WO2010100741A1 - Optical communication apparatus - Google Patents

Optical communication apparatus Download PDF

Info

Publication number
WO2010100741A1
WO2010100741A1 PCT/JP2009/054172 JP2009054172W WO2010100741A1 WO 2010100741 A1 WO2010100741 A1 WO 2010100741A1 JP 2009054172 W JP2009054172 W JP 2009054172W WO 2010100741 A1 WO2010100741 A1 WO 2010100741A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
optical communication
input
amplifier circuit
Prior art date
Application number
PCT/JP2009/054172
Other languages
French (fr)
Japanese (ja)
Inventor
享史 竹本
寛樹 山下
達也 齊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/201,212 priority Critical patent/US8445832B2/en
Priority to JP2011502544A priority patent/JPWO2010100741A1/en
Priority to PCT/JP2009/054172 priority patent/WO2010100741A1/en
Publication of WO2010100741A1 publication Critical patent/WO2010100741A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/082Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3022CMOS common source output SEPP amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F3/505Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower with field-effect devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6933Offset control of the differential preamplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/453Controlling being realised by adding a replica circuit or by using one among multiple identical circuits as a replica circuit

Definitions

  • the present invention relates to an optical communication device, and more particularly, to a technique effective when applied to an optical communication device including a transimpedance amplifier (TIA).
  • TIA transimpedance amplifier
  • FIG. 4 and FIG. 5 shows an amplifier circuit and a TIA having a negative feedback configuration having a feedback resistor between the input and output of the amplifier circuit.
  • this amplifier circuit is composed of three stages including a grounded gate amplification stage, a common source amplification stage, and a source follower stage.
  • FIG. 4 shows a circuit parameter setting method for reducing noise in the grounded-gate amplification stage.
  • FIG. 5 shows a method of extending the band by using inductance for the load elements of the common-gate amplification stage and the common-source amplification stage.
  • FIG. 2 shows a TIA having an open loop configuration.
  • This TIA has a configuration in which the first stage includes a grounded gate amplification stage and the subsequent stage includes an amplification stage including a grounded source stage and a grounded gate amplification stage, and the subsequent gate grounding stage is gain boosted by the grounded source stage.
  • Each MOS transistor is formed with a large gate width, thereby improving the bandwidth.
  • FIG. 16 is a schematic diagram showing an example of the configuration of an optical communication apparatus studied as a premise of the present invention.
  • the optical communication apparatus shown in FIG. 16 amplifies a current signal from a photodiode PD generated with optical input and converts it into a voltage signal, a post-amplifier circuit PSAMP that amplifies the output, and an output thereof.
  • PSAMP that amplifies the output
  • LMTAMP limit amplifier circuit
  • PREAMP_C converts a current signal of several tens to several hundreds of ⁇ A into a voltage signal of about 10 mV
  • PSAMP generates a voltage signal of 200 mV to 300 mV and receives it.
  • LMTAMP generates a voltage signal of about 500 mV.
  • the LMTAMP is a circuit that amplifies to a logic level of a logic circuit (not shown) such as a CDR (Clock Data Recovery) circuit that is shown later.
  • the current signal input to the PD is very small, and in recent years, communication exceeding several tens of Gbps is performed. Therefore, in PREAMP_C, in addition to a high amplification factor (for example, about 50 dB) and high speed. In particular, low noise is important.
  • amplification factor for example, about 50 dB
  • low noise is important.
  • the bandwidth is preferably about 4/3 times PREAMP_C.
  • a reference voltage generation circuit VREFG that generates a reference voltage is provided at one end of PSAMP.
  • VREFG can be realized, for example, by detecting a DC component with respect to the output of PREAMP_C using a low-pass filter. In this case, there is a concern about an increase in area.
  • FIGS. 17A to 17C are explanatory diagrams showing details of the preamplifier circuit PREAMP_C in FIG.
  • PREAMP_C is a negative feedback circuit including an amplifier circuit AMP_C having a negative amplification factor (G) and a feedback resistor Rf connected between its input and output.
  • G negative amplification factor
  • Rf feedback resistor
  • Non-Patent Document 1 in order to increase the amplification factor (G), for example, as shown in Non-Patent Document 1, it is conceivable to provide a plurality of amplification stages (a common gate amplification stage and a common source amplification stage). However, usually, when the number of amplification stages is increased, the amount of noise is increased accordingly, and when the first stage is a grounded-gate amplification stage, although there is an advantage that the input impedance can be reduced, the sensitivity to noise is particularly increased.
  • FIG. 17C shows an example of the characteristics of the input voltage Vi and the output voltage Vo of AMP_C.
  • a high amplification factor means that the slope (Vo / Vi) becomes steep. In this case, for example, even when the operating point is slightly deviated from the design value due to process variations or the like, the amplification factor may change greatly, and predetermined performance may not be obtained.
  • Non-Patent Document 2 when an amplifier circuit having an open loop configuration shown in Non-Patent Document 2 is used, a low input impedance (improvement of bandwidth) can be realized by the first gate grounding stage, although there is a problem of noise.
  • the amplification stage can improve the amplification factor (contributes to the improvement of the bandwidth).
  • the band may be limited due to the parasitic capacitance inside the circuit.
  • the optical communication apparatus includes a preamplifier circuit that amplifies a current signal from a photodiode and converts it into a voltage signal, and an operating point control circuit that controls the preamplifier circuit.
  • the preamplifier circuit has a negative feedback configuration including an amplification path and a feedback path including a feedback resistor.
  • the amplification path includes a first level shift circuit and a first amplifier circuit connected to the next stage. .
  • the first level shift circuit performs a level shift operation in response to the first control signal from the operating point control circuit.
  • the operating point control circuit includes a replica circuit configured with the same circuit and circuit parameters as the first amplifier circuit and electrically connected between the input and the output. The DC voltage level of the output signal of the replica circuit, The first control signal is generated so that the DC voltage level of the input signal of one amplifier circuit matches.
  • the logical threshold voltage obtained from the output of the replica circuit can be set as the operating point of the first amplifier circuit, and accordingly, the first amplifier circuit has a high gain and a stable state. It becomes possible to perform an operation. As a result, the high frequency band of the preamplifier circuit having a negative feedback configuration is expanded, and the speed of the optical communication apparatus can be increased.
  • the operating point control circuit includes, in addition to the replica circuit, for example, a first current source that generates a DC current that is the same as the DC level of the current signal from the photodiode, a replica preamplifier circuit, and a second amplifier circuit Can be configured.
  • the replica preamplifier circuit is configured by the same circuit and circuit parameters as the preamplifier circuit, and performs an amplification operation with the direct current from the first current source as an input.
  • the second amplifier circuit differentially amplifies the input signal of the first amplifier circuit in the replica preamplifier circuit and the output signal of the replica circuit, and outputs a first control signal.
  • Each first level shift circuit in the preamplifier circuit and the replica preamplifier circuit receives this first control signal and performs a level shift operation.
  • the output of the replica preamplifier circuit can also be used as a reference signal for a postamplifier circuit that is normally provided downstream of the preamplifier circuit. That is, the postamplifier circuit differentially amplifies the output signal from the preamplifier circuit with reference to this reference signal. This eliminates the need for a circuit (for example, a low-pass filter) that generates the reference signal. Furthermore, since the voltage level of the reference signal is an optimum value (the center of the output voltage amplitude of the preamplifier circuit), the postamplifier circuit can be increased in speed.
  • FIG. 2 is a block diagram illustrating an exemplary configuration of a main part of the optical communication device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of an operating point control circuit in the optical communication device of FIG. 1.
  • FIG. 3 is a circuit diagram illustrating a detailed configuration example of the optical communication device including FIGS. 1 and 2.
  • (A)-(f) is a circuit diagram which shows the detailed structural example of the amplifier circuit in the preamplifier circuit of FIG. In the optical communication apparatus by Embodiment 2 of this invention, it is a circuit diagram which shows the structural example of the principal part.
  • FIG. 8 is a circuit diagram showing a detailed configuration example of the amplifier circuit in the preamplifier circuit of FIG. 7.
  • (a) is a block diagram showing a configuration example of the main part
  • (b) is a circuit diagram showing a detailed configuration example of the preamplifier circuit in (a). is there.
  • FIG. 10 illustrates an example of the post-amplifier circuit in the optical communication apparatus of FIG. 10, (a) is a conceptual diagram illustrating a configuration example thereof, and (b) is an explanatory diagram illustrating an operation example of (a).
  • FIG. 7 shows an optical communication apparatus according to a seventh embodiment of the present invention, where (a) is a block diagram illustrating an example of the configuration, and (b) is an explanatory diagram illustrating an example of the effect of (a).
  • FIG. 10 is a block diagram showing an example of the configuration of an optical communication device according to an eighth embodiment of the present invention. In the optical communication apparatus of FIG.
  • FIG. 13 (a) and (b) are circuit diagrams showing detailed configuration examples of the preamplifier circuit. It is a block diagram which shows the structural example of the optical communication apparatus examined as a comparison object of FIG. 1 is a schematic diagram illustrating an example of the configuration of an optical communication device studied as a premise of the present invention. (A)-(c) is explanatory drawing which showed the detail of the preamplifier circuit in FIG.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by a known integrated circuit technology such as a CMOS (complementary MOS transistor).
  • CMOS complementary MOS transistor
  • MOS Metal Oxide Semiconductor
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • PMOS transistor P-channel MOS transistor
  • NMOS transistor N-channel MOS transistor
  • FIG. 1 is a block diagram illustrating a configuration example of a main part of an optical communication apparatus according to Embodiment 1 of the present invention.
  • the optical communication device shown in FIG. 1 includes a preamplifier circuit PREAMP1 that receives a current signal Iin from a photodiode PD accompanying optical input, amplifies it, and converts it into a voltage signal, and an operating point control circuit VTCTL1.
  • PREAMP1 is applied instead of the preamplifier circuit PREAMP_C shown in FIG.
  • PREAMP1 is a transimpedance amplifier (TIA) having a negative feedback configuration, and includes a level shift circuit LS1, an output thereof, an amplifier circuit AMP1 having a negative amplification factor, an output of AMP1 and an input of LS1.
  • the feedback resistor Rf1 is connected between them.
  • the current signal Iin from the PD is converted into a voltage signal via Rf1, and the voltage signal generated at one end of Rf1 and the output node Vout that is the output of AMP1 is approximately Iin ⁇ when the amplification factor of AMP1 is high.
  • Rf1 transimpedance amplifier
  • AMP1 is composed of one amplification stage, and the amplification factor (output voltage signal Vo / input voltage signal Vi) is designed to be a very large value.
  • the amplification factor output voltage signal Vo / input voltage signal Vi
  • FIGS. 16 and 17 low noise characteristics and high speed can be realized.
  • FIG. 17C when the operating point of AMP1 fluctuates due to process variations or the like, a desired gain cannot be obtained, and the high speed of PREAMP1 may be hindered.
  • VTCTL1 includes a replica circuit having the same circuit configuration and element parameters as AMP1, and uses this replica circuit to generate an operating point control signal Vcon for determining the operating point of AMP1.
  • LS1 is typically composed of a source follower circuit, and shifts the DC level of a very small voltage signal accompanying Iin according to Vcon and outputs it to AMP1.
  • the operating point of AMP1 is set to an appropriate value through this level shift.
  • a desired gain can be obtained in AMP1, and the speed of PREAMP1 can be increased.
  • VTCTL1 also generates a reference voltage Vref as a DC component of the output signal at the output node Vout in addition to Vcon.
  • FIG. 2 is a block diagram showing a configuration example of the operating point control circuit VTCTL1 in the optical communication apparatus of FIG.
  • the operating point control circuit VTCTL1 shown in FIG. 2 includes a level shift circuit LS2, a constant current source IS1 that is a circuit reflecting the photodiode PD of FIG. 1, and a replica preamplifier circuit that reflects the preamplifier circuit PREAMP1 of FIG.
  • the amplifier circuit includes an amplifier circuit AMP1a and a feedback resistor Rf1a, and additionally includes an amplifier circuit AMP2 and a replica circuit REP.
  • the connection relationship among IS1, LS2, AMP1a, and Rf1a in FIG. 2 is the same as the connection relationship between PD, LS1, AMP1, and Rf1 in FIG. AMP1a and Rf1a are composed of the same circuits (including circuit parameters) as AMP1 and Rf1 in PREAMP1 of FIG. IS1 generates the same current as the DC current of the PD in FIG.
  • the replica circuit REP includes an amplifier circuit AMP1b that is the same circuit (including circuit parameters) as AMP1 in FIG. 1 and AMP1a in FIG. 2, and a feedback resistor Rf2 connected between the input and output thereof.
  • Rf2 is for preventing oscillation of the AMP 1b and electrically short-circuiting the input and output of the AMP 1b. With such a configuration, the output of the AMP 1b converges to the logical threshold level.
  • the AMP2 performs a differential amplification operation using the output of the AMP1b as a ( ⁇ ) input and the output of the LS2 (an input of the AMP1a) as a (+) input, and outputs an operating point control signal Vcon. This Vcon is output to LS1 of PREAMP1 in FIG. 1 described above and also output to LS2 in FIG.
  • LS2 is composed of substantially the same circuit (including circuit parameters) as LS1 of PREAMP1 in FIG. 1, and level-shifts the DC voltage signal accompanying IS1 based on Vcon and outputs it to AMP1a and AMP2.
  • the AMP2 has a sufficiently large amplification factor, and the feedback through the LS2 generates the operating point control signal Vcon having a value that matches the input voltage level to the AMP1a and the logical threshold level that is the output of the AMP1b. To do.
  • This Vcon is supplied to LS1 in PREAMP1 in FIG. 1, and as a result, the input voltage signal Vi to AMP1 in PREAMP1 also matches the logical threshold level from AMP1b in FIG. Accordingly, since AMP1 performs an amplification operation with a logic threshold level having a high amplification factor as an operating point, it is possible to increase the speed of PREAMP1 as described above.
  • LS2 can correct the level shift amount also by the operating point correction signal Vc.
  • AMP1, AMP1a, and AMP1b are the same circuit, and when they are formed on the same semiconductor chip, they usually receive the same process variation. Therefore, the operating point correction signal Vc is not necessarily provided. However, for example, when these degrees of variation are different, correction can be performed using Vc. Further, the output of the AMP 1a in FIG. 2 is used as the reference voltage Vref described above.
  • FIG. 3 is a circuit diagram illustrating a detailed configuration example of the optical communication apparatus including FIGS. 1 and 2.
  • the level shift circuit LS1 is a source follower circuit including an NMMOS transistor MN20 and a variable current source ISV1 connected to the source thereof.
  • a photodiode PD and a feedback resistor Rf1 are connected in parallel to a gate, and an output signal Vth is output from a source.
  • the current value of the ISV1 is controlled according to the operating point control signal Vcon, and the DC level of Vth is controlled accordingly.
  • the amplifier circuit AMP1 is composed of a CMOS inverter circuit composed of a PMOS transistor MP10 and an NMOS transistor MN10, and operates with Vth from LS1 as an input.
  • the output of AMP1 is connected to the output node Vout and is connected to the gate of MN20 via the feedback resistor Rf1.
  • the level shift circuit LS2 is a source follower circuit including an NMOS transistor MN20a and two variable current sources ISV1a and ISV2 connected to the source thereof.
  • the MN 20a has the same circuit parameters as those of the MN 20 described above, a constant current source IS1 and a feedback resistor Rf1a are connected in parallel to the gate, and an output signal Vth ′ is output from the source.
  • IS1 is set to a DC level current value Ib in the PD current signal Iin, as shown in FIG.
  • the ISV 1 a has the same circuit parameters as the ISV 1 described above, and its current value is controlled according to Vcon, and accordingly, the DC level of Vth ′ is controlled.
  • the current value of the ISV2 is controlled according to the operating point correction signal Vc, and the DC level of Vth ′ is finely adjusted.
  • the amplifier circuit AMP1a is composed of a CMOS inverter circuit including a PMOS transistor MP10a and an NMOS transistor MN10a, and is formed with the same circuit parameters as the CMOS inverter circuit of AMP1.
  • the AMP 1a operates with Vth 'from the LS2 as an input, and a reference voltage Vref as an output is input to the gate of the MN 20a via the feedback resistor Rf1a.
  • the replica circuit REP includes a CMOS inverter circuit composed of a PMOS transistor MP10b and an NMOS transistor MN10b, and a feedback resistor Rf2 connected between its input and output.
  • This CMOS inverter circuit is the same circuit as the CMOS inverter circuit of AMP1. Formed with parameters.
  • the AMP2 receives the output signal Vth ′′ from the REP CMOS inverter circuit and the output signal Vth ′ of the LS2 and outputs a control signal Vcon.
  • the amplifier circuit AMP1 in the preamplifier circuit PREAMP1 by configuring the amplifier circuit AMP1 in the preamplifier circuit PREAMP1 with a single-stage CMOS inverter circuit, high gain and low noise can be achieved. Further, the noise can be reduced by configuring the level shift circuit LS1 in the PREAMP1 with a source follower circuit. Therefore, as described above, by appropriately determining the operating point of the AMP1 using the operating point control circuit VTCTL1, it is possible to realize high speed and low noise of the preamplifier circuit.
  • FIG. 4A to 4F are circuit diagrams showing different detailed configuration examples of the amplifier circuit AMP1 in the preamplifier circuit PREAMP1 of FIG.
  • the amplifier circuit shown in FIG. 4A is formed of a CMOS inverter circuit including a PMOS transistor MP40 and an NMOS transistor MN40, as in the case of FIG.
  • the amplifier circuit shown in FIG. 4 (b) is a CMOS inverter circuit composed of MP40 and MN40 similar to FIG. 4 (a), and further gates a fixed voltage Vb between its output node (Vo) and the drain of MN40. In this configuration, a grounded NMOS transistor MN41 as a voltage is inserted. MN40 and MN41 are so-called cascode connections.
  • the mirror capacitance (gate-drain capacitance Cgd) of the MN 40 is reduced and the output impedance at the drain of the MN 41 is increased, so that the high frequency characteristics of the amplifier circuit itself can be improved and the gain can be increased.
  • the amplifier circuit shown in FIG. 4 (c) is a CMOS inverter circuit with cascode connection composed of MP40, MN40, and MN41 similar to FIG. 4 (b), and further between the output node (Vo) and the drain of MP40.
  • the inductor L1 is inserted.
  • the gain can be improved (ie peaking) as the impedance increases in the high frequency region, so that the high frequency characteristics can be further improved as compared with the case of FIG. 4B.
  • the amplifier circuits shown in FIGS. 4D to 4F have a configuration in which the PMOS transistor MP40 in the amplifier circuits shown in FIGS. 4A to 4C is replaced with a resistor R1.
  • the PMOS transistor since the PMOS transistor has a low driving capability, by replacing it with a resistor as shown in FIGS. 4D to 4F, it is possible to further improve the high frequency characteristics and increase the gain.
