特徴とする請求項12に記載の平面導波路型レーザ装置。 The heat sink extends to the side surface or the end surface of the solid laser module or extends beyond the side surface or the end surface on the surface side where the pumping light is input or the laser light is not input / output among the side surface and the end surface of the solid laser module. The planar waveguide laser device according to claim 12, wherein:
  16.  前記固体レーザモジュールの主面の前記ヒートシンクが設置されていない未設置領域を避けて前記励起光が入力されることを特徴とする請求項12から15までのいずれか1項に記載の平面導波路型レーザ装置。 The planar waveguide according to any one of claims 12 to 15, wherein the excitation light is input while avoiding a non-installed area where the heat sink is not installed on the main surface of the solid-state laser module. Type laser equipment.
  17.  前記固体レーザモジュールのレーザ媒質と前記ヒートシンクのコーナー部を避けて前記励起光が入力されることを特徴とする請求項12から15までのいずれか1項に記載の平面導波路型レーザ装置。 The planar waveguide laser device according to any one of claims 12 to 15, wherein the excitation light is input avoiding a corner of the laser medium and the heat sink of the solid-state laser module.
  18.  前記固体レーザモジュールが、前記レーザ媒質の前記一対の主面の少なくとも一方に配置された第1のクラッドおよび前記第1のクラッドまたは前記レーザ媒質の主面のそれぞれ外側に配置された一対の第2のクラッドを備えた場合に、前記固体レーザモジュールの主面の前記ヒートシンクが設置されていない未設置領域で前記レーザ媒質を避けて前記励起光が入力されることを特徴とする請求項12から15までのいずれか1項に記載の平面導波路型レーザ装置。 The solid state laser module is disposed on at least one of the pair of main surfaces of the laser medium, and a pair of second layers disposed on the outer sides of the first clad or the main surface of the laser medium. The pumping light is input while avoiding the laser medium in a non-installation area where the heat sink is not installed on the main surface of the solid-state laser module. The planar waveguide laser device according to any one of the above.
  19.  前記固体レーザモジュールの少なくとも一方の主面上に設置されたヒートシンクを備え、
     前記レーザ媒質に前記所定の方向に励起領域と未励起領域を形成するために前記レーザ媒質の一方の側面から励起光を導入するように前記励起光源が設けられ、前記レーザ媒質の一方の側面の少なくとも励起光が導入される部分の前記全反射膜をレーザ光を反射させ励起光を透過させる狭帯域反射膜とし、かつ前記励起領域内でレーザ光を折り返えさせることを特徴とする請求項1から6までのいずれか1項に記載の平面導波路型レーザ装置。
    A heat sink installed on at least one main surface of the solid-state laser module;
    The excitation light source is provided so as to introduce excitation light from one side surface of the laser medium in order to form an excitation region and an unexcitation region in the predetermined direction in the laser medium. The at least part of the total reflection film into which the excitation light is introduced is a narrow-band reflection film that reflects the laser light and transmits the excitation light, and folds the laser light within the excitation region. 7. The planar waveguide laser device according to any one of 1 to 6.
  20.  前記レーザ媒質の励起光を導入する一方の側面と対向する他方の側面の前記全反射膜を励起光とレーザ光を反射させるレーザ光高反射/励起光高反射膜としたことを特徴とする請求項19に記載の平面導波路型レーザ装置。 The laser light high reflection / excitation light high reflection film for reflecting the excitation light and the laser light is used as the total reflection film on the other side opposite to the one side where the excitation light of the laser medium is introduced. Item 20. The planar waveguide laser device according to Item 19.
  21.  前記レーザ媒質の励起光を導入する一方の側面と対向する他方の側面からも励起光を導入するための追加の励起光源を備えると共に、他方の側面の少なくとも励起光が導入される部分の前記全反射膜をレーザ光を反射させ励起光を透過させる狭帯域反射膜としたことを特徴とする請求項19に記載の平面導波路型レーザ装置。 An additional excitation light source for introducing the excitation light from the other side facing the one side where the excitation light of the laser medium is introduced, and at least the portion of the other side where the excitation light is introduced 20. The planar waveguide laser device according to claim 19, wherein the reflection film is a narrow-band reflection film that reflects laser light and transmits excitation light.
