WO2011027663A1 - Method and apparatus for supplying hydrogen selenide mixed gas for solar cell - Google Patents

Method and apparatus for supplying hydrogen selenide mixed gas for solar cell Download PDF

Info

Publication number
WO2011027663A1
WO2011027663A1 PCT/JP2010/063766 JP2010063766W WO2011027663A1 WO 2011027663 A1 WO2011027663 A1 WO 2011027663A1 JP 2010063766 W JP2010063766 W JP 2010063766W WO 2011027663 A1 WO2011027663 A1 WO 2011027663A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen selenide
gas
control means
flow rate
mixed gas
Prior art date
Application number
PCT/JP2010/063766
Other languages
French (fr)
Japanese (ja)
Inventor
吉則 伊藤
高橋 康弘
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to KR1020127001216A priority Critical patent/KR101635122B1/en
Priority to JP2011529864A priority patent/JP5548208B2/en
Priority to CN201080033515.1A priority patent/CN102471061B/en
Publication of WO2011027663A1 publication Critical patent/WO2011027663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/04Binary compounds including binary selenium-tellurium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an improvement in a method and apparatus for supplying a hydrogen selenide mixed gas for solar cells.
  • the present application claims priority based on Japanese Patent Application No. 2009-205230 filed in Japan on September 4, 2009, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a chalcopyrite type light absorption layer containing copper, indium, gallium, and selenium and a method for manufacturing the same. Specifically, the chalcopyrite type light absorption layer thin film is formed by depositing copper (Cu), indium (In) and gallium (Ga) on a substrate by sputtering or the like, and then hydrogen selenide (H 2 Se) gas. It is formed by annealing in the atmosphere.
  • Cu copper
  • In indium
  • Ga gallium
  • H 2 Se hydrogen selenide
  • a hydrogen selenide mixed gas supply apparatus 101 capable of continuously supplying a hydrogen selenide mixed gas is used.
  • the supply device 101 is provided with a base gas supply flow path L101 connected to a base gas supply source (not shown) and a source gas supply flow path L102 connected to a source gas supply source (not shown).
  • a base gas supply channel L101 and the source gas supply channel L102 are respectively provided with mass flow controllers (MFC) 105 and 112 capable of controlling the flow rate.
  • MFC mass flow controllers
  • a buffer tank 102 for storing a hydrogen selenide mixed gas adjusted to a predetermined concentration is provided downstream of the base gas supply channel L101 and the source gas supply channel L102.
  • the flow rates of the mass flow controllers 105 and 112 provided in the base gas supply flow path L101 and the source gas supply flow path L102 are set to a predetermined value. Set the flow rate ratio.
  • 100% hydrogen selenide gas and base gas are mixed with a mixer to adjust to a predetermined concentration, and the resulting selenization for solar cells is performed.
  • the hydrogen mixed gas is stored in the buffer tank 102. And this hydrogen selenide mixed gas for solar cells was supplied from the buffer tank 102 to the solar cell manufacturing apparatus.
  • the mass flow controller 112 for controlling the flow rate of 100% hydrogen selenide gas provided in the source gas supply flow path L102 detects the thermal diffusion due to the inflow gas by a flow rate sensor and adjusts the flow rate.
  • the present invention has been made in view of the above circumstances, and a method for supplying a hydrogen selenide mixed gas for solar cells capable of continuously supplying a hydrogen selenide mixed gas having a stable hydrogen selenide concentration. And it aims at providing a supply apparatus.
  • the first aspect of the present invention is adjusted to a predetermined concentration by mixing an inert gas supplied from a base gas supply channel and 100% hydrogen selenide gas supplied from a source gas supply channel.
  • a method for supplying a hydrogen selenide mixed gas for solar cells comprising the step of supplying a hydrogen selenide mixed gas, In the supply step, the flow rate control means provided in the source gas supply flow path controls the flow rate of the 100% hydrogen selenide gas to a predetermined flow rate, and pressure control provided on the downstream side of the flow rate control means.
  • the flow rate control means is an orifice or a needle valve
  • the pressure control means is preferably an automatic pressure control device (APR).
  • APR automatic pressure control device
  • the said orifice or needle valve is metal.
  • the hydrogen selenide mixed gas adjusted to a predetermined concentration is preferably stored in a buffer tank, and a hydrogen selenide mixed gas having a desired concentration is supplied from the buffer tank. .
  • the pressure in the channel is reduced at least once, and the flow rate of the 100% hydrogen selenide gas is adjusted after the pressure is finally reduced. Is preferred.
  • a hydrogen selenide mixed gas supply device for a solar cell comprising a base gas supply channel and a source gas supply channel, Supplying a hydrogen selenide mixed gas adjusted to a predetermined concentration by mixing an inert gas supplied from the base gas supply channel and a 100% hydrogen selenide gas supplied from the source gas supply channel ,
  • the source gas supply flow path has a flow rate control means for controlling the flow rate of the 100% hydrogen selenide gas to a predetermined flow rate, and a pressure control means for controlling the pressure of the 100% hydrogen selenide gas to be constant.
  • the pressure control means is a supply device for a hydrogen selenide mixed gas for solar cells provided on the downstream side of the flow rate control means.
  • the flow rate control means is an orifice or a needle valve
  • the pressure control means is preferably an automatic pressure control device (APR).
  • APR automatic pressure control device
  • the said orifice or needle valve is metal.
  • the second aspect of the present invention preferably further comprises a buffer tank for storing the hydrogen selenide mixed gas adjusted to a predetermined concentration, The buffer tank is preferably provided with a supply port for supplying the hydrogen selenide mixed gas.
  • the source gas supply flow path is provided with one or more pressure regulators, It is preferable that the flow rate control means is provided between the pressure regulator on the most downstream side and the pressure control means.
  • the method for supplying a hydrogen selenide mixed gas for solar cell controls the flow rate of 100% hydrogen selenide gas to a predetermined flow rate by means of flow rate control means provided in the raw material gas supply flow path.
  • the 100% hydrogen selenide gas between the flow rate control means and the pressure control means is supplied while being kept at a predetermined pressure by the pressure control means provided on the downstream side.
  • the flow rate control means and the pressure control means by continuous ventilation of 100% hydrogen selenide gas, the flow rate control means and the pressure control means Since the pressure in between can be kept constant, the flow rate of 100% hydrogen selenide gas can be controlled stably.
  • the hydrogen selenide mixed gas having a stable concentration can be continuously supplied to the manufacturing process of the solar cell, and thus the solar cell can be mass-produced.
  • the hydrogen selenide mixed gas supply device for solar cell of the present invention is provided with a flow rate control means and a pressure control means in the source gas supply flow path, and the pressure control means is provided downstream of the flow rate control means. It has the structure which was made. As a result, the flow rate of the 100% hydrogen selenide gas can be controlled to a predetermined flow rate, and the pressure between the flow rate control means and the pressure control means can be kept constant. It is possible to control the flow rate. Therefore, a hydrogen selenide mixed gas having a stable hydrogen selenide concentration can be continuously supplied.
  • FIG. 1 It is a schematic diagram which shows the supply apparatus of the hydrogen selenide mixed gas for solar cells which is one Embodiment of this invention. It is a schematic diagram which shows the supply apparatus of the conventional hydrogen selenide mixed gas for solar cells. It is a figure which shows the relationship between the setting value of the hydrogen selenide gas density
  • the supply apparatus 1 of this embodiment is an apparatus which supplies the hydrogen selenide mixed gas adjusted to the predetermined density
  • the supply device 1 includes a base gas supply channel L1 for supplying a base gas, a source gas supply channel L2 for supplying a source gas, and hydrogen selenide adjusted to a predetermined concentration. And a buffer tank 2 for storing the mixed gas.
  • the base gas is not particularly limited as long as it is an inert gas for dilution use.
  • the gas include nitrogen (N 2 ) gas, argon (Ar) gas, and the like.
  • the base gas supply flow path L1 is provided with an opening / closing valve 3, a pressure regulator 4, a mass flow controller 5, and an automatic valve 6 sequentially from the upstream side to the downstream side.
  • Pressure gauges 7 and 8 are provided on the upstream side and the downstream side of the pressure regulator 4, respectively, so that the pressure before and after the pressure regulator 4 can be visually recognized.
  • the pressure regulator 4 is provided to reduce the pressure of the base gas supplied from the base gas supply source to a desired pressure.
  • the supply apparatus 1 of the present embodiment only one pressure regulator 4 is shown in the base gas supply flow path L1, but the present invention is not limited to this, and two or more pressure regulators 4 are provided. May be.
  • the pressure immediately before the mass flow controller 5 can be appropriately selected according to the supply pressure to the solar cell manufacturing apparatus.
  • the pressure immediately before the mass flow controller 5 can be in the range of 0.6 to 0.7 MPa.
  • the mass flow controller 5 is a flow control device that measures the flow rate of the base gas by measuring the mass flow rate of the base gas, and can perform highly accurate flow rate measurement and control.
  • the mass flow sensor mounted on the mass flow controller 5 is not particularly limited, and a general one such as a thermal mass flow sensor or a differential pressure mass flow sensor can be used.
  • the source gas supply channel L2 has one end connected to a source gas supply source (not shown) and the other end connected to a mixer (not shown).
  • the source gas is hydrogen selenide (H 2 Se) gas having a concentration of 100%. In the present specification, it is simply referred to as 100% hydrogen selenide gas.
  • an automatic valve 9 In the source gas supply flow path L2, an automatic valve 9, an on-off valve 10, a pressure regulator 11, a flow rate control means 12, a pressure control means 13, and an automatic valve 14 are sequentially provided from the upstream side to the downstream side. .
  • Pressure gauges 15 and 16 are provided on the upstream side and the downstream side of the pressure regulator 11, respectively, so that the pressure before and after the pressure regulator 11 can be visually recognized.
  • the pressure regulator 11 is provided to reduce the pressure of 100% hydrogen selenide gas supplied from the source gas supply source to a desired pressure.
  • the pressure regulator 11 may not be provided.
  • the case where there is no need for pressure reduction is, for example, the case where the source gas flows at a predetermined pressure through the source gas supply flow path L2 without reducing the source gas supply pressure.
  • the flow rate control means 12 is provided between the pressure regulator 11 on the most downstream side provided in the source gas supply flow path L2 and the pressure control means 13.
  • the flow rate control means 12 is not particularly limited as long as it is a member that can control the flow rate of 100% hydrogen selenide gas, which is a raw material gas, to a predetermined flow rate.
  • the member include a needle valve and an orifice.
  • the selenium (Se) crystal crystallization produced by the self-decomposition of hydrogen selenide tends to precipitate on a resinous member, it is preferable to use the said needle valve or orifice using a metal.
  • FUDDFM-71M-6.35 can be exemplified.
  • An example of the orifice is UJR-6.35RE-RG-O-0.5.
  • the flow rate on the downstream side of the flow rate control means 12 can be appropriately selected according to the required supply amount of the hydrogen selenide mixed gas. Specifically, for example, the range can be set to 0 to 20 L / min.