  • each amplifier circuit shown in FIGS. 4A to 4F is configured to achieve high gain in one stage. It has become. Therefore, it is desirable to determine the operating point optimally in order to exhibit stable amplification characteristics, and it is beneficial to use the configuration example shown in FIGS.
  • FIGS. 4B to 4F When the amplifier circuit of FIGS. 4B to 4F is applied to the configuration example of FIG. 2, each amplifier of FIG. 3 is similar to the configuration example of FIG. 3 to which the amplifier circuit of FIG. 4A is applied.
  • the circuits AMP1, AMP1a, and AMP1b may be replaced with the amplifier circuits shown in FIGS.
  • an operating point control circuit VTCTL1 that simulates the DC operation of the entire PREAMP1 as shown in FIG. 2 is used. It was. Since VTCTL1 performs a DC operation, the value of the operating point control signal Vcon is also constant, and the operating point of AMP1 in PREAMP1 can always be kept constant.
  • the VTCTL1 is configured only by the amplifier circuit AMP2 and the replica circuit REP of FIG.
  • the (+) input node of AMP2 is connected to the output node of the level shift circuit LS1 in PREAMP1, and LS1 is controlled by Vcon from AMP2.
  • the operating point cannot be stabilized as much as the configuration example of FIG. 2 and the reference voltage Vref cannot be generated, but the control of the operating point can be realized to some extent with a small circuit area. .
  • FIG. 5 is a circuit diagram showing a configuration example of the main part of the optical communication apparatus according to the second embodiment of the present invention.
  • the optical communication device shown in FIG. 5 is different from the configuration example of FIG. 3 in the circuit configuration in the level shift circuit LS2 ′ in the operating point control circuit VTCTL1, and further includes regulator circuits VREG1 and VREG2. Is different.
  • Other configurations are the same as those in the configuration example of FIG. 3, and thus detailed description thereof is omitted.
  • LS2 'in VTCTL1 shown in FIG. 5 has a configuration in which variable current source ISV2 is deleted from LS2 in VTCTL1 shown in FIG.
  • VREG1 supplies a power supply voltage to the amplifier circuit AMP1 in the preamplifier circuit PREAMP1
  • VREG2 supplies a power supply voltage to the amplifier circuit AMP1a in the operating point control circuit VTCTL1.
  • the process variation of each amplifier circuit AMP1, AMP1a, and AMP1b is corrected by supplying the operating point correction signal Vc to the ISV2.
  • the above-described correction is performed by finely adjusting the power supply voltage of the AMP 1a.
  • FIG. 6 shows an example of the configuration of the main part of an optical communication apparatus according to Embodiment 3 of the present invention.
  • FIG. 6A is a block diagram thereof
  • FIG. 6B is a detailed diagram of a preamplifier circuit in FIG. It is a circuit diagram which shows a structural example.
  • the optical communication apparatus shown in FIG. 6A includes a preamplifier circuit PREAMP2 instead of the preamplifier circuit PREAMP1 of FIG.
  • PREAMP2 Compared with PREAMP1, PREAMP2 has a level shift circuit LS3 connected to the output of the amplifier circuit AMP1, and the output of this LS3 serves as an output node Vout and is fed back to the level shift circuit LS1 via a feedback resistor Rf1. The point is different. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted.
  • PREAMP2 includes a level shift circuit LS1, an amplifier circuit AMP1 connected to the subsequent stage, a level shift circuit LS3 connected to the subsequent stage, and a feedback that feeds back the output to LS1.
  • a resistor Rf1 is provided.
  • LS1 and AMP1 are each composed of a source follower circuit and a CMOS inverter circuit.
  • the LS3 includes a source follower circuit including an NMOS transistor MN30 having the output of the CMOS inverter circuit as a gate input and a constant current source IS2 connected to the source of the MN30.
  • the AMP1 CMOS inverter circuit has a large transistor size for high gain. Therefore, as shown in FIG. 6B, in order to drive the post-amplifier circuit PSAMP connected to the subsequent stage of PREAMP2 at high speed, the load of the CMOS inverter circuit of AMP1 and the input capacitor Cin1 of PSAMP are separated. It is desirable. Furthermore, in order to operate PSAMP at high speed, it is desirable to appropriately adjust its operating point. Therefore, by providing the level shift circuit LS3 composed of a source follower circuit, the load of AMP1 and the CAMP1 of PSAMP can be separated, and the operating point of PSAMP can be adjusted appropriately.
  • FIG. 7 is a block diagram showing a configuration example of the main part of an optical communication apparatus according to Embodiment 4 of the present invention.
  • the optical communication apparatus shown in FIG. 7 includes a preamplifier circuit PREAMP3 instead of the preamplifier circuit PREAMP1 of FIG.
  • the PREAMP3 is different from the PREAMP1 in that an amplifier circuit AMP3 having a plurality of stages is provided instead of the one-stage amplifier circuit AMP1 in the PREAMP1. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted.
  • AMP3 is configured to have a negative gain as a whole because PREAMP3 has a negative feedback configuration.
  • the amplifier circuit in the preamplifier circuit is preferably configured with a small number of stages (preferably one stage) in order to reduce noise.
  • stages preferably one stage
  • FIG. 8 is a circuit diagram showing a detailed configuration example of the amplifier circuit AMP3 in the preamplifier circuit PREAMP3 of FIG.
  • the amplifier circuit AMP3 shown in FIG. 8 is configured by a CMOS inverter circuit composed of a PMOS transistor MP50 and an NMOS transistor MN50, and a subsequent stage connected to a CMOS inverter circuit composed of an NMOS transistor MN51, a constant current source IS7, and a resistor R2.
  • the In the MN 51 a fixed voltage Vb is applied to the gate, and a source is connected to the IS7 and in parallel to the output of the preceding CMOS inverter circuit.
  • the drain of MN51 is connected to the resistor R2 and outputs the output voltage signal Vo.
  • a high gain amplifier circuit can be realized by the front stage CMOS inverter circuit and the rear stage grounded gate amplification stage.
  • the operating point control circuit VTCTL1 in FIG. 7 (FIG. 2) optimally determines the input operating point, the preceding stage CMOS inverter circuit performs a stable operation at a desired amplification factor. Since this CMOS inverter circuit is provided with a grounded-gate amplification stage in the subsequent stage, the high-speed performance should be emphasized and the parasitic component may be designed to be small.
  • VTCTL1 in the case of using the configuration example of FIG. 8 may be configured by replacing each amplifier circuit AMP1, AMP1a, AMP1b with the amplifier circuit of FIG. 8 in the configuration example of FIG.
  • the amplifier circuit AMP3 is configured by a CMOS inverter circuit and a grounded-gate amplification stage, but is not limited to this, and various configurations are applicable as long as a negative amplification factor is obtained.
  • a configuration in which each amplifier circuit shown in FIG. 4 and a grounded gate amplification stage are combined can be used, and in some cases, it can be configured by a three-stage CMOS inverter circuit.
  • FIG. 9A is a block diagram showing a configuration example of the main part of the optical communication apparatus according to the fifth embodiment of the present invention
  • FIG. 9B shows the preamplifier circuit PREAMP4 in FIG. 9A.
  • the optical communication apparatus shown in FIG. 9A includes a preamplifier circuit PREAMP4 instead of the preamplifier circuit PREAMP1 of FIG.
  • PREAMP4 includes an amplifier circuit AMP4 in front of the level shift circuit LS1 in PREAMP1, and this AMP4 receives a current signal Iin from the photodiode PD and a feedback signal from the feedback resistor Rf1. Is different. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted.
  • AMP4 is configured to have a positive gain.
  • the AMP4 is a grounded-gate amplification stage including an NMOS transistor MN60, a constant current source IS3, an inductor L2, and a resistor R3.
  • MN60 has a fixed voltage Vb applied to its gate, and its source is connected in parallel to one end of Rf1 and IS3 and receives current signal Iin from PD.
  • R3 and L2 are connected in series between the power supply voltage VCC and the drain of MN60. This L2 functions for peaking as described in FIG.
  • the level shift circuit LS1 provided at the subsequent stage of the AMP4 is a source follower circuit including an NMOS transistor MN20 and a variable current source ISV1 connected to the source thereof. MN20 receives an output signal from the drain of MN60 at its gate. The current value of ISV1 is controlled by the operating point control signal Vcon described above.
  • AMP1 provided in the subsequent stage of LS1 is configured by a CMOS inverter circuit including a PMOS transistor MP10 and an NMOS transistor MN10. This CMOS inverter circuit performs an amplification operation using an output signal from the source of the MN 20 as an input voltage signal Vi, and outputs an output voltage signal Vo. The output from this CMOS inverter circuit is fed back to the input of AMP4 via Rf1.
  • VTCTL1 in the case of using the configuration example of FIG. 9B may be configured such that AMP4 is inserted into the previous stage of LS1 in PREAMP1 and the previous stage of LS2 in VTCTL1 in the configuration example of FIG. .
  • FIG. 10 is a block diagram showing an example of the configuration of an optical communication apparatus according to Embodiment 6 of the present invention.
  • the optical communication apparatus shown in FIG. 10 includes a post-amplifier circuit PSAMP and a limit amplifier circuit LMAMP in the subsequent stage of PREAMP1 in addition to the photodiode PD, preamplifier circuit PREAMP1, and operating point control circuit VTCTL1 shown in FIG. Yes.
  • the optical communication device of FIG. 10 has a configuration in which the preamplifier circuit PREAMP_C is replaced with PREAMP1, VTCTL1 is added, and the reference voltage generation circuit VREFG is deleted, as compared with the optical communication device of FIG. 16 described above. Yes.
  • VREFG is a circuit that detects the DC component of the output of PREAMP_C by a low-pass filter because PSAMP has a differential input / output configuration.
  • VTCTL1 can generate the DC component of the output of PREAMP1 as the reference voltage Vref
  • VREFG is obtained by using this Vref. It becomes unnecessary. Accordingly, VREFG, which normally occupies a large area, can be reduced, so that the circuit area can be reduced.
  • Vref by VTCTL1 that performs DC-like operation, it is possible to generate a more stable reference voltage compared to the case of using a low-pass filter, resulting in high-speed amplification operation by PSAMP. It becomes possible to contribute.
  • FIG. 11 shows an example of the post-amplifier circuit PSAMP in the optical communication apparatus of FIG. 10, (a) is a conceptual diagram showing an example of the configuration, and (b) is an explanation showing an example of the operation of (a).
  • FIG. The post-amplifier circuit PSAMP shown in FIG. 11A is configured by amplifier circuits AMP10a and AMP10b having a differential configuration.
  • the AMP 10a includes, for example, an inductor similar to that shown in FIG. 4 (f) or the like in a general differential amplifier circuit including two transistors serving as a differential pair and a load element connected to each transistor. The peaking can be performed by using an element. As shown in FIG.
  • the reference voltage Vref from the operating point control circuit VTCTL1 is input to one of the transistors forming the differential pair.
  • the AMP 10b connected to the subsequent stage of the AMP 10a is a general differential amplifier circuit without particularly having a peaking function.
  • the AMP 10a in the previous stage has a low gain in the low to medium frequency band, but has a high gain in accordance with the peaking function in the high frequency band.
  • the AMP 10b in the subsequent stage has a high gain in the low to medium frequency band, the gain decreases with a parasitic component in the high frequency band. Therefore, by combining these amplifier circuits AMP10a and AMP10b, it is possible to ensure a certain amount of gain and a certain frequency band as a whole.
  • the optical communication apparatus As described above, typically, high-speed operation can be realized by using the optical communication apparatus according to the sixth embodiment.
  • the configuration example of FIG. 1 is used here as the preamplifier circuit, the configuration examples of FIG. 6, FIG. 7, FIG. 9, and the like can also be used.
  • FIG. 12A and 12B show an optical communication apparatus according to Embodiment 7 of the present invention.
  • FIG. 12A is a block diagram showing a configuration example thereof, and FIG. 12B is an explanatory diagram showing an example of the effect of FIG. .
  • FIG. 15 is a block diagram illustrating a configuration example of an optical communication apparatus studied as a comparison target in FIG.
  • the optical communication apparatus shown in FIG. 15 has a configuration in which an offset correction circuit OSCTL_C is added between the input and output of the post-amplifier circuit PSAMP in the optical communication apparatus shown in FIG.
  • the PSAMP includes a plurality of stages of differential amplifier circuits, and includes an amplifier circuit AMP10 having an overall gain of Apa.
  • the AMP 10 normally includes an offset voltage Vos that becomes a noise component due to process variations and the like.
  • OSCTL_C is provided to reduce this Vos.
  • OSCTL_C is a gain between a low-pass filter that detects a DC component for each of the (+) output and ( ⁇ ) output from the AMP 10 and a (+) output and ( ⁇ ) output through the low-pass filter.
  • An amplifier circuit AMP11 for differential amplification at Aos is provided.
  • the (+) output and ( ⁇ ) output of the AMP 11 are negatively fed back toward the ( ⁇ ) input and the (+) input of the AMP 10.
  • the low-pass filter includes a resistor Ros connected in series between the output of the AMP 10 and the input of the AMP 11 and a capacitor Cos connected between the input of the AMP 11 and the ground voltage VSS.
  • the amplitude of the output voltage from the preamplifier circuit PREAMP_C is as small as about 10 mV.
  • the offset voltage Vos serving as the DC component is compressed to approximately 1 / (Apa ⁇ Aos) at the output of the AMP 10 and can be reduced to, for example, about 100 ⁇ V or less.
  • the input / output signal of the AMP 10 serving as an AC component hardly receives negative feedback in accordance with the cutoff by the low-pass filter in the OSCTL_C. Therefore, the output signal of the AMP 10 is the input signal amplified by Apa. Further, the low cutoff frequency of the output signal of the AMP 10 is approximately Apa ⁇ Aos / (2 ⁇ ⁇ Ros ⁇ Cos).
  • the PSAMP is desirably configured to be able to amplify a low-frequency signal with a low offset, for example, about 100 kHz. That is, ideally, the low-pass filter in OSCTL_C is desirably configured to pass only the DC component. For this purpose, for example, it is conceivable that Cos or the like is formed to be large. However, if this is done, the circuit area is increased, and it may be difficult to form it in the semiconductor chip in practice.
  • the optical communication apparatus shown in FIG. 12 has a configuration example in which an offset correction circuit OSCTL is added between the input and output of the post-amplifier circuit PSAMP in addition to the configuration example of FIG.
  • the OSCTL in FIG. 12 is different from the OSCTL_C in FIG. 15 in that a capacitor Cos is provided between the input and output of the amplifier circuit AMP11.
  • Cos functions as a mirror capacitor
  • the low-frequency cutoff frequency in the output signal of the AMP 10 in the PSAMP is approximately Apa / (2 ⁇ ⁇ Ros ⁇ Cos). Therefore, as shown in FIG. 12B, the low-frequency cutoff frequency is reduced by the gain Aos of the AMP11, so that the above-described problem can be solved.
  • the offset voltage in the post-amplifier circuit can be reduced and the frequency band can be expanded.
  • FIG. 13 is a block diagram showing an example of the configuration of an optical communication apparatus according to Embodiment 8 of the present invention.
  • the optical communication apparatus shown in FIG. 13 includes an open-loop preamplifier circuit PREAMP_OP that receives a current signal from a photodiode PD, a post-amplifier circuit PSAMP, a limit amplifier circuit LMTAMP, and an output driver circuit that are sequentially connected to the subsequent stage. It is composed of a DRV, a reference voltage generation circuit VREFG, an offset correction circuit OSCTL, and the like.
  • the configuration and operation of VREFG, PSAMP, and LMTAMP are the same as those described with reference to FIG.
  • the configuration and operation of the OSCTL are the same as those described with reference to FIG.
  • the DRV is installed to drive an external load. If the preamplifier circuit is formed as an independent chip, it is desirable that the DRV be provided in this way to perform external driving. However, when the preamplifier circuit is formed on the same chip including the subsequent circuit of the preamplifier circuit, the DRV is particularly preferable. May not be provided.
  • the preamplifier circuit PREAMP_OP1 shown in FIG. 14A includes NMOS transistors MN70 to MN74, resistors R4 and R5, and constant current sources IS4 and IS5.
  • MN70, MN71 and R5 constitute a grounded source amplification stage with a cascode connection
  • MN72, MN73, R4 and IS4 constitute a gate grounded amplification stage with a cascode connection
  • MN74 and IS5 constitute a source follower stage.
  • the MN 70 has a source connected to the ground voltage VSS, a gate connected to the input node of the current signal Iin from the PD, and a drain connected to the source of the MN 71.
  • MN71 a fixed voltage Vb1 is applied to the gate, and the drain is connected to one end of R5 and the gate of MN72.
  • the source of MN 72 is connected to the input node of Iin, and the drain is connected to the source of MN 73.
  • IS4 is connected between the input node of Iin and VSS.
  • MN73 a fixed voltage Vb2 is applied to the gate, and the drain is connected to one end of R4 and the gate of MN74.
  • the MN 74 has a source connected to the output node Vout and a drain connected to the power supply voltage VCC.
  • IS5 is connected between Vout and VSS. The other ends of R4 and R5 are connected to VCC.
  • Iin is amplified and converted into a voltage signal at the grounded gate amplification stage, and then output from Vout as a voltage signal through the source follower stage.
  • the gain of the MN 72 is boosted by the output from the common-source amplification stage, so that high gain amplification is possible.
  • the effect of reducing the input impedance associated with the negative feedback configuration as shown in FIG. 1 or the like cannot be obtained. Therefore, by increasing the transistor sizes of MN70 and MN72, It is desirable to lower as much as possible.
  • MN71 and MN73 that form cascode connections with MN70 and MN72, respectively.
  • MN71 and MN73 are each formed with a small transistor size, and reduce the mirror effect of the gate-drain capacitance Cgd of MN70 and MN72. Therefore, an increase in input capacitance at each amplification stage is suppressed, and a high-speed preamplifier circuit can be realized.
  • the preamplifier circuit PREAMP_OP2 shown in FIG. 14B is different from the PREAMP_OP1 shown in FIG. 14A in that an inductor L3 is inserted between the drain of the MN71 and the gate of the MN72.
  • Other configurations are the same as those in FIG. In the circuit configuration of FIG. 14A, the gain is increased by the negative feedback loop of the MNs 70 to 72, and the speed is increased by reducing the input impedance.
  • FIG. 14 (b) by inserting an inductor L3 in this loop, it is possible to further increase the gain and to realize a higher speed.
  • the parasitic components in the circuit are typically reduced as compared with the configuration shown in Non-Patent Document 2, and accordingly, high-speed operation is achieved. It becomes feasible.
  • the optical communication apparatus is particularly effective when applied to a circuit of a receiving unit thereof in an optical communication system having a communication speed exceeding several tens of Gbps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

Provided is an optical communication apparatus capable of operating at high speed. For example, there are included a preamplifier circuit (PREAMP1) that amplifies and converts a current signal (Iin) input from a photodiode (PD) to a voltage signal; and an operating point control circuit (VTCTL1) that controls the operation of the preamplifier circuit (PREAMP1). The preamplifier circuit (PREAMP1) includes a negative feedback path using a feedback resistor (Rf1) and comprises a level shift circuit (LS1) that performs a level shift in accordance with an operating point control signal (Vcon) and an amplifier circuit (AMP1) that is connected in the stage next to the level shift circuit (LS1) and performs a high-gain amplification. The operating point control circuit (VTCTL1) includes a replica circuit, which is constituted by the same circuit and circuit parameter as the amplifier circuit (AMP1) and the input and output of which are electrically connected to each other, and is operative to generate the operating point control signal (Vcon) such that the output DC level of the replica circuit is identical to the input DC level of the amplifier circuit (AMP1).