  22.  前記レーザ媒質の屈折率の温度依存性が正であり、
     前記固体レーザモジュールの一方の主面上に設置され、固体レーザモジュールに接合する接触部と接触しない非接触部を設けて部分的に排熱を行う熱レンズ効果発生手段を備え、前記熱レンズ効果発生手段の非接触部が前記固体レーザモジュールのレーザ媒質内のレーザ光伝播経路領域に沿って形成されていることを特徴とする請求項1から6までのいずれか1項に記載の平面導波路型レーザ装置。
    The temperature dependence of the refractive index of the laser medium is positive,
    A thermal lens effect generating means installed on one main surface of the solid-state laser module and provided with a non-contact portion that does not come into contact with a contact portion to be joined to the solid-state laser module to partially exhaust heat; The planar waveguide according to any one of claims 1 to 6, wherein the non-contact portion of the generating means is formed along a laser light propagation path region in a laser medium of the solid-state laser module. Type laser equipment.
  23.  前記レーザ媒質の屈折率の温度依存性が負であり、
     前記固体レーザモジュールの一方の主面上に設置され、固体レーザモジュールに接合する接触部と接触しない非接触部を設けて部分的に排熱を行う熱レンズ効果発生手段を備え、前記熱レンズ効果発生手段の接触部が前記固体レーザモジュールのレーザ媒質内のレーザ光伝播経路領域に沿って形成されていることを特徴とする請求項1から6までのいずれか1項に記載の平面導波路型レーザ装置。
    The temperature dependence of the refractive index of the laser medium is negative,
    A thermal lens effect generating means installed on one main surface of the solid-state laser module and provided with a non-contact portion that does not come into contact with a contact portion to be joined to the solid-state laser module to partially exhaust heat; The planar waveguide type according to any one of claims 1 to 6, wherein a contact portion of the generating means is formed along a laser light propagation path region in a laser medium of the solid-state laser module. Laser device.
  24.  前記レーザ媒質が利得を持つ波長帯域内において、前記全反射膜の反射率に波長依存性を持たせることを特徴とする請求項1から23までのいずれか1項に記載の平面導波路型レーザ装置。 The planar waveguide laser according to any one of claims 1 to 23, wherein the reflectance of the total reflection film has wavelength dependency within a wavelength band in which the laser medium has gain. apparatus.
  25.  前記全反射膜の反射率が、前記レーザ媒質に入力されるレーザ光波長に対しては全反射であり、それ以外の波長に対しては全反射とならないことを特徴とする請求項24に記載の平面導波路型レーザ装置。 25. The reflectance of the total reflection film is total reflection with respect to a laser beam wavelength input to the laser medium, and is not total reflection with respect to other wavelengths. Planar waveguide laser device.
  26.  前記全反射膜の反射率が全反射とならない波長が、前記レーザ媒質の利得が最大となる波長であることを特徴とする請求項24または25のいずれか一項に記載の平面導波路型レーザ装置。 26. The planar waveguide laser according to claim 24, wherein the wavelength at which the reflectance of the total reflection film is not total reflection is a wavelength at which the gain of the laser medium is maximized. apparatus.
  27.  前記レーザ媒質の活性物質がErまたはYbであることを特徴とする請求項26に記載の平面導波路型レーザ装置。 27. The planar waveguide laser device according to claim 26, wherein the active substance of the laser medium is Er or Yb.
PCT/JP2010/064703 2009-09-07 2010-08-30 Planar waveguide laser device WO2011027731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064703 WO2011027731A1 (en) 2009-09-07 2010-08-30 Planar waveguide laser device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/065577 WO2011027471A1 (en) 2009-09-07 2009-09-07 Solid laser-exciting module for flat waveguide laser
JPPCT/JP2009/065577 2009-09-07
PCT/JP2010/050698 WO2011027579A1 (en) 2009-09-07 2010-01-21 Planar waveguide laser apparatus
JPPCT/JP2010/050698 2010-01-21
PCT/JP2010/064703 WO2011027731A1 (en) 2009-09-07 2010-08-30 Planar waveguide laser device

