WO2011027471A1 - Solid laser-exciting module for flat waveguide laser - Google Patents

Solid laser-exciting module for flat waveguide laser Download PDF

Info

Publication number
WO2011027471A1
WO2011027471A1 PCT/JP2009/065577 JP2009065577W WO2011027471A1 WO 2011027471 A1 WO2011027471 A1 WO 2011027471A1 JP 2009065577 W JP2009065577 W JP 2009065577W WO 2011027471 A1 WO2011027471 A1 WO 2011027471A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
pair
solid
medium
Prior art date
Application number
PCT/JP2009/065577
Other languages
French (fr)
Japanese (ja)
Inventor
修平 山本
嘉仁 平野
俊行 安藤
陽介 秋野
武司 崎村
隆行 柳澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/065577 priority Critical patent/WO2011027471A1/en
Priority to PCT/JP2010/050698 priority patent/WO2011027579A1/en
Priority to PCT/JP2010/064703 priority patent/WO2011027731A1/en
Publication of WO2011027471A1 publication Critical patent/WO2011027471A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • H01S3/0623Antireflective [AR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light

Definitions

  • planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 5 of this invention. It is a top view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 6 of this invention. It is an enlarged view of the area
  • the clads 4a and 4b shown in FIG. 2 have a refractive index smaller than that of the laser medium 3, and are respectively joined to main surfaces 31 and 32 parallel to the xy plane of the laser medium 3.
  • the claddings 4a and 4b are configured by, for example, depositing a film made of an optical material as a raw material or optically bonding the optical material to the laser medium 3 by optical contact or diffusion bonding.
  • the clads 4a and 4b may be bonded to a substrate (not shown). Further, the substrate may be bonded to a heat sink (not shown). The substrate and the heat sink may be on one side of the xy plane of the laser medium 3 or may be bonded to both sides of the two opposing surfaces.
  • the semiconductor lasers 1 on both sides are arranged close to the end faces 35 and 36 of the laser medium 3, and although not shown, a cooling heat sink is joined as necessary.
  • the size of the semiconductor laser 1 in the x-axis direction is substantially equal to the size of the laser medium 3 in the x-axis direction, and pumping light is output substantially uniformly in the x-axis direction.
  • the semiconductor laser 1 outputs excitation light 2.
  • the semiconductor laser 1 that outputs the excitation light 2 may be a multi-emitter semiconductor laser in which a plurality of active layers are arranged in the x-axis direction.
  • the inclination angle ⁇ 1 between the side surfaces 33 and 34 depends on the length in the y direction in the xy plane of the laser medium 3, the width in the x direction, the beam width w of the laser light, the width of the antireflection film 7, and the like.
  • the wrap efficiency is set to be high and the number of reflections is increased.
  • such an angle is mainly set to an inclination angle ⁇ 1 ⁇ 2 degrees between the side surfaces 33 and 34.
  • the present invention may be applied to a configuration in which the first clad 20 is disposed on the main surfaces 31 and 32 of the laser medium 3. Furthermore, you may arrange
  • the end surfaces 35a and 36a are inclined in the yz plane, the two end surfaces 35a and 36a facing each other and the laser medium 3, or between the end surfaces 35a and 36a and the first cladding 20, or the end surface 35a. , 36a and the second clad 4a, 4b can be eliminated by a parasitic oscillation path confined by total reflection.
  • the end faces 35a and 36a are inclined, there is no parasitic oscillation in the yz plane and the parasitic amplification path length can be shortened. Therefore, energy extraction by parasitic oscillation and parasitic amplification can be performed during high output excitation. Since it is small and gain reduction is small, a high-power laser beam can be obtained.
  • the laser medium 3 that reflects the excitation light 2 and the end face of the first cladding 20 are configured to be inclined in the yz plane. ing.
  • the semiconductor laser 1 is disposed so as to introduce the excitation light 2 from the xy plane of the second cladding 4a (the outermost surface of the solid-state laser excitation module 100).
  • the excitation light 2 introduced from the xy plane of the first cladding 4a is reflected by the inclined end surface.
  • the reflected excitation light 2 propagates through the laser medium 3 and the second cladding 4a and is absorbed when passing through the laser medium 3 while propagating.
  • FIG. 7 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 6 of the present invention.
  • FIG. 8 is an enlarged view of a region C indicated by a broken line in FIG. 7, and the scale in the y-axis direction is enlarged.
  • the position of the side surface 33 attached with the inclination angle ⁇ 1 and the side surface 34 extending along the predetermined direction (y-axis direction) is interchanged as compared with the module 100 of FIG.
  • An antireflection film 7 is provided on a part of the side on the 33 side where the side surface interval is wide.
  • the optical paths of the laser incident light 8 and the laser output light 9 are not the same. For this reason, since the laser incident light 8 and the laser output light 9 are spatially easily separated, it is not necessary to use a polarization separation means. For this reason, it is possible to reduce the number of components, particularly in a laser amplifier, and the reliability is also improved.
  • the low-concentration laser medium 3 has a small number of active media that generate gain, the gain for the laser light is small.
  • the laser light is reciprocally propagated between the side surfaces having the inclined side surfaces. Long propagation length. For this reason, even when the gain of the laser medium 3 per unit length is small, high-efficiency and high-power laser light can be obtained.
  • FIG. 12 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 10 of the present invention.
  • the laser medium 3 is not rectangular, and the side surface 33 is angled in the xy plane with respect to the portion where the antireflection film 7 is provided and the portion where the total reflection film 6 is provided. Is (tilted).
  • the portion provided with the antireflection film 7 on the side surface 33 is at an angle such that the laser incident light and the laser output light of the laser reflected light 10 having substantially the same optical path in the reciprocating optical path are perpendicular to the antireflection film 7. Is attached.

Abstract

Disclosed is a solid laser-exciting module for a flat waveguide laser device, which is provided with a flat laser medium for amplifying a laser light introduced, while propagating same in a direction along a pair of side faces (33 and 34) and reflecting same between the side faces.  One face (33) of the pair of side faces is inclined at a predetermined taper angle with respect to a predetermined direction so that the spacing from the other side face (34) extending in the predetermined direction may become gradually wider.  The laser light, which is introduced into the laser medium from a predetermined portion of the pair of side faces on the side where the spacing between the side faces is wider, propagates in the laser medium while being reflected between the side faces.  The laser beam makes a turn on the side where the spacing between the side faces is narrower in the laser medium, propagates again to the side where the spacing between the side faces is wider, and then is outputted.