  • the pressure control means 13 is provided on the downstream side of the flow rate control means 12.
  • the pressure control means 13 is not particularly limited as long as it is a member capable of keeping the pressure between the flow rate control means 12 and the pressure control means 13 constant. Examples of the member include an automatic pressure control device (APR).
  • APR automatic pressure control device
  • the pressure between the flow rate control means 12 and the pressure control means 13 can be appropriately selected according to the supply pressure to the solar cell manufacturing apparatus.
  • the pressure managed by the pressure control means 13 can be in the range of 0.5 to 0.6 MPa.
  • the mixer (not shown) to which the base gas supply channel L1 and the source gas supply channel L2 are connected and the buffer tank 2 are connected by a channel L3.
  • Open / close valves 17 and 18 are provided on the upstream side and the downstream side of the flow path L3, respectively.
  • the buffer tank 2 is a storage tank for storing a hydrogen selenide mixed gas adjusted to a predetermined concentration by a mixer.
  • capacitance of a buffer tank is not specifically limited, According to the supply amount of the hydrogen selenide mixed gas to a solar cell manufacturing apparatus, it can select suitably.
  • the buffer tank 2 is provided with a supply port (not shown). One end of the flow path L4 is connected to the supply port, and the other end of the flow path L4 is connected to the solar cell manufacturing apparatus. . Thereby, the hydrogen selenide mixed gas can be supplied from the buffer tank 2 to the solar cell manufacturing apparatus.
  • An opening / closing valve 19 is provided on the supply port side of the flow path L4.
  • one end of the flow path L5 is connected to the buffer tank 2, and the other end of the flow path L5 is connected to the pressure gauge 20. With the pressure gauge 20, the pressure in the buffer tank can be confirmed.
  • An opening / closing valve 21 is provided in the flow path L5.
  • the buffer tank 2 communicates with a flow path L6 branched from the flow path L3.
  • the flow path L6 has one end connected to the flow path L3 and the other end connected to an exhaust duct (not shown).
  • a gas concentration analyzer 22 is provided in the flow path L6. With this gas concentration analyzer 22, the hydrogen selenide gas concentration in the hydrogen selenide mixed gas in the buffer tank 2 can be measured.
  • open / close valves 23 and 24 are provided, respectively.
  • the supply method of the present embodiment has a predetermined concentration by mixing the inert gas supplied from the base gas supply flow path L1 and the 100% hydrogen selenide gas supplied from the source gas supply flow path L2.
  • a method for supplying a hydrogen selenide mixed gas for solar cells comprising a step of supplying an adjusted hydrogen selenide mixed gas. In the supply step, 100% selenium is produced by a flow rate control means 12 provided in a source gas supply flow path L2.
  • the flow rate of the hydrogen selenide gas between the flow rate control means 12 and the pressure control means 13 is controlled by the pressure control means 13 provided downstream of the flow rate control means 12 by controlling the flow rate of the hydrogen fluoride gas.
  • the pressure is controlled to a predetermined pressure.
  • the opening and closing valves 3, 10, 17, 18, 19, 21, 21, 24 are opened and closed, and the flow path is purged. After the purge is completed, all the open / close valves are opened as shown in FIG.
  • an inert gas is supplied from the base gas supply flow path L1, and a 100% hydrogen selenide gas is supplied from the raw material gas supply source L2 to the mixer.
  • the inert gas is supplied from the base gas supply source to the base gas supply channel L1.
  • the pressure is reduced to a predetermined pressure by the pressure regulator 4 and then introduced into the mass flow controller 5.
  • an inert gas having a set flow rate is discharged.
  • an inert gas with a predetermined flow rate is supplied to the mixer.
  • 100% hydrogen selenide gas is supplied from the source gas supply source to the source gas supply flow path L2.
  • the source gas supply flow path L2 after the pressure is reduced to a predetermined pressure by the pressure regulator 11, it is controlled to a predetermined flow rate by an orifice or a needle valve which is the flow rate control means 12.
  • the pressure control means 13 controls the pressure between the flow control means 12 and the pressure control means 13 to a predetermined pressure, and the 100% hydrogen selenide gas with a predetermined flow rate when the automatic valve 14 is open. Is fed to the mixer.
  • an inert gas and a 100% hydrogen selenide gas supplied at a predetermined flow rate are mixed by a mixer to prepare a hydrogen selenide mixed gas having a predetermined concentration.
  • the concentration of the hydrogen selenide mixed gas is not particularly limited, and can be appropriately selected according to the requirements of the solar electric manufacturing apparatus. Specifically, for example, the concentration of hydrogen selenide in the hydrogen selenide mixed gas can be 5 to 20 vol%.
  • the hydrogen selenide mixed gas adjusted to a predetermined concentration is supplied to the buffer tank 2 via the flow path L3.
  • hydrogen selenide mixed gas is supplied to a solar cell manufacturing apparatus from the flow path L4 connected to the supply port of this buffer tank 2 according to a production condition.
  • the pressure in the buffer tank 2 can be measured by the pressure gauge 20.
  • the concentration of the hydrogen selenide mixed gas in the buffer tank 2 can be measured by the gas concentration analyzer 22. In this way, a hydrogen selenide mixed gas having a stable hydrogen selenide concentration is continuously supplied to the solar cell manufacturing apparatus.
  • the supply of the hydrogen selenide mixed gas to the buffer tank 2 may select a badge method in addition to the continuous method as described above.
  • the badge system is a method in which the pressure in the buffer tank 2 is managed within the set upper and lower limits, and the hydrogen selenide mixed gas is supplied so that the pressure in the buffer tank 2 maintains the above management range. is there.
  • the automatic valve 6 provided in the base gas supply flow path L1 and the automatic valves 9 and 14 provided in the source gas supply flow path L2 are signaled. Is sent and these automatic valves 2, 9, and 14 are opened.
  • these automatic valves 2, 9, 14 are opened, the inert gas and 100% hydrogen selenide gas set to the respective flow rates pass through the mixer and the hydrogen selenide mixed gas adjusted to a predetermined concentration Is supplied into the buffer tank 2.
  • a signal is sent to the automatic valves 6 provided in the base gas supply flow path L1 and the automatic valves 9 and 14 provided in the source gas supply flow path L2.
  • the supply device 1 of the present embodiment includes the flow rate control means 12 and the pressure control means 13 in the source gas supply flow path L2, and the pressure control means 13 is downstream of the flow rate control means 12. It has the structure provided in. Thereby, the flow rate of the 100% hydrogen selenide gas on the raw material gas side can be controlled to a predetermined flow rate, and the pressure between the flow rate control means 12 and the pressure control means 13 can be kept constant. For this reason, 100% hydrogen selenide gas whose flow rate is controlled to be constant can be stably supplied to the mixer. Therefore, a hydrogen selenide mixed gas having a stable hydrogen selenide concentration can be continuously supplied to the solar cell manufacturing apparatus according to the production status.
  • the flow rate of 100% hydrogen selenide gas can be reliably controlled. And precipitation of the crystal
  • APR automatic pressure control device
  • the supply device 1 of the present embodiment includes the buffer tank 2, the hydrogen selenide mixed gas adjusted to a predetermined concentration can be stored. Thereby, hydrogen selenide mixed gas can be suitably supplied to a solar cell manufacturing apparatus according to the situation of production.
  • the flow rate control means 12 provided in the source gas supply flow path L2 controls the flow rate of 100% hydrogen selenide gas to a predetermined flow rate, and the downstream side of the flow rate control means 12 100% hydrogen selenide gas, which is a raw material gas, is supplied by the pressure control means 13 provided at the pressure control means 13 while maintaining the 100% hydrogen selenide gas between the flow rate control means 12 and the pressure control means 13 at a predetermined pressure.
  • the flow rate control means 12, and the pressure control means 13 the flow rate control means 12 And the pressure control means 13 can be kept constant.
  • the flow rate of 100% hydrogen selenide gas can be controlled stably. That is, even when the hydrogen selenide mixed gas is continuously supplied, the concentration of the target hydrogen selenide mixed gas (set value) and the concentration of the actually prepared hydrogen selenide mixed gas (measured value) ) Will not increase in error.
  • the present invention eliminates the influence of precipitation of selenium (Se) crystals generated by continuously venting 100% hydrogen selenide gas, and the hydrogen selenide mixed gas in which the concentration of hydrogen selenide is stable. Can be continuously supplied. Therefore, the hydrogen selenide mixed gas having a stable concentration can be continuously supplied to the production process of the solar cell according to the production amount, and mass production of the solar cell becomes possible.
  • Se selenium
  • Example 1 The hydrogen selenide mixed gas was continuously supplied to the solar cell manufacturing apparatus using the supply apparatus 1 shown in FIG. A batch system using the buffer tank 2 was used for continuous supply of the hydrogen selenide mixed gas to the solar cell manufacturing apparatus. Moreover, the conditions of Table 1 were used as the conditions of the supply device 1 when supplying the hydrogen selenide mixed gas. After 50 batch processes under the conditions shown in Table 1, the concentration change of the mixed gas was recorded using the gas concentration analyzer 22 connected to the buffer tank 2. The results are shown in Table 2.
  • Example 2 The hydrogen selenide mixed gas was continuously supplied to the solar cell manufacturing apparatus using the supply apparatus 101 shown in FIG.
  • the batch method using the buffer tank 102 was used for continuous supply of the hydrogen selenide mixed gas to the solar cell manufacturing apparatus, and the conditions shown in Table 1 were used as supply conditions for the hydrogen selenide mixed gas of the supply apparatus 101. .
  • the concentration change of the mixed gas was recorded using the gas concentration analyzer 122 connected to the buffer tank 102. The results are shown in Table 2.
  • Example 1 to which the present invention is applied exhibits a change in the concentration of the hydrogen selenide mixed gas before and after the continuous supply by about 1 as compared with Example 2 which is the prior art. / 13 was confirmed to be able to be suppressed.
  • Supply device (supply device for hydrogen selenide mixed gas for solar cells) 2 ... Buffer tank 3, 10, 14, 17, 18, 19, 21, 23, 24 ... Open / close valve 4, 11 ... Pressure regulator 5 ... Mass flow controller (MFC) 6, 9, 14 ... Automatic valve 7, 8, 15, 16, 20 ... Pressure gauge 12 ... Flow rate control means 13 ... Pressure control means 22 ... Gas concentration analyzer L1 ... Base gas supply flow path L2 ... Raw material gas supply flow path L3 to L6 ... Flow path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Disclosed is a method for supplying a hydrogen selenide mixed gas for a solar cell, which comprises a step of supplying a hydrogen selenide mixed gas having a predetermined concentration, said hydrogen selenide mixed gas being prepared by mixing an inert gas that is supplied from a base gas supply channel (L1) and a 100% hydrogen selenide gas that is supplied from a raw material gas supply channel (L2). In the supplying step, the flow rate of the 100% hydrogen selenide gas is controlled to a predetermined flow rate by a flow rate control means (12) that is provided in the raw material gas supply channel (L2), and the pressure of the 100% hydrogen selenide gas between the flow rate control means (12) and a pressure control means (13), which is provided in the downstream of the flow rate control means (12), is controlled to a predetermined pressure by the pressure control means (13).