Publications (1)

Publication Number Publication Date
WO2011027731A1 true WO2011027731A1 (en) 2011-03-10

Family

ID=44260063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064703 WO2011027731A1 (en) 2009-09-07 2010-08-30 Planar waveguide laser device

Country Status (1)

Country Link
WO (1) WO2011027731A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038096A (en) * 2011-08-03 2013-02-21 Mitsubishi Electric Corp Plane waveguide type laser device
JP2013089790A (en) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp Planar waveguide laser device
JP2013254861A (en) * 2012-06-07 2013-12-19 Mitsubishi Electric Corp Planar waveguide optical amplifier
JP2014229738A (en) * 2013-05-22 2014-12-08 三菱電機株式会社 Planar waveguide laser device
JP2016092248A (en) * 2014-11-06 2016-05-23 三菱電機株式会社 Planar waveguide laser apparatus
WO2017026005A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Planar waveguide type laser device
WO2019091699A1 (en) * 2017-11-08 2019-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Optical system
WO2019125517A1 (en) * 2017-12-19 2019-06-27 Raytheon Company Laser system with mechanically-robust monolithic fused planar waveguide (pwg) structure
CN117134180A (en) * 2023-10-26 2023-11-28 中国工程物理研究院应用电子学研究所 High-power planar waveguide laser amplification gain module and laser
US11881676B2 (en) * 2019-01-31 2024-01-23 L3Harris Technologies, Inc. End-pumped Q-switched laser

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665335A (en) * 1970-01-26 1972-05-23 Gen Electric Coolable slab laser
US5553088A (en) * 1993-07-02 1996-09-03 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Laser amplifying system
JP2002528900A (en) * 1998-10-16 2002-09-03 コミツサリア タ レネルジー アトミーク Optical amplifier having optically pumped planar waveguide and power laser using the optical amplifier
US20030063884A1 (en) * 2001-01-04 2003-04-03 Smith Duane D. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
WO2004114476A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Solid laser excitation module
WO2005091446A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Solid-state laser equipment
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2006066436A (en) * 2004-08-24 2006-03-09 Showa Optronics Co Ltd Internal resonator type sum-frequency mixed laser
JP2006516817A (en) * 2003-01-28 2006-07-06 ハイ キュー レーザー プロダクション ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser beam guide folding device
WO2006103767A1 (en) * 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Mode control waveguide laser
JP2008522409A (en) * 2004-11-26 2008-06-26 ジェフリー, ジー マンニ, High gain diode pumped laser amplifier.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665335A (en) * 1970-01-26 1972-05-23 Gen Electric Coolable slab laser
US5553088A (en) * 1993-07-02 1996-09-03 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Laser amplifying system
JP2002528900A (en) * 1998-10-16 2002-09-03 コミツサリア タ レネルジー アトミーク Optical amplifier having optically pumped planar waveguide and power laser using the optical amplifier
US20030063884A1 (en) * 2001-01-04 2003-04-03 Smith Duane D. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
JP2006516817A (en) * 2003-01-28 2006-07-06 ハイ キュー レーザー プロダクション ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser beam guide folding device
WO2004114476A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Solid laser excitation module
WO2005091446A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Solid-state laser equipment
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2006066436A (en) * 2004-08-24 2006-03-09 Showa Optronics Co Ltd Internal resonator type sum-frequency mixed laser
JP2008522409A (en) * 2004-11-26 2008-06-26 ジェフリー, ジー マンニ, High gain diode pumped laser amplifier.
WO2006103767A1 (en) * 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Mode control waveguide laser

