WO2009150816A1 - Multi-strobe circuit, method for calibration of the same, and test equipment using the same - Google Patents

Multi-strobe circuit, method for calibration of the same, and test equipment using the same Download PDF

Info

Publication number
WO2009150816A1
WO2009150816A1 PCT/JP2009/002573 JP2009002573W WO2009150816A1 WO 2009150816 A1 WO2009150816 A1 WO 2009150816A1 JP 2009002573 W JP2009002573 W JP 2009002573W WO 2009150816 A1 WO2009150816 A1 WO 2009150816A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
strobe
under test
signal
delay amount
Prior art date
Application number
PCT/JP2009/002573
Other languages
French (fr)
Japanese (ja)
Inventor
宜保徹
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Publication of WO2009150816A1 publication Critical patent/WO2009150816A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • G01R31/31908Tester set-up, e.g. configuring the tester to the device under test [DUT], down loading test patterns
    • G01R31/3191Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31922Timing generation or clock distribution

Definitions

  • the present invention relates to a multi-strobe circuit that generates a multi-phase strobe signal (multi-strobe signal) and evaluates the level of a signal to be evaluated at timings of a plurality of edges of the multi-strobe signal.
  • Multi-strobe circuits are used in test equipment for testing semiconductor devices such as memory and DSP (Digital Signal Processor).
  • the multi-strobe circuit generates a multi-strobe signal (also referred to as a multi-phase strobe signal) having a plurality of edges within one cycle period of a signal under test (for example, a binary digital signal) output from a semiconductor device.
  • the level of the signal output from the semiconductor device is determined at the edge timing.
  • FIG. 1 is a circuit diagram showing a configuration example of the multi-strobe circuit 300.
  • N first delay elements D1 1 to D1 N (collectively referred to as first delay elements D1) are cascade-connected in multiple stages.
  • the first delay element D1 1 of the first stage is input under test signal S1 outputted from the DUT, the DUT signal S1 each time through the first delay element D1 1 stage, given the predetermined delay Tpd . That is, the i-th first delay element D1 i outputs the signal under test S1 i delayed by i ⁇ Tpd with respect to the signal under test S1 output from the DUT.
  • N second delay elements D2 1 to D2 N are provided for each of the N first delay elements D1 1 to D1 N and cascaded in multiple stages. .
  • the first stage second delay element D2 1 of the strobe signal STRB to be a reference are input.
  • the strobe signal STRB is given a predetermined delay (Tpd + ⁇ t) every time one stage passes through the second delay element D2.
  • the i-th strobe signal STRB i delayed by i ⁇ (Tpd + ⁇ t) with respect to the reference strobe signal STRB is output from the i- th second delay element D2.
  • N latch elements L 1 to L N are also provided for each of the N first delay elements D1 1 to D1 N.
  • the i (i is a natural number satisfying 1 ⁇ i ⁇ N) -th latch element L i latches the output signal of the i-th first delay element D1 i at the timing of the edge of the i-phase strobe signal STRBi.
  • the latch element L1 indicated by the D flip-flop in FIG. 2 can be replaced by various elements such as other flip-flops and latch circuits.
  • Output signals SL 1 to SL N of the N latch elements L are input to the logic operation unit 310.
  • the logical operation unit 310 performs predetermined signal processing according to the evaluation items of the DUT.
  • the output signals SL 1 to SL N are thermometer codes in which 0 and 1 change at a certain bit. Therefore, the logical operation unit 310 includes a priority encoder.
  • the levels of the signal under test S1 input to the first delay element D1 and the strobe signal STRB input to the second delay element D2 The phase difference (timing) is adjusted.
  • the relative time difference between the signal under test S1 and the strobe signal STRB changes by ⁇ t. That is, the value of the signal under test S1 is determined at the timing of N strobe signals (multi-strobe signals) STRB 1 to STRB N whose phases are shifted from each other by ⁇ t.
  • N strobe signals multi-strobe signals
  • the present invention has been made in view of such problems, and one of exemplary purposes of an aspect thereof is to provide a multi-strobe circuit and a calibration method capable of calibration.
  • An aspect of the present invention relates to a multi-strobe circuit that latches a signal under test to be evaluated at each edge timing of a multi-strobe signal having a plurality of edges.
  • This multi-strobe circuit is configured by connecting N (N is a natural number) first delay elements in multiple stages, and delays each stage of the signal under test to generate a plurality of signals under test.
  • a circuit and N second delay elements provided for each of the N first delay elements are connected in multiple stages, and a delay is provided for each stage with respect to a reference strobe signal.
  • the i-th latch element is output from the i-th first delay element.
  • a latch circuit configured to latch the signal at the timing of the strobe signal output from the i-th second delay element, and at least one of the N first delay elements and the N second delay elements
  • the delay amount adjusting unit increments i (i is a natural number) from 1 to N during calibration so that the edge timing of the signal under test input to the i-th latch element and the strobe signal coincide with each other.
  • a resolution setting step for changing only a fixed amount.
  • the delay amount variation between the first delay element and the second delay element in each phase (stage) is canceled in order from the first stage, and then the delay amount corresponding to the resolution is set to the second delay.
  • the multi-strobe circuit can be calibrated with high accuracy.
  • the N first delay elements and the N second delay elements may be variable delay elements.
  • the delay amount adjusting unit may execute the zero adjustment step by setting a state in which the delay amounts of the N first delay elements and the second delay elements are set to a minimum as an initial state.
  • the delay amount of the i-th first delay element is increased
  • the delay amount of the i-th second delay element may be increased.
  • the delay amount adjustment unit may perform the following processing when performing the i-th adjustment in the zero adjustment step.
  • (1) The relative delay amount of the i-th first delay element and the second delay element is changed stepwise.
  • (2) In the process of (1), the relative delay amount when the value latched by the i-th latch element is fixed at the first level is acquired as the first relative delay amount.
  • (3) In the process of (1), the relative delay amount when the value latched by the i-th latch element is determined to be a second level complementary to the first level is defined as a second relative delay. Get as a quantity.
  • the relative delay amount of the i-th first delay element and the second delay element is set to a value between the first relative delay amount and the second relative delay amount. In (4), the relative delay amount between the first delay element and the second delay element may be the midpoint between the first relative delay amount and the second relative delay amount.
  • test apparatus includes a comparator that compares a signal output from a device under test with a threshold voltage, a timing generator that generates a strobe signal whose level transitions at an arbitrary timing, a strobe signal, and a signal under test. And any one of the multi-strobe circuits described above that receives the output signal of the comparator.
  • Still another aspect of the present invention relates to a multi-strobe circuit calibration method for latching a signal under test to be evaluated at each edge timing of a multi-strobe signal having a plurality of edges.
  • the multi-strobe circuit is configured by connecting N (N is a natural number) first delay elements in multiple stages, and delays each stage of the signal under test to generate a plurality of signals under test.
  • N second delay elements provided for each of the N first delay elements are connected in multiple stages, and a plurality of strobe signals are generated by delaying the reference strobe signal for each stage.
  • the i-th latch element is a signal under test output from the i-th first delay element. Is latched at the timing of the strobe signal output from the i-th second delay element.
  • i (i is a natural number) is incremented from 1 to N so that the timing of the edge of the signal under test inputted to the i-th latch element and the strobe signal coincide with each other.
  • a zero adjustment step for adjusting a delay amount of at least one of the first delay element and the second delay element, and a delay amount of at least one of the first delay element and the second delay element is changed by a predetermined amount.
  • the N first delay elements and the N second delay elements may be variable delay elements.
  • the calibration method executes the zero adjustment step with the state in which the delay amounts of the N first delay elements and the second delay elements are set to the minimum as the initial state.
  • the zero adjustment step When the edge timing of the signal under test input to the latch element is earlier than the edge timing of the strobe signal, the delay amount of the i-th first delay element is increased and the signal input to the i-th latch element is increased.
  • the delay amount of the i-th second delay element may be increased.
  • the relative delay amount of the i-th first delay element and the second delay element is changed stepwise and held in the i-th latch element.
  • a relative delay amount when the value to be determined is determined to be the first level is defined as a first relative delay amount, and a value latched by the i-th latch element is complementary to the first level. Is obtained as the second relative delay amount, and the relative delay amounts of the i-th first delay element and the second delay element are determined as the first relative delay amount and the second relative delay amount.
  • a value between the delay amounts may be set.
  • a multi-strobe circuit that is highly accurate in time is provided.
  • FIG. 4 is a time chart showing the relationship between the timing of a strobe signal STRBi and a signal under test S1i and latch data LDi.
  • FIGS. 6A and 6B are time charts showing the timing relationship between the strobe signal and the signal under test when the calibration according to the embodiment is not performed.
  • FIGS. 7A and 7B are time charts showing how the multi-strobe circuit of FIG. 2 is calibrated.
  • the member A is connected to the member B means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected.
  • the case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 2 is a block diagram illustrating a configuration of the test apparatus 100 including the multi-strobe circuit 10 according to the embodiment.
  • the test apparatus 100 receives a signal under test S1 output from a device under test (DUT) 110 such as a memory, DSP, or other digital circuit, and executes a predetermined test.
  • DUT device under test
  • the test apparatus 100 includes a timing generator 30 and a level comparator 40 in addition to the multi-strobe circuit 10.
  • the level comparator 40 includes a first comparator 42 and a second comparator 44.
  • the first comparator 42 compares the potential of the signal under test S1 output from the DUT 110 with a low level threshold voltage VOL, and generates a signal under test S1L whose high level and low level change according to the comparison result.
  • the second comparator 44 compares the potential of the signal under test S1 with a high level threshold voltage VOH, and generates a signal under test S1H according to the comparison result.
  • the level comparator 40 can be constituted by a comparator for comparing the potential of the signal under test S1 with a single threshold voltage, or a simple inverter (buffer).
  • the timing generator 30 generates a strobe signal STRB whose level transitions (that is, has an edge) at an arbitrary timing according to a sequence defined by the test program.
  • the multi-strobe circuit 10 receives signals under test S1L and S1H and a strobe signal STRB.
  • the multi-strobe circuit 10 is divided into two blocks for evaluating each of the signals under test S1L and S1H using the multi-strobe signal.
  • the blocks that process the signal under test S1L are marked with “L”, and the blocks that process the signal under test S1H are marked with “H”.
  • the configuration of the signal under test S1L will be described in detail using a block as an example. In the description, the subscript “L” is omitted.
  • the multi-strobe circuit 10 latches the signal under test to be evaluated at the timing of each edge of the multi-strobe signal having a plurality of edges, and evaluates the value at each timing.
  • the multi-strobe circuit 10 includes a first delay circuit 12, a second delay circuit 14, a latch circuit 16, a logic operation unit 18, and a delay amount adjustment unit 20.
  • the first delay circuit 12 includes N (N is a natural number) first delay elements D1 1 to D1 N (collectively referred to as first delay elements D1) cascaded in multiple stages.
  • the first delay element D1 1 of the first stage under test signals S1L from the level comparator 40 is input.
  • the second delay circuit 14 includes N second delay elements D2 1 to D2 N (collectively referred to as second delay elements D2) cascaded in multiple stages.
  • the second delay elements D2 1 to D2 N are provided for each of the N first delay elements D1 1 to D1 N.
  • the reference strobe signal STRB generated by the timing generator 30 is input to the first delay element D21 at the first stage via the third delay element D3.
  • the strobe signal STRB includes the second delay element ST21.
  • the i-th strobe signal STRB i delayed by i ⁇ (Tpd + ⁇ t) with respect to the reference strobe signal STRB is output from the i- th second delay element D2.
  • FIG. 3 is a circuit diagram showing a configuration example of the variable delay circuit 50 that can be used as the first delay element and the second delay element.
  • the variable delay circuit 50 includes a buffer 52, a plurality of m (m is a natural number) capacitors C1 to Cm, and a plurality of switches SW1 to SWm provided for the plurality of capacitors C1 to Cm.
  • the capacitance values of the plurality of capacitors C1 to Cm are weighted with binary numbers.
  • the i (1 ⁇ ) -th capacity value is expressed as 2 m ⁇ 1 C.
  • the i-th capacitor Ci and the i-th switch SWi are connected in series between the output terminal of the buffer 52 and a fixed voltage terminal (ground terminal).
  • the capacitor Ci corresponding to the switch SWi is connected to the output terminal of the buffer 52. That is, the time constant increases, the change speed of the waveform of the signal output to the subsequent stage becomes slow, and as a result, the delay amount increases.
  • the delay amount can be switched in 2 m steps.
  • variable delay circuit 50 in FIG. 3 can switch the delay amount stepwise with high resolution by reducing the unit capacitance C.
  • the variable delay circuit can be configured with a plurality of inverters cascaded in series.
  • a variable delay circuit can be configured by providing a tap at the output of the inverter of each stage and providing a selector for selecting signals from a plurality of taps.
  • a variable delay circuit may be realized by configuring the bias voltage and bias current of the inverter and the buffer so as to be adjustable in multiple stages.
  • the latch circuit 16 includes N latch elements L 1 to L N (collectively referred to as latch elements L). N latch elements L are provided for each of the N first delay elements D1 1 to D1 N and the second delay elements D2 1 to D2 N.
  • the i-th (i is a natural number satisfying 1 ⁇ i ⁇ N) -th latch element L i is the output signal of the corresponding i-th first delay element D1 i at the edge timing of the corresponding i-phase strobe signal STRBi.
  • S1 i is latched.
  • Output signals SL 1 to SL N of the N latch elements L are input to the logic operation unit 18.
  • the logical operation unit 18 performs predetermined signal processing according to the evaluation items of the DUT 110.
  • the output signals SL 1 to SL N are thermometer codes in which 0 and 1 change at a certain bit. Therefore, the logical operation unit 18 may include a priority encoder that generates data indicating the position of the bit where the values of the output signals SL 1 to SL N change.
  • the delay amount adjusting unit 20 is configured to include at least one of N first delay elements D1 1 to D1 N and N second delay elements D2 1 to D2 N. Perform a calibration process to adjust the delay amount. The relative amounts of the first delay amount ⁇ 1 and the second delay amount ⁇ 2 of all the stages are adjusted by the delay amount adjusting unit 20, and the edge timings of the multi-strobe signals STRB 1 to STRB N are set to desired positions. .
  • this calibration process will be described.
  • FIG. 4 is a flowchart showing the calibration procedure of the multi-strobe circuit 10.
  • the delay amount adjusting unit 20 first initializes the first delay amount ⁇ 1 and the second delay amount ⁇ 2 of all stages (S100). When both the first delay element D1 and the second delay element D2 are configured as variable delay elements, the delay amounts of all the delay elements D1 and D2 are set to a settable minimum value.
  • the zero adjustment step is repeated while i (i is a natural number) is incremented by 1 from 1 to N (S102).
  • the zero adjustment step (S104) is performed so that the timing of the edge of the signal under test S1 i input to the i- th stage latch element Li matches the edge timing of the i-phase strobe signal STRB i . 1 to adjust the delay amount .tau.1 i of the delay element D1 i, at least one of the delay amount of the delay amount .tau.2 i of the second delay element D2 i.
  • the zero adjustment step S104 can be executed as follows. That is, when the edge timing of the signal under test S1 i input to the i-th latch element L i is earlier than the edge timing of the strobe signal STRB i , the delay amount of the i- th first delay element D1 i Increase ⁇ 1 i by the minimum width. Conversely, when the edge timing of the signal under test S1 i is later than the edge timing of the strobe signal STRB i , the delay amount ⁇ 2 i of the i- th second delay element D2 i is increased. If this process is repeated, the convergence is made so that the timing of the edge of the signal under test S1 i and the edge of the strobe signal STRB i coincide.
  • the zero adjustment step S104 may include the following steps A to D.
  • Step A The relative delay amount TR of the i- th first delay element D1 i and the second delay element D2 i is changed stepwise. For example, consider the case where the signal under test S1 i transitions from a low level (first level) to a high level (second level). At this time, when the strobe signal STRB i is located before the signal under test S1 i transits to the high level and is stable at the low level, the output signal (latch) of the i-th latch element Li Data LD i ) is determined at the first level (low level).
  • FIG. 5 is a time chart showing the relationship between the timing of the strobe signal STRB i and the signal under test S1 i and the latch data LD i .
  • the state in which the latch data LD i is indefinite is indicated by “X”.
  • Step B In the process of step A, the relative delay amount TR when the latch data LD i is fixed at the first level (for example, low level) is acquired as the first relative delay amount TR1.
  • Step C In the process of Step A, the relative delay amount TR when the latch data LD i is fixed at the second level (for example, high level) is acquired as the second relative delay amount TR2.
  • Step D The relative delay amount TR between the i- th first delay element D1 i and the second delay element D2 i is set to a value between the first relative delay amount TR1 and the second relative delay amount TR2.
  • the midpoint TRc of the first relative delay amount TR1 and the second relative delay amount TR2 may be selected.
  • the first relative delay amount TR1 or the second relative delay amount TR2 may be selected.
  • the resolution setting step S106 is executed.
  • the delay amount adjusting unit 20 changes the delay amounts of all the stages of at least one of the first delay element D1 and the second delay element D2 by a predetermined amount ⁇ t. For example, the delay amounts ⁇ 2 1 to ⁇ 2 N of all stages of the second delay element D2 may be increased by ⁇ t.
  • FIGS. 6A and 6B are time charts showing the timing relationship between the strobe signal and the signal under test when the calibration according to the embodiment is not performed.
  • the timings of the i-phase strobe signal STRB i and the i-phase signal under test S1 i will match.
  • the strobe signals STRB 1 to STRB N of each phase are set to ideal timing.
  • the delay amount of the first delay element D1 and the second delay element D2 may deviate from the design value due to the influence of process variations, power supply voltage fluctuations, and temperature fluctuations. Is done. Even if the delay amounts of the first delay element D1 and the second delay element D2 increase or decrease by ⁇ t1 and ⁇ t2 with respect to the design value Tpd, respectively, if they are integrated on the same semiconductor substrate, both delays Since the amounts vary following each other, ⁇ t1 ⁇ t2. That is, in the stage of step 1 before setting the resolution, the timings of the i-phase strobe signal STRB i and the i-phase signal under test S1 i substantially coincide.
  • FIGS. 7A and 7B are time charts showing how the multi-strobe circuit 10 shown in FIG. 2 is calibrated.
  • FIG. 7A shows a zero adjustment step
  • FIG. 7B shows a resolution setting step.
  • the delay amount ⁇ 2 of the second delay element D2 is increased or decreased while the delay amount ⁇ 1 of the first delay element D1 is fixed, and the strobe signal STRB i The case where the timing of the test signal S1 i is aligned is illustrated.
  • the present invention is not limited to this, and while the delay amount ⁇ 2 of the second delay element D2 is fixed, the delay amount ⁇ 1 of the first delay element D1 is increased or decreased, and the strobe signal STRB i and the signal under test S1 i are increased.
  • the timing may be aligned.
  • the initial delay of the first delay element D1 and the second delay element D2 is minimized, and the edge timing of the signal under test S1 i is earlier than the edge timing of the strobe signal STRB i.
  • the delay amount ⁇ 1 i of the first delay element D1 i is increased, and conversely, when the edge timing of the signal under test S1 i is later than the edge timing of the strobe signal STRB i , the second delay element D2 i
  • the delay amount ⁇ 2 i may be increased. In this case, since the calibration can be performed in a state where the delay amount ⁇ 2 of the first delay element D1 and the delay amount ⁇ 2 of the second delay element D2 are minimized, it is possible to suppress the influence of variations in the delay amount on the resolution.
  • each phase As shown in FIG. 7B, the delay amount ⁇ 2 of the second delay element D2 increases by a predetermined amount ⁇ t, and the strobe signal STRB is timed with respect to the signal under test S1. Will be late. Since each phase (each stage) is delayed by ⁇ t, the phase difference between the i- th signal under test S1 i and the strobe signal STRB i is given by i ⁇ ⁇ t.
  • the multi-strobe circuit 10 it is possible to preferably cancel the variation in the delay amount of the delay element, and as a result, the signal under test S1 is generated by the highly accurate multi-strobe signals STRB 1 to STRB N. Can be evaluated.
  • SYMBOLS 10 Multi-strobe circuit, 12 ... 1st delay circuit, 14 ... 2nd delay circuit, 16 ... Latch circuit, 18 ... Logic operation part, 20 ... Delay amount adjustment part, 30 ... Timing generator, 40 ... Level comparator, 42 DESCRIPTION OF SYMBOLS 1st comparator, 44 ... 2nd comparator, D1 ... 1st delay element, D2 ... 2nd delay element, L ... Latch element, 100 ... Test apparatus, 110 ... DUT, S1 ... Signal under test.
  • the present invention can be used for a test apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

N-pieces (N is a natural number) of first delay elements (D1) are multi-stage connected and delay a tested signal (S1) on a per-stage basis.  N-pieces of second delay elements (D2) are multi-stage connected and delay a reference strobe signal (STRB) on a per-stage basis to generate multi-strobe signals (STRB1 to STRBN).  A latch element (Li) at the i-th stage latches the tested signal (S1i) at the timing of the strobe signal (STRBi).  During a calibration period, a delay amount adjustment unit (20), while incrementing i ( i is a natural number) from 1 to N, adjusts the delay amount of at least one of the first delay element (D1i) and the second delay element (D2i) at the i-th stage so that the edge timing of the tested signal (S1i) and the strobe signal (STRBi), which are input to the latch element (Li) at the i-th stage, coincide with each other.  Subsequently, the delay amount adjustment unit (20) changes the delay amounts of all stages of at least one of the first delay elements (D1) and the second delay elements (D2) by a predetermined amount.

Description

マルチストローブ回路およびそのキャリブレーション方法およびそれを用いた試験装置Multi-strobe circuit, calibration method thereof, and test apparatus using the same
 本発明は、多相のストローブ信号(マルチストローブ信号)を生成し、評価対象の信号のレベルをマルチストローブ信号の複数のエッジのタイミングで評価するマルチストローブ回路に関する。 The present invention relates to a multi-strobe circuit that generates a multi-phase strobe signal (multi-strobe signal) and evaluates the level of a signal to be evaluated at timings of a plurality of edges of the multi-strobe signal.
 メモリやDSP(Digital Signal Processor)をはじめとする半導体デバイスを試験する試験装置にマルチストローブ回路が利用される。マルチストローブ回路は、半導体デバイスから出力される被試験信号(たとえば2値のデジタル信号)の1サイクル期間内に、複数のエッジを有するマルチストローブ信号(多相ストローブ信号ともいう)を発生し、各エッジのタイミングにおいて半導体デバイスから出力される信号のレベルを判定する。マルチストローブ回路を利用することにより、半導体デバイスから出力される信号のレベル遷移のタイミング(変化点)の検出等が可能となり、半導体デバイスの評価に利用することができる。 Multi-strobe circuits are used in test equipment for testing semiconductor devices such as memory and DSP (Digital Signal Processor). The multi-strobe circuit generates a multi-strobe signal (also referred to as a multi-phase strobe signal) having a plurality of edges within one cycle period of a signal under test (for example, a binary digital signal) output from a semiconductor device. The level of the signal output from the semiconductor device is determined at the edge timing. By using the multi-strobe circuit, it becomes possible to detect the level transition timing (change point) of the signal output from the semiconductor device, and to use it for the evaluation of the semiconductor device.
 図1は、マルチストローブ回路300の構成例を示す回路図である。N個の第1遅延素子D1~D1(第1遅延素子D1と総称される)は、多段にカスケード接続されている。1段目の第1遅延素子D1にはDUTから出力される被試験信号S1が入力され、被試験信号S1には第1遅延素子D1を1段経るごとに、所定の遅延Tpdが与えられる。つまりi段目の第1遅延素子D1からは、DUTから出力される被試験信号S1に対して、i×Tpdだけ遅延した被試験信号S1が出力される。 FIG. 1 is a circuit diagram showing a configuration example of the multi-strobe circuit 300. N first delay elements D1 1 to D1 N (collectively referred to as first delay elements D1) are cascade-connected in multiple stages. The first delay element D1 1 of the first stage is input under test signal S1 outputted from the DUT, the DUT signal S1 each time through the first delay element D1 1 stage, given the predetermined delay Tpd . That is, the i-th first delay element D1 i outputs the signal under test S1 i delayed by i × Tpd with respect to the signal under test S1 output from the DUT.
 N個の第2遅延素子D2~D2(第2遅延素子D2と総称される)はそれぞれ、N個の第1遅延素子D1~D1ごとに設けられ、多段にカスケード接続されている。1段目の第2遅延素子D2には、基準となるストローブ信号STRBが入力される。ストローブ信号STRBには、第2遅延素子D2を1段経るごとに、所定の遅延(Tpd+Δt)の遅延が与えられる。i段目の第2遅延素子D2からは、基準ストローブ信号STRBに対して、i×(Tpd+Δt)だけ遅延したi相目のストローブ信号STRBが出力される。 N second delay elements D2 1 to D2 N (collectively referred to as second delay elements D2) are provided for each of the N first delay elements D1 1 to D1 N and cascaded in multiple stages. . The first stage second delay element D2 1 of the strobe signal STRB to be a reference are input. The strobe signal STRB is given a predetermined delay (Tpd + Δt) every time one stage passes through the second delay element D2. The i-th strobe signal STRB i delayed by i × (Tpd + Δt) with respect to the reference strobe signal STRB is output from the i- th second delay element D2.
 N個のラッチ素子L~L(ラッチ素子Lと総称される)もまた、N個の第1遅延素子D1~D1ごとに設けられる。i(iは1≦i≦Nを満たす自然数)番目のラッチ素子Lは、i相目のストローブ信号STRBiのエッジのタイミングで、i番目の第1遅延素子D1の出力信号をラッチする。なお図2においてDフリップフロップで示されるラッチ素子L1は、その他のフリップフロップやラッチ回路など、さまざまな素子で代替可能であることはいうまでもない。N個のラッチ素子Lの出力信号SL~SLは、論理演算部310へと入力される。論理演算部310は、DUTの評価事項に応じた所定の信号処理を行う。被試験信号S1がある点を境に0から1(または1から0)に遷移するとき、出力信号SL~SLはあるビットを境に0と1が変化するサーモメータコードとなる。したがって論理演算部310は、プライオリティエンコーダを含んでいる。 N latch elements L 1 to L N (collectively referred to as latch elements L) are also provided for each of the N first delay elements D1 1 to D1 N. The i (i is a natural number satisfying 1 ≦ i ≦ N) -th latch element L i latches the output signal of the i-th first delay element D1 i at the timing of the edge of the i-phase strobe signal STRBi. Needless to say, the latch element L1 indicated by the D flip-flop in FIG. 2 can be replaced by various elements such as other flip-flops and latch circuits. Output signals SL 1 to SL N of the N latch elements L are input to the logic operation unit 310. The logical operation unit 310 performs predetermined signal processing according to the evaluation items of the DUT. When the signal under test S1 transitions from 0 to 1 (or 1 to 0) at a certain point, the output signals SL 1 to SL N are thermometer codes in which 0 and 1 change at a certain bit. Therefore, the logical operation unit 310 includes a priority encoder.
 N個の第2遅延素子D2の前段に設けられた第3遅延素子D3によって、第1遅延素子D1に入力される被試験信号S1と、第2遅延素子D2に入力されるストローブ信号STRBの位相差(タイミング)が調整される。 By means of a third delay element D3 provided in front of the N second delay elements D2, the levels of the signal under test S1 input to the first delay element D1 and the strobe signal STRB input to the second delay element D2 The phase difference (timing) is adjusted.
 第1遅延素子D1、第2遅延素子D2を1段通過するごとに、被試験信号S1とストローブ信号STRBの相対的な時間差は、Δtだけ変化する。つまり、被試験信号S1は、互いにΔtだけ位相がシフトしたN個のストローブ信号(マルチストローブ信号)STRB~STRBのタイミングでその値が判定される。以上がマルチストローブ回路300の構成の概要とその動作である。 Each time the signal passes through the first delay element D1 and the second delay element D2, the relative time difference between the signal under test S1 and the strobe signal STRB changes by Δt. That is, the value of the signal under test S1 is determined at the timing of N strobe signals (multi-strobe signals) STRB 1 to STRB N whose phases are shifted from each other by Δt. The above is the outline of the configuration of the multi-strobe circuit 300 and its operation.
 このようなマルチストローブ回路300において、第1遅延素子D1、第2遅延素子D2の遅延量が変動すると、被試験信号S1とマルチストローブ信号STRB~STRBのタイミング精度が悪化してしまう。特に分解能Δtが小さければ小さいほど、第1遅延素子D1、第2遅延素子D2の遅延量ばらつきの影響は顕著となる。 In such a multi-strobe circuit 300, if the delay amounts of the first delay element D1 and the second delay element D2 vary, the timing accuracy of the signal under test S1 and the multi-strobe signals STRB 1 to STRB N will deteriorate. In particular, as the resolution Δt is smaller, the influence of the delay amount variation of the first delay element D1 and the second delay element D2 becomes more significant.
 本発明はこうした課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、キャリブレーションが可能なマルチストローブ回路およびキャリブレーション方法の提供にある。 The present invention has been made in view of such problems, and one of exemplary purposes of an aspect thereof is to provide a multi-strobe circuit and a calibration method capable of calibration.
 本発明のある態様は、複数のエッジを有するマルチストローブ信号のそれぞれエッジのタイミングで、評価対象の被試験信号をラッチするマルチストローブ回路に関する。このマルチストローブ回路は、N個(Nは自然数)の第1遅延素子が多段接続されて構成され、被試験信号に対し1段ごとに遅延を与え、複数の被試験信号を生成する第1遅延回路と、N個の第1遅延素子ごとに設けられたN個の第2遅延素子が多段接続されて構成され、基準となるストローブ信号に対し1段ごとに遅延を与え、複数のストローブ信号を生成する第2遅延回路と、N個の第1遅延素子ごとに設けられたN個のラッチ素子を含み、i段目のラッチ素子は、i段目の第1遅延素子から出力される被試験信号を、i段目の第2遅延素子から出力されるストローブ信号のタイミングでラッチするように構成されたラッチ回路と、N個の第1遅延素子とN個の第2遅延素子の少なくとも一方の遅延量を調節する遅延量調節部と、を備える。遅延量調節部は、キャリブレーション時に、i(iは自然数)を1からNまでインクリメントしながら、i段目のラッチ素子に入力される被試験信号とストローブ信号のエッジのタイミングが一致するように、i段目の第1遅延素子と第2遅延素子の少なくとも一方の遅延量を調節するゼロアジャストステップと、第1遅延素子および第2遅延素子の少なくとも一方のすべてのステージの遅延量を、所定量だけ変化させる分解能設定ステップと、を実行する。 An aspect of the present invention relates to a multi-strobe circuit that latches a signal under test to be evaluated at each edge timing of a multi-strobe signal having a plurality of edges. This multi-strobe circuit is configured by connecting N (N is a natural number) first delay elements in multiple stages, and delays each stage of the signal under test to generate a plurality of signals under test. A circuit and N second delay elements provided for each of the N first delay elements are connected in multiple stages, and a delay is provided for each stage with respect to a reference strobe signal. A second delay circuit to be generated; and N latch elements provided for each of the N first delay elements. The i-th latch element is output from the i-th first delay element. A latch circuit configured to latch the signal at the timing of the strobe signal output from the i-th second delay element, and at least one of the N first delay elements and the N second delay elements A delay amount adjusting unit for adjusting the delay amount; . The delay amount adjusting unit increments i (i is a natural number) from 1 to N during calibration so that the edge timing of the signal under test input to the i-th latch element and the strobe signal coincide with each other. , A zero adjustment step for adjusting a delay amount of at least one of the first delay element and the second delay element in the i-th stage, and delay amounts of all stages of at least one of the first delay element and the second delay element, And a resolution setting step for changing only a fixed amount.
 この態様によると、1段目から順番に、各相(ステージ)の第1遅延素子と第2遅延素子の遅延量のばらつきをキャンセルしていき、その後、分解能に応じた遅延量を第2遅延素子に付加することにより、マルチストローブ回路を高精度にキャリブレートできる。 According to this aspect, the delay amount variation between the first delay element and the second delay element in each phase (stage) is canceled in order from the first stage, and then the delay amount corresponding to the resolution is set to the second delay. By adding to the element, the multi-strobe circuit can be calibrated with high accuracy.
 N個の第1遅延素子およびN個の第2遅延素子は可変遅延素子であってもよい。遅延量調節部は、N個の第1遅延素子および第2遅延素子の遅延量を最小に設定した状態を初期状態として、ゼロアジャストステップを実行してもよい。ゼロアジャストステップにおいて、i段目のラッチ素子に入力される被試験信号のエッジのタイミングがストローブ信号のエッジのタイミングより早いとき、i段目の第1遅延素子の遅延量を増加させ、i段目のラッチ素子に入力される被試験信号のエッジのタイミングがストローブ信号のエッジのタイミングより遅いとき、i段目の第2遅延素子の遅延量を増加させてもよい。
 この場合、第1遅延素子および第2遅延素子の初期値を調整幅のセンターに設定してからキャリブレーションを行う場合に比べて、ある段における遅延のばらつきが後段に及ぼす影響を低減できる。
The N first delay elements and the N second delay elements may be variable delay elements. The delay amount adjusting unit may execute the zero adjustment step by setting a state in which the delay amounts of the N first delay elements and the second delay elements are set to a minimum as an initial state. In the zero adjustment step, when the edge timing of the signal under test input to the i-th latch element is earlier than the edge timing of the strobe signal, the delay amount of the i-th first delay element is increased, When the edge timing of the signal under test input to the second latch element is later than the edge timing of the strobe signal, the delay amount of the i-th second delay element may be increased.
In this case, compared to the case where the calibration is performed after setting the initial values of the first delay element and the second delay element to the center of the adjustment width, the influence of the delay variation at a certain stage on the subsequent stage can be reduced.
 遅延量調節部は、ゼロアジャストステップにおいて、i段目の調整を行う際に以下の処理を行ってもよい。
(1) i段目の第1遅延素子および第2遅延素子の相対的な遅延量を段階的に変化させる。
(2) (1)の過程において、i段目のラッチ素子によりラッチされた値が、第1のレベルに確定するときの相対的な遅延量を第1相対遅延量として取得する。
(3) (1)の過程において、i段目のラッチ素子によりラッチされた値が、第1のレベルと相補的な第2のレベルに確定するときの相対的な遅延量を第2相対遅延量として取得する。
(4) i段目の第1遅延素子および第2遅延素子の相対的な遅延量を、第1相対遅延量と第2相対遅延量の間の値に設定する。
 なお、(4)において、第1遅延素子および第2遅延素子の相対的な遅延量は、第1相対遅延量と第2相対遅延量の中点としてもよい。
The delay amount adjustment unit may perform the following processing when performing the i-th adjustment in the zero adjustment step.
(1) The relative delay amount of the i-th first delay element and the second delay element is changed stepwise.
(2) In the process of (1), the relative delay amount when the value latched by the i-th latch element is fixed at the first level is acquired as the first relative delay amount.
(3) In the process of (1), the relative delay amount when the value latched by the i-th latch element is determined to be a second level complementary to the first level is defined as a second relative delay. Get as a quantity.
(4) The relative delay amount of the i-th first delay element and the second delay element is set to a value between the first relative delay amount and the second relative delay amount.
In (4), the relative delay amount between the first delay element and the second delay element may be the midpoint between the first relative delay amount and the second relative delay amount.
 本発明の別の態様は、試験装置である。この試験装置は、被試験デバイスから出力される信号をしきい値電圧と比較するコンパレータと、任意のタイミングでレベルが遷移するストローブ信号を生成するタイミング発生器と、ストローブ信号と、被試験信号としてのコンパレータの出力信号と、を受ける上述のいずれかのマルチストローブ回路と、を備える。 Another aspect of the present invention is a test apparatus. This test apparatus includes a comparator that compares a signal output from a device under test with a threshold voltage, a timing generator that generates a strobe signal whose level transitions at an arbitrary timing, a strobe signal, and a signal under test. And any one of the multi-strobe circuits described above that receives the output signal of the comparator.
 本発明のさらに別の態様は、複数のエッジを有するマルチストローブ信号のそれぞれエッジのタイミングで、評価対象の被試験信号をラッチするマルチストローブ回路のキャリブレーション方法に関する。マルチストローブ回路は、N個(Nは自然数)の第1遅延素子が多段接続されて構成され、被試験信号に対し1段ごとに遅延を与え、複数の被試験信号を生成する第1遅延回路と、N個の第1遅延素子ごとに設けられたN個の第2遅延素子が多段接続されて構成され、基準となるストローブ信号に対し1段ごとに遅延を与え、複数のストローブ信号を生成する第2遅延回路と、N個の第1遅延素子ごとに設けられたN個のラッチ素子を含み、i段目のラッチ素子は、i段目の第1遅延素子から出力される被試験信号を、i段目の第2遅延素子から出力されるストローブ信号のタイミングでラッチするように構成されたラッチ回路と、を備える。当該キャリブレーション方法は、i(iは自然数)を1からNまでインクリメントしながら、i段目のラッチ素子に入力される被試験信号とストローブ信号のエッジのタイミングが一致するように、i段目の第1遅延素子と第2遅延素子の少なくとも一方の遅延量を調節するゼロアジャストステップと、第1遅延素子および第2遅延素子の少なくとも一方のすべてのステージの遅延量を、所定量だけ変化させる分解能設定ステップと、を備える。 Still another aspect of the present invention relates to a multi-strobe circuit calibration method for latching a signal under test to be evaluated at each edge timing of a multi-strobe signal having a plurality of edges. The multi-strobe circuit is configured by connecting N (N is a natural number) first delay elements in multiple stages, and delays each stage of the signal under test to generate a plurality of signals under test. And N second delay elements provided for each of the N first delay elements are connected in multiple stages, and a plurality of strobe signals are generated by delaying the reference strobe signal for each stage. The i-th latch element is a signal under test output from the i-th first delay element. Is latched at the timing of the strobe signal output from the i-th second delay element. In this calibration method, i (i is a natural number) is incremented from 1 to N so that the timing of the edge of the signal under test inputted to the i-th latch element and the strobe signal coincide with each other. A zero adjustment step for adjusting a delay amount of at least one of the first delay element and the second delay element, and a delay amount of at least one of the first delay element and the second delay element is changed by a predetermined amount. A resolution setting step.
 N個の第1遅延素子およびN個の第2遅延素子は可変遅延素子であってもよい。この場合、キャリブレーション方法は、N個の第1遅延素子および第2遅延素子の遅延量を最小に設定した状態を初期状態として、ゼロアジャストステップを実行し、ゼロアジャストステップにおいて、i段目のラッチ素子に入力される被試験信号のエッジのタイミングがストローブ信号のエッジのタイミングより早いとき、i段目の第1遅延素子の遅延量を増加させ、i段目のラッチ素子に入力される被試験信号のエッジのタイミングがストローブ信号のエッジのタイミングより遅いとき、i段目の第2遅延素子の遅延量を増加させてもよい。 The N first delay elements and the N second delay elements may be variable delay elements. In this case, the calibration method executes the zero adjustment step with the state in which the delay amounts of the N first delay elements and the second delay elements are set to the minimum as the initial state. In the zero adjustment step, When the edge timing of the signal under test input to the latch element is earlier than the edge timing of the strobe signal, the delay amount of the i-th first delay element is increased and the signal input to the i-th latch element is increased. When the edge timing of the test signal is later than the edge timing of the strobe signal, the delay amount of the i-th second delay element may be increased.
 ゼロアジャストステップにおいて、i段目の調整を行う際に、i段目の第1遅延素子および第2遅延素子の相対的な遅延量を段階的に変化させながら、i段目のラッチ素子に保持される値が第1のレベルに確定するときの相対的な遅延量を第1相対遅延量として、i段目のラッチ素子によりラッチされた値が第1のレベルと相補的な第2のレベルに確定するときの相対的な遅延量を第2相対遅延量として取得し、i段目の第1遅延素子および第2遅延素子の相対的な遅延量を、第1相対遅延量と第2相対遅延量の間の値に設定してもよい。 In the zero adjustment step, when the i-th adjustment is performed, the relative delay amount of the i-th first delay element and the second delay element is changed stepwise and held in the i-th latch element. A relative delay amount when the value to be determined is determined to be the first level is defined as a first relative delay amount, and a value latched by the i-th latch element is complementary to the first level. Is obtained as the second relative delay amount, and the relative delay amounts of the i-th first delay element and the second delay element are determined as the first relative delay amount and the second relative delay amount. A value between the delay amounts may be set.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置などの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described constituent elements and those in which constituent elements and expressions of the present invention are mutually replaced between methods and apparatuses are also effective as an aspect of the present invention.
 本発明によれば、時間的に高精度なマルチストローブ回路が提供される。 According to the present invention, a multi-strobe circuit that is highly accurate in time is provided.
マルチストローブ回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of a multi-strobe circuit. 実施の形態に係るマルチストローブ回路を備える試験装置の構成を示すブロック図である。It is a block diagram which shows the structure of the test apparatus provided with the multi-strobe circuit which concerns on embodiment. 第1遅延素子および第2遅延素子として利用可能な可変遅延回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the variable delay circuit which can be utilized as a 1st delay element and a 2nd delay element. マルチストローブ回路のキャリブレーションの手順を示すフローチャートである。It is a flowchart which shows the procedure of the calibration of a multi-strobe circuit. ストローブ信号STRBiと被試験信号S1iのタイミングと、ラッチデータLDiの関係を示すタイムチャートである。4 is a time chart showing the relationship between the timing of a strobe signal STRBi and a signal under test S1i and latch data LDi. 図6(a)、(b)は、実施の形態に係るキャリブレーションを行わない場合のストローブ信号と被試験信号のタイミング関係を示すタイムチャートである。FIGS. 6A and 6B are time charts showing the timing relationship between the strobe signal and the signal under test when the calibration according to the embodiment is not performed. 図7(a)、(b)は、図2のマルチストローブ回路のキャリブレーションの様子を示すタイムチャートである。FIGS. 7A and 7B are time charts showing how the multi-strobe circuit of FIG. 2 is calibrated.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bと接続」された状態とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。 In this specification, “the member A is connected to the member B” means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. The case where it is indirectly connected through another member that does not affect the state is also included. Similarly, “the state in which the member C is provided between the member A and the member B” refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
 図2は、実施の形態に係るマルチストローブ回路10を備える試験装置100の構成を示すブロック図である。試験装置100は、メモリやDSP、その他のデジタル回路などの被試験デバイス(DUT)110から出力される被試験信号S1を受け、所定の試験を実行する。 FIG. 2 is a block diagram illustrating a configuration of the test apparatus 100 including the multi-strobe circuit 10 according to the embodiment. The test apparatus 100 receives a signal under test S1 output from a device under test (DUT) 110 such as a memory, DSP, or other digital circuit, and executes a predetermined test.
 試験装置100は、マルチストローブ回路10に加えて、タイミング発生器30、レベルコンパレータ40を備える。レベルコンパレータ40は、第1コンパレータ42、第2コンパレータ44を含む。第1コンパレータ42は、DUT110から出力される被試験信号S1の電位をローレベルのしきい値電圧VOLと比較し、比較結果に応じてハイレベルとローレベルが変化する被試験信号S1Lを生成する。第2コンパレータ44は被試験信号S1の電位をハイレベルのしきい値電圧VOHと比較し、比較結果に応じた被試験信号S1Hを生成する。なお、最も簡易には、レベルコンパレータ40は被試験信号S1の電位を単一のしきい値電圧と比較するコンパレータ、もしくは単なるインバータ(バッファ)でも構成可能である。 The test apparatus 100 includes a timing generator 30 and a level comparator 40 in addition to the multi-strobe circuit 10. The level comparator 40 includes a first comparator 42 and a second comparator 44. The first comparator 42 compares the potential of the signal under test S1 output from the DUT 110 with a low level threshold voltage VOL, and generates a signal under test S1L whose high level and low level change according to the comparison result. . The second comparator 44 compares the potential of the signal under test S1 with a high level threshold voltage VOH, and generates a signal under test S1H according to the comparison result. In the simplest case, the level comparator 40 can be constituted by a comparator for comparing the potential of the signal under test S1 with a single threshold voltage, or a simple inverter (buffer).
 タイミング発生器30は、テストプログラムで規定されるシーケンスに応じた任意のタイミングでレベルが遷移する(つまりエッジを有する)ストローブ信号STRBを生成する。 The timing generator 30 generates a strobe signal STRB whose level transitions (that is, has an edge) at an arbitrary timing according to a sequence defined by the test program.
 マルチストローブ回路10は、被試験信号S1L、S1Hおよびストローブ信号STRBを受ける。マルチストローブ回路10は、被試験信号S1L、S1Hそれぞれをマルチストローブ信号を利用して評価する2つのブロックに分かれている。被試験信号S1Lを処理するブロックには、”L”を、被試験信号S1Hを処理するブロックには”H”が付されており、両者の構成は同一である。以下では、被試験信号S1Lを処理するブロックを例に、その構成を詳細に説明する。また説明に際しては、添え字”L”は省略する。 The multi-strobe circuit 10 receives signals under test S1L and S1H and a strobe signal STRB. The multi-strobe circuit 10 is divided into two blocks for evaluating each of the signals under test S1L and S1H using the multi-strobe signal. The blocks that process the signal under test S1L are marked with “L”, and the blocks that process the signal under test S1H are marked with “H”. In the following, the configuration of the signal under test S1L will be described in detail using a block as an example. In the description, the subscript “L” is omitted.
 マルチストローブ回路10は、複数のエッジを有するマルチストローブ信号のそれぞれのエッジのタイミングで、評価対象の被試験信号をラッチして各タイミングにおける値を評価する。 The multi-strobe circuit 10 latches the signal under test to be evaluated at the timing of each edge of the multi-strobe signal having a plurality of edges, and evaluates the value at each timing.
 マルチストローブ回路10は、第1遅延回路12、第2遅延回路14、ラッチ回路16、論理演算部18、遅延量調節部20を備える。
 第1遅延回路12は、多段にカスケード接続されたN個(Nは自然数)の第1遅延素子D1~D1(第1遅延素子D1と総称される)を含む。1段目の第1遅延素子D1にはレベルコンパレータ40からの被試験信号S1Lが入力される。被試験信号S1Lには第1遅延素子D1を1段経るごとに、所定の第1遅延量τ1(=Tpd)が与えられる。つまりi段目の第1遅延素子D1からは、被試験信号S1Lに対して(i×Tpd)だけ遅延した被試験信号S1が出力される。
The multi-strobe circuit 10 includes a first delay circuit 12, a second delay circuit 14, a latch circuit 16, a logic operation unit 18, and a delay amount adjustment unit 20.
The first delay circuit 12 includes N (N is a natural number) first delay elements D1 1 to D1 N (collectively referred to as first delay elements D1) cascaded in multiple stages. The first delay element D1 1 of the first stage under test signals S1L from the level comparator 40 is input. A predetermined first delay amount τ1 (= Tpd) is given to the signal under test S1L every time one stage passes through the first delay element D1. That is, the signal under test S1 i delayed from the signal under test S1L by (i × Tpd) is output from the i- th first delay element D1 i .
 第2遅延回路14は、多段にカスケード接続されたN個の第2遅延素子D2~D2(第2遅延素子D2と総称される)を含む。これらの第2遅延素子D2~D2はそれぞれ、N個の第1遅延素子D1~D1ごとに設けられている。1段目の第2遅延素子D2には、タイミング発生器30により生成された基準となるストローブ信号STRBが、第3遅延素子D3を介して入力されており、ストローブ信号STRBには、第2遅延素子D2を1段経るごとに、所定の第2遅延量τ2(=Tpd+Δt)の遅延が与えられる。i段目の第2遅延素子D2からは、基準ストローブ信号STRBに対して、i×(Tpd+Δt)だけ遅延したi相目のストローブ信号STRBが出力される。 The second delay circuit 14 includes N second delay elements D2 1 to D2 N (collectively referred to as second delay elements D2) cascaded in multiple stages. The second delay elements D2 1 to D2 N are provided for each of the N first delay elements D1 1 to D1 N. The reference strobe signal STRB generated by the timing generator 30 is input to the first delay element D21 at the first stage via the third delay element D3. The strobe signal STRB includes the second delay element ST21. A delay of a predetermined second delay amount τ2 (= Tpd + Δt) is given each time one stage through the delay element D2. The i-th strobe signal STRB i delayed by i × (Tpd + Δt) with respect to the reference strobe signal STRB is output from the i- th second delay element D2.
 図3は、第1遅延素子および第2遅延素子として利用可能な可変遅延回路50の構成例を示す回路図である。可変遅延回路50は、バッファ52、複数m個(mは自然数)のキャパシタC1~Cm、複数のキャパシタC1~Cmごとに設けられた複数のスイッチSW1~SWmを備える。複数のキャパシタC1~Cmの容量値は2進数で重み付けされている。重み1に対応する単位容量をCと書くとき、i(1≦)番目の容量値は2m-1Cと表される。i番目のキャパシタCiとi番目のスイッチSWiは、バッファ52の出力端子と固定電圧端子(接地端子)の間に直列に接続される。 FIG. 3 is a circuit diagram showing a configuration example of the variable delay circuit 50 that can be used as the first delay element and the second delay element. The variable delay circuit 50 includes a buffer 52, a plurality of m (m is a natural number) capacitors C1 to Cm, and a plurality of switches SW1 to SWm provided for the plurality of capacitors C1 to Cm. The capacitance values of the plurality of capacitors C1 to Cm are weighted with binary numbers. When a unit capacity corresponding to weight 1 is written as C, the i (1 ≦) -th capacity value is expressed as 2 m−1 C. The i-th capacitor Ci and the i-th switch SWi are connected in series between the output terminal of the buffer 52 and a fixed voltage terminal (ground terminal).
 スイッチSWiをオンすると、バッファ52の出力端子には、そのスイッチSWiに対応したキャパシタCiが接続される。つまり時定数が大きくなり、後段に出力される信号の波形の変化速度が遅くなり、結果として遅延量が増加する。複数のスイッチSW1~SWmのオン、オフを制御することにより、遅延量を2段階で切り換えることができる。 When the switch SWi is turned on, the capacitor Ci corresponding to the switch SWi is connected to the output terminal of the buffer 52. That is, the time constant increases, the change speed of the waveform of the signal output to the subsequent stage becomes slow, and as a result, the delay amount increases. By controlling on / off of the plurality of switches SW1 to SWm, the delay amount can be switched in 2 m steps.
 図3の可変遅延回路50は、単位容量Cを小さくすることにより、遅延量を高分解能で段階的に切り換えることができる。なお、遅延量の分解能がそれほど要求されない場合、可変遅延回路は、直列にカスケード接続された複数のインバータで構成できる。各ステージのインバータの出力にタップを設け、複数のタップの信号を選択するセレクタを設けることで、可変遅延回路が構成できる。さらに別の構成例では、インバータやバッファのバイアス電圧やバイアス電流を多段階で調節可能に構成することにより、可変遅延回路を実現してもよい。 The variable delay circuit 50 in FIG. 3 can switch the delay amount stepwise with high resolution by reducing the unit capacitance C. When the resolution of the delay amount is not so required, the variable delay circuit can be configured with a plurality of inverters cascaded in series. A variable delay circuit can be configured by providing a tap at the output of the inverter of each stage and providing a selector for selecting signals from a plurality of taps. In yet another configuration example, a variable delay circuit may be realized by configuring the bias voltage and bias current of the inverter and the buffer so as to be adjustable in multiple stages.
 図2に戻る。ラッチ回路16は、N個のラッチ素子L~L(ラッチ素子Lと総称される)を含む。N個のラッチ素子Lは、N個の第1遅延素子D1~D1、第2遅延素子D2~D2ごとに設けられる。 Returning to FIG. The latch circuit 16 includes N latch elements L 1 to L N (collectively referred to as latch elements L). N latch elements L are provided for each of the N first delay elements D1 1 to D1 N and the second delay elements D2 1 to D2 N.
 i(iは1≦i≦Nを満たす自然数)番目のラッチ素子Lは、対応するi相目のストローブ信号STRBiのエッジのタイミングで、対応するi番目の第1遅延素子D1の出力信号S1をラッチする。N個のラッチ素子Lの出力信号SL~SLは、論理演算部18へと入力される。論理演算部18は、DUT110の評価事項に応じた所定の信号処理を行う。被試験信号S1がある点を境に0から1(または1から0)に遷移するとき、出力信号SL~SLはあるビットを境に0と1が変化するサーモメータコードとなる。したがって論理演算部18は、出力信号SL~SLの値が変化するビットの位置を示すデータを生成するプライオリティエンコーダを含んでもよい。 The i-th (i is a natural number satisfying 1 ≦ i ≦ N) -th latch element L i is the output signal of the corresponding i-th first delay element D1 i at the edge timing of the corresponding i-phase strobe signal STRBi. S1 i is latched. Output signals SL 1 to SL N of the N latch elements L are input to the logic operation unit 18. The logical operation unit 18 performs predetermined signal processing according to the evaluation items of the DUT 110. When the signal under test S1 transitions from 0 to 1 (or 1 to 0) at a certain point, the output signals SL 1 to SL N are thermometer codes in which 0 and 1 change at a certain bit. Therefore, the logical operation unit 18 may include a priority encoder that generates data indicating the position of the bit where the values of the output signals SL 1 to SL N change.
 遅延量調節部20は、論理演算部18の信号処理の結果にもとづいて、N個の第1遅延素子D1~D1と、N個の第2遅延素子D2~D2の少なくとも一方の遅延量を調節するキャリブレーション処理を行う。遅延量調節部20によってすべてのステージの第1遅延量τ1と第2遅延量τ2の相対的な値が調節され、マルチストローブ信号STRB~STRBのエッジのタイミングが所望の位置に設定される。以下、このキャリブレーション処理を説明する。 Based on the signal processing result of the logic operation unit 18, the delay amount adjusting unit 20 is configured to include at least one of N first delay elements D1 1 to D1 N and N second delay elements D2 1 to D2 N. Perform a calibration process to adjust the delay amount. The relative amounts of the first delay amount τ1 and the second delay amount τ2 of all the stages are adjusted by the delay amount adjusting unit 20, and the edge timings of the multi-strobe signals STRB 1 to STRB N are set to desired positions. . Hereinafter, this calibration process will be described.
 図4は、マルチストローブ回路10のキャリブレーションの手順を示すフローチャートである。 FIG. 4 is a flowchart showing the calibration procedure of the multi-strobe circuit 10.
 遅延量調節部20は、まずすべてのステージの第1遅延量τ1、第2遅延量τ2を初期化する(S100)。第1遅延素子D1、第2遅延素子D2がいずれも可変遅延素子として構成される場合、すべての遅延素子D1、D2の遅延量を設定可能な最小値にセットする。 The delay amount adjusting unit 20 first initializes the first delay amount τ1 and the second delay amount τ2 of all stages (S100). When both the first delay element D1 and the second delay element D2 are configured as variable delay elements, the delay amounts of all the delay elements D1 and D2 are set to a settable minimum value.
 続いて、i(iは自然数)を1からNまで1ずつインクリメントしながら、ゼロアジャストステップを繰り返す(S102)。ゼロアジャストステップ(S104)は、i段目のラッチ素子Lに入力される被試験信号S1と、i相目のストローブ信号STRBのエッジのタイミングが一致するように、i段目の第1遅延素子D1の遅延量τ1と、第2遅延素子D2の遅延量τ2の少なくとも一方の遅延量を調節する。 Subsequently, the zero adjustment step is repeated while i (i is a natural number) is incremented by 1 from 1 to N (S102). The zero adjustment step (S104) is performed so that the timing of the edge of the signal under test S1 i input to the i- th stage latch element Li matches the edge timing of the i-phase strobe signal STRB i . 1 to adjust the delay amount .tau.1 i of the delay element D1 i, at least one of the delay amount of the delay amount .tau.2 i of the second delay element D2 i.
 ゼロアジャストステップS104は、以下のように実行することができる。すなわち、i段目のラッチ素子Lに入力される被試験信号S1のエッジのタイミングが、ストローブ信号STRBのエッジのタイミングより早いとき、i段目の第1遅延素子D1の遅延量τ1を最小幅だけ増加させる。反対に、被試験信号S1のエッジのタイミングが、ストローブ信号STRBのエッジのタイミングより遅いとき、i段目の第2遅延素子D2の遅延量τ2を増加させる。この処理を繰り返せば、被試験信号S1のエッジとストローブ信号STRBのエッジのタイミングが一致するように収束する。 The zero adjustment step S104 can be executed as follows. That is, when the edge timing of the signal under test S1 i input to the i-th latch element L i is earlier than the edge timing of the strobe signal STRB i , the delay amount of the i- th first delay element D1 i Increase τ1 i by the minimum width. Conversely, when the edge timing of the signal under test S1 i is later than the edge timing of the strobe signal STRB i , the delay amount τ2 i of the i- th second delay element D2 i is increased. If this process is repeated, the convergence is made so that the timing of the edge of the signal under test S1 i and the edge of the strobe signal STRB i coincide.
 あるいはゼロアジャストステップS104は、以下のステップA~Dを含んでもよい。 Alternatively, the zero adjustment step S104 may include the following steps A to D.
 ステップA. i段目の第1遅延素子D1および第2遅延素子D2の相対的な遅延量TRを段階的に変化させる。たとえば被試験信号S1がローレベル(第1レベル)からハイレベル(第2レベル)に遷移する場合を考える。このときストローブ信号STRBが、被試験信号S1がハイレベルに遷移する前であって、ローレベルに安定している期間に位置するとき、i段目のラッチ素子Lの出力信号(ラッチデータLDともいう)は、第1レベル(ローレベル)で確定される。反対に、ストローブ信号STRBが、被試験信号S1がハイレベルに遷移した後であって、ハイレベルに安定している期間に位置するとき、ラッチデータLDは、第2レベル(ハイレベル)で確定される。ストローブ信号STRBが、被試験信号S1の遷移期間中に位置するとき、その値は不定となる。つまりハイレベルとなるかローレベルとなるかは、確率的な現象となる。図5は、ストローブ信号STRBと被試験信号S1のタイミングと、ラッチデータLDの関係を示すタイムチャートである。図中、ラッチデータLDが不定となる状態は”X”で示される。 Step A. The relative delay amount TR of the i- th first delay element D1 i and the second delay element D2 i is changed stepwise. For example, consider the case where the signal under test S1 i transitions from a low level (first level) to a high level (second level). At this time, when the strobe signal STRB i is located before the signal under test S1 i transits to the high level and is stable at the low level, the output signal (latch) of the i-th latch element Li Data LD i ) is determined at the first level (low level). On the other hand, when the strobe signal STRB i is positioned after the signal under test S1 i has transitioned to the high level and is stable at the high level, the latch data LD i has the second level (high level). ) To confirm. When the strobe signal STRB i is located during the transition period of the signal under test S1 i , its value becomes indefinite. That is, it becomes a probabilistic phenomenon whether it becomes high level or low level. FIG. 5 is a time chart showing the relationship between the timing of the strobe signal STRB i and the signal under test S1 i and the latch data LD i . In the figure, the state in which the latch data LD i is indefinite is indicated by “X”.
 ステップB. ステップAの過程において、ラッチデータLDが、第1レベル(たとえばローレベル)に確定するときの相対的な遅延量TRを、第1相対遅延量TR1として取得する。 Step B. In the process of step A, the relative delay amount TR when the latch data LD i is fixed at the first level (for example, low level) is acquired as the first relative delay amount TR1.
 ステップC. ステップAの過程において、ラッチデータLDが、第2レベル(たとえばハイレベル)に確定するときの相対的な遅延量TRを、第2相対遅延量TR2として取得する。 Step C. In the process of Step A, the relative delay amount TR when the latch data LD i is fixed at the second level (for example, high level) is acquired as the second relative delay amount TR2.
 ステップD. i段目の第1遅延素子D1と第2遅延素子D2の相対的な遅延量TRを、第1相対遅延量TR1と第2相対遅延量TR2の間の値に設定する。たとえば第1相対遅延量TR1と第2相対遅延量TR2の中点TRcを選んでもよい。あるいは、第1相対遅延量TR1もしくは第2相対遅延量TR2を選択しても構わない。 Step D. The relative delay amount TR between the i- th first delay element D1 i and the second delay element D2 i is set to a value between the first relative delay amount TR1 and the second relative delay amount TR2. For example, the midpoint TRc of the first relative delay amount TR1 and the second relative delay amount TR2 may be selected. Alternatively, the first relative delay amount TR1 or the second relative delay amount TR2 may be selected.
 図4に戻る。すべてのステージについてゼロアジャストステップが完了したら、分解能設定ステップS106を実行する。分解能設定ステップS106において遅延量調節部20は、第1遅延素子D1および第2遅延素子D2の少なくとも一方のすべてのステージの遅延量を、所定量Δtだけ変化させる。たとえば第2遅延素子D2のすべてのステージの遅延量τ2~τ2をΔt増加させてもよい。 Returning to FIG. When the zero adjustment step is completed for all the stages, the resolution setting step S106 is executed. In the resolution setting step S106, the delay amount adjusting unit 20 changes the delay amounts of all the stages of at least one of the first delay element D1 and the second delay element D2 by a predetermined amount Δt. For example, the delay amounts τ2 1 to τ2 N of all stages of the second delay element D2 may be increased by Δt.
 以上がマルチストローブ回路10の構成である。 The above is the configuration of the multi-strobe circuit 10.
 実施の形態に係るマルチストローブ回路10の効果を説明する前に、キャリブレーションを行わない場合を考察する。図6(a)、(b)は、実施の形態に係るキャリブレーションを行わない場合のストローブ信号と被試験信号のタイミング関係を示すタイムチャートである。 Before explaining the effect of the multi-strobe circuit 10 according to the embodiment, consider the case where calibration is not performed. FIGS. 6A and 6B are time charts showing the timing relationship between the strobe signal and the signal under test when the calibration according to the embodiment is not performed.
 図6(a)は、第1遅延素子D1および第2遅延素子D2に設定された遅延量の誤差が無視しうる理想的な状態を示す。つまり、第1遅延素子D1の遅延量をTpd1、第2遅延素子D2の遅延量をTpd2+Δtと書くとき、Tpd1=Tpd2が成り立つ場合を示す。分解能を設定する前のステップ1の段階において、i相目のストローブ信号STRBとi相目の被試験信号S1のタイミングは一致するであろう。この状態において、各ステージの第2遅延素子D2の遅延量をさらにΔtだけ増加させれば、各相のストローブ信号STRB~STRBは理想的なタイミングに設定される。 FIG. 6A shows an ideal state where the error of the delay amount set in the first delay element D1 and the second delay element D2 can be ignored. That is, when the delay amount of the first delay element D1 is written as Tpd1 and the delay amount of the second delay element D2 is written as Tpd2 + Δt, Tpd1 = Tpd2 is satisfied. In the step 1 before setting the resolution, the timings of the i-phase strobe signal STRB i and the i-phase signal under test S1 i will match. In this state, if the delay amount of the second delay element D2 of each stage is further increased by Δt, the strobe signals STRB 1 to STRB N of each phase are set to ideal timing.
 以上は理想的な場合であるが、実際には第1遅延素子D1と第2遅延素子D2の遅延量が、プロセスばらつきや電源電圧変動、温度変動の影響によって、設計値から逸脱する場合が想定される。仮に第1遅延素子D1と第2遅延素子D2の遅延量がそれぞれ、設計値Tpdに対してδt1、δt2だけ増加もしくは減少しても、同じ半導体基板上に集積化されていれば、両者の遅延量は互いに追従して変動するため、δt1≒δt2となる。つまり、分解能を設定する前のステップ1の段階において、i相目のストローブ信号STRBとi相目の被試験信号S1のタイミングはほぼ一致する。 The above is an ideal case, but in reality, the delay amount of the first delay element D1 and the second delay element D2 may deviate from the design value due to the influence of process variations, power supply voltage fluctuations, and temperature fluctuations. Is done. Even if the delay amounts of the first delay element D1 and the second delay element D2 increase or decrease by δt1 and δt2 with respect to the design value Tpd, respectively, if they are integrated on the same semiconductor substrate, both delays Since the amounts vary following each other, δt1≈δt2. That is, in the stage of step 1 before setting the resolution, the timings of the i-phase strobe signal STRB i and the i-phase signal under test S1 i substantially coincide.
 しかしながら分解能Δtが数ps程度と小さくなると、遅延量の誤差δt1とδt2の差分(δt1-δt2)が無視出来なくなる。この場合、分解能を設定する前のステップ1の段階において、i相目のストローブ信号STRBとi相目の被試験信号S1のタイミングにずれが生じてしまう。結果としてステップ2の分解能設定後のストローブ信号STRBは、所望の位置から大きくずれてしまう。図6(b)はこの状態を示している。 However, when the resolution Δt is reduced to about several ps, the difference (δt1−δt2) between the delay amount errors δt1 and δt2 cannot be ignored. In this case, in the stage of Step 1 before setting the resolution, the timing of the i-phase strobe signal STRB i and the i-phase signal under test S1 i is shifted. As a result, the strobe signal STRB i after setting the resolution in step 2 is greatly deviated from the desired position. FIG. 6B shows this state.
 続いて実施の形態に係るマルチストローブ回路10によるキャリブレーションについて説明する。 Subsequently, calibration by the multi-strobe circuit 10 according to the embodiment will be described.
 図7(a)、(b)は、図2のマルチストローブ回路10のキャリブレーションの様子を示すタイムチャートである。図7(a)はゼロアジャストステップを、図7(b)は分解能設定ステップを示す。図7(a)では、説明を簡潔とするために、第1遅延素子D1の遅延量τ1を固定した状態で、第2遅延素子D2の遅延量τ2を増減させて、ストローブ信号STRBと被試験信号S1のタイミングを揃える場合を図示している。しかしながら本発明はこれに限定されず、第2遅延素子D2の遅延量τ2を固定した状態で、第1遅延素子D1の遅延量τ1を増減させて、ストローブ信号STRBと被試験信号S1のタイミングを揃えてもよい。 FIGS. 7A and 7B are time charts showing how the multi-strobe circuit 10 shown in FIG. 2 is calibrated. FIG. 7A shows a zero adjustment step, and FIG. 7B shows a resolution setting step. In FIG. 7A, in order to simplify the description, the delay amount τ2 of the second delay element D2 is increased or decreased while the delay amount τ1 of the first delay element D1 is fixed, and the strobe signal STRB i The case where the timing of the test signal S1 i is aligned is illustrated. However, the present invention is not limited to this, and while the delay amount τ2 of the second delay element D2 is fixed, the delay amount τ1 of the first delay element D1 is increased or decreased, and the strobe signal STRB i and the signal under test S1 i are increased. The timing may be aligned.
 より好ましい態様では、上述したように、第1遅延素子D1と第2遅延素子D2の初期遅延を最小としておき、被試験信号S1のエッジのタイミングが、ストローブ信号STRBのエッジのタイミングより早いとき、第1遅延素子D1の遅延量τ1を増加させ、反対に、被試験信号S1のエッジのタイミングが、ストローブ信号STRBのエッジのタイミングより遅いとき、第2遅延素子D2の遅延量τ2を増加させてもよい。この場合、第1遅延素子D1の遅延量τ2と第2遅延素子D2の遅延量τ2が最小となる状態でキャリブレーションがとれるため、遅延量のばらつきが分解能に及ぼす影響を抑制することができる。 In a more preferable aspect, as described above, the initial delay of the first delay element D1 and the second delay element D2 is minimized, and the edge timing of the signal under test S1 i is earlier than the edge timing of the strobe signal STRB i. The delay amount τ1 i of the first delay element D1 i is increased, and conversely, when the edge timing of the signal under test S1 i is later than the edge timing of the strobe signal STRB i , the second delay element D2 i The delay amount τ2 i may be increased. In this case, since the calibration can be performed in a state where the delay amount τ2 of the first delay element D1 and the delay amount τ2 of the second delay element D2 are minimized, it is possible to suppress the influence of variations in the delay amount on the resolution.
 ゼロアジャストステップが完了すると、各相において、図7(b)に示すように、第2遅延素子D2の遅延量τ2が所定量Δtだけ増加し、ストローブ信号STRBが被試験信号S1に対して時間的に遅れることになる。各相(各ステージ)ごとにΔtずつ遅れることになるため、i相目の被試験信号S1とストローブ信号STRBの位相差は、i×Δtで与えられる。 When the zero adjustment step is completed, in each phase, as shown in FIG. 7B, the delay amount τ2 of the second delay element D2 increases by a predetermined amount Δt, and the strobe signal STRB is timed with respect to the signal under test S1. Will be late. Since each phase (each stage) is delayed by Δt, the phase difference between the i- th signal under test S1 i and the strobe signal STRB i is given by i × Δt.
 このように本実施の形態に係るマルチストローブ回路10によれば、遅延素子の遅延量のばらつきを好適にキャンセルすることができ、ひいては高精度なマルチストローブ信号STRB~STRBによって被試験信号S1を評価することができる。 As described above, according to the multi-strobe circuit 10 according to the present embodiment, it is possible to preferably cancel the variation in the delay amount of the delay element, and as a result, the signal under test S1 is generated by the highly accurate multi-strobe signals STRB 1 to STRB N. Can be evaluated.
 実施の形態にもとづき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。 Although the present invention has been described based on the embodiments, the embodiments merely show the principle and application of the present invention, and the embodiments depart from the idea of the present invention defined in the claims. Many modifications and arrangements can be made without departing from the scope.
10…マルチストローブ回路、12…第1遅延回路、14…第2遅延回路、16…ラッチ回路、18…論理演算部、20…遅延量調節部、30…タイミング発生器、40…レベルコンパレータ、42…第1コンパレータ、44…第2コンパレータ、D1…第1遅延素子、D2…第2遅延素子、L…ラッチ素子、100…試験装置、110…DUT、S1…被試験信号。 DESCRIPTION OF SYMBOLS 10 ... Multi-strobe circuit, 12 ... 1st delay circuit, 14 ... 2nd delay circuit, 16 ... Latch circuit, 18 ... Logic operation part, 20 ... Delay amount adjustment part, 30 ... Timing generator, 40 ... Level comparator, 42 DESCRIPTION OF SYMBOLS 1st comparator, 44 ... 2nd comparator, D1 ... 1st delay element, D2 ... 2nd delay element, L ... Latch element, 100 ... Test apparatus, 110 ... DUT, S1 ... Signal under test.
 本発明は、試験装置に利用できる。 The present invention can be used for a test apparatus.

Claims (7)

  1.  複数のエッジを有するマルチストローブ信号のそれぞれエッジのタイミングで、評価対象の被試験信号をラッチするマルチストローブ回路であって、
     N個(Nは自然数)の第1遅延素子が多段接続されて構成され、前記被試験信号に対し1段ごとに遅延を与え、複数の被試験信号を生成する第1遅延回路と、
     前記N個の第1遅延素子ごとに設けられたN個の第2遅延素子が多段接続されて構成され、基準となるストローブ信号に対し1段ごとに遅延を与え、複数のストローブ信号を生成する第2遅延回路と、
     前記N個の第1遅延素子ごとに設けられたN個のラッチ素子を含み、i段目のラッチ素子は、i段目の第1遅延素子から出力される前記被試験信号を、i段目の第2遅延素子から出力されるストローブ信号のタイミングでラッチするように構成されたラッチ回路と、
     前記N個の第1遅延素子と前記N個の第2遅延素子の少なくとも一方の遅延量を調節する遅延量調節部と、
     を備え、
     前記遅延量調節部は、キャリブレーション時に、i(iは自然数)を1からNまでインクリメントしながら、i段目のラッチ素子に入力される前記被試験信号と前記ストローブ信号のエッジのタイミングが一致するように、i段目の第1遅延素子と第2遅延素子の少なくとも一方の遅延量を調節するゼロアジャストステップと、
     前記第1遅延素子および前記第2遅延素子の少なくとも一方のすべてのステージの遅延量を、所定量だけ変化させる分解能設定ステップと、
     を実行することを特徴とするマルチストローブ回路。
    A multi-strobe circuit that latches a signal under test at an edge timing of a multi-strobe signal having a plurality of edges,
    A first delay circuit configured by connecting N (N is a natural number) first delay elements in multiple stages, delaying the signal under test for each stage, and generating a plurality of signals under test;
    The N second delay elements provided for each of the N first delay elements are connected in multiple stages, and a delay is provided for each stage with respect to a reference strobe signal to generate a plurality of strobe signals. A second delay circuit;
    N latch elements provided for each of the N first delay elements, the i-th latch element outputs the signal under test output from the i-th first delay element to the i-th stage A latch circuit configured to latch at the timing of the strobe signal output from the second delay element;
    A delay amount adjusting unit that adjusts a delay amount of at least one of the N first delay elements and the N second delay elements;
    With
    The delay amount adjusting unit increments i (i is a natural number) from 1 to N during calibration, and the timing of the edge of the signal under test input to the i-th latch element coincides with the timing of the strobe signal. A zero adjustment step for adjusting a delay amount of at least one of the i-th first delay element and the second delay element;
    A resolution setting step of changing a delay amount of all stages of at least one of the first delay element and the second delay element by a predetermined amount;
    A multi-strobe circuit characterized by executing
  2.  前記N個の第1遅延素子および前記N個の第2遅延素子は可変遅延素子であり、
     前記遅延量調節部は、前記N個の第1遅延素子および前記第2遅延素子の遅延量を最小に設定した状態を初期状態として、前記ゼロアジャストステップを実行し、
     前記ゼロアジャストステップにおいて、i段目のラッチ素子に入力される前記被試験信号のエッジのタイミングが前記ストローブ信号のエッジのタイミングより早いとき、i段目の第1遅延素子の遅延量を増加させ、i段目のラッチ素子に入力される前記被試験信号のエッジのタイミングが前記ストローブ信号のエッジのタイミングより遅いとき、i段目の第2遅延素子の遅延量を増加させることを特徴とする請求項1に記載のマルチストローブ回路。
    The N first delay elements and the N second delay elements are variable delay elements,
    The delay amount adjustment unit performs the zero adjustment step with an initial state of a state in which the delay amounts of the N first delay elements and the second delay elements are set to a minimum.
    In the zero adjustment step, when the edge timing of the signal under test input to the i-th latch element is earlier than the edge timing of the strobe signal, the delay amount of the i-th first delay element is increased. When the edge timing of the signal under test input to the i-th latch element is later than the edge timing of the strobe signal, the delay amount of the i-th second delay element is increased. The multi-strobe circuit according to claim 1.
  3.  前記遅延量調節部は、前記ゼロアジャストステップにおいて、i段目の調整を行う際に、i段目の前記第1遅延素子および前記第2遅延素子の相対的な遅延量を段階的に変化させながら、i段目の前記ラッチ素子にラッチされた値が第1のレベルに確定するときの相対的な遅延量を第1相対遅延量として、i段目の前記ラッチ素子によりラッチされた値が前記第1のレベルと相補的な第2のレベルに確定するときの相対的な遅延量を第2相対遅延量として取得し、i段目の前記第1遅延素子および前記第2遅延素子の相対的な遅延量を、前記第1相対遅延量と前記第2相対遅延量の間の値に設定することを特徴とする請求項1に記載のマルチストローブ回路。 In the zero adjustment step, the delay amount adjusting unit changes the relative delay amount of the first delay element and the second delay element in the i-th stage in a stepwise manner when performing the i-th stage adjustment. However, the value latched by the i-th latch element is defined as a first relative delay amount, which is a relative delay amount when the value latched by the i-th latch element is determined to be the first level. A relative delay amount when determining a second level complementary to the first level is obtained as a second relative delay amount, and the relative relationship between the first delay element and the second delay element at the i-th stage is obtained. The multi-strobe circuit according to claim 1, wherein an effective delay amount is set to a value between the first relative delay amount and the second relative delay amount.
  4.  被試験デバイスから出力される信号をしきい値電圧と比較するコンパレータと、
     任意のタイミングでレベルが遷移するストローブ信号を生成するタイミング発生器と、
     前記ストローブ信号と、前記被試験信号としての前記コンパレータの出力信号と、を受ける請求項1から3のいずれかに記載のマルチストローブ回路と、
     を備えることを特徴とする試験装置。
    A comparator that compares the signal output from the device under test with a threshold voltage;
    A timing generator that generates a strobe signal whose level transitions at an arbitrary timing;
    The multi-strobe circuit according to any one of claims 1 to 3, which receives the strobe signal and an output signal of the comparator as the signal under test.
    A test apparatus comprising:
  5.  複数のエッジを有するマルチストローブ信号のそれぞれエッジのタイミングで、評価対象の被試験信号をラッチするマルチストローブ回路のキャリブレーション方法であって、
     前記マルチストローブ回路は、
     N個(Nは自然数)の第1遅延素子が多段接続されて構成され、前記被試験信号に対し1段ごとに遅延を与え、複数の被試験信号を生成する第1遅延回路と、
     前記N個の第1遅延素子ごとに設けられたN個の第2遅延素子が多段接続されて構成され、基準となるストローブ信号に対し1段ごとに遅延を与え、複数のストローブ信号を生成する第2遅延回路と、
     前記N個の第1遅延素子ごとに設けられたN個のラッチ素子を含み、i段目のラッチ素子は、i段目の第1遅延素子から出力される前記被試験信号を、i段目の第2遅延素子から出力されるストローブ信号のタイミングでラッチするように構成されたラッチ回路と、
     を備えており、当該キャリブレーション方法は、
     i(iは自然数)を1からNまでインクリメントしながら、i段目のラッチ素子に入力される前記被試験信号と前記ストローブ信号のエッジのタイミングが一致するように、i段目の第1遅延素子と第2遅延素子の少なくとも一方の遅延量を調節するゼロアジャストステップと、
     前記第1遅延素子および前記第2遅延素子の少なくとも一方の、すべてのステージの遅延量を、所定量だけ変化させる分解能設定ステップと、
     を備えることを特徴とするキャリブレーション方法。
    A multi-strobe circuit calibration method for latching a signal under test to be evaluated at each edge timing of a multi-strobe signal having a plurality of edges,
    The multi-strobe circuit is
    A first delay circuit configured by connecting N (N is a natural number) first delay elements in multiple stages, delaying the signal under test for each stage, and generating a plurality of signals under test;
    The N second delay elements provided for each of the N first delay elements are connected in multiple stages, and a delay is provided for each stage with respect to a reference strobe signal to generate a plurality of strobe signals. A second delay circuit;
    N latch elements provided for each of the N first delay elements, the i-th latch element outputs the signal under test output from the i-th first delay element to the i-th stage A latch circuit configured to latch at the timing of the strobe signal output from the second delay element;
    The calibration method is
    While the i (i is a natural number) is incremented from 1 to N, the i-th first delay is set so that the timing of the edge of the signal under test input to the i-th latch element and the strobe signal coincide with each other. A zero adjustment step for adjusting a delay amount of at least one of the element and the second delay element;
    A resolution setting step of changing a delay amount of all stages of at least one of the first delay element and the second delay element by a predetermined amount;
    A calibration method comprising:
  6.  前記N個の第1遅延素子および前記N個の第2遅延素子は可変遅延素子であり、
     前記キャリブレーション方法は、
     前記N個の第1遅延素子および前記第2遅延素子の遅延量を最小に設定した状態を初期状態として、前記ゼロアジャストステップを実行し、
     前記ゼロアジャストステップにおいて、i段目のラッチ素子に入力される前記被試験信号のエッジのタイミングが前記ストローブ信号のエッジのタイミングより早いとき、i段目の第1遅延素子の遅延量を増加させ、i段目のラッチ素子に入力される前記被試験信号のエッジのタイミングが前記ストローブ信号のエッジのタイミングより遅いとき、i段目の第2遅延素子の遅延量を増加させることを特徴とする請求項5に記載のキャリブレーション方法。
    The N first delay elements and the N second delay elements are variable delay elements,
    The calibration method is:
    The zero adjustment step is executed by setting a state in which the delay amounts of the N first delay elements and the second delay elements are set to a minimum as an initial state,
    In the zero adjustment step, when the edge timing of the signal under test input to the i-th latch element is earlier than the edge timing of the strobe signal, the delay amount of the i-th first delay element is increased. When the edge timing of the signal under test input to the i-th latch element is later than the edge timing of the strobe signal, the delay amount of the i-th second delay element is increased. The calibration method according to claim 5.
  7.  前記ゼロアジャストステップにおいて、i段目の調整を行う際に、i段目の前記第1遅延素子および前記第2遅延素子の相対的な遅延量を段階的に変化させながら、i段目の前記ラッチ素子にラッチされた値が第1のレベルに確定するときの相対的な遅延量を第1相対遅延量として、i段目の前記ラッチ素子によりラッチされた値が前記第1のレベルと相補的な第2のレベルに確定するときの相対的な遅延量を第2相対遅延量として取得し、i段目の前記第1遅延素子および前記第2遅延素子の相対的な遅延量を、前記第1相対遅延量と前記第2相対遅延量の間の値に設定することを特徴とする請求項5に記載のキャリブレーション方法。 In the zero adjustment step, when the i-th adjustment is performed, the relative delay amount of the i-th first delay element and the second delay element is changed stepwise, and the i-th stage The relative delay amount when the value latched by the latch element is fixed at the first level is defined as a first relative delay amount, and the value latched by the i-th latch element is complementary to the first level. A relative delay amount when determining the second level is determined as a second relative delay amount, and the relative delay amounts of the first delay element and the second delay element at the i-th stage are obtained as The calibration method according to claim 5, wherein a value between the first relative delay amount and the second relative delay amount is set.
PCT/JP2009/002573 2008-06-13 2009-06-08 Multi-strobe circuit, method for calibration of the same, and test equipment using the same WO2009150816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-154902 2008-06-13
JP2008154902A JP2011169594A (en) 2008-06-13 2008-06-13 Multi-strobe circuit, method for calibration of the same, and test equipment