Description

太陽電池用セレン化水素混合ガスの供給方法及び供給装置Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
 本発明は、太陽電池用セレン化水素混合ガスの供給方法及び供給装置の改良に関する。
 本願は、2009年9月4日に、日本に出願された特願2009-205230号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an improvement in a method and apparatus for supplying a hydrogen selenide mixed gas for solar cells.
The present application claims priority based on Japanese Patent Application No. 2009-205230 filed in Japan on September 4, 2009, the contents of which are incorporated herein by reference.
 近年、環境汚染、地球温暖化、化石燃料の枯渇といった問題から、石油代替エネルギーとして太陽電池が注目されている。太陽電池の現在の主流であるCIGS(Cu(InGa)Se)系薄膜太陽電池としては、例えば、特許文献1の化合物太陽電池が知られている。 In recent years, solar cells have been attracting attention as an alternative energy to oil due to problems such as environmental pollution, global warming, and depletion of fossil fuels. As a CIGS (Cu (InGa) Se) -based thin film solar cell which is the current mainstream of solar cells, for example, the compound solar cell of Patent Document 1 is known.
 特許文献1には、銅・インジウム・ガリウム・セレンを含むカルコパイライト型の光吸収層及びその製造方法が開示されている。具体的には、カルコパイライト型の光吸収層薄膜は、基板上に銅(Cu)、インジウム(In)及びガリウム(Ga)をスパッタリング等で付着させた後、セレン化水素(HSe)ガスの雰囲気下でアニールすることにより形成される。 Patent Document 1 discloses a chalcopyrite type light absorption layer containing copper, indium, gallium, and selenium and a method for manufacturing the same. Specifically, the chalcopyrite type light absorption layer thin film is formed by depositing copper (Cu), indium (In) and gallium (Ga) on a substrate by sputtering or the like, and then hydrogen selenide (H 2 Se) gas. It is formed by annealing in the atmosphere.
 ところで、化合物太陽電池の製造装置において、所定の濃度に調整したセレン化水素(HSe)混合ガスを供給する場合、予め規定濃度に調整した混合ガスが用いられてきた。しかしながら、近年の太陽電池に対する需要の高まりを受け、化合物太陽電池の大量生産を実現するには、大量のセレン化水素混合ガスを太陽電池製造装置に供給する必要があった。このため、規定濃度に調整した混合ガスを充填したガスボンベを用いていたのではボンベの交換頻度が多くなってしまい、充分なガス供給量を確保することが出来ないという問題があった。 By the way, when supplying a hydrogen selenide (H 2 Se) mixed gas adjusted to a predetermined concentration in a compound solar cell manufacturing apparatus, a mixed gas previously adjusted to a specified concentration has been used. However, in response to the recent increase in demand for solar cells, it has been necessary to supply a large amount of hydrogen selenide mixed gas to the solar cell manufacturing apparatus in order to realize mass production of compound solar cells. For this reason, if a gas cylinder filled with a mixed gas adjusted to a specified concentration is used, there is a problem that the replacement frequency of the cylinder increases, and a sufficient gas supply amount cannot be secured.
 そこで、図2に示すように、セレン化水素混合ガスを連続的に供給することが可能なセレン化水素混合ガスの供給装置101が用いられている。この供給装置101には、図示略のベースガス供給源と接続されたベースガス供給流路L101と、図示略の原料ガス供給源と接続された原料ガス供給流路L102と、が設けられており、それぞれに濃度100%の不活性ガスとセレン化水素ガスとが供給可能とされている。また、ベースガス供給流路L101及び原料ガス供給流路L102には、流量制御が可能なマスフローコントローラ(MFC)105,112がそれぞれ設けられている。そして、ベースガス供給流路L101及び原料ガス供給流路L102の下流側には、所定の濃度に調整されたセレン化水素混合ガスを貯留するバッファータンク102が設けられている。 Therefore, as shown in FIG. 2, a hydrogen selenide mixed gas supply apparatus 101 capable of continuously supplying a hydrogen selenide mixed gas is used. The supply device 101 is provided with a base gas supply flow path L101 connected to a base gas supply source (not shown) and a source gas supply flow path L102 connected to a source gas supply source (not shown). In each case, an inert gas and a hydrogen selenide gas having a concentration of 100% can be supplied. The base gas supply channel L101 and the source gas supply channel L102 are respectively provided with mass flow controllers (MFC) 105 and 112 capable of controlling the flow rate. A buffer tank 102 for storing a hydrogen selenide mixed gas adjusted to a predetermined concentration is provided downstream of the base gas supply channel L101 and the source gas supply channel L102.
 上記供給装置101を用いた従来のセレン化水素混合ガスの供給方法は、先ず、ベースガス供給流路L101及び原料ガス供給流路L102に設けられたそれぞれのマスフローコントローラ105,112の流量を所定の流量比となるように設定する。次に、それぞれ一定流量に設定したマスフローコントローラ105,112の後段において、100%セレン化水素ガスとベースガスとを混合器で混合して所定の濃度に調整し、得られた太陽電池用セレン化水素混合ガスをバッファータンク102に貯留する。そして、この太陽電池用セレン化水素混合ガスをバッファータンク102から太陽電池の製造装置に供給していた。なお、原料ガス供給流路L102に設けられた100%セレン化水素ガスの流量を制御するためのマスフローコントローラ112は、流入ガスによる熱拡散を流量センサで検知して流量調整を行うものである。 In the conventional hydrogen selenide mixed gas supply method using the supply device 101, first, the flow rates of the mass flow controllers 105 and 112 provided in the base gas supply flow path L101 and the source gas supply flow path L102 are set to a predetermined value. Set the flow rate ratio. Next, in the subsequent stage of the mass flow controllers 105 and 112 set to constant flow rates, 100% hydrogen selenide gas and base gas are mixed with a mixer to adjust to a predetermined concentration, and the resulting selenization for solar cells is performed. The hydrogen mixed gas is stored in the buffer tank 102. And this hydrogen selenide mixed gas for solar cells was supplied from the buffer tank 102 to the solar cell manufacturing apparatus. The mass flow controller 112 for controlling the flow rate of 100% hydrogen selenide gas provided in the source gas supply flow path L102 detects the thermal diffusion due to the inflow gas by a flow rate sensor and adjusts the flow rate.
特開2007-317885号公報JP 2007-317885 A
 しかしながら、従来の供給装置及び供給方法では、原料ガス供給管L102及びマスフローコントローラ112に高濃度のセレン化水素ガスを長時間通気すると、セレン化水素(HSe)が水素(H)とセレン(Se)とに自己分解し、原料ガス供給管L102及び原料ガス用のマスフローコントローラ112の内部の流量センサにセレンの結晶が析出するという現象が生じた。この現象により、流量制御が利かなくなるという課題があった。このように、流量制御が利かなくなると、100%セレン化水素ガス用のマスフローコントローラ(MFC)112は実際よりも少ない量のガスが流れていると判断して制御弁を開放するため、設定値よりも多い量のガスが流れることになる。その結果、セレン化水素混合ガスの供給開始から時間の経過とともに、目的とするセレン化水素混合ガスの濃度(設定値)と、実際に調製されたセレン化水素混合ガスの濃度(実測値)との間の誤差が大きくなってしまうという問題があった(これをドリフト現象という(図3を参照))。 However, in the conventional supply apparatus and supply method, when high-concentration hydrogen selenide gas is passed through the source gas supply pipe L102 and the mass flow controller 112 for a long time, hydrogen selenide (H 2 Se) becomes hydrogen (H 2 ) and selenium. As a result of the self-decomposition into (Se), a selenium crystal was precipitated on the flow rate sensors inside the source gas supply pipe L102 and the source gas mass flow controller 112. Due to this phenomenon, there is a problem that the flow rate control is not effective. As described above, when the flow rate control is lost, the mass flow controller (MFC) 112 for 100% hydrogen selenide gas determines that a smaller amount of gas is flowing than the actual flow and opens the control valve. A larger amount of gas will flow. As a result, with the passage of time from the start of supply of the hydrogen selenide gas mixture, the concentration of the target hydrogen selenide gas mixture (setting value) and the concentration of the hydrogen selenide gas mixture actually prepared (measured value) There is a problem that the error between the two becomes large (this is called a drift phenomenon (see FIG. 3)).
 本発明は、上記事情に鑑みてなされたものであって、セレン化水素の濃度が安定したセレン化水素混合ガスを連続的に供給することが可能な太陽電池用セレン化水素混合ガスの供給方法及び供給装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a method for supplying a hydrogen selenide mixed gas for solar cells capable of continuously supplying a hydrogen selenide mixed gas having a stable hydrogen selenide concentration. And it aims at providing a supply apparatus.
 かかる課題を解決するため、
 本発明の第1の態様は、ベースガス供給流路から供給される不活性ガスと、原料ガス供給流路から供給される100%セレン化水素ガスと、を混合することにより所定の濃度に調整したセレン化水素混合ガスを供給する工程を有する太陽電池用セレン化水素混合ガスの供給方法であって、
 前記供給工程において、当該原料ガス供給流路に設けられた流量制御手段により、前記100%セレン化水素ガスの流量を所定の流量に制御し、前記流量制御手段の下流側に設けられた圧力制御手段により、前記流量制御手段と当該圧力制御手段との間の前記100%セレン化水素ガスの圧力を所定の圧力に制御する太陽電池用セレン化水素混合ガスの供給方法である。
To solve this problem,
The first aspect of the present invention is adjusted to a predetermined concentration by mixing an inert gas supplied from a base gas supply channel and 100% hydrogen selenide gas supplied from a source gas supply channel. A method for supplying a hydrogen selenide mixed gas for solar cells, comprising the step of supplying a hydrogen selenide mixed gas,
In the supply step, the flow rate control means provided in the source gas supply flow path controls the flow rate of the 100% hydrogen selenide gas to a predetermined flow rate, and pressure control provided on the downstream side of the flow rate control means. Means for supplying a hydrogen selenide mixed gas for solar cells, wherein the pressure of the 100% hydrogen selenide gas between the flow rate control means and the pressure control means is controlled to a predetermined pressure.
 本発明の第1の態様においては、前記流量制御手段が、オリフィス又はニードル弁であり、
 前記圧力制御手段が、自動圧力制御装置(APR)であることが好ましい。
 また、本発明の第1の態様においては、前記オリフィス又はニードル弁が、金属製であることが好ましい。
 また、本発明の第1の態様においては、所定の濃度に調整した前記セレン化水素混合ガスをバッファータンクに貯留し、前記バッファータンクから所望の濃度のセレン化水素混合ガスを供給することが好ましい。
 また、本発明の第1の態様においては、前記原料ガス供給流路において、流路内の圧力を1回以上減圧し、最後に減圧した後に前記100%セレン化水素ガスの流量を調整することが好ましい。
In the first aspect of the present invention, the flow rate control means is an orifice or a needle valve,
The pressure control means is preferably an automatic pressure control device (APR).
Moreover, in the 1st aspect of this invention, it is preferable that the said orifice or needle valve is metal.
In the first aspect of the present invention, the hydrogen selenide mixed gas adjusted to a predetermined concentration is preferably stored in a buffer tank, and a hydrogen selenide mixed gas having a desired concentration is supplied from the buffer tank. .
Further, in the first aspect of the present invention, in the source gas supply channel, the pressure in the channel is reduced at least once, and the flow rate of the 100% hydrogen selenide gas is adjusted after the pressure is finally reduced. Is preferred.
 本発明の第2の態様は、ベースガス供給流路と、原料ガス供給流路と、を備える太陽電池用セレン化水素混合ガスの供給装置であって、
 ベースガス供給流路から供給される不活性ガスと、原料ガス供給流路から供給される100%セレン化水素ガスと、を混合することにより所定の濃度に調整したセレン化水素混合ガスを供給し、
 前記原料ガス供給流路が、前記100%セレン化水素ガスの流量を所定の流量に制御するための流量制御手段と、前記100%セレン化水素ガスの圧力を一定に制御するための圧力制御手段と、を備え、
 前記圧力制御手段が、前記流量制御手段の下流側に設けられている太陽電池用セレン化水素混合ガスの供給装置である。
According to a second aspect of the present invention, there is provided a hydrogen selenide mixed gas supply device for a solar cell comprising a base gas supply channel and a source gas supply channel,
Supplying a hydrogen selenide mixed gas adjusted to a predetermined concentration by mixing an inert gas supplied from the base gas supply channel and a 100% hydrogen selenide gas supplied from the source gas supply channel ,
The source gas supply flow path has a flow rate control means for controlling the flow rate of the 100% hydrogen selenide gas to a predetermined flow rate, and a pressure control means for controlling the pressure of the 100% hydrogen selenide gas to be constant. And comprising