Description

平面導波路型レーザのための固体レーザ励起モジュールSolid-state laser pumping module for planar waveguide lasers.
 この発明は、レーザを用いた計測装置、加工用レーザ装置、プリンターやプロジェクションテレビ等の光源に好適な高出力レーザ装置、特に平面導波路型レーザのための固体レーザ励起モジュールに関する。 The present invention relates to a measurement device using a laser, a processing laser device, a high-power laser device suitable for a light source such as a printer or a projection television, and more particularly to a solid-state laser excitation module for a planar waveguide laser.
 例えば下記非特許文献1に示されるような固体レーザにおいて用いられる固体レーザ媒質の形状は、一般にロッド型、スラブ型、ディスク型、平面導波路型、2次元導波路型、ファイバ型等がある。この中でロッド型、スラブ型、ディスク型、平面導波路型等では、側面又はレーザ端面から励起光を導入し、利得を発生させ、レーザ発振器、又は、レーザ増幅器を構成し、レーザ出力を得る。 For example, the shape of a solid-state laser medium used in a solid-state laser as shown in Non-Patent Document 1 below generally includes a rod type, a slab type, a disk type, a planar waveguide type, a two-dimensional waveguide type, and a fiber type. Among these, rod type, slab type, disk type, planar waveguide type, etc. introduce pumping light from the side surface or laser end face, generate gain, configure laser oscillator or laser amplifier, and obtain laser output .
 ここで、高出力のレーザ出力を得るために高出力励起を行った場合、レーザ媒質内での増幅利得が高くなることから寄生発振や、寄生増幅が生じ、エネルギーの消費が行われることから、レーザ出力や効率が低下することがある。寄生増幅や寄生発振が生じる原因として、レーザ発振器やレーザ増幅器において、レーザ媒質を通過するレーザ光の光路長が、寄生発振や寄生増幅光の光路長よりも短いことがあげられる。このため、一般には寄生発振や寄生増幅が起こらないようにレーザ媒質内の全反射部を荒らし面として周回ができないように工夫をして、寄生発振や寄生増幅光の伝播光路長を短くすることで抑制することがある。 Here, when high-power excitation is performed to obtain a high-power laser output, since the amplification gain in the laser medium increases, parasitic oscillation and parasitic amplification occur, and energy is consumed. Laser power and efficiency may be reduced. The cause of parasitic amplification and parasitic oscillation is that the optical path length of laser light passing through the laser medium is shorter than the optical path length of parasitic oscillation and parasitic amplified light in a laser oscillator or laser amplifier. For this reason, in general, the total reflection part in the laser medium is used as a roughened surface so that parasitic oscillation and parasitic amplification do not occur, and the propagation path length of parasitic oscillation and parasitic amplified light is shortened. May be suppressed.
 しかし、このように構成することで、荒らし面を全反射面として、増幅を行いたいレーザ光を反射させることができなくなり、この結果、レーザ媒質内でのレーザ光路が制限され、長い光路長が取れないことから高い増幅率が得られず、レーザ出力や効率が低くなることがあった。さらに、レーザの増幅率が低いことから、寄生発振や寄生増幅の発生しきい値が低く、寄生発振や寄生増幅が起こり易い等の特徴があった。 However, with this configuration, it becomes impossible to reflect the laser beam to be amplified by using the roughening surface as a total reflection surface. As a result, the laser optical path in the laser medium is limited, and a long optical path length is obtained. Since it cannot be obtained, a high amplification factor cannot be obtained, and the laser output and efficiency may be lowered. Furthermore, since the amplification factor of the laser is low, parasitic oscillation and parasitic amplification generation threshold are low, and parasitic oscillation and parasitic amplification are likely to occur.
 一方、2次元導波路型やファイバ型では、レーザ光の断面の2次元方向に屈折率分布による光閉じ込めが行われており、光の進行方向は1次元方向となる。このため、寄生発振や寄生増幅の光路とレーザ発振やレーザ増幅の光路が等しいため、寄生発振や寄生増幅が起こり難いといった特徴がある。しかし、レーザ媒質の断面積が小さいため、励起光の導入が困難であり、複雑な構成が必要となることから、高価で信頼性が低い等の特徴がある。 On the other hand, in the two-dimensional waveguide type or fiber type, light confinement is performed by the refractive index distribution in the two-dimensional direction of the cross section of the laser light, and the traveling direction of the light is the one-dimensional direction. For this reason, since the optical path of parasitic oscillation or parasitic amplification is equal to the optical path of laser oscillation or laser amplification, there is a feature that parasitic oscillation or parasitic amplification is difficult to occur. However, since the cross-sectional area of the laser medium is small, it is difficult to introduce excitation light, and a complicated configuration is required. Therefore, there are features such as high cost and low reliability.
 一般に平板状のレーザ媒質を利用する形態として、ディスク型がある。ディスク型ではレーザ光は平板面から導入され、薄いレーザ媒質を通過、又は、反射して往復伝播する際にレーザ光の増幅が行われる。このような場合、レーザ媒質の通過距離が短いためレーザ増幅利得が小さいといった特徴がある。このため、レーザ発振器では最適な出力鏡反射率が高くなる。このような場合、僅かな共振器内の損失で出力が低下する等の特徴がある。また、増幅器として用いた場合、増幅率が小さいため低効率であったり、効率を改善する目的でマルチパスさせることがあるが、構成が複雑になる等の特徴がある。さらに、ディスク型の平板面内の伝播長は厚さ方向よりも長いため、平板面内の寄生発振や寄生増幅が起こり易いといった特徴がある。このため、高出力化が困難である等の特徴がある。このように、ディスク型では寄生発振や寄生増幅が起こり易いため、高出力化は困難であり、複雑な寄生発振抑制構造が必要である等の特徴があった。 Generally, there is a disk type as a form using a flat plate laser medium. In the disk type, laser light is introduced from a flat plate surface, and the laser light is amplified when passing through a thin laser medium or reflecting and reciprocating. In such a case, the laser amplification gain is small because the passing distance of the laser medium is short. For this reason, the optimum output mirror reflectivity is increased in the laser oscillator. In such a case, there is a feature that the output is reduced by a slight loss in the resonator. Further, when used as an amplifier, the amplification factor is small, so that the efficiency is low, or multipath may be used for the purpose of improving the efficiency, but the configuration is complicated. Further, since the propagation length in the disk-shaped flat plate surface is longer than the thickness direction, parasitic oscillation and parasitic amplification in the flat plate surface are likely to occur. For this reason, there is a feature that it is difficult to increase the output. As described above, since the disk type is likely to cause parasitic oscillation and parasitic amplification, it is difficult to increase the output, and a complicated parasitic oscillation suppressing structure is required.
 一般に、スラブ型のレーザ媒質では、側面、又は、端面から励起光を導入し、端面からレーザ光を導入する。さらに、レーザ光を導入する端面と対向する端面からレーザ光を出力する。レーザ光はスラブ型レーザ媒質内をジグザグに伝播して光路長を長くする手法が用いられることがある。さらに、このようにジグザグに伝播させることで、レーザ媒質内で発生した熱レンズ効果を平均化して低減することがある。 Generally, in a slab type laser medium, excitation light is introduced from the side or end face, and laser light is introduced from the end face. Further, the laser beam is output from the end surface facing the end surface to which the laser beam is introduced. In some cases, laser light propagates in a zigzag manner in the slab type laser medium to increase the optical path length. Further, by propagating in this zigzag manner, the thermal lens effect generated in the laser medium may be averaged and reduced.
 しかし、このような場合、ジグザグに伝播することからレーザ光とレーザ媒質のオーバーラップのない領域が発生する。このため、抽出効率が低いといった特徴がある。さらに、エネルギーの抽出されない部分での利得が高いことから寄生発振や寄生増幅が起こり易い等の特徴もある。また、ジグザグ反射面の対向する2面間での往復光路において寄生発振が起こり易いといった特徴がある。このように、ジグザグスラブ型では寄生発振や寄生増幅が起こり易いため、高出力化は困難であり、複雑な寄生発振抑制構造が必要である等の特徴があった。 However, in such a case, a region where there is no overlap between the laser beam and the laser medium is generated due to propagation in a zigzag manner. For this reason, the extraction efficiency is low. Furthermore, since the gain in a portion where energy is not extracted is high, parasitic oscillation and parasitic amplification are likely to occur. Further, there is a feature that parasitic oscillation is likely to occur in a reciprocating optical path between two opposing surfaces of the zigzag reflecting surface. As described above, the zigzag slab type is prone to parasitic oscillation and parasitic amplification, so that it is difficult to increase the output, and a complicated parasitic oscillation suppressing structure is required.
 従来のこの種の高出力レーザ装置において、レーザ媒質の形状がロッド型、スラブ型、ディスク型、平面導波路型等の場合、寄生発振や寄生増幅の光路がレーザ発振やレーザ増幅の光路よりも長いことから、高出力励起時に寄生発振や寄生増幅が生じ、レーザ出力や効率が低下する等の問題があった。
 さらに、レーザ媒質の形状が2次元導波路型やファイバ型では、レーザ媒質の断面積が小さいため、励起光の導入が困難であり、複雑な構成が必要となることから、高価で信頼性が低い等の問題があった。
In this type of conventional high-power laser device, when the laser medium has a rod type, slab type, disk type, planar waveguide type, etc., the optical path of parasitic oscillation or parasitic amplification is higher than the optical path of laser oscillation or laser amplification. Since it is long, parasitic oscillation and parasitic amplification occur at the time of high output excitation, and there are problems such as a decrease in laser output and efficiency.
Furthermore, when the laser medium has a two-dimensional waveguide type or fiber type, since the cross-sectional area of the laser medium is small, it is difficult to introduce pumping light and a complicated configuration is required. There was a problem such as low.
 この発明は、上記のような課題を解決するためになされたものであり、寄生発振や寄生増幅を抑制し、最も長いレーザ増幅光路を得て、簡単な励起構成により高出力励起を行うことで、高効率で高出力のレーザ出力を得る平面導波路型レーザ装置のための固体レーザ励起モジュールを提供することを目的とする。 The present invention has been made to solve the above-described problems, by suppressing parasitic oscillation and parasitic amplification, obtaining the longest laser amplification optical path, and performing high output excitation with a simple excitation configuration. An object of the present invention is to provide a solid-state laser excitation module for a planar waveguide laser device that obtains a high-efficiency and high-power laser output.
 この発明は、導入されたレーザ光を一対の側面間を反射させながら前記側面に沿った方向に伝播させその間に増幅させる平板状のレーザ媒質を備え、前記一対の側面の一方の側面が所定方向に沿って延びる他方の側面との間隔が徐々に広がるように前記所定方向に対して所定のテーパー角度で傾斜しており、前記一対の側面の側面間隔の広い側の所定箇所から前記レーザ媒質内に導入されたレーザ光を側面間を反射させながら前記レーザ媒質内を伝播させ、さらに前記レーザ媒質内の側面間隔が狭い側で折り返させて再び側面間隔が広い側に伝播させて出力させることを特徴とする平面導波路型レーザ装置のための固体レーザ励起モジュールにある。 The present invention includes a flat plate-shaped laser medium that propagates an amplified laser beam in a direction along the side surface while reflecting between the pair of side surfaces and amplifies the laser beam between the pair of side surfaces, and one side surface of the pair of side surfaces is in a predetermined direction. And inclined at a predetermined taper angle with respect to the predetermined direction so as to gradually widen the distance from the other side surface extending along the side of the pair of side surfaces. The laser light introduced into the laser medium is propagated in the laser medium while reflecting between the side surfaces, and is further folded back on the side having a narrow side surface interval in the laser medium and propagated again to the side having a large side surface interval for output. The solid-state laser pump module for the planar waveguide laser device is characterized.
 この発明では、寄生発振や寄生増幅を抑制し、最も長いレーザ増幅光路を得て、簡単な励起構成により高出力励起を行うことで、高効率で高出力のレーザ出力を得る固体レーザ励起モジュールを提供することができる。 In the present invention, a solid-state laser excitation module that obtains a high-efficiency and high-output laser output by suppressing parasitic oscillation and parasitic amplification, obtaining the longest laser amplification optical path, and performing high-output excitation with a simple excitation configuration. Can be provided.
この発明の実施の形態1による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。1 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 1 of the present invention. 図1の平面導波路型レーザ装置の紙面下側からの側面図である。FIG. 2 is a side view of the planar waveguide laser device of FIG. この発明の実施の形態2による固体レーザ励起モジュールを含む平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 2 of this invention. この発明の実施の形態3による固体レーザ励起モジュールを含む平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 3 of this invention. この発明の実施の形態4による固体レーザ励起モジュールを含む平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 4 of this invention. この発明の実施の形態5による固体レーザ励起モジュールを含む平面導波路型レーザ装置の側面図である。It is a side view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 5 of this invention. この発明の実施の形態6による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 6 of this invention. 図7の破線で示した領域Cの拡大図である。It is an enlarged view of the area | region C shown with the broken line of FIG. この発明の実施の形態7による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 7 of this invention. この発明の実施の形態8による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus containing the solid state laser excitation module by Embodiment 8 of this invention. この発明の実施の形態9による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 9 of this invention. この発明の実施の形態10による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。It is a top view of the planar waveguide type laser apparatus containing the solid-state laser excitation module by Embodiment 10 of this invention. 実際のレーザ光のビームを説明するための図である。It is a figure for demonstrating the beam of an actual laser beam. この発明による固体レーザ励起モジュールのレーザ光の入出力部分の構成を説明するための上面図である。It is a top view for demonstrating the structure of the input / output part of the laser beam of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールのレーザ光の入出力部分の構成の別の例を示す部分図である。It is a fragmentary figure which shows another example of a structure of the input / output part of the laser beam of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールのレーザ光の入出力部分の構成のさらに別の例を示す部分図である。It is a fragmentary figure which shows another example of the structure of the input / output part of the laser beam of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールのレーザ光の入出力部分の構成のさらに別の例を示す部分図である。It is a fragmentary figure which shows another example of the structure of the input / output part of the laser beam of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールの励起光の導入部分の構成の一例を示す部分側面図である。It is a partial side view which shows an example of a structure of the introduction part of the excitation light of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールの励起光の導入部分の構成の別の例を示す部分側面図である。It is a partial side view which shows another example of a structure of the introduction part of the excitation light of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of a structure of the introduction part of the excitation light of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of a structure of the introduction part of the excitation light of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of a structure of the introduction part of the excitation light of the solid-state laser excitation module by this invention. この発明による固体レーザ励起モジュールの励起光の導入部分の構成のさらに別の例を示す部分側面図である。It is a partial side view which shows another example of a structure of the introduction part of the excitation light of the solid-state laser excitation module by this invention.
 以下、この発明による平面導波路型レーザ装置を好適な各実施の形態に基づき図面を用いて説明する。なお、各実施の形態で同一もしくは相当する部分は同一符号で示し重複する説明は省略する。 Hereinafter, a planar waveguide laser device according to the present invention will be described with reference to the drawings based on preferred embodiments. Note that the same or corresponding parts in the respective embodiments are denoted by the same reference numerals and redundant description is omitted.
 実施の形態1.
 図1はこの発明の実施の形態1による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図、図2は図1の平面導波路型レーザ装置の紙面下側からの側面図である。但し、両図において両側の励起源である半導体レーザ1の間にある固体レーザ励起モジュール100は図1では図2のA-A線に沿った断面図、図2では図1のB-B線に沿った断面図で示されている。