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038096A (en) * 2011-08-03 2013-02-21 Mitsubishi Electric Corp Plane waveguide type laser device
JP2013089790A (en) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp Planar waveguide laser device
JP2013254861A (en) * 2012-06-07 2013-12-19 Mitsubishi Electric Corp Planar waveguide optical amplifier
JP2014229738A (en) * 2013-05-22 2014-12-08 三菱電機株式会社 Planar waveguide laser device
JP2016092248A (en) * 2014-11-06 2016-05-23 三菱電機株式会社 Planar waveguide laser apparatus
EP3322049A4 (en) * 2015-08-07 2018-08-08 Mitsubishi Electric Corporation Planar waveguide type laser device
JPWO2017026005A1 (en) * 2015-08-07 2017-10-19 三菱電機株式会社 Planar waveguide laser device
CN107851953A (en) * 2015-08-07 2018-03-27 三菱电机株式会社 Planar waveguide laser apparatus
WO2017026005A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Planar waveguide type laser device
US10116113B2 (en) 2015-08-07 2018-10-30 Mitsubishi Electric Corporation Planar waveguide laser apparatus
CN107851953B (en) * 2015-08-07 2019-12-10 三菱电机株式会社 planar waveguide laser device
WO2019091699A1 (en) * 2017-11-08 2019-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Optical system
WO2019125517A1 (en) * 2017-12-19 2019-06-27 Raytheon Company Laser system with mechanically-robust monolithic fused planar waveguide (pwg) structure
US10511135B2 (en) 2017-12-19 2019-12-17 Raytheon Company Laser system with mechanically-robust monolithic fused planar waveguide (PWG) structure
US11881676B2 (en) * 2019-01-31 2024-01-23 L3Harris Technologies, Inc. End-pumped Q-switched laser
CN117134180A (en) * 2023-10-26 2023-11-28 中国工程物理研究院应用电子学研究所 High-power planar waveguide laser amplification gain module and laser
CN117134180B (en) * 2023-10-26 2024-03-08 中国工程物理研究院应用电子学研究所 High-power planar waveguide laser amplification gain module and laser

Similar Documents

Publication Publication Date Title
WO2011027731A1 (en) Planar waveguide laser device
JP4392024B2 (en) Mode-controlled waveguide laser device
US6785304B2 (en) Waveguide device with mode control and pump light confinement and method of using same
US9312655B2 (en) Planar waveguide laser pumping module and planar waveguide wavelength conversion laser device
JP2007036195A (en) Laser apparatus using nonlinear optical crystal or solid slab laser rod of multiplex optical path
US8705586B2 (en) Solid-state laser element
JP2007110039A (en) Solid-state laser excitation module
US20110064112A1 (en) Solid-state laser with waveguide pump path (z pump)
WO2011027579A1 (en) Planar waveguide laser apparatus
WO2011027471A1 (en) Solid laser-exciting module for flat waveguide laser
JP2010034413A (en) Solid-state laser apparatus
JP5389277B2 (en) Mode-controlled waveguide laser device
JP5389169B2 (en) Planar waveguide laser device and display device using the same
US20080025362A1 (en) Solid-State-Laser Pumping Module
JP5645753B2 (en) Planar waveguide laser device
JP6124683B2 (en) Planar waveguide laser device
CN107851953B (en) planar waveguide laser device
JP2000077750A (en) Solid laser
JP4440812B2 (en) Semiconductor laser pumped solid-state laser device
JP5987193B2 (en) Optical amplifier
EP1670104A1 (en) Solid-state laser pumped module and laser oscillator
JP5933246B2 (en) Mode-controlled planar waveguide laser device
KR100796100B1 (en) Mode control waveguide laser
WO2021106068A1 (en) Solid-state laser medium, solid-state laser amplifier, and solid-state laser oscillator
JP6257807B2 (en) Array type wavelength conversion laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP