WO2009150918A1 - Structure having insulating coating film, method for producing the same, positive photosensitive resin composition and electronic device - Google Patents

Structure having insulating coating film, method for producing the same, positive photosensitive resin composition and electronic device Download PDF

Info

Publication number
WO2009150918A1
WO2009150918A1 PCT/JP2009/058945 JP2009058945W WO2009150918A1 WO 2009150918 A1 WO2009150918 A1 WO 2009150918A1 JP 2009058945 W JP2009058945 W JP 2009058945W WO 2009150918 A1 WO2009150918 A1 WO 2009150918A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
resin composition
substrate
film
solvent
Prior art date
Application number
PCT/JP2009/058945
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 松木
隆一 奥田
宏文 後藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2010516800A priority Critical patent/JP5246259B2/en
Publication of WO2009150918A1 publication Critical patent/WO2009150918A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor

Definitions

  • the present invention relates to a structure having an insulating coating, a method for producing the structure, a positive photosensitive resin composition, and an electronic component. More specifically, the present invention relates to a structure having a uniform insulating film excellent in electrical insulation and thermal shock, a method for producing the structure, and a positive photosensitive film which can form an insulating film and has excellent resolution. The present invention relates to a resin composition and an electronic component.
  • an insulating substrate having through holes, via inner wall surfaces, and metal conductor layers formed on both sides of a substrate has a viscosity of 20 to 200 mPa ⁇ s, a surface tension of 30 mN / m or less, and a thixotropic value of 1.
  • a method is disclosed in which an insulating film is formed at least on the inner wall surface of a through hole by dipping in a photosensitive resist solution of 0.0 to 3.0 and pulling up (see Patent Document 1).
  • a through electrode can be formed by filling the through hole with metallic copper or the like.
  • Non-Patent Document 1 discloses a silicon chip penetrating vertically and a penetrating electrode having a through hole filled with metallic copper.
  • the manufacturing method includes a step of forming a deep hole in a silicon wafer by dry etching, a step of forming a SiO 2 film on the inner wall of the hole by a CVD method, a step of filling the inside of the hole with metal copper by electrolytic copper plating, and from the back side of the wafer.
  • a polishing process and the like are provided.
  • the photosensitive resin composition disclosed in Patent Document 1 it is possible to form a film on the inner wall surface for a through hole, but it is not a through-hole but a micro-hole (hereinafter referred to as an opening) having a small opening area.
  • an opening a micro-hole having a small opening area.
  • the film is formed on the inner wall surface of the "hole part"), there is a problem in that sedimentation of the composition occurs and the hole part is filled with the composition.
  • the insulating film formed on the inner wall surface of the through-hole must have excellent electrical insulation and excellent thermal shock resistance without cracking in the insulating film under high temperature and high humidity. It has been.
  • the resin composition for forming the insulating film is required to have excellent resolution.
  • the present invention relates to a structure having a uniform insulating film excellent in electrical insulation and thermal shock, a method for producing the structure, a positive photosensitive resin composition that can form an insulating film and is excellent in resolution,
  • An object is to provide an electronic component.
  • the present inventors have used a composition having excellent film forming properties, and have a structure having a uniform insulating film excellent in electrical insulation and thermal shock resistance, and its structure
  • the present inventors have found a manufacturing method, a positive photosensitive resin composition capable of forming the insulating coating and having excellent resolution, and an electronic component.
  • An object application process Drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and bottom surface of the hole; and Exposing a predetermined region of the film formed on the surface of the substrate, treating with an alkaline solution, and leaving a film formed on the inner wall surface of the hole to leave the film on the bottom surface side; And a heat curing step for heating the coating film remaining on the inner wall surface of the hole.
  • the positive photosensitive resin composition further comprises (E) a compound (E1) having an alkyl etherified amino group, and an aliphatic polyglycidyl ether (E2). And the manufacturing method of the structure which has an insulating film as described in said [1] containing the crosslinking agent containing. [3] The method for producing a structure having the insulating coating according to [1] or [2], wherein the positive photosensitive resin composition further contains (F) crosslinked polymer particles.
  • a member comprising a structure provided with a through-hole having an insulating film obtained by the method described in [4] above, and an electrode part in which at least the through-hole of the structure is filled with a conductive material
  • An electronic component comprising: [7] A solvent application step of applying a solvent to a substrate having a hole having an opening area of 25 to 10,000 ⁇ m 2 , a depth of 10 to 200 ⁇ m, and an aspect ratio of 1 to 10, A resin composition application step of applying a positive photosensitive resin composition to the substrate such that the positive photosensitive resin composition is in contact with the solvent in the hole; Drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and bottom surface of the hole; and Exposing a predetermined region of the film formed on the surface of the substrate, treating with an alkaline solution, and leaving a film formed on the inner wall surface of the hole to leave the film on the bottom surface side; A positive-type photosensitive resin composition used in a method for producing
  • a specific positive photosensitive resin composition is used, and the inner wall surface of the hole in the substrate is uniformly excellent in electrical insulation and crack resistance. Insulating film can be efficiently formed, and a structure having an insulating film can be easily obtained. Moreover, a through-electrode can be easily formed by filling metal copper or the like into a through-hole having an insulating film of the resulting structure as an inner wall. It is also suitable for modifying porous membranes.
  • the electronic component of the present invention is suitable for mounting a semiconductor device such as a CPU, a memory, and an image sensor.
  • the positive photosensitive resin composition of the present invention is excellent in resolution, and can be formed satisfactorily in the method for producing a structure having an insulating coating.
  • FIG. 2 is a perspective image showing a hole fracture surface of a coated silicon substrate obtained in Example 1.
  • FIG. It is an image which shows the hole cross section in which the film was formed. It is an image which shows the hole cross section in which the film was formed. It is an image which shows the hole cross section in which the film was formed. It is an image which shows the hole cross section in which the film was formed. It is sectional drawing of the base material for thermal shock-proof evaluation. It is a schematic diagram of the base material for thermal shock evaluation.
  • (meth) acryl means acryl and methacryl
  • (meth) acrylate means acrylate and methacrylate
  • Manufacturing method of structure having insulating coating The manufacturing method of a structure having an insulating coating of the present invention has an opening area of 25 to 10,000 ⁇ m 2 , a depth of 10 to 200 ⁇ m, and an aspect ratio.
  • a resin composition coating step to be applied to the substrate a step of drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and the bottom surface of the hole, and the substrate Exposing a predetermined region of the film formed on the surface of the surface, treating the surface with an alkaline solution, and removing the surface bottom side film to leave the film formed on the inner wall surface of the hole, Add the film remaining on the inner wall.
  • the constituent material of the substrate used in the present invention examples include silicon, various metals, various metal sputtered films, alumina, glass epoxy, paper phenol, and glass.
  • the thickness of this substrate is usually 100 to 1,000 ⁇ m.
  • the substrate 11 is formed on at least one surface side of the substrate 11 in the vertical direction from the surface to the inside, and has an opening area of 25 to 10,000 ⁇ m 2 , preferably 100 ⁇ 10,000 2, more preferably 250 ⁇ 7,000 ⁇ m 2 and a depth of 10 ⁇ 200 [mu] m, preferably having 30 ⁇ 120 [mu] m, the holes 111 and more preferably 50 ⁇ 100 [mu] m.
  • the shape and number of the holes are not particularly limited.
  • the shape of the hole can be a columnar shape (see FIG. 1A), a forward tapered shape (see FIG. 1B), a reverse tapered shape (see FIG. 1C), etc.
  • the cross-sectional shape can also be circular, elliptical, polygonal, or the like.
  • the size and depth of each hole may be different, and the interval (length) between adjacent holes is not particularly limited.
  • the hole shape is preferably a quadrangular (square or rectangular) columnar shape or a forward tapered shape.
  • the aspect ratio ratio between the depth of the hole and the length of one side of the bottom of the hole in the square of the vertical section is usually 1 to 10, preferably Is 1 to 5, more preferably 1 to 4.
  • the said solvent application process is a process of apply
  • the solvent examples include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like.
  • the method for applying the solvent to the substrate is not particularly limited, and examples thereof include an application method such as a spray method and a spin coat method, and an immersion method.
  • the filling rate of the solvent when the solvent is filled in the hole by applying the solvent is not particularly limited.
  • the resin composition coating step is to form a coating film by coating a specific resin composition on the substrate such that the resin composition contacts the solvent in the hole. It is a process to do. In addition, about the said specific resin composition, the detail is demonstrated in a back
  • a method of applying a resin composition having specific physical properties to the substrate is a method in which the resin composition is applied so as to come into contact with the solvent in the hole,
  • the method is not particularly limited, and examples thereof include spin coating, spraying, and bar coating. Of these, spin coating is preferred.
  • the resin composition coating step the solid content concentration, viscosity, etc. of the resin composition are taken into consideration, and the thickness of the film formed on the surface of the substrate is 0.1 to 0.1 by the subsequent drying step. It is preferable to form the coating film so as to fall within the range of 10 ⁇ m.
  • the resin composition application step when the resin composition is applied, a uniform coating film 115 is formed on the surface of the substrate 11, and in the holes, the solvent filled in the solvent application step and the resin A mixture 116 composed of the composition will be accommodated (see FIG. 2C).
  • Step of forming a film the coating film formed by the resin composition coating step is dried and applied to at least the inner wall surface of the inner wall surface 117 and the bottom surface 118 of the hole.
  • This is a step of forming the coatings 117 to 119 containing the resin component, that is, a step of removing only the solvent contained in the coating.
  • the drying temperature is selected in consideration of the boiling point of the solvent filled in the solvent coating step or the boiling point of the mixed solvent contained in the mixture 116 composed of the solvent filled in the solvent coating step and the resin composition.
  • the drying conditions are not particularly limited, but may be performed at a constant temperature, may be performed while raising or lowering the temperature, or may be combined. Also, the pressure may be performed under atmospheric pressure or under vacuum. Furthermore, the atmosphere gas or the like is not particularly limited.
  • the solvent is removed, and a uniform film made of a solid content of the resin composition is formed on the substrate surface including at least the inner wall surface of the hole (see FIG. 2D).
  • a substrate 1 with a film 1 shown in FIG. 2D is formed on a substrate 11 having a hole, a film 119 formed on the entire surface of the substrate 11 other than the hole, and an inner wall surface of the hole.
  • a coating 117 and a coating 118 formed on the bottom surface of the hole are provided. These coatings usually form a continuous phase, but only coatings 117 and 118 may form a continuous phase.
  • the thickness of each coating although the thickness of the coating 119, the thickness of the coating 117 on the inner wall surface of the hole, and the thickness of the coating 118 on the bottom of the hole are usually different, the type of the resin composition, Depending on the solid content concentration, viscosity, etc., the thickness of the coating 117 on the inner wall surface of the hole and the thickness of the coating 118 on the bottom of the hole may be the same or substantially the same.
  • the surface bottom side film removal step removes the film 119 formed on the surface of the substrate 11 and the film 118 formed on the bottom surface of the hole of the substrate 11. This is a step of leaving the coating film 117 formed on the inner wall surface of the hole.
  • the coated substrate 1 shown in FIG. 3A is irradiated with ultraviolet rays, visible rays, far ultraviolet rays, X-rays, electron beams, etc. from above to form a coating formed on the surface of the substrate 11. 119 and the coating 118 formed on the bottom surface of the hole of the substrate 11 are exposed. At this time, the coating 117 formed on the inner wall surface of the hole is not exposed.
  • the exposure amount is appropriately selected depending on the light source to be used, the thickness of the coating, and the like. For example, when a coating with a thickness of about 5 to 50 ⁇ m is irradiated with ultraviolet rays from a high-pressure mercury lamp, a preferable exposure amount is 1,000 to 20,000 J / m 2 .
  • the film 117 formed on the inner wall surface of the hole can be left by treatment with an alkaline solution.
  • an alkaline solution an aqueous solution of sodium hydroxide, potassium hydroxide, ammonia, tetramethylammonium hydroxide, choline, or the like, or an appropriate amount of a water-soluble organic solvent such as methanol or ethanol, or a surfactant is added to this aqueous solution.
  • An added solution or the like can be used.
  • the substrate having the coating 117 only on the inner wall surface of the hole can be obtained by washing with water and drying (see FIG. 3C).
  • the heat-curing step is a step of heating the coating 117 remaining on the inner wall surface of the hole, and by this step, the coating 117 is used as the cured film 217 and a structure having an insulating coating.
  • the body 2 can be obtained (refer FIG.3 (d)).
  • the heating method is not particularly limited, but it is usually preferable that the heating is performed at a temperature in the range of 100 to 250 ° C. for about 30 minutes to 10 hours. You may heat on fixed conditions and may heat in multiple steps.
  • an oven, an infrared furnace, or the like can be used.
  • the structure 2 having an insulating film shown in FIG. 3D includes a substrate 11 having a hole and a cured film 217 formed on the inner wall surface of the hole of the substrate.
  • a structure 2 ′ having an insulating film shown in FIG. 3 (e) includes a substrate 11 having a through hole 22 and a cured film 217 formed on the inner wall surface of the through hole 22.
  • the electronic component of the present invention includes a structure having an insulating film (a structure having a through-hole with an insulating film formed on the inner wall) obtained by the method for producing a structure of the present invention.
  • the structure includes a member including an electrode portion (conductive material filling portion) in which at least a through hole of the structure is filled with a conductive material.
  • a member 3 including a structure 2 ′ shown in FIG. 3E
  • the member 3 will be described.
  • a forming material (conductive material) of the electrode part 311 constituting the member 3 a material selected from copper, silver, tungsten, tantalum, titanium, ruthenium, gold, tin, aluminum, and an alloy containing these, etc. Is used.
  • the electrode portion 311 may have a convex shape protruding from the smooth surface of the substrate 11 or may be flush with the substrate 11. Further, the surface of the electrode portion 311 may be a smooth surface or a rough surface.
  • the structure 2 having an insulating film shown in FIG. 3D is prepared (see FIG. 4A).
  • Cu sputtering or the like is performed on the surface of the structure 2 on the side having the hole, and a copper film (seed layer) 23a having a thickness of 10 to 200 nm is formed on all structures 2 including the inner surface of the hole.
  • a copper film (seed layer) 23a having a thickness of 10 to 200 nm is formed on all structures 2 including the inner surface of the hole.
  • 23b are formed (see FIG. 4B).
  • an insulating resist film 24 is formed by printing or the like on the surface of the copper film 23a other than the inner surface of the hole (see FIG. 4C).
  • Cu filling plating into the holes is performed using an aqueous copper sulfate solution or the like (see FIG. 4D). Thereafter, the insulating resist film 24 is peeled off using a predetermined peeling liquid or the like (see FIG. 4E). Next, the copper film 23a formed on the surface of the substrate 11 is removed by etching using diluted sulfuric acid, diluted hydrochloric acid, or the like (see FIG. 4F). And it grind
  • the member provided with the through electrode may be a member 3 ′ shown in FIG.
  • the member 3 ′ includes a substrate 11 having a conductive material filling portion 311 filled with a conductive material in a through hole penetrating the front and back and having an insulating film 217 formed on the inner wall surface, and the conductive material filling An electrode pad 313 covering at least the lower exposed surface (lower exposed surface in the drawing) of the portion 311.
  • the member 3 ′ in FIG. 5 forms an electrode pad on the lower exposed surface (the lower side in FIG. 4G) of the conductive material filling portion 311 of the member 3 shown in FIG. It can manufacture by the method provided with. Specific methods for this electrode pad forming step include plating, application of a conductive paste, and the like. Other manufacturing methods will be described later.
  • the member 3 ′′ shown in FIG. 6 is an example using the member 3 shown in FIG. 4G or the member 3 ′ shown in FIG.
  • the member 3 ′′ includes an upper member 31 in which electrode pads 313a and 313b are disposed on lower exposed surfaces (lower exposed surfaces in the drawing) of metal copper filling portions (penetrating electrodes) 311a and 311b, and metal
  • the electrode pad of the upper member 31 is formed by using the lower member 32 having the electrode pads 323a and 323b disposed on the lower exposed surfaces (lower exposed surfaces in the drawing) of the copper filling portions (penetrating electrodes) 321a and 321b, respectively.
  • the surface of 313a and the surface of the metal copper filling part (penetration electrode) 321a of the lower member 32 are joined, and the surface of the electrode pad 313b of the upper member 31 and the metal copper filling part (penetration) of the lower member 32 Electrode) is a composite member formed by joining the surface of 321b, and an insulating layer 34 is disposed at the interface between the upper member 31 and the lower member 32 (see FIG. 6).
  • the bonding method of the filling portion (penetrating electrode) 321a and the like is not particularly limited, and examples thereof include a method such as thermocompression bonding (applying pressure while applying heat).
  • the electronic component of the present invention may be provided with a member 3 shown in FIG. 4G, a member 3 ′ shown in FIG. 5, a member 3 ′′ shown in FIG. 7, the electrode pads 323a and 323b of the member 3 ′′ shown in FIG. 6 and the interposer 41 are electrically connected via two bumps 42 arranged on the surface of the interposer 41. Furthermore, bumps 43 are provided on the lower side of the interposer 41 for conducting connection with other members.
  • the electronic component of the present invention is a composite including the above members 3, 3 ′, 3 ′′ and the like, for example, a composite (circuit board, semiconductor) including other members such as another substrate, an interlayer insulating film, and other electrodes. Device, sensor, etc.).
  • the member 3 ′ shown in FIG. 5 has a conductive material layer 313 formed in advance, and a composite substrate in which the bottom surface of the hole is the conductive material layer 313 is used, and FIGS. 4 (b) to (b) in the hole portion having the conductive material layer 313 on the lower side (lower side of FIG. 3 (e)) of the through hole of the member 2 ′ (FIG. 3 (d)) obtained by the process of FIG. It can be manufactured by a method including a step of filling a conductive material by the step f). Furthermore, it can also be manufactured by applying the method for manufacturing a structure having an insulating film of the present invention, using the laminated substrate 6 having the recesses shown in FIG. The laminated substrate 6 shown in FIG.
  • the 8A is made of silicon, various metals, various metal sputtered films, alumina, glass epoxy, paper phenol, glass, etc., and is columnar from one surface to the other (see FIG. 1A). ), Forwardly tapered (see FIG. 1 (b)), reverse tapered (see FIG. 1 (c)) or the like substrate 61 and disposed on one surface of the substrate 61 so as to close the through hole.
  • the conductive material layer 63 is provided.
  • the laminated substrate 6 has a concave portion in which one of the through holes is closed by the conductive material layer 63.
  • the laminated substrate 6 is obtained by cutting a laminated body composed of a flat substrate having no through holes and a conductive material layer so as not to penetrate the conductive material layer from the surface of the flat substrate. It can also be made. Accordingly, the thickness of the substrate 61 is preferably 10 to 200 ⁇ m, more preferably 30 to 120 ⁇ m, still more preferably 50 to 100 ⁇ m. The area of the opening of the recess, the cross-sectional shape, etc. By applying this method in the same manner as the manufacturing method of the structure having a conductive film, the member 3 ′ shown in FIG. 8E, that is, the member 3 ′ shown in FIG. 5 can be manufactured.
  • a method for manufacturing the member 3 ′ shown in FIG. First, a solvent is applied to the surface of the substrate 61 constituting the multilayer substrate 6 (solvent application step), and then a resin composition having specific thixotropic properties as described above is applied (resin composition application step). To form a coating film. Next, the coating film made of the resin composition on the surface of the substrate 61 and the mixture in the recess are dried to remove the solvent, and the surface of the substrate 61, the inner wall surface of the recess, and the recess side of the conductive material layer 63 Films (621, 622, and 623, respectively) are formed on the surface to obtain a film-coated substrate 7 (see FIG. 8B).
  • part of the conductive material layer 63 is removed by etching or the like so as not to penetrate the recess, thereby forming an electrode pad 635 (see FIG. 8D), and copper, silver, tungsten, tantalum, titanium in the recess.
  • the insulating film 625 penetrates the front and back surfaces shown in FIG.
  • At least a substrate 61 having a conductive material filling portion 66 filled with a conductive material and a lower exposed surface (lower side of FIG. 8E) of the conductive material filling portion 66 are covered with the through hole formed with the conductive material.
  • a member 3 ′ having an electrode pad 635 to be obtained can be obtained. Therefore, the electronic component of the present invention can be configured using the member 3 ′ obtained by using the multilayer substrate 6 shown in FIG.
  • Positive photosensitive resin composition contains (A) an alkali-soluble resin, (B) a quinonediazide compound, (C) inorganic particles, and (D) a solvent. Is.
  • Alkali-soluble resin examples include a resin having a phenolic hydroxyl group (hereinafter also referred to as “resin (A1)”); a monomer having a phenolic hydroxyl group and a (meth) acrylic acid ester. Examples thereof include a resin selected from a copolymer obtained by use (hereinafter also referred to as “resin (A2)”); a resin having a carboxyl group (hereinafter also referred to as “resin (A3)”), and the like.
  • the novolak resin obtained by condensing phenols and aldehydes in presence of a catalyst can be used, for example.
  • Phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3- Xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, Catechol, resorcinol, pyrogallol, ⁇ -naphthol, ⁇ -naphthol and the like can be mentioned.
  • aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde and the like.
  • novolak resin examples include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the resin (A1) other than the novolak resin include polyhydroxystyrene, copolymers of hydroxystyrene and other monomers (excluding (meth) acrylic acid and (meth) acrylic acid ester), polyisopropenylphenol , Copolymers of isopropenylphenol and other monomers (excluding (meth) acrylic acid and (meth) acrylic acid ester), phenol / xylylene glycol condensation resin, cresol / xylylene glycol condensation resin, phenol / Examples include dicyclopentadiene condensation resin. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the resin (A2) includes a monomer containing a phenolic hydroxyl group and a (meth) acrylic acid ester and not containing a compound having a carboxyl group such as (meth) acrylic acid. It is the obtained copolymer.
  • the monomer having a phenolic hydroxyl group include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol and the like.
  • Examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and tert-butyl (meth) ) Acrylate, cyclohexyl (meth) acrylate, 2-methylcyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and other (meth) acrylic acid alkyl esters.
  • the hydrogen atom of the alkyl group in these (meth) acrylic acid alkyl esters may be substituted with a hydroxyl group.
  • a compound having a polymerizable unsaturated bond may be used as another monomer.
  • Other monomers include styrene, ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, ethyl styrene, vinyl xylene, o-methoxy styrene, m-methoxy styrene, p-methoxy styrene.
  • Aromatic vinyl compounds such as: maleic anhydride, unsaturated acid anhydrides such as citraconic anhydride; esters of the unsaturated carboxylic acids; (meth) acrylonitrile, maleinonitrile, fumaronitrile, mesaconitrile, citraconic nitrile, itacon nitrile, etc.
  • Unsaturated amides such as (meth) acrylamide, crotonamide, maleinamide, fumaramide, mesaconamide, citraconamide, itaconamide and the like; unsaturated imides such as maleimide, N-phenylmaleimide and N-cyclohexylmaleimide; Meth) unsaturated alcohols such as allyl alcohol; N- vinyl aniline, vinyl pyridine, N- vinyl - ⁇ - caprolactam, N- vinyl pyrrolidone, N- vinylimidazole, N- vinylcarbazole, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the resin (A3) may be a homopolymer or a copolymer, and is usually obtained using a monomer containing a compound having a carboxyl group (hereinafter referred to as “monomer (m)”). It is a polymer.
  • monomer (m) (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, mesaconic acid, citraconic acid, itaconic acid, 4-vinylbenzoic acid and other unsaturated carboxylic acids or unsaturated dicarboxylic acids
  • a monoester of an unsaturated dicarboxylic acid may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the resin (A3) include the following. [1] a copolymer obtained by using a monomer (m) and a monomer having a phenolic hydroxyl group [2] a monomer (m), a monomer having a phenolic hydroxyl group, Copolymer [3] monomer (m) obtained using (meth) acrylic acid ester, monomer having phenolic hydroxyl group, aromatic vinyl compound, (meth) acrylic acid ester, Copolymer [4] Monomer (m) obtained by using a monomer [m], an aromatic vinyl compound, and a copolymer [5] monomer (m) obtained by using a (meth) acrylic ester.
  • the monomer which has a phenolic hydroxyl group (meth) acrylic acid ester, and an aromatic vinyl compound.
  • the conjugated diolefin include 1,3-butadiene, isoprene, 1,4-dimethylbutadiene and the like.
  • the fatty acid vinyl compound include vinyl acetate and vinyl crotonic acid.
  • the alkali-soluble resin (A) may be a single polymer or a combination of two or more polymers.
  • a resin having a phenolic hydroxyl group is preferably contained, and in particular, a novolac resin and a copolymer obtained using hydroxystyrene are preferred.
  • the weight average molecular weight of the alkali-soluble resin (A) can be measured by GPC (gel permeation chromatography), and is preferably 2000 or more, more preferably about 2000 to 50000. Within this range, the cured film obtained is excellent in mechanical properties, heat resistance and electrical insulation.
  • the content of the alkali-soluble resin (A) is preferably 20 to 90% by mass, more preferably 20 to 80% when the solid content in the positive photosensitive resin composition is 100% by mass. % By mass, more preferably 30 to 70% by mass. When this content ratio is in the above range, the alkali solubility is excellent, and the obtained cured film has excellent mechanical properties, heat resistance, and electrical insulation.
  • phenolic low molecular weight compounds other than the said alkali-soluble resin (A) can be used together.
  • the phenolic low molecular weight compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- Phenylethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4
  • the content of the phenolic low molecular compound is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and still more preferably 100 parts by mass of the alkali-soluble resin (A). 3 to 10 parts by mass.
  • this content ratio is in the above range, the alkali solubility can be improved without impairing the heat resistance of the resulting cured product.
  • the quinonediazide compound (B) is a 1,2-naphthoquinone-2-diazide-5-sulfonic acid ester or a 1,2-naphthoquinone-2-diazide-4-sulfonic acid ester of a phenol compound.
  • the phenol compound is not particularly limited as long as it is a compound having at least one phenolic hydroxyl group, but compounds represented by the following general formulas (1) to (5) are preferable.
  • X 1 to X 10 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 1 to X 5 is a hydroxyl group.
  • A is a single bond, O, S, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , C ⁇ O, or SO 2 . ]
  • X 11 to X 24 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 11 to X 15 is a hydroxyl group.
  • R 1 to R 4 may be the same or different from each other, and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 25 to X 39 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 25 to X 29 and at least one of X 30 to X 34 are hydroxyl groups.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 40 to X 58 may be the same as or different from each other, and each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 40 to X 44 , at least one of X 45 to X 49 , and at least one of X 50 to X 54 is a hydroxyl group.
  • R 6 to R 8 may be the same or different from each other, and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 59 to X 72 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 59 to X 62 and at least one of X 63 to X 67 are hydroxyl groups.
  • phenol compound examples include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3,4 , 2 ′, 4′-pentahydroxybenzophenone, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,3- Bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 4,6-bis [1- (4 -Hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxy Eniru) -1- [4- [1- (4-hydroxyphenyl)
  • quinonediazide compounds (B) may be used individually by 1 type and may be used in combination of 2 or more type. Therefore, as the quinonediazide compound (B), at least one selected from these phenol compounds is reacted with 1,2-naphthoquinonediazide-4-sulfonic acid or 1,2-naphthoquinonediazide-5-sulfonic acid. The esterified product obtained in this manner may be used alone or in combination of two or more.
  • the content of the quinonediazide compound (B) is preferably 10 to 100 parts by weight, more preferably 10 to 50 parts by weight, and still more preferably, based on 100 parts by weight of the alkali-soluble resin (A). 15 to 50 parts by mass.
  • this content ratio is in the above range, the difference in solubility between the exposed part and the unexposed part is large, and the alkali solubility is excellent.
  • Inorganic particles (C) examples include silica (colloidal silica, aerosil, glass, etc.), alumina, titania, zirconia, ceria, zinc oxide, copper oxide, lead oxide, yttrium oxide, tin oxide, indium oxide, magnesium oxide, and the like. Can be mentioned.
  • the surface of the inorganic particles may be modified with a functional group or the like in order to increase the affinity or compatibility with the alkali-soluble resin (A).
  • the shape of the inorganic particles is not particularly limited, and may be spherical, elliptical, flat, rod-like, fiber-like, or the like.
  • the average particle size of the inorganic particles is 1 to 500 nm, preferably 5 to 200 nm, more preferably 10 to 100 nm. When the average particle size of the inorganic particles is in the above range, the transparency to radiation, alkali solubility, and the like are excellent.
  • the said inorganic particle may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Silica is preferable as the inorganic particles because of ease of control of thixotropic properties. In particular, silica partially hydrophobized (hereinafter also referred to as “hydrophobized silica”) is preferable.
  • the example of a manufacturing method of the said hydrophobic silica is shown below.
  • Methanol is added to the aqueous silica sol, and the solvent is replaced with methanol using an ultrafilter. Thereafter, a hydrophobizing agent such as trimethylmethoxysilane and hexamethyldisilazane and propylene glycol monomethyl ether are added, and methanol is distilled off to obtain a desired hydrophobized silica.
  • the hydrophobicity of the hydrophobized silica is preferably 20 to 80%, more preferably 30 to 70%, and still more preferably 40 to 70%.
  • the hydrophobization rate of silica in the resin composition was determined by the following equation after measuring the number of silanol groups on the silica surface before and after hydrophobization by a neutralization titration method using a 0.1N sodium hydroxide aqueous solution. Value.
  • Hydrophobization rate (%) (number of silanol groups after hydrophobization / number of silanol groups before hydrophobization) ⁇ 100
  • the average particle diameter is preferably 1 to 100 nm, more preferably 5 to 80 nm, and still more preferably 10 to 50 nm.
  • the average particle diameter is a value measured by diluting a dispersion of silica particles according to a conventional method using a light scattering flow distribution measuring device (manufactured by Otsuka Electronics Co., Ltd., model number “LPA-3000”). The average particle diameter can be controlled by the dispersion conditions of the silica particles.
  • the sodium content in the said hydrophobic silica is 1 ppm or less, More preferably, it is 0.5 ppm or less, More preferably, it is 0.1 ppm or less.
  • the sodium content in the obtained resin composition can be 1 ppm or less.
  • the sodium content in the hydrophobized silica can be measured by an atomic absorption spectrometer (manufactured by Perkinelmer, model number “Z5100”) or the like.
  • the content of the inorganic particles (C) is preferably 10 to 200 parts by weight, more preferably 50 to 200 parts by weight, and still more preferably, when the alkali-soluble resin (A) is 100 parts by weight. 70 to 150 parts by mass.
  • this content ratio is in the above range, it has suitable thixotropic properties, and a uniform film can be formed on the inner wall surface of the hole.
  • the content of the hydrophobic silica exceeds 20% by mass when the total solid content in the resin composition is 100% by mass, It is preferable that it is 60 mass% or less, More preferably, it is 30 mass% or more and 60 mass% or less, More preferably, it is 30 mass% or more and 50 mass% or less. When this content ratio exceeds 20 mass% and is 60 mass% or less, sufficient thixotropy can be obtained, and a uniform film can be formed on the inner wall surface of the hole.
  • This resin composition contains carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; phosphates such as calcium phosphate and magnesium phosphate; carbides; other inorganic particles such as nitrides. You may contain.
  • the solvent (D) which comprises the said resin composition is not specifically limited, What was illustrated in the solvent application
  • the solvent (D) may be the same as or different from the solvent used in the solvent application step.
  • the content of the solvent is such that the solid content concentration of the resin composition is usually 5 to 80% by mass, preferably 10 to 60% by mass, and more preferably 25 to 60% by mass.
  • the positive photosensitive resin composition in the present invention may contain a crosslinking agent (E).
  • a crosslinking agent (E) what contains the compound (E1) which has an alkyl etherified amino group, and aliphatic polyglycidyl ether (E2) is mentioned.
  • the compound (E1) having an alkyl etherified amino group an active methylol group in a nitrogen compound such as (poly) methylol melamine, (poly) methylol glycoluril, (poly) methylol benzoguanamine, (poly) methylol urea, etc.
  • a compound in which all or a part (at least two) of (CH 2 OH groups) is alkyl etherified can be used.
  • the alkyl group constituting the alkyl ether include a methyl group, an ethyl group, and a butyl group, and the plurality of alkyl groups may be the same as or different from each other.
  • the methylol group that is not alkyletherified may be self-condensed within one molecule, or may be condensed between two molecules, and as a result, an oligomer component may be formed.
  • hexamethoxymethyl melamine hexabutoxymethyl melamine
  • tetramethoxymethyl glycoluril tetrabutoxymethyl glycoluril and the like.
  • these may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the aliphatic polyglycidyl ether (E2) include pentaerythritol glycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, neopentyl glycol diglycidyl ether, ethylene / polyethylene glycol diglycidyl ether, and propylene / polypropylene glycol. Examples thereof include diglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • the crosslinking agent (E) is an epoxy group-containing compound, a phenol compound having an aldehyde group, a phenol compound having a methylol group, a thiirane ring-containing compound, an oxetanyl group-containing compound.
  • An isocyanate group-containing compound (including a blocked compound) and the like may be included.
  • the epoxy group-containing compound include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol type epoxy resins, trisphenol type epoxy resins, tetraphenol type epoxy resins, phenol-xylylene type epoxy resins, and naphthol-xylylene types.
  • epoxy resin examples thereof include an epoxy resin, a phenol-naphthol type epoxy resin, a phenol-dicyclopentadiene type epoxy resin, an alicyclic epoxy resin, an aromatic epoxy resin, an aliphatic epoxy resin, and an epoxycyclohexene resin.
  • epoxy group containing compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the phenol compound having an aldehyde group include o-hydroxybenzaldehyde.
  • Examples of the phenol compound having a methylol group include 2,6-bis (hydroxymethyl) -p-cresol.
  • the content of the crosslinking agent (E) is preferably 1 to 100 parts by mass, more preferably 10 to 75 parts by mass, and still more preferably, when the alkali-soluble resin (A) is 100 parts by mass. 10 to 50 parts by mass. When this content ratio is in the above range, the alkali solubility is excellent, and the obtained cured film has excellent mechanical properties, heat resistance, and electrical insulation.
  • the crosslinking agent (E) is 100 parts by mass
  • the total content of the compound (E1) having an alkyl etherified amino group and the aliphatic polyglycidyl ether (E2) is 25 to 100 parts by mass. Parts, preferably 50 to 100 parts by mass, more preferably 75 to 100 parts by mass.
  • the positive photosensitive resin composition in the present invention may contain crosslinked polymer particles (F) in addition to the components (A) to (E).
  • the cross-linked polymer particles (F) include a monomer homopolymer or copolymer containing a cross-linkable compound having two or more polymerizable unsaturated bonds (hereinafter referred to as “cross-linkable monomer”). Can be used.
  • crosslinkable monomer examples include divinylbenzene, diallyl phthalate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol Examples include di (meth) acrylate and polypropylene glycol di (meth) acrylate. Of these, divinylbenzene is preferred. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • the other monomer to be polymerized with the crosslinking monomer is not particularly limited, but includes a hydroxyl group, a carboxyl group, a nitrile group, an amide group, an amino group,
  • An unsaturated compound having one or more functional groups such as an epoxy group; urethane (meth) acrylate; aromatic vinyl compound; (meth) acrylic acid ester; diene compound and the like can be used. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the crosslinked polymer particles include a copolymer (f1) composed of the crosslinking monomer, an unsaturated compound having a hydroxyl group and / or an unsaturated compound having a carboxyl group, and the crosslinking monomer. And a copolymer (f2) comprising an unsaturated compound having a hydroxyl group and / or an unsaturated compound having a carboxyl group and another monomer is preferred, and the copolymer (f2) is particularly preferred.
  • Examples of the unsaturated compound having a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and the like.
  • Examples of unsaturated compounds having a carboxyl group include (meth) acrylic acid, itaconic acid, succinic acid- ⁇ - (meth) acryloxyethyl, maleic acid- ⁇ - (meth) acryloxyethyl, phthalic acid- ⁇ - (meta ) Acryloxyethyl, hexahydrophthalic acid- ⁇ - (meth) acryloxyethyl, and the like.
  • unsaturated compounds having a nitrile group include (meth) acrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -chloromethylacrylonitrile, ⁇ -methoxyacrylonitrile. , ⁇ -ethoxyacrylonitrile, crotonate nitrile, cinnamic nitrile, itaconic dinitrile, maleic dinitrile, fumarate dinitrile and the like.
  • Examples of unsaturated compounds having an amide group include (meth) acrylamide, dimethyl (meth) acrylamide, N, N′-methylenebis (meth) acrylamide, N, N′-ethylenebis (meth) acrylamide, N, N′-hexa Methylenebis (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N, N-bis (2-hydroxyethyl) (meth) acrylamide, crotonic acid amide, silica Examples thereof include cinnamate amides.
  • Examples of the unsaturated compound having an amino group include dimethylamino (meth) acrylate and diethylamino (meth) acrylate.
  • Examples of unsaturated compounds having an epoxy group include glycidyl (meth) acrylate, (meth) allyl glycidyl ether, diglycidyl ether of bisphenol A, diglycidyl ether of glycol, (meth) acrylic acid, hydroxyalkyl (meth) acrylate, etc. And epoxy (meth) acrylate obtained by the reaction.
  • Examples of the urethane (meth) acrylate include compounds obtained by reaction of hydroxyalkyl (meth) acrylate and polyisocyanate.
  • Examples of the aromatic vinyl compound include styrene, ⁇ -methylstyrene, o-methoxystyrene, p-hydroxystyrene, p-isopropenylphenol and the like.
  • (Meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, and lauryl (meth) acrylate.
  • polyethylene glycol (meth) acrylate Polypropylene glycol (meth) acrylate and the like.
  • diene compound examples include butadiene, isoprene, dimethylbutadiene, chloroprene, 1,3-pentadiene, and the like.
  • the unit amount (f21) made of a crosslinkable monomer, the unit made of an unsaturated compound having a hydroxyl group, and / or the unsaturated compound having a carboxyl group
  • the total amount (f22) of units consisting of, and the unit amount (f23) consisting of other monomers are the total of unit amounts constituting the copolymer (f2), that is, (f21), (f22) and
  • the sum of (f23) is 100 mol%, it is preferably 0.1 to 10 mol%, 5 to 50 mol%, and 40 to 94.9 mol%, more preferably 0.5 to 7 mol%, and 6 to 45 mol%, respectively.
  • the crosslinked polymer particles may be rubber or resin, and the glass transition temperature (Tg) is not particularly limited.
  • Tg glass transition temperature
  • Preferable Tg is 20 ° C. or lower, more preferably 10 ° C. or lower, and still more preferably 0 ° C. or lower.
  • the lower limit is usually ⁇ 70 ° C. or higher.
  • the crosslinked polymer particles are in the form of particles, and the average particle size is preferably 30 to 100 nm, more preferably 40 to 90 nm, and still more preferably 50 to 80 nm.
  • the average particle diameter of the crosslinked polymer particles is in the above range, the compatibility with the alkali-soluble resin, the alkali solubility, and the like are excellent.
  • the average particle diameter is a value measured by diluting a dispersion of crosslinked polymer particles according to a conventional method using a light scattering flow distribution measuring device “LPA-3000” (manufactured by Otsuka Electronics Co., Ltd.).
  • the content of the cross-linked polymer particles (F) is preferably 1 to 100 parts by mass, more preferably 5 to 80 parts by mass, with 100 parts by mass of the alkali-soluble resin (A).
  • the amount is preferably 5 to 50 parts by mass.
  • the positive photosensitive resin composition in the present invention may contain other additives.
  • the other additives include adhesion assistants and surfactants.
  • a functional silane coupling agent is preferably used as the adhesion aid.
  • the silane coupling agent which has reactive substituents, such as a carboxyl group, a methacryloyl group, an isocyanate group, an epoxy group, is mentioned.
  • trimethoxysilylbenzoic acid ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 1,3,5-N-tris (trimethoxysilylpropyl) isocyanurate and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content ratio of the adhesion assistant is preferably 0.5 to 10 parts by mass, more preferably 0.5 to 5 parts by mass when the alkali-soluble resin (A) is 100 parts by mass. .
  • this content ratio is in the above range, the adhesion of the cured product obtained by curing the resin composition to the substrate is improved.
  • surfactant examples include, for example, “BM-1000” and “BM-1100” manufactured by BM Chemie; “Megafac F142D”, “Same F172” and “Same F173” manufactured by Dainippon Ink and Chemicals, Inc. “Same F183”; “Florard FC-135”, “Same FC-170C”, “Same FC-430”, “Same FC-431” manufactured by Sumitomo 3M; “Surflon S-112” manufactured by Asahi Glass Co., Ltd.
  • the positive photosensitive resin composition in the present invention usually has a viscosity V1 (mPa ⁇ s) at a shear rate of 6 rpm and a viscosity V2 (mPa ⁇ s) at a shear rate of 60 rpm.
  • V1 / V2) is preferably 1.1 or more, more preferably 1.1 to 10.0, still more preferably 1.2 to 8.0, and particularly preferably 1.3 to 5 .0 range. When this ratio (V1 / V2) is in the above range, a film having excellent film-forming properties for at least the inner wall surface and the inner wall surface of the hole can be obtained.
  • the solid content concentration of the resin composition is preferably 5 to 80% by mass, more preferably 20 to 60% by mass.
  • the viscosity V1 when the solid content concentration of the resin composition is in the range of 5 to 80% by mass is preferably 10 to 10,000 mPa ⁇ s, more preferably 20 to 7,000 mPa ⁇ s, and still more preferably. 50 to 5,000 mPa ⁇ s.
  • this viscosity is in the above-mentioned range, it is excellent in film-forming properties for at least the inner wall surface of the hole and the bottom wall surface, and a more uniform film can be obtained.
  • the ratio (V1 / V2) of the viscosity V1 (mPa ⁇ s) at a shear rate of 6 rpm and the viscosity V2 (mPa ⁇ s) at a shear rate of 60 rpm is 1.1 or more.
  • the resin composition has a ratio (V3 / s) of a viscosity V3 (mPa ⁇ s) at a shear rate of 1.5 rpm and a viscosity V4 (mPa ⁇ s) at a shear rate of 600 rpm.
  • V4 is preferably 2.0 or more.
  • a more preferred ratio (V3 / V4) is in the range of 2.0 to 80, more preferably 2.0 to 50, and particularly preferably 3.0 to 50.
  • the viscosity is a value measured at a temperature of 25 ° C. while increasing the shear rate from, for example, 1 rpm to 1,000 rpm.
  • Example 1 (1) Preparation of resin composition Alkali-soluble resin (A) [phenol resin (trade name “Sumilite Resin S-2”, manufactured by Sumitomo Bakelite Co., Ltd.)] 100 parts by mass, crosslinking agent (E1) [melamine crosslinking agent (product Name “Cymel 300” manufactured by Mitsui Cytec)] 30 parts by mass, crosslinking agent (E2) [(trade name “Denacol EX-610U” manufactured by Nagase ChemteX)]] 10 parts by mass, inorganic particles (C) [silica Particles (trade name “PL-2L-PGME”, manufactured by Fuso Chemical Co., Ltd., average particle size: 10 to 20 nm, sodium content: 0.02 ppm)] 100 parts by mass, and 1,1- as quinonediazide compound (B) Bis (4-hydroxyphenyl) -1- [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] e
  • FIG. 10 shows a cross-sectional photograph taken with an electron microscope. When the thickness of the coating was measured, it was 9.0 ⁇ m on the inner wall surface and 5.8 ⁇ m on the bottom surface (see Table 1). When the film forming property on the inner surface of the hole was visually observed, it was uniform.
  • Examples 2 to 5 and Comparative Examples 1 to 4 (1) Preparation of resin composition (Example 2) As shown in Table 1, (A) 100 parts by mass of alkali-soluble resin (A-1), (B) 20 parts by mass of quinonediazide compound (B-1), (C) 70 parts by mass of inorganic particles (C-1), ( E) 20 parts by mass of crosslinking agent (E-1) and 10 parts by mass of (E-2), (F) 15 parts by mass of crosslinked polymer particles (F-1), (G) adhesion aid (G-1) 2 .5 parts by mass and (H) 0.1 part by mass of surfactant (H-1) were dissolved in 210 parts by mass of (D) solvent (D-1) so that the solid content concentration was 47% by mass. Thus, a resin composition was prepared.
  • A 100 parts by mass of alkali-soluble resin (A-1), (B) 20 parts by mass of quinonediazide compound (B-1), (C) 70 parts by mass of inorganic particles (C-1), ( E)
  • Example 2 Preparation of resin composition (Examples 3 to 5 and Comparative Examples 1 to 4) As in Example 2, as shown in Table 1, (A) alkali-soluble resin, (B) quinonediazide compound, (C) inorganic particles, (E) cross-linking agent, (F) cross-linked polymer particles, (G) Each resin composition was prepared by dissolving the adhesion assistant and (H) surfactant in (D) solvent so that the solid content concentration was 47% by mass.
  • composition described in Table 1 is as follows.
  • B-1 1,1-bis (4-hydroxyphenyl) -1- [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] ethane and 1,2-naphthoquinonediazide-5 2.0 molar condensate with sulfonic acid
  • C-1 Trade name “Quarton PL-2L” (manufactured by Fuso Chemical Industries, hydrophobized product (hydrophobization rate: 50%), average particle size: 20 nm, sodium content: 0.02 ppm)
  • D-1 Trade name “Quarton PL-2L” (manufactured by Fuso Chemical Industries, hydrophobized product (hydro
  • each hydrophobization rate in the said (C) inorganic particle (silica) is the value measured as follows.
  • ⁇ Hydrophobicization rate> 30 g of sodium chloride was dissolved in 150 mL of a 10% aqueous dispersion of silica, and adjusted with 1N hydrochloric acid so as to have a pH of 4. Subsequently, 0.1N sodium hydroxide aqueous solution was dripped until it became pH9. Then, the number of silanol groups on the silica surface was determined by the following formula.
  • the resin composition was spin-coated (first stage; 300 rpm, 10 seconds, second stage; 600 rpm, 20 seconds) to form a coating film on the surface of the stepped Si substrate including the solvent surface in the hole.
  • the coated Si substrate is allowed to stand on a hot plate having a temperature of 110 ° C. for 3 minutes, and the solvent is volatilized to form a coating on the surface of the Si substrate and the inner wall surface and bottom surface of the hole.
  • a substrate was obtained [see FIG. 2 (d)]. And the cross-sectional shape of the hole part was observed with the electron microscope, and the film formation property was evaluated on the following references
  • The shoulder of the surface opening is completely covered with the coating, and the thickness of the coating on the inner wall surface and bottom surface of the hole is substantially constant (see FIG. 11).
  • The shoulder of the surface opening is completely covered with the coating, but the film thickness on the inner wall surface and the bottom surface of the hole is not substantially constant (see FIG. 12).
  • X When the shoulder of the surface opening is not completely covered by the coating, or when the hole is completely filled (see FIG. 13)
  • This substrate was subjected to a resistance test using a thermal shock tester (manufactured by Tabai Espec, model number “TSA-40L”) at ⁇ 65 ° C./30 minutes to 150 ° C./30 minutes as one cycle. After this treatment, it was observed at a magnification of 200 times using a microscope, and the number of cycles until a defect such as a crack occurred in the cured film was confirmed every 100 cycles.
  • a thermal shock tester manufactured by Tabai Espec, model number “TSA-40L”
  • the resin composition was applied to the SUS substrate by a spin coater (model number “1H-360S”, manufactured by MIKASA). Then, it heated for 3 minutes at 110 degreeC using the hotplate, and formed the uniform thin film with a film thickness of 10 micrometers. Subsequently, it heated at 170 degreeC for 2 hours using the convection type oven, and the test piece (insulating layer) was obtained. The obtained test piece was treated for 168 hours under the conditions of temperature: 121 ° C., humidity: 100%, pressure: 2.1 atm using a pressure cooker test apparatus (manufactured by Tabai Espec). The volume resistivity ( ⁇ ⁇ cm) between the layers before and after the treatment was measured and used as an index of electrical insulation.
  • the resin composition was spin-coated on a 6-inch silicon wafer and heated at 110 ° C. for 5 minutes using a hot plate to produce a uniform resin film having a thickness of 10 ⁇ m. Then, using an aligner (manufactured by Suss Microtec, model number “MA-150”), UV light from a high-pressure mercury lamp was exposed through a pattern mask so that the exposure amount at a wavelength of 350 nm was 6000 J / m 2 . Next, immersion development was performed at 23 ° C. for 3 minutes using an aqueous 2.38 mass% tetramethylammonium hydroxide solution. And the minimum dimension of the obtained pattern was made into the resolution.

Abstract

Disclosed is a structure comprising a uniform insulating coating film having excellent electrical insulation and thermal shock resistance.  A method for producing the structure, a positive photosensitive resin composition with excellent resolution which can form an insulating coating film, and an electronic device are also disclosed.  The method for producing a structure having an insulating coating film comprises a solvent application step wherein a solvent is applied over a substrate having a pore; a resin composition coating step wherein a positive photosensitive resin composition is coated over the substrate in such a manner that the resin composition is brought into contact with the solvent in the pore; a step wherein the coated composition is dried so that coating films (117, 118, 119) containing the resin component are formed on at least the inner wall surface among the inner wall surface and bottom surface of the pore; a top/bottom surface coating film removal step wherein a certain region of the coating film formed on the top surface of the substrate is exposed to light and subjected to a process using an alkaline solution, thereby having the coating film (117) formed on the inner wall surface of the pore remain thereon; and a heating/curing step wherein the coating film (117) remaining on the inner wall surface of the pore is heated.

Description

絶縁性被膜を有する構造体及びその製造方法、ポジ型感光性樹脂組成物並びに電子部品Structure having insulating film and method for producing the same, positive photosensitive resin composition, and electronic component
 本発明は、絶縁性被膜を有する構造体及びその製造方法、ポジ型感光性樹脂組成物並びに電子部品に関する。更に詳しくは、本発明は、電気絶縁性、熱衝撃性に優れる均一な絶縁性被膜を有する構造体及びその製造方法、絶縁性被膜を形成することができ且つ解像性に優れるポジ型感光性樹脂組成物、並びに電子部品に関する。 The present invention relates to a structure having an insulating coating, a method for producing the structure, a positive photosensitive resin composition, and an electronic component. More specifically, the present invention relates to a structure having a uniform insulating film excellent in electrical insulation and thermal shock, a method for producing the structure, and a positive photosensitive film which can form an insulating film and has excellent resolution. The present invention relates to a resin composition and an electronic component.
 従来、スルーホール用の孔、ビアの内壁面及び基板両面に金属導体層が形成された絶縁基板を、粘度が20~200mPa・s、表面張力が30mN/m以下、且つ、チキソトロピー性値が1.0~3.0の感光性レジスト液中に浸漬し、引き上げることにより、少なくともスルーホールの内壁面に絶縁性被膜を形成する方法が開示されている(特許文献1参照)。このスルーホールに金属銅等を充填することにより、貫通電極を形成することが可能である。
 また、非特許文献1には、上下に貫通したシリコンチップと、貫通孔に金属銅が充填された貫通電極が開示されている。その製造方法は、ドライエッチングによりシリコンウェハに深い孔を形成する工程、CVD法により孔の内壁にSiO膜を形成する工程、電解銅メッキにより孔内を金属銅で満たす工程、ウェハの裏側から研磨する工程等を備えている。
Conventionally, an insulating substrate having through holes, via inner wall surfaces, and metal conductor layers formed on both sides of a substrate has a viscosity of 20 to 200 mPa · s, a surface tension of 30 mN / m or less, and a thixotropic value of 1. A method is disclosed in which an insulating film is formed at least on the inner wall surface of a through hole by dipping in a photosensitive resist solution of 0.0 to 3.0 and pulling up (see Patent Document 1). A through electrode can be formed by filling the through hole with metallic copper or the like.
Non-Patent Document 1 discloses a silicon chip penetrating vertically and a penetrating electrode having a through hole filled with metallic copper. The manufacturing method includes a step of forming a deep hole in a silicon wafer by dry etching, a step of forming a SiO 2 film on the inner wall of the hole by a CVD method, a step of filling the inside of the hole with metal copper by electrolytic copper plating, and from the back side of the wafer. A polishing process and the like are provided.
特開2005-158907号公報JP 2005-158907 A
 特許文献1に開示されている感光性樹脂組成物によると、スルーホール用の内壁面に、被膜を形成することは可能であるが、貫通孔ではなく、開口部の面積が小さい微細孔(以下、「孔部」という。)の内壁面に被膜を形成しようとすると、組成物の沈降が発生し、孔部が組成物により充填されてしまうといった問題があった。
 また、スルーホールの内壁面に形成される絶縁性被膜には、電気絶縁性に優れ、且つ高温・高湿下で絶縁性被膜にクラックが発生せず、熱衝撃製に優れていることが求められている。
 更に、上記絶縁性被膜を形成するための樹脂組成物においては、解像性に優れていることが求められている。
According to the photosensitive resin composition disclosed in Patent Document 1, it is possible to form a film on the inner wall surface for a through hole, but it is not a through-hole but a micro-hole (hereinafter referred to as an opening) having a small opening area. When the film is formed on the inner wall surface of the "hole part"), there is a problem in that sedimentation of the composition occurs and the hole part is filled with the composition.
Also, the insulating film formed on the inner wall surface of the through-hole must have excellent electrical insulation and excellent thermal shock resistance without cracking in the insulating film under high temperature and high humidity. It has been.
Furthermore, the resin composition for forming the insulating film is required to have excellent resolution.
 本発明は、電気絶縁性、熱衝撃性に優れる均一な絶縁性被膜を有する構造体及びその製造方法、絶縁性被膜を形成することができ且つ解像性に優れるポジ型感光性樹脂組成物、並びに電子部品を提供することを目的とする。 The present invention relates to a structure having a uniform insulating film excellent in electrical insulation and thermal shock, a method for producing the structure, a positive photosensitive resin composition that can form an insulating film and is excellent in resolution, An object is to provide an electronic component.
 本発明者らは、前記問題点を解決すべく鋭意研究した結果、優れた製膜性を有する組成物を用い、電気絶縁性、熱衝撃性に優れる均一な絶縁性被膜を有する構造体及びその製造方法、該絶縁性被膜を形成することができ且つ解像性に優れるポジ型感光性樹脂組成物、並びに電子部品を見出すに至った。 As a result of intensive studies to solve the above problems, the present inventors have used a composition having excellent film forming properties, and have a structure having a uniform insulating film excellent in electrical insulation and thermal shock resistance, and its structure The present inventors have found a manufacturing method, a positive photosensitive resin composition capable of forming the insulating coating and having excellent resolution, and an electronic component.
 本発明は、以下の通りである。
 [1]開口部の面積が25~10,000μmであり、深さが10~200μmであり且つアスペクト比が1~10である孔部を有する基板に、溶剤を塗布する溶剤塗布工程と、
 下記に示す(A)~(D)を含有するポジ型感光性樹脂組成物を、該ポジ型感光性樹脂組成物が上記孔部内の上記溶剤と接触するように、上記基板に塗布する樹脂組成物塗布工程と、
 塗膜を乾燥し、上記孔部の内壁面及び底面のうちの少なくとも該内壁面に上記樹脂成分を含む被膜を形成する工程と、
 上記基板の表面に形成されている被膜の所定領域を露光し、アルカリ性溶液を用いて処理し、上記孔部の内壁面に形成されている被膜を残存させる表底面側被膜除去工程と、
 上記孔部の内壁面に残存している被膜を加熱する加熱硬化工程と、を備えることを特徴とする絶縁性被膜を有する構造体の製造方法。
 (A)アルカリ可溶性樹脂、
 (B)キノンジアジド化合物、
 (C)無機粒子
 (D)溶剤
 [2]上記ポジ型感光性樹脂組成物が、更に、(E)アルキルエーテル化されたアミノ基を有する化合物(E1)と、脂肪族ポリグリシジルエーテル(E2)と、を含有する架橋剤を含有する上記[1]に記載の絶縁性被膜を有する構造体の製造方法。
 [3]上記ポジ型感光性樹脂組成物が、更に、(F)架橋重合体粒子を含有する上記[1]又は[2]に記載の絶縁性被膜を有する構造体の製造方法。
 [4]更に、上記絶縁性被膜を有する貫通孔を備える構造体における上記孔部を有さない面から基板を研磨し、該孔部を貫通孔とする研磨工程を備える上記[1]乃至[3]のいずれかに記載の絶縁性被膜を有する構造体の製造方法。
 [5]上記[1]乃至[4]のいずれかに記載の方法により得られたことを特徴とする絶縁性被膜を有する構造体。
 [6]上記[4]に記載の方法により得られた絶縁性被膜を有する貫通孔を備える構造体と、該構造体の少なくとも貫通孔内に導電材料が充填されてなる電極部とを含む部材を備えることを特徴とする電子部品。
 [7]開口部の面積が25~10,000μmであり、深さが10~200μmであり且つアスペクト比が1~10である孔部を有する基板に、溶剤を塗布する溶剤塗布工程と、
 ポジ型感光性樹脂組成物を、該ポジ型感光性樹脂組成物が上記孔部内の上記溶剤と接触するように、上記基板に塗布する樹脂組成物塗布工程と、
 塗膜を乾燥し、上記孔部の内壁面及び底面のうちの少なくとも該内壁面に上記樹脂成分を含む被膜を形成する工程と、
 上記基板の表面に形成されている被膜の所定領域を露光し、アルカリ性溶液を用いて処理し、上記孔部の内壁面に形成されている被膜を残存させる表底面側被膜除去工程と、
 上記孔部の内壁面に残存している被膜を加熱する加熱硬化工程と、を備える絶縁性被膜を有する構造体の製造方法において用いられるポジ型感光性樹脂組成物であって、
 (A)アルカリ可溶性樹脂と、(B)キノンジアジド化合物と、(C)無機粒子と、(D)溶剤と、を含有することを特徴とするポジ型感光性樹脂組成物。
 [8]更に、(E)アルキルエーテル化されたアミノ基を有する化合物(E1)と、脂肪族ポリグリシジルエーテル(E2)と、を含有する架橋剤を含有する上記[7]に記載のポジ型感光性樹脂組成物。
 [9]更に、(F)架橋重合体粒子を含有する上記[7]又は[8]に記載のポジ型感光性樹脂組成物。
The present invention is as follows.
[1] A solvent application step of applying a solvent to a substrate having a hole having an opening area of 25 to 10,000 μm 2 , a depth of 10 to 200 μm, and an aspect ratio of 1 to 10;
Resin composition for coating a positive photosensitive resin composition containing the following (A) to (D) on the substrate so that the positive photosensitive resin composition is in contact with the solvent in the hole. An object application process;
Drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and bottom surface of the hole; and
Exposing a predetermined region of the film formed on the surface of the substrate, treating with an alkaline solution, and leaving a film formed on the inner wall surface of the hole to leave the film on the bottom surface side;
And a heat curing step for heating the coating film remaining on the inner wall surface of the hole. A method for producing a structure having an insulating coating film.
(A) an alkali-soluble resin,
(B) a quinonediazide compound,
(C) Inorganic particles (D) Solvent [2] The positive photosensitive resin composition further comprises (E) a compound (E1) having an alkyl etherified amino group, and an aliphatic polyglycidyl ether (E2). And the manufacturing method of the structure which has an insulating film as described in said [1] containing the crosslinking agent containing.
[3] The method for producing a structure having the insulating coating according to [1] or [2], wherein the positive photosensitive resin composition further contains (F) crosslinked polymer particles.
[4] The above [1] to [1], further comprising a polishing step of polishing the substrate from the surface having no hole in the structure including the through hole having the insulating coating, and using the hole as a through hole. 3] The manufacturing method of the structure which has an insulating film in any one of.
[5] A structure having an insulating film obtained by the method according to any one of [1] to [4].
[6] A member comprising a structure provided with a through-hole having an insulating film obtained by the method described in [4] above, and an electrode part in which at least the through-hole of the structure is filled with a conductive material An electronic component comprising:
[7] A solvent application step of applying a solvent to a substrate having a hole having an opening area of 25 to 10,000 μm 2 , a depth of 10 to 200 μm, and an aspect ratio of 1 to 10,
A resin composition application step of applying a positive photosensitive resin composition to the substrate such that the positive photosensitive resin composition is in contact with the solvent in the hole;
Drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and bottom surface of the hole; and
Exposing a predetermined region of the film formed on the surface of the substrate, treating with an alkaline solution, and leaving a film formed on the inner wall surface of the hole to leave the film on the bottom surface side;
A positive-type photosensitive resin composition used in a method for producing a structure having an insulating coating, comprising a heating and curing step of heating a coating remaining on the inner wall surface of the hole,
A positive photosensitive resin composition comprising (A) an alkali-soluble resin, (B) a quinonediazide compound, (C) inorganic particles, and (D) a solvent.
[8] The positive type as described in [7] above, further comprising (E) a crosslinking agent containing an alkyl etherified amino group-containing compound (E1) and an aliphatic polyglycidyl ether (E2). Photosensitive resin composition.
[9] The positive photosensitive resin composition according to [7] or [8], further including (F) crosslinked polymer particles.
 本発明の絶縁性被膜を有する構造体の製造方法によれば、特定のポジ型感光性樹脂組成物を用いており、基板における孔部の内壁面に、電気絶縁性、クラック耐性に優れた均一な絶縁性被膜を効率よく形成することができ、容易に絶縁性被膜を有する構造体を得ることができる。また、得られる構造体の絶縁性被膜を内壁とする貫通孔内に金属銅等を充填させることにより、貫通電極を容易に形成することができる。また、多孔質膜の改質等にも好適である。
 本発明の電子部品によれば、CPU、メモリ-、イメージセンサ等の半導体デバイスの実装に好適である。
 本発明のポジ型感光性樹脂組成物は、解像性に優れており、絶縁性被膜を有する構造体の製造方法において、該絶縁性被膜を良好に形成することができる。
According to the method for producing a structure having an insulating film of the present invention, a specific positive photosensitive resin composition is used, and the inner wall surface of the hole in the substrate is uniformly excellent in electrical insulation and crack resistance. Insulating film can be efficiently formed, and a structure having an insulating film can be easily obtained. Moreover, a through-electrode can be easily formed by filling metal copper or the like into a through-hole having an insulating film of the resulting structure as an inner wall. It is also suitable for modifying porous membranes.
The electronic component of the present invention is suitable for mounting a semiconductor device such as a CPU, a memory, and an image sensor.
The positive photosensitive resin composition of the present invention is excellent in resolution, and can be formed satisfactorily in the method for producing a structure having an insulating coating.
基板に設けられている孔部を示す概略断面図である。It is a schematic sectional drawing which shows the hole provided in the board | substrate. 本発明の被膜形成方法を説明する概略断面図である。It is a schematic sectional drawing explaining the film formation method of this invention. 本発明の絶縁性被膜を有する構造体の製造方法の一例を説明する概略断面図である。It is a schematic sectional drawing explaining an example of the manufacturing method of the structure which has an insulating film of this invention. 本発明の電子部品の構成要素(部材3)の製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method of the component (member 3) of the electronic component of this invention. 本発明の電子部品を構成する部材3’を説明する概略断面図である。It is a schematic sectional drawing explaining member 3 'which comprises the electronic component of this invention. 本発明の電子部品の構成要素(部材3")を説明する概略断面図である。It is a schematic sectional drawing explaining the component (member 3 ") of the electronic component of this invention. 本発明の電子部品の例を説明する概略断面図である。It is a schematic sectional drawing explaining the example of the electronic component of this invention. 図5の部材3’の他の製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the other manufacturing method of the member 3 'of FIG. 実施例において用いた、被膜形成前のシリコン基板の孔部破断面を示す斜視画像である。It is a perspective image which shows the hole fracture surface of the silicon substrate before film formation used in the Example. 実施例1で得られた被膜付きシリコン基板の孔部破断面を示す斜視画像である。2 is a perspective image showing a hole fracture surface of a coated silicon substrate obtained in Example 1. FIG. 被膜が形成された孔部断面を示す画像である。It is an image which shows the hole cross section in which the film was formed. 被膜が形成された孔部断面を示す画像である。It is an image which shows the hole cross section in which the film was formed. 被膜が形成された孔部断面を示す画像である。It is an image which shows the hole cross section in which the film was formed. 熱衝撃性の評価用基材の断面図である。It is sectional drawing of the base material for thermal shock-proof evaluation. 熱衝撃性の評価用基材の模式図である。It is a schematic diagram of the base material for thermal shock evaluation.
 1;被膜付き基板、11;基板、111;孔部、113;溶剤、115;塗膜、116;樹脂組成物及び溶剤の混合物、117;孔部内壁面の被膜、118;孔部底面の被膜、119;基板表面の被膜、128;孔部底面の被膜露光部、129;基板表面の被膜露光部、2及び2’;絶縁性被膜を有する構造体、217;孔部内壁面の絶縁性被膜(硬化膜)、218;孔部底面の絶縁性被膜(硬化膜)、219;基板表面の絶縁性被膜(硬化膜)、22;貫通孔、23a及び23b;銅膜(シード層)、24;絶縁性レジスト被膜、26;金属銅充填部、3,3’及び3";部材、31;上側部材、311;電極部(導電材料充填部)、311a及び311b;貫通電極(導電材料充填部)、313,313a及び313b;電極パッド、32;下側部材、321a及び321b;貫通電極(導電材料充填部)、323a及び323b;電極パッド、34;絶縁層、4;電子部品、41;インターポーザー、42;バンプ、43;バンプ、6;積層基板、61;基板、621,622及び623;被膜、625;絶縁性被膜、63;導電材層、635;電極パッド、66;導電材料充填部、7;被膜付き基板、8;積層構造体、9;基材、91;銅箔、92;基板。 DESCRIPTION OF SYMBOLS 1; Substrate with a film, 11; Substrate, 111; Hole, 113; Solvent, 115; Coating, 116; Mixture of resin composition and solvent, 117; Film on the inner wall surface of the hole, 118; 119; coating film on substrate surface, 128; coating exposure section on bottom surface of hole, 129; coating exposure section on substrate surface, 2 and 2 ′; structure having insulating coating, 217; insulating coating on inner wall surface of hole (curing) Membrane), 218; Insulating film (cured film) on bottom surface of hole, 219; Insulating film (cured film) on substrate surface, 22; Through hole, 23a and 23b; Copper film (seed layer), 24; Resist coating, 26; Metal copper filling part, 3, 3 ′ and 3 ″; Member, 31; Upper member, 311; Electrode part (conductive material filling part), 311a and 311b; Through electrode (conductive material filling part), 313 , 313a and 313b; electrode pads, 3 2; Lower member, 321a and 321b; Through electrode (conductive material filling portion), 323a and 323b; Electrode pad, 34; Insulating layer, 4; Electronic component, 41; Interposer, 42; Bump, 43; Laminated substrate 61; substrates 621, 622 and 623; coating 625; insulating coating 63; conductive material layer 635; electrode pad 66; conductive material filling portion 7; substrate with coating 8; Body, 9; substrate, 91; copper foil, 92; substrate.
 以下、本発明を詳細に説明する。尚、本明細書において、「(メタ)アクリル」とは、アクリル及びメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。 Hereinafter, the present invention will be described in detail. In the present specification, “(meth) acryl” means acryl and methacryl, and “(meth) acrylate” means acrylate and methacrylate.
1.絶縁性被膜を有する構造体の製造方法
 本発明の絶縁性被膜を有する構造体の製造方法は、開口部の面積が25~10,000μmであり、深さが10~200μmであり且つアスペクト比が1~10である孔部を有する基板に、溶剤を塗布する溶剤塗布工程と、ポジ型感光性樹脂組成物を、該ポジ型感光性樹脂組成物が上記孔部内の上記溶剤と接触するように、上記基板に塗布する樹脂組成物塗布工程と、塗膜を乾燥し、上記孔部の内壁面及び底面のうちの少なくとも該内壁面に上記樹脂成分を含む被膜を形成する工程と、上記基板の表面に形成されている被膜の所定領域を露光し、アルカリ性溶液を用いて処理し、上記孔部の内壁面に形成されている被膜を残存させる表底面側被膜除去工程と、上記孔部の内壁面に残存している被膜を加熱する加熱硬化工程と、を備えることを特徴とする。
1. Manufacturing method of structure having insulating coating The manufacturing method of a structure having an insulating coating of the present invention has an opening area of 25 to 10,000 μm 2 , a depth of 10 to 200 μm, and an aspect ratio. A solvent coating step of applying a solvent to a substrate having a hole portion of 1 to 10, and a positive photosensitive resin composition so that the positive photosensitive resin composition is in contact with the solvent in the hole portion. A resin composition coating step to be applied to the substrate, a step of drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and the bottom surface of the hole, and the substrate Exposing a predetermined region of the film formed on the surface of the surface, treating the surface with an alkaline solution, and removing the surface bottom side film to leave the film formed on the inner wall surface of the hole, Add the film remaining on the inner wall. A heat curing step of, characterized in that it comprises a.
 本発明において用いられる基板の構成材料としては、シリコン、各種金属、各種金属スパッタ膜、アルミナ、ガラスエポキシ、紙フェノール、ガラス等が挙げられる。この基板の厚さは、通常、100~1,000μmである。
 上記基板11は、図1の断面図に示されるように、基板11の少なくとも一面側に、表面から内部に縦方向に形成された、開口部の面積が25~10,000μm、好ましくは100~10,000μm、より好ましくは250~7,000μmであり且つ深さが10~200μm、好ましくは30~120μm、より好ましくは50~100μmである孔部111を有する。
 この孔部の形状及び数は、特に限定されない。また、上記孔部の形状は、柱状(図1(a)参照)、順テーパー状(図1(b)参照)、逆テーパー状(図1(c)参照)等とすることができ、その横断面形状も、円形、楕円形、多角形等とすることができる。尚、孔部が複数ある場合、各孔部の大きさ及び深さが異なってよいし、隣り合う孔部どうしの間隔(長さ)も特に限定されない。
Examples of the constituent material of the substrate used in the present invention include silicon, various metals, various metal sputtered films, alumina, glass epoxy, paper phenol, and glass. The thickness of this substrate is usually 100 to 1,000 μm.
As shown in the cross-sectional view of FIG. 1, the substrate 11 is formed on at least one surface side of the substrate 11 in the vertical direction from the surface to the inside, and has an opening area of 25 to 10,000 μm 2 , preferably 100 ~ 10,000 2, more preferably 250 ~ 7,000μm 2 and a depth of 10 ~ 200 [mu] m, preferably having 30 ~ 120 [mu] m, the holes 111 and more preferably 50 ~ 100 [mu] m.
The shape and number of the holes are not particularly limited. Further, the shape of the hole can be a columnar shape (see FIG. 1A), a forward tapered shape (see FIG. 1B), a reverse tapered shape (see FIG. 1C), etc. The cross-sectional shape can also be circular, elliptical, polygonal, or the like. In addition, when there are a plurality of holes, the size and depth of each hole may be different, and the interval (length) between adjacent holes is not particularly limited.
 上記孔部形状として、好ましくは、横断面形状が四角形(正方形又は長方形)の柱状もしくは順テーパー状である。
 上記孔部が、横断面形状が四角形の柱状である場合、縦断面の四角形におけるアスペクト比(孔部の深さと、孔部底面の1辺の長さとの比)は、通常1~10、好ましくは1~5、更に好ましくは1~4である。
The hole shape is preferably a quadrangular (square or rectangular) columnar shape or a forward tapered shape.
When the hole has a quadrangular columnar cross-sectional shape, the aspect ratio (ratio between the depth of the hole and the length of one side of the bottom of the hole) in the square of the vertical section is usually 1 to 10, preferably Is 1 to 5, more preferably 1 to 4.
 以下、各工程について図2及び図3を用いて説明する。
 (I)溶剤塗布工程
 上記溶剤塗布工程は、上記基板に溶剤を塗布する工程である。
 具体的に説明すると、溶剤が基板11に塗布された際、溶剤113は、通常、図2(b)のように、基板11に設けられている孔部111内に充填されている。尚、溶剤が基板11の表面を一様に濡らしていてもよい。
Hereinafter, each process is demonstrated using FIG.2 and FIG.3.
(I) Solvent application process The said solvent application process is a process of apply | coating a solvent to the said board | substrate.
More specifically, when the solvent is applied to the substrate 11, the solvent 113 is normally filled in the hole 111 provided in the substrate 11 as shown in FIG. The solvent may uniformly wet the surface of the substrate 11.
 上記溶剤としては、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ブチルカルビトール等のカルビトール類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル等の乳酸エステル類;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ブチロラクン等のラクトン類が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the solvent include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like. Propylene glycol monoalkyl ethers; propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether Propylene glycol monoalkyl ether acetates such as tate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate; cellosolves such as ethyl cellosolve and butyl cellosolve; carbitols such as butyl carbitol; methyl lactate, ethyl lactate, and lactate n Lactic acid esters such as propyl and isopropyl lactate; ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, isopropyl propionate, n-butyl propionate, propionic acid Aliphatic carboxylic acid esters such as isobutyl; methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxypropionate Other esters such as ethyl acetate, methyl pyruvate and ethyl pyruvate; aromatic hydrocarbons such as toluene and xylene; ketones such as 2-heptanone, 3-heptanone, 4-heptanone and cyclohexanone; N-dimethyl Examples include amides such as formamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpyrrolidone; and lactones such as γ-butyrolacun. These may be used individually by 1 type and may be used in combination of 2 or more type.
 また、この溶剤塗布工程において、上記溶剤を基板に塗布する方法としては、特に限定されないが、スプレー法、スピンコート法等の塗布法、浸漬法等が挙げられる。
 尚、溶剤を塗布することにより、上記孔部内に溶剤が充填された場合の溶剤の充填率は、特に限定されない。
In this solvent application step, the method for applying the solvent to the substrate is not particularly limited, and examples thereof include an application method such as a spray method and a spin coat method, and an immersion method.
In addition, the filling rate of the solvent when the solvent is filled in the hole by applying the solvent is not particularly limited.
 (II)樹脂組成物塗布工程
 上記樹脂組成物塗布工程は、特定の樹脂組成物を、該樹脂組成物が上記孔部内の上記溶剤と接触するように、上記基板に塗布して塗膜を形成する工程である。尚、上記特定の樹脂組成物については、その詳細を後段にて説明する。
(II) Resin composition coating step The resin composition coating step is to form a coating film by coating a specific resin composition on the substrate such that the resin composition contacts the solvent in the hole. It is a process to do. In addition, about the said specific resin composition, the detail is demonstrated in a back | latter stage.
 上記樹脂組成物塗布工程において、特定の物性を有する樹脂組成物を、上記基板に塗布する方法は、該樹脂組成物が上記孔部内の溶剤と接触するように塗工される方法であれば、特に限定されず、スピンコート法、スプレー法、バーコート法等が挙げられる。これらのうち、スピンコート法が好ましい。
 尚、上記樹脂組成物塗布工程においては、樹脂組成物の固形分濃度、粘度等が考慮されて、後に進められる乾燥工程により、上記基板の表面に形成される被膜の厚さが0.1~10μmの範囲に入るように、塗膜を形成することが好ましい。
In the resin composition application step, a method of applying a resin composition having specific physical properties to the substrate is a method in which the resin composition is applied so as to come into contact with the solvent in the hole, The method is not particularly limited, and examples thereof include spin coating, spraying, and bar coating. Of these, spin coating is preferred.
In the resin composition coating step, the solid content concentration, viscosity, etc. of the resin composition are taken into consideration, and the thickness of the film formed on the surface of the substrate is 0.1 to 0.1 by the subsequent drying step. It is preferable to form the coating film so as to fall within the range of 10 μm.
 上記樹脂組成物塗布工程において、樹脂組成物が塗布されると、基板11の表面には、均一な塗膜115が形成され、孔部内においては、上記溶剤塗布工程において充填された溶剤と、樹脂組成物とからなる混合物116が収容されることとなる(図2(c)参照)。 In the resin composition application step, when the resin composition is applied, a uniform coating film 115 is formed on the surface of the substrate 11, and in the holes, the solvent filled in the solvent application step and the resin A mixture 116 composed of the composition will be accommodated (see FIG. 2C).
 (III)被膜を形成する工程
 上記被膜を形成する工程は、上記樹脂組成物塗布工程により形成された塗膜を乾燥し、該孔部の内壁面117及び底面118のうちの少なくとも該内壁面に上記樹脂成分を含む被膜117~119を形成する工程、即ち、塗膜に含まれる溶剤のみを除去する工程である。
 乾燥温度は、上記溶剤塗布工程において充填された溶剤の沸点、又は、上記溶剤塗布工程において充填された溶剤と、樹脂組成物とからなる混合物116に含まれる混合溶剤の沸点を考慮して選択される。
 また、乾燥条件は、特に限定されないが、一定温度で行ってよいし、昇温又は降温しながら行ってよいし、これらを組み合わせてもよい。また、圧力についても、大気圧下で行ってもよいし、真空下で行ってもよい。更に、雰囲気ガス等も特に限定されない。
(III) Step of forming a film In the step of forming the film, the coating film formed by the resin composition coating step is dried and applied to at least the inner wall surface of the inner wall surface 117 and the bottom surface 118 of the hole. This is a step of forming the coatings 117 to 119 containing the resin component, that is, a step of removing only the solvent contained in the coating.
The drying temperature is selected in consideration of the boiling point of the solvent filled in the solvent coating step or the boiling point of the mixed solvent contained in the mixture 116 composed of the solvent filled in the solvent coating step and the resin composition. The
The drying conditions are not particularly limited, but may be performed at a constant temperature, may be performed while raising or lowering the temperature, or may be combined. Also, the pressure may be performed under atmospheric pressure or under vacuum. Furthermore, the atmosphere gas or the like is not particularly limited.
 上記被膜を形成する工程により、溶剤が除去されて、少なくとも孔部の内壁面を含む基板表面には、樹脂組成物の固形分からなる均一な被膜が形成される(図2(d)参照)。図2(d)に示される被膜付き基板1は、孔部を有する基板11と、孔部以外の基板11の全表面に形成されている被膜119と、孔部の内壁面に形成されている被膜117と、孔部の底面に形成されている被膜118とを備える。これらの被膜は、通常、連続相を形成しているが、被膜117及び118のみが連続相を形成する場合がある。また、各被膜の厚さについて、被膜119の厚さと、孔部の内壁面の被膜117の厚さと、孔部の底面の被膜118の厚さは、通常、異なるが、樹脂組成物の種類、固形分濃度、粘度等によっては、孔部の内壁面の被膜117の厚さ、及び、孔部の底面の被膜118の厚さが、同一又はほぼ同一となることがある。 In the step of forming the film, the solvent is removed, and a uniform film made of a solid content of the resin composition is formed on the substrate surface including at least the inner wall surface of the hole (see FIG. 2D). A substrate 1 with a film 1 shown in FIG. 2D is formed on a substrate 11 having a hole, a film 119 formed on the entire surface of the substrate 11 other than the hole, and an inner wall surface of the hole. A coating 117 and a coating 118 formed on the bottom surface of the hole are provided. These coatings usually form a continuous phase, but only coatings 117 and 118 may form a continuous phase. Further, regarding the thickness of each coating, although the thickness of the coating 119, the thickness of the coating 117 on the inner wall surface of the hole, and the thickness of the coating 118 on the bottom of the hole are usually different, the type of the resin composition, Depending on the solid content concentration, viscosity, etc., the thickness of the coating 117 on the inner wall surface of the hole and the thickness of the coating 118 on the bottom of the hole may be the same or substantially the same.
 (IV)表底面側被膜除去工程
 上記表底面側被膜除去工程は、上記基板11の表面に形成されている被膜119及び上記基板11の上記孔部の底面に形成されている被膜118を除去し、上記孔部の内壁面に形成されている被膜117を残存させる工程である。
(IV) Surface Bottom Side Film Removal Step The surface bottom side film removal step removes the film 119 formed on the surface of the substrate 11 and the film 118 formed on the bottom surface of the hole of the substrate 11. This is a step of leaving the coating film 117 formed on the inner wall surface of the hole.
 まず、図3(a)に示される被膜付き基板1に対して、上方から、紫外線、可視光線、遠紫外線、X線、電子線等を照射し、上記基板11の表面に形成されている被膜119及び上記基板11の孔部の底面に形成されている被膜118を露光する。このとき、上記孔部の内壁面に形成されている被膜117には露光しないようにする。
 露光量は、使用する光源、被膜の厚さ等によって、適宜、選択されるが、例えば、厚さが5~50μm程度の被膜に対して、高圧水銀灯から紫外線を照射する場合、好ましい露光量は、1,000~20,000J/m程度である。
 図3(b)に示される被膜露光部128及び129は、アルカリ可溶性となるので、アルカリ性溶液を用いて処理することにより、上記孔部の内壁面に形成されている被膜117を残存させることができる。
 上記アルカリ性溶液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、テトラメチルアンモニウムヒドロキシド、コリン等の水溶液、又は、この水溶液に、メタノール、エタノール等の水溶性の有機溶剤、界面活性剤等が適量添加された溶液等を用いることができる。
 アルカリ性溶液で処理した後、水洗及び乾燥することにより、孔部の内壁面のみに被膜117を有する基板を得ることができる(図3(c)参照)。
First, the coated substrate 1 shown in FIG. 3A is irradiated with ultraviolet rays, visible rays, far ultraviolet rays, X-rays, electron beams, etc. from above to form a coating formed on the surface of the substrate 11. 119 and the coating 118 formed on the bottom surface of the hole of the substrate 11 are exposed. At this time, the coating 117 formed on the inner wall surface of the hole is not exposed.
The exposure amount is appropriately selected depending on the light source to be used, the thickness of the coating, and the like. For example, when a coating with a thickness of about 5 to 50 μm is irradiated with ultraviolet rays from a high-pressure mercury lamp, a preferable exposure amount is 1,000 to 20,000 J / m 2 .
Since the film exposed portions 128 and 129 shown in FIG. 3B are alkali-soluble, the film 117 formed on the inner wall surface of the hole can be left by treatment with an alkaline solution. it can.
As the alkaline solution, an aqueous solution of sodium hydroxide, potassium hydroxide, ammonia, tetramethylammonium hydroxide, choline, or the like, or an appropriate amount of a water-soluble organic solvent such as methanol or ethanol, or a surfactant is added to this aqueous solution. An added solution or the like can be used.
After the treatment with the alkaline solution, the substrate having the coating 117 only on the inner wall surface of the hole can be obtained by washing with water and drying (see FIG. 3C).
 (V)加熱硬化工程
 上記加熱硬化工程は、上記孔部の内壁面に残存している被膜117を加熱する工程であり、この工程により、被膜117を硬化膜217として、絶縁性被膜を有する構造体2を得ることができる(図3(d)参照)。
 加熱方法は、特に限定されないが、通常、100~250℃の範囲の温度で、30分~10時間程度とすることが好ましい。一定条件で加熱してよいし、多段階で加熱してもよい。加熱装置としては、オーブン、赤外線炉等を用いることができる。
 図3(d)に示される絶縁性被膜を有する構造体2は、孔部を有する基板11と、この基板の孔部の内壁面に形成された硬化膜217とを備える。
(V) Heat-curing step The heat-curing step is a step of heating the coating 117 remaining on the inner wall surface of the hole, and by this step, the coating 117 is used as the cured film 217 and a structure having an insulating coating. The body 2 can be obtained (refer FIG.3 (d)).
The heating method is not particularly limited, but it is usually preferable that the heating is performed at a temperature in the range of 100 to 250 ° C. for about 30 minutes to 10 hours. You may heat on fixed conditions and may heat in multiple steps. As the heating device, an oven, an infrared furnace, or the like can be used.
The structure 2 having an insulating film shown in FIG. 3D includes a substrate 11 having a hole and a cured film 217 formed on the inner wall surface of the hole of the substrate.
 尚、本発明における絶縁性被膜を有する構造体の製造方法においては、上記加熱硬化工程の後に、上記基板11における孔部を有さない面から研磨し、孔部を貫通孔22とする研磨工程を更に備えることができる(図3(e)参照)。この工程により、絶縁性被膜を有する貫通孔構造体を得ることができる。
 この際における研磨方法は、特に限定されないが、化学機械研磨法等を適用することができる。
 図3(e)に示される絶縁膜を有する構造体2’は、貫通孔22を有する基板11と、この貫通孔22の内壁面に形成された硬化膜217とを備える。
In the method for producing a structure having an insulating coating according to the present invention, after the heat curing step, polishing is performed from the surface of the substrate 11 that does not have a hole, and the hole is formed as a through hole 22. (See FIG. 3E). Through this step, a through-hole structure having an insulating coating can be obtained.
The polishing method at this time is not particularly limited, but a chemical mechanical polishing method or the like can be applied.
A structure 2 ′ having an insulating film shown in FIG. 3 (e) includes a substrate 11 having a through hole 22 and a cured film 217 formed on the inner wall surface of the through hole 22.
2.電子部品
 本発明の電子部品は、上記本発明の構造体の製造方法により得られた、絶縁性被膜を有する構造体(内壁に絶縁性被膜が形成された貫通孔を有する構造体)と、この構造体の少なくとも貫通孔内に導電材料が充填されてなる電極部(導電材料充填部)とを含む部材を備えることを特徴とする。
 本発明の電子部品としては、例えば、図3(e)に示される構造体2’と、この構造体2’の少なくとも貫通孔内の電極部(導電材料充填部)311とを含む部材3(図4(g)参照)を備えるものとすることができる。
2. Electronic component The electronic component of the present invention includes a structure having an insulating film (a structure having a through-hole with an insulating film formed on the inner wall) obtained by the method for producing a structure of the present invention. The structure includes a member including an electrode portion (conductive material filling portion) in which at least a through hole of the structure is filled with a conductive material.
As the electronic component of the present invention, for example, a member 3 (including a structure 2 ′ shown in FIG. 3E) and an electrode part (conductive material filling part) 311 in at least a through hole of the structure 2 ′ ( 4 (g)).
 上記部材3について説明する。
 上記部材3を構成する上記電極部311の形成材料(導電材料)としては、銅、銀、タングステン、タンタル、チタン、ルテニウム、金、スズ、アルミニウム、及び、これらを含む合金から選ばれたもの等が用いられる。
 上記電極部311は、図4(g)のように、その表面部が、基板11の平滑表面より突き出した凸状であってよいし、基板11と面一となっていてもよい。また、上記電極部311の表面は、平滑面であってよいし、粗面であってもよい。
The member 3 will be described.
As a forming material (conductive material) of the electrode part 311 constituting the member 3, a material selected from copper, silver, tungsten, tantalum, titanium, ruthenium, gold, tin, aluminum, and an alloy containing these, etc. Is used.
As shown in FIG. 4G, the electrode portion 311 may have a convex shape protruding from the smooth surface of the substrate 11 or may be flush with the substrate 11. Further, the surface of the electrode portion 311 may be a smooth surface or a rough surface.
 図4(g)に示される部材3の製造方法の一例を、図4を用いて説明する。
 まず、図3(d)に示される絶縁性被膜を有する構造体2を準備する(図4(a)参照)。この構造体2の孔部を有する側の表面に対して、Cuスパッタ等を行い、孔部の内表面を含む全ての構造体2表面に、厚さ10~200nmの銅膜(シード層)23a及び23bを形成する(図4(b)参照)。その後、孔部の内表面以外の銅膜23a表面に、印刷等により、絶縁性レジスト被膜24を形成する(図4(c)参照)。次いで、硫酸銅水溶液等を用いて孔内へのCuの充填メッキを行う(図4(d)参照)。その後、所定の剥離液等を用いて、絶縁性レジスト被膜24を剥離する(図4(e)参照)。次いで、希硫酸、希塩酸等を用いたエッチングにより、基板11の表面に形成されている銅膜23aを除去する(図4(f)参照)。そして、基板11の裏面から、孔部に充填された金属銅が露出するまで研磨し、図4(g)に示される、金属銅充填部311からなる貫通電極を備える部材3を得る。
An example of a method for manufacturing the member 3 shown in FIG. 4G will be described with reference to FIG.
First, the structure 2 having an insulating film shown in FIG. 3D is prepared (see FIG. 4A). Cu sputtering or the like is performed on the surface of the structure 2 on the side having the hole, and a copper film (seed layer) 23a having a thickness of 10 to 200 nm is formed on all structures 2 including the inner surface of the hole. And 23b are formed (see FIG. 4B). Thereafter, an insulating resist film 24 is formed by printing or the like on the surface of the copper film 23a other than the inner surface of the hole (see FIG. 4C). Next, Cu filling plating into the holes is performed using an aqueous copper sulfate solution or the like (see FIG. 4D). Thereafter, the insulating resist film 24 is peeled off using a predetermined peeling liquid or the like (see FIG. 4E). Next, the copper film 23a formed on the surface of the substrate 11 is removed by etching using diluted sulfuric acid, diluted hydrochloric acid, or the like (see FIG. 4F). And it grind | polishes until the metal copper with which the hole was filled is exposed from the back surface of the board | substrate 11, and the member 3 provided with the penetration electrode which consists of the metal copper filling part 311 shown by FIG.4 (g) is obtained.
 上記貫通電極を備える部材は、図5に示される部材3’とすることもできる。この部材3’は、表裏に貫通し、且つ、内壁面に絶縁性被膜217が形成されてなる貫通孔に、導電材料が充填された導電材料充填部311を有する基板11と、この導電材料充填部311の下側露出面(図面の下方側露出面)を少なくとも被覆する電極パッド313とを備える。
 図5の部材3’は、図4(g)に示される部材3の導電材料充填部311の下方側露出面(図4(g)の下側)に、電極パッドを形成する電極パッド形成工程を備える方法により製造することができる。この電極パッド形成工程の具体的な方法としては、メッキ、導電ペーストの塗布等が挙げられる。他の製造方法については、後述する。
The member provided with the through electrode may be a member 3 ′ shown in FIG. The member 3 ′ includes a substrate 11 having a conductive material filling portion 311 filled with a conductive material in a through hole penetrating the front and back and having an insulating film 217 formed on the inner wall surface, and the conductive material filling An electrode pad 313 covering at least the lower exposed surface (lower exposed surface in the drawing) of the portion 311.
The member 3 ′ in FIG. 5 forms an electrode pad on the lower exposed surface (the lower side in FIG. 4G) of the conductive material filling portion 311 of the member 3 shown in FIG. It can manufacture by the method provided with. Specific methods for this electrode pad forming step include plating, application of a conductive paste, and the like. Other manufacturing methods will be described later.
 また、図6に示される部材3"は、図4(g)に示される部材3、又は、図5に示される部材3’を用いてなる例である。
 この部材3"は、金属銅充填部(貫通電極)311a及び311bの下側露出面(図面の下方側露出面)に、それぞれ、電極パッド313a及び313bを配設した上側部材31、並びに、金属銅充填部(貫通電極)321a及び321bの下側露出面(図面の下方側露出面)に、それぞれ、電極パッド323a及び323bを配設した下側部材32を用いて、上側部材31の電極パッド313aの表面と、下側部材32の金属銅充填部(貫通電極)321aの表面とを接合し、且つ、上側部材31の電極パッド313bの表面と、下側部材32の金属銅充填部(貫通電極)321bの表面とを接合してなる複合部材である。上側部材31及び下側部材32の界面には絶縁層34が配されている(図6参照)。電極パッド313a及び金属銅充填部(貫通電極)321a等の接合方法は、特に限定されないが、例えば、熱圧着(熱を加えながら圧を加える)等の方法が挙げられる。
Further, the member 3 ″ shown in FIG. 6 is an example using the member 3 shown in FIG. 4G or the member 3 ′ shown in FIG.
The member 3 ″ includes an upper member 31 in which electrode pads 313a and 313b are disposed on lower exposed surfaces (lower exposed surfaces in the drawing) of metal copper filling portions (penetrating electrodes) 311a and 311b, and metal The electrode pad of the upper member 31 is formed by using the lower member 32 having the electrode pads 323a and 323b disposed on the lower exposed surfaces (lower exposed surfaces in the drawing) of the copper filling portions (penetrating electrodes) 321a and 321b, respectively. The surface of 313a and the surface of the metal copper filling part (penetration electrode) 321a of the lower member 32 are joined, and the surface of the electrode pad 313b of the upper member 31 and the metal copper filling part (penetration) of the lower member 32 Electrode) is a composite member formed by joining the surface of 321b, and an insulating layer 34 is disposed at the interface between the upper member 31 and the lower member 32 (see FIG. 6). The bonding method of the filling portion (penetrating electrode) 321a and the like is not particularly limited, and examples thereof include a method such as thermocompression bonding (applying pressure while applying heat).
 本発明の電子部品は、図4(g)に示される部材3、図5に示される部材3’、図6に示される部材3"等が配設されたものとすることができる。例えば、図7の電子部品4は、図6に示される部材3"の電極パッド323a及び323bと、インターポーザー41とが、このインターポーザー41の表面に配設された2つのバンプ42を介して導通接続されてなり、更に、インターポーザー41の下方側に他部材等と導通接続するためのバンプ43が配設されてなるものである。 The electronic component of the present invention may be provided with a member 3 shown in FIG. 4G, a member 3 ′ shown in FIG. 5, a member 3 ″ shown in FIG. 7, the electrode pads 323a and 323b of the member 3 ″ shown in FIG. 6 and the interposer 41 are electrically connected via two bumps 42 arranged on the surface of the interposer 41. Furthermore, bumps 43 are provided on the lower side of the interposer 41 for conducting connection with other members.
 本発明の電子部品は、上記部材3、3’及び3"等を含む複合体であり、例えば、他の基板、層間絶縁膜、他の電極等他の部材を備える複合体(回路基板、半導体デバイス、センサ等)とすることができる。 The electronic component of the present invention is a composite including the above members 3, 3 ′, 3 ″ and the like, for example, a composite (circuit board, semiconductor) including other members such as another substrate, an interlayer insulating film, and other electrodes. Device, sensor, etc.).
 尚、図5に示される部材3’は、予め、導電材層313が形成されており、孔部の底面が導電材層313である複合基板を用いて、図3(a)~(c)の工程により得られる部材2’(図3(d))の貫通孔の開口部下側(図3(e)の下側)に導電材層313を有する孔部に、図4(b)~(f)の工程により導電材料を充填する工程を備える方法により製造することができる。
 更に、図8(a)に示される凹部を有する積層基板6を用い、本発明の絶縁性被膜を有する構造体の製造方法を適用して製造することもできる。
 図8(a)に示される積層基板6は、シリコン、各種金属、各種金属スパッタ膜、アルミナ、ガラスエポキシ、紙フェノール、ガラス等からなり、一面から他面に、柱状(図1(a)参照)、順テーパー状(図1(b)参照)、逆テーパー状(図1(c)参照)等の貫通孔を有する基板61と、上記貫通孔を塞ぐように基板61の一面側に配設された導電材層63とを備える。この積層基板6は、導電材層63により、貫通孔の一方が塞がれて、凹部を有している。尚、この積層基板6は、貫通孔を有さない平板状基板と、導電材層とからなる積層体の、該平板状基板の表面から、導電材層を貫通させないように切削加工して得られたものとすることもできる。
 従って、上記基板61の厚さが、好ましくは10~200μm、より好ましくは30~120μm、更に好ましくは50~100μmであり、凹部の開口部の面積、横断面形状等を、上記本発明の絶縁性被膜を有する構造体の製造方法と同様とし、この方法を適用することにより、図8(e)に示される部材3’、即ち、図5に示される部材3’を製造することができる。
The member 3 ′ shown in FIG. 5 has a conductive material layer 313 formed in advance, and a composite substrate in which the bottom surface of the hole is the conductive material layer 313 is used, and FIGS. 4 (b) to (b) in the hole portion having the conductive material layer 313 on the lower side (lower side of FIG. 3 (e)) of the through hole of the member 2 ′ (FIG. 3 (d)) obtained by the process of FIG. It can be manufactured by a method including a step of filling a conductive material by the step f).
Furthermore, it can also be manufactured by applying the method for manufacturing a structure having an insulating film of the present invention, using the laminated substrate 6 having the recesses shown in FIG.
The laminated substrate 6 shown in FIG. 8A is made of silicon, various metals, various metal sputtered films, alumina, glass epoxy, paper phenol, glass, etc., and is columnar from one surface to the other (see FIG. 1A). ), Forwardly tapered (see FIG. 1 (b)), reverse tapered (see FIG. 1 (c)) or the like substrate 61 and disposed on one surface of the substrate 61 so as to close the through hole. The conductive material layer 63 is provided. The laminated substrate 6 has a concave portion in which one of the through holes is closed by the conductive material layer 63. The laminated substrate 6 is obtained by cutting a laminated body composed of a flat substrate having no through holes and a conductive material layer so as not to penetrate the conductive material layer from the surface of the flat substrate. It can also be made.
Accordingly, the thickness of the substrate 61 is preferably 10 to 200 μm, more preferably 30 to 120 μm, still more preferably 50 to 100 μm. The area of the opening of the recess, the cross-sectional shape, etc. By applying this method in the same manner as the manufacturing method of the structure having a conductive film, the member 3 ′ shown in FIG. 8E, that is, the member 3 ′ shown in FIG. 5 can be manufactured.
 図8(e)に示される部材3’の製造方法を簡単に説明する。まず、積層基板6を構成する基板61の表面に、溶剤を塗布し(溶剤塗布工程)、その後、上記のように特定のチキソトロピー性を有する樹脂組成物を塗布する(樹脂組成物塗布工程)ことにより、塗膜を形成する。次いで、基板61の表面における樹脂組成物からなる塗膜、及び、凹部内の混合物を乾燥して、溶剤を除去し、基板61の表面、凹部の内壁面、及び、導電材層63の凹部側表面に、被膜(それぞれ、621,622及び623)を形成し、被膜付き基板7を得る(図8(b)参照)。
 その後、樹脂組成物の種類に応じ、上記本発明の絶縁性被膜を有する構造体の製造方法を適用して、凹部の内壁面に絶縁性被膜625を有する積層構造体8を得る(図8(c)参照)。
A method for manufacturing the member 3 ′ shown in FIG. First, a solvent is applied to the surface of the substrate 61 constituting the multilayer substrate 6 (solvent application step), and then a resin composition having specific thixotropic properties as described above is applied (resin composition application step). To form a coating film. Next, the coating film made of the resin composition on the surface of the substrate 61 and the mixture in the recess are dried to remove the solvent, and the surface of the substrate 61, the inner wall surface of the recess, and the recess side of the conductive material layer 63 Films (621, 622, and 623, respectively) are formed on the surface to obtain a film-coated substrate 7 (see FIG. 8B).
Then, according to the kind of resin composition, the manufacturing method of the structure which has the said insulating film of this invention is applied, and the laminated structure 8 which has the insulating film 625 on the inner wall face of a recessed part is obtained (FIG. 8 ( c)).
 次いで、凹部を貫通させないように、導電材層63の一部をエッチング等により除去して電極パッド635を形成し(図8(d)参照)、凹部に、銅、銀、タングステン、タンタル、チタン、ルテニウム、金、スズ、アルミニウム、及び、これらを含む合金から選ばれた導電材料を充填することにより、図8(e)に示される、表裏に貫通し、且つ、内壁面に絶縁性被膜625が形成されてなる貫通孔に、導電材料が充填された導電材料充填部66を有する基板61と、この導電材料充填部66の下方側露出面(図8(e)の下側)を少なくとも被覆する電極パッド635とを備える部材3’を得ることができる。
 従って、図8(a)に示される積層基板6を用いて得られた部材3’を用いて本発明の電子部品を構成させることもできる。
Next, part of the conductive material layer 63 is removed by etching or the like so as not to penetrate the recess, thereby forming an electrode pad 635 (see FIG. 8D), and copper, silver, tungsten, tantalum, titanium in the recess. By filling a conductive material selected from ruthenium, gold, tin, aluminum, and an alloy containing these, the insulating film 625 penetrates the front and back surfaces shown in FIG. At least a substrate 61 having a conductive material filling portion 66 filled with a conductive material and a lower exposed surface (lower side of FIG. 8E) of the conductive material filling portion 66 are covered with the through hole formed with the conductive material. A member 3 ′ having an electrode pad 635 to be obtained can be obtained.
Therefore, the electronic component of the present invention can be configured using the member 3 ′ obtained by using the multilayer substrate 6 shown in FIG.
3.ポジ型感光性樹脂組成物
 本発明におけるポジ型感光性樹脂組成物は、(A)アルカリ可溶性樹脂と、(B)キノンジアジド化合物と、(C)無機粒子と、(D)溶剤と、を含有するものである。
3. Positive photosensitive resin composition The positive photosensitive resin composition in the present invention contains (A) an alkali-soluble resin, (B) a quinonediazide compound, (C) inorganic particles, and (D) a solvent. Is.
 (3-1)アルカリ可溶性樹脂(A)
 アルカリ可溶性樹脂としては、例えば、フェノール性水酸基を有する樹脂(以下、「樹脂(A1)」ともいう。);フェノール性水酸基を有する単量体と(メタ)アクリル酸エステルとを含む単量体を用いて得られた共重合体(以下、「樹脂(A2)」ともいう。);カルボキシル基を有する樹脂(以下、「樹脂(A3)」ともいう。)等から選ばれた樹脂等が挙げられる。
 上記樹脂(A1)としては、例えば、フェノール類とアルデヒド類とを触媒の存在下で、縮合させることにより得られたノボラック樹脂を用いることができる。
 フェノール類としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトール等が挙げられる。
 アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。
 上記ノボラック樹脂としては、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(3-1) Alkali-soluble resin (A)
Examples of the alkali-soluble resin include a resin having a phenolic hydroxyl group (hereinafter also referred to as “resin (A1)”); a monomer having a phenolic hydroxyl group and a (meth) acrylic acid ester. Examples thereof include a resin selected from a copolymer obtained by use (hereinafter also referred to as “resin (A2)”); a resin having a carboxyl group (hereinafter also referred to as “resin (A3)”), and the like. .
As said resin (A1), the novolak resin obtained by condensing phenols and aldehydes in presence of a catalyst can be used, for example.
Phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3- Xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, Catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol and the like can be mentioned.
Examples of aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde and the like.
Examples of the novolak resin include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
 上記ノボラック樹脂以外の樹脂(A1)としては、ポリヒドロキシスチレン、ヒドロキシスチレンと他の単量体((メタ)アクリル酸及び(メタ)アクリル酸エステルを除く)との共重合体、ポリイソプロペニルフェノール、イソプロペニルフェノールと他の単量体((メタ)アクリル酸及び(メタ)アクリル酸エステルを除く)との共重合体、フェノール/キシリレングリコール縮合樹脂、クレゾール/キシリレングリコール縮合樹脂、フェノール/ジシクロペンタジエン縮合樹脂等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the resin (A1) other than the novolak resin include polyhydroxystyrene, copolymers of hydroxystyrene and other monomers (excluding (meth) acrylic acid and (meth) acrylic acid ester), polyisopropenylphenol , Copolymers of isopropenylphenol and other monomers (excluding (meth) acrylic acid and (meth) acrylic acid ester), phenol / xylylene glycol condensation resin, cresol / xylylene glycol condensation resin, phenol / Examples include dicyclopentadiene condensation resin. These may be used individually by 1 type and may be used in combination of 2 or more type.
 上記樹脂(A2)は、フェノール性水酸基を有する単量体と、(メタ)アクリル酸エステルとを含み、且つ、(メタ)アクリル酸等のカルボキシル基を有する化合物を含まない単量体を用いて得られた共重合体である。
 フェノール性水酸基を有する単量体としては、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノール等が挙げられる。
 また、(メタ)アクリル酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メチルシクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル等が挙げられる。尚、これらの(メタ)アクリル酸アルキルエステル中のアルキル基の水素原子は、ヒドロキシル基で置換されていてもよい。
The resin (A2) includes a monomer containing a phenolic hydroxyl group and a (meth) acrylic acid ester and not containing a compound having a carboxyl group such as (meth) acrylic acid. It is the obtained copolymer.
Examples of the monomer having a phenolic hydroxyl group include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol and the like.
Examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and tert-butyl (meth) ) Acrylate, cyclohexyl (meth) acrylate, 2-methylcyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and other (meth) acrylic acid alkyl esters. In addition, the hydrogen atom of the alkyl group in these (meth) acrylic acid alkyl esters may be substituted with a hydroxyl group.
 上記樹脂(A2)の形成に際し、フェノール性水酸基を有する単量体及び(メタ)アクリル酸エステル以外に、重合性不飽和結合を有する化合物を他の単量体として用いてもよい。
 他の単量体としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、エチルスチレン、ビニルキシレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン等の芳香族ビニル化合物;無水マレイン酸、無水シトラコン酸等の不飽和酸無水物;前記不飽和カルボン酸のエステル;(メタ)アクリロニトリル、マレインニトリル、フマロニトリル、メサコンニトリル、シトラコンニトリル、イタコンニトリル等の不飽和ニトリル;(メタ)アクリルアミド、クロトンアミド、マレインアミド、フマルアミド、メサコンアミド、シトラコンアミド、イタコンアミド等の不飽和アミド;マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等の不飽和イミド;(メタ)アリルアルコール等の不飽和アルコール;N-ビニルアニリン、ビニルピリジン、N-ビニル-ε-カプロラクタム、N-ビニルピロリドン、N-ビニルイミダゾール、N-ビニルカルバゾール等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In forming the resin (A2), in addition to the monomer having a phenolic hydroxyl group and the (meth) acrylic acid ester, a compound having a polymerizable unsaturated bond may be used as another monomer.
Other monomers include styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, ethyl styrene, vinyl xylene, o-methoxy styrene, m-methoxy styrene, p-methoxy styrene. Aromatic vinyl compounds such as: maleic anhydride, unsaturated acid anhydrides such as citraconic anhydride; esters of the unsaturated carboxylic acids; (meth) acrylonitrile, maleinonitrile, fumaronitrile, mesaconitrile, citraconic nitrile, itacon nitrile, etc. Unsaturated amides such as (meth) acrylamide, crotonamide, maleinamide, fumaramide, mesaconamide, citraconamide, itaconamide and the like; unsaturated imides such as maleimide, N-phenylmaleimide and N-cyclohexylmaleimide; Meth) unsaturated alcohols such as allyl alcohol; N- vinyl aniline, vinyl pyridine, N- vinyl -ε- caprolactam, N- vinyl pyrrolidone, N- vinylimidazole, N- vinylcarbazole, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
 上記樹脂(A3)は、単独重合体でも、共重合体でもよく、通常、カルボキシル基を有する化合物(以下、「単量体(m)」という。)を含む単量体を用いて得られた重合体である。
 上記単量体(m)としては、(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、メサコン酸、シトラコン酸、イタコン酸、4-ビニル安息香酸等の不飽和カルボン酸又は不飽和ジカルボン酸;不飽和ジカルボン酸のモノエステル等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The resin (A3) may be a homopolymer or a copolymer, and is usually obtained using a monomer containing a compound having a carboxyl group (hereinafter referred to as “monomer (m)”). It is a polymer.
As the monomer (m), (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, mesaconic acid, citraconic acid, itaconic acid, 4-vinylbenzoic acid and other unsaturated carboxylic acids or unsaturated dicarboxylic acids A monoester of an unsaturated dicarboxylic acid; These may be used individually by 1 type and may be used in combination of 2 or more type.
 上記樹脂(A3)としては、以下に例示される。
[1]単量体(m)と、フェノール性水酸基を有する単量体とを用いて得られた共重合体
[2]単量体(m)と、フェノール性水酸基を有する単量体と、(メタ)アクリル酸エステルとを用いて得られた共重合体
[3]単量体(m)と、フェノール性水酸基を有する単量体と、芳香族ビニル化合物と、(メタ)アクリル酸エステルとを用いて得られた共重合体
[4]単量体(m)と、芳香族ビニル化合物と、(メタ)アクリル酸エステルとを用いて得られた共重合体
[5]単量体(m)と、芳香族ビニル化合物と、共役ジオレフィンとを用いて得られた共重合体
[6]単量体(m)と、(メタ)アクリル酸エステル、共役ジオレフィンとを用いて得られた共重合体
[7]単量体(m)と、(メタ)アクリル酸エステル、脂肪酸ビニル化合物とを用いて得られた共重合体
Examples of the resin (A3) include the following.
[1] a copolymer obtained by using a monomer (m) and a monomer having a phenolic hydroxyl group [2] a monomer (m), a monomer having a phenolic hydroxyl group, Copolymer [3] monomer (m) obtained using (meth) acrylic acid ester, monomer having phenolic hydroxyl group, aromatic vinyl compound, (meth) acrylic acid ester, Copolymer [4] Monomer (m) obtained by using a monomer [m], an aromatic vinyl compound, and a copolymer [5] monomer (m) obtained by using a (meth) acrylic ester. ), An aromatic vinyl compound, and a conjugated diolefin [6] monomer (m), a (meth) acrylic acid ester, and a conjugated diolefin. Copolymer [7] monomer (m), (meth) acrylic acid ester, fatty acid vinyl compound Copolymers obtained by using
 尚、上記態様において、フェノール性水酸基を有する単量体、(メタ)アクリル酸エステル及び芳香族ビニル化合物は、上記例示したものを用いることができる。
 また、共役ジオレフィンとしては、1,3-ブタジエン、イソプレン、1,4-ジメチルブタジエン等が挙げられる。
 脂肪酸ビニル化合物としては、酢酸ビニル、クロトン酸ビニル等が挙げられる。
In addition, in the said aspect, what was illustrated above can be used for the monomer which has a phenolic hydroxyl group, (meth) acrylic acid ester, and an aromatic vinyl compound.
Examples of the conjugated diolefin include 1,3-butadiene, isoprene, 1,4-dimethylbutadiene and the like.
Examples of the fatty acid vinyl compound include vinyl acetate and vinyl crotonic acid.
 上記アルカリ可溶性樹脂(A)は、重合体を1種単独で含まれるものであってよいし、2種以上の組合せで含まれるものであってもよい。本発明においては、フェノール性水酸基を有する樹脂を含むことが好ましく、特に、ノボラック樹脂、及び、ヒドロキシスチレンを用いて得られた共重合体が好ましい。 The alkali-soluble resin (A) may be a single polymer or a combination of two or more polymers. In the present invention, a resin having a phenolic hydroxyl group is preferably contained, and in particular, a novolac resin and a copolymer obtained using hydroxystyrene are preferred.
 上記アルカリ可溶性樹脂(A)の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)により測定することができ、好ましくは2000以上、より好ましくは2000~50000程度である。この範囲にあると、得られる硬化膜の機械的物性、耐熱性及び電気絶縁性に優れる。 The weight average molecular weight of the alkali-soluble resin (A) can be measured by GPC (gel permeation chromatography), and is preferably 2000 or more, more preferably about 2000 to 50000. Within this range, the cured film obtained is excellent in mechanical properties, heat resistance and electrical insulation.
 上記アルカリ可溶性樹脂(A)の含有割合は、ポジ型感光性樹脂組成物に含まれる固形分を100質量%とした場合に、20~90質量%であることが好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。この含有割合が上記範囲にあると、アルカリ溶解性に優れるとともに、得られる硬化膜の機械的物性、耐熱性及び電気絶縁性に優れる。 The content of the alkali-soluble resin (A) is preferably 20 to 90% by mass, more preferably 20 to 80% when the solid content in the positive photosensitive resin composition is 100% by mass. % By mass, more preferably 30 to 70% by mass. When this content ratio is in the above range, the alkali solubility is excellent, and the obtained cured film has excellent mechanical properties, heat resistance, and electrical insulation.
 また、本発明においては、アルカリ可溶性樹脂(A)のアルカリ溶解性が不十分である場合には、上記アルカリ可溶性樹脂(A)以外のフェノール性低分子化合物を併用することができる。
 上記フェノール性低分子化合物としては、例えば、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、トリス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、トリス(4-ヒドロキシフェニル)エタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Moreover, in this invention, when the alkali solubility of alkali-soluble resin (A) is inadequate, phenolic low molecular weight compounds other than the said alkali-soluble resin (A) can be used together.
Examples of the phenolic low molecular weight compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- Phenylethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4 -[1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethane, 1,1,2,2-tetra (4-hydroxy) Phenyl) ethane and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
 上記フェノール性低分子化合物の含有割合は、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、1~20質量部であることが好ましく、より好ましくは2~15質量部、更に好ましくは3~10質量部である。この含有割合が上記範囲にあると、得られる硬化物の耐熱性を損なうことなく、アルカリ溶解性を向上させることができる。 The content of the phenolic low molecular compound is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and still more preferably 100 parts by mass of the alkali-soluble resin (A). 3 to 10 parts by mass. When this content ratio is in the above range, the alkali solubility can be improved without impairing the heat resistance of the resulting cured product.
 (3-2)キノンジアジド化合物(B)
 上記キノンジアジド化合物(B)は、フェノール化合物の、1,2-ナフトキノン-2-ジアジド-5-スルホン酸エステル又は1,2-ナフトキノン-2-ジアジド-4-スルホン酸エステルである。
(3-2) Quinonediazide compound (B)
The quinonediazide compound (B) is a 1,2-naphthoquinone-2-diazide-5-sulfonic acid ester or a 1,2-naphthoquinone-2-diazide-4-sulfonic acid ester of a phenol compound.
 上記フェノール化合物は、フェノール性水酸基を少なくとも1つ有する化合物であれば、特に限定されないが、下記一般式(1)~(5)で表される化合物が好ましい。 The phenol compound is not particularly limited as long as it is a compound having at least one phenolic hydroxyl group, but compounds represented by the following general formulas (1) to (5) are preferable.
Figure JPOXMLDOC01-appb-C000001
〔式中、X~X10は、それぞれ相互に同一又は異なっていてもよく、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はヒドロキシル基である。尚、X~Xのうちの少なくとも1つはヒドロキシル基である。また、Aは単結合、O、S、CH、C(CH、C(CF、C=O、又はSOである。〕
Figure JPOXMLDOC01-appb-C000001
[Wherein X 1 to X 10 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 1 to X 5 is a hydroxyl group. A is a single bond, O, S, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , C═O, or SO 2 . ]
Figure JPOXMLDOC01-appb-C000002
〔式中、X11~X24は、それぞれ相互に同一又は異なってもよく、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はヒドロキシル基である。尚、X11~X15のうちの少なくとも1つはヒドロキシル基である。また、R~Rは、それぞれ相互に同一又は異なってもよく、水素原子又は炭素数1~4のアルキル基である。〕
Figure JPOXMLDOC01-appb-C000002
[Wherein X 11 to X 24 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 11 to X 15 is a hydroxyl group. R 1 to R 4 may be the same or different from each other, and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000003
〔式中、X25~X39は、それぞれ相互に同一又は異なってもよく、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はヒドロキシル基である。尚、X25~X29のうちの少なくとも1つ及びX30~X34のうちの少なくとも1つはヒドロキシル基である。また、Rは、水素原子又は炭素数1~4のアルキル基である。〕
Figure JPOXMLDOC01-appb-C000003
[Wherein X 25 to X 39 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 25 to X 29 and at least one of X 30 to X 34 are hydroxyl groups. R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000004
〔式中、X40~X58は、それぞれ相互に同一又は異なってもよく、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はヒドロキシル基である。尚、X40~X44のうちの少なくとも1つ、X45~X49のうちの少なくとも1つ及びX50~X54のうちの少なくとも1つはヒドロキシル基である。また、R~Rは、それぞれ相互に同一又は異なってもよく、水素原子又は炭素数1~4のアルキル基である。〕
Figure JPOXMLDOC01-appb-C000004
[Wherein X 40 to X 58 may be the same as or different from each other, and each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 40 to X 44 , at least one of X 45 to X 49 , and at least one of X 50 to X 54 is a hydroxyl group. R 6 to R 8 may be the same or different from each other, and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000005
〔式中、X59~X72は、それぞれ相互に同一又は異なってもよく、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はヒドロキシル基である。尚、X59~X62のうちの少なくとも1つ及びX63~X67のうちの少なくとも1つはヒドロキシル基である。〕
Figure JPOXMLDOC01-appb-C000005
[Wherein X 59 to X 72 may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxyl group. Note that at least one of X 59 to X 62 and at least one of X 63 to X 67 are hydroxyl groups. ]
 上記フェノール化合物としては、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,2’,4’-ペンタヒドロキシベンゾフェノン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エタン等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 従って、キノンジアジド化合物(B)としては、これらのフェノール化合物から選ばれた少なくとも1種と、1,2-ナフトキノンジアジド-4-スルホン酸又は1,2-ナフトキノンジアジド-5-スルホン酸とを反応させて得られたエステル化物等を、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the phenol compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3,4 , 2 ′, 4′-pentahydroxybenzophenone, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,3- Bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 4,6-bis [1- (4 -Hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxy Eniru) -1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethane, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
Therefore, as the quinonediazide compound (B), at least one selected from these phenol compounds is reacted with 1,2-naphthoquinonediazide-4-sulfonic acid or 1,2-naphthoquinonediazide-5-sulfonic acid. The esterified product obtained in this manner may be used alone or in combination of two or more.
 上記キノンジアジド化合物(B)の含有割合は、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、10~100質量部であることが好ましく、より好ましくは10~50質量部、更に好ましくは15~50質量部である。この含有割合が上記範囲にあると、露光部・未露光部の溶解度の差が大きく、アルカリ溶解性に優れる。 The content of the quinonediazide compound (B) is preferably 10 to 100 parts by weight, more preferably 10 to 50 parts by weight, and still more preferably, based on 100 parts by weight of the alkali-soluble resin (A). 15 to 50 parts by mass. When this content ratio is in the above range, the difference in solubility between the exposed part and the unexposed part is large, and the alkali solubility is excellent.
 (3-3)無機粒子(C)
 上記無機粒子(C)としては、シリカ(コロイダルシリカ、アエロジル、ガラス等)、アルミナ、チタニア、ジルコニア、セリア、酸化亜鉛、酸化銅、酸化鉛、酸化イットリウム、酸化錫、酸化インジウム、酸化マグネシウム等が挙げられる。
(3-3) Inorganic particles (C)
Examples of the inorganic particles (C) include silica (colloidal silica, aerosil, glass, etc.), alumina, titania, zirconia, ceria, zinc oxide, copper oxide, lead oxide, yttrium oxide, tin oxide, indium oxide, magnesium oxide, and the like. Can be mentioned.
 上記無機粒子の表面は、上記アルカリ可溶性樹脂(A)との親和性や相溶性を高める等のために、官能基等により修飾されていてもよい。
 また、上記無機粒子の形状は、特に限定されず、球状、楕円形状、偏平状、ロッド状、繊維状等とすることができる。
The surface of the inorganic particles may be modified with a functional group or the like in order to increase the affinity or compatibility with the alkali-soluble resin (A).
The shape of the inorganic particles is not particularly limited, and may be spherical, elliptical, flat, rod-like, fiber-like, or the like.
 上記無機粒子の平均粒径は、1~500nmであり、好ましくは5~200nm、より好ましくは10~100nmである。この無機粒子の平均粒径が上記範囲にあると、放射線に対する透明性、アルカリ溶解性等に優れる。
 上記無機粒子は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記無機粒子としては、チキソトロピー性の制御のしやすさから、シリカが好ましい。特に、一部が疎水化処理されたシリカ(以下、「疎水化シリカ」ともいう。)が好ましい。
The average particle size of the inorganic particles is 1 to 500 nm, preferably 5 to 200 nm, more preferably 10 to 100 nm. When the average particle size of the inorganic particles is in the above range, the transparency to radiation, alkali solubility, and the like are excellent.
The said inorganic particle may be used individually by 1 type, and may be used in combination of 2 or more type.
Silica is preferable as the inorganic particles because of ease of control of thixotropic properties. In particular, silica partially hydrophobized (hereinafter also referred to as “hydrophobized silica”) is preferable.
 ここで、上記疎水化シリカの製法例を以下に示す。
 水系シリカゾルにメタノールを入れ、限外ろ過機を用いて溶媒をメタノールに置換する。その後、トリメチルメトキシシランやヘキサメチルジシラザンなどの疎水化剤とプロピレングリコールモノメチルエーテルを添加し、メタノールを留去し、所望の疎水化シリカを得ることができる。
Here, the example of a manufacturing method of the said hydrophobic silica is shown below.
Methanol is added to the aqueous silica sol, and the solvent is replaced with methanol using an ultrafilter. Thereafter, a hydrophobizing agent such as trimethylmethoxysilane and hexamethyldisilazane and propylene glycol monomethyl ether are added, and methanol is distilled off to obtain a desired hydrophobized silica.
 上記疎水化シリカの疎水化率は、20~80%であることが好ましく、より好ましくは30~70%、更に好ましくは40~70%である。この疎水化率が20~80%である場合には、疎水化シリカの溶剤への分散性及び上記樹脂との相溶性が良好となり、更には上記樹脂組成物のチキソトロピー性を発現させることができるため好ましい。
 尚、上記樹脂組成物におけるシリカの疎水化率は、疎水化前及び疎水化後のシリカ表面のシラノール基数を0.1N水酸化ナトリウム水溶液による中和滴定法により測定し、下式により求められた値である。
 疎水化率(%)=(疎水化後のシラノール基数/疎水化前のシラノール基数)×100
The hydrophobicity of the hydrophobized silica is preferably 20 to 80%, more preferably 30 to 70%, and still more preferably 40 to 70%. When the hydrophobization rate is 20 to 80%, the dispersibility of the hydrophobized silica in the solvent and the compatibility with the resin are improved, and the thixotropy of the resin composition can be exhibited. Therefore, it is preferable.
The hydrophobization rate of silica in the resin composition was determined by the following equation after measuring the number of silanol groups on the silica surface before and after hydrophobization by a neutralization titration method using a 0.1N sodium hydroxide aqueous solution. Value.
Hydrophobization rate (%) = (number of silanol groups after hydrophobization / number of silanol groups before hydrophobization) × 100
 また、上記シリカが疎水化シリカである場合の平均粒子径は1~100nmであることが好ましく、より好ましくは5~80nm、更に好ましくは10~50nmである。この平均粒子径が、1~100nmである場合には、露光光に対する十分な透明性、及び十分なアルカリ溶解性等を得ることができる。
 尚、この平均粒子径は、光散乱流動分布測定装置(大塚電子社製、型番「LPA-3000」)を用いて、シリカ粒子の分散液を常法に従って希釈して測定した値である。また、この平均粒子径は、シリカ粒子の分散条件により制御することができる。
When the silica is hydrophobic silica, the average particle diameter is preferably 1 to 100 nm, more preferably 5 to 80 nm, and still more preferably 10 to 50 nm. When the average particle diameter is 1 to 100 nm, sufficient transparency with respect to exposure light, sufficient alkali solubility, and the like can be obtained.
The average particle diameter is a value measured by diluting a dispersion of silica particles according to a conventional method using a light scattering flow distribution measuring device (manufactured by Otsuka Electronics Co., Ltd., model number “LPA-3000”). The average particle diameter can be controlled by the dispersion conditions of the silica particles.
 また、上記疎水化シリカにおけるナトリウム含有量は、1ppm以下であることが好ましく、より好ましくは0.5ppm以下、更に好ましくは0.1ppm以下である。このナトリウム含有量が1ppm以下である場合には、得られる樹脂組成物におけるナトリウム含有量を1ppm以下とすることができる。
 尚、疎水化シリカにおけるナトリウム含有量は、原子吸光計(パーキネルマー製、型番「Z5100」)等により測定することができる。
Moreover, it is preferable that the sodium content in the said hydrophobic silica is 1 ppm or less, More preferably, it is 0.5 ppm or less, More preferably, it is 0.1 ppm or less. When the sodium content is 1 ppm or less, the sodium content in the obtained resin composition can be 1 ppm or less.
The sodium content in the hydrophobized silica can be measured by an atomic absorption spectrometer (manufactured by Perkinelmer, model number “Z5100”) or the like.
 上記無機粒子(C)の含有割合は、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、10~200質量部であることが好ましく、より好ましくは50~200質量部、更に好ましくは70~150質量部である。この含有割合が上記範囲にあると、好適なチキソトロピー性を有し、孔部の内壁面に均一な被膜を形成することができる。
 また、上記無機粒子(C)として、上記疎水化シリカを含有する場合、疎水化シリカの含有割合は、樹脂組成物における固形分全体を100質量%とした場合に、20質量%を超えて、60質量%以下であることが好ましく、より好ましくは30質量%以上、60質量%以下、更に好ましくは30質量%以上、50質量%以下である。この含有割合が20質量%を超えて、60質量%以下である場合には、十分なチキソトロピー性を得ることができ、孔部の内壁面に均一な被膜を形成することができる。
 尚、この樹脂組成物は、炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸カルシウム等の硫酸塩;リン酸カルシウム、リン酸マグネシウム等のリン酸塩;炭化物;窒化物等の他の無機粒子を含有していてもよい。
The content of the inorganic particles (C) is preferably 10 to 200 parts by weight, more preferably 50 to 200 parts by weight, and still more preferably, when the alkali-soluble resin (A) is 100 parts by weight. 70 to 150 parts by mass. When this content ratio is in the above range, it has suitable thixotropic properties, and a uniform film can be formed on the inner wall surface of the hole.
Further, when the hydrophobic silica is contained as the inorganic particles (C), the content of the hydrophobic silica exceeds 20% by mass when the total solid content in the resin composition is 100% by mass, It is preferable that it is 60 mass% or less, More preferably, it is 30 mass% or more and 60 mass% or less, More preferably, it is 30 mass% or more and 50 mass% or less. When this content ratio exceeds 20 mass% and is 60 mass% or less, sufficient thixotropy can be obtained, and a uniform film can be formed on the inner wall surface of the hole.
This resin composition contains carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; phosphates such as calcium phosphate and magnesium phosphate; carbides; other inorganic particles such as nitrides. You may contain.
 (3-4)溶剤(D)
 上記樹脂組成物を構成する溶剤(D)は、特に限定されず、上述した絶縁性被膜を有する構造体の製造方法における溶剤塗布工程において例示したものを用いることができる。
 尚、この溶剤(D)は、上記溶剤塗布工程において用いた溶剤と同一であってもよいし、異なっていてもよい。
 上記溶剤の含有割合は、樹脂組成物の固形分濃度が、通常、5~80質量%、好ましくは10~60質量%、更に好ましくは25~60質量%となるように用いられる。
(3-4) Solvent (D)
The solvent (D) which comprises the said resin composition is not specifically limited, What was illustrated in the solvent application | coating process in the manufacturing method of the structure which has the insulating film mentioned above can be used.
The solvent (D) may be the same as or different from the solvent used in the solvent application step.
The content of the solvent is such that the solid content concentration of the resin composition is usually 5 to 80% by mass, preferably 10 to 60% by mass, and more preferably 25 to 60% by mass.
 (3-5)架橋剤(E)
 本発明におけるポジ型感光性樹脂組成物には、上記(A)~(D)成分以外にも、架橋剤(E)が含有されていてもよい。
 上記架橋剤(E)としては、アルキルエーテル化されたアミノ基を有する化合物(E1)と、脂肪族ポリグリシジルエーテル(E2)と、を含むものが挙げられる。
 上記アルキルエーテル化されたアミノ基を有する化合物(E1)としては、(ポリ)メチロールメラミン、(ポリ)メチロールグリコールウリル、(ポリ)メチロールベンゾグアナミン、(ポリ)メチロールウレア等の窒素化合物中の活性メチロール基(CHOH基)の全部又は一部(少なくとも2つ)がアルキルエーテル化された化合物を用いることができる。ここで、アルキルエーテルを構成するアルキル基としては、メチル基、エチル基、ブチル基等が挙げられ、複数のアルキル基は、互いに同一であってもよいし、異なっていてもよい。また、アルキルエーテル化されていないメチロール基は、一分子内で自己縮合していてもよく、二分子間で縮合して、その結果、オリゴマー成分が形成されていてもよい。具体例としては、ヘキサメトキシメチルメラミン、ヘキサブトキシメチルメラミン、テトラメトキシメチルグリコールウリル、テトラブトキシメチルグリコールウリル等が挙げられる。
 尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(3-5) Crosslinking agent (E)
In addition to the components (A) to (D), the positive photosensitive resin composition in the present invention may contain a crosslinking agent (E).
As said crosslinking agent (E), what contains the compound (E1) which has an alkyl etherified amino group, and aliphatic polyglycidyl ether (E2) is mentioned.
As the compound (E1) having an alkyl etherified amino group, an active methylol group in a nitrogen compound such as (poly) methylol melamine, (poly) methylol glycoluril, (poly) methylol benzoguanamine, (poly) methylol urea, etc. A compound in which all or a part (at least two) of (CH 2 OH groups) is alkyl etherified can be used. Here, examples of the alkyl group constituting the alkyl ether include a methyl group, an ethyl group, and a butyl group, and the plurality of alkyl groups may be the same as or different from each other. In addition, the methylol group that is not alkyletherified may be self-condensed within one molecule, or may be condensed between two molecules, and as a result, an oligomer component may be formed. Specific examples include hexamethoxymethyl melamine, hexabutoxymethyl melamine, tetramethoxymethyl glycoluril, tetrabutoxymethyl glycoluril and the like.
In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 上記脂肪族ポリグリシジルエーテル(E2)としては、例えば、ペンタエリスリトールグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレン/ポリエチレングリコールジグリシジルエーテル、プロピレン/ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等が挙げられる。
 尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the aliphatic polyglycidyl ether (E2) include pentaerythritol glycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, neopentyl glycol diglycidyl ether, ethylene / polyethylene glycol diglycidyl ether, and propylene / polypropylene glycol. Examples thereof include diglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether.
In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 また、上記架橋剤(E)は、上記(E1)及び(E2)以外にも、エポキシ基含有化合物、アルデヒド基を有するフェノール化合物、メチロール基を有するフェノール化合物、チイラン環含有化合物、オキセタニル基含有化合物、イソシアネート基含有化合物(ブロック化されたものを含む)等を含んでいてもよい。
 上記エポキシ基含有化合物としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ナフトール型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、芳香族エポキシ樹脂、脂肪族エポキシ樹脂、エポキシシクロヘキセン樹脂等が挙げられる。
 尚、これらのエポキシ基含有化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In addition to the above (E1) and (E2), the crosslinking agent (E) is an epoxy group-containing compound, a phenol compound having an aldehyde group, a phenol compound having a methylol group, a thiirane ring-containing compound, an oxetanyl group-containing compound. , An isocyanate group-containing compound (including a blocked compound) and the like may be included.
Examples of the epoxy group-containing compound include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol type epoxy resins, trisphenol type epoxy resins, tetraphenol type epoxy resins, phenol-xylylene type epoxy resins, and naphthol-xylylene types. Examples thereof include an epoxy resin, a phenol-naphthol type epoxy resin, a phenol-dicyclopentadiene type epoxy resin, an alicyclic epoxy resin, an aromatic epoxy resin, an aliphatic epoxy resin, and an epoxycyclohexene resin.
In addition, these epoxy group containing compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、上記アルデヒド基を有するフェノール化合物としては、例えば、o-ヒドロキシベンズアルデヒド等が挙げられる。
 上記メチロール基を有するフェノール化合物としては、例えば、2,6-ビス(ヒドロキシメチル)-p-クレゾール等が挙げられる。
Examples of the phenol compound having an aldehyde group include o-hydroxybenzaldehyde.
Examples of the phenol compound having a methylol group include 2,6-bis (hydroxymethyl) -p-cresol.
 上記架橋剤(E)の含有割合は、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、1~100質量部であることが好ましく、より好ましくは10~75質量部、更に好ましくは10~50質量部である。この含有割合が上記範囲にあると、アルカリ溶解性に優れるとともに、得られる硬化膜の機械的物性、耐熱性及び電気絶縁性に優れる。
 また、上記架橋剤(E)を100質量部とした場合に、アルキルエーテル化されたアミノ基を有する化合物(E1)及び脂肪族ポリグリシジルエーテル(E2)の合計の含有割合は、25~100質量部であることが好ましく、より好ましくは50~100質量部、更に好ましくは75~100質量部である。
The content of the crosslinking agent (E) is preferably 1 to 100 parts by mass, more preferably 10 to 75 parts by mass, and still more preferably, when the alkali-soluble resin (A) is 100 parts by mass. 10 to 50 parts by mass. When this content ratio is in the above range, the alkali solubility is excellent, and the obtained cured film has excellent mechanical properties, heat resistance, and electrical insulation.
When the crosslinking agent (E) is 100 parts by mass, the total content of the compound (E1) having an alkyl etherified amino group and the aliphatic polyglycidyl ether (E2) is 25 to 100 parts by mass. Parts, preferably 50 to 100 parts by mass, more preferably 75 to 100 parts by mass.
 (3-6)架橋重合体粒子(F)
 本発明におけるポジ型感光性樹脂組成物には、上記(A)~(E)成分以外にも、架橋重合体粒子(F)が含有されていてもよい。
 上記架橋重合体粒子(F)としては、重合性不飽和結合を2個以上有する架橋性化合物(以下、「架橋性単量体」という。)を含む単量体の単独重合体又は共重合体を用いることができる。
 上記架橋性単量体としては、ジビニルベンゼン、ジアリルフタレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。これらのなかでも、ジビニルベンゼンが好ましい。
 尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(3-6) Crosslinked polymer particles (F)
The positive photosensitive resin composition in the present invention may contain crosslinked polymer particles (F) in addition to the components (A) to (E).
The cross-linked polymer particles (F) include a monomer homopolymer or copolymer containing a cross-linkable compound having two or more polymerizable unsaturated bonds (hereinafter referred to as “cross-linkable monomer”). Can be used.
Examples of the crosslinkable monomer include divinylbenzene, diallyl phthalate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol Examples include di (meth) acrylate and polypropylene glycol di (meth) acrylate. Of these, divinylbenzene is preferred.
In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 上記架橋重合体粒子が共重合体である場合、上記架橋性単量体と重合させる他の単量体としては、特に限定されないが、ヒドロキシル基、カルボキシル基、ニトリル基、アミド基、アミノ基、エポキシ基等の1種以上の官能基を有する不飽和化合物;ウレタン(メタ)アクリレート;芳香族ビニル化合物;(メタ)アクリル酸エステル;ジエン化合物等を用いることができる。尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 When the crosslinked polymer particles are a copolymer, the other monomer to be polymerized with the crosslinking monomer is not particularly limited, but includes a hydroxyl group, a carboxyl group, a nitrile group, an amide group, an amino group, An unsaturated compound having one or more functional groups such as an epoxy group; urethane (meth) acrylate; aromatic vinyl compound; (meth) acrylic acid ester; diene compound and the like can be used. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 上記架橋重合体粒子としては、上記架橋性単量体と、ヒドロキシル基を有する不飽和化合物及び/又はカルボキシル基を有する不飽和化合物とからなる共重合体(f1)、並びに、上記架橋性単量体と、ヒドロキシル基を有する不飽和化合物及び/又はカルボキシル基を有する不飽和化合物と、他の単量体からなる共重合体(f2)が好ましく、特に、共重合体(f2)が好ましい。 Examples of the crosslinked polymer particles include a copolymer (f1) composed of the crosslinking monomer, an unsaturated compound having a hydroxyl group and / or an unsaturated compound having a carboxyl group, and the crosslinking monomer. And a copolymer (f2) comprising an unsaturated compound having a hydroxyl group and / or an unsaturated compound having a carboxyl group and another monomer is preferred, and the copolymer (f2) is particularly preferred.
 ヒドロキシル基を有する不飽和化合物としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 カルボキシル基を有する不飽和化合物としては、(メタ)アクリル酸、イタコン酸、コハク酸-β-(メタ)アクリロキシエチル、マレイン酸-β-(メタ)アクリロキシエチル、フタル酸-β-(メタ)アクリロキシエチル、ヘキサヒドロフタル酸-β-(メタ)アクリロキシエチル等が挙げられる。
Examples of the unsaturated compound having a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and the like.
Examples of unsaturated compounds having a carboxyl group include (meth) acrylic acid, itaconic acid, succinic acid-β- (meth) acryloxyethyl, maleic acid-β- (meth) acryloxyethyl, phthalic acid-β- (meta ) Acryloxyethyl, hexahydrophthalic acid-β- (meth) acryloxyethyl, and the like.
 上記共重合体(f2)の形成に用いられる他の単量体のうち、ニトリル基を有する不飽和化合物としては、(メタ)アクリロニトリル、α-クロロアクリロニトリル、α-クロロメチルアクリロニトリル、α-メトキシアクリロニトリル、α-エトキシアクリロニトリル、クロトン酸ニトリル、ケイ皮酸ニトリル、イタコン酸ジニトリル、マレイン酸ジニトリル、フマル酸ジニトリル等が挙げられる。
 アミド基を有する不飽和化合物としては、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N,N’-メチレンビス(メタ)アクリルアミド、N,N’-エチレンビス(メタ)アクリルアミド、N,N’-ヘキサメチレンビス(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N,N-ビス(2-ヒドロキシエチル)(メタ)アクリルアミド、クロトン酸アミド、ケイ皮酸アミド等が挙げられる。
 アミノ基を有する不飽和化合物としては、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート等が挙げられる。
 エポキシ基を有する不飽和化合物としては、グリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル、ビスフェノールAのジグリシジルエーテル、グリコールのジグリシジルエーテル等と(メタ)アクリル酸、ヒドロキシアルキル(メタ)アクリレート等との反応によって得られるエポキシ(メタ)アクリレート等が挙げられる。
Among the other monomers used for forming the copolymer (f2), unsaturated compounds having a nitrile group include (meth) acrylonitrile, α-chloroacrylonitrile, α-chloromethylacrylonitrile, α-methoxyacrylonitrile. , Α-ethoxyacrylonitrile, crotonate nitrile, cinnamic nitrile, itaconic dinitrile, maleic dinitrile, fumarate dinitrile and the like.
Examples of unsaturated compounds having an amide group include (meth) acrylamide, dimethyl (meth) acrylamide, N, N′-methylenebis (meth) acrylamide, N, N′-ethylenebis (meth) acrylamide, N, N′-hexa Methylenebis (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N, N-bis (2-hydroxyethyl) (meth) acrylamide, crotonic acid amide, silica Examples thereof include cinnamate amides.
Examples of the unsaturated compound having an amino group include dimethylamino (meth) acrylate and diethylamino (meth) acrylate.
Examples of unsaturated compounds having an epoxy group include glycidyl (meth) acrylate, (meth) allyl glycidyl ether, diglycidyl ether of bisphenol A, diglycidyl ether of glycol, (meth) acrylic acid, hydroxyalkyl (meth) acrylate, etc. And epoxy (meth) acrylate obtained by the reaction.
 ウレタン(メタ)アクリレートとしては、ヒドロキシアルキル(メタ)アクリレートとポリイソシアナートとの反応によって得られる化合物等が挙げられる。
 芳香族ビニル化合物としては、スチレン、α-メチルスチレン、o-メトキシスチレン、p-ヒドロキシスチレン、p-イソプロペニルフェノール等が挙げられる。
 (メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ラウリル、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
 また、ジエン化合物としては、ブタジエン、イソプレン、ジメチルブタジエン、クロロプレン、1,3-ペンタジエン等が挙げられる。
Examples of the urethane (meth) acrylate include compounds obtained by reaction of hydroxyalkyl (meth) acrylate and polyisocyanate.
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, o-methoxystyrene, p-hydroxystyrene, p-isopropenylphenol and the like.
(Meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, and lauryl (meth) acrylate. , Polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate and the like.
Examples of the diene compound include butadiene, isoprene, dimethylbutadiene, chloroprene, 1,3-pentadiene, and the like.
 上記架橋重合体粒子が、共重合体(f2)からなる場合、架橋性単量体からなる単位量(f21)、ヒドロキシル基を有する不飽和化合物からなる単位及び/又はカルボキシル基を有する不飽和化合物からなる単位の合計量(f22)、並びに、他の単量体からなる単位量(f23)は、共重合体(f2)を構成する単位量の合計、即ち、(f21)、(f22)及び(f23)の和を100mol%とした場合に、それぞれ、好ましくは0.1~10mol%、5~50mol%及び40~94.9mol%、より好ましくは0.5~7mol%、6~45mol%及び48~93.5mol%、更に好ましくは1~5mol%、7~40mol%及び55~92mol%である。各単位量の割合が上記範囲にある場合、形状安定性、及び、アルカリ可溶性樹脂との相溶性に優れた架橋重合体粒子とすることができる。 When the crosslinked polymer particles are made of a copolymer (f2), the unit amount (f21) made of a crosslinkable monomer, the unit made of an unsaturated compound having a hydroxyl group, and / or the unsaturated compound having a carboxyl group The total amount (f22) of units consisting of, and the unit amount (f23) consisting of other monomers are the total of unit amounts constituting the copolymer (f2), that is, (f21), (f22) and When the sum of (f23) is 100 mol%, it is preferably 0.1 to 10 mol%, 5 to 50 mol%, and 40 to 94.9 mol%, more preferably 0.5 to 7 mol%, and 6 to 45 mol%, respectively. And 48 to 93.5 mol%, more preferably 1 to 5 mol%, 7 to 40 mol%, and 55 to 92 mol%. When the ratio of each unit amount is in the above range, crosslinked polymer particles having excellent shape stability and compatibility with the alkali-soluble resin can be obtained.
 また、上記架橋重合体粒子は、ゴムでも樹脂でもよく、そのガラス転移温度(Tg)は、特に限定されない。好ましいTgは20℃以下、より好ましくは10℃以下、更に好ましくは0℃以下である。尚、下限は、通常、-70℃以上である。 The crosslinked polymer particles may be rubber or resin, and the glass transition temperature (Tg) is not particularly limited. Preferable Tg is 20 ° C. or lower, more preferably 10 ° C. or lower, and still more preferably 0 ° C. or lower. The lower limit is usually −70 ° C. or higher.
 上記架橋重合体粒子は、粒子状であり、その平均粒径は、好ましくは30~100nm、より好ましくは40~90nm、更に好ましくは50~80nmである。上記架橋重合体粒子の平均粒径が上記範囲にあると、アルカリ可溶性樹脂との相溶性、アルカリ溶解性等に優れる。尚、上記平均粒径とは、光散乱流動分布測定装置「LPA-3000」(大塚電子社製)を用い、架橋重合体粒子の分散液を常法に従って希釈して測定した値である。 The crosslinked polymer particles are in the form of particles, and the average particle size is preferably 30 to 100 nm, more preferably 40 to 90 nm, and still more preferably 50 to 80 nm. When the average particle diameter of the crosslinked polymer particles is in the above range, the compatibility with the alkali-soluble resin, the alkali solubility, and the like are excellent. The average particle diameter is a value measured by diluting a dispersion of crosslinked polymer particles according to a conventional method using a light scattering flow distribution measuring device “LPA-3000” (manufactured by Otsuka Electronics Co., Ltd.).
 上記架橋重合体粒子(F)の含有割合は、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、1~100質量部であることが好ましく、より好ましくは5~80質量部、更に好ましくは5~50質量部である。この含有割合が上記範囲にあると、得られる硬化膜の耐熱衝撃性等に優れる。 The content of the cross-linked polymer particles (F) is preferably 1 to 100 parts by mass, more preferably 5 to 80 parts by mass, with 100 parts by mass of the alkali-soluble resin (A). The amount is preferably 5 to 50 parts by mass. When this content ratio is in the above range, the resulting cured film is excellent in thermal shock resistance and the like.
 (3-7)他の添加剤
 本発明におけるポジ型感光性樹脂組成物には、上記(A)~(F)成分以外にも、他の添加剤が含有されていてもよい。
 上記他の添加剤としては、密着助剤、界面活性剤等を挙げることができる。
 上記密着助剤としては、官能性シランカップリング剤が好ましく用いられる。例えば、カルボキシル基、メタクリロイル基、イソシアネート基、エポキシ基等の反応性置換基を有するシランカップリング剤が挙げられる。具体的には、トリメトキシシリル安息香酸、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、1,3,5-N-トリス(トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記密着助剤の含有割合は、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、0.5~10質量部であることが好ましく、より好ましくは0.5~5質量部である。この含有割合が上記範囲にあると、樹脂組成物を硬化してなる硬化物の、基材への密着性が向上する。
(3-7) Other Additives In addition to the above components (A) to (F), the positive photosensitive resin composition in the present invention may contain other additives.
Examples of the other additives include adhesion assistants and surfactants.
A functional silane coupling agent is preferably used as the adhesion aid. For example, the silane coupling agent which has reactive substituents, such as a carboxyl group, a methacryloyl group, an isocyanate group, an epoxy group, is mentioned. Specifically, trimethoxysilylbenzoic acid, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, β -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 1,3,5-N-tris (trimethoxysilylpropyl) isocyanurate and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
The content ratio of the adhesion assistant is preferably 0.5 to 10 parts by mass, more preferably 0.5 to 5 parts by mass when the alkali-soluble resin (A) is 100 parts by mass. . When this content ratio is in the above range, the adhesion of the cured product obtained by curing the resin composition to the substrate is improved.
 上記界面活性剤としては、例えば、BMケミー社製「BM-1000」、「BM-1100」;大日本インキ化学工業(株)製「メガファックF142D」、「同F172」、「同F173」、「同F183」;住友スリーエム(株)製「フロラードFC-135」、「同FC-170C」、「同FC-430」、「同FC-431」;旭硝子(株)製「サーフロンS-112」、「同S-113」、「同S-131」、「同S-141」、「同S-145」;東レダウコーニングシリコーン(株)製「SH-28PA」、「同-190」、「同-193」、「SZ-6032」、「SF-8428」;ネオス社製「NBX-15」等のフッ素系界面活性剤;日本油脂(株)製「ノニオンS-6」、「ノニオンO-4」、「プロノン201」、「プロノン204」;花王(株)製「エマルゲンA-60」、「同A-90」、「同A-500」等のノニオン系界面活性剤等を用いることができる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記界面活性剤の含有割合は、通常、上記アルカリ可溶性樹脂(A)を100質量部とした場合に、5質量部以下であることが好ましい。
Examples of the surfactant include, for example, “BM-1000” and “BM-1100” manufactured by BM Chemie; “Megafac F142D”, “Same F172” and “Same F173” manufactured by Dainippon Ink and Chemicals, Inc. “Same F183”; “Florard FC-135”, “Same FC-170C”, “Same FC-430”, “Same FC-431” manufactured by Sumitomo 3M; “Surflon S-112” manufactured by Asahi Glass Co., Ltd. “S-113”, “S-131”, “S-141”, “S-145”; “SH-28PA”, “-190” manufactured by Toray Dow Corning Silicone Co., “ -193 "," SZ-6032 "," SF-8428 "; Fluorosurfactants such as" NBX-15 "manufactured by Neos;" Nonion S-6 "," Nonion O- "manufactured by Nippon Oil & Fats Co., Ltd. 4 "," Pronon 201 ""Plonon204"; manufactured by Kao Corp., "Emulgen A-60", "the A-90", it is possible to use nonionic surface active agents such as "the A-500". These may be used individually by 1 type and may be used in combination of 2 or more type.
Usually, the content of the surfactant is preferably 5 parts by mass or less when the alkali-soluble resin (A) is 100 parts by mass.
 (3-8)樹脂組成物の粘度
 また、本発明におけるポジ型感光性樹脂組成物は、通常、剪断速度6rpmにおける粘度V1(mPa・s)と、剪断速度60rpmにおける粘度V2(mPa・s)との比(V1/V2)が、1.1以上であることが好ましく、より好ましくは1.1~10.0、更に好ましくは1.2~8.0、特に好ましくは1.3~5.0の範囲である。この比(V1/V2)が上記範囲にあると、孔部の内壁面及び底面の少なくとも内壁面に対する製膜性に優れ、均一な被膜を得ることができる。
(3-8) Viscosity of Resin Composition Further, the positive photosensitive resin composition in the present invention usually has a viscosity V1 (mPa · s) at a shear rate of 6 rpm and a viscosity V2 (mPa · s) at a shear rate of 60 rpm. (V1 / V2) is preferably 1.1 or more, more preferably 1.1 to 10.0, still more preferably 1.2 to 8.0, and particularly preferably 1.3 to 5 .0 range. When this ratio (V1 / V2) is in the above range, a film having excellent film-forming properties for at least the inner wall surface and the inner wall surface of the hole can be obtained.
 また、上記樹脂組成物の固形分濃度は、好ましくは5~80質量%、より好ましくは20~60質量%である。
 尚、上記樹脂組成物の固形分濃度が5~80質量%の範囲にあるときの粘度V1は、好ましくは10~10,000mPa・s、より好ましくは20~7,000mPa・s、更に好ましくは50~5,000mPa・sである。この粘度が上記範囲にあると、孔部の内壁面及び底面の少なくとも内壁面に対する製膜性に優れ、より均一な被膜を得ることができる。
The solid content concentration of the resin composition is preferably 5 to 80% by mass, more preferably 20 to 60% by mass.
The viscosity V1 when the solid content concentration of the resin composition is in the range of 5 to 80% by mass is preferably 10 to 10,000 mPa · s, more preferably 20 to 7,000 mPa · s, and still more preferably. 50 to 5,000 mPa · s. When this viscosity is in the above-mentioned range, it is excellent in film-forming properties for at least the inner wall surface of the hole and the bottom wall surface, and a more uniform film can be obtained.
 上記樹脂組成物は、上記のように、剪断速度6rpmにおける粘度V1(mPa・s)と、剪断速度60rpmにおける粘度V2(mPa・s)との比(V1/V2)は、1.1以上であることが好ましい。尚、より均一な被膜を得るためには、上記樹脂組成物は、剪断速度1.5rpmにおける粘度V3(mPa・s)と、剪断速度600rpmにおける粘度V4(mPa・s)との比(V3/V4)が、2.0以上であることが好ましい。より好ましい比(V3/V4)は、2.0~80、更に好ましくは2.0~50、特に好ましくは3.0~50の範囲である。
 上記粘度は、温度25℃で、剪断速度を、例えば、1rpmから1,000rpmまで上げながら測定された値である。
As described above, the ratio (V1 / V2) of the viscosity V1 (mPa · s) at a shear rate of 6 rpm and the viscosity V2 (mPa · s) at a shear rate of 60 rpm is 1.1 or more. Preferably there is. In order to obtain a more uniform coating film, the resin composition has a ratio (V3 / s) of a viscosity V3 (mPa · s) at a shear rate of 1.5 rpm and a viscosity V4 (mPa · s) at a shear rate of 600 rpm. V4) is preferably 2.0 or more. A more preferred ratio (V3 / V4) is in the range of 2.0 to 80, more preferably 2.0 to 50, and particularly preferably 3.0 to 50.
The viscosity is a value measured at a temperature of 25 ° C. while increasing the shear rate from, for example, 1 rpm to 1,000 rpm.
 以下、実施例を挙げて、本発明を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[1]実施例1
 (1)樹脂組成物の調製
 アルカリ可溶性樹脂(A)[フェノール樹脂(商品名「スミライトレジンS-2」、住友ベークライト社製)]100質量部、架橋剤(E1)[メラミン架橋剤(商品名「サイメル300」、三井サイテック社製)]30質量部、架橋剤(E2)[(商品名「デナコールEX-610U」、ナガセケムテックス社製)]10質量部、無機粒子(C)[シリカ粒子(商品名「PL-2L-PGME」、扶桑化学社製、平均粒径:10~20nm、ナトリウム含有量:0.02ppm)]100質量部、及び、キノンジアジド化合物(B)として1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタンと、1,2-ナフトキノンジアジド-5-スルホン酸との2.0モル縮合物を20質量部を、固形分濃度が47質量%となるように、溶媒(D)[乳酸エチル及びメチルエチルケトンの混合溶媒(混合比60/40)]中で分散させ、樹脂組成物を得た。
[1] Example 1
(1) Preparation of resin composition Alkali-soluble resin (A) [phenol resin (trade name “Sumilite Resin S-2”, manufactured by Sumitomo Bakelite Co., Ltd.)] 100 parts by mass, crosslinking agent (E1) [melamine crosslinking agent (product Name “Cymel 300” manufactured by Mitsui Cytec)] 30 parts by mass, crosslinking agent (E2) [(trade name “Denacol EX-610U” manufactured by Nagase ChemteX)]] 10 parts by mass, inorganic particles (C) [silica Particles (trade name “PL-2L-PGME”, manufactured by Fuso Chemical Co., Ltd., average particle size: 10 to 20 nm, sodium content: 0.02 ppm)] 100 parts by mass, and 1,1- as quinonediazide compound (B) Bis (4-hydroxyphenyl) -1- [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethane and 1,2-naphthoquinonediazide-5-s 20 parts by mass of a 2.0 molar condensate with sulfonic acid in a solvent (D) [mixed solvent of ethyl lactate and methyl ethyl ketone (mixing ratio 60/40)] so that the solid content concentration is 47% by mass. A resin composition was obtained by dispersing.
 (2)被膜の形成
 表面に、開口部形状が正方形(80μm×80μm)、深さが100μm、及び、底面形状が正方形(60μm×60μm)である順テーパー状の孔部を有する、直径150mm及び厚さ500μmのシリコン基板(図9参照)上に、溶剤としてプロピレングリコールモノメチルアセテートをスピンコート(1,000rpm、3秒間)し、孔部にこの溶剤を充填した(図1(b)参照)。
 その後、上記で得られた樹脂組成物を、2段階スピンコート(1段階目;300rpm、10秒間、2段階目;600rpm、20秒間)し、孔部内の溶剤表面を含むシリコン基板の表面に塗膜を形成した。
 次に、塗膜付きシリコン基板を、温度110℃のホットプレート上に3分間静置し、溶剤を揮発させて、シリコン基板の表面並びに孔部の内壁面及び底面に被膜を形成させ、被膜付きシリコン基板を得た(図2(d)参照)。図10に、電子顕微鏡による断面写真を示した。被膜の厚さを測定したところ、内壁面では9.0μm、底面では5.8μmであった(表1参照)。この孔部内表面における被膜形成性を目視観察したところ、均一であった。
(2) Formation of film 150 mm in diameter having a forward tapered hole having a square shape (80 μm × 80 μm), a depth of 100 μm, and a bottom shape of square (60 μm × 60 μm) on the surface. Propylene glycol monomethyl acetate was spin-coated (1,000 rpm, 3 seconds) as a solvent on a silicon substrate (see FIG. 9) having a thickness of 500 μm, and the hole was filled with this solvent (see FIG. 1 (b)).
Thereafter, the resin composition obtained above is subjected to two-stage spin coating (first stage; 300 rpm, 10 seconds, second stage; 600 rpm, 20 seconds), and applied to the surface of the silicon substrate including the solvent surface in the hole. A film was formed.
Next, the coated silicon substrate is allowed to stand on a hot plate having a temperature of 110 ° C. for 3 minutes, and the solvent is evaporated to form a coating on the surface of the silicon substrate and the inner wall surface and bottom surface of the hole. A silicon substrate was obtained (see FIG. 2D). FIG. 10 shows a cross-sectional photograph taken with an electron microscope. When the thickness of the coating was measured, it was 9.0 μm on the inner wall surface and 5.8 μm on the bottom surface (see Table 1). When the film forming property on the inner surface of the hole was visually observed, it was uniform.
[2]実施例2~5及び比較例1~4
 (1)樹脂組成物の調製(実施例2)
 表1に示すとおり、(A)アルカリ可溶性樹脂(A-1)100質量部、(B)キノンジアジド化合物(B-1)20質量部、(C)無機粒子(C-1)70質量部、(E)架橋剤(E-1)20質量部と(E-2)10質量部、(F)架橋重合体粒子(F-1)15質量部、(G)密着助剤(G-1)2.5質量部、及び(H)界面活性剤(H-1)0.1質量部を、固形分濃度が47質量%となるように、(D)溶剤(D-1)210質量部に溶解することにより樹脂組成物を調製した。
[2] Examples 2 to 5 and Comparative Examples 1 to 4
(1) Preparation of resin composition (Example 2)
As shown in Table 1, (A) 100 parts by mass of alkali-soluble resin (A-1), (B) 20 parts by mass of quinonediazide compound (B-1), (C) 70 parts by mass of inorganic particles (C-1), ( E) 20 parts by mass of crosslinking agent (E-1) and 10 parts by mass of (E-2), (F) 15 parts by mass of crosslinked polymer particles (F-1), (G) adhesion aid (G-1) 2 .5 parts by mass and (H) 0.1 part by mass of surfactant (H-1) were dissolved in 210 parts by mass of (D) solvent (D-1) so that the solid content concentration was 47% by mass. Thus, a resin composition was prepared.
 (2)樹脂組成物の調製(実施例3~5及び比較例1~4)
 実施例2と同様にして、表1に示すとおり、(A)アルカリ可溶性樹脂、(B)キノンジアジド化合物、(C)無機粒子、(E)架橋剤、(F)架橋重合体粒子、(G)密着助剤、及び(H)界面活性剤を固形分濃度が47質量%となるように、(D)溶剤に溶解することにより各樹脂組成物を調製した。
(2) Preparation of resin composition (Examples 3 to 5 and Comparative Examples 1 to 4)
As in Example 2, as shown in Table 1, (A) alkali-soluble resin, (B) quinonediazide compound, (C) inorganic particles, (E) cross-linking agent, (F) cross-linked polymer particles, (G) Each resin composition was prepared by dissolving the adhesion assistant and (H) surfactant in (D) solvent so that the solid content concentration was 47% by mass.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 尚、表1に記載の組成は、以下のとおりである。
<(A)アルカリ可溶性樹脂>
 A-1:m-クレゾール/p-クレゾール=60/40(モル比)からなるクレゾールノボラック樹脂、ポリスチレン換算重量平均分子量(Mw)=6500
<(B)キノンジアジド化合物>
 B-1:1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタンと、1,2-ナフトキノンジアジド-5-スルホン酸との2.0モル縮合物
<(C)無機粒子(シリカ)>
 C-1:商品名「クォートロンPL-2L」(扶桑化学工業製、疎水化処理物(疎水化率:50%)、平均粒子径:20nm、ナトリウム含有量:0.02ppm)
<(D)溶剤>
 D-1:プロピレングリコールモノメチルエーテルアセテート
In addition, the composition described in Table 1 is as follows.
<(A) Alkali-soluble resin>
A-1: Cresol novolak resin comprising m-cresol / p-cresol = 60/40 (molar ratio), polystyrene-reduced weight average molecular weight (Mw) = 6500
<(B) Quinonediazide compound>
B-1: 1,1-bis (4-hydroxyphenyl) -1- [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethane and 1,2-naphthoquinonediazide-5 2.0 molar condensate with sulfonic acid <(C) inorganic particles (silica)>
C-1: Trade name “Quarton PL-2L” (manufactured by Fuso Chemical Industries, hydrophobized product (hydrophobization rate: 50%), average particle size: 20 nm, sodium content: 0.02 ppm)
<(D) Solvent>
D-1: Propylene glycol monomethyl ether acetate
<(E)架橋剤>
 E-1:ヘキサメトキシメチルメラミン(三和ケミカル製、商品名「ニカラックMW-390」)
 E-2:ナガセケムテックス製、商品名「デナコールEX-610U」
<(F)架橋重合体粒子>
 F-1:ブタジエン/スチレン/ヒドロキシブチルメタクリレート/メタクリル酸/ジビニルベンゼン=48/24/20/6/2(質量%)(平均粒子径:70nm、Tg=-35℃)
<(G)密着助剤>
 G-1:γ-グリシドキシプロピルトリメトキシシラン(日本ユニカー製、商品名「A-187」)
<(H)界面活性剤(レベリング剤)>
 H-1:商品名「FTX-218」(ネオス製)
<(E) Crosslinking agent>
E-1: Hexamethoxymethylmelamine (manufactured by Sanwa Chemical Co., Ltd., trade name “Nicalak MW-390”)
E-2: Product name “Denacol EX-610U” manufactured by Nagase ChemteX
<(F) Crosslinked polymer particles>
F-1: Butadiene / styrene / hydroxybutyl methacrylate / methacrylic acid / divinylbenzene = 48/24/20/6/2 (mass%) (average particle diameter: 70 nm, Tg = −35 ° C.)
<(G) Adhesion aid>
G-1: γ-glycidoxypropyltrimethoxysilane (manufactured by Nihon Unicar, trade name “A-187”)
<(H) Surfactant (Leveling Agent)>
H-1: Product name “FTX-218” (manufactured by Neos)
 尚、上記(C)無機粒子(シリカ)における各疎水化率は、下記のようにして測定した値である。
<疎水化率>
 まず、シリカの10%水分散液150mLに塩化ナトリウム30gを溶解させ、pH4になるように1N塩酸で調整した。次いで、0.1N水酸化ナトリウム水溶液をpH9になるまで滴下した。そして、シリカ表面のシラノール基数を下式により求めた。
 A=(a×0.1×N)/(W×S)
 [但し、Aはシラノール基数(個/nm)、aは0.1N水酸化ナトリウム水溶液の滴下量(L)、Nはアボガドロ数(個/mol)、Wはシリカ重量(g)、SはシリカのBET面積(nm/g)である。
 このようにして、疎水化前及び疎水化後のシリカのシラノール基数をそれぞれ求め、下式によりシリカの疎水化率を計算した。
 疎水化率(%)=(疎水化後のシラノール基数/疎水化前のシラノール基数)×100
In addition, each hydrophobization rate in the said (C) inorganic particle (silica) is the value measured as follows.
<Hydrophobicization rate>
First, 30 g of sodium chloride was dissolved in 150 mL of a 10% aqueous dispersion of silica, and adjusted with 1N hydrochloric acid so as to have a pH of 4. Subsequently, 0.1N sodium hydroxide aqueous solution was dripped until it became pH9. Then, the number of silanol groups on the silica surface was determined by the following formula.
A = (a × 0.1 × N) / (W × S)
[However, A is the number of silanol groups (pieces / nm 2 ), a is the drop amount (L) of 0.1N sodium hydroxide aqueous solution, N is the Avogadro number (pieces / mol), W is the silica weight (g), and S is It is a BET area (nm 2 / g) of silica.
In this way, the number of silanol groups in the silica before and after hydrophobization was determined, and the hydrophobization rate of silica was calculated by the following equation.
Hydrophobization rate (%) = (number of silanol groups after hydrophobization / number of silanol groups before hydrophobization) × 100
[3]樹脂組成物の評価
 上記実施例2~5及び比較例1~4の各樹脂組成物を、下記の方法に従って評価した。その結果を表2に示す。
 (1)被膜形成性
 表面に、開口部形状が正方形(80μm×80μm)、深さが100μm、及び、底面形状が正方形(60μm×60μm)である順テーパー状の孔部(図1(b)参照)を有する、直径150mm及び厚さ500μmの段差Si基板上に、溶剤としてプロピレングリコールモノメチルアセテートをスピンコート(1000rpm、3秒間)し、孔部にこの溶剤を充填した〔図2(b)参照〕。その後、樹脂組成物をスピンコート(1段階目;300rpm、10秒間、2段階目;600rpm、20秒間)し、孔部内の溶剤表面を含む段差Si基板の表面に塗膜を形成した。次いで、塗膜付きSi基板を、温度110℃のホットプレート上に3分間静置し、溶剤を揮発させて、Si基板の表面並びに孔部の内壁面及び底面に被膜を形成させ、被膜付きSi基板を得た〔図2(d)参照〕。
 そして、電子顕微鏡により孔部の断面形状を観察し、以下の基準で被膜形成性を評価した。
 ○;被膜により表面開口部の肩が完全に被覆されており、孔部における内壁面及び底面の被膜の膜厚が略一定となっている場合(図11参照)
 △;被膜により表面開口部の肩が完全に被覆されているが、孔部における内壁面及び底面における膜厚が略一定になっていない場合(図12参照)
 ×;被膜により表面開口部の肩が完全に被覆されていない場合、又は孔部を完全に埋めつくしている場合(図13参照)
[3] Evaluation of Resin Composition Each resin composition of Examples 2 to 5 and Comparative Examples 1 to 4 was evaluated according to the following method. The results are shown in Table 2.
(1) Film-forming property A forward tapered hole having a square shape (80 μm × 80 μm), a depth of 100 μm, and a bottom surface shape of square (60 μm × 60 μm) on the surface (FIG. 1B) On a stepped Si substrate having a diameter of 150 mm and a thickness of 500 μm, propylene glycol monomethyl acetate was spin-coated (1000 rpm, 3 seconds) as a solvent, and the hole was filled with this solvent [see FIG. ]. Thereafter, the resin composition was spin-coated (first stage; 300 rpm, 10 seconds, second stage; 600 rpm, 20 seconds) to form a coating film on the surface of the stepped Si substrate including the solvent surface in the hole. Next, the coated Si substrate is allowed to stand on a hot plate having a temperature of 110 ° C. for 3 minutes, and the solvent is volatilized to form a coating on the surface of the Si substrate and the inner wall surface and bottom surface of the hole. A substrate was obtained [see FIG. 2 (d)].
And the cross-sectional shape of the hole part was observed with the electron microscope, and the film formation property was evaluated on the following references | standards.
○: The shoulder of the surface opening is completely covered with the coating, and the thickness of the coating on the inner wall surface and bottom surface of the hole is substantially constant (see FIG. 11).
Δ: The shoulder of the surface opening is completely covered with the coating, but the film thickness on the inner wall surface and the bottom surface of the hole is not substantially constant (see FIG. 12).
X: When the shoulder of the surface opening is not completely covered by the coating, or when the hole is completely filled (see FIG. 13)
 (2)熱衝撃性(クラック耐性)
 図14及び図15に示すような、基板92上にパターン状の銅箔91を有している熱衝撃性評価用の基材9に樹脂組成物を塗布し、ホットプレートを用いて110℃で5分間加熱し、銅箔91上での厚さが10μmである樹脂塗膜を有する基材を作製した。その後、対流式オーブンを用いて190℃で1時間加熱して樹脂塗膜を硬化させて硬化膜を得た。この基材を冷熱衝撃試験器(タバイエスペック社製、型番「TSA-40L」)で-65℃/30分~150℃/30分を1サイクルとして耐性試験を行った。この処理の後、顕微鏡を用いて200倍の倍率で観察し、硬化膜にクラック等の欠陥が発生するまでのサイクル数を100サイクル毎に確認した。
(2) Thermal shock resistance (crack resistance)
As shown in FIGS. 14 and 15, a resin composition is applied to a base material 9 for thermal shock evaluation having a patterned copper foil 91 on a substrate 92, and is used at 110 ° C. using a hot plate. A substrate having a resin coating film having a thickness of 10 μm on the copper foil 91 was produced by heating for 5 minutes. Then, it heated at 190 degreeC for 1 hour using the convection oven, the resin coating film was hardened, and the cured film was obtained. This substrate was subjected to a resistance test using a thermal shock tester (manufactured by Tabai Espec, model number “TSA-40L”) at −65 ° C./30 minutes to 150 ° C./30 minutes as one cycle. After this treatment, it was observed at a magnification of 200 times using a microscope, and the number of cycles until a defect such as a crack occurred in the cured film was confirmed every 100 cycles.
 (3)電気絶縁性(体積抵抗率)
 樹脂組成物をスピンコータ(型番「1H-360S」、MIKASA社製)によりSUS基板に塗布した。その後、ホットプレートを用いて110℃で3分間加熱し、膜厚10μmの均一な薄膜を形成した。次いで、対流式オーブンを用いて170℃で2時間加熱し、テストピース(絶縁層)を得た。この得られたテストピースをプレッシャークッカー試験装置(タバイエスペック社製)を用いて、温度;121℃、湿度;100%、圧力:2.1気圧の条件下で168時間処理した。処理前後の層間の体積抵抗率(Ω・cm)を測定し、電気絶縁性の指標とした。
(3) Electrical insulation (volume resistivity)
The resin composition was applied to the SUS substrate by a spin coater (model number “1H-360S”, manufactured by MIKASA). Then, it heated for 3 minutes at 110 degreeC using the hotplate, and formed the uniform thin film with a film thickness of 10 micrometers. Subsequently, it heated at 170 degreeC for 2 hours using the convection type oven, and the test piece (insulating layer) was obtained. The obtained test piece was treated for 168 hours under the conditions of temperature: 121 ° C., humidity: 100%, pressure: 2.1 atm using a pressure cooker test apparatus (manufactured by Tabai Espec). The volume resistivity (Ω · cm) between the layers before and after the treatment was measured and used as an index of electrical insulation.
 (4)解像性
 6インチのシリコンウェハに樹脂組成物をスピンコートし、ホットプレートを用いて110℃で5分間加熱し、10μm厚の均一な樹脂塗膜を作製した。その後、アライナー(Suss Microtec社製、型番「MA-150」)を用い、パターンマスクを介して高圧水銀灯からの紫外線を波長350nmにおける露光量が6000J/mとなるように露光した。次いで、2.38質量%テトラメチルアンモニウムハイドロキサイド水溶液を用いて、23℃で3分間、浸漬現像した。そして、得られたパターンの最小寸法を解像度とした。
(4) Resolution The resin composition was spin-coated on a 6-inch silicon wafer and heated at 110 ° C. for 5 minutes using a hot plate to produce a uniform resin film having a thickness of 10 μm. Then, using an aligner (manufactured by Suss Microtec, model number “MA-150”), UV light from a high-pressure mercury lamp was exposed through a pattern mask so that the exposure amount at a wavelength of 350 nm was 6000 J / m 2 . Next, immersion development was performed at 23 ° C. for 3 minutes using an aqueous 2.38 mass% tetramethylammonium hydroxide solution. And the minimum dimension of the obtained pattern was made into the resolution.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (9)

  1.  開口部の面積が25~10,000μmであり、深さが10~200μmであり且つアスペクト比が1~10である孔部を有する基板に、溶剤を塗布する溶剤塗布工程と、
     下記に示す(A)~(D)を含有するポジ型感光性樹脂組成物を、該ポジ型感光性樹脂組成物が上記孔部内の上記溶剤と接触するように、上記基板に塗布する樹脂組成物塗布工程と、
     塗膜を乾燥し、上記孔部の内壁面及び底面のうちの少なくとも該内壁面に上記樹脂成分を含む被膜を形成する工程と、
     上記基板の表面に形成されている被膜の所定領域を露光し、アルカリ性溶液を用いて処理し、上記孔部の内壁面に形成されている被膜を残存させる表底面側被膜除去工程と、
     上記孔部の内壁面に残存している被膜を加熱する加熱硬化工程と、を備えることを特徴とする絶縁性被膜を有する構造体の製造方法。
     (A)アルカリ可溶性樹脂
     (B)キノンジアジド化合物
     (C)無機粒子
     (D)溶剤
    A solvent application step of applying a solvent to a substrate having a hole having an opening area of 25 to 10,000 μm 2 , a depth of 10 to 200 μm, and an aspect ratio of 1 to 10;
    Resin composition for coating a positive photosensitive resin composition containing the following (A) to (D) on the substrate so that the positive photosensitive resin composition is in contact with the solvent in the hole. An object application process;
    Drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and bottom surface of the hole; and
    Exposing a predetermined region of the film formed on the surface of the substrate, treating with an alkaline solution, and leaving a film formed on the inner wall surface of the hole to leave the film on the bottom surface side;
    And a heat curing step of heating the film remaining on the inner wall surface of the hole. A method for producing a structure having an insulating film.
    (A) Alkali-soluble resin (B) Quinonediazide compound (C) Inorganic particles (D) Solvent
  2.  上記ポジ型感光性樹脂組成物が、更に、(E)アルキルエーテル化されたアミノ基を有する化合物(E1)と、脂肪族ポリグリシジルエーテル(E2)と、を含有する架橋剤を含有する請求項1に記載の絶縁性被膜を有する構造体の製造方法。 The positive photosensitive resin composition further contains a crosslinking agent containing (E) a compound (E1) having an alkyl etherified amino group and an aliphatic polyglycidyl ether (E2). A method for producing a structure having an insulating coating according to 1.
  3.  上記ポジ型感光性樹脂組成物が、更に、(F)架橋重合体粒子を含有する請求項1又は2に記載の絶縁性被膜を有する構造体の製造方法。 The method for producing a structure having an insulating coating according to claim 1 or 2, wherein the positive photosensitive resin composition further comprises (F) crosslinked polymer particles.
  4.  更に、上記絶縁性被膜を有する構造体における上記孔部を有さない面から基板を研磨する研磨工程を備える請求項1乃至3のいずれかに記載の絶縁性被膜を有する貫通孔を備える構造体の製造方法。 The structure having a through hole having an insulating coating according to any one of claims 1 to 3, further comprising a polishing step of polishing the substrate from a surface having no hole in the structure having the insulating coating. Manufacturing method.
  5.  請求項1乃至4のいずれかに記載の方法により得られたことを特徴とする絶縁性被膜を有する構造体。 A structure having an insulating film obtained by the method according to any one of claims 1 to 4.
  6.  請求項4に記載の方法により得られた絶縁性被膜を有する貫通孔を備える構造体と、該構造体の少なくとも貫通孔内に導電材料が充填されてなる電極部とを含む部材を備えることを特徴とする電子部品。 A member including a structure including a through-hole having an insulating film obtained by the method according to claim 4 and an electrode portion in which at least the through-hole of the structure is filled with a conductive material is provided. Features electronic components.
  7.  開口部の面積が25~10,000μmであり、深さが10~200μmであり且つアスペクト比が1~10である孔部を有する基板に、溶剤を塗布する溶剤塗布工程と、
     ポジ型感光性樹脂組成物を、該ポジ型感光性樹脂組成物が上記孔部内の上記溶剤と接触するように、上記基板に塗布する樹脂組成物塗布工程と、
     塗膜を乾燥し、上記孔部の内壁面及び底面のうちの少なくとも該内壁面に上記樹脂成分を含む被膜を形成する工程と、
     上記基板の表面に形成されている被膜の所定領域を露光し、アルカリ性溶液を用いて処理し、上記孔部の内壁面に形成されている被膜を残存させる表底面側被膜除去工程と、
     上記孔部の内壁面に残存している被膜を加熱する加熱硬化工程と、を備える絶縁性被膜を有する構造体の製造方法において用いられるポジ型感光性樹脂組成物であって、
     (A)アルカリ可溶性樹脂と、(B)キノンジアジド化合物と、(C)無機粒子と、(D)溶剤と、を含有することを特徴とするポジ型感光性樹脂組成物。
    A solvent application step of applying a solvent to a substrate having a hole having an opening area of 25 to 10,000 μm 2 , a depth of 10 to 200 μm, and an aspect ratio of 1 to 10;
    A resin composition application step of applying a positive photosensitive resin composition to the substrate such that the positive photosensitive resin composition is in contact with the solvent in the hole;
    Drying the coating film, and forming a coating film containing the resin component on at least the inner wall surface of the inner wall surface and bottom surface of the hole; and
    Exposing a predetermined region of the film formed on the surface of the substrate, treating with an alkaline solution, and leaving a film formed on the inner wall surface of the hole to leave the film on the bottom surface side;
    A positive-type photosensitive resin composition used in a method for producing a structure having an insulating coating, comprising a heating and curing step of heating a coating remaining on the inner wall surface of the hole,
    A positive photosensitive resin composition comprising (A) an alkali-soluble resin, (B) a quinonediazide compound, (C) inorganic particles, and (D) a solvent.
  8.  更に、(E)アルキルエーテル化されたアミノ基を有する化合物(E1)と、脂肪族ポリグリシジルエーテル(E2)と、を含有する架橋剤を含有する請求項7に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 7, further comprising a crosslinking agent containing (E) an alkyl etherified amino group-containing compound (E1) and an aliphatic polyglycidyl ether (E2). object.
  9.  更に、(F)架橋重合体粒子を含有する請求項7又は8に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 7 or 8, further comprising (F) crosslinked polymer particles.
PCT/JP2009/058945 2008-06-11 2009-05-13 Structure having insulating coating film, method for producing the same, positive photosensitive resin composition and electronic device WO2009150918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010516800A JP5246259B2 (en) 2008-06-11 2009-05-13 Structure having insulating film and method for producing the same, positive photosensitive resin composition, and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-153400 2008-06-11
JP2008153400 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009150918A1 true WO2009150918A1 (en) 2009-12-17

Family

ID=41416629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058945 WO2009150918A1 (en) 2008-06-11 2009-05-13 Structure having insulating coating film, method for producing the same, positive photosensitive resin composition and electronic device

Country Status (3)

Country Link
JP (1) JP5246259B2 (en)
TW (1) TW201001075A (en)
WO (1) WO2009150918A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046522A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
WO2015046521A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
JP2015083663A (en) * 2013-09-11 2015-04-30 三菱日立パワーシステムズ株式会社 Electric insulation resin composition and cured product thereof as well as coil, stator, rotating machine and high-voltage equipment using the same
JP2016151583A (en) * 2015-02-16 2016-08-22 ナガセケムテックス株式会社 Positive type photosensitive resin composition
WO2016157605A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Photosensitive resin composition, photosensitive element, cured product, and method for forming resist pattern
WO2016159160A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Photosensitive resin composition, photosensitive element, cured product, and method for forming resist pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218049A (en) * 1990-07-20 1992-08-07 Matsushita Electric Works Ltd Resist composition
JPH06180499A (en) * 1992-12-14 1994-06-28 Matsushita Electric Works Ltd Liquid resist composition
JPH07320999A (en) * 1993-03-25 1995-12-08 Tokyo Electron Ltd Method and apparatus for coating
JP2004014297A (en) * 2002-06-06 2004-01-15 Jsr Corp Photosensitive dielectric forming composition, dielectric, and electronic component
WO2004114020A1 (en) * 2003-06-20 2004-12-29 Zeon Corporation Radiation-sensitive resin composition and method for forming pattern using the same
WO2008123049A1 (en) * 2007-03-30 2008-10-16 Jsr Corporation Method for film formation, resin composition for use in the method, structure having insulating film, process for producing the structure, and electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218049A (en) * 1990-07-20 1992-08-07 Matsushita Electric Works Ltd Resist composition
JPH06180499A (en) * 1992-12-14 1994-06-28 Matsushita Electric Works Ltd Liquid resist composition
JPH07320999A (en) * 1993-03-25 1995-12-08 Tokyo Electron Ltd Method and apparatus for coating
JP2004014297A (en) * 2002-06-06 2004-01-15 Jsr Corp Photosensitive dielectric forming composition, dielectric, and electronic component
WO2004114020A1 (en) * 2003-06-20 2004-12-29 Zeon Corporation Radiation-sensitive resin composition and method for forming pattern using the same
WO2008123049A1 (en) * 2007-03-30 2008-10-16 Jsr Corporation Method for film formation, resin composition for use in the method, structure having insulating film, process for producing the structure, and electronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083663A (en) * 2013-09-11 2015-04-30 三菱日立パワーシステムズ株式会社 Electric insulation resin composition and cured product thereof as well as coil, stator, rotating machine and high-voltage equipment using the same
WO2015046522A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
WO2015046521A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
JPWO2015046521A1 (en) * 2013-09-30 2017-03-09 日立化成株式会社 Photosensitive resin composition, photosensitive element, semiconductor device, and method for forming resist pattern
US9829791B2 (en) 2013-09-30 2017-11-28 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
US9841678B2 (en) 2013-09-30 2017-12-12 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
JP2016151583A (en) * 2015-02-16 2016-08-22 ナガセケムテックス株式会社 Positive type photosensitive resin composition
WO2016157605A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Photosensitive resin composition, photosensitive element, cured product, and method for forming resist pattern
WO2016159160A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Photosensitive resin composition, photosensitive element, cured product, and method for forming resist pattern

Also Published As

Publication number Publication date
JPWO2009150918A1 (en) 2011-11-10
JP5246259B2 (en) 2013-07-24
TW201001075A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP2008241741A (en) Positive dry film for solder resist, cured product thereof, and circuit board and electronic component with the cured product
KR101290041B1 (en) Positive Type Photosensitive Insulating Resin Composition, and Cured Product and Electronic Component Produced Therefrom
US7371500B2 (en) Positive photosensitive insulating resin composition and cured product thereof
TWI461851B (en) Positive photosensitive resin composition, method of fabricating photoresist pattern, semiconductor device and electronic device
US7015256B2 (en) Composition for forming photosensitive dielectric material, and transfer film, dielectric material and electronic parts using the same
JP3960055B2 (en) Photosensitive insulating resin composition and cured product thereof
JP5246259B2 (en) Structure having insulating film and method for producing the same, positive photosensitive resin composition, and electronic component
JPH10207057A (en) Positive photoresist composition
TWI472875B (en) Photosensitive resin composition, method for producing patterned cured film and electronic component
JP2012256023A (en) Photosensitive composition, cured film, and electronic part
JP2009047761A (en) Positive photosensitive insulating resin composition, cured product thereof and circuit board
KR20080049141A (en) Positive photoresist composition and method of forming photoresist pattern using the same
JP2007079553A (en) Positive photosensitive insulating resin composition, cured material thereof, and circuit board
TW200905397A (en) Method for film formation, resin composition for use in the method, structure having insulating film, process for producing the structure, and electronic component
JP5311104B2 (en) Structure having insulating coating, method for producing the same, resin composition, and electronic component
JP3812655B2 (en) Positive photosensitive insulating resin composition and cured product thereof
JP2007052359A (en) Pattern forming method, its cured material, and circuit board
JP2008277771A (en) Method for film formation, structure having insulating film and its manufacturing method and electronic component
JP2009133924A (en) Method for film formation and positive photosensitive resin composition for use in the same
JP2004219536A (en) Photosensitive resin composition, circuit forming substrate, resist pattern forming method and method for manufacturing printed wiring board
WO2018070489A1 (en) Photosensitive element, semiconductor device, and resist pattern formation method
WO2018164233A1 (en) Photosensitive element, semiconductor device, and method for forming resist pattern
JP2008163411A (en) Metal thin film forming method and electronic component
JP5262350B2 (en) Structure having insulating coating, method for producing the same, and electronic component
JP2005037712A (en) Method for manufacturing patterned resist film, substrate for forming circuit with resist film formed thereon, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516800

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762348

Country of ref document: EP

Kind code of ref document: A1