Embodiment 1 FIG.
1 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 1 of the present invention, and FIG. 2 is a side view of the planar waveguide laser device of FIG. However, in both figures, the solid-state laser pumping module 100 between the semiconductor lasers 1 which are pumping sources on both sides is a cross-sectional view taken along the line AA in FIG. 2, and in FIG. Is shown in a cross-sectional view along
 図1、図2において、固体レーザ励起モジュール100は、レーザ媒質3、レーザ媒質3の互いに平行に対向する一対の主面31、32上にそれぞれ接合されたクラッド4a,4b、互いに対向する一対の側面33、34上にそれぞれ接合されたレーザ光は反射する全反射膜6、側面34の一部に全反射膜6の代わりに設けられたレーザ光を透過する反射防止膜7を有する。レーザ媒質3の互いに平行に対向する一対の端面35,36は半導体レーザ1から励起光2を導入する。 1 and 2, the solid-state laser excitation module 100 includes a laser medium 3 and a pair of clads 4a and 4b that are respectively joined to a pair of main surfaces 31 and 32 of the laser medium 3 that face each other in parallel. The laser light bonded onto the side surfaces 33 and 34 has a total reflection film 6 that reflects the light, and a part of the side surface 34 includes an antireflection film 7 that transmits the laser light instead of the total reflection film 6. A pair of end faces 35 and 36 of the laser medium 3 facing each other in parallel introduce the excitation light 2 from the semiconductor laser 1.
 レーザ媒質3としては、一般的な固体レーザ材料を使用することができる。例えば、Nd:YAG、Nd:YLF、Nd:Glass、Nd:YVO4、Nd:GdVO4、Yb:YAG、Yb:YLF、Yb:KGW、Yb:KYW、Er:Glass、Er:YAG、Tm:YAG、Tm:YLF、Ho:YAG、Ho:YLF、Tm、Ho:YAG、Tm、Ho:YLF、Ti:Sapphire、Cr:LiSAF等を用いる。これら、固体レーザ材料は結晶の他に、セラミックであっても良い。また、ガラスであっても良い。また、上述せぬ母材に上述せぬ活性媒質を添加した固体レーザ材料であっても良い。 As the laser medium 3, a general solid laser material can be used. For example, Nd: YAG, Nd: YLF, Nd: Glass, Nd: YVO4, Nd: GdVO4, Yb: YAG, Yb: YLF, Yb: KGW, Yb: KYW, Er: Glass, Er: YAG, Tm: YAG, Tm: YLF, Ho: YAG, Ho: YLF, Tm, Ho: YAG, Tm, Ho: YLF, Ti: Sapphire, Cr: LiSAF, etc. are used. These solid laser materials may be ceramics in addition to crystals. Moreover, glass may be sufficient. Further, a solid laser material in which an active medium not described above is added to a base material not described above may be used.
 レーザ媒質3は平面導波路型であり、1軸方向に厚さの薄い平板の形状である。ここで説明のために、レーザ媒質3の厚さ方向をz軸とし、図1に示すようにレーザ媒質3の平面内の2軸をx軸、y軸と呼び、3軸がそれぞれ互いに直交した座標系を用いる。 The laser medium 3 is a planar waveguide type and has a shape of a flat plate having a thin thickness in one axial direction. Here, for the sake of explanation, the thickness direction of the laser medium 3 is taken as the z axis, and the two axes in the plane of the laser medium 3 are called the x axis and the y axis as shown in FIG. 1, and the three axes are orthogonal to each other. Use a coordinate system.
 レーザ媒質3は主面31,32に平行なxy面内の形状が4角形である。ここで、対向する一対の側面33,34は平行ではなく、所定の方向に沿った側面34に対して側面33がxy面内でテーパー角θ1で傾斜している。すなわち、一方の側面33が所定方向に沿って延びる他方の側面34との間隔が徐々に広がるように前記所定方向に対して所定のテーパー角度で傾斜している。レーザ媒質3の側面34上にはレーザ光を反射する全反射膜6が施されており、さらに一部にレーザ光を透過する反射防止膜7が施されている。また側面33上は全面にレーザ光を反射する全反射膜6が施されている。この構造により、後述するように、レーザ光はレーザ媒質3内を側面33,34間で反射されながら一往復伝播される。 The laser medium 3 has a quadrangular shape in the xy plane parallel to the main surfaces 31 and 32. Here, the pair of opposing side surfaces 33 and 34 are not parallel, and the side surface 33 is inclined with respect to the side surface 34 along a predetermined direction at a taper angle θ1 in the xy plane. That is, the one side surface 33 is inclined at a predetermined taper angle with respect to the predetermined direction so that the interval between the one side surface 33 and the other side surface 34 extending along the predetermined direction gradually increases. A total reflection film 6 that reflects laser light is provided on the side surface 34 of the laser medium 3, and an antireflection film 7 that transmits laser light is further provided in part. On the side surface 33, a total reflection film 6 for reflecting laser light is applied to the entire surface. With this structure, as will be described later, the laser light propagates in one round-trip while being reflected between the side surfaces 33 and 34 in the laser medium 3.
 図2に示すクラッド4a,4bは、レーザ媒質3に比べて小さな屈折率を有し、レーザ媒質3のxy平面に平行な主面31,32上にそれぞれ接合されている。クラッド4a,4b例えば、光学材料を原料とした膜を蒸着するか、光学材料をオプティカルコンタクト又は拡散接合等によってレーザ媒質3と光学的に接合することにより構成される。なおクラッド4a,4bは図示せぬ基板に接合されていても良い。さらに該基板は図示せぬヒートシンクに接合されていても良い。基板及びヒートシンクはレーザ媒質3のxy平面の片側であっても良いし、対向する2面の両側に接合されていてもよい。 The clads 4a and 4b shown in FIG. 2 have a refractive index smaller than that of the laser medium 3, and are respectively joined to main surfaces 31 and 32 parallel to the xy plane of the laser medium 3. The claddings 4a and 4b are configured by, for example, depositing a film made of an optical material as a raw material or optically bonding the optical material to the laser medium 3 by optical contact or diffusion bonding. The clads 4a and 4b may be bonded to a substrate (not shown). Further, the substrate may be bonded to a heat sink (not shown). The substrate and the heat sink may be on one side of the xy plane of the laser medium 3 or may be bonded to both sides of the two opposing surfaces.
 両側の半導体レーザ1は、レーザ媒質3の端面35,36にそれぞれ近接して配置され、図示は省略したが必要に応じて冷却用のヒートシンクが接合される。半導体レーザ1のx軸方向の大きさは、レーザ媒質3のx軸方向の大きさとほぼ等しく、x軸方向にほぼ一様に励起光を出力する。半導体レーザ1は、励起光2を出力する。ここで、励起光2を出力する半導体レーザ1は、活性層をx軸方向に複数配置したマルチエミッタ半導体レーザであっても良い。この場合、複数の活性層から複数のLD(レーザダイオード)光が出力するので、x軸方向に複数並んだレーザ出力光(励起光)が得られる。また、半導体レーザ1の活性層がx方向に幅の広いブロードエリアLDであっても良い。 The semiconductor lasers 1 on both sides are arranged close to the end faces 35 and 36 of the laser medium 3, and although not shown, a cooling heat sink is joined as necessary. The size of the semiconductor laser 1 in the x-axis direction is substantially equal to the size of the laser medium 3 in the x-axis direction, and pumping light is output substantially uniformly in the x-axis direction. The semiconductor laser 1 outputs excitation light 2. Here, the semiconductor laser 1 that outputs the excitation light 2 may be a multi-emitter semiconductor laser in which a plurality of active layers are arranged in the x-axis direction. In this case, since a plurality of LD (laser diode) lights are output from the plurality of active layers, a plurality of laser output lights (excitation light) arranged in the x-axis direction can be obtained. Further, the active layer of the semiconductor laser 1 may be a broad area LD that is wide in the x direction.
 次に動作について説明する。半導体レーザ1より出力された励起光2は、レーザ媒質3の端面35,36からレーザ媒質3に入射して、y方向(所定方向に相当する)に伝播しながらレーザ媒質3に吸収される。レーザ媒質3で励起光2が吸収されることで、レーザ媒質3内部でレーザ光に対する利得を発生する。レーザは媒質3内部で発生した利得により、通過するレーザ光は増幅作用を受けて、レーザ出力が増加する。レーザ種光を準備してレーザ媒質3に導入し増幅を行わせることでレーザ増幅器になり、レーザ光の一部を反射する図示せぬ出力鏡をレーザ光軸上に軸と直行するように配置することで、レーザ発振器となる。このため、以降の説明は、特に説明がない限り、レーザ発振器及びレーザ増幅器の両方に適用される。 Next, the operation will be described. The excitation light 2 output from the semiconductor laser 1 enters the laser medium 3 from the end faces 35 and 36 of the laser medium 3 and is absorbed by the laser medium 3 while propagating in the y direction (corresponding to a predetermined direction). When the pumping light 2 is absorbed by the laser medium 3, a gain for the laser light is generated inside the laser medium 3. Due to the gain generated in the medium 3 in the laser, the laser light passing therethrough is subjected to an amplification action, and the laser output increases. A laser seed light is prepared, introduced into the laser medium 3 and amplified so that it becomes a laser amplifier, and an output mirror (not shown) that reflects a part of the laser light is arranged on the laser optical axis so as to be perpendicular to the axis. By doing so, it becomes a laser oscillator. For this reason, the following description applies to both the laser oscillator and the laser amplifier unless otherwise specified.
 ここで、側面34のレーザ光を透過する反射防止膜7からレーザ入射光8をレーザ媒質3内に導入する。レーザ入射光8は反射防止膜7の垂直線に対してxy平面内にθin0傾斜している。ここで、レーザ媒質3の屈折率をnとすると、レーザ媒質3内に導入されたレーザ入射光8の反射防止膜7の垂直線に対するxy平面内の傾斜角は、θin1=Sin-1(1/n・Sinθin0)である。レーザ入射光8はxy平面内で側面33,34の垂直線に対して傾斜して導入される。レーザ媒質3内に入射したレーザ入射光8は、レーザ媒質内で伝播され側面34とこれと対向する側面33にそれぞれ施してあるレーザ光を反射する全反射膜6で反射される。レーザ入射光8はxy平面内で側面33,34の垂直線に対して傾斜して導入されたので、側面33で反射したレーザ光は反射防止膜7には戻らず、側面34の反射防止膜7に隣接する位置の全反射膜6に当たり再び反射する。このように、レーザ媒質3内を伝播されるレーザ光は図1にレーザ反射光10で示すように、側面33,34の全反射膜6で反射され側面33,34間で反射を繰り返しながら伝播される。 Here, the laser incident light 8 is introduced into the laser medium 3 from the antireflection film 7 that transmits the laser light on the side surface 34. The laser incident light 8 is inclined by θin0 in the xy plane with respect to the vertical line of the antireflection film 7. Here, when the refractive index of the laser medium 3 is n, the inclination angle of the laser incident light 8 introduced into the laser medium 3 in the xy plane with respect to the vertical line of the antireflection film 7 is θin1 = Sin −1 (1 / N · Sinθin0). The laser incident light 8 is introduced with an inclination with respect to the vertical line of the side surfaces 33 and 34 in the xy plane. The laser incident light 8 that has entered the laser medium 3 is reflected by the total reflection film 6 that propagates in the laser medium and reflects the laser light applied to the side surface 34 and the side surface 33 facing the side surface 34. Since the laser incident light 8 is introduced with an inclination with respect to the vertical line of the side surfaces 33 and 34 in the xy plane, the laser light reflected by the side surface 33 does not return to the antireflection film 7 but the antireflection film on the side surface 34. 7 hits the total reflection film 6 at a position adjacent to 7 and reflects again. As described above, the laser beam propagating through the laser medium 3 is reflected by the total reflection film 6 on the side surfaces 33 and 34 while being repeatedly reflected between the side surfaces 33 and 34 as indicated by the laser reflected light 10 in FIG. Is done.
 側面33は側面34に対してxy平面内で、側面33,34間の距離が、側面34の反射防止膜7が施してある一端側の方が側面34の他端側よりも広くなるように傾斜角度(テーパー角)θ1、傾斜している。このため、反射防止膜7から入射したレーザ光が側面33で反射する度に、レーザ反射光10の側面34での入射角と反射角の和が2θ1小さくなる。このためレーザ反射光10は、各側面33,34でのレーザ反射光10の反射位置の間隔を狭めながら反射を繰り返し、側面34での反射角は側面34に対して0すなわち垂直に近づいていく。 The side surface 33 is within the xy plane with respect to the side surface 34 so that the distance between the side surfaces 33 and 34 is wider at one end side where the antireflection film 7 of the side surface 34 is applied than at the other end side of the side surface 34. Inclination angle (taper angle) θ1 is inclined. For this reason, every time the laser beam incident from the antireflection film 7 is reflected by the side surface 33, the sum of the incident angle and the reflection angle at the side surface 34 of the laser reflected light 10 is reduced by 2θ1. Therefore, the laser reflected light 10 is repeatedly reflected while the interval between the reflection positions of the laser reflected light 10 on the side surfaces 33 and 34 is narrowed, and the reflection angle at the side surface 34 approaches 0, that is, perpendicular to the side surface 34. .
 側面34での反射角が垂直になると側面33のテーパー角θ1により、レーザ反射光10はレーザ媒質3内を折り返す。折り返されたレーザ反射光10は再び全反射膜間6により側面33,34間で反射を繰り返す。復路においては、側面34での入射角と反射角の和が側面33で反射するたびに2θ1大きくなる。そして各側面33,34でのレーザ反射光10の反射位置の間隔を広げながらレーザ反射光10を伝播する。このように復路では往路と略同一の光路を通過しながら、最終的には側面34の反射防止膜7からレーザ出力光9として出力される。 When the reflection angle at the side surface 34 becomes vertical, the laser reflected light 10 is folded back within the laser medium 3 by the taper angle θ1 of the side surface 33. The reflected laser reflected light 10 is repeatedly reflected between the side surfaces 33 and 34 by the total reflection film 6 again. In the return path, the sum of the incident angle and the reflection angle at the side surface 34 increases 2θ1 each time the side surface 33 reflects. Then, the laser reflected light 10 is propagated while increasing the interval between the reflection positions of the laser reflected light 10 on the side surfaces 33 and 34. In this way, the return path is finally output as the laser output light 9 from the antireflection film 7 on the side surface 34 while passing through the optical path substantially the same as the forward path.
 ここで、反射防止膜7から導入されたレーザ入射光8の反射防止膜7の垂直線に対するxy面内の角度をθin1、レーザ媒質3の屈折率をnとする。このとき、レーザ入射光8の内部入射角度θin1の最大値は内部全反射角と等しくθin1max=Sin-1(1/n)となる。例えば、レーザ媒質3がNd:YAGの場合、最大内部入射角度θin1max=33.3度となる。ここで、レーザ媒質3内での片側の側面(33,34)当たりの反射回数をm回とすると、側面33の側面34に対する傾斜角度θ1は、θ1≒θin1/(2(m-1))(≒:略等しい)を満たす角度に設定される。例えば、レーザ媒質をNd:YAG、レーザ光の内部入射角度を最大の角度θin1max、反射回数を10回とすると、θ1≒1.85度となる。レーザ媒質3内でのビームオーバーラップ効率を向上させるためには、レーザ入射光8の入射角度は小さいほうがよい。また、反射回数mは多いほうがよい。このため、例えば、レーザ入射光8の内部入射角度θin1=5度、反射回数20回の場合、θ1≒0.13度の傾斜となる。 Here, the angle in the xy plane of the laser incident light 8 introduced from the antireflection film 7 with respect to the vertical line of the antireflection film 7 is θin1, and the refractive index of the laser medium 3 is n. At this time, the maximum value of the internal incident angle θin1 of the laser incident light 8 is equal to the internal total reflection angle and θin1max = Sin −1 (1 / n). For example, when the laser medium 3 is Nd: YAG, the maximum internal incident angle θin1max = 33.3 degrees. Here, if the number of reflections per side surface (33, 34) on one side in the laser medium 3 is m, the inclination angle θ1 of the side surface 33 with respect to the side surface 34 is θ1≈θin1 / (2 (m−1)). An angle satisfying (≈: substantially equal) is set. For example, if the laser medium is Nd: YAG, the internal incident angle of the laser beam is the maximum angle θin1max, and the number of reflections is 10, then θ1≈1.85 degrees. In order to improve the beam overlap efficiency in the laser medium 3, the incident angle of the laser incident light 8 should be small. In addition, it is better that the number of reflections m is larger. For this reason, for example, when the internal incident angle θin1 of the laser incident light 8 is 5 degrees and the number of reflections is 20, the inclination is θ1≈0.13 degrees.
 このように側面33,34間の傾斜角度θ1は、レーザ媒質3のxy面内のy方向の長さ、x方向の幅、レーザ光のビーム幅w、反射防止膜7の幅等によりビームオーバーラップ効率が高く、反射回数が多くなるように設定される。このような角度は前述したように主に側面33,34間の傾斜角度θ1<2度に設定される。 As described above, the inclination angle θ1 between the side surfaces 33 and 34 depends on the length in the y direction in the xy plane of the laser medium 3, the width in the x direction, the beam width w of the laser light, the width of the antireflection film 7, and the like. The wrap efficiency is set to be high and the number of reflections is increased. As described above, such an angle is mainly set to an inclination angle θ1 <2 degrees between the side surfaces 33 and 34.
 このように側面33,34間の傾斜角度をθ1としたことから、往路では側面33や側面34でレーザ光を反射する間隔が反射を繰り返すに従い短くなる。このため、レーザ媒質3とレーザ光とのビームオーバーラップ効率が高くなる。さらに、レーザ光の折り返し点付近では、近接した箇所をレーザ光が何度も通過するため、ビームオーバーラップ効率がより高くなり、この結果、レーザの抽出効率が高くなり、高効率で高出力なレーザ光が得られる。 As described above, since the inclination angle between the side surfaces 33 and 34 is set to θ1, the interval at which the laser beam is reflected by the side surface 33 or the side surface 34 in the forward path becomes shorter as the reflection is repeated. For this reason, the beam overlap efficiency between the laser medium 3 and the laser light is increased. Further, near the turning point of the laser beam, the laser beam passes many times through the adjacent points, so that the beam overlap efficiency is higher, and as a result, the extraction efficiency of the laser is increased, resulting in high efficiency and high output. Laser light is obtained.
 なお、図1、図7~図12においてはレーザ光の主軸線を表示しているが、実際にはレーザ光は図13のように幅のあるビームが反射防止膜7から導入される。 1 and FIGS. 7 to 12, the main axis of the laser beam is displayed. In practice, however, the laser beam is introduced from the antireflection film 7 with a wide beam as shown in FIG.
 この構成によれば、レーザ媒質3内でのレーザ光(レーザ反射光10)の光路長を最も長くすることができるので、寄生発振や寄生増幅が起こり難い等の特徴がある。側面33,34を角度θ1で傾斜させているため、上記対向する2面間で周回する光路はない。このため、寄生発振や寄生増幅光の最も長いレーザ媒質3内の光路は、側面34の反射防止膜7付近からレーザ反射光10と同一の光路となる。一般にはレーザ光の光路よりも寄生発振や寄生増幅光の光路長が長いために、励起出力の増大とともに大きな利得が生じた場合に寄生発振や寄生増幅によるエネルギーの抽出が大きくなり、レーザ出力の効率低下を招く。一方、この構成では、寄生発振や寄生増幅の最も長い光路がレーザ反射光光路と略同一となることから、励起出力の増大とともに利得が大きくなった場合でも、レーザ光の増幅も同様に大きくなることから、レーザ光の増幅率を超えることがない。このため、高出力励起時でも高効率で高出力なレーザ光を得ることができる。 According to this configuration, since the optical path length of the laser light (laser reflected light 10) in the laser medium 3 can be maximized, parasitic oscillation and parasitic amplification are difficult to occur. Since the side surfaces 33 and 34 are inclined at an angle θ1, there is no optical path that circulates between the two opposing surfaces. For this reason, the optical path in the laser medium 3 having the longest parasitic oscillation or parasitic amplified light is the same optical path as the laser reflected light 10 from the vicinity of the antireflection film 7 on the side surface 34. In general, since the optical path length of parasitic oscillation and parasitic amplification light is longer than the optical path of laser light, when a large gain is generated with an increase in excitation output, extraction of energy due to parasitic oscillation and parasitic amplification becomes large, and laser output power is increased. Incurs efficiency loss. On the other hand, in this configuration, the longest optical path of parasitic oscillation and parasitic amplification is substantially the same as the laser reflected light optical path, so that even when the gain increases as the pumping output increases, the amplification of the laser light increases as well. Therefore, the amplification factor of the laser beam is not exceeded. For this reason, high-efficiency and high-power laser light can be obtained even during high-power excitation.
 レーザ光の往路と復路が略同一であることから、図14に示すように分離手段50を用いて、レーザ光の偏光を利用した分離を行うことができる。分離手段50は、レーザ入射光8を透過させ、レーザ出力光9を反射させて分離するものであってもよいし、また、レーザ入射光8を反射させ、レーザ出力光9を透過させて分離するものであってもよい。分離手段50は、例えば図15に示すように偏光子51と1/4波長板52で構成し得る。直線偏光のレーザ入射光8を1/4波長板52で円偏光にしてレーザ媒質3内に導入させる。レーザ入射光8は出力時、再び1/4波長板52を通過することで、レーザ出力光9はレーザ入射光8と偏光方向が直交した直線偏光の偏光方向となる。このため、偏光子51で分離可能となる。 Since the forward path and the return path of the laser beam are substantially the same, separation using the polarization of the laser beam can be performed using the separation means 50 as shown in FIG. The separating means 50 may transmit the laser incident light 8 and reflect and separate the laser output light 9. Alternatively, the separating means 50 may reflect the laser incident light 8 and transmit the laser output light 9 to be separated. You may do. The separating means 50 can be composed of a polarizer 51 and a quarter wavelength plate 52 as shown in FIG. 15, for example. The linearly polarized laser incident light 8 is circularly polarized by the quarter wavelength plate 52 and introduced into the laser medium 3. When the laser incident light 8 is output, it passes through the quarter-wave plate 52 again, so that the laser output light 9 becomes a polarization direction of linearly polarized light whose polarization direction is orthogonal to the laser incident light 8. For this reason, it becomes separable by the polarizer 51.
 また、図16に示すように分離手段50をアイソレータ54で構成してもよい。例えば、偏光子51と45度ファラデーローテータ53で構成されるアイソレータ54を通過させた後、レーザ媒質3にレーザ光を導入する。レーザ媒質3内を往復して増幅されたレーザ光はレーザ媒質3を出射し再びファラデーローテータを通過する。ファラデーローテータを通過したレーザ光は、入射光に対して偏光が90度回転するため、偏光子で入射光と分離される。入射光が偏光子を通過する場合、出力光は偏光子で反射され、入射光が偏光子で反射される場合は、出力光は偏光子を透過する。また、レーザ媒質3に導入されるレーザ光はファラデーローテータにより45度傾いた直線偏光となる。 Further, as shown in FIG. 16, the separating means 50 may be constituted by an isolator 54. For example, after passing through an isolator 54 including a polarizer 51 and a 45 degree Faraday rotator 53, laser light is introduced into the laser medium 3. The laser light amplified by reciprocating in the laser medium 3 exits the laser medium 3 and again passes through the Faraday rotator. Since the polarization of the laser light that has passed through the Faraday rotator is rotated by 90 degrees with respect to the incident light, it is separated from the incident light by the polarizer. When incident light passes through the polarizer, the output light is reflected by the polarizer, and when incident light is reflected by the polarizer, the output light passes through the polarizer. The laser light introduced into the laser medium 3 is linearly polarized light inclined by 45 degrees by the Faraday rotator.
 また、図17に示すように、図16の構成にさらにファラデーローテータ53とレーザ媒質3の間に1/2波長板55を配置しても良い。1/2波長板55により45度に傾いた直線偏光をレーザ媒質3の平板面(主面)に対し平行や直交する直線偏光にすることができる。1/2波長板は可逆性であるため、1/2波長板を通過する前の入射光と、1/2波長板55を通過した出力光は同じ偏光方向の45度傾斜した偏光方向となる。このため、1/2波長板55を配置しないときと同様に、アイソレータ54で偏光分離ができる。このように、レーザ媒質3の主面に対して平行又は直交する直線偏光としたため、例えば、レーザ媒質3が異なる偏光方向に対する利得や増幅波長が異なる場合でも、意図する増幅や、意図する波長の増幅ができる。 Further, as shown in FIG. 17, a half-wave plate 55 may be arranged between the Faraday rotator 53 and the laser medium 3 in the configuration of FIG. With the half-wave plate 55, the linearly polarized light inclined at 45 degrees can be converted into linearly polarized light that is parallel or orthogonal to the flat plate surface (main surface) of the laser medium 3. Since the half-wave plate is reversible, the incident light before passing through the half-wave plate and the output light passing through the half-wave plate 55 have the same polarization direction and a polarization direction inclined by 45 degrees. . For this reason, polarization separation can be performed by the isolator 54 as in the case where the half-wave plate 55 is not disposed. As described above, since the linearly polarized light is parallel or orthogonal to the main surface of the laser medium 3, for example, even when the laser medium 3 has different gains or different amplification wavelengths with respect to different polarization directions, Can be amplified.
 このように分離手段50を用いることで略同一の光路であるレーザ入射光とレーザ出力光を分離することができる。このような分離はレーザ発振器及びレーザ増幅のどちらの構成でも利用可能であるが、特にレーザ増幅器として用いる場合に特に有効である。 Thus, by using the separating means 50, it is possible to separate the laser incident light and the laser output light which are substantially the same optical path. Such separation can be used in both laser oscillator and laser amplification configurations, but is particularly effective when used as a laser amplifier.
 全反射膜6は、レーザ発振器として用いる場合は、レーザ発振を行う波長に対して高い反射率を設定する。例えば、レーザ媒質3の活性媒質がNdである場合には、0.9μm帯、1.06μm帯、1.3μm帯に利得あり、利得が高い順に、1.06μm帯、1.3μm帯、0.9μm帯である。ここで、0.9μm帯のレーザ発振を得たい場合には、1.0μm帯、1.3μm帯の利得が高いレーザが発振しないように、これらの波長には透過特性を持たせ、レーザ発振を行いたい波長、この場合、0.9μm帯に対して全反射特性を持たせることで所望の0.9μm帯のレーザ発振光を得ることができる。 When the total reflection film 6 is used as a laser oscillator, a high reflectance is set with respect to the wavelength for laser oscillation. For example, when the active medium of the laser medium 3 is Nd, there are gains in the 0.9 μm band, the 1.06 μm band, and the 1.3 μm band, and the 1.06 μm band, 1.3 μm band, and 0 in descending order of gain. .9 μm band. Here, when it is desired to obtain laser oscillation in the 0.9 μm band, these wavelengths have transmission characteristics so that lasers with high gain in the 1.0 μm band and 1.3 μm band do not oscillate. The desired laser oscillation light in the 0.9 μm band can be obtained by giving total reflection characteristics to the wavelength to be performed, in this case, the 0.9 μm band.
 このように、全反射膜6はレーザ発振を行いたい波長帯域に対して全反射特性があり、他の利得波長に対しては透過特性を持たせても良い。このように構成することで所望の波長のレーザ発振光が得られる等の特徴がある。同様に、レーザ増幅器として用いる場合でも、増幅を行いたいレーザ光の波長で全反射であり、他の波長に対して透過特性を持たせても良い。このように構成することで、レーザ媒質3が利得をもつ所望の波長を増幅させることができる。このため、他の波長での寄生増幅によるエネルギーの抽出がなく、高効率、高出力のレーザ増幅器が得られる As described above, the total reflection film 6 may have total reflection characteristics with respect to a wavelength band in which laser oscillation is desired, and may have transmission characteristics with respect to other gain wavelengths. With this configuration, there is a feature that laser oscillation light having a desired wavelength can be obtained. Similarly, even when used as a laser amplifier, it may be totally reflected at the wavelength of the laser beam to be amplified and may have transmission characteristics for other wavelengths. By configuring in this way, it is possible to amplify a desired wavelength at which the laser medium 3 has gain. For this reason, there is no extraction of energy by parasitic amplification at other wavelengths, and a high-efficiency, high-power laser amplifier can be obtained.
 図2は図1の固体レーザ励起モジュールを含む平面導波路型レーザ装置を紙面の下側から見た側面図である。半導体レーザ1より出力された励起光2は、レーザ媒質3の側面間を反射しながら進むレーザ光の伝播方向の両端の端面35,36の一方の端面35からレーザ媒質3に入射され、y方向に伝播しながらレーザ媒質3に吸収される。励起光2は広がりながら伝播するが、レーザ媒質3よりも低屈折率のクラッド4a,4bで反射することからz方向で互いに対向するクラッド4a,4bで閉じ込められ、y方向に伝播される。同様に反射防止膜7から入射したレーザ光はz方向ではクラッド4a,4bで反射することから、z方向ではクラッド4a,4bで閉じ込められ、xy面内に伝播される。なお、側面の一方が傾いていることでレーザ光の伝播方向は厳密には、所定方向と定義するy軸とずれるが、ここでは伝播方向はy軸と同じ方向とする。 FIG. 2 is a side view of the planar waveguide laser device including the solid-state laser excitation module of FIG. The pumping light 2 output from the semiconductor laser 1 is incident on the laser medium 3 from one end face 35 of both end faces 35 and 36 in the propagation direction of the laser light traveling while reflecting between the side faces of the laser medium 3, and is in the y direction. And is absorbed by the laser medium 3 while propagating to. The excitation light 2 propagates while spreading, but is reflected by the clads 4a and 4b having a refractive index lower than that of the laser medium 3, so that it is confined by the clads 4a and 4b facing each other in the z direction and propagates in the y direction. Similarly, since the laser light incident from the antireflection film 7 is reflected by the clads 4a and 4b in the z direction, it is confined by the clads 4a and 4b in the z direction and propagated in the xy plane. Strictly speaking, the propagation direction of the laser light is shifted from the y-axis defined as a predetermined direction because one of the side surfaces is inclined, but here the propagation direction is the same as the y-axis.
 ここで、クラッド4a,4bの外側には図示せぬ基板を接合してもよい。このように基板を接合することで剛性を向上させることができる。また、クラッド4a,4bの外側又は上記基板の外側に図示せぬヒートシンクを配置してもよい。このようにヒートシンクを配置することでレーザ媒質の温度上昇を抑えることができるので、高出力励起が可能となり高出力なレーザ光が得られる。また、レーザ媒質3が準3準位、準4準位及び3準位である場合には、温度上昇により利得が低下するため、高効率化のために温度上昇の低減が重要である。このように、クラッド4a,4bに直接ヒートシンクを接合し熱抵抗の低減を図りレーザ媒質3の温度上昇を抑えることで、高効率で高出力なレーザ光を得ることができる。 Here, a substrate (not shown) may be bonded to the outside of the clads 4a and 4b. Thus, rigidity can be improved by joining a board | substrate. Further, a heat sink (not shown) may be disposed outside the clads 4a and 4b or outside the substrate. By arranging the heat sink in this way, the temperature rise of the laser medium can be suppressed, so that high output excitation is possible and high output laser light can be obtained. In addition, when the laser medium 3 has a quasi-3 level, a quasi-4 level, and a 3 level, the gain decreases due to the temperature rise, and therefore it is important to reduce the temperature rise for high efficiency. In this way, by joining the heat sink directly to the clads 4a and 4b to reduce the thermal resistance and to suppress the temperature rise of the laser medium 3, it is possible to obtain a laser beam with high efficiency and high output.
 実施の形態2.
 図3はこの発明の実施の形態2による固体レーザ励起モジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。レーザ媒質3のxy面、すなわち主面31,32上にはそれぞれ第1のクラッド20がそれぞれ配置され、さらに各第1のクラッド20の外側に第2のクラッド4a,4bがそれぞれ配置されている。ここで、レーザ媒質3の屈折率よりも各第1のクラッド20の屈折率は低く、第1のクラッド20の屈折率よりも第2のクラッド4a,4bの屈折率が低いように構成される。励起光2は対向する第2のクラッド4a,4b間でz方向に閉じ込められ、レーザ媒質3とその両側の第1のクラッド20を合わせた部分を伝播する。一方、レーザ光は第1のクラッド20で反射するように構成されているため、レーザ媒質3を伝播する。
Embodiment 2. FIG.
3 is a side view of a planar waveguide laser device including a solid-state laser pumping module according to Embodiment 2 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. The first cladding 20 is disposed on the xy plane of the laser medium 3, that is, the main surfaces 31 and 32, respectively, and the second claddings 4 a and 4 b are disposed outside the first cladding 20. . Here, each refractive index of the first cladding 20 is lower than the refractive index of the laser medium 3, and the refractive indexes of the second claddings 4 a and 4 b are lower than the refractive index of the first cladding 20. . The pumping light 2 is confined in the z direction between the opposing second claddings 4a and 4b, and propagates through the combined portion of the laser medium 3 and the first cladding 20 on both sides thereof. On the other hand, since the laser beam is configured to be reflected by the first clad 20, it propagates through the laser medium 3.
 以上のように構成したため、固体レーザ励起モジュール100のレーザ光の伝播方向の両側の端面35a,36aにおいて、励起光2を導入する端面はレーザ媒質3とその上下の2つの第1のクラッド20を合わせた端面となる。このため、励起光2を導入する端面は大きな面積となることから、励起光2の導入が容易になる。また、図3では単層の半導体レーザ1を用いた構成例を示しているが、図18に示すようにz方向に半導体レーザを積層したスタックLD60を用いることができる。このように励起光2の導入面を広く取ることができるので、容易に側面からの励起が可能であり、また、スタックLD等のような高出力な励起源を用いることもできる。ここで、第1のクラッド20とレーザ媒質3を伝播する励起光2はレーザ媒質3を通過する際に吸収され、第1のクラッド20では吸収されずに伝播する。このように構成したことで容易に高出力励起が可能となることから、容易に高出力なレーザ光が得られる。 With the above-described configuration, the end surfaces 35a and 36a on both sides of the laser beam propagation direction of the solid-state laser excitation module 100 have the laser medium 3 and two first claddings 20 above and below it as the end surfaces to which the excitation light 2 is introduced. The combined end face. For this reason, since the end surface which introduces the excitation light 2 has a large area, the introduction of the excitation light 2 is facilitated. FIG. 3 shows a configuration example using the single-layer semiconductor laser 1, but a stack LD 60 in which semiconductor lasers are stacked in the z direction can be used as shown in FIG. Thus, since the introduction surface of the excitation light 2 can be widened, excitation from the side surface can be easily performed, and a high-output excitation source such as a stack LD can also be used. Here, the excitation light 2 propagating through the first clad 20 and the laser medium 3 is absorbed when passing through the laser medium 3, and propagates without being absorbed by the first clad 20. With this configuration, high-power excitation can be easily performed, so that high-power laser light can be easily obtained.