Description

光通信装置Optical communication device
 本発明は、光通信装置に関し、特に、トランスインピーダンスアンプ(TIA:trans impedance amplifier)を備えた光通信装置に適用して有効な技術に関する。 The present invention relates to an optical communication device, and more particularly, to a technique effective when applied to an optical communication device including a transimpedance amplifier (TIA).
 例えば、非特許文献1のFig.4やFig.5には、アンプ回路と、このアンプ回路の入出力間に帰還抵抗を備えた負帰還構成のTIAが示されている。Fig.5では、このアンプ回路が、ゲート接地増幅段、ソース接地増幅段、およびソースフォロワ段からなる3段で構成されている。また、Fig.4では、ゲート接地増幅段においてノイズを低減するための回路パラメータ設定方法が示され、Fig.5では、ゲート接地増幅段やソース接地増幅段の負荷素子にインダクタンスを用いて帯域を延ばす方式が示されている。 For example, FIG. 4 and FIG. 5 shows an amplifier circuit and a TIA having a negative feedback configuration having a feedback resistor between the input and output of the amplifier circuit. FIG. In FIG. 5, this amplifier circuit is composed of three stages including a grounded gate amplification stage, a common source amplification stage, and a source follower stage. Also, FIG. 4 shows a circuit parameter setting method for reducing noise in the grounded-gate amplification stage. FIG. 5 shows a method of extending the band by using inductance for the load elements of the common-gate amplification stage and the common-source amplification stage.
 非特許文献2のFig.2には、オープンループ構成のTIAが示されている。このTIAは、初段にゲート接地増幅段、後段にソース接地段およびゲート接地増幅段からなる増幅段を備え、後段のゲート接地段がソース接地段によってゲインブーストされた構成となっている。各MOSトランジスタは、大きいゲート幅で形成され、これによって帯域の向上が図られている。
Chih-Fan Liao、Shen-Iuan Liu、"40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS"、IEEE Journal of Solid-State Circuits、Vol.43、No.3、2008年3月、p.642-648 C.Kromer、他5名、"A 40 Gb/s Optical Receiver in 80-nm CMOS for Short-Distance High-Density Interconnects"、IEEE Asian Solid-State Circuits Conference 2006(ASSCC 2006)、2006年11月、p.395-398
FIG. 2 shows a TIA having an open loop configuration. This TIA has a configuration in which the first stage includes a grounded gate amplification stage and the subsequent stage includes an amplification stage including a grounded source stage and a grounded gate amplification stage, and the subsequent gate grounding stage is gain boosted by the grounded source stage. Each MOS transistor is formed with a large gate width, thereby improving the bandwidth.
Chih-Fan Liao, Shen-Iuan Liu, "40 Gb / s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS", IEEE Journal of Solid-State Circuits, Vol. 43, no. 3, March 2008, p. 642-648 C. Kromer and five others, "A 40 Gb / s Optical Receiver in 80-nm CMOS for Short-Distance High-Density Interconnects", IEEE Asian Solid-State Circuits Conference 2006 (ASSCC 2006), November 2006, p. . 395-398
 図16は、本発明の前提として検討した光通信装置において、その構成の一例を示す概略図である。図16に示す光通信装置は、光入力に伴い生成されたフォトダイオードPDからの電流信号を増幅すると共に電圧信号に変換するプリアンプ回路PREAMP_Cと、その出力を増幅するポストアンプ回路PSAMPと、その出力を更に増幅するリミットアンプ回路LMTAMPによって構成される。特に、限定はされないが、PREAMP_Cは、数十~数百μAの電流信号を10mV程度の電圧信号に変換し、それを受けてPSAMPは、200mV~300mVの電圧信号を生成し、それを受けてLMTAMPは500mV程度の電圧信号を生成する。LMTAMPは、その後段される図示しないロジック回路(例えばCDR(Clock Data Recovery)回路など)の論理レベルまで増幅する回路である。 FIG. 16 is a schematic diagram showing an example of the configuration of an optical communication apparatus studied as a premise of the present invention. The optical communication apparatus shown in FIG. 16 amplifies a current signal from a photodiode PD generated with optical input and converts it into a voltage signal, a post-amplifier circuit PSAMP that amplifies the output, and an output thereof. Is configured by a limit amplifier circuit LMTAMP that further amplifies the signal. Although not particularly limited, PREAMP_C converts a current signal of several tens to several hundreds of μA into a voltage signal of about 10 mV, and in response, PSAMP generates a voltage signal of 200 mV to 300 mV and receives it. LMTAMP generates a voltage signal of about 500 mV. The LMTAMP is a circuit that amplifies to a logic level of a logic circuit (not shown) such as a CDR (Clock Data Recovery) circuit that is shown later.
 前述したように、PDに入力される電流信号は微小であり、また、近年では数十Gbpsを超える通信が行われることから、PREAMP_Cでは、高い増幅率(例えば50dB程度)や高速性に加えて、特に、低雑音化が重要となる。PSAMPは、PREAMP_Cを介して十分な入力電圧信号が得られれば、増幅率(例えば20dB程度)や低雑音化等よりも高速性に重点に置く必要がある。例えば、PREAMP_Cの4/3倍程度の帯域とすることが望ましい。なお、図16では、PREAMP_Cがシングル入出力のアンプ回路であり、PSAMPが差動入出力のアンプ回路であるため、PSAMPの一端には、基準電圧を生成する基準電圧生成回路VREFGが設けられる。VREFGは、例えば、PREAMP_Cの出力に対してロウパスフィルタによりDC成分を検出すること等で実現できるが、この場合、面積の増大が懸念される。 As described above, the current signal input to the PD is very small, and in recent years, communication exceeding several tens of Gbps is performed. Therefore, in PREAMP_C, in addition to a high amplification factor (for example, about 50 dB) and high speed. In particular, low noise is important. In PSAMP, if a sufficient input voltage signal is obtained via PREAMP_C, it is necessary to focus on high speed rather than amplification factor (for example, about 20 dB) and low noise. For example, the bandwidth is preferably about 4/3 times PREAMP_C. In FIG. 16, since PREAMP_C is a single input / output amplifier circuit and PSAMP is a differential input / output amplifier circuit, a reference voltage generation circuit VREFG that generates a reference voltage is provided at one end of PSAMP. VREFG can be realized, for example, by detecting a DC component with respect to the output of PREAMP_C using a low-pass filter. In this case, there is a concern about an increase in area.
 図17(a)~(c)は、図16におけるプリアンプ回路PREAMP_Cの詳細を示した説明図である。図17(a)に示すように、PREAMP_Cは、負の増幅率(G)となるアンプ回路AMP_Cとその入出力間に接続された帰還抵抗Rfからなる負帰還回路となっている。このようなPREAMP_Cでは、その入力容量をCinとすると、図17(b)に示すように、トランスインピーダンスはG/(1+G)×Rfとなり、高域遮断周波数はG/(2π・Rf・Cin)となる。したがって、増幅率(G)を上げれば、帯域を延ばすことができる。 FIGS. 17A to 17C are explanatory diagrams showing details of the preamplifier circuit PREAMP_C in FIG. As shown in FIG. 17A, PREAMP_C is a negative feedback circuit including an amplifier circuit AMP_C having a negative amplification factor (G) and a feedback resistor Rf connected between its input and output. In such PREAMP_C, when the input capacitance is Cin, as shown in FIG. 17B, the transimpedance is G / (1 + G) × Rf, and the high cut-off frequency is G / (2π · Rf · Cin). It becomes. Accordingly, if the amplification factor (G) is increased, the band can be extended.
 ここで、増幅率(G)を上げる場合には、例えば、非特許文献1に示されるように複数の増幅段(ゲート接地増幅段およびソース接地増幅段)を設けることが考えられる。しかしながら、通常、増幅段の段数を増やすとその分ノイズ量も増大し、また、初段がゲート接地増幅段の場合には、入力インピーダンスを小さくできる利点はあるものの、特にノイズに対する感度が大きくなる。 Here, in order to increase the amplification factor (G), for example, as shown in Non-Patent Document 1, it is conceivable to provide a plurality of amplification stages (a common gate amplification stage and a common source amplification stage). However, usually, when the number of amplification stages is increased, the amount of noise is increased accordingly, and when the first stage is a grounded-gate amplification stage, although there is an advantage that the input impedance can be reduced, the sensitivity to noise is particularly increased.
 そこで、例えば、増幅率が非常に高い1段構成のアンプ回路を用いることが考えられる。しかしながら、増幅率が高いと、図17(c)に示すように、その動作点を精度よく定めることが困難となる。図17(c)では、AMP_Cの入力電圧Viと出力電圧Voの特性例が示されており、増幅率が高いということは、その傾き(Vo/Vi)が急峻となることを意味する。この場合、例えば、プロセスばらつき等に伴い動作点が設計値から僅かにずれた際にも、その増幅率が大きく変わってしまい、所定の性能が得られない恐れがある。 Therefore, for example, it is conceivable to use a one-stage amplifier circuit with a very high amplification factor. However, if the amplification factor is high, it becomes difficult to accurately determine the operating point as shown in FIG. FIG. 17C shows an example of the characteristics of the input voltage Vi and the output voltage Vo of AMP_C. A high amplification factor means that the slope (Vo / Vi) becomes steep. In this case, for example, even when the operating point is slightly deviated from the design value due to process variations or the like, the amplification factor may change greatly, and predetermined performance may not be obtained.
 一方、例えば、非特許文献2に示されるオープンループ構成のアンプ回路を用いると、初段のゲート接地段によって、ノイズの問題はあるものの低入力インピーダンス(これによる帯域の向上)を実現でき、後段の増幅段によって増幅率の向上(帯域の向上にも寄与する)を実現できる。しかしながら、この非特許文献2の構成では、各MOSトランジスタが、大きいゲート幅で構成されるため、回路内部の寄生容量に伴い帯域が制限される恐れがある。 On the other hand, for example, when an amplifier circuit having an open loop configuration shown in Non-Patent Document 2 is used, a low input impedance (improvement of bandwidth) can be realized by the first gate grounding stage, although there is a problem of noise. The amplification stage can improve the amplification factor (contributes to the improvement of the bandwidth). However, in the configuration of Non-Patent Document 2, since each MOS transistor is configured with a large gate width, the band may be limited due to the parasitic capacitance inside the circuit.
 本発明は、このようなことを鑑みてなされたものであり、その目的の一つは、高速動作可能な光通信装置を提供することにある。本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。 The present invention has been made in view of the above, and one of its purposes is to provide an optical communication apparatus capable of high-speed operation. The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的な実施の形態の概要を簡単に説明すれば、次のとおりである。 Among the inventions disclosed in the present application, the outline of a typical embodiment will be briefly described as follows.
 本実施の形態による光通信装置は、フォトダイオードからの電流信号を増幅すると共に電圧信号に変換するプリアンプ回路と、このプリアンプ回路を制御する動作点制御回路を備えるものとなっている。プリアンプ回路は、増幅経路と、帰還抵抗を含むフィードバック経路を含んだ負帰還構成となっており、増幅経路に、第1レベルシフト回路とその次段に接続された第1アンプ回路を含んでいる。第1レベルシフト回路は、動作点制御回路からの第1制御信号に応じてレベルシフト動作を行う。動作点制御回路は、第1アンプ回路と同一の回路および回路パラメータで構成されると共に入出力間が電気的に接続されたレプリカ回路を含み、このレプリカ回路の出力信号の直流電圧レベルと、第1アンプ回路の入力信号の直流電圧レベルとが一致するように第1制御信号を生成する。 The optical communication apparatus according to the present embodiment includes a preamplifier circuit that amplifies a current signal from a photodiode and converts it into a voltage signal, and an operating point control circuit that controls the preamplifier circuit. The preamplifier circuit has a negative feedback configuration including an amplification path and a feedback path including a feedback resistor. The amplification path includes a first level shift circuit and a first amplifier circuit connected to the next stage. . The first level shift circuit performs a level shift operation in response to the first control signal from the operating point control circuit. The operating point control circuit includes a replica circuit configured with the same circuit and circuit parameters as the first amplifier circuit and electrically connected between the input and the output. The DC voltage level of the output signal of the replica circuit, The first control signal is generated so that the DC voltage level of the input signal of one amplifier circuit matches.
 このような構成を用いると、レプリカ回路の出力から得られる論理しきい値電圧を第1アンプ回路の動作点として設定することができ、これに伴い、第1アンプ回路に、高利得かつ安定した動作を行わせることが可能になる。その結果、負帰還構成となるプリアンプ回路の高周波帯域が拡大し、光通信装置の高速化が実現可能になる。 When such a configuration is used, the logical threshold voltage obtained from the output of the replica circuit can be set as the operating point of the first amplifier circuit, and accordingly, the first amplifier circuit has a high gain and a stable state. It becomes possible to perform an operation. As a result, the high frequency band of the preamplifier circuit having a negative feedback configuration is expanded, and the speed of the optical communication apparatus can be increased.
 ここで、動作点制御回路は、レプリカ回路に加えて、例えば、フォトダイオードからの電流信号の直流レベルと同一の直流電流を生成する第1電流源と、レプリカ用プリアンプ回路と、第2アンプ回路によって構成することができる。レプリカ用プリアンプ回路は、プリアンプ回路と同一の回路および回路パラメータで構成され、第1電流源からの直流電流を入力として増幅動作を行う。第2アンプ回路は、レプリカ用プリアンプ回路内の第1アンプ回路の入力信号とレプリカ回路の出力信号とを差動増幅し、第1制御信号を出力する。そして、プリアンプ回路およびレプリカ用プリアンプ回路内の各第1レベルシフト回路は、この第1制御信号を受けてレベルシフト動作を行う。 Here, the operating point control circuit includes, in addition to the replica circuit, for example, a first current source that generates a DC current that is the same as the DC level of the current signal from the photodiode, a replica preamplifier circuit, and a second amplifier circuit Can be configured. The replica preamplifier circuit is configured by the same circuit and circuit parameters as the preamplifier circuit, and performs an amplification operation with the direct current from the first current source as an input. The second amplifier circuit differentially amplifies the input signal of the first amplifier circuit in the replica preamplifier circuit and the output signal of the replica circuit, and outputs a first control signal. Each first level shift circuit in the preamplifier circuit and the replica preamplifier circuit receives this first control signal and performs a level shift operation.
 このように、プリアンプ回路のDC的な動作を擬似した動作点制御回路を用いて第1制御信号を生成することで、プリアンプ回路内の第1アンプ回路の動作点を常に安定して定めることが可能となる。その結果、光通信装置の高速化が図れる。さらに、レプリカ用プリアンプ回路の出力は、プリアンプ回路の後段に通常設けられるポストアンプ回路のリファレンス信号として用いることも可能である。すなわち、ポストアンプ回路は、このリファレンス信号を基準として、プリアンプ回路からの出力信号を差動増幅する。これによって、このリファレンス信号を生成する回路(例えばロウパスフィルタ)が別途必要でなくなる。更に、このリファレンス信号の電圧レベルは、最適な値(プリアンプ回路の出力電圧振幅の中心)となるため、ポストアンプ回路の高速化も図ることが可能となる。 As described above, by generating the first control signal using the operating point control circuit that simulates the DC operation of the preamplifier circuit, the operating point of the first amplifier circuit in the preamplifier circuit can always be determined stably. It becomes possible. As a result, the speed of the optical communication device can be increased. Furthermore, the output of the replica preamplifier circuit can also be used as a reference signal for a postamplifier circuit that is normally provided downstream of the preamplifier circuit. That is, the postamplifier circuit differentially amplifies the output signal from the preamplifier circuit with reference to this reference signal. This eliminates the need for a circuit (for example, a low-pass filter) that generates the reference signal. Furthermore, since the voltage level of the reference signal is an optimum value (the center of the output voltage amplitude of the preamplifier circuit), the postamplifier circuit can be increased in speed.
 本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、光通信装置の高速化が実現可能になる。 In the invention disclosed in the present application, the effects obtained by the representative embodiments will be briefly described, so that the speed of the optical communication apparatus can be increased.
本発明の実施の形態1による光通信装置において、その主要部の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating an exemplary configuration of a main part of the optical communication device according to the first embodiment of the present invention. 図1の光通信装置において、その動作点制御回路の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of an operating point control circuit in the optical communication device of FIG. 1. 図1および図2を備えた光通信装置において、その詳細な構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a detailed configuration example of the optical communication device including FIGS. 1 and 2. (a)~(f)は、図1のプリアンプ回路において、そのアンプ回路の詳細な構成例を示す回路図である。(A)-(f) is a circuit diagram which shows the detailed structural example of the amplifier circuit in the preamplifier circuit of FIG. 本発明の実施の形態2による光通信装置において、その主要部の構成例を示す回路図である。In the optical communication apparatus by Embodiment 2 of this invention, it is a circuit diagram which shows the structural example of the principal part. 本発明の実施の形態3による光通信装置において、その主要部の構成例を示すものであり、(a)はそのブロック図、(b)は(a)におけるプリアンプ回路の詳細な構成例を示す回路図である。In the optical communication apparatus by Embodiment 3 of this invention, the example of a structure of the principal part is shown, (a) is the block diagram, (b) shows the detailed structural example of the preamplifier circuit in (a). It is a circuit diagram. 本発明の実施の形態4による光通信装置において、その主要部の構成例を示すブロック図である。In the optical communication apparatus by Embodiment 4 of this invention, it is a block diagram which shows the structural example of the principal part. 図7のプリアンプ回路において、そのアンプ回路の詳細な構成例を示す回路図である。FIG. 8 is a circuit diagram showing a detailed configuration example of the amplifier circuit in the preamplifier circuit of FIG. 7. 本発明の実施の形態5による光通信装置において、(a)はその主要部の構成例を示すブロック図であり、(b)は(a)におけるプリアンプ回路の詳細な構成例を示す回路図である。In the optical communication device according to the fifth embodiment of the present invention, (a) is a block diagram showing a configuration example of the main part, and (b) is a circuit diagram showing a detailed configuration example of the preamplifier circuit in (a). is there. 本発明の実施の形態6による光通信装置において、その構成の一例を示すブロック図である。In the optical communication apparatus by Embodiment 6 of this invention, it is a block diagram which shows an example of the structure. 図10の光通信装置において、そのポストアンプ回路の一例を示すものであり、(a)はその構成例を示す概念図、(b)は(a)の動作例を示す説明図である。FIG. 10 illustrates an example of the post-amplifier circuit in the optical communication apparatus of FIG. 10, (a) is a conceptual diagram illustrating a configuration example thereof, and (b) is an explanatory diagram illustrating an operation example of (a). 本発明の実施の形態7による光通信装置を示すものであり、(a)はその構成例を示すブロック図、(b)は(a)の効果の一例を示す説明図である。FIG. 7 shows an optical communication apparatus according to a seventh embodiment of the present invention, where (a) is a block diagram illustrating an example of the configuration, and (b) is an explanatory diagram illustrating an example of the effect of (a). 本発明の実施の形態8による光通信装置において、その構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of the configuration of an optical communication device according to an eighth embodiment of the present invention. 図13の光通信装置において、(a)、(b)のそれぞれは、そのプリアンプ回路の詳細な構成例を示す回路図である。In the optical communication apparatus of FIG. 13, (a) and (b) are circuit diagrams showing detailed configuration examples of the preamplifier circuit. 図12の比較対象として検討した光通信装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical communication apparatus examined as a comparison object of FIG. 本発明の前提として検討した光通信装置において、その構成の一例を示す概略図である。1 is a schematic diagram illustrating an example of the configuration of an optical communication device studied as a premise of the present invention. (a)~(c)は、図16におけるプリアンプ回路の詳細を示した説明図である。(A)-(c) is explanatory drawing which showed the detail of the preamplifier circuit in FIG.
符号の説明Explanation of symbols
 AMP アンプ回路
 Cin 入力容量
 Cos 容量
 DRV 出力ドライバ回路
 IS 定電流源
 ISV 可変電流源
 L インダクタ
 LMTAMP リミットアンプ回路
 LS レベルシフト回路
 MN NMOSトランジスタ
 MP PMOSトランジスタ
 OSCTL オフセット補正回路
 PD フォトダイオード
 PREAMP プリアンプ回路
 PSAMP ポストアンプ回路
 R,Ros 抵抗
 REP レプリカ回路
 Rf 帰還抵抗
 VDD,VCC 電源電圧
 VREFG 基準電圧生成回路
 VREG レギュレータ回路
 VSS 接地電圧
