WO2011002263A2 - Method and apparatus for receiving control information of relay station in wireless communication system including relay station - Google Patents

Method and apparatus for receiving control information of relay station in wireless communication system including relay station Download PDF

Info

Publication number
WO2011002263A2
WO2011002263A2 PCT/KR2010/004337 KR2010004337W WO2011002263A2 WO 2011002263 A2 WO2011002263 A2 WO 2011002263A2 KR 2010004337 W KR2010004337 W KR 2010004337W WO 2011002263 A2 WO2011002263 A2 WO 2011002263A2
Authority
WO
WIPO (PCT)
Prior art keywords
relay station
resource
ofdm symbol
control information
phich
Prior art date
Application number
PCT/KR2010/004337
Other languages
French (fr)
Korean (ko)
Other versions
WO2011002263A3 (en
Inventor
정재훈
박규진
문성호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2011002263A2 publication Critical patent/WO2011002263A2/en
Publication of WO2011002263A3 publication Critical patent/WO2011002263A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for a relay station to receive control information from a base station in a wireless communication system including a relay station.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-Advanced is being prepared.
  • LTE-Advanced is one of the potential candidates for IMT-Advanced.
  • the main technologies of LTE-Advanced include relay station technology.
  • a relay station is a device for relaying a signal between a base station and a terminal, and is used to expand cell coverage and improve throughput of a wireless communication system.
  • a signal transmission method between the base station and the relay station is currently being studied. It is problematic to use the signal transmission method between the base station and the terminal as it is for signal transmission between the base station and the relay station.
  • the RS may not be able to transmit or receive a signal over one subframe. Since the relay station usually relays signals to a plurality of terminals, frequent reception mode and transmission mode switching occurs. In addition, the RS may receive a signal from the BS or transmit a signal to the RS in the same frequency band. Alternatively, the relay station may receive a signal from the relay station terminal or transmit a signal to the base station in the same frequency band. In the switching between the reception mode and the transmission mode, a predetermined time period in which the relay station does not transmit or receive a signal to prevent inter-signal interference and stabilize the operation between the reception mode section and the transmission mode section (hereinafter referred to as guard time). Is called).
  • the RS may need to transmit control information in order to prevent the RS from taking unnecessary data reception operations in a subframe receiving a signal from the BS.
  • a relay station Due to the constraints described above, it is difficult for a relay station to apply a conventional method of receiving control information between base stations and terminals. What is needed is a method and apparatus for a relay station to receive control information in a backhaul link between a relay station and a base station.
  • the present invention provides a method and apparatus for receiving control information of a relay station in a wireless communication system including the relay station.
  • a method for receiving control information of a relay station includes receiving resource allocation information from a base station; And receiving backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information, wherein the resource allocation information is a relay station terminal in the time domain for a subframe including a plurality of OFDM symbols. And an OFDM symbol for transmitting access downlink control information to the at least one OFDM symbol and a resource element group spaced at regular intervals from the at least one OFDM symbol in the frequency domain. It is characterized by indicating the resource.
  • the relay station for transmitting and receiving radio signals; And a processor connected to the RF unit, wherein the processor receives resource allocation information from a base station and receives backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information, wherein the resource allocation information is received.
  • the relay station can reliably receive backhaul downlink control information such as ACK / NACK or information on the number of OFDM symbols in the control region from the base station.
  • 1 shows a wireless communication system including a relay station.
  • FIG. 2 shows a link present in a wireless communication system.
  • FIG. 3 is a diagram conceptually showing a functional module of a relay station.
  • 4 shows a radio frame structure of 3GPP LTE.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • FIG. 6 shows a structure of a downlink subframe.
  • FIG. 8 shows an example of a timing relationship between an uplink radio frame and a downlink radio frame.
  • FIG. 9 is a diagram illustrating a configuration of a subframe in which a relay station receives a signal from a base station.
  • FIG. 11 is a block diagram illustrating an example of a R-PHICH transmission process.
  • FIG. 13 shows an example of resource mapping of an R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
  • 15 and 16 illustrate other examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
  • FIG 17 shows an example in which an R-PHICH region is allocated separately from an R-PDCCH region.
  • FIG. 18 shows an example of resource mapping of an R-PCFICH in the R-PDCCH structure described with reference to FIG. 12.
  • 20 to 22 illustrate examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 19.
  • 23 and 24 illustrate examples in which the R-PHICH region is separately allocated from the R-PDCCH region described with reference to FIG. 19.
  • FIG. 25 shows an example in which an R-PCFICH is allocated to the first OFDM symbol of the R-PDCCH region described with reference to FIG. 23 or 24.
  • Fig. 26 is a block diagram showing a base station and a relay station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-Advanced (LTE-A) is the evolution of 3GPP LTE.
  • 3GPP LTE / LET-A will be described as an example, but the technical spirit of the present invention is not limited thereto.
  • 1 shows a wireless communication system including a relay station.
  • a wireless communication system 10 including a relay station includes at least one base station 11 (eNodeB, eNB).
  • Each base station 11 provides a communication service for a particular geographic area 15, commonly referred to as a cell.
  • the cell can be further divided into a plurality of areas, each of which is called a sector.
  • One or more cells may exist in one base station.
  • the base station 11 generally refers to a fixed station communicating with the terminal 13, and includes a base station (BS), a base transceiver system (BTS), an access point, an access network (AN), and the like. It may be called in other terms.
  • the base station 11 may perform functions such as connectivity, management, control, and resource allocation between the relay station 12 and the terminal 14.
  • Relay Node refers to a device for relaying a signal between the base station 11 and the terminal 14, and may be referred to as other terms such as a relay station, a repeater, a relay, and the like. Can be.
  • a relay method used by the relay station any method such as AF and ADF may be used, and the technical spirit of the present invention is not limited thereto.
  • Terminals 13 and 14 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). ), A wireless modem, a handheld device, and an access terminal (AT).
  • a macro terminal (Mac-UE, Ma-UE, 13) is a terminal that communicates directly with the base station 11, the relay station terminal (RN-UE, 14) refers to a terminal that communicates with the relay station. Even in the macro terminal 13 in the cell of the base station 11, it is possible to communicate with the base station 11 via the relay station 12 in order to improve the transmission rate according to the diversity effect.
  • FIG. 2 shows a link present in a wireless communication system.
  • a link between the base station 11 and the relay station 12 and a link between the relay station 12 and the relay station terminal 14 exist in a wireless communication system 10 including a relay station.
  • a link between the base station and the macro terminal also exists.
  • the backhaul link may be divided into a backhaul downlink (B-DL) and a backhaul uplink (B-UL).
  • B-DL backhaul downlink
  • B-UL backhaul uplink
  • the backhaul downlink means communication from the base station 11 to the relay station 12
  • the backhaul uplink means communication from the relay station 12 to the base station 11.
  • the link between the relay station 12 and the relay station terminal 14 will be referred to as an access link.
  • the access link may be divided into an access downlink (A-DL) and an access uplink (A-UL).
  • Access downlink means communication from the relay station 12 to the relay station terminal 14, and access uplink means communication from the relay station terminal 14 to the relay station 12.
  • the link between the base station 11 and the macro terminal 13 will be referred to as a macro link.
  • the macro link may be divided into a macro downlink and a macro uplink.
  • a macro downlink (M-DL) means communication from the base station 11 to the macro terminal 13
  • a macro uplink , M-UL means communication from the macro terminal 13 to the base station 11.
  • the wireless communication system 10 including the relay station is a system supporting bidirectional communication.
  • Bidirectional communication may be performed using a time division duplex (TDD) mode, a frequency division duplex (FDD) mode, or the like.
  • TDD mode uses different time resources in uplink transmission and downlink transmission.
  • FDD mode uses different frequency resources in uplink transmission and downlink transmission.
  • the FDD mode uses different frequency resources in uplink transmission and downlink transmission.
  • the same frequency band may be used in the backhaul downlink and the access downlink, and the same frequency band may be used in the backhaul uplink and the access uplink.
  • FIG. 3 is a diagram conceptually showing a functional module of a relay station.
  • the RS should be able to receive a signal from a base station in a backhaul downlink and perform OFDMA signal processing through a fast fourier transform (FFT).
  • FFT fast fourier transform
  • the RS should be able to receive the signal from the RS in the access uplink and perform OFDMA signal processing through the FFT. The two processes can be performed simultaneously.
  • the relay station should be able to transmit signals to the base station through DFT-s-OFDMA (SC-FDMA) signal processing in the backhaul uplink.
  • the RS must be able to transmit a signal to the RS through DFT-s-OFDMA (SC-FDMA) signal processing in the access downlink. The two processes can be performed simultaneously.
  • 4 shows a radio frame structure of 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • One subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be a minimum unit of scheduling.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink and may be called another name.
  • SC-FDMA orthogonal frequency division multiplexing
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • one subframe includes 7 OFDM symbols in a normal CP and one subframe includes 6 OFDM symbols in an extended CP.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame and the number of slots included in the subframe may be variously changed.
  • the symbol may mean one OFDM symbol or one SC-FDMA symbol.
  • the structure of the radio frame described with reference to FIG. 4 is 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)" See sections 4.1 and 4.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • one slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • the subcarriers in the RB may have an interval of, for example, 15 KHz.
  • Each element on the resource grid is called a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the resource grid described in FIG. 5 may also be applied to uplink.
  • FIG. 6 shows a structure of a downlink subframe.
  • a subframe includes two consecutive slots.
  • the first 3 OFDM symbols of the first slot are a control region to which a physical downlink control channel (PDCCH) is allocated, and the remaining OFDM symbols are a data region to which a physical downlink shared channel (PDSCH) is allocated. )to be.
  • the control region may be allocated a control channel such as a physical control format indicator channel (PCFICH) and a physical HARQ indicator channel (PHICH).
  • PCFICH physical control format indicator channel
  • PHICH physical HARQ indicator channel
  • the UE may read the data information transmitted through the PDSCH by decoding the control information transmitted through the PDCCH.
  • the control region includes only 3 OFDM symbols, and the control region may include 2 OFDM symbols or 1 OFDM symbol.
  • the number of OFDM symbols included in the control region in the subframe can be known through the PCFICH.
  • the PHICH carries information indicating whether reception of the uplink data transmitted by the UE is successful.
  • the control region is composed of logical CCE columns that are a plurality of CCEs.
  • the CCE column is a collection of all CCEs constituting the control region in one subframe.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the CCE may correspond to 9 resource element groups.
  • Resource element groups are used to define the mapping of control channels to resource elements.
  • one resource element group may consist of four resource elements.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the PDCCH carries control information such as scheduling assignment.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the number of CCEs constituting the CCE group.
  • the number of CCEs used for PDCCH transmission is called a CCE aggregation level.
  • the CCE aggregation level is a CCE unit for searching for a PDCCH.
  • the size of the CCE aggregation level is defined by the number of adjacent CCEs.
  • the CCE aggregation level may be an element of ⁇ 1, 2, 4, 8 ⁇ .
  • DCI downlink control information
  • DCI includes uplink scheduling information, downlink scheduling information, system information, system information, uplink power control command, control information for paging, control information for indicating a random access response, etc. It includes.
  • the DCI format includes format 0 for PUSCH scheduling, format 1 for scheduling one physical downlink shared channel (PDSCH) codeword, and format 1A for compact scheduling of one PDSCH codeword.
  • Format 1B for simple scheduling of rank-1 transmission of a single codeword in spatial multiplexing mode
  • format 1C for very simple scheduling of downlink shared channel (DL-SCH)
  • format for PDSCH scheduling in multi-user spatial multiplexing mode 1D format for PDSCH scheduling in multi-user spatial multiplexing mode 1D
  • format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode format 2A for PDSCH scheduling in open-loop spatial multiplexing mode
  • TPC 2-bit power regulation for PUCCH and PUSCH Transmission power control
  • format 3A for transmission of 1-bit power control TPC commands for PUCCH and PUSCH.
  • an uplink subframe is allocated a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a physical uplink shared channel (PUSCH) carrying user data. It can be divided into data areas.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the PUCCH for one UE is allocated to a resource block (RB) pair (51, 52) in a subframe, and the RBs 51 and 52 belonging to the RB pair occupy different subcarriers in each of two slots. do. This is said that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • RB resource block
  • PUCCH may support multiple formats. That is, uplink control information having different numbers of bits per subframe may be transmitted according to a modulation scheme. For example, when using Binary Phase Shift Keying (BPSK) (PUCCH format 1a), uplink control information of 1 bit can be transmitted on PUCCH, and when using Quadrature Phase Shift Keying (QPSK) (PUCCH format 1b). 2 bits of uplink control information can be transmitted on the PUCCH.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • Format 1 In addition to the PUCCH format, there are Format 1, Format 2, Format 2a, Format 2b, and the like (3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); See Section 5.4 of “Physical Channels and Modulation (Release 8)”.
  • FIG. 8 shows an example of a timing relationship between an uplink radio frame and a downlink radio frame.
  • the uplink frame #i in the UE is ((N TA + N TAoffset ) x T s ) (where 0 ⁇ N TA ⁇ 20512, where N TAoffset is an FDD frame) compared to the downlink frame #i. 0, in the case of the TDD frame 624) may be transmitted earlier.
  • Ts may be 1 / (15000 x 2048) seconds.
  • the timing relationship between the uplink radio frame and the downlink radio frame is 3GPP TS 36.213 V8.6.0. See section 4.2.3.
  • the relay station receives resource allocation information for the backhaul downlink from the base station.
  • the resource allocation information may be transmitted through a higher layer signal such as a physical layer signal or a radio resource control (RRC) message.
  • the relay station receives the backhaul downlink control information from the base station in the radio resource indicated by the resource allocation information.
  • the radio resource indicated by the resource allocation information is an OFDM symbol in which a relay station transmits access downlink control information to a relay station terminal in a time domain for a subframe including a plurality of OFDM symbols, and is located after a guard interval required for transmitting and receiving switching of the relay station. It includes at least one OFDM symbol.
  • a resource element group (REG) spaced at regular intervals in the frequency domain from the at least one OFDM symbol may be included, and backhaul downlink control information may be transmitted through the resource element group.
  • the backhaul downlink control information may be ACK / NACK for backhaul uplink data transmitted from the relay station to the base station, and the number of OFDM symbols to which backhaul downlink control information transmitted to the relay station is allocated. It may include information on the transmitted frequency band.
  • FIG. 9 is a diagram illustrating a configuration of a subframe in which a relay station receives a signal from a base station.
  • a subframe 400 in which a relay station receives a signal from a base station includes an access control signal region 410, a guard interval 1 420, a guard interval 2 430, and a backhaul region. 440).
  • the access control signal area 410 is a radio resource area in which the relay station transmits a control signal to the relay station terminal.
  • the control signals transmitted from the relay station to the relay terminal may inform the relay terminal that the access downlink data will not be transmitted, thereby serving to prevent the relay station from taking unnecessary data reception operations.
  • the RS covers radio resource management (RRM) and operates by being given an individual cell ID, such a control signal should be transmitted in the first predetermined number of OFDM symbols of all access downlink subframes in order to provide backward compatibility to the RS. can do.
  • the control signal may include a PCFICH, PDCCH, PHICH signal and the like.
  • the access control signal region 410 may include 1 to 3 OFDM symbols.
  • the RS transmits a control signal to the UE through the access control signal region 410 in a subframe set as a subframe receiving a signal from the BS, and then, from the BS in the backhaul region 440 after the guard interval 1 420. It can receive a signal. That is, the relay station may control the access control signal region 410 and the backhaul region in a time division multiplexing (TDM) manner to prevent transmission and reception of signals on the same radio resource, that is, the same frequency (same IFFT / FFT region) on the backhaul link and the access link. 440 may be operated separately.
  • TDM time division multiplexing
  • Guard period 1 (420) and guard period 2 (430) is an operation stabilization time required for switching between reception and transmission of a signal at the relay station, which is a kind of transition time.
  • the guard period 1 420 and the guard period 2 430 may be time intervals of one symbol interval or less.
  • Guard period 2 (430) may be included only when necessary.
  • the relay station may receive a signal from the base station through the backhaul area 440 as described above. Unlike the terminal, the relay station can receive a signal from the base station using only some OFDM symbols in the subframe. In this case, it is a question of how the relay station configures a control channel for receiving control information from the base station.
  • the R-PDCCH means a control channel through which the base station transmits backhaul downlink control information to the relay station.
  • R-PHICH refers to a channel through which the base station transmits ACK / NACK for backhaul uplink data to the relay station.
  • the R-PCFICH refers to a channel in which the base station informs the relay station of the number of OFDM symbols of the R-PDCCH or in addition, informs the frequency band and the DCI format in which the R-PDCCH is transmitted.
  • the R-PDSCH means a data channel through which the base station transmits backhaul downlink data to the relay station.
  • the macro PDCCH refers to a control channel through which the base station transmits downlink control information to the macro terminal
  • the access PDCCH refers to a control channel through which the relay station transmits access downlink control information to the RS.
  • the R-PDCCH region / band means a radio resource region / frequency band through which the R-PDCCH is transmitted.
  • the R-PHICH region / band means a radio resource region / frequency band through which the R-PHICH is transmitted, and the R-PCFICH region / band means a radio resource region / frequency band through which the R-PCICH is transmitted.
  • the R-PUSCH means a data channel through which the relay station transmits backhaul uplink data to the base station.
  • a wireless communication system including a relay station may support uplink or downlink hybrid automatic repeat request (HARQ) on a backhaul link.
  • HARQ hybrid automatic repeat request
  • the base station receiving the backhaul uplink data 110 on the R-PUSCH from the relay station transmits the ACK / NACK signal 111 on the R-PHICH after a predetermined subframe has elapsed.
  • the ACK / NACK signal 111 becomes an ACK signal when the backhaul uplink data 110 is successfully decoded, and becomes an NACK signal when decoding of the backhaul uplink data 110 fails.
  • the RS may transmit retransmission data 120 for the backhaul uplink data 110 until ACK information is received or up to a maximum number of retransmissions.
  • the base station may transmit the ACK / NACK signal 121 for the retransmission data 120 on the R-PHICH.
  • FIG. 11 is a block diagram illustrating an example of a R-PHICH transmission process.
  • the base station transmits ACK / NACK for the stream received from the relay station through the R-PUSCH through the R-PHICH.
  • the base station codes 1 bit ACK / NACK into 3 bits using a repetition code having a code rate of 1/3 (S130).
  • the coded ACK / NACK is modulated by a Binary Phase Key-Shifting (BPSK) scheme to generate three modulation symbols (S131).
  • An orthogonal sequence may be used when spreading the modulation symbols, and the number of orthogonal sequences used is SF * 2 to apply I / Q multiplexing.
  • R-PHICHs spread using SF * 2 orthogonal sequences may be defined as one R-PHICH group.
  • Layer mapping is performed on the spread symbols (S133).
  • the layer mapped symbols are resource mapped and transmitted (S134).
  • the R-PHICH transmits HARQ ACK / NACK according to the R-PUSCH transmission.
  • a plurality of R-PHICHs mapped to resource elements of the same set form an R-PHICH group, and each R-PHICH in the R-PHICH group may be distinguished by different orthogonal sequences.
  • the N PHICH group which is the number of R-PHICH groups in the FDD system, may be constant in all subframes and may be determined by Equation 1.
  • Ng is transmitted from a higher layer through a PBCH (Physical Broadcast Channel), and may be Ng / ⁇ 1 / 6,1 / 2,1,2 ⁇ .
  • the PBCH carries system information necessary for the relay station to communicate with the base station.
  • N RB DL is a backhaul downlink bandwidth configuration expressed as a multiple of N sc RB which is a size of a resource block in a frequency domain.
  • the R-PHICH group index n PHICH group is an integer of any one of 0 to N PHICH group -1.
  • the resource used for the R-PHICH is based on the smallest PRB index when the resource allocation of the R-PUSCH and the cyclic shift value of the DMRS (Demodulation Reference Signal) transmitted by the backhaul UL grant transmitted by the base station to the relay station. Can be determined.
  • the resource to which the R-PHICH is mapped (hereinafter referred to as R-PHICH resource) may be expressed as an index pair (n PHICH group , n PHICH seq ), n PHICH group is an R-PHICH group index, and n PHICH seq is the R-PHICH group Represents an orthogonal sequence index.
  • the (n PHICH group , n PHICH seq ) may be determined by Equation 2.
  • the n DMRS may be determined based on a DMRS Cyclic Shift for DMRS field in the DCI format in the R-PDCCH transmitted by the base station to the RS.
  • N SF PHICH is a spreading factor (SF) used for a modulation symbol.
  • I PRB_RA lowest_index is the smallest PRB index among PRBs of slots in which an R-PUSCH corresponding to the corresponding R-PHICH is transmitted.
  • I PHICH is a value of zero or one.
  • Orthogonal sequences used in the R-PHICH can be determined by Table 1.
  • the orthogonal sequence used may vary depending on the n PHICH seq value or the CP structure.
  • the R-PHICH resource may be mapped to a resource element in various ways according to the structure of the R-PDCCH.
  • the R-PDCCH region includes OFDM symbols constituting the access control signal region in the time domain and N OFDM symbols (N is a natural number of 1 or more) after the guard period.
  • the R-PDCCH region may exist throughout the system band in the frequency domain.
  • the R-PDCCH region may also be used by the base station to transmit downlink data to the macro terminal.
  • the R-PHICH may be allocated to Q OFDM symbols. That is, the duration of the R-PHICH may be a Q OFDM symbol.
  • Q is generally a natural number less than or equal to N, and may be a natural number greater than N.
  • the R-PHICH indicates that it is transmitted in the R-PDCCH region.
  • the R-PHICH may be allocated to OFDM symbols outside the R-PDCCH region, in which case Q may be greater than N.
  • the R-PHICH may be mapped and transmitted to M resource elements determined by a rule capable of providing frequency diversity in a fixed position or system band in the R-PDCCH region.
  • M may be 12, for example.
  • M resource elements may be defined as resource element groups (REGs) of P (P may be 3, for example, M).
  • REGs resource element groups
  • P may be 3, for example, M.
  • One REG includes four resource elements and may also be referred to as quadruplet (in the following embodiment, an example in which backhaul downlink control information is allocated to the REG is described, but this is not a limitation.
  • the backhaul downlink control information may be allocated to a sub-REG (eg, composed of three resource elements) including a smaller number of resource elements than the REG.
  • P REGs may be allocated as uniformly as possible to Q OFDM symbols included in the R-PHICH interval.
  • FIG. 13 shows an example of resource mapping of an R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
  • the R-PHICH interval Q may be one.
  • the OFDM symbol to which the R-PHICH is allocated is denoted by OFDM symbol #i (i is a natural number determined according to N and a guard interval).
  • four resource elements consecutive in the frequency domain form one REG except for a resource element to which a reference signal can be arranged or a resource element to which an R-PCFICH can be allocated (not shown). These REGs are arranged at the most uniform intervals in the frequency domain. Each REG is assigned an R-PHICH.
  • FIG. 14 is a simplified example of resource mapping of the R-PHICH shown in FIG. 13.
  • resource mapping is indicated by simplifying the process as shown in FIG. 14.
  • 15 and 16 illustrate other examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
  • FIG. 15 illustrates a case where the R-PHICH interval Q is 2, that is, the R-PHICH is allocated to OFDM symbol #i and OFDM symbol # (i + 1).
  • REGs to which an R-PHICH is allocated may be arranged at uniform intervals in the frequency domain, and two REGs may be allocated to OFDM symbol #i and one REG may be allocated to OFDM symbol # (i + 1) in the time domain. (This is not a limitation and conversely, one REG may be allocated to OFDM symbol #i and two REGs may be allocated to OFDM symbol # (i + 1)).
  • FIG. 16 illustrates a case where an R-PHICH interval Q is 3, that is, an R-PHICH is allocated to an OFDM symbol #i, an OFDM symbol # (i + 1), and an OFDM symbol # (i + 2).
  • REGs to which an R-PHICH is allocated are arranged at equal intervals without overlapping in the frequency domain, and in the time domain, OFDM symbols #i, OFDM symbols # (i + 1) and OFDM symbols # (i + 2), respectively.
  • One REG is assigned to.
  • the OFDM symbol index increases, the position on the frequency of the REG also increases, but this is not a limitation.
  • the REGs of the respective OFDM symbols may be allocated in a structure arranged at positions as far apart as possible without overlapping in the frequency domain.
  • the R-PHICH period may be defined as OFDM symbols equal to or less than the number of OFDM symbols in the R-PDCCH region, but in exceptional cases, may be defined as OFDM symbols larger than the number of OFDM symbols in the R-PDCCH region. For example, the information amount of the R-PDCCH is not large, when the ACK / NACK bit site for the backhaul uplink transmission is large and reliable transmission is required.
  • the R-PHICH interval may be independently set regardless of the number of OFDM symbols in the R-PDCCH region. That is, the R-PHICH interval may include an OFDM symbol of the R-PDSCH region.
  • the R-PHICH resource included in the R-PDSCH region may be set using puncturing or rate matching.
  • the RS or the macro terminal may perform blind decoding without knowing whether to allocate R-PHICH resources in the R-PDSCH region or the PDSCH region.
  • the base station informs the relay station, the macro terminal whether the R-PHICH resource is allocated to the R-PDSCH region or the PDSCH region, and / or the location of the R-PHICH resource as an L1 / L2 signal, or a radio resource control (RRC) message.
  • RRC radio resource control
  • the cell-specific higher layer signal may be informed in advance.
  • the RS or the UE may decode only signals received from resource elements excluding R-PHICH resources in the R-PDSCH region or the PDSCH region.
  • FIG 17 shows an example in which an R-PHICH region is allocated separately from an R-PDCCH region.
  • the R-PHICH region includes R OFDM symbols (R is a natural number of 1 or more) following the R-PDCCH region in the time domain, and may be set to the same frequency band as the R-PDCCH band in the frequency domain. Can be.
  • the sum of the R-PDCCH interval and the R-PHICH interval may be fixed to S, that is, S OFDM symbols or limited to S or fewer OFDM symbols. This method makes it possible to stably allocate resources for an R-PDSCH region or a PDSCH region for a relay station or a macro terminal.
  • Information on R-PHICH resource allocation is not limited to S, that is, S OFDM symbols or limited to S or fewer OFDM symbols.
  • It may be transmitted through a dedicated physical channel in the R-PDCCH region or included in the DCI format of a cell-specific R-PDCCH. Or, it may be included in the DCI format of the UE-specific PDCCH and defined and may transmit information on the R-PHICH resource allocation.
  • Information on the R-PHICH resource allocation may inform the RS through a higher layer signal such as an RRC message.
  • the RRC message may be a cell specific message or a relay station specific message.
  • the R-PHICH region may be defined as an OFDM symbol earlier than the R-PDCCH region.
  • a subcarrier or resource block (for example, including 12 subcarriers) that is not used for R-PHICH transmission among subcarrier resources on R OFDM symbols in the R-PHICH region may be used for data transmission to a relay station or a macro terminal.
  • FIG. 18 shows an example of resource mapping of an R-PCFICH in the R-PDCCH structure described with reference to FIG. 12.
  • the generation of the signal transmitted in the R-PCFICH may be, for example, as follows.
  • the information bits to be transmitted through the R-PCFICH in one subframe are b (0),... , b31, the information bits may be scrambled by a cell specific sequence. Scrambled information bits In this case, the scrambled information bits may be generated as follows.
  • Equation 3 C (i) in Equation 3 may be given by the following equation.
  • the second m-sequence is determined based on the application of the sequence.
  • the scrambled information bits are modulated in a QPSK scheme to generate modulation symbols.
  • Modulation symbols are represented by d (0), ..., d (15).
  • the modulation symbols are mapped to resource elements through layer mapping and precoding.
  • the R-PCFICH is applied to a rule that can provide frequency diversity within a fixed position or system band in the R-PDCCH region.
  • Z may be mapped and transmitted to the resource elements determined by.
  • Z may be for example 16.
  • R-CFI relay node-control format indicator
  • the R-CFI includes the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in a subframe.
  • information about a frequency band in which the R-PDCCH is transmitted and a DCI format may be included.
  • R-CFI is information that the relay station needs to know before monitoring the R-PDCCH. Accordingly, the relay station may first monitor the R-PDCCH after receiving the R-CFI on the R-PCFICH.
  • coding combined with a repetition code may be applied to a simplex code. If Y is greater than 3 bits, block coding or tail-biting convolution coding, such as Reed-Muller coding, may be applied.
  • Z modulation symbols can be generated by performing QPSK modulation on 2 * Z length coded bits. Z modulation symbols are mapped to resource elements and transmitted.
  • the R-PCFICH may be allocated to the first OFDM symbol of the R-PDCCH region and transmitted.
  • the quadruplet REG may be configured of four resource elements consecutive in the frequency domain among the remaining resource elements except for a resource element in which a reference signal may be placed.
  • the R-PCFICH may be allocated in preference to the R-PHICH.
  • quadruplets may be allocated at even intervals in the frequency domain.
  • the R-PDCCH region includes OFDM symbols constituting the access control signal region in the time domain and N OFDM symbols (N is a natural number of 1 or more) after the guard period.
  • the R-PDCCH region may exist in some bands of the system band in the frequency domain.
  • the R-PDCCH region may also be used by the base station to transmit downlink data to the macro terminal. That is, FIG. 19 is a case where the R-PDCCH band is limited to a part of the system band unlike the R-PDCCH structure described with reference to FIG. 12.
  • the R-PHICH may be allocated to Q OFDM symbols. That is, the duration of the R-PHICH may be a Q OFDM symbol.
  • Q is generally a natural number less than or equal to N, and may be a natural number greater than N.
  • the R-PHICH indicates that it is transmitted in the R-PDCCH region.
  • the R-PHICH may be allocated to OFDM symbols outside the R-PDCCH region, in which case Q may be greater than N.
  • the R-PHICH may be mapped and transmitted to M resource elements determined by a rule capable of providing frequency diversity in a fixed position or system band in the R-PDCCH region.
  • M may be 12, for example.
  • M resource elements may be defined as resource element groups (REGs) of P (P may be 3, for example, M).
  • REGs resource element groups
  • P may be 3, for example, M.
  • One REG includes four resource elements and may be referred to as a quadruplet.
  • P REGs may be allocated as uniformly as possible to Q OFDM symbols included in the R-PHICH interval.
  • FIG. 20 to 22 illustrate examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 19. That is, FIG. 20 to FIG. 22 have a different frequency band than that of FIGS. 14 to 16.
  • the R-PHICH interval Q may be one.
  • the OFDM symbol to which the R-PHICH is allocated is denoted by OFDM symbol #i (i is a natural number determined according to N and a guard interval).
  • four resource elements consecutive in the frequency domain form one REG except for a resource element to which a reference signal can be arranged or a resource element to which an R-PCFICH can be allocated. These REGs are arranged at the most uniform intervals in the frequency domain. Each REG is assigned an R-PHICH.
  • R-PHICH interval Q is 2, that is, the R-PHICH is allocated to OFDM symbol #i and OFDM symbol # (i + 1).
  • REGs to which an R-PHICH is allocated may be arranged at uniform intervals in the frequency domain, and two REGs may be allocated to OFDM symbol #i and one REG may be allocated to OFDM symbol # (i + 1) in the time domain. (This is not a limitation and conversely, one REG may be allocated to OFDM symbol #i and two REGs may be allocated to OFDM symbol # (i + 1)).
  • R-PHICH interval Q is 3, that is, the R-PHICH is allocated to OFDM symbol #i, OFDM symbol # (i + 1), and OFDM symbol # (i + 2).
  • REGs to which an R-PHICH is allocated are arranged at equal intervals without overlapping in the frequency domain, and in the time domain, OFDM symbols #i, OFDM symbols # (i + 1) and OFDM symbols # (i + 2), respectively.
  • One REG is assigned to. 22 illustrates a case in which the position on the frequency of the REG also increases when the OFDM symbol index increases, but this is not a limitation.
  • the REGs of the respective OFDM symbols may be allocated in a structure arranged at positions as far apart as possible without overlapping in the frequency domain.
  • 23 and 24 illustrate examples in which the R-PHICH region is separately allocated from the R-PDCCH region described with reference to FIG. 19.
  • the R-PHICH region includes R OFDM symbols (R is a natural number of 1 or more) following the R-PDCCH region in the time domain.
  • R is a natural number of 1 or more
  • the R-PHICH region is set to the same frequency band as the R-PDCCH band in the frequency domain
  • FIG. 24 illustrates an example in which the R-PHICH region is set to a frequency band larger than the R-PDCCH band.
  • the method of allocating the REG in the R-PHICH region including the R OFDM symbols may be similarly applied to the method described with reference to FIGS. 20 to 22.
  • the sum of the R-PDCCH interval and the R-PHICH interval may be fixed to S, that is, S OFDM symbols or limited to S or fewer OFDM symbols. This method makes it possible to stably allocate resources for an R-PDSCH region or a PDSCH region for a relay station or a macro terminal.
  • Information on R-PHICH resource allocation is not limited to S, that is, S OFDM symbols or limited to S or fewer OFDM symbols.
  • It may be transmitted through a dedicated physical channel in the R-PDCCH region or included in the DCI format of a cell-specific R-PDCCH. Or, it may be included in the DCI format of the UE-specific PDCCH and defined and may transmit information on the R-PHICH resource allocation.
  • Information on the R-PHICH resource allocation may inform the RS through a higher layer signal such as an RRC message.
  • the RRC message may be a cell specific message or a relay station specific message.
  • the R-PHICH region may be defined as an OFDM symbol earlier than the R-PDCCH region.
  • a subcarrier or resource block (for example, including 12 subcarriers) that is not used for R-PHICH transmission among subcarrier resources on R OFDM symbols in the R-PHICH region may be used for data transmission to a relay station or a macro terminal.
  • FIG. 25 shows an example in which an R-PCFICH is allocated to the first OFDM symbol of the R-PDCCH region described with reference to FIG. 23 or 24.
  • FIG. 25 is different from the frequency band to which the R-PCFICH is allocated to FIG. 18.
  • an R-PCFICH is allocated to Z / 4 quadruplets or REGs and transmitted.
  • the quadruplet REG may be configured of four resource elements consecutive in the frequency domain among the remaining resource elements except for a resource element in which a reference signal may be placed.
  • the R-PCFICH may be allocated in preference to the R-PHICH. In the OFDM symbol in which the R-PCFICH is transmitted, quadruplets may be allocated at even intervals in the frequency domain.
  • Fig. 26 is a block diagram showing a base station and a relay station.
  • the base station 700 includes a processor 710, a memory 720, and an RF unit 730.
  • the processor 710 transmits resource allocation information to the relay station, and transmits backhaul downlink control information from the relay station through a radio resource indicated by the resource allocation information.
  • the memory 720 is connected to the processor 710 to store various information for driving the processor 710.
  • the RF unit 730 is connected to the processor 710 to transmit and / or receive a radio signal.
  • the relay station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • the processor 810 receives resource allocation information from the base station, and receives backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information.
  • the resource allocation information includes an OFDM symbol in which a relay station transmits access downlink control information to a relay terminal in a time domain for a subframe including a plurality of OFDM symbols, and at least one OFDM symbol located after a guard interval.
  • a radio resource including a resource element group spaced at regular intervals in the frequency domain from at least one or more OFDM symbols. This radio resource allocation method has been described above with reference to FIGS. 12 to 25.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • Processors 710 and 810 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters that interconvert baseband signals and wireless signals.
  • the memories 720 and 820 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 730 and 830 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. Modules may be stored in memories 720 and 820 and executed by processors 710 and 810.
  • the memories 720 and 820 may be inside or outside the processors 710 and 810, and may be connected to the processors 710 and 810 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for receiving control information of a relay station in a wireless communication system including the relay station comprises the steps of: receiving resource allocation information from a base station; and receiving backhaul downlink control information from the base station in wireless resources which the resource allocation information indicates, wherein the resource allocation information includes an OFDM symbol for transmitting access downlink control information from the relay station to a relay station terminal in a time domain with respect to a sub-frame including a plurality of OFDM symbols and at least one or more OFDM symbols positioned after a guard period, and indicates the wireless resources including resource element groups separated to a frequency domain with a constant interval in one or more OFDM symbols.