 なお、高出力な励起源(半導体レーザ1)としてはブロードエリアLD,アレイLD,スタックLD、シングルモードファイバ、マルチモードファイバ、ラージコアファイバ、バンドルファイバ、また、これらファイバをx方向に並べたファイバアレイ等を用いることができる。また、これら励起源をレーザ媒質3の側面33,34に近接して直接励起する構成の他に、図19に示すように励起光2をレンズ61で集光して端面35,35a(36,36a)から導入してもよい。このように構成することで励起光2のビーム径や広がり角を任意に調整できるので、クラッドで反射可能な角度に調整することができる。このため、高効率に励起光をレーザ媒質3に吸収させることができるため高効率で高出力のレーザ光が得られる。 As a high output pump source (semiconductor laser 1), a broad area LD, an array LD, a stack LD, a single mode fiber, a multimode fiber, a large core fiber, a bundle fiber, or a fiber in which these fibers are arranged in the x direction. An array or the like can be used. Further, in addition to the configuration in which these excitation sources are directly excited close to the side surfaces 33 and 34 of the laser medium 3, the excitation light 2 is condensed by the lens 61 as shown in FIG. It may be introduced from 36a). By configuring in this way, the beam diameter and divergence angle of the excitation light 2 can be arbitrarily adjusted, so that the angle can be adjusted to reflect by the clad. For this reason, since the excitation light can be absorbed by the laser medium 3 with high efficiency, high-efficiency and high-power laser light can be obtained.
 また、図20に示すように複数のレンズ61で構成されるレンズ群62で励起光2のビーム径や広がり角を調整しても良い。このような複数のレンズ61により、収差による励起光の広がりを最小限にすることができるので、より高効率で端面から励起光を導入できる。このため、高効率で高出力なレーザ光が得られる。 Further, as shown in FIG. 20, the beam diameter and divergence angle of the excitation light 2 may be adjusted by a lens group 62 including a plurality of lenses 61. Such a plurality of lenses 61 can minimize the spread of the excitation light due to the aberration, so that the excitation light can be introduced from the end face with higher efficiency. For this reason, high-efficiency and high-power laser light can be obtained.
 また、図21に示すようにスタックLD60から出力される励起光2をそれぞれマイクロレンズアレイ63で平行化した後、レンズ61で一括集光してもよい。このように構成することでより高出力な励起光2をレーザ媒質3に導入することができるので、より高出力なレーザ光が得られる。 Further, as shown in FIG. 21, the excitation light 2 output from the stack LD 60 may be collimated by the microlens array 63 and then collectively collected by the lens 61. With such a configuration, the pumping light 2 with higher output can be introduced into the laser medium 3, so that laser light with higher output can be obtained.
 また、図22に示すように平行化した励起光2をテーパーのついたスラブ導波路64の幅の広い面から導入して、幅の狭い面から出力することで、断面積を縮小した励起光2を用いてもよい。このように構成することでより高出力な励起光2をレーザ媒質3に導入することができるので、より高出力なレーザ光が得られる。 Also, as shown in FIG. 22, the pump light 2 that has been collimated is introduced from the wide surface of the tapered slab waveguide 64 and output from the narrow surface, thereby reducing the cross-sectional area. 2 may be used. With such a configuration, the pumping light 2 with higher output can be introduced into the laser medium 3, so that laser light with higher output can be obtained.
 また、図23に示すように広がり角の大きい励起光2をテーパーのついたスラブ導波路64の幅の狭い面から導入して、幅の広い面から出力することで、広がり角を小さくした励起光2を用いてもよい。このように構成することで、励起光2をクラッド20で反射可能な角度に調整することができる。このため、高効率に励起光をレーザ媒質3に吸収させることができるため高効率で高出力なレーザ光が得られる。 Further, as shown in FIG. 23, excitation light 2 having a large divergence angle is introduced from a narrow surface of a tapered slab waveguide 64 and output from a wide surface, thereby reducing the divergence angle. Light 2 may be used. With this configuration, the excitation light 2 can be adjusted to an angle that can be reflected by the clad 20. For this reason, since the excitation light can be absorbed by the laser medium 3 with high efficiency, high-efficiency and high-power laser light can be obtained.
 実施の形態3.
 図4はこの発明の実施の形態3による固体レーザ励起モジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。レーザ媒質3のxy面の片面、すなわち主面31上に第1のクラッド20を配置し、第1のクラッド20の外側に第2のクラッド4aを配置する。また、レーザ媒質3の第1のクラッド20と反対側の主面32上に第2のクラッド4bを配置する。このように構成することで、励起光2はレーザ媒質3と第1のクラッド20間を伝播し、レーザ光はレーザ媒質3を伝播する。
Embodiment 3 FIG.
4 is a side view of a planar waveguide laser device including a solid-state laser pumping module according to Embodiment 3 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. The first clad 20 is disposed on one side of the xy plane of the laser medium 3, that is, the main surface 31, and the second clad 4 a is disposed outside the first clad 20. In addition, the second clad 4 b is disposed on the main surface 32 of the laser medium 3 opposite to the first clad 20. With this configuration, the excitation light 2 propagates between the laser medium 3 and the first cladding 20, and the laser light propagates through the laser medium 3.
 また、励起光2は第1のクラッド20とレーザ媒質3を合わせた端面から導入できるので、端面が拡大されるので容易に高出力な励起が可能となり、容易に高出力なレーザ光が得られる。さらに、第2のクラッド4の下面に図示せぬヒートシンクを接合することで、レーザ媒質3の温度上昇を低減できる。このように第1のクラッド20や基板等の材料を挟まずに第2のクラッド4bを直接ヒートシンクに接合しているため、熱抵抗を著しく下げることが可能であり、レーザ媒質3の温度上昇を抑えることができる。このため、より高効率で高出力なレーザ光を得ることができる。 Further, since the pumping light 2 can be introduced from the end face where the first clad 20 and the laser medium 3 are combined, the end face is enlarged, so that high-power pumping can be easily performed, and high-power laser light can be easily obtained. . Furthermore, the temperature rise of the laser medium 3 can be reduced by bonding a heat sink (not shown) to the lower surface of the second cladding 4. As described above, since the second cladding 4b is directly bonded to the heat sink without sandwiching materials such as the first cladding 20 and the substrate, the thermal resistance can be remarkably lowered, and the temperature rise of the laser medium 3 can be reduced. Can be suppressed. For this reason, a laser beam with higher efficiency and higher output can be obtained.
 実施の形態4.
 図5はこの発明の実施の形態4による固体レーザ励起モジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。ここでは一例として図4に示した、レーザ媒質3のxy面の片方の面、すなわち主面31上に第1のクラッド20を配置し、第1のクラッド20の外側に第2のクラッド4aを配置し、またレーザ媒質3の第1のクラッド20と反対側の主面32上に第2のクラッド4bを配置する構成に適用した例を示した。なお、図2に示すようにレーザ媒質3の主面31,32上にそれぞれ第2のクラッド4a,4bを接合する構成に適用しても良い。さらに、図示せぬ基板やヒートシンクを配置しても良い。また、図3に示すようにレーザ媒質3の主面31,32上にそれぞれ第1のクラッド20を配置した構成に適用しても良い。さらに、図示せぬ基板やヒートシンクを配置しても良い。
Embodiment 4 FIG.
5 is a side view of a planar waveguide laser device including a solid-state laser pumping module according to Embodiment 4 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. Here, as an example, the first clad 20 is disposed on one surface of the xy plane of the laser medium 3, that is, the main surface 31, as shown in FIG. 4, and the second clad 4 a is disposed outside the first clad 20. In this example, the second clad 4b is disposed on the main surface 32 opposite to the first clad 20 of the laser medium 3. In addition, as shown in FIG. 2, you may apply to the structure which joins the 2nd clads 4a and 4b on the main surfaces 31 and 32 of the laser medium 3, respectively. Furthermore, you may arrange | position the board | substrate and heat sink which are not shown in figure. Further, as shown in FIG. 3, the present invention may be applied to a configuration in which the first clad 20 is disposed on the main surfaces 31 and 32 of the laser medium 3. Furthermore, you may arrange | position the board | substrate and heat sink which are not shown in figure.
 この実施の形態では、固体レーザ励起モジュール100の上記所定方向(y軸方向)の両端の端面35a,36aのうち、少なくとも励起光2を導入するレーザ媒質3と第1のクラッド20の端面を、yz面(レーザ媒質3の主面31,32に垂直で上記所定方向に沿った面)内で傾斜させるように構成する。励起光2は端面35a,36aから導入され、第2のクラッド4a,4b間を伝播しながらレーザ媒質3を通過する際に吸収される。ここで、端面35a,36aをyz面内で傾斜させたため、対向する2つの端面35a,36aとレーザ媒質3との間、又は端面35a,36aと第1のクラッド20との間、又は端面35a,36aと第2のクラッド4a,4bとの間を全反射で閉じ込める寄生発振パスをなくすことができる。このように、端面35a,36aを傾斜させたことでyz面内での寄生発振がなく、寄生増幅パス長も短くすることができるので、高出力励起時に寄生発振や寄生増幅によるエネルギーの抽出が小さく、利得の減少が小さいことから高出力なレーザ光が得られる。 In this embodiment, among the end faces 35a and 36a at both ends in the predetermined direction (y-axis direction) of the solid-state laser excitation module 100, at least the end faces of the laser medium 3 for introducing the excitation light 2 and the first cladding 20 are used. It is configured to be inclined in the yz plane (a plane perpendicular to the main surfaces 31 and 32 of the laser medium 3 and along the predetermined direction). The excitation light 2 is introduced from the end faces 35a and 36a and is absorbed when passing through the laser medium 3 while propagating between the second claddings 4a and 4b. Here, since the end surfaces 35a and 36a are inclined in the yz plane, the two end surfaces 35a and 36a facing each other and the laser medium 3, or between the end surfaces 35a and 36a and the first cladding 20, or the end surface 35a. , 36a and the second clad 4a, 4b can be eliminated by a parasitic oscillation path confined by total reflection. As described above, since the end faces 35a and 36a are inclined, there is no parasitic oscillation in the yz plane and the parasitic amplification path length can be shortened. Therefore, energy extraction by parasitic oscillation and parasitic amplification can be performed during high output excitation. Since it is small and gain reduction is small, a high-power laser beam can be obtained.
 実施の形態5.
 図6はこの発明の実施の形態5による固体レーザ励起モジュールを含む平面導波路型レーザ装置の図2と同じ方向から見た側面図である。上面から見た構成は基本的に図1のものと同じである。図6では図5と同様、一例として図4に示した構成に適用した場合を示した。固体レーザ励起モジュール100の構成は図5のものと同じであるが、励起光2を導入する半導体レーザ1の位置が異なる。なお実施の形態4と同様に、図2、図3に示す構成に適用することも可能である。また基板やヒートシンクを配置してもよい。
Embodiment 5 FIG.
6 is a side view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 5 of the present invention, viewed from the same direction as FIG. The configuration viewed from above is basically the same as that of FIG. FIG. 6 shows a case where the present invention is applied to the configuration shown in FIG. 4 as an example, as in FIG. The configuration of the solid-state laser excitation module 100 is the same as that of FIG. 5, but the position of the semiconductor laser 1 that introduces the excitation light 2 is different. Note that, similarly to the fourth embodiment, the present invention can be applied to the configurations shown in FIGS. Further, a substrate or a heat sink may be arranged.
 実施の形態4と同様、固体レーザ励起モジュール100の端面35a,36aのうち、少なくとも励起光2を反射させるレーザ媒質3と第1のクラッド20の端面を、yz面内で傾斜させるように構成されている。半導体レーザ1は励起光2を第2のクラッド4aのxy面(固体レーザ励起モジュール100の最外面)から導入するように配置されている。第1のクラッド4aのxy面から導入された励起光2は、傾斜した端面で反射される。反射した励起光2はレーザ媒質3と第2のクラッド4aを伝播し、伝播しながらレーザ媒質3を通過する際に吸収される。このように励起光2をxy面から導入し傾斜させた端面に反射させるように構成したため、端面の傾斜角度を大きく傾斜させることができる。例えば、45度の角度にすることができる。このように傾斜角度を45度前後に大きくしたため、レーザ媒質3内で発生した自然放出光が端面で全反射した場合、第2のクラッド4a,4bでは全反射することができずに透過する。このため、寄生発振は発生せず、寄生増幅パスもレーザ媒質3を1往復できない。したがって、より高い励起出力を導入しても寄生発振や寄生増幅によるエネルギーの抽出が小さく、利得の減少が小さいことから高出力なレーザ光が得られる。 As in the fourth embodiment, of the end faces 35a and 36a of the solid-state laser excitation module 100, at least the laser medium 3 that reflects the excitation light 2 and the end face of the first cladding 20 are configured to be inclined in the yz plane. ing. The semiconductor laser 1 is disposed so as to introduce the excitation light 2 from the xy plane of the second cladding 4a (the outermost surface of the solid-state laser excitation module 100). The excitation light 2 introduced from the xy plane of the first cladding 4a is reflected by the inclined end surface. The reflected excitation light 2 propagates through the laser medium 3 and the second cladding 4a and is absorbed when passing through the laser medium 3 while propagating. Since the excitation light 2 is thus introduced from the xy plane and reflected by the inclined end face, the inclination angle of the end face can be greatly inclined. For example, the angle can be 45 degrees. Since the inclination angle is increased to about 45 degrees in this way, when the spontaneous emission light generated in the laser medium 3 is totally reflected by the end face, it is not totally reflected by the second claddings 4a and 4b but is transmitted. For this reason, parasitic oscillation does not occur, and the parasitic amplification path cannot reciprocate the laser medium 3 once. Therefore, even when a higher pumping power is introduced, extraction of energy due to parasitic oscillation or parasitic amplification is small, and gain reduction is small, so that high-power laser light can be obtained.
 実施の形態6.
 図7はこの発明の実施の形態6による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。図8は図7の破線で示した領域Cの拡大図であり、y軸方向の縮尺を拡大している。図7の固体レーザ励起モジュール100では図1のモジュール100と比べ、傾斜角度θ1が付けられた側面33と所定方向(y軸方向)に沿って延びる側面34の位置が入れ替えられており、さらに側面33側の側面間隔が広い側の一部に反射防止膜7が設けられている。反射防止膜7からレーザ媒質3内に入射したレーザ反射光10は、対向する側面33,34間で反射を繰り返すことで、反射角が側面に対して垂直に近づいていく。折り返し直前のレーザ反射光10の側面33又は側面34への入射角が0ではないように、すなわち入射光が側面に垂直ではないようにレーザ入射光8の反射防止膜7への入射角度を調整することで、往路と復路では光路が重ならないようにすることができる。
Embodiment 6 FIG.
FIG. 7 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 6 of the present invention. FIG. 8 is an enlarged view of a region C indicated by a broken line in FIG. 7, and the scale in the y-axis direction is enlarged. In the solid-state laser excitation module 100 of FIG. 7, the position of the side surface 33 attached with the inclination angle θ1 and the side surface 34 extending along the predetermined direction (y-axis direction) is interchanged as compared with the module 100 of FIG. An antireflection film 7 is provided on a part of the side on the 33 side where the side surface interval is wide. The laser reflected light 10 incident on the laser medium 3 from the antireflection film 7 is repeatedly reflected between the side surfaces 33 and 34 facing each other, so that the reflection angle approaches perpendicular to the side surface. The incident angle of the laser incident light 8 on the antireflection film 7 is adjusted so that the incident angle of the laser reflected light 10 immediately before turning back to the side surface 33 or the side surface 34 is not 0, that is, the incident light is not perpendicular to the side surface. By doing so, it is possible to prevent the optical paths from overlapping on the forward path and the return path.