Publications (1)

Publication Number Publication Date
WO2009150816A1 true WO2009150816A1 (en) 2009-12-17

Family

ID=41416529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002573 WO2009150816A1 (en) 2008-06-13 2009-06-08 Multi-strobe circuit, method for calibration of the same, and test equipment using the same

Country Status (2)

Country Link
JP (1) JP2011169594A (en)
WO (1) WO2009150816A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2805416A1 (en) * 2012-01-18 2014-11-26 Qualcomm Incorporated On-chip coarse delay calibration
CN104716946A (en) * 2013-12-17 2015-06-17 美国亚德诺半导体公司 Clock signal synchronization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767539B1 (en) 2016-05-30 2017-08-11 (주)엘에스웨이브 Collapsible studio strobes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201532A (en) * 2000-01-18 2001-07-27 Advantest Corp Method and apparatus for testing semiconductor device
JP2003344507A (en) * 2002-05-30 2003-12-03 Elpida Memory Inc Method and equipment for testing semiconductor device
JP2004125573A (en) * 2002-10-01 2004-04-22 Advantest Corp Multi-strobe device, tester, and adjustment method
JP2004127455A (en) * 2002-10-04 2004-04-22 Advantest Corp Multi-strobe generating device, testing device and adjusting method
JP2004239666A (en) * 2003-02-04 2004-08-26 Advantest Corp Detecting apparatus, signal delay apparatus, inverter
JP2004325332A (en) * 2003-04-25 2004-11-18 Advantest Corp Measuring device and program therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201532A (en) * 2000-01-18 2001-07-27 Advantest Corp Method and apparatus for testing semiconductor device
JP2003344507A (en) * 2002-05-30 2003-12-03 Elpida Memory Inc Method and equipment for testing semiconductor device
JP2004125573A (en) * 2002-10-01 2004-04-22 Advantest Corp Multi-strobe device, tester, and adjustment method
JP2004127455A (en) * 2002-10-04 2004-04-22 Advantest Corp Multi-strobe generating device, testing device and adjusting method
JP2004239666A (en) * 2003-02-04 2004-08-26 Advantest Corp Detecting apparatus, signal delay apparatus, inverter
JP2004325332A (en) * 2003-04-25 2004-11-18 Advantest Corp Measuring device and program therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2805416A1 (en) * 2012-01-18 2014-11-26 Qualcomm Incorporated On-chip coarse delay calibration
CN104716946A (en) * 2013-12-17 2015-06-17 美国亚德诺半导体公司 Clock signal synchronization
EP2887550A1 (en) * 2013-12-17 2015-06-24 Analog Devices, Inc. Clock signal synchronization
CN104716946B (en) * 2013-12-17 2017-12-26 美国亚德诺半导体公司 clock signal synchronization

Also Published As

Publication number Publication date
JP2011169594A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US8154330B2 (en) Delay line calibration mechanism and related multi-clock signal generator
WO2008032701A1 (en) Clock adjusting circuit and semiconductor integrated circuit device
JP5183269B2 (en) Vernier delay circuit, time digital converter and test apparatus using the same
US8730072B2 (en) Interleaved ADC calibration
US20130106632A1 (en) Calibration of interleaved adc
JPWO2010013385A1 (en) Time measuring circuit, time measuring method, time digital converter using them, and test apparatus
JP2016213826A (en) Time interleave type ad converter
US8878582B2 (en) Apparatus and method for duty cycle calibration
KR100269704B1 (en) Apparatus for testing delay circuit and integrated circuit including means for testing the same
US20090302910A1 (en) Delay time measuring method, delay time adjusting method, and variable delay circuit
KR20190032651A (en) Apparatus and method for instant on 4-phase signal generator
US6720811B2 (en) Semiconductor device with delay correction function
JP2002289776A (en) Semiconductor device
WO2009150816A1 (en) Multi-strobe circuit, method for calibration of the same, and test equipment using the same
US20110169501A1 (en) Delay circuit
US7649492B2 (en) Systems and methods for providing delayed signals
CN107068192B (en) Local clock signal generation circuit for timing measurement of memory
CN107395198B (en) Clock data recovery device and method
US8427457B2 (en) Display driver and built-in-phase-calibration circuit thereof
US7965209B2 (en) A/D conversion circuit and A/D conversion method
US7821249B2 (en) Phase difference measuring device and phase comparison circuit adjusting method
JP2022530220A (en) Voltage driver with power supply current stabilization function
US7034518B2 (en) Timing generator and semiconductor test apparatus
CN114791556A (en) On-chip clock network delay test method and test circuit
JP3456525B2 (en) Delay time adjustment method and delay time adjustment circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09762247

Country of ref document: EP

Kind code of ref document: A1