Description

중계국을 포함하는 무선통신 시스템에서 중계국의 제어 정보 수신 방법 및 장치Method and apparatus for receiving control information of relay station in wireless communication system including relay station
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 중계국을 포함하는 무선통신 시스템에서 중계국이 기지국으로부터 제어 정보를 수신하는 방법 및 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for a relay station to receive control information from a base station in a wireless communication system including a relay station.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다. The International Telecommunication Union Radio communication sector (ITU-R) is working on the standardization of International Mobile Telecommunication (IMT) -Advanced, the next generation of mobile communication systems after the third generation. IMT-Advanced aims to support Internet Protocol (IP) -based multimedia services at data rates of 1 Gbps in stationary and slow motions and 100 Mbps in high speeds.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced를 준비하고 있다. LTE-Advanced는 IMT-Advanced를 위한 유력한 후보 중의 하나이다. LTE-Advanced의 주요 기술에 중계국(relay station) 기술이 포함된다. 3rd Generation Partnership Project (3GPP) is a system standard that meets the requirements of IMT-Advanced. Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission. LTE-Advanced is being prepared. LTE-Advanced is one of the potential candidates for IMT-Advanced. The main technologies of LTE-Advanced include relay station technology.
중계국은 기지국과 단말 사이에서 신호를 중계하는 장치로, 무선통신 시스템의 셀 커버리지(cell coverage)를 확장시키고 처리량(throughput)을 향상시키기 위해 사용된다. A relay station is a device for relaying a signal between a base station and a terminal, and is used to expand cell coverage and improve throughput of a wireless communication system.
중계국을 포함하는 무선통신 시스템에서 기지국과 중계국 간의 신호 전송 방법은 현재 많은 연구가 진행 중이다. 기지국과 중계국 간의 신호 전송에 종래 기지국과 단말 간의 신호 전송 방법을 그대로 사용하는 것은 문제가 있다. In the wireless communication system including the relay station, a signal transmission method between the base station and the relay station is currently being studied. It is problematic to use the signal transmission method between the base station and the terminal as it is for signal transmission between the base station and the relay station.
중계국은 시간 영역에서 볼 때 하나의 서브프레임 전체에 걸쳐 신호를 전송하거나 수신할 수 없는 경우가 발생한다. 중계국은 보통 다수의 단말들을 대상으로 신호를 중계하므로 잦은 수신 모드 및 전송 모드 스위칭(switching)이 발생한다. 그리고 중계국은 동일한 주파수 대역에서 기지국으로부터 신호를 수신하거나 중계국 단말에게 신호를 전송할 수 있다. 또는 중계국은 동일한 주파수 대역에서 중계국 단말로부터 신호를 수신하거나 기지국에게 신호를 전송할 수 있다. 이러한 수신 모드 및 전송 모드 간의 스위칭 시 수신 모드 구간과 전송 모드 구간 사이에는 신호간 간섭을 방지하고 동작 안정화를 위해 중계국이 신호를 전송하거나 수신하지 않는 소정의 시간 구간(이를 이하에서 보호 구간(guard time)이라 칭한다)이 필요하다. In the time domain, the RS may not be able to transmit or receive a signal over one subframe. Since the relay station usually relays signals to a plurality of terminals, frequent reception mode and transmission mode switching occurs. In addition, the RS may receive a signal from the BS or transmit a signal to the RS in the same frequency band. Alternatively, the relay station may receive a signal from the relay station terminal or transmit a signal to the base station in the same frequency band. In the switching between the reception mode and the transmission mode, a predetermined time period in which the relay station does not transmit or receive a signal to prevent inter-signal interference and stabilize the operation between the reception mode section and the transmission mode section (hereinafter referred to as guard time). Is called).
또한, 중계국은 기지국으로부터 신호를 수신하는 서브프레임에서 중계국 단말이 불필요한 데이터 수신 동작을 취하지 않게 하기 위해 제어 정보를 전송하여야 할 수 있다. In addition, the RS may need to transmit control information in order to prevent the RS from taking unnecessary data reception operations in a subframe receiving a signal from the BS.
상술한 바와 같은 제약으로 인해 중계국은 종래의 기지국-단말 간의 제어 정보 수신 방법을 동일하게 적용하기는 어려운 측면이 있다. 중계국-기지국 간의 백홀 링크(Backhaul link)에서 중계국이 제어 정보를 수신하는 방법 및 장치가 필요하다.Due to the constraints described above, it is difficult for a relay station to apply a conventional method of receiving control information between base stations and terminals. What is needed is a method and apparatus for a relay station to receive control information in a backhaul link between a relay station and a base station.
중계국을 포함하는 무선통신 시스템에서 중계국의 제어 정보 수신 방법 및 장치를 제공하고자 한다.The present invention provides a method and apparatus for receiving control information of a relay station in a wireless communication system including the relay station.
본 발명의 일 측면에 따른 중계국을 포함하는 무선통신 시스템에서 중계국의 제어 정보 수신 방법은 기지국으로부터 자원할당정보를 수신하는 단계; 및 상기 자원할당정보가 지시하는 무선자원에서 상기 기지국으로부터 백홀 하향링크 제어정보를 수신하는 단계를 포함하되, 상기 자원할당정보는 복수의 OFDM 심벌을 포함하는 서브프레임에 대해 시간 영역에서 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 OFDM 심벌 및 보호 구간 이후에 위치하는 적어도 하나 이상의 OFDM 심벌을 포함하고, 상기 적어도 하나 이상의 OFDM 심벌에서 주파수 영역으로 균일한 간격으로 이격된 자원요소그룹을 포함하는 무선자원을 지시하는 것을 특징으로 한다. In a wireless communication system including a relay station according to an aspect of the present invention, a method for receiving control information of a relay station includes receiving resource allocation information from a base station; And receiving backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information, wherein the resource allocation information is a relay station terminal in the time domain for a subframe including a plurality of OFDM symbols. And an OFDM symbol for transmitting access downlink control information to the at least one OFDM symbol and a resource element group spaced at regular intervals from the at least one OFDM symbol in the frequency domain. It is characterized by indicating the resource.
본 발명의 다른 측면에 따른 중계국은 무선신호를 송수신하는 RF부; 및 상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 기지국으로부터 자원할당정보를 수신하고, 상기 자원할당정보가 지시하는 무선자원에서 상기 기지국으로부터 백홀 하향링크 제어정보를 수신하되, 상기 자원할당정보는 복수의 OFDM 심벌을 포함하는 서브프레임에 대해 시간 영역에서 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 OFDM 심벌 및 보호 구간 이후에 위치하는 적어도 하나 이상의 OFDM 심벌을 포함하고, 상기 적어도 하나 이상의 OFDM 심벌에서 주파수 영역으로 균일한 간격으로 이격된 자원요소그룹을 포함하는 무선자원을 지시하는 것을 특징으로 한다. The relay station according to another aspect of the invention the RF unit for transmitting and receiving radio signals; And a processor connected to the RF unit, wherein the processor receives resource allocation information from a base station and receives backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information, wherein the resource allocation information is received. Is an OFDM symbol in which a relay station transmits access downlink control information to a relay terminal in a time domain for a subframe including a plurality of OFDM symbols, and at least one or more OFDM symbols located after a guard interval, and the at least one or more symbols It is characterized by indicating a radio resource including resource element groups spaced at regular intervals from the OFDM symbol to the frequency domain.
중계국을 포함하는 무선통신 시스템에서, 중계국이 기지국으로부터 ACK/NACK, 또는 제어 영역의 OFDM 심벌 수에 대한 정보와 같은 백홀 하향링크 제어정보를 신뢰성 있게 수신할 수 있다.In a wireless communication system including a relay station, the relay station can reliably receive backhaul downlink control information such as ACK / NACK or information on the number of OFDM symbols in the control region from the base station.
도 1은 중계국을 포함하는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system including a relay station.
도 2는 무선통신 시스템에 존재하는 링크를 나타낸다.2 shows a link present in a wireless communication system.
도 3은 중계국의 기능 모듈을 개념적으로 나타낸 도면이다. 3 is a diagram conceptually showing a functional module of a relay station.
도 4는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다. 4 shows a radio frame structure of 3GPP LTE.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.5 is an exemplary diagram illustrating a resource grid for one downlink slot.
도 6은 하향링크 서브프레임의 구조를 나타낸다.6 shows a structure of a downlink subframe.
도 7은 상향링크 서브프레임의 구조를 나타낸다. 7 shows a structure of an uplink subframe.
도 8은 상향링크 무선 프레임과 하향링크 무선 프레임의 타이밍 관계의 일 예를 나타낸다.8 shows an example of a timing relationship between an uplink radio frame and a downlink radio frame.
도 9는 중계국이 기지국으로부터 신호를 수신하는 서브프레임의 구성을 나타내는 도면이다.9 is a diagram illustrating a configuration of a subframe in which a relay station receives a signal from a base station.
도 10은 백홀 링크에 적용되는 상향링크 HARQ를 나타낸다.10 shows an uplink HARQ applied to a backhaul link.
도 11은 R-PHICH의 전송 과정의 일 예를 나타내는 블록도이다.11 is a block diagram illustrating an example of a R-PHICH transmission process.
도 12는 R-PDCCH 구조의 일 예를 나타낸다. 12 shows an example of an R-PDCCH structure.
도 13은 도 12에서 설명한 R-PDCCH 구조에서 R-PHICH의 자원 맵핑의 예를 나타낸다. FIG. 13 shows an example of resource mapping of an R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
도 14는 도 13에서 나타낸 R-PHICH의 자원 맵핑을 단순화하여 나타낸 예이다.14 is a simplified example of resource mapping of the R-PHICH shown in FIG. 13.
도 15 및 도 16은 도 12에서 설명한 R-PDCCH 구조에서 R-PHICH의 자원 맵핑의 다른 예들을 나타낸다.15 and 16 illustrate other examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
도 17은 R-PHICH 영역이 R-PDCCH 영역과 별개로 할당되는 예를 나타낸다.17 shows an example in which an R-PHICH region is allocated separately from an R-PDCCH region.
도 18은 도 12에서 설명한 R-PDCCH 구조에서 R-PCFICH의 자원 맵핑의 예를 나타낸다. 18 shows an example of resource mapping of an R-PCFICH in the R-PDCCH structure described with reference to FIG. 12.
도 19는 R-PDCCH 구조의 다른 예를 나타낸다. 19 shows another example of an R-PDCCH structure.
도 20 내지 도 22는 도 19에서 설명한 R-PDCCH 구조에서 R-PHICH의 자원 맵핑의 예를 나타낸다.20 to 22 illustrate examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 19.
도 23 및 도 24는 R-PHICH 영역이 도 19에서 설명한 R-PDCCH 영역과 별개로 할당되는 예들을 나타낸다.23 and 24 illustrate examples in which the R-PHICH region is separately allocated from the R-PDCCH region described with reference to FIG. 19.
도 25는 R-PCFICH가 도 23 또는 도 24에서 설명한 R-PDCCH 영역의 첫번째 OFDM 심벌에 할당되는 예를 나타낸다.FIG. 25 shows an example in which an R-PCFICH is allocated to the first OFDM symbol of the R-PDCCH region described with reference to FIG. 23 or 24.
도 26은 기지국 및 중계국을 나타내는 블록도이다.Fig. 26 is a block diagram showing a base station and a relay station.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-Advanced(LTE-A)는 3GPP LTE의 진화이다. 이하에서 설명을 명확하게 하기 위해, 3GPP LTE/LET-A를 예로 설명하나 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various wireless communication systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like. UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. LTE-Advanced (LTE-A) is the evolution of 3GPP LTE. In the following description, for clarity, 3GPP LTE / LET-A will be described as an example, but the technical spirit of the present invention is not limited thereto.
도 1은 중계국을 포함하는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system including a relay station.
도 1을 참조하면, 중계국을 포함하는 무선통신 시스템(10)은 적어도 하나의 기지국(11; eNodeB, eNB)을 포함한다. 각 기지국(11)은 일반적으로 셀(cell)이라고 불리는 특정한 지리적 영역 (15)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역으로 나누어 질 수 있는데 각각의 영역은 섹터(sector)라고 칭한다. 하나의 기지국에는 하나 이상의 셀이 존재할 수 있다. 기지국(11)은 일반적으로 단말(13)과 통신하는 고정된 지점(fixed station)을 말하며, BS(Base Station), BTS(Base Transceiver System), 액세스 포인트(Access Point), AN(Access Network) 등 다른 용어로 불릴 수 있다. 기지국(11)은 중계국(12)과 단말(14) 간의 연결성(connectivity), 관리(management), 제어 및 자원 할당과 같은 기능을 수행할 수 있다.Referring to FIG. 1, a wireless communication system 10 including a relay station includes at least one base station 11 (eNodeB, eNB). Each base station 11 provides a communication service for a particular geographic area 15, commonly referred to as a cell. The cell can be further divided into a plurality of areas, each of which is called a sector. One or more cells may exist in one base station. The base station 11 generally refers to a fixed station communicating with the terminal 13, and includes a base station (BS), a base transceiver system (BTS), an access point, an access network (AN), and the like. It may be called in other terms. The base station 11 may perform functions such as connectivity, management, control, and resource allocation between the relay station 12 and the terminal 14.
중계국(Relay Node, RN, 12)은 기지국(11)과 단말(14) 사이에서 신호를 중계하는 기기를 말하며, RS(Relay Station), 리피터(repeater), 중계기(relay) 등의 다른 용어로 불릴 수 있다. 중계국에서 사용하는 중계 방식으로 AF(amplify and forward) 및 DF(decode and forward) 등 어떠한 방식을 사용할 수 있으며, 본 발명의 기술적 사상은 이에 제한되지 않는다.Relay Node (RN, 12) refers to a device for relaying a signal between the base station 11 and the terminal 14, and may be referred to as other terms such as a relay station, a repeater, a relay, and the like. Can be. As a relay method used by the relay station, any method such as AF and ADF may be used, and the technical spirit of the present invention is not limited thereto.
단말(13, 14; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device), PDA(Personal Digital Assistant), 무선 모뎀(Wireless Modem), 휴대기기(Handheld Device), AT(Access Terminal) 등 다른 용어로 불릴 수 있다. 이하에서 매크로 단말(macro UE, Ma-UE, 13)은 기지국(11)과 직접 통신하는 단말이고, 중계국 단말(RN-UE, 14)은 중계국과 통신하는 단말을 칭한다. 기지국(11)의 셀 내에 있는 매크로 단말(13)이라 할지라도, 다이버시티(diversity) 효과에 따른 전송속도의 향상을 위하여 중계국(12)을 거쳐서 기지국(11)과 통신할 수 있다. Terminals 13 and 14 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). ), A wireless modem, a handheld device, and an access terminal (AT). Hereinafter, a macro terminal (Mac-UE, Ma-UE, 13) is a terminal that communicates directly with the base station 11, the relay station terminal (RN-UE, 14) refers to a terminal that communicates with the relay station. Even in the macro terminal 13 in the cell of the base station 11, it is possible to communicate with the base station 11 via the relay station 12 in order to improve the transmission rate according to the diversity effect.
도 2는 무선통신 시스템에 존재하는 링크를 나타낸다.2 shows a link present in a wireless communication system.
도 2에 도시된 바와 같이 중계국을 포함하는 무선통신 시스템(10)에는 기지국(11)과 중계국(12) 간의 링크, 중계국(12)과 중계국 단말(14)간의 링크가 존재한다. 또한, 도면에는 도시하지 않았으나 기지국과 매크로 단말 간의 링크도 존재한다. 이하에서 편의상, 기지국(11)과 중계국(12)간의 링크는 백홀(backhaul) 링크라 칭하기로 한다. 백홀 링크는 백홀 하향링크(backhaul downlink, B-DL)와 백홀 상향링크(backhaul uplink, B-UL)로 구분될 수 있다. 백홀 하향링크는 기지국(11)에서 중계국(12)으로의 통신을 의미하며, 백홀 상향링크는 중계국(12)에서 기지국(11)으로의 통신을 의미한다. As shown in FIG. 2, in a wireless communication system 10 including a relay station, a link between the base station 11 and the relay station 12 and a link between the relay station 12 and the relay station terminal 14 exist. In addition, although not shown in the drawings, a link between the base station and the macro terminal also exists. Hereinafter, for convenience, the link between the base station 11 and the relay station 12 will be referred to as a backhaul link. The backhaul link may be divided into a backhaul downlink (B-DL) and a backhaul uplink (B-UL). The backhaul downlink means communication from the base station 11 to the relay station 12, and the backhaul uplink means communication from the relay station 12 to the base station 11.
중계국(12)과 중계국 단말(14)간의 링크는 액세스 링크(access link)라 칭하기로 한다. 액세스 링크는 액세스 하향링크(access downlink, A-DL)와 액세스 상향링크(access uplink, A-UL)로 구분될 수 있다. 액세스 하향링크는 중계국(12)에서 중계국 단말(14)로의 통신을 의미하며, 액세스 상향링크는 중계국 단말(14)에서 중계국(12)으로의 통신을 의미한다. The link between the relay station 12 and the relay station terminal 14 will be referred to as an access link. The access link may be divided into an access downlink (A-DL) and an access uplink (A-UL). Access downlink means communication from the relay station 12 to the relay station terminal 14, and access uplink means communication from the relay station terminal 14 to the relay station 12.
기지국(11)과 매크로 단말(13) 간의 링크를 매크로 링크(macro link)라 칭하기로 한다. 매크로 링크는 매크로 하향링크와 매크로 상향링크로 구분될 수 있다, 매크로 하향링크(macro downlink, M-DL)는 기지국(11)에서 매크로 단말(13)로의 통신을 의미하며, 매크로 상향링크(macro uplink, M-UL)는 매크로 단말(13)에서 기지국(11)으로의 통신을 의미한다.The link between the base station 11 and the macro terminal 13 will be referred to as a macro link. The macro link may be divided into a macro downlink and a macro uplink. A macro downlink (M-DL) means communication from the base station 11 to the macro terminal 13, and a macro uplink , M-UL) means communication from the macro terminal 13 to the base station 11.
중계국을 포함하는 무선통신 시스템(10)은 양방향 통신을 지원하는 시스템이다. 양방향 통신은 TDD(Time Division Duplex) 모드, FDD(Frequency Division Duplex) 모드 등을 이용하여 수행될 수 있다. TDD 모드는 상향링크 전송과 하향링크 전송에서 서로 다른 시간 자원을 사용한다. FDD 모드는 상향링크 전송과 하향링크 전송에서 서로 다른 주파수 자원을 사용한다. FDD 모드를 적용하는 경우, 백홀 하향링크 및 액세스 하향링크에서 동일한 주파수 대역을 사용할 수 있고, 백홀 상향링크 및 액세스 상향링크에서 동일한 주파수 대역을 사용할 수 있다. The wireless communication system 10 including the relay station is a system supporting bidirectional communication. Bidirectional communication may be performed using a time division duplex (TDD) mode, a frequency division duplex (FDD) mode, or the like. TDD mode uses different time resources in uplink transmission and downlink transmission. The FDD mode uses different frequency resources in uplink transmission and downlink transmission. When the FDD mode is applied, the same frequency band may be used in the backhaul downlink and the access downlink, and the same frequency band may be used in the backhaul uplink and the access uplink.
도 3은 중계국의 기능 모듈을 개념적으로 나타낸 도면이다. 3 is a diagram conceptually showing a functional module of a relay station.
도 3을 참조하면, 중계국은 백홀 하향링크에서 기지국으로부터 신호를 수신하여 FFT(Fast Fourier Transform)를 거쳐 OFDMA 신호 처리를 수행할 수 있어야 한다. 또한, 중계국은 액세스 상향링크에서 중계국 단말로부터 신호를 수신하여 FFT를 거쳐 OFDMA 신호 처리를 수행할 수 있어야 한다. 상기 2개의 과정은 동시에 수행될 수 있다.Referring to FIG. 3, the RS should be able to receive a signal from a base station in a backhaul downlink and perform OFDMA signal processing through a fast fourier transform (FFT). In addition, the RS should be able to receive the signal from the RS in the access uplink and perform OFDMA signal processing through the FFT. The two processes can be performed simultaneously.
중계국은 백홀 상향링크에서 DFT-s-OFDMA(SC-FDMA) 신호 처리를 거쳐 기지국으로 신호를 전송할 수 있어야 한다. 또한, 중계국은 액세스 하향링크에서 DFT-s-OFDMA(SC-FDMA) 신호 처리를 거쳐 중계국 단말로 신호를 전송할 수 있어야 한다. 상기 2개의 과정은 동시에 수행될 수 있다. The relay station should be able to transmit signals to the base station through DFT-s-OFDMA (SC-FDMA) signal processing in the backhaul uplink. In addition, the RS must be able to transmit a signal to the RS through DFT-s-OFDMA (SC-FDMA) signal processing in the access downlink. The two processes can be performed simultaneously.
다만 중계국은 액세스 상향링크에서 중계국 단말로부터 신호를 수신하는 동시에 백홀 상향링크에서 기지국으로 신호를 전송하는 것은 어렵다고 가정한다. 또한, 중계국은 백홀 하향링크에서 기지국으로부터 신호를 수신하는 동시에 액세스 하향링크에서 중계국 단말로 신호를 전송하는 것은 어렵다고 가정한다. However, it is assumed that it is difficult for the relay station to receive a signal from the relay station terminal in the access uplink and transmit a signal to the base station in the backhaul uplink. In addition, it is assumed that it is difficult for the relay station to receive a signal from the base station in the backhaul downlink and to transmit the signal to the relay station terminal in the access downlink.
도 4는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다. 4 shows a radio frame structure of 3GPP LTE.
도 4를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. TTI는 스케줄링의 최소 단위일 수 있다. Referring to FIG. 4, a radio frame consists of 10 subframes, and one subframe consists of two slots. One subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). TTI may be a minimum unit of scheduling.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.5.0(2008-12)에 의하면, 노멀(normal) CP에서 1 서브프레임은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 6 OFDM 심벌을 포함한다. 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 및 서브프레임에 포함되는 슬롯의 수는 다양하게 변경될 수 있다. 이하에서 심벌은 하나의 OFDM 심벌 또는 하나의 SC-FDMA 심벌을 의미할 수 있다.One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. The OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink and may be called another name. For example, when SC-FDMA is used as an uplink multiple access scheme, it may be referred to as an SC-FDMA symbol. One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP). According to 3GPP TS 36.211 V8.5.0 (2008-12), one subframe includes 7 OFDM symbols in a normal CP and one subframe includes 6 OFDM symbols in an extended CP. The structure of the radio frame is only an example, and the number of subframes included in the radio frame and the number of slots included in the subframe may be variously changed. Hereinafter, the symbol may mean one OFDM symbol or one SC-FDMA symbol.
도 4를 참조하여 설명한 무선 프레임의 구조는 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 4.1절 및 4. 2절을 참조할 수 있다. The structure of the radio frame described with reference to FIG. 4 is 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)" See sections 4.1 and 4.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.5 is an exemplary diagram illustrating a resource grid for one downlink slot.
FDD 또는 TDD에서 사용되는 무선 프레임에서 하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 자원블록(resource block, RB)을 포함한다. 자원 블록은 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파(subcarrier)를 포함한다. In a radio frame used in FDD or TDD, one slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain. . The resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
도 5를 참조하면, 하나의 하향링크 슬롯은 7 OFDM 심벌을 포함하고, 하나의 자원블록은 주파수 영역에서 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원블록에서 부반송파는 예컨대 15KHz의 간격을 가질 수 있다.Referring to FIG. 5, one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto. The subcarriers in the RB may have an interval of, for example, 15 KHz.
자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 하며, 하나의 자원블록(resource block)은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 도 5에서 설명한 자원 그리드는 상향링크에서도 적용될 수 있다.Each element on the resource grid is called a resource element, and one resource block includes 12 × 7 resource elements. The number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell. The resource grid described in FIG. 5 may also be applied to uplink.
도 6은 하향링크 서브프레임의 구조를 나타낸다. 6 shows a structure of a downlink subframe.
도 6을 참조하면, 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 서브프레임 내에서 첫 번째 슬롯의 앞선 3 OFDM 심벌들이 PDCCH(physical downlink control channel)가 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(physical downlink shared channel)가 할당되는 데이터영역(data region)이다. 제어영역에는 PDCCH 이외에도 PCFICH(physical control format indicator channel), PHICH(physical HARQ indicator channel) 등의 제어채널이 할당될 수 있다. 단말은 PDCCH를 통해 전송되는 제어정보를 디코딩하여 PDSCH를 통해 전송되는 데이터 정보를 읽을 수 있다. 여기서, 제어영역이 3 OFDM 심벌을 포함하는 것은 예시에 불과하며, 제어영역에는 2 OFDM 심벌 또는 1 OFDM 심벌이 포함될 수 있다. 서브프레임 내 제어영역이 포함하는 OFDM 심벌의 수는 PCFICH를 통해 알 수 있다. PHICH는 단말이 전송한 상향링크 데이터에 대한 수신 성공 여부를 나타내는 정보를 나른다.Referring to FIG. 6, a subframe includes two consecutive slots. In the subframe, the first 3 OFDM symbols of the first slot are a control region to which a physical downlink control channel (PDCCH) is allocated, and the remaining OFDM symbols are a data region to which a physical downlink shared channel (PDSCH) is allocated. )to be. In addition to the PDCCH, the control region may be allocated a control channel such as a physical control format indicator channel (PCFICH) and a physical HARQ indicator channel (PHICH). The UE may read the data information transmitted through the PDSCH by decoding the control information transmitted through the PDCCH. Here, the control region includes only 3 OFDM symbols, and the control region may include 2 OFDM symbols or 1 OFDM symbol. The number of OFDM symbols included in the control region in the subframe can be known through the PCFICH. The PHICH carries information indicating whether reception of the uplink data transmitted by the UE is successful.
제어영역은 복수의 CCE(control channel elements)인 논리적인 CCE 열로 구성된다. CCE 열은 하나의 서브프레임 내에서 제어영역을 구성하는 전체 CCE들의 집합이다. CCE는 복수의 자원요소 그룹(resource element group,REG)에 대응된다. 예를 들어, CCE는 9 자원요소 그룹에 대응될 수 있다. 자원요소 그룹은 자원요소로 제어채널을 맵핑하는 것을 정의하기 위해 사용된다. 예를 들어, 하나의 자원요소 그룹은 4개의 자원요소로 구성될 수 있다.The control region is composed of logical CCE columns that are a plurality of CCEs. The CCE column is a collection of all CCEs constituting the control region in one subframe. The CCE corresponds to a plurality of resource element groups (REGs). For example, the CCE may correspond to 9 resource element groups. Resource element groups are used to define the mapping of control channels to resource elements. For example, one resource element group may consist of four resource elements.
복수의 PDCCH가 제어영역 내에서 전송될 수 있다. PDCCH는 스케줄링 할당과 같은 제어정보(control information)를 나른다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집단(aggregation) 상으로 전송된다. CCE 집단을 구성하는 CCE의 수(Number of CCEs)에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. PDCCH 전송을 위해 사용되는 CCE의 수를 CCE 집단 레벨(aggregation level)이라 한다. 또한, CCE 집단 레벨은 PDCCH를 검색하기 위한 CCE 단위이다. CCE 집단 레벨의 크기는 인접하는 CCE들의 수로 정의된다. 예를 들어, CCE 집단 레벨은 {1, 2, 4, 8}의 원소일 수 있다. A plurality of PDCCHs may be transmitted in the control region. The PDCCH carries control information such as scheduling assignment. The PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs). The format of the PDCCH and the number of bits of the PDCCH are determined according to the number of CCEs constituting the CCE group. The number of CCEs used for PDCCH transmission is called a CCE aggregation level. In addition, the CCE aggregation level is a CCE unit for searching for a PDCCH. The size of the CCE aggregation level is defined by the number of adjacent CCEs. For example, the CCE aggregation level may be an element of {1, 2, 4, 8}.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, 이하 DCI)라고 한다. DCI는 상향링크 스케줄링 정보, 하향링크 스케줄링 정보, 시스템 정보(system information), 상향링크 전력 제어 명령(power control command), 페이징을 위한 제어정보, 랜덤 액세스 응답(RACH response)을 지시하기 위한 제어정보 등을 포함한다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI includes uplink scheduling information, downlink scheduling information, system information, system information, uplink power control command, control information for paging, control information for indicating a random access response, etc. It includes.
DCI 포맷으로는 PUSCH(Physical Uplink Shared Channel) 스케줄링을 위한 포맷 0, 하나의 PDSCH(Physical Downlink Shared channel) 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, 공간 다중화 모드에서 단일 코드워드의 랭크-1 전송에 대한 간단한 스케줄링을 위한 포맷 1B, DL-SCH(Downlink Shared Channel)의 매우 간단한 스케줄링을 위한 포맷 1C, 다중 사용자 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 1D, 폐루프(Closed-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Open-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, PUCCH 및 PUSCH를 위한 2비트 전력 조절의 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3, 및 PUCCH 및 PUSCH를 위한 1비트 전력 조절의 TPC 명령의 전송을 위한 포맷 3A 등이 있다. The DCI format includes format 0 for PUSCH scheduling, format 1 for scheduling one physical downlink shared channel (PDSCH) codeword, and format 1A for compact scheduling of one PDSCH codeword. Format 1B for simple scheduling of rank-1 transmission of a single codeword in spatial multiplexing mode, format 1C for very simple scheduling of downlink shared channel (DL-SCH), format for PDSCH scheduling in multi-user spatial multiplexing mode 1D, format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, TPC of 2-bit power regulation for PUCCH and PUSCH Transmission power control) format 3, and format 3A for transmission of 1-bit power control TPC commands for PUCCH and PUSCH.
도 7은 상향링크 서브프레임의 구조를 나타낸다. 7 shows a structure of an uplink subframe.
도 7을 참조하면, 상향링크 서브 프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다. Referring to FIG. 7, an uplink subframe is allocated a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a physical uplink shared channel (PUSCH) carrying user data. It can be divided into data areas.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록(RB) 쌍(pair, 51, 52)으로 할당되고, RB 쌍에 속하는 RB들(51,52)은 2개의 슬롯들 각각에서 서로 다른 부반송파를 차지한다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다. The PUCCH for one UE is allocated to a resource block (RB) pair (51, 52) in a subframe, and the RBs 51 and 52 belonging to the RB pair occupy different subcarriers in each of two slots. do. This is said that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
PUCCH는 다중 포맷을 지원할 수 있다. 즉, 변조 방식(modualtion scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 상향링크 제어 정보를 전송할 수 있다. 예를 들어, BPSK(Binary Phase Shift Keying)을 사용하는 경우(PUCCH 포맷 1a) 1비트의 상향링크 제어 정보를 PUCCH 상으로 전송할 수 있으며, QPSK(Quadrature Phase Shift Keying)을 사용하는 경우(PUCCH 포맷 1b) 2비트의 상향링크 제어 정보를 PUCCH 상으로 전송할 수 있다. PUCCH 포맷은 이외에도 포맷 1, 포맷 2, 포맷 2a, 포맷 2b 등이 있다(이는 3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 5.4절을 참조할 수 있다).PUCCH may support multiple formats. That is, uplink control information having different numbers of bits per subframe may be transmitted according to a modulation scheme. For example, when using Binary Phase Shift Keying (BPSK) (PUCCH format 1a), uplink control information of 1 bit can be transmitted on PUCCH, and when using Quadrature Phase Shift Keying (QPSK) (PUCCH format 1b). 2 bits of uplink control information can be transmitted on the PUCCH. In addition to the PUCCH format, there are Format 1, Format 2, Format 2a, Format 2b, and the like (3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); See Section 5.4 of “Physical Channels and Modulation (Release 8)”.
도 8은 상향링크 무선 프레임과 하향링크 무선 프레임의 타이밍 관계의 일 예를 나타낸다. 8 shows an example of a timing relationship between an uplink radio frame and a downlink radio frame.
도 8을 참조하면, 단말에서 상향링크 프레임 #i는 하향링크 프레임 #i에 비해 ((NTA + NTAoffset) x Ts )(여기서, 0≤ NTA≤20512, NTAoffset는 FDD 프레임의 경우 0, TDD 프레임의 경우 624)만큼 앞서 전송될 수 있다. 여기서, Ts는 1/(15000 x 2048) 초(second)일 수 있다. 상향링크 무선 프레임과 하향링크 무선 프레임의 타이밍 관계는 3GPP TS 36.213 V8.6.0. 4.2.3절을 참조할 수 있다. Referring to FIG. 8, the uplink frame #i in the UE is ((N TA + N TAoffset ) x T s ) (where 0 ≦ N TA ≦ 20512, where N TAoffset is an FDD frame) compared to the downlink frame #i. 0, in the case of the TDD frame 624) may be transmitted earlier. Here, Ts may be 1 / (15000 x 2048) seconds. The timing relationship between the uplink radio frame and the downlink radio frame is 3GPP TS 36.213 V8.6.0. See section 4.2.3.
이제 본 발명에 대해 설명한다. 중계국을 포함하는 무선통신 시스템에서 중계국은 기지국으로부터 백홀 하향링크에 대한 자원할당정보를 수신한다. 자원할당정보는 물리 계층 신호 또는 RRC(radio resource control)메시지와 같은 상위 계층 신호를 통해 전송될 수 있다. 중계국은 자원할당정보가 지시하는 무선자원에서 기지국으로부터 백홀 하향링크 제어정보를 수신한다. 자원할당정보가 지시하는 무선자원은 복수의 OFDM 심벌을 포함하는 서브프레임에 대해 시간 영역에서 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 OFDM 심벌, 중계국의 송수신 스위칭에 필요한 보호 구간 이후에 위치하는 적어도 하나 이상의 OFDM 심벌을 포함한다. 이 때, 상기 적어도 하나 이상의 OFDM 심벌에서 주파수 영역으로 균일한 간격으로 이격된 자원요소그룹(Resource element group, REG)을 포함하며 이러한 자원요소그룹을 통해 백홀 하향링크 제어정보가 전송될 수 있다. 백홀 하향링크 제어정보는 중계국이 기지국으로 전송한 백홀 상향링크 데이터에 대한 ACK/NACK, 중계국에게 전송되는 백홀 하향링크 제어정보가 할당되는 OFDM 심벌의 개수일 수 있으며 부가적으로 백홀 하향링크 제어정보가 전송되는 주파수 대역에 대한 정보를 포함할 수 있다. 본 발명에 대해 이하에서 상세히 설명한다.The present invention will now be described. In a wireless communication system including a relay station, the relay station receives resource allocation information for the backhaul downlink from the base station. The resource allocation information may be transmitted through a higher layer signal such as a physical layer signal or a radio resource control (RRC) message. The relay station receives the backhaul downlink control information from the base station in the radio resource indicated by the resource allocation information. The radio resource indicated by the resource allocation information is an OFDM symbol in which a relay station transmits access downlink control information to a relay station terminal in a time domain for a subframe including a plurality of OFDM symbols, and is located after a guard interval required for transmitting and receiving switching of the relay station. It includes at least one OFDM symbol. In this case, a resource element group (REG) spaced at regular intervals in the frequency domain from the at least one OFDM symbol may be included, and backhaul downlink control information may be transmitted through the resource element group. The backhaul downlink control information may be ACK / NACK for backhaul uplink data transmitted from the relay station to the base station, and the number of OFDM symbols to which backhaul downlink control information transmitted to the relay station is allocated. It may include information on the transmitted frequency band. The present invention will be described in detail below.
도 9는 중계국이 기지국으로부터 신호를 수신하는 서브프레임의 구성을 나타내는 도면이다. 9 is a diagram illustrating a configuration of a subframe in which a relay station receives a signal from a base station.
도 9를 참조하면, 중계국이 기지국으로부터 신호를 수신하는 서브프레임(400)은 액세스 제어신호영역(control region; 410), 보호구간 1(420), 보호구간 2(430), 백홀 영역(backhaul region; 440)을 포함할 수 있다. Referring to FIG. 9, a subframe 400 in which a relay station receives a signal from a base station includes an access control signal region 410, a guard interval 1 420, a guard interval 2 430, and a backhaul region. 440).
액세스 제어신호영역(410)은 중계국이 중계국 단말에게 제어신호를 전송하는 무선자원 영역이다. 중계국이 중계국 단말에게 전송하는 제어신호들은 중계국 단말에게 액세스 하향링크 데이터가 전송되지 않을 것임을 알려 중계국 단말들이 불필요한 데이터 수신 동작을 취하지 않게 하는 역할을 수행할 수 있다. 중계국이 RRM(radio resource management)까지 포괄하고 개별적인 셀 ID를 부여받아 동작하는 경우, 중계국 단말에게 역호환성을 제공하기 위해 모든 액세스 하향링크 서브프레임의 처음 소정 개수의 OFDM 심벌에서는 이러한 제어신호를 전송하여야 할 수 있다. 제어신호는 PCFICH, PDCCH, PHICH 신호 등이 포함될 수 있다. 액세스 제어신호 영역(410)은 1 내지 3개의 OFDM 심벌을 포함할 수 있다.The access control signal area 410 is a radio resource area in which the relay station transmits a control signal to the relay station terminal. The control signals transmitted from the relay station to the relay terminal may inform the relay terminal that the access downlink data will not be transmitted, thereby serving to prevent the relay station from taking unnecessary data reception operations. When the RS covers radio resource management (RRM) and operates by being given an individual cell ID, such a control signal should be transmitted in the first predetermined number of OFDM symbols of all access downlink subframes in order to provide backward compatibility to the RS. can do. The control signal may include a PCFICH, PDCCH, PHICH signal and the like. The access control signal region 410 may include 1 to 3 OFDM symbols.
중계국은 기지국으로부터 신호를 수신하는 서브프레임으로 설정되는 서브프레임에서 액세스 제어신호영역(410)을 통해 제어신호를 단말에게 전송한 후, 보호구간 1(420) 이후의 백홀 영역(440)에서 기지국으로부터 신호를 수신할 수 있다. 즉, 중계국은 백홀 링크와 액세스 링크에서 동일한 무선자원 즉, 동일한 주파수(동일한 IFFT/FFT 영역)에서의 신호 송수신을 방지하기 위해 TDM(time division multiplexing) 방식으로 액세스 제어신호 영역(410)과 백홀 영역(440)을 구분하여 동작할 수 있다. The RS transmits a control signal to the UE through the access control signal region 410 in a subframe set as a subframe receiving a signal from the BS, and then, from the BS in the backhaul region 440 after the guard interval 1 420. It can receive a signal. That is, the relay station may control the access control signal region 410 and the backhaul region in a time division multiplexing (TDM) manner to prevent transmission and reception of signals on the same radio resource, that is, the same frequency (same IFFT / FFT region) on the backhaul link and the access link. 440 may be operated separately.
보호구간 1(420) 및 보호구간 2(430)은 중계국에서 신호의 수신/전송 간의 스위칭 시 필요한 동작 안정화 시간으로 일종의 천이시간(transient time)이다. 보호 구간 1(420) 및 보호구간 2(430)는 1심벌 구간 이하의 시간 구간일 수 있다. 보호 구간 2(430)는 필요한 경우에만 포함될 수 있다. Guard period 1 (420) and guard period 2 (430) is an operation stabilization time required for switching between reception and transmission of a signal at the relay station, which is a kind of transition time. The guard period 1 420 and the guard period 2 430 may be time intervals of one symbol interval or less. Guard period 2 (430) may be included only when necessary.
중계국은 상술한 바와 같이 백홀 영역(440)을 통해 기지국으로부터 신호를 수신할 수 있다. 단말과 달리 중계국은 서브프레임 내의 일부 OFDM 심벌들만을 이용하여 기지국으로부터 신호를 수신할 수 있다. 이러한 경우, 중계국이 기지국으로부터 제어 정보를 수신하는 제어 채널을 어떻게 구성할 것인지 문제된다. The relay station may receive a signal from the base station through the backhaul area 440 as described above. Unlike the terminal, the relay station can receive a signal from the base station using only some OFDM symbols in the subframe. In this case, it is a question of how the relay station configures a control channel for receiving control information from the base station.
먼저, 설명의 편의상 용어를 정의한다. 이하에서 R-PDCCH는 기지국이 중계국에게 백홀 하향링크 제어정보를 전송하는 제어 채널을 의미한다. R-PHICH는 기지국이 중계국에게 백홀 상향링크 데이터에 대한 ACK/NACK을 전송하는 채널을 의미한다. R-PCFICH는 기지국이 중계국에게 R-PDCCH의 OFDM 심벌 개수를 알려주거나 이에 부가하여 R-PDCCH가 전송되는 주파수 대역, DCI 포맷에 대한 정보를 알려주는 채널을 의미한다. R-PDSCH는 기지국이 중계국에게 백홀 하향링크 데이터를 전송하는 데이터 채널을 의미한다. 매크로 PDCCH는 기지국이 매크로 단말에게 하향링크 제어정보를 전송하는 제어 채널을 의미하고, 액세스 PDCCH는 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 제어 채널을 의미한다. R-PDCCH 영역/대역은 R-PDCCH가 전송되는 무선자원 영역/주파수 대역을 의미한다. R-PHICH 영역/대역은 R-PHICH가 전송되는 무선자원 영역/주파수 대역을 의미하고, R-PCFICH 영역/대역은 R-PCFICH가 전송되는 무선자원 영역/주파수 대역을 의미한다. R-PUSCH는 중계국이 기지국으로 백홀 상향링크 데이터를 전송하는 데이터 채널을 의미한다. First, terms are defined for convenience of description. Hereinafter, the R-PDCCH means a control channel through which the base station transmits backhaul downlink control information to the relay station. R-PHICH refers to a channel through which the base station transmits ACK / NACK for backhaul uplink data to the relay station. The R-PCFICH refers to a channel in which the base station informs the relay station of the number of OFDM symbols of the R-PDCCH or in addition, informs the frequency band and the DCI format in which the R-PDCCH is transmitted. The R-PDSCH means a data channel through which the base station transmits backhaul downlink data to the relay station. The macro PDCCH refers to a control channel through which the base station transmits downlink control information to the macro terminal, and the access PDCCH refers to a control channel through which the relay station transmits access downlink control information to the RS. The R-PDCCH region / band means a radio resource region / frequency band through which the R-PDCCH is transmitted. The R-PHICH region / band means a radio resource region / frequency band through which the R-PHICH is transmitted, and the R-PCFICH region / band means a radio resource region / frequency band through which the R-PCICH is transmitted. The R-PUSCH means a data channel through which the relay station transmits backhaul uplink data to the base station.
중계국을 포함하는 무선 통신 시스템은 백홀 링크에서 상향링크 또는 하향링크 HARQ(Hybrid Automatic Repeat Request)를 지원할 수 있다. A wireless communication system including a relay station may support uplink or downlink hybrid automatic repeat request (HARQ) on a backhaul link.
도 10은 백홀 링크에 적용되는 상향링크 HARQ를 나타낸다.10 shows an uplink HARQ applied to a backhaul link.
중계국로부터 R-PUSCH 상으로 백홀 상향링크 데이터(110)를 수신한 기지국은 일정 서브프레임이 경과한 후에 R-PHICH 상으로 ACK/NACK 신호(111)를 전송한다. ACK/NACK 신호(111)는 상기 백홀 상향링크 데이터(110)가 성공적으로 디코딩되면 ACK 신호가 되고, 상기 백홀 상향링크 데이터(110)의 디코딩에 실패하면 NACK 신호가 된다. 중계국은 NACK 신호가 수신되면, ACK 정보가 수신되거나 최대 재전송 횟수까지 상기 백홀 상향링크 데이터(110)에 대한 재전송 데이터(120)를 전송할 수 있다. 기지국은 재전송 데이터(120)에 대한 ACK/NACK 신호(121)를 R-PHICH 상으로 전송할 수 있다.The base station receiving the backhaul uplink data 110 on the R-PUSCH from the relay station transmits the ACK / NACK signal 111 on the R-PHICH after a predetermined subframe has elapsed. The ACK / NACK signal 111 becomes an ACK signal when the backhaul uplink data 110 is successfully decoded, and becomes an NACK signal when decoding of the backhaul uplink data 110 fails. When the NACK signal is received, the RS may transmit retransmission data 120 for the backhaul uplink data 110 until ACK information is received or up to a maximum number of retransmissions. The base station may transmit the ACK / NACK signal 121 for the retransmission data 120 on the R-PHICH.
이하 R-PHICH에 대해서 설명한다.Hereinafter, the R-PHICH will be described.
도 11은 R-PHICH의 전송 과정의 일 예를 나타내는 블록도이다.11 is a block diagram illustrating an example of a R-PHICH transmission process.
기지국은 중계국으로부터 R-PUSCH를 통해 수신한 스트림(stream)에 대한 ACK/NACK을 R-PHICH를 통해 전송한다. 기지국은 1비트의 ACK/NACK을 코드율(code rate)이 1/3인 반복 코드를 이용하여 3비트로 코딩한다(S130). 코딩된 ACK/NACK을 BPSK(Binary Phase Key-Shifting) 방식으로 변조하여 3개의 변조 심벌들을 생성한다(S131). 상기 변조 심벌은 노멀 CP 구조에서 스프레딩 인자 SF(Spreading Factor)=4, 확장 CP 구조에서 SF=2를 이용하여 스프레딩(spreading)된다(S132). 상기 변조 심벌들을 스프레딩할 때 직교 시퀀스가 사용될 수 있으며, 사용되는 직교 시퀀스의 개수는 I/Q 다중화(multiplexing)을 적용하기 위해 SF*2가 된다. SF*2개의 직교 시퀀스를 사용하여 스프레딩된 R-PHICH들이 1개의 R-PHICH 그룹으로 정의될 수 있다. 스프레딩된 심벌들에 대하여 레이어 맵핑이 수행된다(S133). 레이어 맵핑된 심벌들이 자원 맵핑되어 전송된다(S134).The base station transmits ACK / NACK for the stream received from the relay station through the R-PUSCH through the R-PHICH. The base station codes 1 bit ACK / NACK into 3 bits using a repetition code having a code rate of 1/3 (S130). The coded ACK / NACK is modulated by a Binary Phase Key-Shifting (BPSK) scheme to generate three modulation symbols (S131). The modulation symbol is spread using spreading factor SF = 4 in the normal CP structure and SF = 2 in the extended CP structure (S132). An orthogonal sequence may be used when spreading the modulation symbols, and the number of orthogonal sequences used is SF * 2 to apply I / Q multiplexing. R-PHICHs spread using SF * 2 orthogonal sequences may be defined as one R-PHICH group. Layer mapping is performed on the spread symbols (S133). The layer mapped symbols are resource mapped and transmitted (S134).
상술한 과정을 수학식을 이용하여 설명한다. R-PHICH는 R-PUSCH 전송에 따른 HARQ ACK/NACK을 전송한다. 이 때, 동일한 집합의 자원 요소에 맵핑된 복수의 R-PHICH가 R-PHICH 그룹을 형성하며, R-PHICH 그룹 내의 각각의 R-PHICH는 서로 다른 직교 시퀀스(orthogonal sequence)에 의해서 구분될 수 있다. FDD 시스템에서 R-PHICH 그룹의 개수인 NPHICH group는 모든 서브프레임에서 일정할 수 있으며, 수학식 1에 의해서 결정될 수 있다.The above-described process will be described using equations. The R-PHICH transmits HARQ ACK / NACK according to the R-PUSCH transmission. In this case, a plurality of R-PHICHs mapped to resource elements of the same set form an R-PHICH group, and each R-PHICH in the R-PHICH group may be distinguished by different orthogonal sequences. . The N PHICH group, which is the number of R-PHICH groups in the FDD system, may be constant in all subframes and may be determined by Equation 1.
Figure PCTKR2010004337-appb-M000001
Figure PCTKR2010004337-appb-M000001
수학식 1에서 Ng는 PBCH(Physical Broadcast Channel)을 통해서 상위 계층에서 전송되며, Ng∈{1/6,1/2,1,2}일 수 있다. PBCH는 중계국이 기지국과 통신하는데 필수적인 시스템 정보를 나른다. NRB DL은 주파수 영역에서의 자원 블록의 크기인 Nsc RB의 배수로 표현한 백홀 하향링크 대역폭 구성이다. R-PHICH 그룹 인덱스 nPHICH group는 0부터 NPHICH group-1 중 어느 하나의 정수이다.In Equation 1, Ng is transmitted from a higher layer through a PBCH (Physical Broadcast Channel), and may be Ng / {1 / 6,1 / 2,1,2}. The PBCH carries system information necessary for the relay station to communicate with the base station. N RB DL is a backhaul downlink bandwidth configuration expressed as a multiple of N sc RB which is a size of a resource block in a frequency domain. The R-PHICH group index n PHICH group is an integer of any one of 0 to N PHICH group -1.
R-PHICH에 사용되는 자원은 R-PUSCH의 자원 할당시 가장 작은 PRB 인덱스와 기지국이 중계국에게 전송하는 백홀 상향링크 그랜트(backhaul UL grant)로 전송되는 DMRS(Demodulation Reference Signal)의 순환 쉬프트 값을 기반으로 결정될 수 있다. R-PHICH가 맵핑되는 자원(이하 R-PHICH 자원)은 인덱스 쌍인 (nPHICH group,nPHICH seq)로 표현할 수 있으며, nPHICH group는 R-PHICH 그룹 인덱스, nPHICH seq는 상기 R-PHICH 그룹 내의 직교 시퀀스 인덱스를 나타낸다. 상기 (nPHICH group,nPHICH seq)는 수학식 2에 의해서 결정될 수 있다.The resource used for the R-PHICH is based on the smallest PRB index when the resource allocation of the R-PUSCH and the cyclic shift value of the DMRS (Demodulation Reference Signal) transmitted by the backhaul UL grant transmitted by the base station to the relay station. Can be determined. The resource to which the R-PHICH is mapped (hereinafter referred to as R-PHICH resource) may be expressed as an index pair (n PHICH group , n PHICH seq ), n PHICH group is an R-PHICH group index, and n PHICH seq is the R-PHICH group Represents an orthogonal sequence index. The (n PHICH group , n PHICH seq ) may be determined by Equation 2.
Figure PCTKR2010004337-appb-M000002
Figure PCTKR2010004337-appb-M000002
nDMRS는 기지국이 중계국에게 전송하는 R-PDCCH에서의 DCI 포맷 내의 DMRS 순환 쉬프트(Cyclic shift for DMRS) 필드를 기반으로 결정될 수 있다. The n DMRS may be determined based on a DMRS Cyclic Shift for DMRS field in the DCI format in the R-PDCCH transmitted by the base station to the RS.
수학식 2에서 NSF PHICH는 변조 심벌에 사용되는 스프레딩 인자(SF; Spreading Factor)이다. IPRB_RA lowest_index는 해당 R-PHICH에 대응되는 R-PUSCH가 전송되는 슬롯의 PRB 중 가장 작은 PRB 인덱스이다. IPHICH는 0 또는 1의 값이다.In Equation 2, N SF PHICH is a spreading factor (SF) used for a modulation symbol. I PRB_RA lowest_index is the smallest PRB index among PRBs of slots in which an R-PUSCH corresponding to the corresponding R-PHICH is transmitted. I PHICH is a value of zero or one.
R-PHICH에 사용되는 직교 시퀀스는 표 1에 의하여 결정될 수 있다. 사용되는 직교 시퀀스는 nPHICH seq 값에 따라서 또는 CP 구조에 따라서 달라질 수 있다.Orthogonal sequences used in the R-PHICH can be determined by Table 1. The orthogonal sequence used may vary depending on the n PHICH seq value or the CP structure.
시퀀스 인덱스(nPHICH seq)Sequence index (n PHICH seq ) 직교 시퀀스Orthogonal Sequence
노멀 CP(NSF PHICH=4)Normal CP (N SF PHICH = 4) 확장 CP(NSF PHICH=2)Extended CP (N SF PHICH = 2)
00 [+1 +1 +1 +1][+1 +1 +1 +1] [+1 +1][+1 +1]
1One [+1 -1 +1 -1][+1 -1 +1 -1] [+1 -1][+1 -1]
22 [+1 +1 -1 -1][+1 +1 -1 -1] [+j +j][+ j + j]
33 [+1 -1 -1 +1][+1 -1 -1 +1] [+j -j][+ j -j]
44 [+j +j +j +j][+ j + j + j + j] --
55 [+j -j +j -j][+ j -j + j -j] --
66 [+j +j -j -j][+ j + j -j -j] --
77 [+j -j -j +j][+ j -j -j + j] --
R-PHICH 자원은 R-PDCCH의 구조에 따라 다양한 방법으로 자원요소에 맵핑될 수 있다. The R-PHICH resource may be mapped to a resource element in various ways according to the structure of the R-PDCCH.
도 12는 R-PDCCH 구조의 일 예를 나타낸다. 12 shows an example of an R-PDCCH structure.
도 12를 참조하면, R-PDCCH 영역은 시간 영역에서 액세스 제어신호 영역을 구성하는 OFDM 심벌들 및 보호 구간 이후의 N(N은 1 이상의 자연수)개의 OFDM 심벌을 포함한다. R-PDCCH 영역은 주파수 영역에서 시스템 대역 전체에 존재할 수 있다. R-PDCCH 영역은 기지국이 매크로 단말에게 하향링크 데이터를 전송하는데도 사용될 수 있다. Referring to FIG. 12, the R-PDCCH region includes OFDM symbols constituting the access control signal region in the time domain and N OFDM symbols (N is a natural number of 1 or more) after the guard period. The R-PDCCH region may exist throughout the system band in the frequency domain. The R-PDCCH region may also be used by the base station to transmit downlink data to the macro terminal.
이처럼 R-PDCCH 영역이 구성되는 경우, R-PHICH는 Q개의 OFDM 심벌에 할당될수 있다. 즉, R-PHICH의 구간(duration)은 Q OFDM 심벌일 수 있다. 여기서, Q는 일반적으로 N이하의 자연수이나 예외적으로 N보다 큰 자연수일 수도 있다. 예를 들어, Q가 N이하인 경우, R-PHICH는 R-PDCCH 영역 내에서 전송되는 것을 나타낸다. R-PDCCH 영역이 매우 제한적으로 할당되는 경우, R-PHICH는 R-PDCCH 영역 외부의 OFDM 심벌에도 할당될 수 있는데 이러한 경우 Q는 N보다 큰 값이 될 수 있다. As such, when the R-PDCCH region is configured, the R-PHICH may be allocated to Q OFDM symbols. That is, the duration of the R-PHICH may be a Q OFDM symbol. Here, Q is generally a natural number less than or equal to N, and may be a natural number greater than N. For example, when Q is less than or equal to N, the R-PHICH indicates that it is transmitted in the R-PDCCH region. When the R-PDCCH region is very limitedly allocated, the R-PHICH may be allocated to OFDM symbols outside the R-PDCCH region, in which case Q may be greater than N.
R-PHICH는 R-PDCCH 영역 내에서 고정된 위치 또는 시스템 대역 내에서 주파수 다이버시티(diversity)를 제공할 수 있는 규칙에 의해 정해지는 M개의 자원요소들에 맵핑되어 전송될 수 있다. 여기서, M은 예를 들어 12일 수 있다. M개의 자원요소들은 P개(P는 M의 약수로 예를 들어 3일 수 있다)의 REG(resource element group)으로 정의될 수 있다. 하나의 REG는 4개의 자원 요소를 포함하며, 쿼드러플릿(quadruplet)이라고 칭하기도 한다(이하의 실시예에서는 REG에 백홀 하향링크 제어정보가 할당되는 예를 설명하나, 이는 제한이 아니다. 예를 들어, REG보다 작은 개수의 자원요소를 포함하는 서브-REG(예를 들어, 3개의 자원요소로 구성될 수 있다)에 백홀 하향링크 제어정보가 할당될 수도 있다). P개의 REG는 R-PHICH 구간에 포함되는 Q 개의 OFDM 심벌들에 가능한 균일하게 할당될 수 있다. The R-PHICH may be mapped and transmitted to M resource elements determined by a rule capable of providing frequency diversity in a fixed position or system band in the R-PDCCH region. Here, M may be 12, for example. M resource elements may be defined as resource element groups (REGs) of P (P may be 3, for example, M). One REG includes four resource elements and may also be referred to as quadruplet (in the following embodiment, an example in which backhaul downlink control information is allocated to the REG is described, but this is not a limitation. For example, the backhaul downlink control information may be allocated to a sub-REG (eg, composed of three resource elements) including a smaller number of resource elements than the REG. P REGs may be allocated as uniformly as possible to Q OFDM symbols included in the R-PHICH interval.
도 13은 도 12에서 설명한 R-PDCCH 구조에서 R-PHICH의 자원 맵핑의 예를 나타낸다. FIG. 13 shows an example of resource mapping of an R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
도 13을 참조하면, R-PHICH 구간 Q는 1일 수 있다. R-PHICH가 할당되는 OFDM 심벌을 OFDM 심벌#i(i는 N과 보호 구간에 따라 결정되는 값으로 자연수)라고 표시하고 있다. R-PHICH가 할당되는 자원요소의 개수 M=12이고, REG의 개수 P=3인 경우를 예시하고 있다. 이러한 경우, 기준 신호가 배치될 수 있는 자원 요소 또는 R-PCFICH가 할당될 수 있는 자원 요소(도면에는 미도시)를 제외하고 주파수 영역에서 연속하는 4개의 자원 요소가 하나의 REG를 형성한다. 이러한 REG가 주파수 영역에서 최대한 균일한 간격으로 배치된다. 각 REG에는 R-PHICH가 할당된다. Referring to FIG. 13, the R-PHICH interval Q may be one. The OFDM symbol to which the R-PHICH is allocated is denoted by OFDM symbol #i (i is a natural number determined according to N and a guard interval). The case where the number of resource elements to which an R-PHICH is allocated is M = 12 and the number of REGs is P = 3 is illustrated. In this case, four resource elements consecutive in the frequency domain form one REG except for a resource element to which a reference signal can be arranged or a resource element to which an R-PCFICH can be allocated (not shown). These REGs are arranged at the most uniform intervals in the frequency domain. Each REG is assigned an R-PHICH.
도 14는 도 13에서 나타낸 R-PHICH의 자원 맵핑을 단순화하여 나타낸 예이다. 이하의 도면에서 편의상 도 14와 같이 단순화하여 자원 맵핑을 표시하기로 한다. 14 is a simplified example of resource mapping of the R-PHICH shown in FIG. 13. In the following drawings, resource mapping is indicated by simplifying the process as shown in FIG. 14.
도 15 및 도 16은 도 12에서 설명한 R-PDCCH 구조에서 R-PHICH의 자원 맵핑의 다른 예들을 나타낸다.15 and 16 illustrate other examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 12.
구체적으로 도 15는 R-PHICH 구간 Q가 2인 경우, 즉 R-PHICH가 OFDM 심벌#i, OFDM 심벌 #(i+1)에 할당되는 경우이다. 이러한 경우, R-PHICH가 할당되는 REG는 주파수 영역에서 균일한 간격으로 배치되며, 시간 영역에서는 OFDM 심벌 #i에는 2개의 REG, OFDM 심벌 #(i+1)에는 1개의 REG가 할당될 수 있다(이는 제한이 아니며 반대로 OFDM 심벌 #i에 1개의 REG, OFDM 심벌 #(i+1)에 2개의 REG가 할당되는 것도 가능하다). In detail, FIG. 15 illustrates a case where the R-PHICH interval Q is 2, that is, the R-PHICH is allocated to OFDM symbol #i and OFDM symbol # (i + 1). In this case, REGs to which an R-PHICH is allocated may be arranged at uniform intervals in the frequency domain, and two REGs may be allocated to OFDM symbol #i and one REG may be allocated to OFDM symbol # (i + 1) in the time domain. (This is not a limitation and conversely, one REG may be allocated to OFDM symbol #i and two REGs may be allocated to OFDM symbol # (i + 1)).
도 16은 R-PHICH 구간 Q가 3인 경우, 즉 R-PHICH가 OFDM 심벌#i, OFDM 심벌 #(i+1), OFDM 심벌 #(i+2)에 할당되는 경우이다. 이러한 경우, R-PHICH가 할당되는 REG는 주파수 영역에서 겹치지 않고 균일한 간격 이격되어 배치되며, 시간 영역에서는 OFDM 심벌#i, OFDM 심벌 #(i+1), OFDM 심벌 #(i+2) 각각에 1개의 REG가 할당된다. 도 16에서는 OFDM 심벌 인덱스가 증가하는 경우 REG의 주파수 상의 위치도 함께 증가하는 경우를 예시하였으나 이는 제한이 아니다. 각 OFDM 심벌의 REG는 주파수 영역에서 겹치지 않고 최대한 이격된 위치에 배치되는 구조로 할당될 수 있다.FIG. 16 illustrates a case where an R-PHICH interval Q is 3, that is, an R-PHICH is allocated to an OFDM symbol #i, an OFDM symbol # (i + 1), and an OFDM symbol # (i + 2). In this case, REGs to which an R-PHICH is allocated are arranged at equal intervals without overlapping in the frequency domain, and in the time domain, OFDM symbols #i, OFDM symbols # (i + 1) and OFDM symbols # (i + 2), respectively. One REG is assigned to. In FIG. 16, when the OFDM symbol index increases, the position on the frequency of the REG also increases, but this is not a limitation. The REGs of the respective OFDM symbols may be allocated in a structure arranged at positions as far apart as possible without overlapping in the frequency domain.
R-PHICH 구간은 R-PDCCH 영역의 OFDM 심벌 수 이하의 OFDM 심벌들로 정의할 수 있으나, 예외적인 경우 R-PDCCH 영역의 OFDM 심벌 수보다 큰 OFDM 심벌들로 정의할 수도 있다. 예를 들어, R-PDCCH의 정보량은 크지 않은데, 백홀 상향링크 전송에 대한 ACK/NACK 비트 사이트가 크고 신뢰성 있는 전송이 요구되는 경우이다. The R-PHICH period may be defined as OFDM symbols equal to or less than the number of OFDM symbols in the R-PDCCH region, but in exceptional cases, may be defined as OFDM symbols larger than the number of OFDM symbols in the R-PDCCH region. For example, the information amount of the R-PDCCH is not large, when the ACK / NACK bit site for the backhaul uplink transmission is large and reliable transmission is required.
따라서, R-PHICH 구간은 R-PDCCH 영역의 OFDM 심벌 수에 관련하지 않고 독립적으로 설정할 수 있다. 즉, R-PHICH 구간은 R-PDSCH 영역의 OFDM 심벌을 포함할 수도 있다. 이러한 경우, R-PDSCH 영역에 포함되는 R-PHICH 자원은 천공(puncturing) 또는 레이트 매칭(rate matching)을 사용하여 설정될 수 있다. 중계국 또는 매크로 단말은 R-PDSCH 영역 또는 PDSCH 영역에서 R-PHICH 자원의 할당 여부를 알지 못하는 상태에서 블라인드 디코딩을 수행할 수 있다. 또는 기지국이 중계국, 매크로 단말에게 R-PDSCH 영역 또는 PDSCH 영역에 대한 R-PHICH 자원의 할당 여부 및/또는 R-PHICH 자원의 위치를 L1/L2 신호로 알려주거나 RRC(radio resource control) 메시지와 같은 셀 특정적 상위 계층 신호로 미리 알려줄 수도 있다. 이 경우 중계국 또는 단말은 R-PDSCH 영역 또는 PDSCH 영역에서 R-PHICH 자원을 제외한 자원요소에서 수신한 신호만을 디코딩할 수 있다. Accordingly, the R-PHICH interval may be independently set regardless of the number of OFDM symbols in the R-PDCCH region. That is, the R-PHICH interval may include an OFDM symbol of the R-PDSCH region. In this case, the R-PHICH resource included in the R-PDSCH region may be set using puncturing or rate matching. The RS or the macro terminal may perform blind decoding without knowing whether to allocate R-PHICH resources in the R-PDSCH region or the PDSCH region. Alternatively, the base station informs the relay station, the macro terminal whether the R-PHICH resource is allocated to the R-PDSCH region or the PDSCH region, and / or the location of the R-PHICH resource as an L1 / L2 signal, or a radio resource control (RRC) message. The cell-specific higher layer signal may be informed in advance. In this case, the RS or the UE may decode only signals received from resource elements excluding R-PHICH resources in the R-PDSCH region or the PDSCH region.
도 17은 R-PHICH 영역이 R-PDCCH 영역과 별개로 할당되는 예를 나타낸다.17 shows an example in which an R-PHICH region is allocated separately from an R-PDCCH region.
도 17을 참조하면, R-PHICH 영역은 시간 영역에서 R-PDCCH 영역에 후속하는 R(R은 1 이상의 자연수)개의 OFDM 심벌을 포함하고, 주파수 영역에서는 R-PDCCH 대역과 동일한 주파수 대역으로 설정될 수 있다. Referring to FIG. 17, the R-PHICH region includes R OFDM symbols (R is a natural number of 1 or more) following the R-PDCCH region in the time domain, and may be set to the same frequency band as the R-PDCCH band in the frequency domain. Can be.
이러한 R개의 OFDM 심벌을 포함하는 R-PHICH 영역에서 REG의 할당 방법은 도 14 내지 도 16을 참조하여 설명한 방법을 마찬가지로 적용할 수 있다. 즉 R=1인 경우 도 14의 방법, R=2인 경우 도 15의 방법, R=3인 경우 도 16의 방법을 적용할 수 있다.The method of allocating the REG in the R-PHICH region including the R OFDM symbols may be similarly applied to the method described with reference to FIGS. 14 to 16. That is, when R = 1, the method of FIG. 14, R = 2, and the method of FIG. 16 may be applied.
또는, R-PDCCH 구간과 R-PHICH 구간의 합을 S, 즉 S개의 OFDM 심벌로 고정하거나 또는 S 개 이하의 OFDM 심벌로 제한할 수도 있다. 이러한 방법은 중계국 또는 매크로 단말을 위한 R-PDSCH 영역 또는 PDSCH 영역에 대한 자원 할당을 안정적으로 할 수 있게 한다. R-PHICH 자원 할당에 대한 정보는 Alternatively, the sum of the R-PDCCH interval and the R-PHICH interval may be fixed to S, that is, S OFDM symbols or limited to S or fewer OFDM symbols. This method makes it possible to stably allocate resources for an R-PDSCH region or a PDSCH region for a relay station or a macro terminal. Information on R-PHICH resource allocation
1. R-PDCCH 영역 내의 전용 물리 채널을 통해 전송하거나 또는 셀 특정적 R-PDCCH의 DCI 포맷에 포함하여 정의할 수 있다. 또는 단말 특정적 PDCCH의 DCI 포맷에 포함하여 정의하고 이를 통해 R-PHICH 자원 할당에 대한 정보를 전송할 수도 있다. 1. It may be transmitted through a dedicated physical channel in the R-PDCCH region or included in the DCI format of a cell-specific R-PDCCH. Or, it may be included in the DCI format of the UE-specific PDCCH and defined and may transmit information on the R-PHICH resource allocation.
2. R-PHICH 자원 할당에 대한 정보는 RRC 메시지와 같은 상위 계층 신호를 통해 중계국에게 알려줄 수도 있다. RRC 메시지는 셀 특정적 메시지일 수도 있고 중계국 특정적 메시지일 수도 있다. RRC 메시지를 통해 R-PHICH 자원 할당에 대한 정보를 알려주는 경우, R-PHICH 영역은 R-PDCCH 영역보다 앞선 OFDM 심벌로 정의될 수도 있다.2. Information on the R-PHICH resource allocation may inform the RS through a higher layer signal such as an RRC message. The RRC message may be a cell specific message or a relay station specific message. When the information on the R-PHICH resource allocation is informed through the RRC message, the R-PHICH region may be defined as an OFDM symbol earlier than the R-PDCCH region.
R-PHICH 영역의 R개의 OFDM 심벌 상에서 부반송파 자원 중 R-PHICH 전송에 사용되지 않는 부반송파 또는 자원블록(예컨대, 12개의 부반송파를 포함하는)은 중계국이나 매크로 단말에 대한 데이터 전송에 활용될 수 있다. A subcarrier or resource block (for example, including 12 subcarriers) that is not used for R-PHICH transmission among subcarrier resources on R OFDM symbols in the R-PHICH region may be used for data transmission to a relay station or a macro terminal.
도 18은 도 12에서 설명한 R-PDCCH 구조에서 R-PCFICH의 자원 맵핑의 예를 나타낸다. 18 shows an example of resource mapping of an R-PCFICH in the R-PDCCH structure described with reference to FIG. 12.
R-PCFICH에서 전송되는 신호의 생성 과정은 예를 들어, 다음과 같을 수 있다. 하나의 서브프레임에서 R-PCFICH를 통해 전송하고자 하는 정보 비트를 b(0), …, b(31)라고 하면, 정보 비트들은 셀 특정적 시퀀스에 의해 스크램블될 수 있다. 스크램블된 정보 비트들을
Figure PCTKR2010004337-appb-I000001
이라고 하면, 스크램블된 정보 비트들은 다음 식과 같이 생성될 수 있다.
The generation of the signal transmitted in the R-PCFICH may be, for example, as follows. The information bits to be transmitted through the R-PCFICH in one subframe are b (0),... , b31, the information bits may be scrambled by a cell specific sequence. Scrambled information bits
Figure PCTKR2010004337-appb-I000001
In this case, the scrambled information bits may be generated as follows.
Figure PCTKR2010004337-appb-M000003
Figure PCTKR2010004337-appb-M000003
상기 식 3에서 c(i)는 다음 식과 같이 주어질 수 있다.C (i) in Equation 3 may be given by the following equation.
Figure PCTKR2010004337-appb-M000004
Figure PCTKR2010004337-appb-M000004
수학식 4에서, NC = 1600이고, 첫번째 m-시퀀스는 x1(0)=1, x1(n)=0, n=1,2,...,30으로 초기화된다. 두번째 m-시퀀스는 시퀀스의 적용예에 따라 초기값이 결정된다. 스크램블된 정보 비트들은 QPSK 방식으로 변조되어 변조 심벌로 생성된다. 변조 심벌들을 d(0), ..., d(15)로 나타낸다. 변조 심벌들은 레이어 맵핑, 프리코딩을 거쳐 자원 요소에 맵핑된다. In Equation 4, N C = 1600 and the first m-sequence is initialized to x1 (0) = 1, x1 (n) = 0, n = 1,2, ..., 30. The second m-sequence is determined based on the application of the sequence. The scrambled information bits are modulated in a QPSK scheme to generate modulation symbols. Modulation symbols are represented by d (0), ..., d (15). The modulation symbols are mapped to resource elements through layer mapping and precoding.
서브프레임의 R-PDCCH 구조가 도 12에서 설명한 바와 같이 TDM 방식으로 설정된다면, R-PCFICH는 R-PDCCH 영역 내의 고정된 위치 또는 시스템 대역 내에서 주파수 다이버시티(diversity)를 제공할 수 있는 규칙에 의해 정해지는 Z개의 자원요소들에 맵핑되어 전송될 수 있다. 여기서, Z는 예를 들어 16 일 수 있다. If the R-PDCCH structure of the subframe is set to the TDM scheme as described in FIG. 12, the R-PCFICH is applied to a rule that can provide frequency diversity within a fixed position or system band in the R-PDCCH region. Z may be mapped and transmitted to the resource elements determined by. Here, Z may be for example 16.
R-PCFICH를 통해 전송되는 정보를 R-CFI(Relay node-Control Format Indicator)라 한다. R-CFI는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)를 포함한다. 이에 부가하여 R-PDCCH가 전송되는 주파수 대역, DCI 포맷에 대한 정보를 포함할 수 있다. R-CFI는 R-PDCCH를 모니터링하기 전에 중계국이 먼저 알아야 하는 정보이다. 따라서, 중계국은 먼저 R-PCFICH 상으로 R-CFI를 수신한 후, R-PDCCH를 모니터링할 수 있다.Information transmitted through the R-PCFICH is called a relay node-control format indicator (R-CFI). The R-CFI includes the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in a subframe. In addition to this, information about a frequency band in which the R-PDCCH is transmitted and a DCI format may be included. R-CFI is information that the relay station needs to know before monitoring the R-PDCCH. Accordingly, the relay station may first monitor the R-PDCCH after receiving the R-CFI on the R-PCFICH.
R-CFI의 비트수가 Y 비트라고 할 때, Y가 3 비트 이하인 경우에는 심플렉스 코드(simplex code)에 반복 코드(repetition code)를 결합한 코딩을 적용할 수 있다. Y가 3비트보다 큰 경우에는 리드 뮬러 코딩(Reed-Muller coding)과 같은 블록 코딩 또는 테일 바이팅 컨벌루션 코딩(tail-biting convolution coding)을 적용할 수 있다. 이러한 과정을 통해 생성된 2*Z 길이의 코딩된 비트에 QPSK 변조를 하여 Z개의 변조 심벌을 생성할 수 있다. Z개의 변조 심벌은 자원 요소에 맵핑되어 전송된다. R-PCFICH는 R-PDCCH 영역의 첫번째 OFDM 심벌에 할당되어 전송될 수 있다. When the number of bits of the R-CFI is Y bits, when Y is 3 bits or less, coding combined with a repetition code may be applied to a simplex code. If Y is greater than 3 bits, block coding or tail-biting convolution coding, such as Reed-Muller coding, may be applied. In this process, Z modulation symbols can be generated by performing QPSK modulation on 2 * Z length coded bits. Z modulation symbols are mapped to resource elements and transmitted. The R-PCFICH may be allocated to the first OFDM symbol of the R-PDCCH region and transmitted.