 ここで図8に示すように、折り返し時のレーザ反射光10の側面34と側面33での入射角と反射角の和がそれぞれθ1のとき、往路と復路で光路が反転する。このように構成することで、往路で通過していないレーザ媒質3上を復路で通過することができるので、ビームオーバーラップ効率が向上しレーザ発振器及びレーザ増幅器の効率が向上し、高出力なレーザ光が得られる。また、レーザ光により効率的にエネルギーの抽出を行うことができるので、レーザ媒質3に残存する利得が小さくなることから寄生発振や寄生増幅が起こり難くなる。このため、より高出力な励起をおこなうことが可能であり、より高出力なレーザ光を得ることができる。 Here, as shown in FIG. 8, when the sum of the incident angle and the reflection angle at the side surface 34 and the side surface 33 of the laser reflected light 10 at the time of turning is θ1, the optical path is inverted between the forward path and the return path. With this configuration, the laser medium 3 that does not pass in the forward path can pass through the return path, so that the beam overlap efficiency is improved, the efficiency of the laser oscillator and the laser amplifier is improved, and the high output laser Light is obtained. In addition, since energy can be extracted efficiently with laser light, the gain remaining in the laser medium 3 is reduced, so that parasitic oscillation and parasitic amplification are less likely to occur. For this reason, it is possible to perform excitation with higher output, and it is possible to obtain laser light with higher output.
 この構成によれば、レーザ媒質3内でのレーザ反射光10の往路と復路が同じではないため、レーザ入射光8とレーザ出力光9の光路も同一ではない。このため、レーザ入射光8とレーザ出力光9は空間的に分離が容易となることから偏光分離手段を用いる必要がない。このため、特にレーザ増幅器において構成部材を低減可能であり、信頼性も向上する。 According to this configuration, since the forward path and the return path of the laser reflected light 10 in the laser medium 3 are not the same, the optical paths of the laser incident light 8 and the laser output light 9 are not the same. For this reason, since the laser incident light 8 and the laser output light 9 are spatially easily separated, it is not necessary to use a polarization separation means. For this reason, it is possible to reduce the number of components, particularly in a laser amplifier, and the reliability is also improved.
 実施の形態7.
 図9はこの発明の実施の形態7による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。図9の固体レーザ励起モジュール100では、側面33上の側面間隔が広い側の一部にレーザ光を透過する反射防止膜7が施されており、その他部分にはレーザ光を反射し励起光2を透過させる狭帯域反射膜30が施されている。また側面34上には全体に狭帯域反射膜30が施されている。そして側面側にも2対の半導体レーザ1が設けられている。これにより励起光2はレーザ媒質3の端面35,36のみならず、側面33,34からも導入される。
Embodiment 7 FIG.
FIG. 9 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 7 of the present invention. In the solid-state laser excitation module 100 of FIG. 9, the antireflection film 7 that transmits the laser light is provided on a part of the side surface 33 on which the side surface interval is wide, and the other part reflects the laser light and emits the excitation light 2. A narrow-band reflective film 30 that transmits light is applied. A narrow band reflecting film 30 is provided on the entire side surface 34. Two pairs of semiconductor lasers 1 are also provided on the side surface side. As a result, the excitation light 2 is introduced not only from the end faces 35 and 36 of the laser medium 3 but also from the side faces 33 and 34.
 狭帯域反射膜30は、例えばレーザ媒質がNd:YAGである場合には、1064nmのレーザ光を反射し、808nm又は880nmの励起光2を透過するように設計される。このような特性の膜は誘電体膜を積層することで製作することが可能である。このようにレーザ媒質3のxy面の四方から励起を行う構成としたため、より高出力な励起が可能であり、より高出力なレーザ光を得ることができる。 For example, when the laser medium is Nd: YAG, the narrow-band reflecting film 30 is designed to reflect the 1064 nm laser beam and transmit the 808 nm or 880 nm excitation light 2. A film having such characteristics can be manufactured by laminating dielectric films. Thus, since it was set as the structure which pumps from four directions of the xy plane of the laser medium 3, higher output pumping is possible and a higher output laser beam can be obtained.
 実施の形態8.
 図10はこの発明の実施の形態8による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。図10の固体レーザ励起モジュール100では、側面33の反射防止膜7と対向する側面34の一部に反射防止膜7aが配置されている。反射防止膜7aはレーザ光を透過させる膜である。反射防止膜7からレーザ媒質3内に導入されたレーザ光は側面33,34間を反射しながら伝播する。ここで、往路と復路では同じ光路にならないようにレーザ入射光8の角度を調整している。このため、復路を伝播してきたレーザ光が波反射防止膜7から出力せずに、対向する側面34の反射防止膜7aから出力される。
Embodiment 8 FIG.
FIG. 10 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 8 of the present invention. In the solid-state laser excitation module 100 of FIG. 10, the antireflection film 7 a is disposed on a part of the side surface 34 facing the antireflection film 7 on the side surface 33. The antireflection film 7a is a film that transmits laser light. Laser light introduced from the antireflection film 7 into the laser medium 3 propagates while being reflected between the side surfaces 33 and 34. Here, the angle of the laser incident light 8 is adjusted so that the same optical path is not used in the forward path and the return path. For this reason, the laser beam propagating along the return path is not output from the wave antireflection film 7 but is output from the antireflection film 7 a on the opposite side surface 34.
 このように、レーザ入射光8とレーザ出力光9の位置を分離したため、レーザ増幅器の場合にはレーザ入射光とレーザ出力光の分離が容易である。また、レーザ発振器の場合には、レーザ媒質3を通過して増幅したレーザ出力光9を別のレーザ媒質3もしくは固体レーザ励起モジュール100に入力してさらにて増幅することができる。これにより1つのレーザ発振器の共振器内に複数のレーザ媒質もしくは固体レーザ励起モジュールを容易に配置することができ、より高出力なレーザ光が得られる。 As described above, since the positions of the laser incident light 8 and the laser output light 9 are separated, in the case of a laser amplifier, it is easy to separate the laser incident light and the laser output light. In the case of a laser oscillator, the laser output light 9 that has been amplified through the laser medium 3 can be input to another laser medium 3 or the solid-state laser excitation module 100 for further amplification. As a result, a plurality of laser media or solid-state laser excitation modules can be easily arranged in the resonator of one laser oscillator, and higher-power laser light can be obtained.
 実施の形態9.
 図11はこの発明の実施の形態9による平面導波路型レーザ装置の固体レーザ励起モジュールの上面図である。図11の固体レーザ励起モジュール100で使用される励起光2は、例えばファイバ出力光をコリメートレンズ(共に図示省略)で平行化した光である。励起光2は一般には半導体レーザ光をファイバに結合して製作される。又はファイバレーザ光(図示省略)の出力を用いてもよい。励起光2とレーザ入射光8は略同一の光路でレーザ媒質3の反射防止膜7から導入される。
Embodiment 9 FIG.
FIG. 11 is a top view of a solid-state laser excitation module of a planar waveguide laser device according to Embodiment 9 of the present invention. The pumping light 2 used in the solid-state laser pumping module 100 in FIG. 11 is, for example, light obtained by collimating fiber output light with a collimating lens (both not shown). The pumping light 2 is generally manufactured by coupling a semiconductor laser beam to a fiber. Alternatively, the output of fiber laser light (not shown) may be used. The excitation light 2 and the laser incident light 8 are introduced from the antireflection film 7 of the laser medium 3 through substantially the same optical path.
 反射防止膜7を介してレーザ媒質3内に入射された励起光2は、レーザ光と同じように対向する側面33,34間を伝播しレーザ媒質3内で折り返される。このように構成することで、励起光2のレーザ媒質3内での伝播光路を長くとることができるので、高効率で励起光2をレーザ媒質3に吸収させることができ、高効率で高出力なレーザ光が得られる。ここで、レーザ活性媒質が準3準位、準4準位、3準位の場合には下準位吸収のため、未励起時にはレーザ光に対する吸収がある。このため、レーザ媒質3にレーザ光に対する利得を発生させるために高密度励起が必要となる。言い換えれば、レーザ媒質3内に活性媒質が多く含まれる場合には、レーザ光に対する利得を発生させるために高出力の励起光2が必要である。レーザ媒質3内の活性媒質が少ない場合には、レーザ光に対する利得を発生させるための励起出力は少なくてよい。 The excitation light 2 incident on the laser medium 3 through the antireflection film 7 propagates between the side surfaces 33 and 34 facing each other in the same manner as the laser light and is folded back in the laser medium 3. By configuring in this way, the propagation optical path of the pumping light 2 in the laser medium 3 can be made long, so that the pumping light 2 can be absorbed by the laser medium 3 with high efficiency and with high efficiency and high output. Laser beam can be obtained. Here, when the laser active medium is a quasi-3 level, a quasi-4 level, or a 3 level, it absorbs the laser beam when it is not excited because of the lower level absorption. For this reason, high-density excitation is required to generate a gain for the laser light in the laser medium 3. In other words, when the laser medium 3 contains a large amount of active medium, the high-power excitation light 2 is necessary to generate a gain for the laser light. When the number of active media in the laser medium 3 is small, the excitation output for generating a gain for the laser light may be small.
 一方、レーザ媒質が少ない、つまり、活性媒質が低濃度のレーザ媒質3の場合には、励起光2の吸収係数も減少することから、吸収率を一定に保つためには吸収長を長くする必要がある。上記構成によれば、励起光2は傾斜した側面をもつ側面間で往復伝播するため吸収長が長い。このため、低濃度のレーザ媒質3を用いた場合でも励起光2の高い吸収率を得ることができる。このように、低濃度のレーザ媒質3を用いたため、下準位吸収による励起光2の損失が小さく、高効率で高出力なレーザ光が得られる。また、低濃度のレーザ媒質3では利得を発生させる活性媒質が少ないため、レーザ光に対する利得も小さいが、上記構成ではレーザ光は傾斜した側面をもつ側面間で往復伝播されるため、レーザ光の伝播長が長い。このため、単位長さあたりのレーザ媒質3の利得が小さい場合でも高効率に高出力なレーザ光が得られる。 On the other hand, when the laser medium is small, that is, when the active medium is a low-concentration laser medium 3, the absorption coefficient of the excitation light 2 also decreases. Therefore, in order to keep the absorption rate constant, it is necessary to increase the absorption length. There is. According to the said structure, since the excitation light 2 reciprocates between the side surfaces which have the inclined side surface, absorption length is long. For this reason, even when a low-concentration laser medium 3 is used, a high absorption rate of the excitation light 2 can be obtained. As described above, since the low-concentration laser medium 3 is used, the loss of the pumping light 2 due to lower level absorption is small, and high-efficiency and high-power laser light is obtained. In addition, since the low-concentration laser medium 3 has a small number of active media that generate gain, the gain for the laser light is small. However, in the above configuration, the laser light is reciprocally propagated between the side surfaces having the inclined side surfaces. Long propagation length. For this reason, even when the gain of the laser medium 3 per unit length is small, high-efficiency and high-power laser light can be obtained.
 実施の形態10.
 図12はこの発明の実施の形態10による固体レーザ励起モジュールを含む平面導波路型レーザ装置の上面図である。図12の固体レーザ励起モジュール100では、レーザ媒質3は4角形ではなく、側面33は反射防止膜7を設けた部分が全反射膜6が設けられた部分に対してxy面内で角度が付けられている(傾斜している)。ここで、側面33の反射防止膜7を設けた部分は、往復光路で略同一な光路を持つレーザ反射光10のレーザ入射光とレーザ出力光が反射防止膜7に対して垂直になるよう角度が付けられている。
Embodiment 10 FIG.
12 is a top view of a planar waveguide laser device including a solid-state laser excitation module according to Embodiment 10 of the present invention. In the solid-state laser excitation module 100 of FIG. 12, the laser medium 3 is not rectangular, and the side surface 33 is angled in the xy plane with respect to the portion where the antireflection film 7 is provided and the portion where the total reflection film 6 is provided. Is (tilted). Here, the portion provided with the antireflection film 7 on the side surface 33 is at an angle such that the laser incident light and the laser output light of the laser reflected light 10 having substantially the same optical path in the reciprocating optical path are perpendicular to the antireflection film 7. Is attached.
 また、波長変換素子40がレーザ媒質3の外側で反射防止膜7に近接して配置されている。波長変換素子40は非線形光学材料であり、例えば、周期的分極反転LuNb3(PPLN)や、LBO等の非線形光学材料であっても良い。波長変換素子40のレーザ光等の伝播方向の両端の端面には、入力側に入射膜42、出力側に出力膜41がそれぞれ設けられている。出力膜41は、レーザ媒質3で増幅される波長のレーザ光に対し反射特性を示し、波長変換光に対し透過特性を示す。また、反射防止膜7側の入射膜42は、レーザ光の波長及び波長変換光に対しても透過特性を示す。このように構成したことで、レーザ光は出力膜41とレーザ媒質3内の往復光路で閉じ込められる。レーザ光が波長変換素子40を通過する際に波長変換され、レーザ媒質3で増幅されるレーザ光と他の波長の波長変換レーザ光43が得られる。波長変換レーザ光43は入射膜42で反射され出力膜41を透過し出力される。 Further, the wavelength conversion element 40 is disposed outside the laser medium 3 and close to the antireflection film 7. The wavelength conversion element 40 is a nonlinear optical material, and may be a nonlinear optical material such as periodic polarization inversion LuNb 3 (PPLN) or LBO, for example. An incident film 42 is provided on the input side, and an output film 41 is provided on the output side on the end faces of both ends of the wavelength conversion element 40 in the propagation direction of laser light or the like. The output film 41 exhibits reflection characteristics with respect to laser light having a wavelength amplified by the laser medium 3, and exhibits transmission characteristics with respect to wavelength converted light. Further, the incident film 42 on the antireflection film 7 side also shows transmission characteristics with respect to the wavelength of the laser light and the wavelength converted light. With this configuration, the laser light is confined by the reciprocating optical path in the output film 41 and the laser medium 3. When the laser light passes through the wavelength conversion element 40, the wavelength is converted, and the laser light amplified by the laser medium 3 and the wavelength conversion laser light 43 of other wavelengths are obtained. The wavelength conversion laser beam 43 is reflected by the incident film 42 and transmitted through the output film 41 to be output.
 このように例えばレーザ共振器内で、上記構成のレーザ媒質3に波長変換素子40を組み合わせて配置して内部波長変換方式とする。レーザ媒質3では往復光路長が長く、寄生発振や寄生増幅が起こらないことから、高出力励起が可能であり、高効率で高出力なレーザ光が得られる。また、内部波長変換方式により波長変換されたレーザ光が出力され、変換されなかったレーザ光は再びレーザ媒質3を往復伝播して増幅される。このため、高効率で高出力な波長変換出力が得られる。ここで、波長変換は、レーザ光の波長を1/2にする2次高調波の発生でも良いし、1/3の波長にする3次高調波の発生でもよい。また、光パラメトリックによりレーザ光の波長よりも長波長に変換しても良い。 In this way, for example, in the laser resonator, the wavelength conversion element 40 is arranged in combination with the laser medium 3 having the above-described configuration to obtain an internal wavelength conversion method. Since the laser medium 3 has a long reciprocal optical path length and no parasitic oscillation or parasitic amplification occurs, high-power excitation is possible, and high-efficiency and high-power laser light can be obtained. Further, laser light that has been wavelength-converted by the internal wavelength conversion method is output, and the laser light that has not been converted is again propagated back and forth through the laser medium 3 and amplified. For this reason, highly efficient and high output wavelength conversion output can be obtained. Here, the wavelength conversion may be the generation of the second harmonic that makes the wavelength of the laser light ½, or the generation of the third harmonic that makes the wavelength 1 /. Further, it may be converted into a wavelength longer than the wavelength of the laser beam by optical parametric.
産業上の利用の可能性Industrial applicability
 この発明による平面導波路型レーザ装置のための固体レーザ励起モジュールは、多くの分野で使用されているレーザ発振器やレーザ増幅器に適用可能である。 The solid-state laser excitation module for a planar waveguide laser device according to the present invention can be applied to laser oscillators and laser amplifiers used in many fields.
 1 半導体レーザ、2 励起光、3 レーザ媒質、4a,4b,20 クラッド、6 全反射膜、7,7a 波反射防止膜、8 レーザ入射光、9 レーザ出力光、10 レーザ反射光、30 狭帯域反射膜、31,32 側面33,34 側面、35,36 端面、40 波長変換素子 41出力膜、42 入射膜、43 波長変換レーザ光、50 分離手段、51 偏光子、52 1/4波長板、53 ファラデーローテータ、54 アイソレータ、55 1/2波長板、60 スタックLD、61 レンズ、62 レンズ群、63 マイクロレンズアレイ、64 スラブ導波路、100 固体レーザ励起モジュール。 1 semiconductor laser, 2 excitation light, 3 laser medium, 4a, 4b, 20 clad, 6 total reflection film, 7, 7a wave antireflection film, 8 laser incident light, 9 laser output light, 10 laser reflected light, 30 narrow band Reflective film, 31 and 32, side surfaces 33 and 34, side surfaces, 35 and 36, end face, 40 wavelength conversion element 41 output film, 42 incident film, 43 wavelength conversion laser light, 50 separation means, 51 polarizer, 52 1/4 wavelength plate, 53 Faraday rotator, 54 isolator, 55 1/2 wavelength plate, 60 stack LD, 61 lens, 62 lens group, 63 microlens array, 64 slab waveguide, 100 solid laser excitation module.