The pressure control means is a supply device for a hydrogen selenide mixed gas for solar cells provided on the downstream side of the flow rate control means.
 本発明の第2の態様においては、前記流量制御手段が、オリフィス又はニードル弁であり、
 前記圧力制御手段が、自動圧力制御装置(APR)であることが好ましい。
 また、本発明の第2の態様においては、前記オリフィス又はニードル弁が、金属製であることが好ましい。
 また、本発明の第2の態様は、所定の濃度に調整した前記セレン化水素混合ガスを貯留するバッファータンクをさらに備えることが好ましく、
 前記バッファータンクには、前記セレン化水素混合ガスを供給するための供給口が設けられていることが好ましい。
 また、本発明の第2の態様は、前記原料ガス供給流路には、1以上の圧力調整器が設けられており、
 最下流側の前記圧力調整器と前記圧力制御手段との間に前記流量制御手段が設けられていることが好ましい。
In the second aspect of the present invention, the flow rate control means is an orifice or a needle valve,
The pressure control means is preferably an automatic pressure control device (APR).
Moreover, in the 2nd aspect of this invention, it is preferable that the said orifice or needle valve is metal.
The second aspect of the present invention preferably further comprises a buffer tank for storing the hydrogen selenide mixed gas adjusted to a predetermined concentration,
The buffer tank is preferably provided with a supply port for supplying the hydrogen selenide mixed gas.
In the second aspect of the present invention, the source gas supply flow path is provided with one or more pressure regulators,
It is preferable that the flow rate control means is provided between the pressure regulator on the most downstream side and the pressure control means.
 本発明の太陽電池用セレン化水素混合ガスの供給方法は、原料ガス供給流路に設けられた流量制御手段により、100%セレン化水素ガスの流量を所定の流量に制御し、この流量制御手段の下流側に設けられた圧力制御手段により、流量制御手段と圧力制御手段との間の100%セレン化水素ガスを所定の圧力に保ちながら供給する構成を有する。
 これにより、100%セレン化水素ガスの連続的な通気により、原料ガス供給流路、流量制御手段及び圧力制御手段にセレン(Se)結晶が析出しても、流量制御手段と圧力制御手段との間の圧力を一定に保つことができるため、安定して100%セレン化水素ガスの流量を制御することができる。すなわち、100%セレン化水素ガスの連続的な通気により生じるセレン(Se)結晶の析出による影響を排除して、セレン化水素の濃度が安定したセレン化水素混合ガスを連続的に供給することができる。
 このように本発明によれば、太陽電池の製造プロセスに濃度が安定したセレン化水素混合ガスを連続的に供給することができるため、太陽電池の大量生産が可能となる。
The method for supplying a hydrogen selenide mixed gas for solar cell according to the present invention controls the flow rate of 100% hydrogen selenide gas to a predetermined flow rate by means of flow rate control means provided in the raw material gas supply flow path. The 100% hydrogen selenide gas between the flow rate control means and the pressure control means is supplied while being kept at a predetermined pressure by the pressure control means provided on the downstream side.
Thus, even if selenium (Se) crystals are precipitated in the source gas supply flow path, the flow rate control means and the pressure control means by continuous ventilation of 100% hydrogen selenide gas, the flow rate control means and the pressure control means Since the pressure in between can be kept constant, the flow rate of 100% hydrogen selenide gas can be controlled stably. That is, it is possible to continuously supply a hydrogen selenide mixed gas having a stable hydrogen selenide concentration by eliminating the influence of precipitation of selenium (Se) crystals caused by continuous ventilation of 100% hydrogen selenide gas. it can.
As described above, according to the present invention, the hydrogen selenide mixed gas having a stable concentration can be continuously supplied to the manufacturing process of the solar cell, and thus the solar cell can be mass-produced.
 本発明の太陽電池用セレン化水素混合ガスの供給装置は、原料ガス供給流路には、流量制御手段と圧力制御手段とが備えられており、圧力制御手段が流量制御手段の下流側に設けられた構成を有する。これにより、100%セレン化水素ガスの流量を所定の流量に制御するとともに、流量制御手段と圧力制御手段との間の圧力を一定に保つことができるため、安定して100%セレン化水素ガスの流量を制御することができる。したがって、セレン化水素の濃度が安定したセレン化水素混合ガスを連続的に供給することができる。 The hydrogen selenide mixed gas supply device for solar cell of the present invention is provided with a flow rate control means and a pressure control means in the source gas supply flow path, and the pressure control means is provided downstream of the flow rate control means. It has the structure which was made. As a result, the flow rate of the 100% hydrogen selenide gas can be controlled to a predetermined flow rate, and the pressure between the flow rate control means and the pressure control means can be kept constant. It is possible to control the flow rate. Therefore, a hydrogen selenide mixed gas having a stable hydrogen selenide concentration can be continuously supplied.
本発明の一実施形態である太陽電池用セレン化水素混合ガスの供給装置を示す模式図である。It is a schematic diagram which shows the supply apparatus of the hydrogen selenide mixed gas for solar cells which is one Embodiment of this invention. 従来の太陽電池用セレン化水素混合ガスの供給装置を示す模式図である。It is a schematic diagram which shows the supply apparatus of the conventional hydrogen selenide mixed gas for solar cells. 従来の太陽電池用セレン化水素混合ガスの供給方法における混合ガス中のセレン化水素ガス濃度の設定値と実測値の関係を示す図である。It is a figure which shows the relationship between the setting value of the hydrogen selenide gas density | concentration in the mixed gas in the conventional supply method of the hydrogen selenide mixed gas for solar cells, and a measured value.
 以下、本発明を適用した一実施形態である太陽電池用セレン化水素混合ガスの供給方法について、これに用いる太陽電池用セレン化水素混合ガスの供給装置とともに、図面を用いて詳細に説明する。
 なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 また、本明細書中で用いる単位については、濃度は体積濃度、圧力はゲージ圧力、流量は体積流量を表している。さらに、本明細書中に示す体積は、基準状態(0℃、1atm(大気圧))での体積である。
DESCRIPTION OF EMBODIMENTS Hereinafter, a method for supplying a hydrogen selenide mixed gas for solar cells, which is an embodiment to which the present invention is applied, will be described in detail with reference to the drawings, together with a device for supplying a hydrogen selenide mixed gas for solar cells.
In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.
As for the units used in this specification, the concentration represents volume concentration, the pressure represents gauge pressure, and the flow rate represents volume flow rate. Furthermore, the volume shown in this specification is a volume in a standard state (0 ° C., 1 atm (atmospheric pressure)).
 先ず、本発明を適用した一実施形態である太陽電池用セレン化水素混合ガスの供給装置(以下、単に「供給装置」という)の構成について説明する。
 図1に示すように、本実施形態の供給装置1は、太陽電池の製造装置における生産状況に応じて、所定の濃度に調整したセレン化水素混合ガスを供給する装置である。具体的には、供給装置1は、ベースガスを供給するためのベースガス供給流路L1と、原料ガスを供給するための原料ガス供給流路L2と、所定の濃度に調整されたセレン化水素混合ガスを貯留するためのバッファータンク2と、を備えて概略構成されている。
First, a configuration of a hydrogen selenide mixed gas supply device for solar cells (hereinafter simply referred to as “supply device”), which is an embodiment to which the present invention is applied, will be described.
As shown in FIG. 1, the supply apparatus 1 of this embodiment is an apparatus which supplies the hydrogen selenide mixed gas adjusted to the predetermined density | concentration according to the production condition in the manufacturing apparatus of a solar cell. Specifically, the supply device 1 includes a base gas supply channel L1 for supplying a base gas, a source gas supply channel L2 for supplying a source gas, and hydrogen selenide adjusted to a predetermined concentration. And a buffer tank 2 for storing the mixed gas.
 ベースガス供給流路L1は、一端が図示略のベースガス供給源に接続されており、他端が図示略の混合器に接続されている。
 ベースガスは、希釈用途の不活性ガスであれば特に限定されるものではない。上記ガスとしては、例えば、窒素(N)ガス、アルゴン(Ar)ガス等が挙げられる。
One end of the base gas supply flow path L1 is connected to a base gas supply source (not shown), and the other end is connected to a mixer (not shown).
The base gas is not particularly limited as long as it is an inert gas for dilution use. Examples of the gas include nitrogen (N 2 ) gas, argon (Ar) gas, and the like.
 ベースガス供給流路L1には、上流側から下流側に向かって、開閉バルブ3、圧力調整器4、マスフローコントローラ5、自動弁6が順次設けられている。また、圧力調整器4の上流側及び下流側には、圧力計7,8がそれぞれ設けられており、圧力調整器4の前後の圧力を視認することができる。 The base gas supply flow path L1 is provided with an opening / closing valve 3, a pressure regulator 4, a mass flow controller 5, and an automatic valve 6 sequentially from the upstream side to the downstream side. Pressure gauges 7 and 8 are provided on the upstream side and the downstream side of the pressure regulator 4, respectively, so that the pressure before and after the pressure regulator 4 can be visually recognized.
 圧力調整器4は、ベースガス供給源から供給されるベースガスの圧力を所望の圧力へと減圧するために設けられている。本実施形態の供給装置1では、ベースガス供給流路L1には圧力調整器4が一つだけ示されているが、これに限定されるものではなく、圧力調整器4が2以上設けられていてもよい。
 なお、マスフローコントローラ5の直前の圧力は、太陽電池製造装置への供給圧力に応じて適宜選択することができる。例えば、マスフローコントローラ5の直前の圧力としては、0.6~0.7MPaの範囲とすることができる。
The pressure regulator 4 is provided to reduce the pressure of the base gas supplied from the base gas supply source to a desired pressure. In the supply apparatus 1 of the present embodiment, only one pressure regulator 4 is shown in the base gas supply flow path L1, but the present invention is not limited to this, and two or more pressure regulators 4 are provided. May be.
Note that the pressure immediately before the mass flow controller 5 can be appropriately selected according to the supply pressure to the solar cell manufacturing apparatus. For example, the pressure immediately before the mass flow controller 5 can be in the range of 0.6 to 0.7 MPa.
 マスフローコントローラ5は、ベースガスの質量流量を計測して流量制御を行う流量制御機器であり、高精度な流量計測及び制御をすることができる。マスフローコントローラ5に搭載している質量流量センサとしては、特に限定されるものではなく、例えば、熱式質量流量センサや差圧式質量流量センサ等の一般的なものを用いることができる。 The mass flow controller 5 is a flow control device that measures the flow rate of the base gas by measuring the mass flow rate of the base gas, and can perform highly accurate flow rate measurement and control. The mass flow sensor mounted on the mass flow controller 5 is not particularly limited, and a general one such as a thermal mass flow sensor or a differential pressure mass flow sensor can be used.
 原料ガス供給流路L2は、一端が図示略の原料ガス供給源に接続されており、他端が図示略の混合器に接続されている。
 原料ガスは、濃度100%のセレン化水素(HSe)ガスである。なお、本明細書中では、単に100%セレン化水素ガスと記載する。
The source gas supply channel L2 has one end connected to a source gas supply source (not shown) and the other end connected to a mixer (not shown).
The source gas is hydrogen selenide (H 2 Se) gas having a concentration of 100%. In the present specification, it is simply referred to as 100% hydrogen selenide gas.
 原料ガス供給流路L2には、上流側から下流側に向かって、自動弁9、開閉バルブ10、圧力調整器11、流量制御手段12、圧力制御手段13、自動弁14が順次設けられている。また、圧力調整器11の上流側及び下流側には、圧力計15,16がそれぞれ設けられており、圧力調整器11の前後の圧力を視認することができる。 In the source gas supply flow path L2, an automatic valve 9, an on-off valve 10, a pressure regulator 11, a flow rate control means 12, a pressure control means 13, and an automatic valve 14 are sequentially provided from the upstream side to the downstream side. . Pressure gauges 15 and 16 are provided on the upstream side and the downstream side of the pressure regulator 11, respectively, so that the pressure before and after the pressure regulator 11 can be visually recognized.
 圧力調整器11は、原料ガス供給源から供給される100%セレン化水素ガスの圧力を所望の圧力へと減圧するために設けられている。本実施形態の供給装置1では、原料ガス供給流路L2には圧力調整器11が一つだけ示されているが、これに限定されるものではなく、圧力調整器11が2以上設けられていてもよい。
 また、原料ガス供給にあたり、原料ガスの減圧の必要性がない場合には、圧力調整器11は設けなくてもよい。減圧の必要性がない場合とは、例えば、原料ガス供給圧力を減圧せずとも原料ガスが原料ガス供給流路L2を所定の圧力で流れる場合である。
The pressure regulator 11 is provided to reduce the pressure of 100% hydrogen selenide gas supplied from the source gas supply source to a desired pressure. In the supply apparatus 1 of the present embodiment, only one pressure regulator 11 is shown in the raw material gas supply flow path L2, but this is not a limitation, and two or more pressure regulators 11 are provided. May be.
Further, when there is no need to depressurize the source gas when supplying the source gas, the pressure regulator 11 may not be provided. The case where there is no need for pressure reduction is, for example, the case where the source gas flows at a predetermined pressure through the source gas supply flow path L2 without reducing the source gas supply pressure.
 流量制御手段12は、原料ガス供給流路L2に設けられた最下流側の圧力調整器11と圧力制御手段13との間に設けられている。流量制御手段12は、原料ガスである100%セレン化水素ガスの流量を所定の流量に制御可能な部材であれば特に限定されるものではない。上記部材としては、例えば、ニードル弁やオリフィス等が挙げられる。また、セレン化水素の自己分解で生じるセレン(Se)結晶は、樹脂性の部材に析出しやすいため、上記ニードル弁又はオリフィスは、金属製のものを用いることが好ましい。 The flow rate control means 12 is provided between the pressure regulator 11 on the most downstream side provided in the source gas supply flow path L2 and the pressure control means 13. The flow rate control means 12 is not particularly limited as long as it is a member that can control the flow rate of 100% hydrogen selenide gas, which is a raw material gas, to a predetermined flow rate. Examples of the member include a needle valve and an orifice. Moreover, since the selenium (Se) crystal | crystallization produced by the self-decomposition of hydrogen selenide tends to precipitate on a resinous member, it is preferable to use the said needle valve or orifice using a metal.
 このようなニードル弁としては、FUDDFM-71M-6.35を例示することができる。また、オリフィスとしては、UJR-6.35RE-RG-O-0.5を例示することができる。
 流量制御手段12の下流側の流量は、必要とされるセレン化水素混合ガスの供給量に応じて適宜選択することができる。具体的には、例えば、0~20L/minの範囲とすることができる。
As such a needle valve, FUDDFM-71M-6.35 can be exemplified. An example of the orifice is UJR-6.35RE-RG-O-0.5.
The flow rate on the downstream side of the flow rate control means 12 can be appropriately selected according to the required supply amount of the hydrogen selenide mixed gas. Specifically, for example, the range can be set to 0 to 20 L / min.
 圧力制御手段13は、流量制御手段12の下流側に設けられている。圧力制御手段13は、流量制御手段12と圧力制御手段13との間の圧力を一定に保つことが可能な部材であれば特に限定されるものではない。上記部材としては、例えば、自動圧力制御装置(APR)を挙げることができる。 The pressure control means 13 is provided on the downstream side of the flow rate control means 12. The pressure control means 13 is not particularly limited as long as it is a member capable of keeping the pressure between the flow rate control means 12 and the pressure control means 13 constant. Examples of the member include an automatic pressure control device (APR).
 流量制御手段12と圧力制御手段13との間の圧力は、太陽電池製造装置への供給圧力に応じて適宜選択することができる。例えば、圧力制御手段13によって管理される圧力としては、0.5~0.6MPaの範囲とすることができる。 The pressure between the flow rate control means 12 and the pressure control means 13 can be appropriately selected according to the supply pressure to the solar cell manufacturing apparatus. For example, the pressure managed by the pressure control means 13 can be in the range of 0.5 to 0.6 MPa.
 ベースガス供給流路L1及び原料ガス供給流路L2が接続された図示略の混合器とバッファータンク2とは、流路L3により接続されている。この流路L3の上流側及び下流側には、開閉バルブ17,18がそれぞれ設けられている。 The mixer (not shown) to which the base gas supply channel L1 and the source gas supply channel L2 are connected and the buffer tank 2 are connected by a channel L3. Open / close valves 17 and 18 are provided on the upstream side and the downstream side of the flow path L3, respectively.
 バッファータンク2は、混合器によって所定の濃度に調整されたセレン化水素混合ガスを貯留するための貯留槽である。バッファータンクの容量は、特に限定されるものではなく、太陽電池製造装置へのセレン化水素混合ガスの供給量に応じて適宜選択することができる。 The buffer tank 2 is a storage tank for storing a hydrogen selenide mixed gas adjusted to a predetermined concentration by a mixer. The capacity | capacitance of a buffer tank is not specifically limited, According to the supply amount of the hydrogen selenide mixed gas to a solar cell manufacturing apparatus, it can select suitably.
 バッファータンク2には、図示略の供給口が設けられており、この供給口には流路L4の一端が接続されており、この流路L4の他端が太陽電池製造装置に接続されている。これにより、バッファータンク2から太陽電池製造装置へとセレン化水素混合ガスを供給可能となっている。また、流路L4の供給口側には、開閉バルブ19が設けられている。 The buffer tank 2 is provided with a supply port (not shown). One end of the flow path L4 is connected to the supply port, and the other end of the flow path L4 is connected to the solar cell manufacturing apparatus. . Thereby, the hydrogen selenide mixed gas can be supplied from the buffer tank 2 to the solar cell manufacturing apparatus. An opening / closing valve 19 is provided on the supply port side of the flow path L4.
 また、バッファータンク2には、流路L5の一端が接続されており、この流路L5の他端が圧力計20に接続されている。この圧力計20により、バッファータンク内の圧力を確認することができる。また、流路L5には、開閉バルブ21が設けられている。 Further, one end of the flow path L5 is connected to the buffer tank 2, and the other end of the flow path L5 is connected to the pressure gauge 20. With the pressure gauge 20, the pressure in the buffer tank can be confirmed. An opening / closing valve 21 is provided in the flow path L5.
 さらに、バッファータンク2は、流路L3から分岐された流路L6と連通されている。流路L6は、一端が流路L3に接続されており、他端が図示略の排気ダクトに接続されている。また、流路L6には、ガス濃度分析計22が設けられている。このガス濃度分析計22により、バッファータンク2内のセレン化水素混合ガス中のセレン化水素ガス濃度を測定することができる。また、ガス濃度分析計22の上流側及び下流側には、開閉バルブ23,24がそれぞれ設けられている。 Furthermore, the buffer tank 2 communicates with a flow path L6 branched from the flow path L3. The flow path L6 has one end connected to the flow path L3 and the other end connected to an exhaust duct (not shown). A gas concentration analyzer 22 is provided in the flow path L6. With this gas concentration analyzer 22, the hydrogen selenide gas concentration in the hydrogen selenide mixed gas in the buffer tank 2 can be measured. In addition, on the upstream side and the downstream side of the gas concentration analyzer 22, open / close valves 23 and 24 are provided, respectively.
 次に、上記供給装置1を用いた本実施形態の太陽電池用セレン化水素混合ガスの供給方法(以下、単に「供給方法」という)ついて説明する。
 本実施形態の供給方法は、ベースガス供給流路L1から供給される不活性ガスと、原料ガス供給流路L2から供給される100%セレン化水素ガスと、を混合することにより所定の濃度に調整したセレン化水素混合ガスを供給する工程を有する太陽電池用セレン化水素混合ガスの供給方法であり、供給工程において、原料ガス供給流路L2に設けられた流量制御手段12により、100%セレン化水素ガスの流量を所定の流量に制御し、流量制御手段12の下流側に設けられた圧力制御手段13により、流量制御手段12と圧力制御手段13との間の100%セレン化水素ガスの圧力を所定の圧力に制御するものである。
Next, a method for supplying the hydrogen selenide mixed gas for solar cells of the present embodiment using the supply device 1 (hereinafter simply referred to as “supply method”) will be described.
The supply method of the present embodiment has a predetermined concentration by mixing the inert gas supplied from the base gas supply flow path L1 and the 100% hydrogen selenide gas supplied from the source gas supply flow path L2. A method for supplying a hydrogen selenide mixed gas for solar cells, comprising a step of supplying an adjusted hydrogen selenide mixed gas. In the supply step, 100% selenium is produced by a flow rate control means 12 provided in a source gas supply flow path L2. The flow rate of the hydrogen selenide gas between the flow rate control means 12 and the pressure control means 13 is controlled by the pressure control means 13 provided downstream of the flow rate control means 12 by controlling the flow rate of the hydrogen fluoride gas. The pressure is controlled to a predetermined pressure.
 具体的には、先ず、開閉バルブ3,10,17,18,19,21,23,24を開閉操作しながら、流路内のパージを行う。上記パージを完了した後、図1に示すように全ての開閉バルブを開状態にする。 Specifically, first, the opening and closing valves 3, 10, 17, 18, 19, 21, 21, 24 are opened and closed, and the flow path is purged. After the purge is completed, all the open / close valves are opened as shown in FIG.
 次に、ベースガス供給流路L1から不活性ガスを、原料ガス供給源L2から100%セレン化水素ガスを、それぞれ混合器に供給する。 Next, an inert gas is supplied from the base gas supply flow path L1, and a 100% hydrogen selenide gas is supplied from the raw material gas supply source L2 to the mixer.
 不活性ガスは、ベースガス供給源からベースガス供給流路L1に供給される。このベースガス供給流路L1において、圧力調整器4により所定の圧力へと減圧した後、マスフローコントローラ5内へ導入される。マスフローコントローラ5からは、設定した流量の不活性ガスが排出される。そして、自動弁6が開状態の場合に、所定の流量の不活性ガスが混合器へと供給される。 The inert gas is supplied from the base gas supply source to the base gas supply channel L1. In this base gas supply flow path L <b> 1, the pressure is reduced to a predetermined pressure by the pressure regulator 4 and then introduced into the mass flow controller 5. From the mass flow controller 5, an inert gas having a set flow rate is discharged. When the automatic valve 6 is open, an inert gas with a predetermined flow rate is supplied to the mixer.
 100%セレン化水素ガスは、原料ガス供給源から原料ガス供給流路L2に供給される。この原料ガス供給流路L2において、圧力調整器11により所定の圧力へと減圧した後、流量制御手段12であるオリフィス又はニードル弁により、所定の流量に制御される。そして、圧力制御手段13により、流量制御手段12と圧力制御手段13との間の圧力が所定の圧力に制御され、自動弁14が開状態の場合に、所定の流量の100%セレン化水素ガスが混合器へと供給される。 100% hydrogen selenide gas is supplied from the source gas supply source to the source gas supply flow path L2. In the source gas supply flow path L2, after the pressure is reduced to a predetermined pressure by the pressure regulator 11, it is controlled to a predetermined flow rate by an orifice or a needle valve which is the flow rate control means 12. The pressure control means 13 controls the pressure between the flow control means 12 and the pressure control means 13 to a predetermined pressure, and the 100% hydrogen selenide gas with a predetermined flow rate when the automatic valve 14 is open. Is fed to the mixer.
 次に、混合器により、所定の流量で供給された不活性ガス及び100%セレン化水素ガスを混合して、所定の濃度のセレン化水素混合ガスを調製する。
 セレン化水素混合ガスの濃度は、特に限定されるものではなく、太陽電気製造装置の要求に応じて適宜選択することができる。具体的には、例えば、セレン化水素混合ガス中のセレン化水素の濃度を、5~20vol%とすることができる。
Next, an inert gas and a 100% hydrogen selenide gas supplied at a predetermined flow rate are mixed by a mixer to prepare a hydrogen selenide mixed gas having a predetermined concentration.
The concentration of the hydrogen selenide mixed gas is not particularly limited, and can be appropriately selected according to the requirements of the solar electric manufacturing apparatus. Specifically, for example, the concentration of hydrogen selenide in the hydrogen selenide mixed gas can be 5 to 20 vol%.
 次に、所定の濃度に調整したセレン化水素混合ガスを、流路L3を経由してバッファータンク2へと供給する。そして、このバッファータンク2の供給口に接続された流路L4から、生産状況に応じてセレン化水素混合ガスを太陽電池製造装置へと供給する。なお、バッファータンク2内の圧力は、圧力計20により計測することができる。また、バッファータンク2内のセレン化水素混合ガスの濃度は、ガス濃度分析計22により計測することができる。
 このようにして、セレン化水素の濃度が安定したセレン化水素混合ガスを太陽電池製造装置に連続的に供給する。
Next, the hydrogen selenide mixed gas adjusted to a predetermined concentration is supplied to the buffer tank 2 via the flow path L3. And hydrogen selenide mixed gas is supplied to a solar cell manufacturing apparatus from the flow path L4 connected to the supply port of this buffer tank 2 according to a production condition. The pressure in the buffer tank 2 can be measured by the pressure gauge 20. Further, the concentration of the hydrogen selenide mixed gas in the buffer tank 2 can be measured by the gas concentration analyzer 22.
In this way, a hydrogen selenide mixed gas having a stable hydrogen selenide concentration is continuously supplied to the solar cell manufacturing apparatus.
 バッファータンク2へのセレン化水素混合ガスの供給は、上述のような連続方式のほかに、バッジ方式を選択してもよい。
 バッジ方式とは、バッファータンク2内の圧力を設定した上限値及び下限値の範囲で管理し、バッファータンク2内の圧力が上記管理範囲を維持するようにセレン化水素混合ガスを供給する方法である。
The supply of the hydrogen selenide mixed gas to the buffer tank 2 may select a badge method in addition to the continuous method as described above.
The badge system is a method in which the pressure in the buffer tank 2 is managed within the set upper and lower limits, and the hydrogen selenide mixed gas is supplied so that the pressure in the buffer tank 2 maintains the above management range. is there.
 具体的には、バッファータンク2内の圧力が、設定した下限値を下回ると、ベースガス供給流路L1に設けた自動弁6および原料ガス供給流路L2に設けた自動弁9,14に信号が送付され、これらの自動弁2,9,14が開状態となる。これらの自動弁2,9,14が開状態になると、それぞれの流量に設定された不活性ガス及び100%セレン化水素ガスが混合器を経て、所定の濃度に調整されたセレン化水素混合ガスがバッファータンク2内へと供給される。そして、バッファータンク2内の圧力が、設定した上限値に到達すると、ベースガス供給流路L1に設けた自動弁6および原料ガス供給流路L2に設けた自動弁9,14に信号が送付され、これらの自動弁2,9,14が閉状態となり、供給が完了する。なお、上記サイクルを1バッジと称する。 Specifically, when the pressure in the buffer tank 2 falls below a set lower limit value, the automatic valve 6 provided in the base gas supply flow path L1 and the automatic valves 9 and 14 provided in the source gas supply flow path L2 are signaled. Is sent and these automatic valves 2, 9, and 14 are opened. When these automatic valves 2, 9, 14 are opened, the inert gas and 100% hydrogen selenide gas set to the respective flow rates pass through the mixer and the hydrogen selenide mixed gas adjusted to a predetermined concentration Is supplied into the buffer tank 2. When the pressure in the buffer tank 2 reaches the set upper limit value, a signal is sent to the automatic valves 6 provided in the base gas supply flow path L1 and the automatic valves 9 and 14 provided in the source gas supply flow path L2. These automatic valves 2, 9, and 14 are closed, and the supply is completed. The above cycle is referred to as one badge.
 以上説明したように、本実施形態の供給装置1は、原料ガス供給流路L2に流量制御手段12と圧力制御手段13とが備えられており、圧力制御手段13が流量制御手段12の下流側に設けられた構成を有する。これにより、原料ガス側の100%セレン化水素ガスの流量を所定の流量に制御することができるとともに、流量制御手段12と圧力制御手段13との間の圧力を一定に保つことができる。このため、流量が一定に制御された100%セレン化水素ガスを混合器に安定して供給することができる。したがって、生産状況に応じて、セレン化水素の濃度が安定したセレン化水素混合ガスを連続的に太陽電池製造装置に供給することができる。 As described above, the supply device 1 of the present embodiment includes the flow rate control means 12 and the pressure control means 13 in the source gas supply flow path L2, and the pressure control means 13 is downstream of the flow rate control means 12. It has the structure provided in. Thereby, the flow rate of the 100% hydrogen selenide gas on the raw material gas side can be controlled to a predetermined flow rate, and the pressure between the flow rate control means 12 and the pressure control means 13 can be kept constant. For this reason, 100% hydrogen selenide gas whose flow rate is controlled to be constant can be stably supplied to the mixer. Therefore, a hydrogen selenide mixed gas having a stable hydrogen selenide concentration can be continuously supplied to the solar cell manufacturing apparatus according to the production status.
 本実施形態の供給装置1では、流量制御手段12としてオリフィス又はニードル弁を用いているため、100%セレン化水素ガスの流量を確実に制御することができる。そして、オリフィス又はニードル弁を金属製とすることで、セレン(Se)の結晶の析出を抑制することができる。
 また、圧力制御手段13として自動圧力制御装置(APR)を用いているため、流量制御手段12と圧力制御手段13との間の圧力の制御を容易に行うことができる。
In the supply device 1 of the present embodiment, since an orifice or a needle valve is used as the flow rate control means 12, the flow rate of 100% hydrogen selenide gas can be reliably controlled. And precipitation of the crystal | crystallization of selenium (Se) can be suppressed by making an orifice or a needle valve metal.
Further, since an automatic pressure control device (APR) is used as the pressure control means 13, it is possible to easily control the pressure between the flow rate control means 12 and the pressure control means 13.
 本実施形態の供給装置1は、バッファータンク2を備えているため、所定の濃度に調整されたセレン化水素混合ガスを貯留しておくことができる。これにより、生産の状況に応じて太陽電池製造装置に適宜セレン化水素混合ガスを供給することができる。 Since the supply device 1 of the present embodiment includes the buffer tank 2, the hydrogen selenide mixed gas adjusted to a predetermined concentration can be stored. Thereby, hydrogen selenide mixed gas can be suitably supplied to a solar cell manufacturing apparatus according to the situation of production.
 本実施形態の供給方法によれば、原料ガス供給流路L2に設けられた流量制御手段12により、100%セレン化水素ガスの流量を所定の流量に制御し、この流量制御手段12の下流側に設けられた圧力制御手段13により、流量制御手段12と圧力制御手段13との間の100%セレン化水素ガスを所定の圧力に保ちながら、原料ガスである100%セレン化水素ガスを供給する。これにより、100%セレン化水素ガスを連続的に供給した場合に、原料ガス供給流路L2、流量制御手段12及び圧力制御手段13にセレン(Se)結晶が析出しても、流量制御手段12と圧力制御手段13との間の圧力を一定に保つことができる。このため、安定して100%セレン化水素ガスの流量を制御することができる。すなわち、セレン化水素混合ガスを連続して供給した場合であっても、目的とするセレン化水素混合ガスの濃度(設定値)と、実際に調製されたセレン化水素混合ガスの濃度(実測値)との間の誤差が大きくなってしまうという問題は生じない。 According to the supply method of this embodiment, the flow rate control means 12 provided in the source gas supply flow path L2 controls the flow rate of 100% hydrogen selenide gas to a predetermined flow rate, and the downstream side of the flow rate control means 12 100% hydrogen selenide gas, which is a raw material gas, is supplied by the pressure control means 13 provided at the pressure control means 13 while maintaining the 100% hydrogen selenide gas between the flow rate control means 12 and the pressure control means 13 at a predetermined pressure. . Thus, when 100% hydrogen selenide gas is continuously supplied, even if selenium (Se) crystals are precipitated in the source gas supply flow path L2, the flow rate control means 12, and the pressure control means 13, the flow rate control means 12 And the pressure control means 13 can be kept constant. For this reason, the flow rate of 100% hydrogen selenide gas can be controlled stably. That is, even when the hydrogen selenide mixed gas is continuously supplied, the concentration of the target hydrogen selenide mixed gas (set value) and the concentration of the actually prepared hydrogen selenide mixed gas (measured value) ) Will not increase in error.
 このように、本発明は、100%セレン化水素ガスを連続的に通気することにより生じるセレン(Se)結晶の析出による影響を排除して、セレン化水素の濃度が安定したセレン化水素混合ガスを連続的に供給することができる。したがって、太陽電池の製造プロセスに濃度が安定したセレン化水素混合ガスを生産量に応じて連続的に供給することができ、太陽電池の大量生産が可能となる。 As described above, the present invention eliminates the influence of precipitation of selenium (Se) crystals generated by continuously venting 100% hydrogen selenide gas, and the hydrogen selenide mixed gas in which the concentration of hydrogen selenide is stable. Can be continuously supplied. Therefore, the hydrogen selenide mixed gas having a stable concentration can be continuously supplied to the production process of the solar cell according to the production amount, and mass production of the solar cell becomes possible.
 以下、具体例を示す。
(例1)
 図1に示す供給装置1を用いて、太陽電池製造装置にセレン化水素混合ガスを連続して供給した。太陽電池製造装置へのセレン化水素混合ガスの連続供給には、バッファータンク2を用いたバッチ方式を用いた。
 また、セレン化水素混合ガスの供給時における供給装置1の条件としては、表1の条件を用いた。
 表1の条件にて50回のバッチ処理を行った後、バッファータンク2に接続されたガス濃度分析計22を用いて混合ガスの濃度変化を記録した。結果を表2に示す。
Specific examples are shown below.
(Example 1)
The hydrogen selenide mixed gas was continuously supplied to the solar cell manufacturing apparatus using the supply apparatus 1 shown in FIG. A batch system using the buffer tank 2 was used for continuous supply of the hydrogen selenide mixed gas to the solar cell manufacturing apparatus.
Moreover, the conditions of Table 1 were used as the conditions of the supply device 1 when supplying the hydrogen selenide mixed gas.
After 50 batch processes under the conditions shown in Table 1, the concentration change of the mixed gas was recorded using the gas concentration analyzer 22 connected to the buffer tank 2. The results are shown in Table 2.
(例2)
 図2に示す供給装置101を用いて、太陽電池製造装置にセレン化水素混合ガスを連続して供給した。太陽電池製造装置へのセレン化水素混合ガスの連続供給には、バッファータンク102を用いたバッチ方式を用い、供給装置101のセレン化水素混合ガスの供給条件としては、表1の条件を用いた。
 表1の条件にて50回のバッチ処理を行った後、バッファータンク102に接続されたガス濃度分析計122を用いて混合ガスの濃度変化を記録した。結果を表2に示す。
(Example 2)
The hydrogen selenide mixed gas was continuously supplied to the solar cell manufacturing apparatus using the supply apparatus 101 shown in FIG. The batch method using the buffer tank 102 was used for continuous supply of the hydrogen selenide mixed gas to the solar cell manufacturing apparatus, and the conditions shown in Table 1 were used as supply conditions for the hydrogen selenide mixed gas of the supply apparatus 101. .
After 50 batch processes were performed under the conditions shown in Table 1, the concentration change of the mixed gas was recorded using the gas concentration analyzer 122 connected to the buffer tank 102. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、従来技術である例2におけるバッファータンクの50回のバッチ処理を行った後の、セレン化水素混合ガスの設定濃度と実測濃度との誤差は、+1.31%であった。これに対して、本発明を適用した例1における設定濃度と実測濃度との誤差は、+0.10%であった。
 以上より、セレン化水素混合ガスを連続供給した場合に、本発明を適用した例1は、従来技術である例2と比較して、連続供給前後のセレン化水素混合ガスの濃度変化を約1/13程度に抑えることができることを確認した。
As shown in Table 2, the error between the set concentration of the hydrogen selenide mixed gas and the actually measured concentration after 50 batches of the buffer tank in Example 2 which is the prior art was + 1.31%. It was. On the other hand, the error between the set density and the actually measured density in Example 1 to which the present invention was applied was + 0.10%.
As described above, when the hydrogen selenide mixed gas is continuously supplied, Example 1 to which the present invention is applied exhibits a change in the concentration of the hydrogen selenide mixed gas before and after the continuous supply by about 1 as compared with Example 2 which is the prior art. / 13 was confirmed to be able to be suppressed.
 1…供給装置(太陽電池用セレン化水素混合ガスの供給装置)
 2…バッファータンク
 3,10,14,17,18,19,21,23,24…開閉バルブ
 4,11…圧力調整器
 5…マスフローコントローラ(MFC)
 6,9,14…自動弁
 7,8,15,16,20…圧力計
 12…流量制御手段
 13…圧力制御手段
 22…ガス濃度分析計
 L1…ベースガス供給流路
 L2…原料ガス供給流路
 L3~L6…流路
1 ... Supply device (supply device for hydrogen selenide mixed gas for solar cells)
2 ... Buffer tank 3, 10, 14, 17, 18, 19, 21, 23, 24 ... Open / close valve 4, 11 ... Pressure regulator 5 ... Mass flow controller (MFC)
6, 9, 14 ... Automatic valve 7, 8, 15, 16, 20 ... Pressure gauge 12 ... Flow rate control means 13 ... Pressure control means 22 ... Gas concentration analyzer L1 ... Base gas supply flow path L2 ... Raw material gas supply flow path L3 to L6 ... Flow path

Claims (10)

  1.  ベースガス供給流路から供給される不活性ガスと、原料ガス供給流路から供給される100%セレン化水素ガスと、を混合することにより所定の濃度に調整したセレン化水素混合ガスを供給する工程を有する太陽電池用セレン化水素混合ガスの供給方法であって、
     前記供給工程において、前記原料ガス供給流路に設けられた流量制御手段により、前記100%セレン化水素ガスの流量を所定の流量に制御し、前記流量制御手段の下流側に設けられた圧力制御手段により、前記流量制御手段と当該圧力制御手段との間の前記100%セレン化水素ガスの圧力を所定の圧力に制御する太陽電池用セレン化水素混合ガスの供給方法。
    Supplying a hydrogen selenide mixed gas adjusted to a predetermined concentration by mixing an inert gas supplied from the base gas supply channel and a 100% hydrogen selenide gas supplied from the source gas supply channel A method for supplying a hydrogen selenide mixed gas for solar cells, comprising the steps of:
    In the supply step, the flow rate control means provided in the source gas supply flow path controls the flow rate of the 100% hydrogen selenide gas to a predetermined flow rate, and pressure control provided on the downstream side of the flow rate control means Means for supplying a hydrogen selenide mixed gas for solar cells, wherein the pressure of the 100% hydrogen selenide gas between the flow rate control means and the pressure control means is controlled to a predetermined pressure.
  2.  前記流量制御手段が、オリフィス又はニードル弁であり、
     前記圧力制御手段が、自動圧力制御装置(APR)である請求項1に記載の太陽電池用セレン化水素混合ガスの供給方法。
    The flow control means is an orifice or a needle valve;
    The method for supplying a hydrogen selenide mixed gas for solar cells according to claim 1, wherein the pressure control means is an automatic pressure control device (APR).
  3.  前記オリフィス又はニードル弁が、金属製である請求項2に記載の太陽電池用セレン化水素混合ガスの供給方法。 The method for supplying a hydrogen selenide mixed gas for solar cells according to claim 2, wherein the orifice or the needle valve is made of metal.
  4.  所定の濃度に調整した前記セレン化水素混合ガスをバッファータンクに貯留し、前記バッファータンクから所望の濃度のセレン化水素混合ガスを供給する請求項1に記載の太陽電池用セレン化水素混合ガスの供給方法。 The hydrogen selenide mixed gas for solar cells according to claim 1, wherein the hydrogen selenide mixed gas adjusted to a predetermined concentration is stored in a buffer tank, and a hydrogen selenide mixed gas having a desired concentration is supplied from the buffer tank. Supply method.
  5.  前記原料ガス供給流路において、流路内の圧力を1回以上減圧し、最後に減圧した後に前記100%セレン化水素ガスの流量を調整する請求項1に記載の太陽電池用セレン化水素混合ガスの供給方法。 2. The hydrogen selenide mixture for solar cells according to claim 1, wherein in the source gas supply channel, the pressure in the channel is reduced at least once and the flow rate of the 100% hydrogen selenide gas is adjusted after the pressure is finally reduced. Gas supply method.
  6.  ベースガス供給流路と、原料ガス供給流路と、を備える太陽電池用セレン化水素混合ガスの供給装置であって、
     ベースガス供給流路から供給される不活性ガスと、原料ガス供給流路から供給される100%セレン化水素ガスと、を混合することにより所定の濃度に調整したセレン化水素混合ガスを供給し、
     前記原料ガス供給流路が、前記100%セレン化水素ガスの流量を所定の流量に制御するための流量制御手段と、前記100%セレン化水素ガスの圧力を一定に制御するための圧力制御手段と、を備え、
     前記圧力制御手段が、前記流量制御手段の下流側に設けられている太陽電池用セレン化水素混合ガスの供給装置。
    A hydrogen selenide mixed gas supply device for a solar cell comprising a base gas supply channel and a source gas supply channel,
    Supplying a hydrogen selenide mixed gas adjusted to a predetermined concentration by mixing an inert gas supplied from the base gas supply channel and a 100% hydrogen selenide gas supplied from the source gas supply channel ,
    The source gas supply flow path has a flow rate control means for controlling the flow rate of the 100% hydrogen selenide gas to a predetermined flow rate, and a pressure control means for controlling the pressure of the 100% hydrogen selenide gas to be constant. And comprising
    An apparatus for supplying a hydrogen selenide mixed gas for solar cells, wherein the pressure control means is provided downstream of the flow rate control means.
  7.  前記流量制御手段が、オリフィス又はニードル弁であり、
     前記圧力制御手段が、自動圧力制御装置(APR)である請求項6に記載の太陽電池用セレン化水素混合ガスの供給装置。
    The flow control means is an orifice or a needle valve;
    The apparatus for supplying a hydrogen selenide mixed gas for a solar cell according to claim 6, wherein the pressure control means is an automatic pressure controller (APR).
  8.  前記オリフィス又はニードル弁が、金属製である請求項7に記載の太陽電池用セレン化水素混合ガスの供給装置。 The apparatus for supplying a hydrogen selenide mixed gas for a solar cell according to claim 7, wherein the orifice or the needle valve is made of metal.
  9.  所定の濃度に調整した前記セレン化水素混合ガスを貯留するバッファータンクをさらに備え、
     前記バッファータンクには、前記セレン化水素混合ガスを供給するための供給口が設けられている請求項6に記載の太陽電池用セレン化水素混合ガスの供給装置。
    A buffer tank for storing the hydrogen selenide mixed gas adjusted to a predetermined concentration;
    The apparatus for supplying a hydrogen selenide mixed gas for a solar cell according to claim 6, wherein the buffer tank is provided with a supply port for supplying the hydrogen selenide mixed gas.
  10.  前記原料ガス供給流路には、1以上の圧力調整器が設けられており、
     最下流側の前記圧力調整器と前記圧力制御手段との間に前記流量制御手段が設けられている請求項6に記載の太陽電池用セレン化水素混合ガスの供給装置。
    The source gas supply channel is provided with one or more pressure regulators,
    The apparatus for supplying a hydrogen selenide mixed gas for a solar cell according to claim 6, wherein the flow rate control means is provided between the pressure regulator on the most downstream side and the pressure control means.
PCT/JP2010/063766 2009-09-04 2010-08-13 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell WO2011027663A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127001216A KR101635122B1 (en) 2009-09-04 2010-08-13 Method and Apparatus for Supplying Hydrogen Selenide Mixed Gas for Solar Cell
JP2011529864A JP5548208B2 (en) 2009-09-04 2010-08-13 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
CN201080033515.1A CN102471061B (en) 2009-09-04 2010-08-13 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009205230 2009-09-04
JP2009-205230 2009-09-04

Publications (1)

Publication Number Publication Date
WO2011027663A1 true WO2011027663A1 (en) 2011-03-10

Family

ID=43649205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063766 WO2011027663A1 (en) 2009-09-04 2010-08-13 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell

Country Status (5)

Country Link
JP (1) JP5548208B2 (en)
KR (1) KR101635122B1 (en)
CN (1) CN102471061B (en)
TW (1) TWI498152B (en)
WO (1) WO2011027663A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110044125A1 (en) * 2006-03-01 2011-02-24 Asahi Organic Chemicals Industry Co., Ltd. Fluid mixing system
JP2014084241A (en) * 2012-10-22 2014-05-12 Taiyo Nippon Sanso Corp Method for feeding a hydrogen selenide mixed gas for a solar cell
JP2015013784A (en) * 2013-07-08 2015-01-22 大陽日酸株式会社 Hydrogen selenide mixed gas feeding device
JP5663488B2 (en) * 2009-10-14 2015-02-04 大陽日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769727B (en) * 2012-10-22 2016-12-07 大阳日酸株式会社 The supply method of Selenium hydride. mixed gas and feedway
CN106012025A (en) * 2016-07-22 2016-10-12 桂林电子科技大学 Device for automatically controlling diffusion furnace gas concentration and diffusion mode
CN110739370B (en) * 2019-11-29 2021-02-05 尚越光电科技股份有限公司 System for enhancing selenium reaction activity by virtue of selenium source hydrogenation of flexible CIGS solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502247A (en) * 2003-08-14 2007-02-08 ユニヴァーシティ オブ ヨハネスバーグ Quaternary or higher I-III-VI alloy semiconductor film
JP2008543563A (en) * 2005-06-22 2008-12-04 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Integrated gas mixing device and process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163599A (en) * 1984-09-05 1986-04-01 Matsushita Electric Ind Co Ltd System for vapor growth
JPS6469874A (en) * 1987-09-09 1989-03-15 Kyushu Nippon Electric Mass flow controller
US5865206A (en) * 1997-05-09 1999-02-02 Praxair Technology, Inc. Process and apparatus for backing-up or supplementing a gas supply system
US6363958B1 (en) * 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
JP3554509B2 (en) * 1999-08-10 2004-08-18 忠弘 大見 Flow rate abnormality detection method in pressure flow control device
TW200402325A (en) * 2002-03-08 2004-02-16 Shuzo Nomura Gas mixer, gas reactor and surface modifying device
JP2004302914A (en) * 2003-03-31 2004-10-28 Advanced Energy Japan Kk Mass flow controller equipped with sensor for primary side pressure
JP4676771B2 (en) * 2004-05-20 2011-04-27 新光電気工業株式会社 Method for producing compound semiconductor solar cell
CN101395453B (en) * 2006-03-07 2010-09-29 喜开理株式会社 Gas flow rate verification unit
JP4925724B2 (en) 2006-05-25 2012-05-09 本田技研工業株式会社 Solar cell and method for manufacturing the same
CN101368265B (en) * 2008-06-17 2010-09-08 华南师范大学 Gas path system of apparatus for preparing gallium nitride thin film
JP5518404B2 (en) * 2009-09-04 2014-06-11 大陽日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502247A (en) * 2003-08-14 2007-02-08 ユニヴァーシティ オブ ヨハネスバーグ Quaternary or higher I-III-VI alloy semiconductor film
JP2008543563A (en) * 2005-06-22 2008-12-04 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Integrated gas mixing device and process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110044125A1 (en) * 2006-03-01 2011-02-24 Asahi Organic Chemicals Industry Co., Ltd. Fluid mixing system
JP5663488B2 (en) * 2009-10-14 2015-02-04 大陽日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
JP2014084241A (en) * 2012-10-22 2014-05-12 Taiyo Nippon Sanso Corp Method for feeding a hydrogen selenide mixed gas for a solar cell
JP2015013784A (en) * 2013-07-08 2015-01-22 大陽日酸株式会社 Hydrogen selenide mixed gas feeding device

Also Published As

Publication number Publication date
TW201136657A (en) 2011-11-01
KR20120057605A (en) 2012-06-05
JP5548208B2 (en) 2014-07-16
TWI498152B (en) 2015-09-01
KR101635122B1 (en) 2016-06-30
CN102471061A (en) 2012-05-23
CN102471061B (en) 2014-09-24
JPWO2011027663A1 (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5548208B2 (en) Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
JP5518404B2 (en) Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
JP6065329B2 (en) Method and apparatus for supplying hydrogen selenide mixed gas
JP5663488B2 (en) Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
JPH06295862A (en) Compound semiconductor fabrication system and organic metal material vessel
US20090126623A1 (en) Apparatus for producing group III element nitride semiconductor and method for producing the semiconductor
KR20070120462A (en) Metal-organic vaporizing and feeding apparatus, metal-organic chemical vapor deposition apparatus, metal-organic chemical vapor deposition method, gas flow rate regulator, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP5873231B2 (en) Supply device and supply method of hydrogen selenide mixed gas for solar cell
CN111408289A (en) Method and system for industrially continuously mixing gas with high precision
JP5378122B2 (en) Method and apparatus for supplying hydrogen selenide mixed gas for solar cell
CA2010441A1 (en) Process and device for producing a glass-metal bond
CN105463577A (en) Method for producing group iii nitride crystal, and apparatus for producing the same
JP6008688B2 (en) Method for supplying hydrogen selenide mixed gas for solar cell
JP2000150938A (en) FORMATION METHOD OF Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR THIN FILM AND SOLAR CELL ELEMENT HAVING THE THIN FILM FORMED BY THE METHOD
JP2646931B2 (en) Vapor phase growth apparatus and vapor phase growth method using the same
JPH076964A (en) Manufacture of semiconductor
JP2000150542A (en) METHOD FOR FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR THIN FILM AND FILM FORMING DEVICE USED THEREFOR
CN112538615A (en) Liquid source storage system
CN117403209A (en) MOCVD equipment, using method and gallium oxide epitaxial film
JPH08288226A (en) Metal organic vapor growth apparatus
WO2009107239A1 (en) Semiconductor producing apparatus and method of pipe purging therefor
JP2008166670A (en) Metal-organic vaporizing and feeding apparatus, metal-organic chemical vapor deposition apparatus, metal-organic chemical vapor deposition method, gas flow rate regulator, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JPS5856964B2 (en) Compound semiconductor liquid phase growth method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033515.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529864

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127001216

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813614

Country of ref document: EP

Kind code of ref document: A1