 VTCTL 動作点制御回路
 Vc 動作点補正信号
 Vcon 動作点制御信号
 Vos オフセット電圧
 Vref 基準電圧
AMP amplifier circuit Cin input capacitance Cos capacitance DRV output driver circuit IS constant current source ISV variable current source L inductor LMAMP limit amplifier circuit LS level shift circuit MN NMOS transistor MP PMOS transistor OSCTL offset correction circuit PD photodiode PREAMP preamplifier circuit PSAMP postamplifier circuit R, Ros resistance REP replica circuit Rf feedback resistance VDD, VCC power supply voltage VREFG reference voltage generation circuit VREG regulator circuit VSS ground voltage VTCTL operation point control circuit Vc operation point correction signal Vcon operation point control signal Vos offset voltage Vref reference voltage
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 In the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant, and one is the other. Some or all of the modifications, details, supplementary explanations, and the like are related. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、実施の形態の各機能ブロックを構成する回路素子は、特に制限されないが、公知のCMOS(相補型MOSトランジスタ)等の集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。なお、実施の形態では、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の一例としてMOS(Metal Oxide Semiconductor)トランジスタを用いる。図面において、Pチャネル型MOSトランジスタ(PMOSトランジスタ)にはゲートに丸印の記号を付すことで、Nチャネル型MOSトランジスタ(NMOSトランジスタ)と区別することとする。図面にはMOSトランジスタの基板電位の接続は特に明記していないが、MOSトランジスタが正常動作可能な範囲であれば、その接続方法は特に限定しない。 The circuit elements constituting each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by a known integrated circuit technology such as a CMOS (complementary MOS transistor). . In the embodiment, a MOS (Metal Oxide Semiconductor) transistor is used as an example of a MISFET (Metal Insulator Semiconductor Field Effect Transistor). In the drawing, a P-channel MOS transistor (PMOS transistor) is distinguished from an N-channel MOS transistor (NMOS transistor) by adding a circle symbol to the gate. Although the connection of the substrate potential of the MOS transistor is not particularly specified in the drawing, the connection method is not particularly limited as long as the MOS transistor can operate normally.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 (実施の形態1)
 図1は、本発明の実施の形態1による光通信装置において、その主要部の構成例を示すブロック図である。図1に示す光通信装置は、光入力に伴うフォトダイオードPDからの電流信号Iinを受けて、それを増幅すると共に電圧信号に変換するプリアンプ回路PREAMP1と、動作点制御回路VTCTL1によって構成される。PREAMP1は、図16に示したプリアンプ回路PREAMP_Cの代わりに適用されるものである。
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration example of a main part of an optical communication apparatus according to Embodiment 1 of the present invention. The optical communication device shown in FIG. 1 includes a preamplifier circuit PREAMP1 that receives a current signal Iin from a photodiode PD accompanying optical input, amplifies it, and converts it into a voltage signal, and an operating point control circuit VTCTL1. PREAMP1 is applied instead of the preamplifier circuit PREAMP_C shown in FIG.
 PREAMP1は、負帰還構成のトランスインピーダンスアンプ(TIA)となっており、レベルシフト回路LS1と、その出力を入力とし、負の増幅率を備えたアンプ回路AMP1と、AMP1の出力とLS1の入力の間に接続された帰還抵抗Rf1によって構成される。PDからの電流信号Iinは、Rf1を介して電圧信号に変換され、Rf1の一端およびAMP1の出力となる出力ノードVoutに生成される電圧信号は、AMP1の増幅率が高い場合は、ほぼIin×Rf1となる。 PREAMP1 is a transimpedance amplifier (TIA) having a negative feedback configuration, and includes a level shift circuit LS1, an output thereof, an amplifier circuit AMP1 having a negative amplification factor, an output of AMP1 and an input of LS1. The feedback resistor Rf1 is connected between them. The current signal Iin from the PD is converted into a voltage signal via Rf1, and the voltage signal generated at one end of Rf1 and the output node Vout that is the output of AMP1 is approximately Iin × when the amplification factor of AMP1 is high. Rf1.
 AMP1は、1段の増幅段で構成され、その増幅率(出力電圧信号Vo/入力電圧信号Vi)は非常に大きい値に設計されている。これによって、図16および図17で述べたように、低雑音特性と高速性を実現できる。しかしながら、図17(c)に示したように、プロセスばらつき等に伴いAMP1の動作点が変動した場合には、所望の増幅率が得られず、PREAMP1の高速性が阻害される恐れがある。 AMP1 is composed of one amplification stage, and the amplification factor (output voltage signal Vo / input voltage signal Vi) is designed to be a very large value. As a result, as described in FIGS. 16 and 17, low noise characteristics and high speed can be realized. However, as shown in FIG. 17C, when the operating point of AMP1 fluctuates due to process variations or the like, a desired gain cannot be obtained, and the high speed of PREAMP1 may be hindered.
 そこで、VTCTL1が設けられる。VTCTL1は、詳細は後述するが、AMP1と同一の回路構成ならびに素子パラメータを備えたレプリカ回路を含み、このレプリカ回路を利用してAMP1の動作点を定めるための動作点制御信号Vconを生成する。LS1は、代表的にはソースフォロワ回路で構成され、Iinに伴う極微小な電圧信号が持つDCレベルをVconに応じてレベルシフトし、それをAMP1に出力する。これによって、AMP1の動作点は、このレベルシフトを介して適切な値に定められ、その結果、AMP1にて所望の増幅率が得られると共に、PREAMP1の高速化が図れる。また、LS1を、ソースフォロワ回路等のようにゲート入力のトランジスタで構成することで、低雑音化も図ることが可能となる。なお、VTCTL1は、詳細は後述するが、Vconに加えて、出力ノードVoutにおける出力信号のDC成分となる基準電圧Vrefも生成する。 Therefore, VTCTL1 is provided. Although details will be described later, VTCTL1 includes a replica circuit having the same circuit configuration and element parameters as AMP1, and uses this replica circuit to generate an operating point control signal Vcon for determining the operating point of AMP1. LS1 is typically composed of a source follower circuit, and shifts the DC level of a very small voltage signal accompanying Iin according to Vcon and outputs it to AMP1. As a result, the operating point of AMP1 is set to an appropriate value through this level shift. As a result, a desired gain can be obtained in AMP1, and the speed of PREAMP1 can be increased. Further, by configuring the LS1 with a gate input transistor such as a source follower circuit, it is possible to reduce noise. Although details will be described later, VTCTL1 also generates a reference voltage Vref as a DC component of the output signal at the output node Vout in addition to Vcon.
 図2は、図1の光通信装置において、その動作点制御回路VTCTL1の構成例を示すブロック図である。図2に示す動作点制御回路VTCTL1は、図1のフォトダイオードPDを反映した回路となる定電流源IS1と、図1のプリアンプ回路PREAMP1を反映したレプリカ用プリアンプ回路となる、レベルシフト回路LS2、アンプ回路AMP1a、および帰還抵抗Rf1aを備え、加えてアンプ回路AMP2およびレプリカ回路REPを有している。図2のIS1、LS2、AMP1a、Rf1a間の接続関係は、図1のPD、LS1、AMP1、Rf1間の接続関係と同一である。AMP1aおよびRf1aは、図1のPREAMP1におけるAMP1およびRf1と同一の回路(回路パラメータも含む)で構成される。IS1は、図1におけるPDのDC電流と同じ電流を生成する。 FIG. 2 is a block diagram showing a configuration example of the operating point control circuit VTCTL1 in the optical communication apparatus of FIG. The operating point control circuit VTCTL1 shown in FIG. 2 includes a level shift circuit LS2, a constant current source IS1 that is a circuit reflecting the photodiode PD of FIG. 1, and a replica preamplifier circuit that reflects the preamplifier circuit PREAMP1 of FIG. The amplifier circuit includes an amplifier circuit AMP1a and a feedback resistor Rf1a, and additionally includes an amplifier circuit AMP2 and a replica circuit REP. The connection relationship among IS1, LS2, AMP1a, and Rf1a in FIG. 2 is the same as the connection relationship between PD, LS1, AMP1, and Rf1 in FIG. AMP1a and Rf1a are composed of the same circuits (including circuit parameters) as AMP1 and Rf1 in PREAMP1 of FIG. IS1 generates the same current as the DC current of the PD in FIG.
 レプリカ回路REPは、図1のAMP1および図2のAMP1aと同一の回路(回路パラメータも含む)となるアンプ回路AMP1bと、その入出力間に接続された帰還抵抗Rf2を備えている。Rf2は、AMP1bの発振を防止すると共に、AMP1bの入出力間を電気的に短絡するためのものである。このような構成によって、AMP1bの出力は、その論理閾値レベルに収束することになる。AMP2は、このAMP1bの出力を(-)入力、LS2の出力(AMP1aの入力)を(+)入力として差動増幅動作を行い、動作点制御信号Vconを出力する。このVconは、前述した図1のPREAMP1のLS1に出力されると共に、図2のLS2にも出力される。 The replica circuit REP includes an amplifier circuit AMP1b that is the same circuit (including circuit parameters) as AMP1 in FIG. 1 and AMP1a in FIG. 2, and a feedback resistor Rf2 connected between the input and output thereof. Rf2 is for preventing oscillation of the AMP 1b and electrically short-circuiting the input and output of the AMP 1b. With such a configuration, the output of the AMP 1b converges to the logical threshold level. The AMP2 performs a differential amplification operation using the output of the AMP1b as a (−) input and the output of the LS2 (an input of the AMP1a) as a (+) input, and outputs an operating point control signal Vcon. This Vcon is output to LS1 of PREAMP1 in FIG. 1 described above and also output to LS2 in FIG.
 LS2は、図1のPREAMP1のLS1とほぼ同様の回路(回路パラメータも含む)で構成され、Vconに基づいてIS1に伴うDC電圧信号をレベルシフトし、AMP1aおよびAMP2に向けて出力する。AMP2は、十分に大きな増幅率を備え、このLS2を介した帰還によって、AMP1aへの入力電圧レベルとAMP1bの出力となる論理閾値レベルとが一致するような値となる動作点制御信号Vconを生成する。そして、このVconは、図1のPREAMP1におけるLS1に供給され、その結果、PREAMP1におけるAMP1への入力電圧信号Viも、図2のAMP1bからの論理閾値レベルに一致することになる。したがって、AMP1は、増幅率が高い論理閾値レベルを動作点として増幅動作を行うことになるため、前述したように、PREAMP1の高速化を図ることが可能となる。 LS2 is composed of substantially the same circuit (including circuit parameters) as LS1 of PREAMP1 in FIG. 1, and level-shifts the DC voltage signal accompanying IS1 based on Vcon and outputs it to AMP1a and AMP2. The AMP2 has a sufficiently large amplification factor, and the feedback through the LS2 generates the operating point control signal Vcon having a value that matches the input voltage level to the AMP1a and the logical threshold level that is the output of the AMP1b. To do. This Vcon is supplied to LS1 in PREAMP1 in FIG. 1, and as a result, the input voltage signal Vi to AMP1 in PREAMP1 also matches the logical threshold level from AMP1b in FIG. Accordingly, since AMP1 performs an amplification operation with a logic threshold level having a high amplification factor as an operating point, it is possible to increase the speed of PREAMP1 as described above.
 なお、図2のLS2と図1のLS1との違いは、LS2が、動作点補正信号Vcによってもレベルシフト量を補正可能になっている点にある。AMP1、AMP1aおよびAMP1bは、同一の回路であり、同一の半導体チップ上に形成された場合には通常同様のプロセスばらつきを受けるため、動作点補正信号Vcは、必ずしも設ける必要はない。だだし、例えば、これらのばらつき度合いが異なるような場合には、Vcによって補正を行うこともできる。また、図2のAMP1aの出力は、前述した基準電圧Vrefとして使用される。 The difference between LS2 in FIG. 2 and LS1 in FIG. 1 is that LS2 can correct the level shift amount also by the operating point correction signal Vc. AMP1, AMP1a, and AMP1b are the same circuit, and when they are formed on the same semiconductor chip, they usually receive the same process variation. Therefore, the operating point correction signal Vc is not necessarily provided. However, for example, when these degrees of variation are different, correction can be performed using Vc. Further, the output of the AMP 1a in FIG. 2 is used as the reference voltage Vref described above.
 図3は、図1および図2を備えた光通信装置において、その詳細な構成例を示す回路図である。図3のプリアンプ回路PREAMP1において、レベルシフト回路LS1は、NMMOSトランジスタMN20と、そのソースに接続された可変電流源ISV1とを備えたソースフォロワ回路となっている。MN20は、ゲートにフォトダイオードPDと帰還抵抗Rf1が並列に接続され、ソースから出力信号Vthを出力する。ISV1は、動作点制御信号Vconに応じてその電流値が制御され、これに伴いVthのDCレベルを制御する。アンプ回路AMP1は、PMOSトランジスタMP10およびNMOSトランジスタMN10からなるCMOSインバータ回路で構成され、LS1からのVthを入力として動作を行う。AMP1の出力は、出力ノードVoutに接続されると共に、帰還抵抗Rf1を介してMN20のゲートに接続される。 FIG. 3 is a circuit diagram illustrating a detailed configuration example of the optical communication apparatus including FIGS. 1 and 2. In the preamplifier circuit PREAMP1 of FIG. 3, the level shift circuit LS1 is a source follower circuit including an NMMOS transistor MN20 and a variable current source ISV1 connected to the source thereof. In the MN20, a photodiode PD and a feedback resistor Rf1 are connected in parallel to a gate, and an output signal Vth is output from a source. The current value of the ISV1 is controlled according to the operating point control signal Vcon, and the DC level of Vth is controlled accordingly. The amplifier circuit AMP1 is composed of a CMOS inverter circuit composed of a PMOS transistor MP10 and an NMOS transistor MN10, and operates with Vth from LS1 as an input. The output of AMP1 is connected to the output node Vout and is connected to the gate of MN20 via the feedback resistor Rf1.
 図3の動作点制御回路VTCTL1において、レベルシフト回路LS2は、NMOSトランジスタMN20aと、そのソースに接続された2つの可変電流源ISV1a,ISV2とを備えたソースフォロワ回路となっている。MN20aは、前述したMN20と同一の回路パラメータを備え、ゲートに定電流源IS1と帰還抵抗Rf1aが並列に接続され、ソースから出力信号Vth’を出力する。IS1は、図3に示すように、PDの電流信号IinにおけるDCレベルの電流値Ibに設定される。ISV1aは、前述したISV1と同一の回路パラメータを備え、Vconに応じてその電流値が制御され、これに伴いVth’のDCレベルを制御する。ISV2は、動作点補正信号Vcに応じてその電流値が制御され、Vth’のDCレベルを微調整する。 In the operating point control circuit VTCTL1 of FIG. 3, the level shift circuit LS2 is a source follower circuit including an NMOS transistor MN20a and two variable current sources ISV1a and ISV2 connected to the source thereof. The MN 20a has the same circuit parameters as those of the MN 20 described above, a constant current source IS1 and a feedback resistor Rf1a are connected in parallel to the gate, and an output signal Vth ′ is output from the source. IS1 is set to a DC level current value Ib in the PD current signal Iin, as shown in FIG. The ISV 1 a has the same circuit parameters as the ISV 1 described above, and its current value is controlled according to Vcon, and accordingly, the DC level of Vth ′ is controlled. The current value of the ISV2 is controlled according to the operating point correction signal Vc, and the DC level of Vth ′ is finely adjusted.
 アンプ回路AMP1aは、PMOSトランジスタMP10aおよびNMOSトランジスタMN10aからなるCMOSインバータ回路で構成され、AMP1のCMOSインバータ回路と同一の回路パラメータで形成される。AMP1aは、LS2からのVth’を入力として動作を行い、その出力となる基準電圧Vrefが、帰還抵抗Rf1aを介してMN20aのゲートに入力される。レプリカ回路REPは、PMOSトランジスタMP10bおよびNMOSトランジスタMN10bからなるCMOSインバータ回路と、その入出力間に接続された帰還抵抗Rf2とで構成され、このCMOSインバータ回路は、AMP1のCMOSインバータ回路と同一の回路パラメータで形成される。AMP2は、REPのCMOSインバータ回路からの出力信号Vth”とLS2の出力信号Vth’を入力として、制御信号Vconを出力する。 The amplifier circuit AMP1a is composed of a CMOS inverter circuit including a PMOS transistor MP10a and an NMOS transistor MN10a, and is formed with the same circuit parameters as the CMOS inverter circuit of AMP1. The AMP 1a operates with Vth 'from the LS2 as an input, and a reference voltage Vref as an output is input to the gate of the MN 20a via the feedback resistor Rf1a. The replica circuit REP includes a CMOS inverter circuit composed of a PMOS transistor MP10b and an NMOS transistor MN10b, and a feedback resistor Rf2 connected between its input and output. This CMOS inverter circuit is the same circuit as the CMOS inverter circuit of AMP1. Formed with parameters. The AMP2 receives the output signal Vth ″ from the REP CMOS inverter circuit and the output signal Vth ′ of the LS2 and outputs a control signal Vcon.
 この図3のように、プリアンプ回路PREAMP1内のアンプ回路AMP1を1段のCMOSインバータ回路で構成することで、高利得化と低雑音化が図れる。また、PREAMP1内のレベルシフト回路LS1をソースフォロワ回路で構成することでも低雑音化が図れる。したがって、前述したように、動作点制御回路VTCTL1を用いてAMP1の動作点を適切に定めることで、プリアンプ回路の高速化と低雑音化が実現可能になる。 As shown in FIG. 3, by configuring the amplifier circuit AMP1 in the preamplifier circuit PREAMP1 with a single-stage CMOS inverter circuit, high gain and low noise can be achieved. Further, the noise can be reduced by configuring the level shift circuit LS1 in the PREAMP1 with a source follower circuit. Therefore, as described above, by appropriately determining the operating point of the AMP1 using the operating point control circuit VTCTL1, it is possible to realize high speed and low noise of the preamplifier circuit.
 図4(a)~(f)は、図1のプリアンプ回路PREAMP1において、そのアンプ回路AMP1のそれぞれ異なる詳細な構成例を示す回路図である。図4(a)に示すアンプ回路は、図3の場合と同様に、PMOSトランジスタMP40およびNMOSトランジスタMN40からなるCMOSインバータ回路で構成される。図4(b)に示すアンプ回路は、図4(a)と同様のMP40およびMN40からなるCMOSインバータ回路において、更に、その出力ノード(Vo)とMN40のドレインの間に、固定電圧Vbをゲート電圧とするゲート接地のNMOSトランジスタMN41が挿入された構成となっている。MN40とMN41は、所謂カスコード接続となる。これによって、MN40のミラー容量(ゲート-ドレイン間容量Cgd)が低減されると共に、MN41のドレインでの出力インピーダンスが増大するため、アンプ回路自身の高周波特性の向上や高利得化が図れる。 4A to 4F are circuit diagrams showing different detailed configuration examples of the amplifier circuit AMP1 in the preamplifier circuit PREAMP1 of FIG. The amplifier circuit shown in FIG. 4A is formed of a CMOS inverter circuit including a PMOS transistor MP40 and an NMOS transistor MN40, as in the case of FIG. The amplifier circuit shown in FIG. 4 (b) is a CMOS inverter circuit composed of MP40 and MN40 similar to FIG. 4 (a), and further gates a fixed voltage Vb between its output node (Vo) and the drain of MN40. In this configuration, a grounded NMOS transistor MN41 as a voltage is inserted. MN40 and MN41 are so-called cascode connections. As a result, the mirror capacitance (gate-drain capacitance Cgd) of the MN 40 is reduced and the output impedance at the drain of the MN 41 is increased, so that the high frequency characteristics of the amplifier circuit itself can be improved and the gain can be increased.
 図4(c)に示すアンプ回路は、図4(b)と同様のMP40,MN40,MN41からなるカスコード接続付きのCMOSインバータ回路において、更に、その出力ノード(Vo)とMP40のドレインの間に、インダクタL1が挿入された構成となっている。アンプ回路の高利得化を図るためには、各MOSトランジスタのサイズを大きく設計して、相互コンダクタンスgmを大きくする必要がある。そうすると、自身の寄生容量に伴う帯域の低下が懸念される。特に、NMOSトランジスタよりもドライブ能力が低いPMOSトランジスタMP40に伴う帯域低下が問題となる。そこで、L1を設けると、高周波領域において、インピーダンスの上昇に伴い利得の向上(すなわちピーキング)が図れるため、図4(b)の場合よりも更に高周波特性を向上させることができる。 The amplifier circuit shown in FIG. 4 (c) is a CMOS inverter circuit with cascode connection composed of MP40, MN40, and MN41 similar to FIG. 4 (b), and further between the output node (Vo) and the drain of MP40. The inductor L1 is inserted. In order to increase the gain of the amplifier circuit, it is necessary to increase the mutual conductance gm by designing the size of each MOS transistor to be large. If so, there is a concern that the bandwidth will decrease due to its own parasitic capacitance. In particular, there is a problem of bandwidth reduction associated with the PMOS transistor MP40 having a lower drive capability than the NMOS transistor. Therefore, when L1 is provided, the gain can be improved (ie peaking) as the impedance increases in the high frequency region, so that the high frequency characteristics can be further improved as compared with the case of FIG. 4B.
 図4(d)~(f)に示すアンプ回路は、それぞれ、図4(a)~(c)に示すアンプ回路におけるPMOSトランジスタMP40を抵抗R1に置き換えた構成となっている。前述したように、PMOSトランジスタは駆動能力が低いため、図4(d)~(f)に示すように、それを抵抗に置き換えることで、更なる高周波特性の向上ならびに高利得化が図れる。 The amplifier circuits shown in FIGS. 4D to 4F have a configuration in which the PMOS transistor MP40 in the amplifier circuits shown in FIGS. 4A to 4C is replaced with a resistor R1. As described above, since the PMOS transistor has a low driving capability, by replacing it with a resistor as shown in FIGS. 4D to 4F, it is possible to further improve the high frequency characteristics and increase the gain.
 以上のように、図4(a)~(f)(特に図4(b)、(c)、(e)、(f))に示す各アンプ回路は、1段で高利得を実現する構成となっている。したがって、安定した増幅特性を発揮させるためには動作点を最適に定めることが望ましく、図1および図2に示した構成例を用いることが有益となる。なお、図4(b)~(f)のアンプ回路を図2の構成例に適用する場合、図4(a)のアンプ回路を適用した図3の構成例と同様に、図3の各アンプ回路AMP1,AMP1a,AMP1bを図4(b)~(f)のアンプ回路に置き換えればよい。 As described above, each amplifier circuit shown in FIGS. 4A to 4F (particularly FIGS. 4B, 4C, 4E, and 4F) is configured to achieve high gain in one stage. It has become. Therefore, it is desirable to determine the operating point optimally in order to exhibit stable amplification characteristics, and it is beneficial to use the configuration example shown in FIGS. When the amplifier circuit of FIGS. 4B to 4F is applied to the configuration example of FIG. 2, each amplifier of FIG. 3 is similar to the configuration example of FIG. 3 to which the amplifier circuit of FIG. 4A is applied. The circuits AMP1, AMP1a, and AMP1b may be replaced with the amplifier circuits shown in FIGS.
 以上、本実施の形態1の光通信装置を用いることで、代表的には、高速動作が実現可能になる。なお、ここでは、プリアンプ回路PREAMP1におけるアンプ回路AMP1の入力(Vi)および出力(Vo)のDC成分を検出するため、図2のようにPREAMP1全体のDC動作を擬似した動作点制御回路VTCTL1を用いた。VTCTL1は、DC的な動作を行うため、動作点制御信号Vconの値も一定となり、PREAMP1内のAMP1の動作点を常に一定に保つことができる。ここで、場合によっては、例えば、VTCTL1を、図2のアンプ回路AMP2とレプリカ回路REPのみで構成することも考えられる。すなわち、AMP2の(+)入力ノードをPREAMP1内のレベルシフト回路LS1の出力ノードに接続し、AMP2からのVconによってLS1を制御する。このような構成例を用いた場合、図2の構成例ほどには動作点の安定化は図れず、また基準電圧Vrefも生成できないが、小さい回路面積で動作点の制御をある程度実現可能になる。 As described above, typically, high-speed operation can be realized by using the optical communication apparatus according to the first embodiment. Here, in order to detect the DC components of the input (Vi) and output (Vo) of the amplifier circuit AMP1 in the preamplifier circuit PREAMP1, an operating point control circuit VTCTL1 that simulates the DC operation of the entire PREAMP1 as shown in FIG. 2 is used. It was. Since VTCTL1 performs a DC operation, the value of the operating point control signal Vcon is also constant, and the operating point of AMP1 in PREAMP1 can always be kept constant. Here, in some cases, for example, it is conceivable that the VTCTL1 is configured only by the amplifier circuit AMP2 and the replica circuit REP of FIG. That is, the (+) input node of AMP2 is connected to the output node of the level shift circuit LS1 in PREAMP1, and LS1 is controlled by Vcon from AMP2. When such a configuration example is used, the operating point cannot be stabilized as much as the configuration example of FIG. 2 and the reference voltage Vref cannot be generated, but the control of the operating point can be realized to some extent with a small circuit area. .
 (実施の形態2)
 本実施の形態2では、前述した図3の変形例について説明する。図5は、本発明の実施の形態2による光通信装置において、その主要部の構成例を示す回路図である。図5に示す光通信装置は、図3の構成例と比較して、動作点制御回路VTCTL1内のレベルシフト回路LS2’内の回路構成が異なっており、更に、レギュレータ回路VREG1,VREG2が加わっている点が異なっている。それ以外の構成に関しては、図3の構成例と同様であるため、詳細な説明は省略する。
(Embodiment 2)
In the second embodiment, a modification of FIG. 3 described above will be described. FIG. 5 is a circuit diagram showing a configuration example of the main part of the optical communication apparatus according to the second embodiment of the present invention. The optical communication device shown in FIG. 5 is different from the configuration example of FIG. 3 in the circuit configuration in the level shift circuit LS2 ′ in the operating point control circuit VTCTL1, and further includes regulator circuits VREG1 and VREG2. Is different. Other configurations are the same as those in the configuration example of FIG. 3, and thus detailed description thereof is omitted.
 図5に示すVTCTL1内のLS2’は、図3に示したVTCTL1内のLS2から可変電流源ISV2が削除された構成となっている。また、図5において、VREG1は、プリアンプ回路PREAMP1内のアンプ回路AMP1に電源電圧を供給し、VREG2は、動作点制御回路VTCTL1内のアンプ回路AMP1aに電源電圧を供給している。前述した図3の構成例においては、ISV2へ動作点補正信号Vcを供給することで各アンプ回路AMP1,AMP1a,AMP1bのプロセスばらつきの補正を行ったが、図5の構成例においては、AMP1およびAMP1aの電源電圧を微調整することで前述した補正で行う。 LS2 'in VTCTL1 shown in FIG. 5 has a configuration in which variable current source ISV2 is deleted from LS2 in VTCTL1 shown in FIG. In FIG. 5, VREG1 supplies a power supply voltage to the amplifier circuit AMP1 in the preamplifier circuit PREAMP1, and VREG2 supplies a power supply voltage to the amplifier circuit AMP1a in the operating point control circuit VTCTL1. In the configuration example of FIG. 3 described above, the process variation of each amplifier circuit AMP1, AMP1a, and AMP1b is corrected by supplying the operating point correction signal Vc to the ISV2. However, in the configuration example of FIG. The above-described correction is performed by finely adjusting the power supply voltage of the AMP 1a.
 したがって、図3の場合と同様に、仮に各アンプ回路AMP1,AMP1a,AMP1bの特性がプロセスばらつきによって若干異なった場合でも、それが同一となるように補正することが可能となる。その結果、光通信装置の高速動作が実現可能になる。 Therefore, as in the case of FIG. 3, even if the characteristics of the amplifier circuits AMP1, AMP1a, and AMP1b are slightly different due to process variations, it is possible to make corrections so that they are the same. As a result, high-speed operation of the optical communication device can be realized.
 (実施の形態3)
 本実施の形態3では、前述した図1の変形例について説明する。図6は、本発明の実施の形態3による光通信装置において、その主要部の構成例を示すものであり、(a)はそのブロック図、(b)は(a)におけるプリアンプ回路の詳細な構成例を示す回路図である。図6(a)に示す光通信装置は、図1のプリアンプ回路PREAMP1の代わりにプリアンプ回路PREAMP2を備えている。PREAMP2は、PREAMP1と比較して、アンプ回路AMP1の出力にレベルシフト回路LS3が接続され、このLS3の出力が出力ノードVoutになると共に、帰還抵抗Rf1を介してレベルシフト回路LS1に帰還されている点が異なっている。それ以外の構成に関しては、図1と同様であるため、詳細な説明は省略する。
(Embodiment 3)
In the third embodiment, a modification of FIG. 1 described above will be described. 6 shows an example of the configuration of the main part of an optical communication apparatus according to Embodiment 3 of the present invention. FIG. 6A is a block diagram thereof, and FIG. 6B is a detailed diagram of a preamplifier circuit in FIG. It is a circuit diagram which shows a structural example. The optical communication apparatus shown in FIG. 6A includes a preamplifier circuit PREAMP2 instead of the preamplifier circuit PREAMP1 of FIG. Compared with PREAMP1, PREAMP2 has a level shift circuit LS3 connected to the output of the amplifier circuit AMP1, and the output of this LS3 serves as an output node Vout and is fed back to the level shift circuit LS1 via a feedback resistor Rf1. The point is different. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted.
 PREAMP2は、図6(b)に示すように、レベルシフト回路LS1と、その後段に接続されたアンプ回路AMP1と、その後段に接続されたレベルシフト回路LS3と、その出力をLS1に帰還する帰還抵抗Rf1を備える。LS1とAMP1は、図3と同様に、それぞれソースフォロワ回路とCMOSインバータ回路で構成される。LS3は、このCMOSインバータ回路の出力をゲート入力とするNMOSトランジスタMN30と、MN30のソースに接続された定電流源IS2からなるソースフォロワ回路で構成される。 As shown in FIG. 6B, PREAMP2 includes a level shift circuit LS1, an amplifier circuit AMP1 connected to the subsequent stage, a level shift circuit LS3 connected to the subsequent stage, and a feedback that feeds back the output to LS1. A resistor Rf1 is provided. Similarly to FIG. 3, LS1 and AMP1 are each composed of a source follower circuit and a CMOS inverter circuit. The LS3 includes a source follower circuit including an NMOS transistor MN30 having the output of the CMOS inverter circuit as a gate input and a constant current source IS2 connected to the source of the MN30.
 AMP1のCMOSインバータ回路は、高利得化のためトランジスタサイズが大きく形成される。したがって、図6(b)に示すように、PREAMP2の後段に接続されるポストアンプ回路PSAMPを高速に駆動するためには、AMP1のCMOSインバータ回路の負荷と、PSAMPの入力容量Cin1とを分離することが望ましい。さらに、PSAMPを高速で動作させるため、その動作点も適切に調整することが望ましい。そこで、ソースフォロワ回路からなるレベルシフト回路LS3を設けることで、AMP1の負荷とPSAMPのCin1とを分離でき、加えてPSAMPの動作点も適切に調整することが可能になる。 The AMP1 CMOS inverter circuit has a large transistor size for high gain. Therefore, as shown in FIG. 6B, in order to drive the post-amplifier circuit PSAMP connected to the subsequent stage of PREAMP2 at high speed, the load of the CMOS inverter circuit of AMP1 and the input capacitor Cin1 of PSAMP are separated. It is desirable. Furthermore, in order to operate PSAMP at high speed, it is desirable to appropriately adjust its operating point. Therefore, by providing the level shift circuit LS3 composed of a source follower circuit, the load of AMP1 and the CAMP1 of PSAMP can be separated, and the operating point of PSAMP can be adjusted appropriately.
 以上、本実施の形態3の光通信装置を用いることで、代表的には、高速動作が実現可能になる。なお、ここでは、アンプ回路AMP1としてCMOSインバータ回路を用いる例を示したが、勿論、その代わりに図4(b)~(f)に示したような回路を用いることも可能である。 As described above, typically, high-speed operation can be realized by using the optical communication apparatus according to the third embodiment. Although an example in which a CMOS inverter circuit is used as the amplifier circuit AMP1 is shown here, it is of course possible to use circuits as shown in FIGS. 4B to 4F instead.
 (実施の形態4)
 本実施の形態4では、前述した図1の他の変形例について説明する。図7は、本発明の実施の形態4による光通信装置において、その主要部の構成例を示すブロック図である。図7に示す光通信装置は、図1のプリアンプ回路PREAMP1の代わりにプリアンプ回路PREAMP3を備えている。PREAMP3は、PREAMP1と比較して、PREAMP1内の1段のアンプ回路AMP1の代わりに、複数段からなるアンプ回路AMP3が備わっている点が異なっている。それ以外の構成に関しては、図1と同様であるため、詳細な説明は省略する。AMP3は、PREAMP3を負帰還構成とするため、全体として負の利得となるように構成される。
(Embodiment 4)
In the fourth embodiment, another modification of FIG. 1 described above will be described. FIG. 7 is a block diagram showing a configuration example of the main part of an optical communication apparatus according to Embodiment 4 of the present invention. The optical communication apparatus shown in FIG. 7 includes a preamplifier circuit PREAMP3 instead of the preamplifier circuit PREAMP1 of FIG. The PREAMP3 is different from the PREAMP1 in that an amplifier circuit AMP3 having a plurality of stages is provided instead of the one-stage amplifier circuit AMP1 in the PREAMP1. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted. AMP3 is configured to have a negative gain as a whole because PREAMP3 has a negative feedback configuration.
 前述したように、プリアンプ回路内のアンプ回路は、低雑音化のため少ない段数(望ましくは1段)で構成することが望ましい。しかしながら、実際上は、アンプ回路内の寄生容量等の影響で、1段構成では高利得かつ高速性を実現することが困難となる場合も考えられ、雑音特性を若干犠牲にしても高利得かつ高速性を求められる場合がある。このような場合に、図7のような構成例が有益となる。 As described above, the amplifier circuit in the preamplifier circuit is preferably configured with a small number of stages (preferably one stage) in order to reduce noise. However, in practice, it may be difficult to achieve high gain and high speed with a single-stage configuration due to the influence of parasitic capacitance in the amplifier circuit. High speed may be required. In such a case, a configuration example as shown in FIG. 7 is useful.
 図8は、図7のプリアンプ回路PREAMP3において、そのアンプ回路AMP3の詳細な構成例を示す回路図である。図8に示すアンプ回路AMP3は、PMOSトランジスタMP50およびNMOSトランジスタMN50からなるCMOSインバータ回路と、その後段に接続され、NMOSトランジスタMN51、定電流源IS7、および抵抗R2からなるゲート接地増幅段によって構成される。MN51は、ゲートに固定電圧Vbが印加され、ソースが、IS7に接続されると共にこれと並列に前段のCMOSインバータ回路の出力に接続される。MN51のドレインは、抵抗R2に接続されると共に出力電圧信号Voを出力する。 FIG. 8 is a circuit diagram showing a detailed configuration example of the amplifier circuit AMP3 in the preamplifier circuit PREAMP3 of FIG. The amplifier circuit AMP3 shown in FIG. 8 is configured by a CMOS inverter circuit composed of a PMOS transistor MP50 and an NMOS transistor MN50, and a subsequent stage connected to a CMOS inverter circuit composed of an NMOS transistor MN51, a constant current source IS7, and a resistor R2. The In the MN 51, a fixed voltage Vb is applied to the gate, and a source is connected to the IS7 and in parallel to the output of the preceding CMOS inverter circuit. The drain of MN51 is connected to the resistor R2 and outputs the output voltage signal Vo.
 このような構成を用いると、前段のCMOSインバータ回路と後段のゲート接地増幅段によって高利得なアンプ回路が実現できる。前段のCMOSインバータ回路は、前述したように、図7(図2)の動作点制御回路VTCTL1によってその入力の動作点が最適に定められるため、所望の増幅率で安定した動作を行う。このCMOSインバータ回路は、後段にゲート接地増幅段を設けているため、高速性に重点を置き、寄生成分が小さくなるように設計すればよい。なお、図8の構成例を用いる場合のVTCTL1は、図3の構成例において、各アンプ回路AMP1,AMP1a,AMP1bを図8のアンプ回路に置き換えた構成にすればよい。 When such a configuration is used, a high gain amplifier circuit can be realized by the front stage CMOS inverter circuit and the rear stage grounded gate amplification stage. As described above, since the operating point control circuit VTCTL1 in FIG. 7 (FIG. 2) optimally determines the input operating point, the preceding stage CMOS inverter circuit performs a stable operation at a desired amplification factor. Since this CMOS inverter circuit is provided with a grounded-gate amplification stage in the subsequent stage, the high-speed performance should be emphasized and the parasitic component may be designed to be small. Note that VTCTL1 in the case of using the configuration example of FIG. 8 may be configured by replacing each amplifier circuit AMP1, AMP1a, AMP1b with the amplifier circuit of FIG. 8 in the configuration example of FIG.
 以上、本実施の形態4の光通信装置を用いることで、代表的には、高速動作が実現可能になる。なお、ここでは、アンプ回路AMP3をCMOSインバータ回路とゲート接地増幅段で構成したが、これに限定されるものではなく、負の増幅率が得られる限り様々な構成が適用可能である。例えば、図4に示した各アンプ回路とゲート接地増幅段とを組み合わせた構成を用いることができ、また場合によっては、3段のCMOSインバータ回路によって構成することなども可能である。 As described above, typically, high-speed operation can be realized by using the optical communication apparatus according to the fourth embodiment. Here, the amplifier circuit AMP3 is configured by a CMOS inverter circuit and a grounded-gate amplification stage, but is not limited to this, and various configurations are applicable as long as a negative amplification factor is obtained. For example, a configuration in which each amplifier circuit shown in FIG. 4 and a grounded gate amplification stage are combined can be used, and in some cases, it can be configured by a three-stage CMOS inverter circuit.
 (実施の形態5)
 本実施の形態5では、前述した図1の他の変形例について説明する。図9(a)は、本発明の実施の形態5による光通信装置において、その主要部の構成例を示すブロック図であり、図9(b)は、図9(a)におけるプリアンプ回路PREAMP4の詳細な構成例を示す回路図である。図9(a)に示す光通信装置は、図1のプリアンプ回路PREAMP1の代わりにプリアンプ回路PREAMP4を備えている。PREAMP4は、PREAMP1と比較して、PREAMP1内のレベルシフト回路LS1の前段にアンプ回路AMP4が備わっており、このAMP4が、フォトダイオードPDからの電流信号Iinと帰還抵抗Rf1からのフィードバック信号を受ける点が異なっている。それ以外の構成に関しては、図1と同様であるため、詳細な説明は省略する。AMP4は、正の利得となるように構成される。
(Embodiment 5)
In the fifth embodiment, another modification of FIG. 1 described above will be described. FIG. 9A is a block diagram showing a configuration example of the main part of the optical communication apparatus according to the fifth embodiment of the present invention, and FIG. 9B shows the preamplifier circuit PREAMP4 in FIG. 9A. It is a circuit diagram which shows the detailed structural example. The optical communication apparatus shown in FIG. 9A includes a preamplifier circuit PREAMP4 instead of the preamplifier circuit PREAMP1 of FIG. Compared with PREAMP1, PREAMP4 includes an amplifier circuit AMP4 in front of the level shift circuit LS1 in PREAMP1, and this AMP4 receives a current signal Iin from the photodiode PD and a feedback signal from the feedback resistor Rf1. Is different. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted. AMP4 is configured to have a positive gain.
 図9(b)に示すように、AMP4は、NMOSトランジスタMN60、定電流源IS3、インダクタL2、および抵抗R3からなるゲート接地増幅段となっている。MN60は、そのゲートに固定電圧Vbが印加され、そのソースが、Rf1の一端とIS3に並列に接続されると共にPDからの電流信号Iinを受ける。R3およびL2は、電源電圧VCCとMN60のドレインの間に直列に接続される。このL2は、図4で述べたようにピーキング用として機能する。 As shown in FIG. 9B, the AMP4 is a grounded-gate amplification stage including an NMOS transistor MN60, a constant current source IS3, an inductor L2, and a resistor R3. MN60 has a fixed voltage Vb applied to its gate, and its source is connected in parallel to one end of Rf1 and IS3 and receives current signal Iin from PD. R3 and L2 are connected in series between the power supply voltage VCC and the drain of MN60. This L2 functions for peaking as described in FIG.
 AMP4の後段に設けられたレベルシフト回路LS1は、NMOSトランジスタMN20と、そのソースに接続された可変電流源ISV1を備えたソースフォロワ回路となっている。MN20は、そのゲートにMN60のドレインからの出力信号を受ける。ISV1は、前述した動作点制御信号Vconによって電流値が制御される。LS1の後段に設けられたAMP1は、PMOSトランジスタMP10およびNMOSトランジスタMN10からなるCMOSインバータ回路で構成される。このCMOSインバータ回路は、MN20のソースからの出力信号を入力電圧信号Viとして増幅動作を行い、出力電圧信号Voを出力する。このCMOSインバータ回路からの出力は、Rf1を介してAMP4の入力へ帰還される。 The level shift circuit LS1 provided at the subsequent stage of the AMP4 is a source follower circuit including an NMOS transistor MN20 and a variable current source ISV1 connected to the source thereof. MN20 receives an output signal from the drain of MN60 at its gate. The current value of ISV1 is controlled by the operating point control signal Vcon described above. AMP1 provided in the subsequent stage of LS1 is configured by a CMOS inverter circuit including a PMOS transistor MP10 and an NMOS transistor MN10. This CMOS inverter circuit performs an amplification operation using an output signal from the source of the MN 20 as an input voltage signal Vi, and outputs an output voltage signal Vo. The output from this CMOS inverter circuit is fed back to the input of AMP4 via Rf1.
 このような構成を用いると、PDからの電流信号Iinをゲート接地増幅段からなるAMP4で受けるため、その入力インピーダンスを低減でき、高周波特性を向上させることが可能になる。また、その出力信号は、前述したように、LS1によってAMP1(CMOSインバータ回路)にて最適な動作点となるようにレベルシフトされる。したがって、AMP1は、所望の増幅率で安定した動作を行う。この際に、AMP1は、前段にゲート接地増幅段が備わっているため、高速性に重点を置き、寄生成分が小さくなるように設計すればよい。なお、図9(b)の構成例を用いる場合のVTCTL1は、図3の構成例において、PREAMP1内のLS1の前段とVTCTL1内のLS2の前段にAMP4が挿入されるような構成にすればよい。 When such a configuration is used, since the current signal Iin from the PD is received by the AMP4 including the grounded gate amplification stage, the input impedance can be reduced and the high frequency characteristics can be improved. Further, as described above, the output signal is level-shifted by LS1 so as to be an optimum operating point in AMP1 (CMOS inverter circuit). Therefore, AMP1 performs a stable operation at a desired amplification factor. At this time, since the AMP1 is equipped with a grounded-gate amplification stage in the previous stage, it may be designed so that the parasitic component is reduced with emphasis on high speed. Note that VTCTL1 in the case of using the configuration example of FIG. 9B may be configured such that AMP4 is inserted into the previous stage of LS1 in PREAMP1 and the previous stage of LS2 in VTCTL1 in the configuration example of FIG. .
 以上、本実施の形態5の光通信装置を用いることで、代表的には、高速動作が実現可能になる。なお、ここでは、アンプ回路AMP1としてCMOSインバータ回路を用いる例を示したが、勿論、その代わりに図4(b)~(f)に示したような回路を用いることも可能である。 As described above, typically, high-speed operation can be realized by using the optical communication apparatus according to the fifth embodiment. Although an example in which a CMOS inverter circuit is used as the amplifier circuit AMP1 is shown here, it is of course possible to use circuits as shown in FIGS. 4B to 4F instead.
 (実施の形態6)
 本実施の形態6では、図1の構成例を用いて光通信装置を構築した場合の、その全体の構成例について説明する。図10は、本発明の実施の形態6による光通信装置において、その構成の一例を示すブロック図である。図10に示す光通信装置は、図1に示したフォトダイオードPD、プリアンプ回路PREAMP1、および動作点制御回路VTCTL1に加えて、PREAMP1の後段に、ポストアンプ回路PSAMPと、リミットアンプ回路LMTAMPが備わっている。図10の光通信装置は、前述した図16の光通信装置と比較して、プリアンプ回路PREAMP_CがPREAMP1に置き換わり、また、VTCTL1が加わり、更に、基準電圧生成回路VREFGが削除された構成となっている。
(Embodiment 6)
In the sixth embodiment, an overall configuration example when an optical communication device is constructed using the configuration example of FIG. 1 will be described. FIG. 10 is a block diagram showing an example of the configuration of an optical communication apparatus according to Embodiment 6 of the present invention. The optical communication apparatus shown in FIG. 10 includes a post-amplifier circuit PSAMP and a limit amplifier circuit LMAMP in the subsequent stage of PREAMP1 in addition to the photodiode PD, preamplifier circuit PREAMP1, and operating point control circuit VTCTL1 shown in FIG. Yes. The optical communication device of FIG. 10 has a configuration in which the preamplifier circuit PREAMP_C is replaced with PREAMP1, VTCTL1 is added, and the reference voltage generation circuit VREFG is deleted, as compared with the optical communication device of FIG. 16 described above. Yes.
 図16で述べたように、VREFGは、PSAMPが差動入出力構成であるため、ロウパスフィルタによってPREAMP_Cの出力のDC成分を検出する回路となっている。しかしながら、図10の構成例では、図2等に示したように、VTCTL1が、PREAMP1の出力のDC成分を基準電圧Vrefとして生成可能な構成になっているため、このVrefを用いることでVREFGが不要となる。したがって、通常、大きな面積を占めることになるVREFGを削減できるため、回路面積の低減が図れる。さらに、DC的な動作を行うVTCTL1によってVrefを生成することで、ロウパスフィルタを用いる場合と比較して、より安定した基準電圧を生成することができ、結果的にPSAMPによる高速な増幅動作に寄与することが可能になる。 As described in FIG. 16, VREFG is a circuit that detects the DC component of the output of PREAMP_C by a low-pass filter because PSAMP has a differential input / output configuration. However, in the configuration example of FIG. 10, as shown in FIG. 2 and the like, since VTCTL1 can generate the DC component of the output of PREAMP1 as the reference voltage Vref, VREFG is obtained by using this Vref. It becomes unnecessary. Accordingly, VREFG, which normally occupies a large area, can be reduced, so that the circuit area can be reduced. Furthermore, by generating Vref by VTCTL1 that performs DC-like operation, it is possible to generate a more stable reference voltage compared to the case of using a low-pass filter, resulting in high-speed amplification operation by PSAMP. It becomes possible to contribute.
 図11は、図10の光通信装置において、そのポストアンプ回路PSAMPの一例を示すものであり、(a)はその構成例を示す概念図、(b)は(a)の動作例を示す説明図である。図11(a)に示すポストアンプ回路PSAMPは、差動構成となるアンプ回路AMP10a,AMP10bによって構成される。AMP10aは、例えば、差動対となる2つのトランジスタと、各トランジスタにそれぞれ接続された負荷素子とを含んだ一般的な差動増幅回路において、負荷素子に図4(f)等と同様のインダクタ素子を用いることでなどでピーキングを行える構成となっている。差動対となるトランジスタの片方には、図10に示したように、動作点制御回路VTCTL1からの基準電圧Vrefが入力される。また、AMP10aの後段に接続されるAMP10bは、特にピーキング機能を備えずに、一般的な差動増幅回路となっている。 FIG. 11 shows an example of the post-amplifier circuit PSAMP in the optical communication apparatus of FIG. 10, (a) is a conceptual diagram showing an example of the configuration, and (b) is an explanation showing an example of the operation of (a). FIG. The post-amplifier circuit PSAMP shown in FIG. 11A is configured by amplifier circuits AMP10a and AMP10b having a differential configuration. The AMP 10a includes, for example, an inductor similar to that shown in FIG. 4 (f) or the like in a general differential amplifier circuit including two transistors serving as a differential pair and a load element connected to each transistor. The peaking can be performed by using an element. As shown in FIG. 10, the reference voltage Vref from the operating point control circuit VTCTL1 is input to one of the transistors forming the differential pair. In addition, the AMP 10b connected to the subsequent stage of the AMP 10a is a general differential amplifier circuit without particularly having a peaking function.
 このような構成を用いると、図11(b)に示すように、前段のAMP10aは、低~中周波数帯での利得は低くなるものの、高周波数帯においてピーキング機能に伴い利得が高くなる。一方、後段のAMP10bは、低~中周波数帯での利得は高いものの、高周波数帯において寄生成分に伴い利得が低下する。したがって、これらのアンプ回路AMP10a,AMP10bを組み合わせることで、全体として、ある程度の利得と、ある程度の周波数帯域を確保することが可能となる。 When such a configuration is used, as shown in FIG. 11B, the AMP 10a in the previous stage has a low gain in the low to medium frequency band, but has a high gain in accordance with the peaking function in the high frequency band. On the other hand, although the AMP 10b in the subsequent stage has a high gain in the low to medium frequency band, the gain decreases with a parasitic component in the high frequency band. Therefore, by combining these amplifier circuits AMP10a and AMP10b, it is possible to ensure a certain amount of gain and a certain frequency band as a whole.
 以上、本実施の形態6の光通信装置を用いることで、代表的には、高速動作が実現可能になる。なお、ここでは、プリアンプ回路として図1の構成例を用いたが、勿論、図6、図7、図9等の構成例を用いることも可能である。 As described above, typically, high-speed operation can be realized by using the optical communication apparatus according to the sixth embodiment. Although the configuration example of FIG. 1 is used here as the preamplifier circuit, the configuration examples of FIG. 6, FIG. 7, FIG. 9, and the like can also be used.
 (実施の形態7)
 本実施の形態7では、前述した図10の光通信装置に対して、そのポストアンプ回路PSAMPの性能を更に向上させた構成例について説明する。図12は、本発明の実施の形態7による光通信装置を示すものであり、(a)はその構成例を示すブロック図、(b)は(a)の効果の一例を示す説明図である。図15は、図12の比較対象として検討した光通信装置の構成例を示すブロック図である。
(Embodiment 7)
In the seventh embodiment, a configuration example in which the performance of the post-amplifier circuit PSAMP is further improved with respect to the above-described optical communication apparatus of FIG. 10 will be described. 12A and 12B show an optical communication apparatus according to Embodiment 7 of the present invention. FIG. 12A is a block diagram showing a configuration example thereof, and FIG. 12B is an explanatory diagram showing an example of the effect of FIG. . FIG. 15 is a block diagram illustrating a configuration example of an optical communication apparatus studied as a comparison target in FIG.
 まず、図15に示す光通信装置は、前述した図16の光通信装置に対して、そのポストアンプ回路PSAMPの入出力間にオフセット補正回路OSCTL_Cが加わった構成となっている。PSAMPは、複数段の差動増幅回路からなり、その全体の利得をApaとするアンプ回路AMP10を備える。AMP10は、通常、そのプロセスばらつき等により、ノイズ成分となるオフセット電圧Vosを備えている。OSCTL_Cは、このVosを低減するために設けられる。OSCTL_Cは、AMP10からの(+)出力および(-)出力のそれぞれに対してDC成分を検出するロウパスフィルタと、このロウパスフィルタを介した(+)出力および(-)出力の間を利得Aosにて差動増幅するアンプ回路AMP11を備えている。このAMP11の(+)出力および(-)出力は、AMP10の(-)入力および(+)入力に向けて負帰還される。ロウパスフィルタは、AMP10の出力とAMP11の入力の間に直列接続された抵抗Rosと、AMP11の入力と接地電圧VSSの間に接続された容量Cosによって構成される。 First, the optical communication apparatus shown in FIG. 15 has a configuration in which an offset correction circuit OSCTL_C is added between the input and output of the post-amplifier circuit PSAMP in the optical communication apparatus shown in FIG. The PSAMP includes a plurality of stages of differential amplifier circuits, and includes an amplifier circuit AMP10 having an overall gain of Apa. The AMP 10 normally includes an offset voltage Vos that becomes a noise component due to process variations and the like. OSCTL_C is provided to reduce this Vos. OSCTL_C is a gain between a low-pass filter that detects a DC component for each of the (+) output and (−) output from the AMP 10 and a (+) output and (−) output through the low-pass filter. An amplifier circuit AMP11 for differential amplification at Aos is provided. The (+) output and (−) output of the AMP 11 are negatively fed back toward the (−) input and the (+) input of the AMP 10. The low-pass filter includes a resistor Ros connected in series between the output of the AMP 10 and the input of the AMP 11 and a capacitor Cos connected between the input of the AMP 11 and the ground voltage VSS.
 図16で述べたように、プリアンプ回路PREAMP_Cからの出力電圧の振幅は例えば10mV程度と小さく、例えば、ポストアンプ回路PSAMPにこれと同程度のオフセット電圧Vosが生じた場合、所望の動作が得られないため、これを補償することが重要となる。そこで、図15のような構成例を用いると、DC成分となるオフセット電圧Vosは、AMP10の出力においてほぼ1/(Apa・Aos)に圧縮され、例えば、100μV以下程度に低減することが可能となる。一方、AC成分となるAMP10の入出力信号は、OSCTL_C内のロウパスフィルタによる遮断に伴い殆ど負帰還が作用しないため、AMP10の出力信号は、入力信号がほぼApaで増幅されたものとなる。また、AMP10の出力信号の低域遮断周波数は、ほぼApa・Aos/(2π・Ros・Cos)となる。 As described in FIG. 16, the amplitude of the output voltage from the preamplifier circuit PREAMP_C is as small as about 10 mV. For example, when an offset voltage Vos of the same level is generated in the postamplifier circuit PSAMP, a desired operation can be obtained. It is important to compensate for this. Therefore, when the configuration example as shown in FIG. 15 is used, the offset voltage Vos serving as the DC component is compressed to approximately 1 / (Apa · Aos) at the output of the AMP 10 and can be reduced to, for example, about 100 μV or less. Become. On the other hand, the input / output signal of the AMP 10 serving as an AC component hardly receives negative feedback in accordance with the cutoff by the low-pass filter in the OSCTL_C. Therefore, the output signal of the AMP 10 is the input signal amplified by Apa. Further, the low cutoff frequency of the output signal of the AMP 10 is approximately Apa · Aos / (2π · Ros · Cos).
 しかしながら、この場合、低域遮断周波数が高過ぎることにより、AMP10の出力信号に波形の歪み等が生じてしまう恐れがある。PSAMPは、低オフセットかつ例えば100kHz程度の低域信号も増幅できるように構成されることが望ましい。すなわち、理想的には、OSCTL_C内のロウパスフィルタは、DC成分のみを通過させるように構成されることが望ましい。そのためには、例えば、Cos等を大きく形成することが考えられるが、そうすると回路面積の増大を招き、現実的には半導体チップ内に形成することが困難となる恐れがある。 However, in this case, if the low-frequency cutoff frequency is too high, waveform distortion or the like may occur in the output signal of the AMP 10. The PSAMP is desirably configured to be able to amplify a low-frequency signal with a low offset, for example, about 100 kHz. That is, ideally, the low-pass filter in OSCTL_C is desirably configured to pass only the DC component. For this purpose, for example, it is conceivable that Cos or the like is formed to be large. However, if this is done, the circuit area is increased, and it may be difficult to form it in the semiconductor chip in practice.
 そこで、図12の構成例を用いることが有益となる。図12に示す光通信装置は、前述した図10の構成例に対して、そのポストアンプ回路PSAMPの入出力間にオフセット補正回路OSCTLが加わった構成例となっている。図12におけるOSCTLは、図15のOSCTL_Cと異なり、容量Cosがアンプ回路AMP11の入出力間に備わっている。そうすると、Cosがミラー容量として機能するため、PSAMP内のAMP10の出力信号における低域遮断周波数は、ほぼApa/(2π・Ros・Cos)となる。したがって、図12(b)に示すようにAMP11の利得Aosの分だけ低域遮断周波数が低下するため、前述したような問題を解決することが可能となる。 Therefore, it is useful to use the configuration example of FIG. The optical communication apparatus shown in FIG. 12 has a configuration example in which an offset correction circuit OSCTL is added between the input and output of the post-amplifier circuit PSAMP in addition to the configuration example of FIG. The OSCTL in FIG. 12 is different from the OSCTL_C in FIG. 15 in that a capacitor Cos is provided between the input and output of the amplifier circuit AMP11. Then, since Cos functions as a mirror capacitor, the low-frequency cutoff frequency in the output signal of the AMP 10 in the PSAMP is approximately Apa / (2π · Ros · Cos). Therefore, as shown in FIG. 12B, the low-frequency cutoff frequency is reduced by the gain Aos of the AMP11, so that the above-described problem can be solved.
 以上、本実施の形態7の光通信装置を用いることで、代表的には、ポストアンプ回路におけるオフセット電圧を低減し、また、周波数帯域を拡大させることが可能となる。 As described above, by using the optical communication apparatus of the seventh embodiment, typically, the offset voltage in the post-amplifier circuit can be reduced and the frequency band can be expanded.
 (実施の形態8)
 本実施の形態8では、プリアンプ回路として、負帰還構成のプリアンプ回路ではなく、オープンループ構成のプリアンプ回路を用いた場合の一例について説明する。図13は、本発明の実施の形態8による光通信装置において、その構成の一例を示すブロック図である。図13に示す光通信装置は、フォトダイオードPDからの電流信号を入力とするオープンループ構成のプリアンプ回路PREAMP_OPと、その後段に順次接続されたポストアンプ回路PSAMP、リミットアンプ回路LMTAMP、および出力ドライバ回路DRVと、基準電圧生成回路VREFGと、オフセット補正回路OSCTL等から構成される。
(Embodiment 8)
In the eighth embodiment, an example of using a preamplifier circuit having an open loop configuration instead of a negative feedback configuration preamplifier circuit as a preamplifier circuit will be described. FIG. 13 is a block diagram showing an example of the configuration of an optical communication apparatus according to Embodiment 8 of the present invention. The optical communication apparatus shown in FIG. 13 includes an open-loop preamplifier circuit PREAMP_OP that receives a current signal from a photodiode PD, a post-amplifier circuit PSAMP, a limit amplifier circuit LMTAMP, and an output driver circuit that are sequentially connected to the subsequent stage. It is composed of a DRV, a reference voltage generation circuit VREFG, an offset correction circuit OSCTL, and the like.
 VREFG、PSAMP、LMTAMPの構成および動作に関しては、図16での説明と同様である。また、OSCTLの構成および動作に関しても、図12での説明と同様である。DRVは、外部負荷を駆動するために設置する。仮に、プリアンプ回路を独立したチップとして形成する場合は、このようにDRVを設けて外部駆動を行わせることが望ましいが、プリアンプ回路の後段回路も含めて同一チップに形成する場合には、特にDRVを設けなくてもよい。 The configuration and operation of VREFG, PSAMP, and LMTAMP are the same as those described with reference to FIG. The configuration and operation of the OSCTL are the same as those described with reference to FIG. The DRV is installed to drive an external load. If the preamplifier circuit is formed as an independent chip, it is desirable that the DRV be provided in this way to perform external driving. However, when the preamplifier circuit is formed on the same chip including the subsequent circuit of the preamplifier circuit, the DRV is particularly preferable. May not be provided.
 図14(a)、(b)のそれぞれは、図13の光通信装置において、そのプリアンプ回路PREAMP_OPの詳細な構成例を示す回路図である。図14(a)に示すプリアンプ回路PREAMP_OP1は、NMOSトランジスタMN70~MN74と、抵抗R4,R5と、定電流源IS4,IS5によって構成される。MN70、MN71およびR5は、カスコード接続を備えたソース接地増幅段を構成し、MN72、MN73、R4およびIS4は、カスコード接続を備えたゲート接地増幅段を構成し、MN74およびIS5はソースフォロワ段を構成する。 14A and 14B are circuit diagrams showing detailed configuration examples of the preamplifier circuit PREAMP_OP in the optical communication apparatus of FIG. The preamplifier circuit PREAMP_OP1 shown in FIG. 14A includes NMOS transistors MN70 to MN74, resistors R4 and R5, and constant current sources IS4 and IS5. MN70, MN71 and R5 constitute a grounded source amplification stage with a cascode connection, MN72, MN73, R4 and IS4 constitute a gate grounded amplification stage with a cascode connection, and MN74 and IS5 constitute a source follower stage. Constitute.
 MN70は、ソースが接地電圧VSSに、ゲートがPDからの電流信号Iinの入力ノードに、ドレインがMN71のソースにそれぞれ接続される。MN71は、ゲートに固定電圧Vb1が印加され、ドレインがR5の一端ならびにMN72のゲートに接続される。MN72は、ソースがIinの入力ノードに接続され、ドレインがMN73のソースに接続される。IS4は、Iinの入力ノードとVSSの間に接続される。MN73は、ゲートに固定電圧Vb2が印加され、ドレインがR4の一端ならびにMN74のゲートに接続される。MN74は、ソースが出力ノードVoutに接続され、ドレインが電源電圧VCCに接続される。IS5は、VoutとVSSの間に接続される。また、R4とR5の他端はVCCに接続される。 The MN 70 has a source connected to the ground voltage VSS, a gate connected to the input node of the current signal Iin from the PD, and a drain connected to the source of the MN 71. In MN71, a fixed voltage Vb1 is applied to the gate, and the drain is connected to one end of R5 and the gate of MN72. The source of MN 72 is connected to the input node of Iin, and the drain is connected to the source of MN 73. IS4 is connected between the input node of Iin and VSS. In MN73, a fixed voltage Vb2 is applied to the gate, and the drain is connected to one end of R4 and the gate of MN74. The MN 74 has a source connected to the output node Vout and a drain connected to the power supply voltage VCC. IS5 is connected between Vout and VSS. The other ends of R4 and R5 are connected to VCC.
 図14(a)の構成例において、Iinは、ゲート接地増幅段で増幅ならびに電圧信号に変換された後、ソースフォロワ段を介して電圧信号としてVoutより出力される。このゲート接地増幅段での増幅の際には、ソース接地増幅段からの出力によってMN72がゲインブーストされるため、高利得な増幅が可能となる。一方、このようなオープンループ構成のプリアンプ回路では、図1等のような負帰還構成に伴う入力インピーダンスの低減効果が得られないため、MN70およびMN72のトランジスタサイズを大きく形成することで、入力インピーダンスを可能な限り下げることが望ましい。 In the configuration example of FIG. 14A, Iin is amplified and converted into a voltage signal at the grounded gate amplification stage, and then output from Vout as a voltage signal through the source follower stage. At the time of amplification at the grounded-gate amplification stage, the gain of the MN 72 is boosted by the output from the common-source amplification stage, so that high gain amplification is possible. On the other hand, in such a preamplifier circuit having an open loop configuration, the effect of reducing the input impedance associated with the negative feedback configuration as shown in FIG. 1 or the like cannot be obtained. Therefore, by increasing the transistor sizes of MN70 and MN72, It is desirable to lower as much as possible.
 しかしながら、この場合、MN70およびMN72の寄生容量が大きくなってしまい、これに伴う極(ポール)の低下によって高速化が阻害される恐れがある。そこで、MN70およびMN72との間でそれぞれカスコード接続を構成するMN71およびMN73を備えることが有益となる。MN71およびMN73は、それぞれ小さいトランジスタサイズで形成され、MN70およびMN72のゲート-ドレイン間容量Cgdのミラー効果を低減する。したがって、各増幅段における入力容量の増大が抑制され、プリアンプ回路の高速化が実現可能になる。 However, in this case, the parasitic capacitances of the MN 70 and MN 72 become large, and there is a risk that the speeding up may be hindered due to a decrease in the pole. Therefore, it is beneficial to have MN71 and MN73 that form cascode connections with MN70 and MN72, respectively. MN71 and MN73 are each formed with a small transistor size, and reduce the mirror effect of the gate-drain capacitance Cgd of MN70 and MN72. Therefore, an increase in input capacitance at each amplification stage is suppressed, and a high-speed preamplifier circuit can be realized.
 また、図14(b)に示すプリアンプ回路PREAMP_OP2は、図14(a)のPREAMP_OP1と比較して、MN71のドレインとMN72のゲートの間にインダクタL3が挿入されている点が異なっている。それ以外の構成に関しては、図14(a)と同様である。図14(a)の回路構成では、MN70~72の負帰還ループで高利得化し、入力インピーダンスを小さくすることで高速化を実現している。図14(b)に示すように、このループ内にインダクタL3を挿入することで、更なる高利得化が可能となり、高速化が実現できる。 Further, the preamplifier circuit PREAMP_OP2 shown in FIG. 14B is different from the PREAMP_OP1 shown in FIG. 14A in that an inductor L3 is inserted between the drain of the MN71 and the gate of the MN72. Other configurations are the same as those in FIG. In the circuit configuration of FIG. 14A, the gain is increased by the negative feedback loop of the MNs 70 to 72, and the speed is increased by reducing the input impedance. As shown in FIG. 14 (b), by inserting an inductor L3 in this loop, it is possible to further increase the gain and to realize a higher speed.
 以上、本実施の形態8の光通信装置を用いることで、代表的には、非特許文献2に示されるような構成と比較して回路内部の寄生成分が低減され、これに伴い高速動作が実現可能になる。 As described above, by using the optical communication apparatus according to the eighth embodiment, the parasitic components in the circuit are typically reduced as compared with the configuration shown in Non-Patent Document 2, and accordingly, high-speed operation is achieved. It becomes feasible.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 As described above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention.
 本実施の形態による光通信装置は、特に、数十Gbpsを超える通信速度を備えた光通信システムにおいて、その受信部の回路に適用して有効なものである。 The optical communication apparatus according to the present embodiment is particularly effective when applied to a circuit of a receiving unit thereof in an optical communication system having a communication speed exceeding several tens of Gbps.