Claims (12)

  1.  導入されたレーザ光を一対の側面間を反射させながら前記側面に沿った方向に伝播させその間に増幅させる平板状のレーザ媒質を備え、前記一対の側面の一方の側面が所定方向に沿って延びる他方の側面との間隔が徐々に広がるように前記所定方向に対して所定のテーパー角度で傾斜しており、前記一対の側面の側面間隔の広い側の所定箇所から前記レーザ媒質内に導入されたレーザ光を側面間を反射させながら前記レーザ媒質内を伝播させ、さらに前記レーザ媒質内の側面間隔が狭い側で折り返させて再び側面間隔が広い側に伝播させて出力させることを特徴とする平面導波路型レーザ装置のための固体レーザ励起モジュール。 A flat plate-shaped laser medium that propagates the introduced laser beam in a direction along the side surface while reflecting between the pair of side surfaces and amplifies the laser beam between the two sides is provided, and one side surface of the pair of side surfaces extends in a predetermined direction Inclined at a predetermined taper angle with respect to the predetermined direction so that the distance from the other side surface gradually increases, and is introduced into the laser medium from a predetermined location on the wide side of the pair of side surfaces. A plane characterized by propagating a laser beam through the laser medium while reflecting between the side surfaces, and further folding back the laser beam on the side having a narrow side surface spacing and propagating again to the side having a large side surface spacing. Solid-state laser excitation module for a waveguide laser device.
  2.  前記レーザ媒質が、前記所定方向に沿って対向する一対の主面、前記主面の両側の前記一対の側面及び前記所定方向の両端の対向する一対の端面を有し、
     さらに、
     前記一対の側面上の側面間隔が広い側の少なくとも1カ所に設けられた少なくとも前記レーザ光を透過させる反射防止膜と、
     前記反射防止膜以外の前記一対の側面上に設けられたレーザ光を反射させる全反射膜と、
     前記レーザ媒質を励起させるために導入される励起光と、
     を備えたことを特徴とする請求項1に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。
    The laser medium has a pair of main surfaces facing along the predetermined direction, the pair of side surfaces on both sides of the main surface, and a pair of end surfaces facing both ends in the predetermined direction,
    further,
    An antireflection film that transmits at least the laser beam provided in at least one place on the wide side of the pair of side surfaces;
    A total reflection film that reflects laser light provided on the pair of side surfaces other than the antireflection film, and
    Excitation light introduced to excite the laser medium;
    The solid-state laser excitation module for a planar waveguide laser device according to claim 1, comprising:
  3.  前記レーザ媒質の主面に垂直な方向に導波路を形成するために前記一対の主面上にそれぞれ配置された一対のクラッドを備え、主面に垂直の方向では前記レーザ光と前記励起光は前記一対のクラッド間のレーザ媒質を伝播することを特徴とする請求項2に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 In order to form a waveguide in a direction perpendicular to the main surface of the laser medium, the laser medium includes a pair of clads disposed on the pair of main surfaces, and in the direction perpendicular to the main surface, the laser light and the excitation light are The solid-state laser excitation module for a planar waveguide laser device according to claim 2, wherein the laser medium propagates between the pair of clads.
  4.  前記レーザ媒質の前記一対の主面上にそれぞれ配置された一対の第1のクラッドと、
     前記一対の第1のクラッドのそれぞれ外側に配置された一対の第2のクラッドと、
     を備え、前記レーザ光は前記一対の第1のクラッドの間の前記レーザ媒質を伝播し、前記励起光は前記一対の第2のクラッドの間の前記一対の第1のクラッド及び前記レーザ媒質を伝播することを特徴とする請求項2に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。
    A pair of first clads respectively disposed on the pair of main surfaces of the laser medium;
    A pair of second claddings disposed respectively outside the pair of first claddings;
    The laser light propagates through the laser medium between the pair of first clads, and the excitation light passes through the pair of first clads and the laser medium between the pair of second clads. The solid-state laser excitation module for a planar waveguide laser device according to claim 2, wherein the solid-state laser excitation module propagates.
  5.  前記レーザ媒質の前記一対の主面の一方の主面上に配置された第1のクラッドと、
     前記第1のクラッドと前記一対の主面の他方の主面上にそれぞれ配置された一対の第2のクラッドと、
     を備え、前記レーザ光は前記第1のクラッドと前記一対の第2のクラッドの一方の間の前記レーザ媒質を伝播し、前記励起光は前記一対の第2のクラッドの間の前記第1のクラッド及び前記レーザ媒質を伝播することを特徴とする請求項2に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。
    A first clad disposed on one main surface of the pair of main surfaces of the laser medium;
    A pair of second clads respectively disposed on the other main surface of the first clad and the pair of main surfaces;
    The laser light propagates through the laser medium between one of the first clad and the pair of second clads, and the excitation light passes through the first clad between the pair of second clads. The solid-state laser excitation module for a planar waveguide laser device according to claim 2, wherein the solid-state laser excitation module propagates through the cladding and the laser medium.
  6.  前記固体レーザ励起モジュールの前記所定方向の両端の一対の端面のうち前記励起光を導入する部分が、前記レーザ媒質の主面に垂直で前記所定方向に沿った面内で傾斜しており、前記傾斜した端面から励起光を導入することを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 Of the pair of end faces at both ends in the predetermined direction of the solid-state laser excitation module, the portion for introducing the excitation light is inclined in a plane perpendicular to the main surface of the laser medium and along the predetermined direction, 6. The solid-state laser excitation module for a planar waveguide laser device according to claim 2, wherein excitation light is introduced from an inclined end face.
  7.  前記固体レーザ励起モジュールの前記所定方向の両端の一対の端面のうち前記励起光を導入する部分が、前記レーザ媒質の主面に垂直で前記所定方向に沿った面内で傾斜しており、前記励起光を一番外側の前記クラッド又は第2のクラッドから入射させ傾斜した前記端面で反射させて導入することを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 Of the pair of end faces at both ends in the predetermined direction of the solid-state laser excitation module, the portion for introducing the excitation light is inclined in a plane perpendicular to the main surface of the laser medium and along the predetermined direction, The planar waveguide type according to any one of claims 2 to 5, wherein excitation light is introduced from the outermost clad or the second clad and reflected by the inclined end face. Solid state laser excitation module for laser equipment.
  8.  前記レーザ媒質の一対の側面上に設けられた全反射膜をレーザ光を反射させ励起光を透過させる狭帯域の反射膜とし、前記側面からレーザ媒質内に励起光を導入することを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 A total reflection film provided on a pair of side surfaces of the laser medium is a narrow-band reflection film that reflects laser light and transmits excitation light, and the excitation light is introduced into the laser medium from the side surfaces. A solid-state laser excitation module for a planar waveguide laser device according to any one of claims 2 to 5.
  9.  前記一対の側面の側面間隔が広い側の異なる箇所に、前記レーザ光をレーザ媒質に導入する第1の反射防止膜と、前記レーザ光をレーザ媒質から出力させる第2の反射防止膜とを設けたことを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 A first antireflection film for introducing the laser beam into a laser medium and a second antireflection film for outputting the laser beam from the laser medium are provided at different locations on the wide side of the pair of side surfaces. The solid-state laser excitation module for a planar waveguide laser device according to any one of claims 2 to 5, wherein the solid-state laser excitation module is used.
  10.  前記励起光が前記レーザ光と略同一な光路で前記反射防止膜から導入され励起を行うことを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 6. The planar waveguide laser device according to claim 2, wherein the excitation light is introduced from the antireflection film through an optical path substantially the same as the laser light to perform excitation. Solid-state laser excitation module.
  11.  前記反射防止膜に近接して配置された波長変換素子を備え、前記レーザ媒質で発生したレーザ光が前記波長変換素子を通過する際に他の波長に変換されて波長変換レーザ光を出力することを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 A wavelength conversion element disposed in the vicinity of the antireflection film, wherein the laser beam generated in the laser medium is converted to another wavelength when passing through the wavelength conversion element and outputs a wavelength conversion laser beam; A solid-state laser excitation module for a planar waveguide laser device according to any one of claims 2 to 5, wherein:
  12.  前記レーザ光の折り返し直前でのレーザ光の前記側面への入射角が側面に垂直にならない入射角度でレーザ光が前記反射防止膜へ入射されることを特徴とする請求項2から5までのいずれか1項に記載の平面導波路型レーザ装置のための固体レーザ励起モジュール。 6. The laser beam is incident on the antireflection film at an incident angle at which an incident angle of the laser beam on the side surface immediately before the laser beam is folded is not perpendicular to the side surface. A solid-state laser excitation module for the planar waveguide laser device according to claim 1.
PCT/JP2009/065577 2009-09-07 2009-09-07 Solid laser-exciting module for flat waveguide laser WO2011027471A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/065577 WO2011027471A1 (en) 2009-09-07 2009-09-07 Solid laser-exciting module for flat waveguide laser
PCT/JP2010/050698 WO2011027579A1 (en) 2009-09-07 2010-01-21 Planar waveguide laser apparatus
PCT/JP2010/064703 WO2011027731A1 (en) 2009-09-07 2010-08-30 Planar waveguide laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065577 WO2011027471A1 (en) 2009-09-07 2009-09-07 Solid laser-exciting module for flat waveguide laser