도 18을 참조하면, R-PCFICH는 Z/4개의 쿼드러플릿 또는 REG에 할당되어 전송된다. 예를 들어, Z=16인 경우 4개의 쿼드러플릿에 할당되어 전송된다. 쿼드러플릿(REG)은 참조신호가 배치될 수 있는 자원요소는 제외하고 나머지 자원요소들 중에서 주파수 영역에서 연속한 4개의 자원요소로 구성될 수 있다. R-PCFICH는 R-PHICH에 우선하여 할당될 수 있다.Referring to FIG. 18, the R-PCFICH is allocated to Z / 4 quadruplets or REGs and transmitted. For example, when Z = 16, four quadruplets are allocated and transmitted. The quadruplet REG may be configured of four resource elements consecutive in the frequency domain among the remaining resource elements except for a resource element in which a reference signal may be placed. The R-PCFICH may be allocated in preference to the R-PHICH.
R-PCFICH가 전송되는 OFDM 심벌에서 쿼드러플릿은 주파수 영역에서 균일한 간격을 두고 할당될 수 있다.In the OFDM symbol in which the R-PCFICH is transmitted, quadruplets may be allocated at even intervals in the frequency domain.
도 19는 R-PDCCH 구조의 다른 예를 나타낸다. 19 shows another example of an R-PDCCH structure.
도 19를 참조하면, R-PDCCH 영역은 시간 영역에서 액세스 제어신호 영역을 구성하는 OFDM 심벌들 및 보호 구간 이후의 N(N은 1 이상의 자연수)개의 OFDM 심벌을 포함한다. R-PDCCH 영역은 주파수 영역에서 시스템 대역의 일부 대역에 존재할 수 있다. R-PDCCH 영역은 기지국이 매크로 단말에게 하향링크 데이터를 전송하는데도 사용될 수 있다. 즉, 도 19는 도 12를 참조하여 설명한 R-PDCCH 구조와 달리 R-PDCCH 대역이 시스템 대역의 일부로 제한되는 경우이다. Referring to FIG. 19, the R-PDCCH region includes OFDM symbols constituting the access control signal region in the time domain and N OFDM symbols (N is a natural number of 1 or more) after the guard period. The R-PDCCH region may exist in some bands of the system band in the frequency domain. The R-PDCCH region may also be used by the base station to transmit downlink data to the macro terminal. That is, FIG. 19 is a case where the R-PDCCH band is limited to a part of the system band unlike the R-PDCCH structure described with reference to FIG. 12.
이처럼 R-PDCCH 영역이 구성되는 경우, R-PHICH는 Q개의 OFDM 심벌에 할당될수 있다. 즉, R-PHICH의 구간(duration)은 Q OFDM 심벌일 수 있다. 여기서, Q는 일반적으로 N이하의 자연수이나 예외적으로 N보다 큰 자연수일 수도 있다. 예를 들어, Q가 N이하인 경우, R-PHICH는 R-PDCCH 영역 내에서 전송되는 것을 나타낸다. R-PDCCH 영역이 매우 제한적으로 할당되는 경우, R-PHICH는 R-PDCCH 영역 외부의 OFDM 심벌에도 할당될 수 있는데 이러한 경우 Q는 N보다 큰 값이 될 수 있다. As such, when the R-PDCCH region is configured, the R-PHICH may be allocated to Q OFDM symbols. That is, the duration of the R-PHICH may be a Q OFDM symbol. Here, Q is generally a natural number less than or equal to N, and may be a natural number greater than N. For example, when Q is less than or equal to N, the R-PHICH indicates that it is transmitted in the R-PDCCH region. When the R-PDCCH region is very limitedly allocated, the R-PHICH may be allocated to OFDM symbols outside the R-PDCCH region, in which case Q may be greater than N.
R-PHICH는 R-PDCCH 영역 내의 고정된 위치 또는 시스템 대역 내에서 주파수 다이버시티(diversity)를 제공할 수 있는 규칙에 의해 정해지는 M개의 자원요소들에 맵핑되어 전송될 수 있다. 여기서, M은 예를 들어 12일 수 있다. M개의 자원요소들은 P개(P는 M의 약수로 예를 들어 3일 수 있다)의 REG(resource element group)으로 정의될 수 있다. 하나의 REG는 4개의 자원 요소를 포함하며, 쿼드러플릿(quadruplet)이라고 칭하기도 한다. P개의 REG는 R-PHICH 구간에 포함되는 Q 개의 OFDM 심벌들에 가능한 균일하게 할당될 수 있다. The R-PHICH may be mapped and transmitted to M resource elements determined by a rule capable of providing frequency diversity in a fixed position or system band in the R-PDCCH region. Here, M may be 12, for example. M resource elements may be defined as resource element groups (REGs) of P (P may be 3, for example, M). One REG includes four resource elements and may be referred to as a quadruplet. P REGs may be allocated as uniformly as possible to Q OFDM symbols included in the R-PHICH interval.
도 20 내지 도 22는 도 19에서 설명한 R-PDCCH 구조에서 R-PHICH의 자원 맵핑의 예를 나타낸다. 즉, 도 20 내지 도 22는 도 14 내지 도 16과 비교하여 주파수 대역이 다른 차이가 있다. 20 to 22 illustrate examples of resource mapping of the R-PHICH in the R-PDCCH structure described with reference to FIG. 19. That is, FIG. 20 to FIG. 22 have a different frequency band than that of FIGS. 14 to 16.
도 20을 참조하면, R-PHICH 구간 Q는 1일 수 있다. R-PHICH가 할당되는 OFDM 심벌을 OFDM 심벌#i(i는 N과 보호 구간에 따라 결정되는 값으로 자연수)라고 표시하고 있다. R-PHICH가 할당되는 자원요소의 개수 M=12이고, REG의 개수 P=3인 경우를 예시하고 있다. 이러한 경우, 기준 신호가 배치될 수 있는 자원 요소 또는 R-PCFICH가 할당될 수 있는 자원 요소를 제외하고 주파수 영역에서 연속하는 4개의 자원 요소가 하나의 REG를 형성한다. 이러한 REG가 주파수 영역에서 최대한 균일한 간격으로 배치된다. 각 REG에는 R-PHICH가 할당된다. Referring to FIG. 20, the R-PHICH interval Q may be one. The OFDM symbol to which the R-PHICH is allocated is denoted by OFDM symbol #i (i is a natural number determined according to N and a guard interval). The case where the number of resource elements to which an R-PHICH is allocated is M = 12 and the number of REGs is P = 3 is illustrated. In this case, four resource elements consecutive in the frequency domain form one REG except for a resource element to which a reference signal can be arranged or a resource element to which an R-PCFICH can be allocated. These REGs are arranged at the most uniform intervals in the frequency domain. Each REG is assigned an R-PHICH.
도 21는 R-PHICH 구간 Q가 2인 경우, 즉 R-PHICH가 OFDM 심벌#i, OFDM 심벌 #(i+1)에 할당되는 경우이다. 이러한 경우, R-PHICH가 할당되는 REG는 주파수 영역에서 균일한 간격으로 배치되며, 시간 영역에서는 OFDM 심벌 #i에는 2개의 REG, OFDM 심벌 #(i+1)에는 1개의 REG가 할당될 수 있다(이는 제한이 아니며 반대로 OFDM 심벌 #i에 1개의 REG, OFDM 심벌 #(i+1)에 2개의 REG가 할당되는 것도 가능하다). 21 illustrates a case where the R-PHICH interval Q is 2, that is, the R-PHICH is allocated to OFDM symbol #i and OFDM symbol # (i + 1). In this case, REGs to which an R-PHICH is allocated may be arranged at uniform intervals in the frequency domain, and two REGs may be allocated to OFDM symbol #i and one REG may be allocated to OFDM symbol # (i + 1) in the time domain. (This is not a limitation and conversely, one REG may be allocated to OFDM symbol #i and two REGs may be allocated to OFDM symbol # (i + 1)).
도 22는 R-PHICH 구간 Q가 3인 경우, 즉 R-PHICH가 OFDM 심벌#i, OFDM 심벌 #(i+1), OFDM 심벌 #(i+2)에 할당되는 경우이다. 이러한 경우, R-PHICH가 할당되는 REG는 주파수 영역에서 겹치지 않고 균일한 간격 이격되어 배치되며, 시간 영역에서는 OFDM 심벌#i, OFDM 심벌 #(i+1), OFDM 심벌 #(i+2) 각각에 1개의 REG가 할당된다. 도 22에서는 OFDM 심벌 인덱스가 증가하는 경우 REG의 주파수 상의 위치도 함께 증가하는 경우를 예시하였으나 이는 제한이 아니다. 각 OFDM 심벌의 REG는 주파수 영역에서 겹치지 않고 최대한 이격된 위치에 배치되는 구조로 할당될 수 있다.22 shows a case where the R-PHICH interval Q is 3, that is, the R-PHICH is allocated to OFDM symbol #i, OFDM symbol # (i + 1), and OFDM symbol # (i + 2). In this case, REGs to which an R-PHICH is allocated are arranged at equal intervals without overlapping in the frequency domain, and in the time domain, OFDM symbols #i, OFDM symbols # (i + 1) and OFDM symbols # (i + 2), respectively. One REG is assigned to. 22 illustrates a case in which the position on the frequency of the REG also increases when the OFDM symbol index increases, but this is not a limitation. The REGs of the respective OFDM symbols may be allocated in a structure arranged at positions as far apart as possible without overlapping in the frequency domain.
도 23 및 도 24는 R-PHICH 영역이 도 19에서 설명한 R-PDCCH 영역과 별개로 할당되는 예들을 나타낸다.23 and 24 illustrate examples in which the R-PHICH region is separately allocated from the R-PDCCH region described with reference to FIG. 19.
도 23 및 도 24를 참조하면, R-PHICH 영역은 시간 영역에서 R-PDCCH 영역에 후속하는 R(R은 1 이상의 자연수)개의 OFDM 심벌을 포함한다. 다만, 도 23에서는 R-PHICH 영역이 주파수 영역에서 R-PDCCH 대역과 동일한 주파수 대역으로 설정되는 예를 나타내고, 도 24에서는 R-PDCCH 대역보다 큰 주파수 대역으로 설정되는 예를 나타낸다. 23 and 24, the R-PHICH region includes R OFDM symbols (R is a natural number of 1 or more) following the R-PDCCH region in the time domain. 23 illustrates an example in which the R-PHICH region is set to the same frequency band as the R-PDCCH band in the frequency domain, and FIG. 24 illustrates an example in which the R-PHICH region is set to a frequency band larger than the R-PDCCH band.
이러한 R개의 OFDM 심벌을 포함하는 R-PHICH 영역에서 REG의 할당 방법은 도 20 내지 도 22를 참조하여 설명한 방법을 마찬가지로 적용할 수 있다. 즉 R=1인 경우 도 20의 방법, R=2인 경우 도 21의 방법, R=3인 경우 도 22의 방법을 적용할 수 있다. The method of allocating the REG in the R-PHICH region including the R OFDM symbols may be similarly applied to the method described with reference to FIGS. 20 to 22. In other words, when R = 1, the method of FIG. 20, R = 2, and the method of FIG. 22 may be applied.
도 23 및 도 24에서 R-PDCCH 구간과 R-PHICH 구간의 합을 S, 즉 S개의 OFDM 심벌로 고정하거나 또는 S 개 이하의 OFDM 심벌로 제한할 수도 있다. 이러한 방법은 중계국 또는 매크로 단말을 위한 R-PDSCH 영역 또는 PDSCH 영역에 대한 자원 할당을 안정적으로 할 수 있게 한다. R-PHICH 자원 할당에 대한 정보는 In FIGS. 23 and 24, the sum of the R-PDCCH interval and the R-PHICH interval may be fixed to S, that is, S OFDM symbols or limited to S or fewer OFDM symbols. This method makes it possible to stably allocate resources for an R-PDSCH region or a PDSCH region for a relay station or a macro terminal. Information on R-PHICH resource allocation
1. R-PDCCH 영역 내의 전용 물리 채널을 통해 전송하거나 또는 셀 특정적 R-PDCCH의 DCI 포맷에 포함하여 정의할 수 있다. 또는 단말 특정적 PDCCH의 DCI 포맷에 포함하여 정의하고 이를 통해 R-PHICH 자원 할당에 대한 정보를 전송할 수도 있다. 1. It may be transmitted through a dedicated physical channel in the R-PDCCH region or included in the DCI format of a cell-specific R-PDCCH. Or, it may be included in the DCI format of the UE-specific PDCCH and defined and may transmit information on the R-PHICH resource allocation.
2. R-PHICH 자원 할당에 대한 정보는 RRC 메시지와 같은 상위 계층 신호를 통해 중계국에게 알려줄 수도 있다. RRC 메시지는 셀 특정적 메시지일 수도 있고 중계국 특정적 메시지일 수도 있다. RRC 메시지를 통해 R-PHICH 자원 할당에 대한 정보를 알려주는 경우, R-PHICH 영역은 R-PDCCH 영역보다 앞선 OFDM 심벌로 정의될 수도 있다.2. Information on the R-PHICH resource allocation may inform the RS through a higher layer signal such as an RRC message. The RRC message may be a cell specific message or a relay station specific message. When the information on the R-PHICH resource allocation is informed through the RRC message, the R-PHICH region may be defined as an OFDM symbol earlier than the R-PDCCH region.
R-PHICH 영역의 R개의 OFDM 심벌 상에서 부반송파 자원 중 R-PHICH 전송에 사용되지 않는 부반송파 또는 자원블록(예컨대, 12개의 부반송파를 포함하는)은 중계국이나 매크로 단말에 대한 데이터 전송에 활용될 수 있다. A subcarrier or resource block (for example, including 12 subcarriers) that is not used for R-PHICH transmission among subcarrier resources on R OFDM symbols in the R-PHICH region may be used for data transmission to a relay station or a macro terminal.
도 25는 R-PCFICH가 도 23 또는 도 24에서 설명한 R-PDCCH 영역의 첫번째 OFDM 심벌에 할당되는 예를 나타낸다. 도 25는 도 18과 R-PCFICH가 할당되는 주파수 대역이 차이가 있을 뿐 나머지는 마찬가지이다. FIG. 25 shows an example in which an R-PCFICH is allocated to the first OFDM symbol of the R-PDCCH region described with reference to FIG. 23 or 24. FIG. 25 is different from the frequency band to which the R-PCFICH is allocated to FIG. 18.
도 25를 참조하면, R-PCFICH는 Z/4개의 쿼드러플릿 또는 REG에 할당되어 전송된다. 예를 들어, Z=16인 경우 4개의 쿼드러플릿에 할당되어 전송된다. 쿼드러플릿(REG)은 참조신호가 배치될 수 있는 자원요소는 제외하고 나머지 자원요소들 중에서 주파수 영역에서 연속한 4개의 자원요소로 구성될 수 있다. R-PCFICH는 R-PHICH에 우선하여 할당될 수 있다. R-PCFICH가 전송되는 OFDM 심벌에서 쿼드러플릿은 주파수 영역에서 균일한 간격을 두고 할당될 수 있다.Referring to FIG. 25, an R-PCFICH is allocated to Z / 4 quadruplets or REGs and transmitted. For example, when Z = 16, four quadruplets are allocated and transmitted. The quadruplet REG may be configured of four resource elements consecutive in the frequency domain among the remaining resource elements except for a resource element in which a reference signal may be placed. The R-PCFICH may be allocated in preference to the R-PHICH. In the OFDM symbol in which the R-PCFICH is transmitted, quadruplets may be allocated at even intervals in the frequency domain.
도 26은 기지국 및 중계국을 나타내는 블록도이다.Fig. 26 is a block diagram showing a base station and a relay station.
기지국(700)은 프로세서(processor, 710), 메모리(memory, 720) 및 RF부(RF(radio frequency) unit, 730)를 포함한다. 프로세서(710)는 중계국으로 자원할당정보를 전송하고, 자원할당정보가 지시하는 무선자원을 통해 중계국으로부터 백홀 하향링크 제어정보를 전송한다. 메모리(720)는 프로세서(710)와 연결되어, 프로세서(710)를 구동하기 위한 다양한 정보를 저장한다. RF부(730)는 프로세서(710)와 연결되어, 무선 신호를 전송 및/또는 수신한다. The base station 700 includes a processor 710, a memory 720, and an RF unit 730. The processor 710 transmits resource allocation information to the relay station, and transmits backhaul downlink control information from the relay station through a radio resource indicated by the resource allocation information. The memory 720 is connected to the processor 710 to store various information for driving the processor 710. The RF unit 730 is connected to the processor 710 to transmit and / or receive a radio signal.
중계국(800)은 프로세서(810), 메모리(820) 및 RF부(830)를 포함한다. 프로세서(810)는 기지국으로부터 자원할당정보를 수신하고, 자원할당정보가 지시하는 무선자원에서 상기 기지국으로부터 백홀 하향링크 제어정보를 수신한다. 자원할당정보는 복수의 OFDM 심벌을 포함하는 서브프레임에 대해 시간 영역에서 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 OFDM 심벌 및 보호 구간 이후에 위치하는 적어도 하나 이상의 OFDM 심벌을 포함하고, 상기 적어도 하나 이상의 OFDM 심벌에서 주파수 영역으로 균일한 간격으로 이격된 자원요소그룹을 포함하는 무선자원을 지시한다. 이러한 무선자원의 할당 방법에 대해서는 도 12 내지 도 25를 참조하여 상술하였다. The relay station 800 includes a processor 810, a memory 820, and an RF unit 830. The processor 810 receives resource allocation information from the base station, and receives backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information. The resource allocation information includes an OFDM symbol in which a relay station transmits access downlink control information to a relay terminal in a time domain for a subframe including a plurality of OFDM symbols, and at least one OFDM symbol located after a guard interval. A radio resource including a resource element group spaced at regular intervals in the frequency domain from at least one or more OFDM symbols. This radio resource allocation method has been described above with reference to FIGS. 12 to 25.
메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.The memory 820 is connected to the processor 810 and stores various information for driving the processor 810. The RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
프로세서(710,810)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(720,820)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(730,830)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(720,820)에 저장되고, 프로세서(710,810)에 의해 실행될 수 있다. 메모리(720,820)는 프로세서(710,810) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(710,810)와 연결될 수 있다. Processors 710 and 810 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters that interconvert baseband signals and wireless signals. The memories 720 and 820 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices. The RF unit 730 and 830 may include one or more antennas for transmitting and / or receiving a radio signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. Modules may be stored in memories 720 and 820 and executed by processors 710 and 810. The memories 720 and 820 may be inside or outside the processors 710 and 810, and may be connected to the processors 710 and 810 by various well-known means.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.Although the present invention has been described above with reference to the embodiments, it will be understood by those skilled in the art that the present invention may be modified and changed in various ways without departing from the spirit and scope of the present invention. I can understand. Therefore, the present invention is not limited to the above-described embodiment, and the present invention will include all embodiments within the scope of the following claims.

Claims (9)

  1. 중계국을 포함하는 무선통신 시스템에서 중계국의 제어 정보 수신 방법에 있어서, 기지국으로부터 자원할당정보를 수신하는 단계; 및상기 자원할당정보가 지시하는 무선자원에서 상기 기지국으로부터 백홀 하향링크 제어정보를 수신하는 단계를 포함하되, 상기 자원할당정보는 복수의 OFDM 심벌을 포함하는 서브프레임에 대해 시간 영역에서 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 OFDM 심벌 및 보호 구간 이후에 위치하는 적어도 하나 이상의 OFDM 심벌을 포함하고, 상기 적어도 하나 이상의 OFDM 심벌에서 주파수 영역으로 균일한 간격으로 이격된 자원요소그룹을 포함하는 무선자원을 지시하는 것을 특징으로 하는 방법.A method of receiving control information of a relay station in a wireless communication system including a relay station, the method comprising: receiving resource allocation information from a base station; And receiving backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information, wherein the resource allocation information is a relay station terminal in a time domain for a subframe including a plurality of OFDM symbols. An OFDM symbol for transmitting access downlink control information to the wireless LAN and at least one OFDM symbol located after a guard interval, and including a resource element group spaced at regular intervals in the frequency domain from the at least one OFDM symbol Pointing to a resource.
  2. 제 1 항에 있어서, 상기 자원요소그룹은 4개의 자원요소를 포함하되, 상기 4개의 자원요소는 참조신호가 배치될 수 있는 자원요소를 제외하고 주파수 영역에서 연속하는 4개의 자원요소인 것을 특징으로 하는 방법.The resource element group of claim 1, wherein the resource element group includes four resource elements, wherein the four resource elements are four resource elements contiguous in the frequency domain except for a resource element on which a reference signal can be placed. How to.
  3. 제 1 항에 있어서, 상기 백홀 하향링크 제어정보는 상기 중계국이 상기 기지국으로 전송한 백홀 상향링크 데이터에 대한 ACK/NACK(acknowledgement/not-acknowledgement)인 것을 특징으로 하는 방법.The method of claim 1, wherein the backhaul downlink control information is acknowledgment / not-acknowledgement (ACK / NACK) for backhaul uplink data transmitted from the relay station to the base station.
  4. 제 3 항에 있어서, 상기 ACK/NACK이 전송되는 무선자원은 상기 적어도 하나 이상의 OFDM 심벌 이후에 위치하는 별도의 OFDM 심벌을 더 포함하거나, 상기 별도의 OFDM 심벌만을 포함하는 것을 특징으로 하는 방법.4. The method of claim 3, wherein the radio resource to which the ACK / NACK is transmitted further includes a separate OFDM symbol located after the at least one OFDM symbol or includes only the separate OFDM symbol.
  5. 제 4 항에 있어서, 상기 별도의 OFDM 심벌에서 ACK/NACK 이 전송되는 주파수 대역은 상기 적어도 하나 이상의 OFDM 심벌에서 백홀 하향링크 제어정보가 전송되는 주파수 대역과 동일하거나 더 큰 것을 특징으로 하는 방법.5. The method of claim 4, wherein the frequency band in which ACK / NACK is transmitted in the separate OFDM symbol is equal to or greater than the frequency band in which backhaul downlink control information is transmitted in the at least one OFDM symbol.
  6. 제 3 항에 있어서, 상기 ACK/NACK이 전송되는 무선자원은 상기 적어도 하나 이상의 OFDM 심벌 중 1개, 2개 또는 3개의 OFDM 심벌에서 전송되는 것을 특징으로 하는 방법.The method of claim 3, wherein the radio resource for transmitting the ACK / NACK is transmitted in one, two or three OFDM symbols of the at least one OFDM symbol.
  7. 제 1 항에 있어서, 상기 백홀 하향링크 제어정보는 상기 기지국이 상기 중계국으로 전송하는 백홀 하향링크 제어정보를 포함하는 OFDM 심벌의 개수에 대한 정보인 것을 특징으로 하는 방법.The method of claim 1, wherein the backhaul downlink control information is information on the number of OFDM symbols including backhaul downlink control information transmitted from the base station to the relay station.
  8. 제 7 항에 있어서, 상기 기지국이 상기 중계국으로 전송하는 백홀 하향링크 제어정보를 포함하는 OFDM 심벌의 개수에 대한 정보는 상기 적어도 하나 이상의 OFDM 심벌 중 첫번째 OFDM 심벌에서 전송되는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the information on the number of OFDM symbols including backhaul downlink control information transmitted from the base station to the relay station is transmitted in a first OFDM symbol of the at least one OFDM symbol.
  9. 무선신호를 송수신하는 RF부; 및상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 기지국으로부터 자원할당정보를 수신하고, 상기 자원할당정보가 지시하는 무선자원에서 상기 기지국으로부터 백홀 하향링크 제어정보를 수신하되, 상기 자원할당정보는 복수의 OFDM 심벌을 포함하는 서브프레임에 대해 시간 영역에서 중계국이 중계국 단말에게 액세스 하향링크 제어정보를 전송하는 OFDM 심벌 및 보호 구간 이후에 위치하는 적어도 하나 이상의 OFDM 심벌을 포함하고, 상기 적어도 하나 이상의 OFDM 심벌에서 주파수 영역으로 균일한 간격으로 이격된 자원요소그룹을 포함하는 무선자원을 지시하는 것을 특징으로 하는 중계국.RF unit for transmitting and receiving a radio signal; And a processor connected to the RF unit, wherein the processor receives resource allocation information from a base station and receives backhaul downlink control information from the base station in a radio resource indicated by the resource allocation information, wherein the resource allocation information Is an OFDM symbol in which a relay station transmits access downlink control information to a relay terminal in a time domain for a subframe including a plurality of OFDM symbols, and at least one or more OFDM symbols located after a guard interval, and the at least one or more symbols A relay station for indicating a radio resource including a group of resource elements spaced at regular intervals from the OFDM symbol to the frequency domain.
PCT/KR2010/004337 2009-07-02 2010-07-02 Method and apparatus for receiving control information of relay station in wireless communication system including relay station WO2011002263A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22288609P 2009-07-02 2009-07-02
US61/222,886 2009-07-02

Publications (2)

Publication Number Publication Date
WO2011002263A2 true WO2011002263A2 (en) 2011-01-06
WO2011002263A3 WO2011002263A3 (en) 2011-03-31

Family

ID=43411633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004337 WO2011002263A2 (en) 2009-07-02 2010-07-02 Method and apparatus for receiving control information of relay station in wireless communication system including relay station

Country Status (1)

Country Link
WO (1) WO2011002263A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017822A2 (en) * 2012-07-24 2014-01-30 엘지전자 주식회사 Method for transmitting control information in wireless communication system and apparatus therefor
WO2016004901A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Methods for enb, ue uplink transmission and reception
CN111108716A (en) * 2017-09-20 2020-05-05 三星电子株式会社 Method and apparatus for transmitting and receiving control information in wireless communication system
CN112534909A (en) * 2018-08-09 2021-03-19 中兴通讯股份有限公司 Method, device and system for sending indication information
CN112534909B (en) * 2018-08-09 2024-05-28 中兴通讯股份有限公司 Method, device and system for transmitting indication information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072899A2 (en) * 2006-12-12 2008-06-19 Lg Electronics Inc. Methods and apparatuses for transmitting reference signal, setting reference signal transmission pattern, and setting and allocating resource block
US20080165719A1 (en) * 2007-01-05 2008-07-10 Motorola, Inc. Method and apparatus for relay zone bandwidth allocation
WO2008115588A2 (en) * 2007-03-21 2008-09-25 Interdigital Technology Corporation Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode
US20090029645A1 (en) * 2007-07-25 2009-01-29 Teenay Wireless, Inc. Multi-Tier Backhaul Network System with Traffic Differentiation and Advanced Processing Capabilities and Methods Therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072899A2 (en) * 2006-12-12 2008-06-19 Lg Electronics Inc. Methods and apparatuses for transmitting reference signal, setting reference signal transmission pattern, and setting and allocating resource block
US20080165719A1 (en) * 2007-01-05 2008-07-10 Motorola, Inc. Method and apparatus for relay zone bandwidth allocation
WO2008115588A2 (en) * 2007-03-21 2008-09-25 Interdigital Technology Corporation Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode
US20090029645A1 (en) * 2007-07-25 2009-01-29 Teenay Wireless, Inc. Multi-Tier Backhaul Network System with Traffic Differentiation and Advanced Processing Capabilities and Methods Therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017822A2 (en) * 2012-07-24 2014-01-30 엘지전자 주식회사 Method for transmitting control information in wireless communication system and apparatus therefor
WO2014017822A3 (en) * 2012-07-24 2014-03-20 엘지전자 주식회사 Method for transmitting control information in wireless communication system and apparatus therefor
US9532338B2 (en) 2012-07-24 2016-12-27 Lg Electronics Inc. Method for transmitting control information in wireless communication system and apparatus therefor
WO2016004901A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Methods for enb, ue uplink transmission and reception
CN106664739A (en) * 2014-07-11 2017-05-10 联发科技(新加坡)私人有限公司 Methods for ENB, UE uplink transmission and reception
US11240085B2 (en) 2014-07-11 2022-02-01 Hfi Innovation Inc. Methods for ENB, UE uplink transmission and reception
CN111108716A (en) * 2017-09-20 2020-05-05 三星电子株式会社 Method and apparatus for transmitting and receiving control information in wireless communication system
US11758559B2 (en) 2017-09-20 2023-09-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information in wireless communication system
CN112534909A (en) * 2018-08-09 2021-03-19 中兴通讯股份有限公司 Method, device and system for sending indication information
CN112534909B (en) * 2018-08-09 2024-05-28 中兴通讯股份有限公司 Method, device and system for transmitting indication information

Also Published As

Publication number Publication date
WO2011002263A3 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US9185699B2 (en) Method and apparatus for wireless resource allocation for relay in wireless communication system
KR101607333B1 (en) Method and apparatus for trnasmitting control signal of relay station
KR101584820B1 (en) Method and apparatus for transmitting signal performed by relay station in wireless communication system
KR101339477B1 (en) Method of using component carrier for relay station in multi-carrier system and relay station
US9014082B2 (en) Method and device for signal transmission on a wireless communications system
US8665775B2 (en) Method and apparatus in which a relay station makes a hybrid automatic repeat request in a multi-carrier system
KR101643025B1 (en) Relay station and method of relay station transmitting backhaul uplink signal
WO2011008013A2 (en) Method and apparatus for configuring a transmission mode for a backhaul link transmission
KR20100099655A (en) Method and apparatus for data receiving of relay station in wireless communication system
US9137845B2 (en) Method for transmitting a signal related to a change in transmission format
WO2010143868A2 (en) Method and apparatus for transmitting/receiving a signal in a wireless communication system
EP2448146B1 (en) Method and device for signal transmission on a wireless communications system
KR101761402B1 (en) Method and apparatus for performing harq of relay station in multi-carrier system
KR101832530B1 (en) Method for transmitting signals in a communication system including a relay station
KR101639081B1 (en) Method and apparatus for transmitting signal in wireless communication system
WO2011002263A2 (en) Method and apparatus for receiving control information of relay station in wireless communication system including relay station
WO2010137839A2 (en) Method and apparatus in which a relay station makes a hybrid automatic repeat request in a multi-carrier system
US8867499B2 (en) Method and apparatus for transmitting a signal in a wireless communication system
KR101637588B1 (en) Method and apparatus for transmitting or receiving signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794398

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794398

Country of ref document: EP

Kind code of ref document: A2