Claims (14)

  1.  フォトダイオードからの電流信号が入力される入力ノードと、出力ノードとを含み、前記入力ノードからの電流信号を増幅すると共に電圧信号に変換して前記出力ノードに出力するプリアンプ回路と、
     前記プリアンプ回路を制御する第1制御回路とを備え、
     前記プリアンプ回路は、
     前記入力ノードと前記出力ノード間の第1経路上に設けられ、前記入力ノードを介して入力された信号の電圧レベルを第1制御信号に応じた分だけレベルシフトする第1レベルシフト回路と、
     前記第1経路上で前記第1レベルシフト回路の次段に接続され、前記第1レベルシフト回路の出力信号を負の利得で増幅し、前記出力ノードに向けて出力する第1アンプ回路と、
     前記入力ノードと前記出力ノード間で前記第1経路と並列接続となる第2経路上に設けられた帰還抵抗とを含み、
     前記第1制御回路は、前記第1アンプ回路と同一の回路および回路パラメータで構成されると共に入出力間が電気的に接続されたレプリカ回路を含み、前記レプリカ回路の出力信号の直流電圧レベルと、前記第1アンプ回路の入力信号の直流電圧レベルとが一致するように前記第1制御信号を生成することを特徴とする光通信装置。
    A preamplifier circuit including an input node to which a current signal from a photodiode is input and an output node, amplifying the current signal from the input node and converting the current signal to a voltage signal and outputting the voltage signal to the output node;
    A first control circuit for controlling the preamplifier circuit;
    The preamplifier circuit is
    A first level shift circuit that is provided on a first path between the input node and the output node and that shifts a voltage level of a signal input via the input node by an amount corresponding to a first control signal;
    A first amplifier circuit connected to the next stage of the first level shift circuit on the first path, amplifying an output signal of the first level shift circuit with a negative gain, and outputting the amplified signal toward the output node;
    A feedback resistor provided on a second path connected in parallel with the first path between the input node and the output node;
    The first control circuit includes a replica circuit configured with the same circuit and circuit parameters as the first amplifier circuit and electrically connected between input and output, and a DC voltage level of an output signal of the replica circuit The optical communication device generates the first control signal so that a DC voltage level of an input signal of the first amplifier circuit matches.
  2.  請求項1記載の光通信装置において、
     前記第1制御回路は、
     前記フォトダイオードからの電流信号の直流レベルと同一の直流電流を生成する第1電流源と、
     前記プリアンプ回路と同一の回路および回路パラメータで構成され、前記第1電流源からの直流電流を入力として増幅動作を行うレプリカ用プリアンプ回路と、
     前記レプリカ用プリアンプ回路内の前記第1アンプ回路の入力信号と前記レプリカ回路の出力信号とを差動入力として増幅動作を行い前記第1制御信号を出力する第2アンプ回路とを備え、
     前記第1制御信号を受けて、前記プリアンプ回路内の前記第1レベルシフト回路と前記レプリカ用プリアンプ回路内の前記第1レベルシフト回路が動作するように構成されたことを特徴とする光通信装置。
    The optical communication device according to claim 1.
    The first control circuit includes:
    A first current source that generates a direct current equal to the direct current level of the current signal from the photodiode;
    A replica preamplifier circuit configured with the same circuit and circuit parameters as the preamplifier circuit, and performing an amplification operation using a direct current from the first current source as an input;
    A second amplifier circuit that performs an amplification operation using the input signal of the first amplifier circuit in the replica preamplifier circuit and the output signal of the replica circuit as a differential input and outputs the first control signal;
    An optical communication apparatus configured to operate in response to the first control signal, the first level shift circuit in the preamplifier circuit and the first level shift circuit in the replica preamplifier circuit. .
  3.  請求項2記載の光通信装置において、
     前記レプリカ用プリアンプ回路内の前記第1レベルシフト回路は、前記第1制御信号に加えて、更に第2制御信号が入力され、前記第2制御信号に応じた分だけレベルシフト量を微調整可能となっていることを特徴とする光通信装置。
    The optical communication device according to claim 2,
    The first level shift circuit in the replica preamplifier circuit can receive a second control signal in addition to the first control signal, and can finely adjust the level shift amount corresponding to the second control signal. An optical communication device characterized in that
  4.  請求項1記載の光通信装置において、
     前記第1レベルシフト回路は、前記第1制御信号に応じて電流値が調整される第1可変電流源を含んだソースフォロワ回路であり、
     前記第1アンプ回路は、CMOSインバータ回路であることを特徴とする光通信装置。
    The optical communication device according to claim 1.
    The first level shift circuit is a source follower circuit including a first variable current source whose current value is adjusted according to the first control signal,
    The optical communication apparatus, wherein the first amplifier circuit is a CMOS inverter circuit.
  5.  請求項1記載の光通信装置において、
     前記第1レベルシフト回路は、前記第1制御信号に応じて電流値が調整される第1可変電流源を含んだソースフォロワ回路であり、
     前記第1アンプ回路は、第1NMOSトランジスタと、ソースが前記第1NMOSトランジスタのドレインにカスコード接続された第2NMOSトランジスタと、ドレインが前記第2NMOSトランジスタのドレインに接続された第1PMOSトランジスタからなるカスコード接続付きのCMOSインバータ回路であることを特徴とする光通信装置。
    The optical communication device according to claim 1.
    The first level shift circuit is a source follower circuit including a first variable current source whose current value is adjusted according to the first control signal,
    The first amplifier circuit includes a first NMOS transistor, a second NMOS transistor whose source is cascode-connected to the drain of the first NMOS transistor, and a first PMOS transistor whose drain is connected to the drain of the second NMOS transistor. An optical communication device characterized by being a CMOS inverter circuit.
  6.  請求項5記載の光通信装置において、
     前記カスコード接続付きのCMOSインバータ回路は、更に、前記第1PMOSトランジスタのドレインと前記第2NMOSトランジスタのドレインの間に、ピーキング用の第1インダクタが挿入された構成となっていることを特徴とする光通信装置。
    The optical communication device according to claim 5.
    The cascode-connected CMOS inverter circuit further has a configuration in which a first inductor for peaking is inserted between the drain of the first PMOS transistor and the drain of the second NMOS transistor. Communication device.
  7.  請求項1記載の光通信装置において、
     前記第1レベルシフト回路は、前記第1制御信号に応じて電流値が調整される第1可変電流源を含んだソースフォロワ回路であり、
     前記第1アンプ回路は、第3NMOSトランジスタと、前記第3NMOSトランジスタのドレインに接続された第1抵抗からなるソース接地増幅回路であることを特徴とする光通信装置。
    The optical communication device according to claim 1.
    The first level shift circuit is a source follower circuit including a first variable current source whose current value is adjusted according to the first control signal,
    The optical communication device, wherein the first amplifier circuit is a grounded source amplifier circuit including a third NMOS transistor and a first resistor connected to a drain of the third NMOS transistor.
  8.  請求項1記載の光通信装置において、
     前記第1レベルシフト回路は、前記第1制御信号に応じて電流値が調整される第1可変電流源を含んだソースフォロワ回路であり、
     前記第1アンプ回路は、第4NMOSトランジスタと、ソースが前記第4NMOSトランジスタのドレインにカスコード接続された第5NMOSトランジスタと、一端が前記第5NMOSトランジスタのドレインに接続された第2抵抗からなるカスコード接続付きのソース接地増幅回路であることを特徴とする光通信装置。
    The optical communication device according to claim 1.
    The first level shift circuit is a source follower circuit including a first variable current source whose current value is adjusted according to the first control signal,
    The first amplifier circuit has a cascode connection including a fourth NMOS transistor, a fifth NMOS transistor whose source is cascode-connected to the drain of the fourth NMOS transistor, and a second resistor whose one end is connected to the drain of the fifth NMOS transistor. An optical communication device characterized by being a common-source amplifier circuit.
  9.  請求項8記載の光通信装置において、
     前記カスコード接続付きのソース接地増幅回路は、更に、前記第2抵抗の一端と前記第5NMOSトランジスタのドレインの間に、ピーキング用の第2インダクタが挿入された構成となっていることを特徴とする光通信装置。
    The optical communication apparatus according to claim 8.
    The grounded-source amplifier circuit with cascode connection is further characterized in that a second inductor for peaking is inserted between one end of the second resistor and the drain of the fifth NMOS transistor. Optical communication device.
  10.  フォトダイオードからの電流信号が入力される入力ノードと、出力ノードとを含み、前記入力ノードからの電流信号を増幅すると共に電圧信号に変換して前記出力ノードに出力するプリアンプ回路と、
     前記プリアンプ回路の次段に接続され、前記プリアンプ回路からの出力信号を差動増幅するポストアンプ回路と、
     前記プリアンプ回路および前記ポストアンプ回路に向けて制御信号を供給する第1制御回路とを備え、
     前記プリアンプ回路は、
     前記入力ノードと前記出力ノード間の第1経路上に設けられ、前記入力ノードを介して入力された信号の電圧レベルを第1制御信号に応じた分だけレベルシフトする第1レベルシフト回路と、
     前記第1経路上で前記第1レベルシフト回路の次段に接続され、前記第1レベルシフト回路の出力信号を負の利得で増幅し、前記出力ノードに向けて出力する第1アンプ回路と、
     前記入力ノードと前記出力ノード間で前記第1経路と並列接続となる第2経路上に設けられた帰還抵抗とを含み、
     前記第1制御回路は、
     前記第1アンプ回路と同一の回路および回路パラメータで構成され、入出力間が電気的に接続されたレプリカ回路と、
     前記フォトダイオードからの電流信号の直流レベルと同一の直流電流を生成する第1電流源と、
     前記プリアンプ回路と同一の回路および回路パラメータで構成され、前記第1電流源からの直流電流を入力として増幅動作を行うレプリカ用プリアンプ回路と、
     前記レプリカ用プリアンプ回路内の前記第1アンプ回路の入力信号と前記レプリカ回路の出力信号とを差動入力として増幅動作を行い前記第1制御信号を出力する第2アンプ回路とを備え、
     前記プリアンプ回路内の前記第1レベルシフト回路と前記レプリカ用プリアンプ回路内の前記第1レベルシフト回路は、前記第1制御信号を受けて動作を行い、
     前記ポストアンプ回路は、前記レプリカ用プリアンプ回路内の前記出力ノードの電圧を基準として前記プリアンプ回路内の前記出力ノードの電圧を差動増幅するように構成されたことを特徴とする光通信装置。
    A preamplifier circuit including an input node to which a current signal from a photodiode is input and an output node, amplifying the current signal from the input node and converting the current signal to a voltage signal and outputting the voltage signal to the output node;
    A post-amplifier circuit connected to the next stage of the pre-amplifier circuit and differentially amplifying an output signal from the pre-amplifier circuit;
    A first control circuit for supplying a control signal to the preamplifier circuit and the postamplifier circuit,
    The preamplifier circuit is
    A first level shift circuit that is provided on a first path between the input node and the output node and that shifts a voltage level of a signal input via the input node by an amount corresponding to a first control signal;
    A first amplifier circuit connected to the next stage of the first level shift circuit on the first path, amplifying an output signal of the first level shift circuit with a negative gain, and outputting the amplified signal toward the output node;
    A feedback resistor provided on a second path connected in parallel with the first path between the input node and the output node;
    The first control circuit includes:
    A replica circuit composed of the same circuit and circuit parameters as the first amplifier circuit and electrically connected between the input and output;
    A first current source that generates a direct current equal to the direct current level of the current signal from the photodiode;
    A replica preamplifier circuit configured with the same circuit and circuit parameters as the preamplifier circuit, and performing an amplification operation using a direct current from the first current source as an input;
    A second amplifier circuit that performs an amplification operation using the input signal of the first amplifier circuit in the replica preamplifier circuit and the output signal of the replica circuit as a differential input and outputs the first control signal;
    The first level shift circuit in the preamplifier circuit and the first level shift circuit in the replica preamplifier circuit operate in response to the first control signal,
    The post-amplifier circuit is configured to differentially amplify the voltage of the output node in the preamplifier circuit with reference to the voltage of the output node in the replica preamplifier circuit.
  11.  請求項10記載の光通信装置において、
     前記ポストアンプ回路は、複数段の差動アンプ回路から構成され、
     前記複数段の差動アンプ回路の内の少なくとも一つは、インダクタを備えることで高周波領域において利得を増大させる構成となっていることを特徴とする光通信装置。
    The optical communication device according to claim 10.
    The post-amplifier circuit is composed of a plurality of stages of differential amplifier circuits,
    An optical communication apparatus, wherein at least one of the plurality of stages of differential amplifier circuits is configured to increase a gain in a high frequency region by including an inductor.
  12.  請求項10記載の光通信装置において、
     更に、前記ポストアンプ回路の入出力間にオフセット補正回路を含んだフィードバック経路が設けられ、
     前記オフセット補正回路は、
     前記ポストアンプ回路の出力信号をフィルタリングし、第1抵抗および第1容量を含んだロウパスフィルタ回路と、
     前記ロウパスフィルタ回路の出力信号を増幅し、前記ポストアンプ回路の入力に帰還する第3アンプ回路とを備え、
     前記第1容量は、前記第3アンプ回路の入出力間に接続されていることを特徴とする光通信装置。
    The optical communication device according to claim 10.
    Furthermore, a feedback path including an offset correction circuit is provided between the input and output of the post-amplifier circuit,
    The offset correction circuit is
    Filtering the output signal of the post-amplifier circuit, and a low-pass filter circuit including a first resistor and a first capacitor;
    A third amplifier circuit that amplifies the output signal of the low-pass filter circuit and feeds back to the input of the post-amplifier circuit;
    The optical communication device, wherein the first capacitor is connected between input and output of the third amplifier circuit.
  13.  第1ノードから入力されたフォトダイオードからの電流信号を増幅すると共に電圧信号に変換するゲート接地増幅回路およびソース接地増幅回路と、
     前記ゲート接地増幅回路およびソース接地増幅回路の次段に接続されたソースフォロワ回路とを備え、
     前記ゲート接地増幅回路は、
     ソースが前記第1ノードに接続された第1導電型の第1MISトランジスタと、
     ソースが前記第1MISトランジスタのドレインにカスコード接続された前記第1導電型の第2MISトランジスタと、
     前記第2MISトランジスタのドレインに一端が接続された第1抵抗と、
     前記第1ノードに接続された第1電流源とを備え、
     前記ソース接地増幅回路は、
     ゲートが前記第1ノードに接続された前記第1導電型の第3MISトランジスタと、
     ソースが前記第3MISトランジスタのドレインにカスコード接続され、ドレインが前記第1MISトランジスタのゲートに接続された前記第1導電型の第4MISトランジスタと、
     前記第4MISトランジスタのドレインに一端が接続された第2抵抗とを備え、
     前記ソースフォロワ回路は、
     ゲートが前記第2MISトランジスタのドレインに接続された前記第1導電型の第5MISトランジスタと、
     前記第5MISトランジスタのソースに接続された第2電流源とを備えることを特徴とする光通信装置。
    A grounded-gate amplifier circuit and a common-source amplifier circuit that amplify a current signal from the photodiode input from the first node and convert the current signal into a voltage signal;
    A source follower circuit connected to the next stage of the grounded gate amplifier circuit and the grounded source amplifier circuit;
    The gate ground amplifier circuit is:
    A first MIS transistor of a first conductivity type having a source connected to the first node;
    A second MIS transistor of the first conductivity type, the source of which is cascode-connected to the drain of the first MIS transistor;
    A first resistor having one end connected to the drain of the second MIS transistor;
    A first current source connected to the first node;
    The common source amplifier circuit is:
    A third MIS transistor of the first conductivity type having a gate connected to the first node;
    A fourth MIS transistor of the first conductivity type having a source connected to the drain of the third MIS transistor and a drain connected to the gate of the first MIS transistor;
    A second resistor having one end connected to the drain of the fourth MIS transistor,
    The source follower circuit is:
    A fifth MIS transistor of the first conductivity type having a gate connected to a drain of the second MIS transistor;
    An optical communication device comprising: a second current source connected to a source of the fifth MIS transistor.
  14.  請求項13記載の光通信装置において、
     前記ソース接地増幅回路は、更に、インダクタを備え、
     前記第4MISトランジスタのドレインは、前記インダクタを介して前記第1MISトランジスタのゲートおよび前記第2抵抗の一端に接続されるように構成されたことを特徴とする光通信装置。
    The optical communication device according to claim 13.
    The common-source amplifier circuit further includes an inductor,
    The optical communication apparatus, wherein the drain of the fourth MIS transistor is connected to the gate of the first MIS transistor and one end of the second resistor via the inductor.
PCT/JP2009/054172 2009-03-05 2009-03-05 Optical communication apparatus WO2010100741A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/201,212 US8445832B2 (en) 2009-03-05 2009-03-05 Optical communication device
JP2011502544A JPWO2010100741A1 (en) 2009-03-05 2009-03-05 Optical communication device
PCT/JP2009/054172 WO2010100741A1 (en) 2009-03-05 2009-03-05 Optical communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054172 WO2010100741A1 (en) 2009-03-05 2009-03-05 Optical communication apparatus

Publications (1)

Publication Number Publication Date
WO2010100741A1 true WO2010100741A1 (en) 2010-09-10

Family

ID=42709319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054172 WO2010100741A1 (en) 2009-03-05 2009-03-05 Optical communication apparatus

Country Status (3)

Country Link
US (1) US8445832B2 (en)
JP (1) JPWO2010100741A1 (en)
WO (1) WO2010100741A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979774A1 (en) * 2011-09-07 2013-03-08 Schneider Electric Ind Sas DETECTION DEVICE WITH TRANSIMPEDANCE MOUNTING
US8736381B2 (en) 2012-10-12 2014-05-27 Schneider Electric Industries Sas Detection device provided with a transimpedance circuit
JP2016127496A (en) * 2015-01-06 2016-07-11 富士通株式会社 Amplifier circuit
JP2019022195A (en) * 2017-07-21 2019-02-07 富士通株式会社 Bias circuit and optical receiver
CN113225069A (en) * 2021-04-06 2021-08-06 中国船舶重工集团公司第七0三研究所 Anti-interference isolation circuit for current communication bus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013318B4 (en) * 2010-03-30 2016-07-28 Austriamicrosystems Ag Amplifier circuit, detector arrangement and method for operating an amplifier
JP5539916B2 (en) * 2011-03-04 2014-07-02 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5949415B2 (en) * 2012-10-09 2016-07-06 富士通株式会社 Optical receiver circuit and optical receiver
US20140159815A1 (en) * 2012-12-10 2014-06-12 Sifotonics Technologies Co., Ltd. High Bandwidth High Sensitivity CMOS Trans-Impedance Amplifier
EP2804313B1 (en) * 2013-05-17 2018-09-12 Nxp B.V. Transconductance amplifier
KR102286595B1 (en) * 2014-11-14 2021-08-05 한국전자통신연구원 A RGC type burst-mode optic pre-amplifier having wide linear input range
EP3046256B1 (en) * 2015-01-16 2022-07-06 Luxtera, Inc. Method and system for accurate gain adjustment of a transimpedance amplifier using a dual replica and servo loop
CN108141187A (en) * 2015-09-15 2018-06-08 法尔科姆斯有限公司 Mutual conductance current source
JP6192179B2 (en) * 2015-09-16 2017-09-06 沖電気工業株式会社 Transimpedance amplifier circuit and semiconductor device thereof
US9948401B1 (en) * 2016-10-04 2018-04-17 Finisar Corporation Individual DC and AC current shunting in optical receivers
US10256811B2 (en) * 2016-11-22 2019-04-09 Electronics And Telecommunications Research Institute Cascode switch circuit including level shifter
US10277216B1 (en) * 2017-09-27 2019-04-30 Apple Inc. Wide range input voltage differential receiver
US10505509B2 (en) 2017-10-31 2019-12-10 Cisco Technology, Inc. Process and temperature insensitive linear circuit
US11005573B2 (en) 2018-11-20 2021-05-11 Macom Technology Solutions Holdings, Inc. Optic signal receiver with dynamic control
US11249499B2 (en) 2020-03-04 2022-02-15 Cisco Technology, Inc. Linear transimpedance amplifier dual regulator architecture and tuning
US11658630B2 (en) 2020-12-04 2023-05-23 Macom Technology Solutions Holdings, Inc. Single servo loop controlling an automatic gain control and current sourcing mechanism
CN113572434B (en) * 2021-09-24 2022-01-04 微龛(广州)半导体有限公司 Transimpedance amplifier and optical receiving module
WO2023232251A1 (en) * 2022-06-02 2023-12-07 Huawei Technologies Co., Ltd. Circuit for connecting two outputs of a differential amplifier to an input of a single-ended amplifier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251812A (en) * 1985-08-30 1987-03-06 Nec Corp Broad band negative feedback amplifier circuit
JPH06204761A (en) * 1993-01-06 1994-07-22 Mitsubishi Electric Corp Dc amplifier
JPH07135489A (en) * 1993-11-12 1995-05-23 Matsushita Electric Ind Co Ltd Light receiving circuit for av optical space transmission
JPH10117137A (en) * 1996-04-24 1998-05-06 Natl Semiconductor Corp <Ns> Controllable transmission line driver having rising time and falling time with a low variable output and minimum on/off delay
JPH11205047A (en) * 1998-01-13 1999-07-30 Nec Corp Transimpedance amplifier for optical receiver
JP2002076793A (en) * 2000-08-28 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Transimpedance amplifier
JP2002141758A (en) * 2000-11-01 2002-05-17 Nec Corp Variable gain low noise amplifier
JP2004274109A (en) * 2003-03-05 2004-09-30 Sharp Corp Optical receiver
JP2006261866A (en) * 2005-03-16 2006-09-28 Sumitomo Electric Ind Ltd Preamplifier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192207A (en) * 1988-01-27 1989-08-02 Nec Corp Optical reception circuit
US4859928A (en) 1988-12-20 1989-08-22 Tektronix, Inc. CMOS comparator bias voltage generator
JP3226621B2 (en) * 1992-09-10 2001-11-05 株式会社東芝 Optical receiver
US5434426A (en) 1992-09-10 1995-07-18 Kabushiki Kaisha Toshiba Optical interconnection device
JPH0794953A (en) * 1993-09-20 1995-04-07 Fujitsu Ltd Mos inverting amplifier circuit
JPH08265065A (en) * 1995-03-28 1996-10-11 Toshiba Corp Amplifier circuit
US5679953A (en) * 1996-08-05 1997-10-21 International Business Machines Corporation Automatic threshold setting circuit
JP2003198297A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Differential input circuit
JP2005354587A (en) * 2004-06-14 2005-12-22 Shimada Phys & Chem Ind Co Ltd Composite electronic circuit
JP2007336476A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Amplifier and amplifier circuit using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251812A (en) * 1985-08-30 1987-03-06 Nec Corp Broad band negative feedback amplifier circuit
JPH06204761A (en) * 1993-01-06 1994-07-22 Mitsubishi Electric Corp Dc amplifier
JPH07135489A (en) * 1993-11-12 1995-05-23 Matsushita Electric Ind Co Ltd Light receiving circuit for av optical space transmission
JPH10117137A (en) * 1996-04-24 1998-05-06 Natl Semiconductor Corp <Ns> Controllable transmission line driver having rising time and falling time with a low variable output and minimum on/off delay
JPH11205047A (en) * 1998-01-13 1999-07-30 Nec Corp Transimpedance amplifier for optical receiver
JP2002076793A (en) * 2000-08-28 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Transimpedance amplifier
JP2002141758A (en) * 2000-11-01 2002-05-17 Nec Corp Variable gain low noise amplifier
JP2004274109A (en) * 2003-03-05 2004-09-30 Sharp Corp Optical receiver
JP2006261866A (en) * 2005-03-16 2006-09-28 Sumitomo Electric Ind Ltd Preamplifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979774A1 (en) * 2011-09-07 2013-03-08 Schneider Electric Ind Sas DETECTION DEVICE WITH TRANSIMPEDANCE MOUNTING
EP2568600A1 (en) * 2011-09-07 2013-03-13 Schneider Electric Industries SAS Detection device provided with a transimpedance circuit
US8736381B2 (en) 2012-10-12 2014-05-27 Schneider Electric Industries Sas Detection device provided with a transimpedance circuit
JP2016127496A (en) * 2015-01-06 2016-07-11 富士通株式会社 Amplifier circuit
US9509259B2 (en) 2015-01-06 2016-11-29 Fujitsu Limited Amplifier
JP2019022195A (en) * 2017-07-21 2019-02-07 富士通株式会社 Bias circuit and optical receiver
CN113225069A (en) * 2021-04-06 2021-08-06 中国船舶重工集团公司第七0三研究所 Anti-interference isolation circuit for current communication bus

Also Published As

Publication number Publication date
US8445832B2 (en) 2013-05-21
US20110316632A1 (en) 2011-12-29
JPWO2010100741A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
WO2010100741A1 (en) Optical communication apparatus
US4958133A (en) CMOS complementary self-biased differential amplifier with rail-to-rail common-mode input-voltage range
JP6347497B2 (en) Apparatus and method for transimpedance amplifier with wide input current range
US7639078B2 (en) Class AB folded-cascode amplifier having cascode compensation
US7298210B2 (en) Fast settling, low noise, low offset operational amplifier and method
US8149055B2 (en) Semiconductor integrated circuit device
JP4896547B2 (en) Transimpedance amplifier with signal amplification circuit for adjusting power signal
US7449958B1 (en) Open loop DC control for a transimpedance feedback amplifier
US9407218B2 (en) Multi-stage transimpedance amplifier and a method of using the same
JP7115065B2 (en) transimpedance amplifier
CN114710124A (en) Rail-to-rail input and output operational transconductance amplifier based on low ripple charge pump
CN110601663A (en) High speed voltage feedback amplifier with current feedback amplifier characteristics
US11362629B2 (en) Transimpedance amplifier circuit
JP2014116851A (en) Amplifier and optical receiver
US20230092750A1 (en) Reception circuit for optical communication
US6664912B1 (en) Preamplifier with improved CMRR and temperature stability and associated amplification method
KR100574969B1 (en) Regulated cascode amplifier circuit with gain enhancement
US11658626B2 (en) Split miller compensation in two-stage differential amplifiers
JP4867066B2 (en) Amplifier circuit
KR20080048591A (en) Wide-band low noise amplifier using current mirror
US11177773B1 (en) Transimpedance amplifiers
JP7251388B2 (en) Transimpedance amplifier circuit
TWI767311B (en) Operational amplifier and signal amplification method
JP7259625B2 (en) Transimpedance amplifier circuit
US20240136985A1 (en) Bias circuit and power amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011502544

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13201212

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841105

Country of ref document: EP

Kind code of ref document: A1