Publications (1)

Publication Number Publication Date
WO2011027471A1 true WO2011027471A1 (en) 2011-03-10

Family

ID=43649033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065577 WO2011027471A1 (en) 2009-09-07 2009-09-07 Solid laser-exciting module for flat waveguide laser

Country Status (1)

Country Link
WO (1) WO2011027471A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219137A (en) * 2012-04-06 2013-10-24 Mitsubishi Electric Corp Plane waveguide type laser device
JP2014096510A (en) * 2012-11-12 2014-05-22 Mitsubishi Electric Corp Optical amplifier
CN107167250A (en) * 2017-05-10 2017-09-15 太原理工大学 A kind of piezoelectric ceramics micro-displacement interference of light detection control apparatus
WO2021124471A1 (en) * 2019-12-18 2021-06-24 三菱電機株式会社 Planar waveguide amplifier and laser radar device
US11431145B2 (en) * 2016-05-09 2022-08-30 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Solid-state laser gain medium with inclined reflective planes for pump and seed radiation confinement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665335A (en) * 1970-01-26 1972-05-23 Gen Electric Coolable slab laser
JP2002528900A (en) * 1998-10-16 2002-09-03 コミツサリア タ レネルジー アトミーク Optical amplifier having optically pumped planar waveguide and power laser using the optical amplifier
US20030063884A1 (en) * 2001-01-04 2003-04-03 Smith Duane D. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
WO2004114476A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Solid laser excitation module
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2006516817A (en) * 2003-01-28 2006-07-06 ハイ キュー レーザー プロダクション ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser beam guide folding device
JP2008522409A (en) * 2004-11-26 2008-06-26 ジェフリー, ジー マンニ, High gain diode pumped laser amplifier.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665335A (en) * 1970-01-26 1972-05-23 Gen Electric Coolable slab laser
JP2002528900A (en) * 1998-10-16 2002-09-03 コミツサリア タ レネルジー アトミーク Optical amplifier having optically pumped planar waveguide and power laser using the optical amplifier
US20030063884A1 (en) * 2001-01-04 2003-04-03 Smith Duane D. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
JP2006516817A (en) * 2003-01-28 2006-07-06 ハイ キュー レーザー プロダクション ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser beam guide folding device
WO2004114476A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Solid laser excitation module
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2008522409A (en) * 2004-11-26 2008-06-26 ジェフリー, ジー マンニ, High gain diode pumped laser amplifier.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219137A (en) * 2012-04-06 2013-10-24 Mitsubishi Electric Corp Plane waveguide type laser device
JP2014096510A (en) * 2012-11-12 2014-05-22 Mitsubishi Electric Corp Optical amplifier
US11431145B2 (en) * 2016-05-09 2022-08-30 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Solid-state laser gain medium with inclined reflective planes for pump and seed radiation confinement
CN107167250A (en) * 2017-05-10 2017-09-15 太原理工大学 A kind of piezoelectric ceramics micro-displacement interference of light detection control apparatus
WO2021124471A1 (en) * 2019-12-18 2021-06-24 三菱電機株式会社 Planar waveguide amplifier and laser radar device
EP4064467A4 (en) * 2019-12-18 2022-11-23 Mitsubishi Electric Corporation Planar waveguide amplifier and laser radar device

Similar Documents

Publication Publication Date Title
WO2011027731A1 (en) Planar waveguide laser device
JP4392024B2 (en) Mode-controlled waveguide laser device
JP4754020B2 (en) Planar waveguide laser device
JP4883503B2 (en) Laser device using multi-path solid slab laser rod or nonlinear optical crystal
US20030021324A1 (en) Waveguide device with mode control and pump light confinement and method of using same
EP2475054A1 (en) Collinearly pumped multiple thin disk active medium and its pumping scheme
US9312655B2 (en) Planar waveguide laser pumping module and planar waveguide wavelength conversion laser device
US8705586B2 (en) Solid-state laser element
JP2000244042A (en) Optical waveguide and laser oscillator and laser amplifier using the same
WO2011027471A1 (en) Solid laser-exciting module for flat waveguide laser
WO2010013546A1 (en) Solid-state laser device
JP2007110039A (en) Solid-state laser excitation module
US20110064112A1 (en) Solid-state laser with waveguide pump path (z pump)
WO2011027579A1 (en) Planar waveguide laser apparatus
JP5389169B2 (en) Planar waveguide laser device and display device using the same
US20080025362A1 (en) Solid-State-Laser Pumping Module
JP4101838B2 (en) Solid-state laser excitation module and laser oscillator
JP5645753B2 (en) Planar waveguide laser device
JP6124683B2 (en) Planar waveguide laser device
US20220294170A1 (en) Planar waveguide amplifier and laser radar device
JP6342080B2 (en) Planar waveguide laser device
JP4402048B2 (en) Solid-state laser excitation module and laser oscillator
JP2000077750A (en) Solid laser
JP5987193B2 (en) Optical amplifier
US20060256824A1 (en) Semiconductor laser pumped solid device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP