WO2009084489A1 - Laser working apparatus, and laser working method - Google Patents

Laser working apparatus, and laser working method Download PDF

Info

Publication number
WO2009084489A1
WO2009084489A1 PCT/JP2008/073250 JP2008073250W WO2009084489A1 WO 2009084489 A1 WO2009084489 A1 WO 2009084489A1 JP 2008073250 W JP2008073250 W JP 2008073250W WO 2009084489 A1 WO2009084489 A1 WO 2009084489A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
crack
hook mechanism
dividing
convex portion
Prior art date
Application number
PCT/JP2008/073250
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Imura
Akira Ejimatani
Original Assignee
Mitsuboshi Diamond Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co., Ltd. filed Critical Mitsuboshi Diamond Industrial Co., Ltd.
Publication of WO2009084489A1 publication Critical patent/WO2009084489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/03Glass cutting tables; Apparatus for transporting or handling sheet glass during the cutting or breaking operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • B65G49/065Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups

Definitions

  • the present invention relates to a laser processing apparatus that heats a brittle material substrate by scanning a laser beam and then cools it to divide the substrate.
  • the “brittle material substrate” includes not only a glass substrate but also a substrate such as quartz, single crystal silicon, sapphire, semiconductor wafer, or ceramic. Further, a bonded substrate such as an LCD substrate is also included. The following description will be made mainly using a glass substrate, but the same applies to other brittle material substrates.
  • a brittle material substrate such as glass (hereinafter referred to as “substrate”) is heated at a temperature lower than the temperature at which the substrate softens while scanning with a laser beam, compressive stress is generated in the heating region. Furthermore, a cooling medium is sprayed and cooled behind the laser beam irradiation, thereby generating a tensile stress in the cooling region. In this manner, a stress gradient is formed by forming a region where tensile stress is generated in the vicinity of a region where compressive stress is generated. In recent years, a processing technique for dividing a glass substrate using this stress gradient has been used.
  • scribe processing There are two types of cutting using a laser: scribe processing and full cut processing.
  • a heating region compressive stress region
  • a cooling region tensile stress region
  • scribe processing after the scribe line is formed, the substrate can be divided by, for example, performing a break process that applies a bending moment by pressing a break bar along the scribe line.
  • full-cut processing is processing that forms a crack reaching the substrate back surface from the substrate surface, and is processing that can divide the substrate without performing a break treatment (see Patent Document 1 and Patent Document 2).
  • full cut processing due to the difference in stress in the front-rear direction between the front heating region (compressive stress region) and the rear cooling region (tensile stress region), the force to tear the back of the substrate in the left-right direction compared to the front This is a process in which the substrate is completely divided by working.
  • processing conditions such as heating conditions (irradiation time, irradiation power, scanning speed, etc.) and cooling conditions (refrigerant temperature, spray amount, spray position, etc.) It also depends on the contact state between the table surface on which the substrate to be processed is placed and the glass substrate.
  • FIG. 15 is a diagram showing a change when the edge material portion G1 of the substrate G is divided by full cut processing.
  • the central portion G0 of the substrate G is fixed to a table (not shown), and the edge side portion G1 is floated from the table to be in a non-contact state.
  • the heating / cooling mechanism 10 having the laser beam spot BS (laser beam irradiation region) and the cooling spot CS (refrigerant injection region) is formed on the substrate G as shown in FIG. It moves relatively from the division start end toward the division end end on the opposite side.
  • the moving direction of the beam spot BS and the cooling spot CS is defined as the Y direction.
  • the traveling distance d of the heating / cooling mechanism unit 10 is short, as shown in FIG. 15B, a crack is formed, and the edge material G1 is formed from the starting end of the division.
  • the opening width in the X direction orthogonal to the direction widens, and the dividing surface of the edge member G1 moves in the X direction.
  • the edge material G1 moves in the X direction against the weight of the edge material G1. Is likely to occur little by little, and a greater breaking force is required, making it difficult for the crack to progress.
  • the substrate holding mechanism is provided with a stress applying mechanism.
  • an external force applying unit that applies an external force to the substrate by a fine movement stage is provided, and applied in the lateral direction (X direction) when the position of the split unit moves from the dividing start point, the center, and the dividing end point. I try to control the force.
  • a movement sensor position detector
  • fine movement is applied so as to apply a preset lateral stress (breaking force) based on the detection result.
  • the stage is controlled. Therefore, stress is applied regardless of the progress of the crack, and depending on the progress of the crack, unnecessary force may be forcibly applied to the tip of the crack, or the formed crack may deviate from the planned cutting line. .
  • the present invention does not forcibly advance the progress of the crack by applying an external force at the beginning of the splitting, and the auxiliary splitting force is applied to the crack after it becomes necessary according to the progress of the crack. It is an object of the present invention to provide a laser processing apparatus which can be added to a sectional surface and can surely perform full cut processing to the end of the substrate.
  • an object of the present invention is to provide a laser processing apparatus capable of reliably performing full-cut processing up to the end of the substrate even on a bonded substrate.
  • an object of this invention is to provide the laser processing apparatus which can perform a full cut process, suppressing the wraparound of the refrigerant
  • the laser processing apparatus of the present invention made to solve the above problems includes a substrate support mechanism that floats a portion of the brittle material substrate on the edge side from the planned dividing line and fixes the substrate on the center side of the planned dividing line, and one end
  • An arm having a convex portion on the other end of the arm, and the convex portion of the arm enters a standby position where the convex portion of the arm is separated from the substrate and an opening of a crack formed in the substrate due to thermal stress.
  • a mechanism moving unit and an auxiliary dividing force control unit that applies a dividing force for controlling the hook mechanism and the hook mechanism moving unit to assist the progress of the crack, and the auxiliary dividing
  • the control unit inserts the convex portion into the opening of the crack, and then the hook mechanism
  • the horizontal movement is started to reduce the distance between the dividing surface of the edge portion and the convex portion, and after the protruding portion comes into contact with the dividing surface of the edge portion, the dividing portion of the edge portion is Control is performed so as to apply a breaking force that assists the development of cracks via the convex portion.
  • the laser processing apparatus of the present case includes a heating / cooling mechanism having a laser beam irradiation mechanism and a cooling mechanism for injecting a refrigerant, and a scanning mechanism for moving the heating / cooling mechanism relative to a substrate made of a brittle material.
  • the heating / cooling mechanism is relatively moved along the division line set for the substrate, heated at a temperature lower than the temperature at which the substrate is softened, and then the cooling spot is relatively moved along the trajectory through which the beam spot has passed. Then, by cooling the substrate and generating a crack penetrating the substrate due to thermal stress, the laser processing apparatus for the brittle material substrate that splits by proceeding with the crack along the planned cutting line.
  • the scanning mechanism may move on the substrate side, or the heating / cooling mechanism (laser beam irradiation mechanism and cooling mechanism) may be moved.
  • the laser beam irradiation mechanism is scanned along the scheduled cutting line, and then the cooling mechanism is scanned.
  • the heating / cooling mechanism laser beam irradiation mechanism and cooling mechanism
  • cracks penetrating from the upper surface to the lower surface of the substrate due to thermal stress will occur on the dividing line on the dividing start side. Is formed, and progresses along the line to be divided. At a rear position a little away from the tip of the developing crack, the crack spreads and an opening is formed.
  • the auxiliary dividing force control unit inserts the convex portion of the hook mechanism into the opening of the crack.
  • the timing of inserting the convex portion is after the crack has spread to such an extent that the convex portion and the cross section of the crack do not contact each other.
  • the timing may be set such that the heating / cooling mechanism (laser beam irradiation mechanism and cooling mechanism) is scanned at a constant speed, and is inserted after a certain time has elapsed from the start of scanning. That is, the convex portion is inserted when the beam spot and the cooling spot are scanned for a certain distance from the dividing start end.
  • the opening of a crack actually formed in the substrate may be monitored, and the convex portion may be inserted when the opening is sufficiently opened. Then, the hook mechanism moving unit horizontally moves the hook mechanism in a direction perpendicular to the planned dividing line (a direction away from the center of the substrate).
  • the opening of the crack grows as the crack tip progresses (when the crack tip is close to the dividing start end) at the beginning (the width of the opening widens), but when the crack tip moves away from the dividing start end, Eventually the growth will decrease (the width of the opening will not change easily). Therefore, the timing for starting the horizontal movement may be started immediately after the convex portion is inserted into the crack, or may be started after the width of the opening is sufficiently widened.
  • edge material When the hook mechanism is arranged on the lower surface side of the substrate and the distance between the crack section and the convex portion is made closer, the edge side portion (hereinafter referred to as edge material) can be moved on the arm of the hook mechanism. It is preferable to constitute such that it is supported. In such a configuration, when the tip of the formed crack does not advance a sufficient distance from the hook mechanism toward the end of cutting of the substrate, the edge member moves on the arm and moves in the X direction. If the tip of the crack is restrained and a sufficient distance has advanced from the hook mechanism toward the cutting end of the substrate, the edge material stays on the arm by the frictional force with the arm and moves in the X direction. It is preferable to set the frictional force between the material and the arm.
  • the edge member and the arm are connected with play, a factor that hinders the crack development according to the crack progress state such as the crack start position or the width of the formed opening (weight due to the extension of the edge member). Increase) can be easily removed. Furthermore, the convex part horizontally moved by the hook mechanism moving part comes close to the crack section, and eventually the crack section and the convex part come into contact with each other and press it. The magnitude of this pressing force is sufficient to press the edge material in the X direction so that the progress of the crack is not hindered by the weight of the formed edge material or the like. In this way, the actual crack propagation is reduced and an auxiliary breaking force is applied after it becomes necessary.
  • the auxiliary dividing force control unit is a step of inserting the convex portion into the opening of the crack at a predetermined timing, a step of starting the horizontal movement of the hook mechanism to reduce the distance between the crack sectional surface and the convex portion.
  • a control program may be set in advance so as to start the step of applying a breaking force that assists the progress of cracks via the convex portion.
  • each timing may be set by detecting the elapsed time from the start of the division of the heating / cooling mechanism or the position of the heating / cooling mechanism. Further, the crack may be observed with a camera, and each timing may be set based on the result.
  • the auxiliary dividing force control unit starts the horizontal movement of the hook mechanism to reduce the distance between the crack sectional surface and the convex part, and after the convex part comes into contact with the crack sectional surface, Alternatively, or immediately, a dividing force for assisting the progress of the crack may be applied to the convex portion with respect to the crack cross section.
  • the laser processing method of the present invention is a processing method in which a brittle material substrate is locally heated and a crack is formed in the substrate by the thermal stress to divide the substrate. A step of fixing the substrate to the substrate support mechanism at a center side of the line, a step of irradiating the laser beam while moving along the line to be divided, and an arm having a convex portion at one end is moved to the substrate.
  • the step of inserting the convex portion into the opening of the formed crack, and a part of the arm is brought into contact with the main surface of the edge side portion, and in this state, the distance between the sectional surface of the edge side portion and the convex portion is reduced. And a step of horizontally moving the arm. Furthermore, after the convex part of the arm abuts against the dividing surface of the edge side part, the step of operating the dividing part of the edge side part so as to apply a dividing force that assists the progress of cracks via the convex part. It comprises.
  • the convex portion of the locking portion comes into contact with the cross section of the crack, and then an auxiliary cutting force is applied. Therefore, an auxiliary cutting force can be applied without difficulty, and the cutting line is not formed outside the planned cutting line, and the full cut processing can be reliably performed up to the end of the substrate.
  • the hook mechanism is provided at least at a position near the substrate end on the dividing start side.
  • the hook mechanism provided at the dividing start end can assist the progress of the crack to the vicinity of the substrate end.
  • the hook mechanism may be provided at two locations, at least a position near the substrate end on the dividing start side and a position separated by a predetermined distance inside the substrate end on the dividing end side. According to this, the progress of the crack to the vicinity of the substrate end can be assisted by the hook mechanism provided at the dividing start end. Further, the hook mechanism provided in the vicinity of the substrate end can assist the dividing force in the vicinity of the substrate end by the laser irradiation mechanism, and the substrate can be reliably divided up to the end of the substrate.
  • the predetermined distance here means the distance to the region where the convex portion of the locking portion can enter the tear (gap) without contacting the dividing surface.
  • the edge side portion when the hook mechanism is arranged on the lower surface side of the substrate and the distance between the crack cross section and the convex portion is made closer, the edge side portion is supported so as to be movable on the arm of the hook mechanism. It may be. According to the present invention, it is possible to support the edge side portion that is being separated from the center side as the crack progresses in a state that it can move on the arm of the hook mechanism. As a result, a certain breaking force is applied while absorbing the displacement in the direction perpendicular to the direction of pulling the hook mechanism (X direction) (Y direction) and the rotational direction of the XY plane ( ⁇ direction). be able to.
  • the hook mechanism may move and / or turn the locking portion in the XYZ triaxial directions.
  • the hook mechanism has a contact portion where the convex portion of the locking portion comes into contact with the crack cross section, and assists the progress of the crack via the convex portion with respect to the crack cross section.
  • An adjustment mechanism that gives a degree of freedom other than the moving direction by the hook mechanism moving unit may be provided so that the contact portion is in close contact with and moves with respect to the divided cross section of the crack when the dividing force is applied.
  • the adjustment mechanism may be configured by a support shaft that rotates the locking portion with respect to the arm of the hook mechanism.
  • a support shaft for rotating the locking portion By providing a support shaft for rotating the locking portion, a degree of freedom other than the moving direction by the hook mechanism moving portion can be given.
  • an opening detection unit for detecting an opening of a crack may be further provided, and the auxiliary dividing force control unit may insert the convex portion of the hook mechanism into the opening according to the detected opening of the crack.
  • the auxiliary dividing force control unit may insert the convex portion of the hook mechanism into the opening according to the detected opening of the crack.
  • the substrate support mechanism may inject a curtain gas that prevents the coolant from entering the floating portion when the edge portion floats from the planned dividing line.
  • the substrate support mechanism may include a suction mechanism that prevents the refrigerant from entering the floating portion when the edge side portion is lifted from the planned dividing line.
  • the block diagram of the laser processing apparatus LM1 which is one Embodiment of this invention.
  • the figure which shows the control system of the laser processing apparatus of FIG. The figure which shows the advancing state of the crack of the board
  • the block diagram of the laser processing apparatus LM2 which is 2nd embodiment of this invention.
  • the front view of laser processing apparatus LM3 which is 3rd embodiment of this invention.
  • the front view of laser processing apparatus LM4 which is 4th embodiment of this invention.
  • the front view of laser processing apparatus LM5 which is 5th embodiment of this invention.
  • the perspective view of the laser processing apparatus LM6 which is 6th embodiment of this invention.
  • the figure which shows the control system of the laser processing apparatus LM6 of FIG. The figure which shows the deformation
  • FIG. 1 is an overall configuration diagram of a laser processing apparatus LM1 according to an embodiment of the present invention.
  • FIG. 1 (a) is a perspective view
  • FIG. 1 (b) is a front view
  • FIG. 1 (c) is a plan view.
  • the substrate to be processed is a single glass plate
  • the right edge material G1 of the substrate G is cut along the planned cutting line L on the lower surface of the substrate by full cut processing from the central substrate body G0.
  • laser beam irradiation and refrigerant injection are performed from the lower surface side of the substrate G.
  • the laser processing apparatus LM1 includes a heating / cooling mechanism unit 10 having a laser beam irradiation mechanism 11 and a cooling mechanism 12 for injecting a coolant, and a scanning mechanism 13 (not configured) that moves the heating / cooling mechanism unit 10 relative to the substrate G by driving a motor. ), A transport mechanism 14 for transporting the substrate, substrate support mechanisms 15 and 16, hook mechanisms 17 and 18, and hook mechanism moving portions 19 and 20.
  • the hook mechanism 18 and the hook mechanism moving unit 20, and the hook mechanism 17 and the hook mechanism moving unit 19 have the same structure, and are arranged on the back side of the drawing of the hook mechanism 17 and the hook mechanism moving unit 20 in FIG. Has been.
  • the laser beam irradiation mechanism 11 includes a CO 2 laser light source and a lens optical system that irradiates the beam spot BS on the substrate by shaping the cross-sectional shape of the laser beam emitted from the laser light source into an ellipse.
  • the cooling mechanism 12 includes a nozzle that injects a coolant containing moisture to form a cooling spot CS on the substrate. These are moved along the planned dividing line L by a scanning mechanism 10 (not shown) while keeping the distance between the laser beam irradiation mechanism 11 and the cooling mechanism 12 constant.
  • the substrate support mechanism 15 Below the substrate body G0 side of the substrate G, three rail-shaped supports 15a, 15b, 15c arranged in parallel are installed as the substrate support mechanism 15. A large number of holes for suction chucks are provided in rows on the upper surfaces of the supports 15a to 15c. By operating the suction chucks, the substrate G (part of the substrate body G0) is adsorbed at a desired position. It can be fixed. Further, between the supports 15a and 15b and between 15b and 15c, roller groups 14a and 14b are arranged as a transport mechanism 14 for transporting the substrate. The transport mechanism 14 is used when the substrate G is carried into or out of the processing area.
  • a float table 16a is installed as a substrate support mechanism 16 below the edge G1 side of the substrate G0.
  • a large number of holes for blowing gas (dry air) onto the substrate are provided on the upper surface of the float table 16a so that the substrate (the portion of the edge material G1) can be floated.
  • the entire substrate G is supported substantially horizontally by the cooperation of the substrate support mechanism 15 and the substrate support mechanism 16.
  • the substrate G is separated from the substrate G on the center side from the planned dividing line and separated into the center. The support by the side substrate G is gradually lost, causing a shift in the vertical direction.
  • the edge member G1 in which the deviation occurs is supported on the arm 17c of the hook mechanism 17.
  • the float table 16a is provided with an inclination mechanism 16b for inclining the upper surface thereof, and the edge member G1 cut off by the hook mechanisms 17, 18 and the hook mechanism moving parts 19, 20 described later can be dropped. I can do it.
  • the hook mechanisms 17 and 18 include locking portions 17b and 18b having convex portions 17a and 18a, and arms 17c and 18c that can be swiveled by motor driving, and the locking portions 17b and 18b are separated from the substrate G.
  • the arm 17c is rotated between the position and the locking position where the protrusions 17a and 18a enter the vertical crack formed in the substrate G.
  • the hook mechanism moving portions 19 and 20 are driven by the motor when the locking portions 17b and 18b are in contact with the edge material G1 that has started to be separated from the substrate G, and the substrate body G0 (center side). It can be moved so as to be separated in the horizontal direction (X direction).
  • an elevating type cutter wheel for forming an initial crack (trigger crack) at the division start end of the substrate is provided together with the heating / cooling mechanism unit 10 so that an initial crack can be formed at the division start end of the line to be divided. It is.
  • An initial crack is formed in advance by a cutter wheel in the substrate G carried into the processing region.
  • the laser beam irradiation mechanism 11 and the cooling mechanism 12 are provided on the lower surface side of the substrate G. However, these may be provided on the upper surface side.
  • FIG. 2 is a block diagram of the control system.
  • the heating / cooling mechanism 10 laser beam irradiation mechanism 11, cooling mechanism 12
  • scanning mechanism 13 transport mechanism 14
  • substrate support mechanism (support) 15, substrate support mechanism (float table) 16
  • Each unit of the mechanisms 17 and 18 and the hook mechanism moving units 19 and 20 is controlled by a control unit 21 configured by a computer (CPU).
  • the control unit 21 is connected to an input unit 22 including a keyboard and a mouse, and a display unit 23 including a display screen for performing various displays. Necessary messages are displayed on the screen and necessary instructions and settings are made. It can be input. Then, the machining operation is executed based on the sequence program stored in advance.
  • FIG. 3 is a view showing a progress state of a crack of the substrate G at each time point during the cutting process
  • FIG. 4 is a view showing an operating state at each time point of the hook mechanisms 17 and 18 (corresponding to FIG. 1B). Figure).
  • FIG. 3A shows a state immediately after the scanning of the beam spot BS and the cooling spot CS is started from the division start end.
  • the substrate G that has been transported by the transport mechanism 14 has the substrate body side G0 adsorbed and fixed by the supports 15a to 15c.
  • the edge material G1 side is levitated by the gas blown from the float table 16a. Both hook mechanisms 17 and 18 have moved to a standby position away from the substrate G.
  • FIG. 3 (b) shows a state when the beam spot BS and the cooling spot CS have slightly advanced from the dividing start end.
  • a crack penetrating from the upper surface to the lower surface is generated on the planned dividing line on the dividing start end side, and an opening Gc is formed.
  • the hook mechanism 17 is operated, and the convex portion 17a of the hook mechanism 17 enters the opening Gc.
  • the convex portion 17a is not in contact with the partial cross section Gf. The timing for inserting 17a is adjusted.
  • a delay time from the start of scanning to the operation of the hook mechanism 17 is set, the beam spot BS and the cooling spot CS wait until the beam spot BS and the cooling spot CS progress to some extent along the planned dividing line, and then the convex portion 17a is moved. Enter the opening Gc.
  • the edge member G1 moves on the arm 17c as shown in FIG. 4C, and the crack opening Gc is slightly expanded.
  • the other hook mechanism 18 (the back side of the paper) is still in the standby position and is not operating.
  • FIG. 3C shows a state in which the beam spot BS and the cooling spot CS have further advanced and have moved away from the division start end.
  • the amount of movement of the edge member G1 on the arm 17c is reduced (or stopped).
  • the hook mechanism moving unit 19 starts to pull the hook mechanism 17 in the lateral direction (X direction). Since the movement amount of the edge member G1 is reduced, the protrusion 17a gradually approaches the dividing surface Gf of the edge member G1, and eventually the protrusion 17a of the hook mechanism 17 as shown in FIG. 4 (e). Comes into contact with the dividing surface Gf of the edge member G1.
  • the edge member G1 moves in the lateral direction (X direction), and the force to split right and left along the planned division line L (partitioning force) is assisted. Will be added. That is, when the hook mechanism 17 is disposed on the lower surface side of the substrate G and the distance between the crack cross section and the convex portion 17a is reduced, the edge member G1 side can be moved on the arm 17c of the hook mechanism 17. To support. Here, when the tip of the crack formed before the convex portion 17a contacts the dividing surface Gf of the edge member G1, the edge does not advance from the hook mechanism 17 toward the cutting end of the substrate G by a sufficient distance.
  • the material G1 moves on the arm 17c and is prevented from moving in the X direction. If the tip of the crack has advanced a sufficient distance from the hook mechanism 17 toward the cutting end of the substrate G before the projection 17a contacts the dividing surface Gf of the edge member G1, the edge member G1 is connected to the arm 17c. It stays on the arm 17c by the frictional force and moves in the X direction. Although the hook mechanism 17 supports the edge member G1 so as to be movable on the arm 17c, the edge member G1 contacts the arm 17c depending on the relationship between the air pressure that causes the substrate G to float and the weight of the edge member G1. In some cases, it will surface without any problems.
  • the edge member G1 has an appropriate play with the arm 17, that is, it is softly connected through the frictional force between the edge member G1 and the arm 17 (because it is not connected tightly). ) The force that presses the edge material in the X direction is automatically adjusted according to the crack progress state such as the leading position of the crack or the width of the formed opening. At this time, the other hook mechanism 18 is not operated.
  • FIG. 3D shows a state in which the beam spot BS and the cooling spot CS have further progressed, and the beam spot BS has approached the end of the division line L of the substrate G.
  • the hook mechanism 18 disposed on the side of the dividing end is newly activated, and the same operation state as that of the hook mechanism 17 shown in FIG. 4B, that is, the convex portion 18a of the locking portion 18b is opened.
  • Gc enters the state.
  • the timing at which the convex portion 18a is actuated is adjusted so that the convex portion 18a does not contact the dividing surface Gf (a delay time from the start of scanning until the hook mechanism 18 is actuated is set). After that, in the same operating state as the hook mechanism 17 shown in FIG.
  • the edge member G1 moves in the lateral direction (X direction), and tries to split left and right along the planned dividing line L.
  • Force (breaking force) is added as an auxiliary.
  • FIG. 3E shows a state at the time when the cooling spot CS is separated from the separation end of the substrate G.
  • the hook mechanism 18 assists the progress of cracks by pulling the substrate G in the lateral direction (X direction). As a result, the crack progresses to the end of the substrate and is completely divided.
  • the tilting mechanism 16b is operated, and the float table 16a is tilted, so that the edge member G1 falls from the table surface.
  • the edge material G1 is illustrated as an end material that is separated from the substrate body side G0 and discarded.
  • the edge material G1 is a unit substrate or a set of unit substrates that are individually separated from the substrate G that is a mother substrate.
  • the present invention is similarly applied to a strip substrate that is a body and is separated into unit substrates.
  • FIG. 5 is an overall configuration diagram of a laser processing apparatus LM2 according to the second embodiment of the present invention
  • FIG. 5 (a) is a perspective view
  • FIG. 5 (b) is a front view
  • FIG. 5 (c) is a plan view. is there.
  • hook mechanisms 23 and 24 are provided on the upper surface side of the substrate G in place of the hook mechanisms 17 and 18 described in FIG.
  • the laser beam irradiation mechanism 11 and the cooling mechanism 12 are configured to scan along the planned division line L by a scanning mechanism (not shown) provided on the upper side of the substrate G.
  • a scanning mechanism not shown
  • the hook mechanisms 23, 24 include locking portions 23 b, 24 b having convex portions 23 a, 24 a and arms 23 c, 24 c that can be turned by motor drive, and the locking positions 23 b, 24 b are separated from the substrate G. And the arm 17 can be rotated between the position where it contacts the dividing line L of the substrate.
  • the hook mechanism moving portions 19 and 20 are driven by a motor so that the edge member G1 is pulled away from the substrate main body G0 (center side) in the lateral direction when the locking portions 23b and 24b are in a position in contact with the planned dividing line L. It can be moved.
  • the control system is the same as that in FIG. 2 in the first embodiment.
  • FIG. 6 is a diagram showing the progress of cracks in the substrate G at each time during the cutting process
  • FIG. 7 is a diagram showing the operating states at each time of the hook mechanisms 23 and 24 (corresponding to FIG. 5B). Figure). 6 and 7 correspond to FIGS. 3 and 4 in the first embodiment, respectively.
  • FIG. 6A shows a state immediately after the scanning of the beam spot BS and the cooling spot CS is started from the division start end.
  • the substrate G that has been transported by the transport mechanism 14 has the substrate body side G0 adsorbed and fixed by the supports 15a to 15c.
  • the edge material G1 side is levitated by the gas blown from the float table 16a.
  • the gas blowing amount is set so that the upper surface side of the edge member G1 can be kept in contact with the lower surfaces of the arms 23c and 24c of the hook mechanism 17. Both hook mechanisms 23 and 24 have been moved to a standby position away from the substrate G.
  • FIG. 6B shows a state when the beam spot BS and the cooling spot CS have slightly advanced from the dividing start end.
  • a crack is generated on the division planned line L on the division start end side, and an opening Gc is formed.
  • the hook mechanism 23 is operated, and the convex portion 23a of the hook mechanism 23 enters the opening Gc. In that case, the timing which inserts the convex part 23a is adjusted so that the convex part 23a may not contact the dividing surface Gf.
  • a delay time from the start of scanning until the hook mechanism 17 is activated is set, and the beam spot BS and the cooling spot CS wait until the beam spot BS and the cooling spot CS travel to some extent along the planned dividing line. Enter the opening Gc.
  • FIG. 6C shows a state in which the beam spot BS and the cooling spot CS have further advanced and have moved away from the dividing start end.
  • the moving amount of the edge material G1 is reduced (or stopped).
  • the hook mechanism moving unit 19 starts to pull the hook mechanism 23 in the lateral direction (X direction). Since the amount of movement of the edge member G1 is reduced, the protrusion 23a gradually approaches the dividing surface Gf of the edge member G1, and eventually the protrusion 23a of the hook mechanism 23 as shown in FIG. Comes into contact with the dividing surface Gf of the edge member G1.
  • the edge member G1 moves in the lateral direction (X direction), and the force to split right and left along the planned division line L (dividing force) is assisted. Will be added. That is, when the hook mechanism 23 is disposed on the upper surface side of the substrate G and the substrate G floated by a gas blown from below with an appropriate air pressure reduces the distance between the crack sectional surface Gf and the convex portion 23a.
  • the upper surface side of the edge member G1 is movably supported by the arm 17c of the hook mechanism 17.
  • the tip of the formed crack does not advance a sufficient distance from the hook mechanism 17 toward the end of the division of the substrate G
  • the upper surface of the edge member G1 comes into contact with the lower surfaces of the arms 23c and 24c. Movement in the direction is suppressed.
  • the tip of the crack has advanced a sufficient distance from the hook mechanism 17 toward the end of the division of the substrate G
  • the upper surface of the edge member G1 is caused by the frictional force between the lower surfaces of the arms 23c and 24c and the arms 23c and 24c. Stay on and move in the X direction.
  • the edge member G1 has moderate play with the arms 23c and 24c, that is, the edge member G1 is softly connected via the frictional force between the edge member G1 and the arms 23c and 24c (is connected tightly).
  • the force for pressing the edge material in the X direction is automatically adjusted according to the crack progress state such as the crack start position or the width of the formed opening. At this time, the other hook mechanism 24 is not operated.
  • FIG. 6D shows a state in which the beam spot BS and the cooling spot CS have further progressed, and the beam spot BS has approached the end of the division line L of the substrate G.
  • the hook mechanism 24 disposed on the dividing end end side is newly activated, and the same operation state as that of the hook mechanism 23 shown in FIG. 7B, that is, the convex portion 24a of the locking portion 24b is opened.
  • Gc enters the state.
  • the timing at which the convex portion 24a is actuated is adjusted so that the convex portion 24a does not contact the dividing surface Gf (a delay time from the start of scanning until the hook mechanism 24 is actuated is set). Thereafter, in the same operating state as the hook mechanism 23 shown in FIG.
  • the edge member G1 moves in the lateral direction (X direction), and tries to split left and right along the planned dividing line L.
  • Force breaking force
  • a forcible breaking force that promotes the progress of cracks is also applied from the hook mechanism 24.
  • FIG. 6E shows a state at the time when the cooling spot CS is separated from the separation end of the substrate G.
  • the hook mechanism 24 assists the progress of cracks by pulling the substrate G in the lateral direction (X direction). Thereby, a crack progresses to the termination
  • the tilting mechanism 16b is operated, and the float table 16a is tilted, so that the edge member G1 falls from the table surface.
  • the laser beam irradiation mechanism 11 and the cooling mechanism 12 are provided on the upper surface side, and the hook mechanisms 23 and 24 are also provided on the upper surface side, but one may be provided on the lower surface side and the other may be provided on the upper surface side. .
  • FIG. 8 is a front view of a laser processing apparatus LM3 according to the third embodiment of the present invention.
  • the end material (end portion) of the lower substrate of the bonded substrate board is divided to expose the terminal electrode portion of the upper substrate.
  • the beam spot BS by the laser irradiation mechanism 11 and the cooling spot CS by the cooling mechanism 12 are separated from each other on the substrate HG in the same manner as the laser processing apparatus LM1. Scan from below to the lower substrate. Also in this case, the board
  • the laser irradiation mechanism is arranged above and below.
  • the substrate can be divided by the same operation procedure.
  • FIG. 9 is a front view of the LM 4 of the laser processing apparatus according to the fourth embodiment of the present invention.
  • the curtain gas CG for preventing the refrigerant injected from the cooling mechanism 12 from flowing around the upper surface of the float table 16a at the end of the float table 16a. Is provided with a curtain gas nozzle 16c.
  • the substrate HG comes into close contact with the float table 16a when entering between the upper surface of the float table 16a and the substrate HG, and the substrate cannot be divided. Therefore, the refrigerant including the cooling water can be used by preventing the wraparound by injecting the curtain gas CG to the end portion on the front end side of the float table 16a.
  • the curtain gas CG by spraying the curtain gas CG, it is possible to prevent the cooling water from entering between the upper substrate and the lower substrate of the bonded substrate HG from the formed cracks. It is also possible to prevent close contact between each other.
  • FIG. 10 is a front view of the LM 5 of the laser processing apparatus according to the fifth embodiment of the present invention.
  • a suction port 16d for removing unnecessary refrigerant including moisture is provided instead of the curtain nozzle 16c of the laser processing apparatus LM4 shown in FIG. 9.
  • a push-pull type air curtain is formed, and wraparound to the float table 16a can be prevented.
  • FIG. 11 is a perspective view showing an overall configuration of a laser processing apparatus LM6 according to the sixth embodiment of the present invention.
  • FIG. 12 is a diagram showing a control system of the laser processing apparatus LM6.
  • a camera 25 for observing the state of the opening Gc of the crack formed in the substrate is mounted in the laser processing apparatus described with reference to FIG.
  • the control system 21 is provided with an aperture detection unit 26 that detects the size of the aperture based on the image captured by the camera 25.
  • the opening detection unit 26 detects from the image of the camera 25 whether the width of the crack (opening width) that can be placed at the dividing start end is equal to or larger than a preset threshold value, and when the opening width is equal to or larger than the threshold value, the hook mechanism 17. It is determined that a sufficient opening has been opened to operate. By incorporating this determination operation, the hook mechanism 17 is prevented from operating when a sufficient opening is not formed for some reason.
  • the operation of the hook mechanism 17 may be started or stopped by judging the timing of starting and ending the step of reducing the distance of the step, and the step of applying a dividing force for assisting the progress of cracks via the convex portion 17a.
  • FIG. 13 is a modified embodiment of the locking portion 17b (18b, 23b, 24b) of the hook mechanism 17 (18, 23, 24) in each of the above-described embodiments.
  • the hook mechanism 17 connects the arm 17c and the locking portion 17b via a support shaft 17d so as to have a degree of freedom in the rotational direction within the XY plane.
  • the edge side substrate G1 not only moves in the X direction, but also moves in the Y direction or rotates in the XY plane (referred to as ⁇ rotation).
  • the substrate of the convex portion 17a of the hook mechanism 17 and the contact surface are fixed, the movement in the Y direction or the ⁇ rotation cannot be absorbed, so that the displacement of the contact portion occurs and the edge portion is pulled.
  • the support shaft 17d by providing a degree of freedom in the direction of rotation by the support shaft 17d, it is possible to absorb movement in the Y direction and ⁇ rotation, and to the edge material side substrate G1. It is possible to reliably transmit the breaking force.
  • FIG. 13 shows an example in which the convex portion of the locking portion of the hook mechanism 17 (18, 23, 24) is in surface contact with the crack cross section, the hook mechanism 17 (18, 23, 24) is locked.
  • the convex portion 17a of the portion 17 may be in line contact or point contact with the crack cross section.
  • a pin 17e is provided on the base 17f of the locking portion 17b.
  • the pins 17e are supported so as to be slidable along the grooves 17g provided in the base 17f, and the number of pins 17e and the interval between them can be changed.
  • a resin such as Teflon (registered trademark) having a low frictional resistance is preferably used.
  • the arm 17c and the locking portion 17b of the hook mechanism 17 are movable in the X direction and have a degree of freedom in the rotational direction within the XY plane.
  • the locking portion 17b may be configured to perform movement in the XYZ triaxial directions and ⁇ rotation (turning).
  • the movement in the Y direction can be achieved by moving the arm 17c and the locking portion 17b of the hook mechanism 17 in the Y direction.
  • By adding the movement in the Y direction the movement in an arbitrary direction can be performed in the XY plane.
  • a precise auxiliary breaking force is transmitted to the marginal part.
  • the movement in the Z direction can be achieved by moving the arm 17c and the locking portion 17b of the hook mechanism 17 in the Z direction perpendicular to the XY plane.
  • the ⁇ rotation is possible by configuring the arm 17c and the locking portion 17b of the hook mechanism 17 to pivot about the fulcrum O (FIG. 13). By adding the ⁇ rotation, any rotation in the XY plane is possible. The auxiliary breaking force is transmitted to the marginal part more precisely in the direction.
  • the two hook mechanisms 17 and 18 (23, 24) are disposed.
  • one or more hook mechanisms may be provided, for example, only on the dividing start end side of the substrate G.
  • the two hook mechanisms 17, 18 (23, 24) may be additionally provided.
  • the auxiliary cutting force control unit starts the horizontal movement of the hook mechanism 17 to place the convex portion 17a in the opening of the crack, and reduces the distance between the crack sectional surface and the convex portion 17a.
  • the step of applying and the step of applying a breaking force for assisting the progress of cracks via the convex portion 17a were operated at a preset timing.
  • the convex portion 17a was formed into the opening Gc.
  • the horizontal movement may be started, and the convex portion 17a may be further moved horizontally as it is after coming into contact with the sectional surface of the edge member G1.
  • the edge on one end side of the substrate G is levitated to perform full-cut processing.
  • the edge portions on both ends of the substrate G or the other edge on the other side of the substrate G are almost simultaneously. The same full cut processing can be performed.
  • the 1st hook mechanism 17 and the 2nd hook mechanism 18 were fixed and installed along the division
  • a processing example in which the edge material of the substrate is removed or the terminal electrode is exposed has been described.
  • the purpose of the processing is not limited to this, and the mother substrate of a single plate or a bonded substrate is formed in a strip shape.
  • the present apparatus is applied to divide the strip into individual product substrates.
  • the present invention can be used for a laser processing apparatus using full cut processing by laser irradiation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

Provided is a laser working apparatus which can apply an auxiliary parting force to the parting plane of the crack in accordance with the progressing situations of a crack, thereby to perform a full-cut work reliably to the terminal end of the substrate. The laser working apparatus comprises substrate supporting mechanisms (15 and 16) for floating an edge side (1), a hook mechanism (17), a hook mechanism moving unit (19) for moving the hook mechanism horizontally, and an auxiliary parting force control unit for controlling the hook mechanism and the hook mechanism moving unit (19) thereby to apply the parting force for aiding the progress of the crack. The auxiliary parting force control unit performs controls to insert a protrusion into the opening of the crack, when the distance between the center substrate parting plane and the edge side parting plane of the opened crack is sufficient, to start the horizontal movement of the hook mechanism thereby to bring the parting plane of the crack and the protrusion close to each other, and to apply the parting force to the parting plane of the crack after the protrusion abuts on the parting plane of the crack.

Description

レーザ加工装置およびレーザ加工方法Laser processing apparatus and laser processing method
 本発明は、脆性材料基板に対してレーザビームを走査することにより加熱し、次いで冷却することにより、基板を分断するレーザ加工装置に関する。 The present invention relates to a laser processing apparatus that heats a brittle material substrate by scanning a laser beam and then cools it to divide the substrate.
 本発明でいう「脆性材料基板」には、ガラス基板のほか、石英、単結晶シリコン、サファイヤ、半導体ウエハ、セラミック等の基板が含まれる。また、LCD用基板のような貼り合せ基板も含まれる。以下、主にガラス基板を用いて説明するが、他の脆性材料基板についても同様である。 In the present invention, the “brittle material substrate” includes not only a glass substrate but also a substrate such as quartz, single crystal silicon, sapphire, semiconductor wafer, or ceramic. Further, a bonded substrate such as an LCD substrate is also included. The following description will be made mainly using a glass substrate, but the same applies to other brittle material substrates.
 ガラス等の脆性材料基板(以下、「基板」と称する)に対し、レーザビームを走査しながら基板が軟化する温度より低い温度で加熱すると、加熱領域に圧縮応力が生じる。さらにレーザビームが照射された後方に冷却媒体を吹き付けて冷却することにより、冷却領域に引張応力が生じる。このように圧縮応力が生じている領域に近接して、引張応力が生じる領域を形成することにより、応力勾配が形成される。近年、この応力勾配を利用してガラス基板を分断する加工技術が利用されている。 When a brittle material substrate such as glass (hereinafter referred to as “substrate”) is heated at a temperature lower than the temperature at which the substrate softens while scanning with a laser beam, compressive stress is generated in the heating region. Furthermore, a cooling medium is sprayed and cooled behind the laser beam irradiation, thereby generating a tensile stress in the cooling region. In this manner, a stress gradient is formed by forming a region where tensile stress is generated in the vicinity of a region where compressive stress is generated. In recent years, a processing technique for dividing a glass substrate using this stress gradient has been used.
 レーザを用いた分断加工にはスクライブ加工とフルカット加工の二種類がある。スクライブ加工とは、先にレーザビームによる加熱を行い、後から冷媒噴射により冷却を行うことにより、基板内部に加熱領域(圧縮応力領域)、基板表面に冷却領域(引張応力領域)が形成されることによる深さ方向の応力差を発生させることにより、基板裏面に達しない深さ(例えば板厚の10~20%程度の深さ)のクラック(スクライブライン)を形成する加工をいう。
 スクライブ加工の場合、スクライブライン形成後に、例えばブレイクバーをスクライブラインに沿って押し当てて曲げモーメントを加えるブレイク処理を行うことにより基板を分断することができる。
There are two types of cutting using a laser: scribe processing and full cut processing. In the scribing process, a heating region (compressive stress region) is formed inside the substrate, and a cooling region (tensile stress region) is formed on the substrate surface by heating with a laser beam first and then cooling with refrigerant injection. This is a process for forming a crack (scribe line) having a depth that does not reach the back surface of the substrate (for example, a depth of about 10 to 20% of the plate thickness) by generating a stress difference in the depth direction.
In the case of scribe processing, after the scribe line is formed, the substrate can be divided by, for example, performing a break process that applies a bending moment by pressing a break bar along the scribe line.
 一方、フルカット加工とは、基板表面から基板裏面に達するクラックを形成する加工であり、ブレイク処理を行うことなく基板を分断することができる加工である(特許文献1、特許文献2参照)。フルカット加工は、前方の加熱領域(圧縮応力領域)と後方の冷却領域(引張応力領域)とによる前後方向の応力差により、基板の後方が前方に比べて左右方向に裂けようとする力が働くことにより、基板が完全に分断される加工である。
 スクライブ加工とフルカット加工のいずれになるかは、加熱条件(照射時間、照射パワー、走査速度等)や冷却条件(冷媒温度、吹付量、吹付位置等)などの加工条件にも依存するが、被加工基板を載置するテーブル面とガラス基板との接触状態にも依存する。
On the other hand, full-cut processing is processing that forms a crack reaching the substrate back surface from the substrate surface, and is processing that can divide the substrate without performing a break treatment (see Patent Document 1 and Patent Document 2). In full cut processing, due to the difference in stress in the front-rear direction between the front heating region (compressive stress region) and the rear cooling region (tensile stress region), the force to tear the back of the substrate in the left-right direction compared to the front This is a process in which the substrate is completely divided by working.
Whether it is scribe processing or full cut processing depends on processing conditions such as heating conditions (irradiation time, irradiation power, scanning speed, etc.) and cooling conditions (refrigerant temperature, spray amount, spray position, etc.) It also depends on the contact state between the table surface on which the substrate to be processed is placed and the glass substrate.
 すなわち、一般にフルカット加工の場合、基板の後方が前方に比べて左右方向に裂けようとする力(分断力という)が働くことにより、基板が完全に分断されるのであるが、基板とテーブル面とが直接接している場合に、ガラス基板とテーブル面との間に、この分断力に抗する摩擦抵抗が働くことにより、分断力が摩擦抵抗によって打ち消される結果、フルカット加工にならず、スクライブ加工になってしまう。
 そのため、フルカット加工を行う場合には、特許文献1、特許文献2に開示されているように、基板をテーブル面から浮上させ、摩擦抵抗を抑えるようにして加工を行うようにしている。このようなフルカット加工により基板を分断することにより、ブレイク工程が不要になる。
特許第3887394号公報 特開2007-90860号公報
That is, in general, in the case of full cut processing, the substrate is completely divided by a force (called a dividing force) that causes the rear of the substrate to tear in the left-right direction compared to the front. Is in direct contact with the glass substrate and the table surface, the frictional resistance against this breaking force acts, so that the breaking force is canceled out by the frictional resistance, resulting in a full-cut process and scribe. It becomes processing.
Therefore, when performing full cut processing, as disclosed in Patent Document 1 and Patent Document 2, the substrate is lifted from the table surface and processed so as to suppress frictional resistance. By breaking the substrate by such a full cut process, a break process is unnecessary.
Japanese Patent No. 3887394 Japanese Patent Laid-Open No. 2007-90860
 図15は、フルカット加工により基板Gの縁材部分G1を分断していくときの変化を示す図である。
 ここでは、基板Gの中央部分G0を図示しないテーブルに固定し、縁側部分G1をテーブルから浮上させて非接触状態としている。
 フルカット加工では、レーザビームのビームスポットBS(レーザビームの照射領域)および冷却スポットCS(冷媒の噴射領域)を有する加熱冷却機構部10を、図15(a)に示すように、基板Gの分断開始端から反対側の分断終了端に向けて相対的に移動することになる。
FIG. 15 is a diagram showing a change when the edge material portion G1 of the substrate G is divided by full cut processing.
Here, the central portion G0 of the substrate G is fixed to a table (not shown), and the edge side portion G1 is floated from the table to be in a non-contact state.
In the full cut processing, the heating / cooling mechanism 10 having the laser beam spot BS (laser beam irradiation region) and the cooling spot CS (refrigerant injection region) is formed on the substrate G as shown in FIG. It moves relatively from the division start end toward the division end end on the opposite side.
 説明の便宜上、ビームスポットBSおよび冷却スポットCSの移動方向をY方向とする。加熱冷却機構部10の進行距離dが短い時点では、図15(b)に示すように、クラックが形成されて分断開始端から縁材G1が形成され、クラックの進展に伴ってクラックの、Y方向に直交するX方向への開口巾が広がり、縁材G1の分断面がX方向に向けて移動する。 For convenience of explanation, the moving direction of the beam spot BS and the cooling spot CS is defined as the Y direction. When the traveling distance d of the heating / cooling mechanism unit 10 is short, as shown in FIG. 15B, a crack is formed, and the edge material G1 is formed from the starting end of the division. The opening width in the X direction orthogonal to the direction widens, and the dividing surface of the edge member G1 moves in the X direction.
 続いて、加熱冷却機構部10が進行し、進行距離dが長くなった時点では、図15(c)で示すように、クラックの先端が基板Gの分断開始端から離れるにつれ、形成される縁材G1の分断開始端からの長さが長くなり、それによって形成される縁材G1の重量が増す。
 それゆえ、クラックの先端が基板Gの分断開始端から離れるにつれ、熱応力差で生じる分断力だけではクラックを進展させることが困難になり、分断開始端近傍では難なくクラックが進展したのに、やがて基板中央に達するとクラックの進展が困難になり、進展が停止してしまうことがあった。すなわち基板Gを浮上させて摩擦抵抗をなくすようにしているとはいえ、フルカット加工によるクラックが基板中央付近まで進展すると、縁材G1の重量に抗して縁材G1のX方向への移動が少しずつ起こりにくくなり、より大きな分断力が必要になるため、クラックの進行が困難になると考えられる。
Subsequently, when the heating / cooling mechanism 10 advances and the traveling distance d becomes longer, as shown in FIG. 15C, the edge formed as the tip of the crack moves away from the dividing start end of the substrate G. The length from the division | segmentation start end of the material G1 becomes long, and the weight of the edge material G1 formed by it increases.
Therefore, as the tip of the crack moves away from the dividing start end of the substrate G, it becomes difficult to develop the crack only by the dividing force generated by the thermal stress difference, and the crack has progressed without difficulty in the vicinity of the dividing start end. When reaching the center of the substrate, the progress of cracks becomes difficult and the progress may stop. That is, although the substrate G is lifted to eliminate the frictional resistance, when the crack due to the full cut progresses to the vicinity of the center of the substrate, the edge material G1 moves in the X direction against the weight of the edge material G1. Is likely to occur little by little, and a greater breaking force is required, making it difficult for the crack to progress.
 さらに、図15(d)に示すように、ビームスポットBSが基板の外側に外れた時点では、冷却スポットCSだけが基板上に残ることになり、前後方向の熱応力差が小さくなり、左右方向に裂けようとする力(分断力)が小さくなってしまう結果、クラックの進展が停止してしまう場合がある。 Further, as shown in FIG. 15 (d), when the beam spot BS deviates from the outside of the substrate, only the cooling spot CS remains on the substrate, and the thermal stress difference in the front-rear direction becomes small, and the left-right direction. As a result, the progress of cracks may be stopped as a result of a decrease in the force (breaking force) for breaking the cracks.
 このような問題を解決するために、上述した特許文献2では、基板保持機構に応力印加機構を備えるようにしている。具体的には基板に対し微動ステージによって外部から力を付与する外力付与部を設け、割段ユニットの位置が分断始点、中央、分断終点と移動する際に、横方向(X方向)に付与する力を制御するようにしている。 In order to solve such a problem, in Patent Document 2 described above, the substrate holding mechanism is provided with a stress applying mechanism. Specifically, an external force applying unit that applies an external force to the substrate by a fine movement stage is provided, and applied in the lateral direction (X direction) when the position of the split unit moves from the dividing start point, the center, and the dividing end point. I try to control the force.
 しかしながら、この方法では、移動量センサ(位置検出器)を設けて応力を与える微動ステージの動きを検出し、検出結果に基づいて、予め設定した横方向の応力(分断力)を加えるように微動ステージの制御を行っている。そのため、クラックの進行状況とは無関係に応力が加わり、クラックの進行状況によっては不要な力がクラックの先端に無理に加えられたり、形成されるクラックが分断予定ラインから外れたりする可能性がある。 However, in this method, a movement sensor (position detector) is provided to detect the movement of the fine movement stage that gives stress, and fine movement is applied so as to apply a preset lateral stress (breaking force) based on the detection result. The stage is controlled. Therefore, stress is applied regardless of the progress of the crack, and depending on the progress of the crack, unnecessary force may be forcibly applied to the tip of the crack, or the formed crack may deviate from the planned cutting line. .
 そこで、本発明は、分断開始当初は外力を与えてクラックの進行を強制的に進めるようなことは行わず、クラックの進行状況に応じて、必要になってから補助的な分断力をクラックの分断面に加えることができ、確実に基板終端までフルカット加工ができるようにしたレーザ加工装置を提供することを目的とする。 Therefore, the present invention does not forcibly advance the progress of the crack by applying an external force at the beginning of the splitting, and the auxiliary splitting force is applied to the crack after it becomes necessary according to the progress of the crack. It is an object of the present invention to provide a laser processing apparatus which can be added to a sectional surface and can surely perform full cut processing to the end of the substrate.
 また、LCD基板のような貼り合せ基板では、端子部を形成するために、片側基板の端材(端部)のみを切り出して、他方側の端子電極部を露出させる分断加工を行う場合がある。このような分断加工をフルカット加工で行う場合にも、上述したようなクラックの進行が停止する問題が発生する。
 そこで本発明は、貼り合せ基板においても、確実に基板終端までフルカット加工が可能なレーザ加工装置を提供することを目的とする。
In addition, in a bonded substrate such as an LCD substrate, in order to form a terminal portion, there is a case in which only the end material (end portion) of one side substrate is cut out and a dividing process is performed to expose the terminal electrode portion on the other side. . Even when such a dividing process is performed by a full-cut process, the problem of stopping the progress of cracks as described above occurs.
Accordingly, an object of the present invention is to provide a laser processing apparatus capable of reliably performing full-cut processing up to the end of the substrate even on a bonded substrate.
 また、フルカット加工を行うために、基板をテーブル面(基板支持機構)から浮上させた状態で水分を含んだ冷媒を噴射すると、基板とテーブル面との間に冷媒が回り込んでテーブル面に水分が付着することがある。テーブル面に水分が付着した状態で基板が降りてくると、基板とテーブル面とが密着してしまい、それ以後の基板の移動が困難になる。そこで、本発明は冷媒のテーブル面への回り込みを抑えてフルカット加工を行うことができるレーザ加工装置を提供することを目的とする。 In addition, in order to perform full cut processing, when a coolant containing moisture is ejected while the substrate is levitated from the table surface (substrate support mechanism), the coolant wraps around between the substrate and the table surface and enters the table surface. Moisture may adhere. When the substrate comes down with moisture adhering to the table surface, the substrate and the table surface come into close contact with each other, making it difficult to move the substrate thereafter. Then, an object of this invention is to provide the laser processing apparatus which can perform a full cut process, suppressing the wraparound of the refrigerant | coolant to the table surface.
 上記課題を解決するためになされた本発明のレーザ加工装置は、脆性材料基板の分断予定ラインより縁側の部分を浮上させるとともに分断予定ラインよりも中央側で基板を固定する基板支持機構と、一端に凸部を有するアームと、前記アームの他端にあって、前記アームの凸部が前記基板から離れた待機位置と熱応力により前記基板に形成されたクラックの開口内に前記凸部が入り込む係止位置との間で前記アームを回動させるフック機構と、前記凸部が前記クラックの開口内に入り込んだ状態のときに前記縁側部分を中央側から引き離す方向にフック機構を水平移動させるフック機構移動部と、フック機構およびフック機構移動部を制御して前記クラックの進行を補助するための分断力を加える補助分断力制御部とを備え、前記補助分断力制御部は、開口した前記クラックの中央側基板の分断面と前記縁側部分の分断面との距離が十分になったときに、前記クラックの開口内に前記凸部を入れ、その後、フック機構の水平移動を開始して前記縁側部分の分断面と前記凸部との距離を近づけていき、前記凸部が前記縁側部分の分断面に当接した後、前記縁側部分の分断面に対して前記凸部を介してクラックの進展を補助する分断力を加えるように作動させる制御を行うようにしている。 The laser processing apparatus of the present invention made to solve the above problems includes a substrate support mechanism that floats a portion of the brittle material substrate on the edge side from the planned dividing line and fixes the substrate on the center side of the planned dividing line, and one end An arm having a convex portion on the other end of the arm, and the convex portion of the arm enters a standby position where the convex portion of the arm is separated from the substrate and an opening of a crack formed in the substrate due to thermal stress. A hook mechanism for rotating the arm between the hook position and a hook for horizontally moving the hook mechanism in a direction in which the edge portion is pulled away from the center side when the convex portion enters the opening of the crack. A mechanism moving unit; and an auxiliary dividing force control unit that applies a dividing force for controlling the hook mechanism and the hook mechanism moving unit to assist the progress of the crack, and the auxiliary dividing When the distance between the sectional surface of the center substrate of the opened crack and the sectional surface of the edge portion becomes sufficient, the control unit inserts the convex portion into the opening of the crack, and then the hook mechanism The horizontal movement is started to reduce the distance between the dividing surface of the edge portion and the convex portion, and after the protruding portion comes into contact with the dividing surface of the edge portion, the dividing portion of the edge portion is Control is performed so as to apply a breaking force that assists the development of cracks via the convex portion.
 本件のレーザ加工装置は、レーザビーム照射機構および冷媒を噴射する冷却機構とを有する加熱冷却機構部と、前記加熱冷却機構部を脆性材料からなる基板に対し相対的に移動させる走査機構とを備え、前記基板に設定された分断予定ラインに沿って加熱冷却機構部を相対移動させ、前記基板が軟化する温度以下で加熱し、次いで前記ビームスポットが通過した軌跡に沿って前記冷却スポットを相対移動させて前記基板を冷却することにより、熱応力により基板を貫通するクラックを発生させるとともに前記分断予定ラインに沿って前記クラックを進行させて分断する脆性材料基板のレーザ加工装置である。
 ここで、走査機構は基板側を移動してもよいし、加熱冷却機構部(レーザビーム照射機構および冷却機構)を移動してもよい。
 本発明によれば、分断予定ラインに沿ってレーザビーム照射機構が走査され、次いで冷却機構が走査される。加熱冷却機構部(レーザビーム照射機構および冷却機構)が走査されていくと、分断開始側の分断予定ラインには、熱応力によって基板の上面から下面まで貫通するクラック(フルカット加工となるクラック)が形成され、分断予定ラインに沿って進展していく。進展するクラックの先端から少し離れた後方位置では、クラックが拡がり、開口が形成される。補助分断力制御部は、このクラックの開口内にフック機構の凸部を入れ込む。凸部を入れるタイミングは、凸部とクラックの分断面とが接しない程度までクラックが拡がった後にする。このタイミングは、加熱冷却機構部(レーザビーム照射機構および冷却機構)を一定速度にして走査を行い、走査開始から一定時間経過後に入れ込むようにすればよい。すなわち、ビームスポット、冷却スポットが分断開始端から一定距離走査された時点で凸部を入れ込むようにする。あるいは、後述するように、基板に実際に形成されているクラックの開口をモニタし、十分に開口が開いた時点で凸部を入れ込むようにしてもよい。そしてフック機構移動部によりフック機構を分断予定ラインに直交する方向(基板中央側から引き離す方向)に水平移動させていく。
 クラックの開口は、最初のうち(クラック先端が分断開始端から近い位置にあるとき)はクラック先端が進展するにつれて成長する(開口の幅が拡がる)が、クラック先端が分断開始端から遠ざかると、やがて成長が低下するようになる(開口の幅が変化しにくくなる)。したがって、水平移動を開始するタイミングは、凸部をクラックに入れ込んだ後、ただちに開始してもよいし、開口の幅が十分に拡がってから開始してもよい。
The laser processing apparatus of the present case includes a heating / cooling mechanism having a laser beam irradiation mechanism and a cooling mechanism for injecting a refrigerant, and a scanning mechanism for moving the heating / cooling mechanism relative to a substrate made of a brittle material. The heating / cooling mechanism is relatively moved along the division line set for the substrate, heated at a temperature lower than the temperature at which the substrate is softened, and then the cooling spot is relatively moved along the trajectory through which the beam spot has passed. Then, by cooling the substrate and generating a crack penetrating the substrate due to thermal stress, the laser processing apparatus for the brittle material substrate that splits by proceeding with the crack along the planned cutting line.
Here, the scanning mechanism may move on the substrate side, or the heating / cooling mechanism (laser beam irradiation mechanism and cooling mechanism) may be moved.
According to the present invention, the laser beam irradiation mechanism is scanned along the scheduled cutting line, and then the cooling mechanism is scanned. As the heating / cooling mechanism (laser beam irradiation mechanism and cooling mechanism) is scanned, cracks penetrating from the upper surface to the lower surface of the substrate due to thermal stress (cracks that become full-cut processing) will occur on the dividing line on the dividing start side. Is formed, and progresses along the line to be divided. At a rear position a little away from the tip of the developing crack, the crack spreads and an opening is formed. The auxiliary dividing force control unit inserts the convex portion of the hook mechanism into the opening of the crack. The timing of inserting the convex portion is after the crack has spread to such an extent that the convex portion and the cross section of the crack do not contact each other. The timing may be set such that the heating / cooling mechanism (laser beam irradiation mechanism and cooling mechanism) is scanned at a constant speed, and is inserted after a certain time has elapsed from the start of scanning. That is, the convex portion is inserted when the beam spot and the cooling spot are scanned for a certain distance from the dividing start end. Alternatively, as will be described later, the opening of a crack actually formed in the substrate may be monitored, and the convex portion may be inserted when the opening is sufficiently opened. Then, the hook mechanism moving unit horizontally moves the hook mechanism in a direction perpendicular to the planned dividing line (a direction away from the center of the substrate).
The opening of the crack grows as the crack tip progresses (when the crack tip is close to the dividing start end) at the beginning (the width of the opening widens), but when the crack tip moves away from the dividing start end, Eventually the growth will decrease (the width of the opening will not change easily). Therefore, the timing for starting the horizontal movement may be started immediately after the convex portion is inserted into the crack, or may be started after the width of the opening is sufficiently widened.
 フック機構が、前記基板の下面側に配置され、クラックの分断面と前記凸部との距離を近づけていくとき、縁側部分(以下、縁材と称する)をフック機構のアーム上で移動可能に支持してなるよう構成するのが好ましい。このような構成では、形成されたクラックの先端がフック機構から基板の分断終了端に向かって十分な距離だけ進展していない場合は、縁材はアーム上で移動してX方向への移動が抑止され、クラックの先端がフック機構から基板の分断終了端に向かって十分な距離進展している場合は、縁材はアームとの摩擦力でアーム上に留まりX方向へ移動するように、縁材とアームとの摩擦力等を設定するのが好ましい。このように、縁材とアームは遊びを有して接続されるのでクラックの先頭位置あるいは形成された開口の幅等のクラック進展状態に応じてクラックの進展を妨げる要因(縁材の伸長による重量増加等)を簡単に除去することができる。
 さらに、フック機構移動部によって水平移動されてきた凸部がクラック分断面に接近するようになり、やがてクラック分断面と凸部とが当接し、これを押圧するようになる。 この押圧力の大きさは、形成された縁材の重量等でクラックの進展が妨げられないように縁材をX方向へ押圧するだけで十分である。
このようにして、実際のクラックの進展が低下し、必要になってから補助的な分断力が加えられる。
When the hook mechanism is arranged on the lower surface side of the substrate and the distance between the crack section and the convex portion is made closer, the edge side portion (hereinafter referred to as edge material) can be moved on the arm of the hook mechanism. It is preferable to constitute such that it is supported. In such a configuration, when the tip of the formed crack does not advance a sufficient distance from the hook mechanism toward the end of cutting of the substrate, the edge member moves on the arm and moves in the X direction. If the tip of the crack is restrained and a sufficient distance has advanced from the hook mechanism toward the cutting end of the substrate, the edge material stays on the arm by the frictional force with the arm and moves in the X direction. It is preferable to set the frictional force between the material and the arm. As described above, since the edge member and the arm are connected with play, a factor that hinders the crack development according to the crack progress state such as the crack start position or the width of the formed opening (weight due to the extension of the edge member). Increase) can be easily removed.
Furthermore, the convex part horizontally moved by the hook mechanism moving part comes close to the crack section, and eventually the crack section and the convex part come into contact with each other and press it. The magnitude of this pressing force is sufficient to press the edge material in the X direction so that the progress of the crack is not hindered by the weight of the formed edge material or the like.
In this way, the actual crack propagation is reduced and an auxiliary breaking force is applied after it becomes necessary.
 補助分断力制御部は、所定のタイミングで、前記クラックの開口内に前記凸部を入れる工程、フック機構の水平移動を開始してクラックの分断面と前記凸部との距離を近づけていく工程および前記凸部を介してクラックの進展を補助する分断力を加える工程を開始するよう予め制御プログラムを設定しておいてもよい。
 この場合、加熱冷却機構部の分断開始からの経過時間あるいは加熱冷却機構部の位置を検知することによって各タイミングを設定してもよい。
 また、クラックをカメラで観察し、その結果に基いて各タイミングを設定してもよい。
 なお、補助分断力制御部は、フック機構の水平移動を開始してクラックの分断面と前記凸部との距離を近づけていき、前記凸部が前記クラックの分断面に当接した後、所定のタイミングで、あるいは直ちに前記クラックの分断面に対してクラックの進行を補助する分断力を前記凸部に加えるようにしてもよい。
 本発明のレーザ加工方法は、脆性材料基板を局部加熱し、その熱応力によって前記基板にクラックを形成して分断する加工方法において、前記基板の分断予定ラインより縁側の部分を浮上させるとともに分断予定ラインよりも中央側で前記基板を基板支持機構に固定する工程と、レーザ光を前記分断予定ラインに沿って移動させながら照射する工程と、一端に凸部を有するアームを移動させて前記基板に形成されたクラックの開口内に前記凸部を入れる工程と、アームの一部を前記縁側部分の主面に当接させ、この状態で前記縁側部分の分断面と前記凸部との距離を近づけるように、アームを水平移動させる工程とを具備する。さらに、前記アームの凸部が前記縁側部分の分断面に当接した後、前記縁側部分の分断面に対して前記凸部を介してクラックの進展を補助する分断力を加えるように作動させる工程を具備する。
The auxiliary dividing force control unit is a step of inserting the convex portion into the opening of the crack at a predetermined timing, a step of starting the horizontal movement of the hook mechanism to reduce the distance between the crack sectional surface and the convex portion. In addition, a control program may be set in advance so as to start the step of applying a breaking force that assists the progress of cracks via the convex portion.
In this case, each timing may be set by detecting the elapsed time from the start of the division of the heating / cooling mechanism or the position of the heating / cooling mechanism.
Further, the crack may be observed with a camera, and each timing may be set based on the result.
The auxiliary dividing force control unit starts the horizontal movement of the hook mechanism to reduce the distance between the crack sectional surface and the convex part, and after the convex part comes into contact with the crack sectional surface, Alternatively, or immediately, a dividing force for assisting the progress of the crack may be applied to the convex portion with respect to the crack cross section.
The laser processing method of the present invention is a processing method in which a brittle material substrate is locally heated and a crack is formed in the substrate by the thermal stress to divide the substrate. A step of fixing the substrate to the substrate support mechanism at a center side of the line, a step of irradiating the laser beam while moving along the line to be divided, and an arm having a convex portion at one end is moved to the substrate. The step of inserting the convex portion into the opening of the formed crack, and a part of the arm is brought into contact with the main surface of the edge side portion, and in this state, the distance between the sectional surface of the edge side portion and the convex portion is reduced. And a step of horizontally moving the arm. Furthermore, after the convex part of the arm abuts against the dividing surface of the edge side part, the step of operating the dividing part of the edge side part so as to apply a dividing force that assists the progress of cracks via the convex part. It comprises.
 本発明によれば、クラックの進展が鈍化してから(あるいは停止してから)、係止部の凸部がクラックの分断面に当接するようになり、その後に補助的な分断力を加えるようになるので、補助的な分断力を無理なく加えることができ、分断予定ラインから外れて分断ラインが形成されることがなく、基板終端まで確実にフルカット加工を行うことができる。 According to the present invention, after the progress of the crack has slowed (or stopped), the convex portion of the locking portion comes into contact with the cross section of the crack, and then an auxiliary cutting force is applied. Therefore, an auxiliary cutting force can be applied without difficulty, and the cutting line is not formed outside the planned cutting line, and the full cut processing can be reliably performed up to the end of the substrate.
 (その他の課題を解決するための手段及び効果)
 上記発明において、フック機構は、少なくとも分断開始側の基板端近傍の位置に設けられるようにするのが好ましい。分断開始端に設けたフック機構により、基板終端近傍までのクラックの進行を補助することができる。
(Means and effects for solving other problems)
In the above invention, it is preferable that the hook mechanism is provided at least at a position near the substrate end on the dividing start side. The hook mechanism provided at the dividing start end can assist the progress of the crack to the vicinity of the substrate end.
 また、上記発明において、フック機構は、少なくとも分断開始側の基板端近傍の位置と、分断終了側の基板端より内側に所定距離離れた位置と二箇所に設けられるようにしてもよい。
 これによれば、分断開始端に設けたフック機構により、基板終端近傍までのクラックの進行を補助することができる。また基板終端近傍に設けたフック機構により、レーザ照射機構により基板終端近傍で分断力を補助することができ、基板終端まで確実に分断することができる。なお、ここでいう所定距離とは、係止部の凸部が分断面に接することなく裂け目(間隙)に入ることができる領域までの距離をいう。
In the above invention, the hook mechanism may be provided at two locations, at least a position near the substrate end on the dividing start side and a position separated by a predetermined distance inside the substrate end on the dividing end side.
According to this, the progress of the crack to the vicinity of the substrate end can be assisted by the hook mechanism provided at the dividing start end. Further, the hook mechanism provided in the vicinity of the substrate end can assist the dividing force in the vicinity of the substrate end by the laser irradiation mechanism, and the substrate can be reliably divided up to the end of the substrate. In addition, the predetermined distance here means the distance to the region where the convex portion of the locking portion can enter the tear (gap) without contacting the dividing surface.
 上記発明において、フック機構を、前記基板の下面側に配置し、クラックの分断面と前記凸部との距離を近づけていくとき、縁側部分をフック機構のアーム上で移動可能に支持されるようにしてもよい。
 本発明によれば、クラックの進行により中央側から分離しつつある縁側部分をフック機構のアーム上で移動可能な状態で支持することができる。これによりフック機構を引く方向(X方向とする)と直交する方向(Y方向とする)やXY面の回転方向(θ方向とする)に対する位置ずれを移動によって吸収しながら一定の分断力を加えることができる。
In the above invention, when the hook mechanism is arranged on the lower surface side of the substrate and the distance between the crack cross section and the convex portion is made closer, the edge side portion is supported so as to be movable on the arm of the hook mechanism. It may be.
According to the present invention, it is possible to support the edge side portion that is being separated from the center side as the crack progresses in a state that it can move on the arm of the hook mechanism. As a result, a certain breaking force is applied while absorbing the displacement in the direction perpendicular to the direction of pulling the hook mechanism (X direction) (Y direction) and the rotational direction of the XY plane (θ direction). be able to.
 上記発明において、フック機構は、前記係止部をXYZの3軸方向への移動および/または旋回を行うようにしてもよい。
 これにより、Y方向移動、Z方向移動、θ回転を適切に吸収することができ、縁材側基板への分断力の確実な伝達が可能になる。
In the above invention, the hook mechanism may move and / or turn the locking portion in the XYZ triaxial directions.
Thereby, the movement in the Y direction, the movement in the Z direction, and the θ rotation can be appropriately absorbed, and a reliable transmission of the dividing force to the edge material side substrate is possible.
 上記発明において、フック機構は、前記係止部の凸部がクラック分断面に対して接触する接触部を有し、前記クラックの分断面に対して前記凸部を介してクラックの進行を補助する分断力を加えるとき、前記接触部が前記クラックの分断面に対して密に接触しかつ移動するようにフック機構移動部による移動方向以外の自由度を与える調整機構を備えるようにしてもよい。 In the above invention, the hook mechanism has a contact portion where the convex portion of the locking portion comes into contact with the crack cross section, and assists the progress of the crack via the convex portion with respect to the crack cross section. An adjustment mechanism that gives a degree of freedom other than the moving direction by the hook mechanism moving unit may be provided so that the contact portion is in close contact with and moves with respect to the divided cross section of the crack when the dividing force is applied.
 上記発明において、調整機構は、前記フック機構の前記アームに対し前記係止部を回動させる支軸により構成されるようにしてもよい。
 前記係止部を回動させる支軸を設けることにより、フック機構移動部による移動方向以外の自由度を与えることができる。
In the above invention, the adjustment mechanism may be configured by a support shaft that rotates the locking portion with respect to the arm of the hook mechanism.
By providing a support shaft for rotating the locking portion, a degree of freedom other than the moving direction by the hook mechanism moving portion can be given.
 上記発明において、クラックの開口を検出する開口検出部をさらに設け、補助分断力制御部は、検出された前記クラックの開口に応じて前記フック機構の前記凸部を開口内に入れ込むようにしてもよい。
 本発明によれば、クラック開口検出部により開口幅を判定し、開口が確実に開いている状態で凸部を入れ込むことができる。したがって、誤って開口が開いていない状態で凸部を入れ込むことがなくなり、凸部と基板とが衝突して基板を傷つけることがなくなる。
In the above invention, an opening detection unit for detecting an opening of a crack may be further provided, and the auxiliary dividing force control unit may insert the convex portion of the hook mechanism into the opening according to the detected opening of the crack. .
According to the present invention, it is possible to determine the opening width by the crack opening detecting portion and insert the convex portion with the opening being reliably opened. Therefore, the convex portion is not inserted in a state where the opening is not opened by mistake, and the convex portion and the substrate do not collide to damage the substrate.
 上記発明において、基板支持機構は、分断予定ラインより縁側部分を浮上させるときに、浮上部分への冷媒の回り込みを防ぐカーテンガスを噴射するようにしてもよい。
 これにより、冷媒に水分が含まれている場合でも、水分によって基板支持機構と基板とが密着することで基板の移動が困難になる問題をなくすことができる。
In the above invention, the substrate support mechanism may inject a curtain gas that prevents the coolant from entering the floating portion when the edge portion floats from the planned dividing line.
Thereby, even when moisture is contained in the refrigerant, it is possible to eliminate the problem that it becomes difficult for the substrate to move because the substrate support mechanism and the substrate are in close contact with each other due to the moisture.
 上記発明において、基板支持機構は、分断予定ラインより縁側部分を浮上させるときに、浮上部分への冷媒の回り込みを防ぐ吸引機構を備えるようにしてもよい。
 これにより、冷媒に水分が含まれている場合でも、水分によって基板支持機構と基板とが密着することで基板の移動が困難になる問題をなくすことができる。
In the above invention, the substrate support mechanism may include a suction mechanism that prevents the refrigerant from entering the floating portion when the edge side portion is lifted from the planned dividing line.
Thereby, even when moisture is contained in the refrigerant, it is possible to eliminate the problem that it becomes difficult for the substrate to move because the substrate support mechanism and the substrate are in close contact with each other due to the moisture.
本発明の一実施形態であるレーザ加工装置LM1の構成図。The block diagram of the laser processing apparatus LM1 which is one Embodiment of this invention. 図1のレーザ加工装置の制御系を示す図。The figure which shows the control system of the laser processing apparatus of FIG. レーザ加工装置LM1による分断加工中の各時点での基板Gのクラックの進行状態を示す図。The figure which shows the advancing state of the crack of the board | substrate G in each time in the parting process by the laser processing apparatus LM1. レーザ加工装置LM1によるフック機構の各時点の動作を示す図。The figure which shows the operation | movement of each time of the hook mechanism by the laser processing apparatus LM1. 本発明の第二実施形態であるレーザ加工装置LM2の構成図。The block diagram of the laser processing apparatus LM2 which is 2nd embodiment of this invention. レーザ加工装置LM2による分断加工中の各時点での基板Gのクラックの進行状態を示す図。The figure which shows the advancing state of the crack of the board | substrate G in each time in the parting process by the laser processing apparatus LM2. レーザ加工装置LM2によるフック機構の各時点の動作を示す図。The figure which shows the operation | movement of each time of the hook mechanism by the laser processing apparatus LM2. 本発明の第三実施形態であるレーザ加工装置LM3の正面図。The front view of laser processing apparatus LM3 which is 3rd embodiment of this invention. 本発明の第四実施形態であるレーザ加工装置LM4の正面図。The front view of laser processing apparatus LM4 which is 4th embodiment of this invention. 本発明の第五実施形態であるレーザ加工装置LM5の正面図。The front view of laser processing apparatus LM5 which is 5th embodiment of this invention. 本発明の第六実施形態であるレーザ加工装置LM6の斜視図。The perspective view of the laser processing apparatus LM6 which is 6th embodiment of this invention. 図11のレーザ加工装置LM6の制御系を示す図。The figure which shows the control system of the laser processing apparatus LM6 of FIG. フック機構の変形実施形態を示す図。The figure which shows the deformation | transformation embodiment of a hook mechanism. フック機構の変形実施形態を示す図。The figure which shows the deformation | transformation embodiment of a hook mechanism. 従来からのフルカット加工により基板の縁材部分を分断していくときの変化を示す図。The figure which shows a change when the edge material part of a board | substrate is parted by the conventional full cut process.
符号の説明Explanation of symbols
 11 レーザビーム照射機構
 12 冷却機構
 14 搬送機構
 15、16 基板支持機構
 17、18 フック機構
 19 20 フック機構移動部
DESCRIPTION OF SYMBOLS 11 Laser beam irradiation mechanism 12 Cooling mechanism 14 Conveyance mechanism 15, 16 Substrate support mechanism 17, 18 Hook mechanism 19 20 Hook mechanism moving part
 以下、本発明の実施形態を、ガラス基板加工用のレーザ加工装置を例にして、図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a laser processing apparatus for processing a glass substrate as an example.
(実施形態1)
 図1は本発明の一実施形態であるレーザ加工装置LM1の全体構成図であり、図1(a)は斜視図、図1(b)は正面図、図1(c)は平面図である。
 ここでは被加工基板はガラス単板であり、基板Gの右側の縁材G1を、基板下面の分断予定ラインLに沿ってフルカット加工により中央側の基板本体G0から分断する加工を行う。ここではレーザビーム照射および冷媒の噴射を基板Gの下面側から行うようにしている。
(Embodiment 1)
FIG. 1 is an overall configuration diagram of a laser processing apparatus LM1 according to an embodiment of the present invention. FIG. 1 (a) is a perspective view, FIG. 1 (b) is a front view, and FIG. 1 (c) is a plan view. .
Here, the substrate to be processed is a single glass plate, and the right edge material G1 of the substrate G is cut along the planned cutting line L on the lower surface of the substrate by full cut processing from the central substrate body G0. Here, laser beam irradiation and refrigerant injection are performed from the lower surface side of the substrate G.
 レーザ加工装置LM1は、レーザビーム照射機構11と冷媒を噴射する冷却機構12とを有する加熱冷却機構部10と、モータ駆動により基板Gに対して加熱冷却機構部10を移動させる走査機構13(不図示)と、基板を搬送する搬送機構14と、基板支持機構15、16と、フック機構17、18と、フック機構移動部19、20とを有する。なお、フック機構18、フック機構移動部20と、フック機構17、フック機構移動部19とは同じ構造であり、図1(b)においてフック機構17、フック機構移動部20の紙面奥側に配置されている。 The laser processing apparatus LM1 includes a heating / cooling mechanism unit 10 having a laser beam irradiation mechanism 11 and a cooling mechanism 12 for injecting a coolant, and a scanning mechanism 13 (not configured) that moves the heating / cooling mechanism unit 10 relative to the substrate G by driving a motor. ), A transport mechanism 14 for transporting the substrate, substrate support mechanisms 15 and 16, hook mechanisms 17 and 18, and hook mechanism moving portions 19 and 20. The hook mechanism 18 and the hook mechanism moving unit 20, and the hook mechanism 17 and the hook mechanism moving unit 19 have the same structure, and are arranged on the back side of the drawing of the hook mechanism 17 and the hook mechanism moving unit 20 in FIG. Has been.
 レーザビーム照射機構11は、COレーザ光源、および、レーザ光源から出射されるレーザビームの断面形状を楕円に整形して基板上にビームスポットBSを照射するレンズ光学系からなる。冷却機構12は、水分を含んだ冷媒を噴射して基板上に冷却スポットCSを形成するノズルからなる。これらは図示しない走査機構10により、レーザビーム照射機構11と冷却機構12との間の距離を一定に維持したまま、分断予定ラインLに沿って移動される。 The laser beam irradiation mechanism 11 includes a CO 2 laser light source and a lens optical system that irradiates the beam spot BS on the substrate by shaping the cross-sectional shape of the laser beam emitted from the laser light source into an ellipse. The cooling mechanism 12 includes a nozzle that injects a coolant containing moisture to form a cooling spot CS on the substrate. These are moved along the planned dividing line L by a scanning mechanism 10 (not shown) while keeping the distance between the laser beam irradiation mechanism 11 and the cooling mechanism 12 constant.
 基板Gの基板本体G0側の下方には、並行に配列される3本のレール状の支持体15a、15b、15cが基板支持機構15として設置される。支持体15a~15cの上面には吸引チャック用の多数の孔が列状に設けられており、吸引チャックを作動することにより、所望の位置で基板G(基板本体G0の部分)を吸着して固定することができるようにしてある。
 また、支持体15a、15bの間、15b、15cの間には、基板を搬送する搬送機構14として、ローラ群14a、14bが配置されている。この搬送機構14は、基板Gを加工領域に搬入したり加工領域から搬出したりするときに用いる。
Below the substrate body G0 side of the substrate G, three rail-shaped supports 15a, 15b, 15c arranged in parallel are installed as the substrate support mechanism 15. A large number of holes for suction chucks are provided in rows on the upper surfaces of the supports 15a to 15c. By operating the suction chucks, the substrate G (part of the substrate body G0) is adsorbed at a desired position. It can be fixed.
Further, between the supports 15a and 15b and between 15b and 15c, roller groups 14a and 14b are arranged as a transport mechanism 14 for transporting the substrate. The transport mechanism 14 is used when the substrate G is carried into or out of the processing area.
 基板G0の縁材G1側の下方には、フロートテーブル16aが基板支持機構16として設置される。フロートテーブル16aの上面には、基板に気体(乾燥空気)を吹き付ける多数の孔が設けられており、基板(縁材G1の部分)を浮上することができるようにしてある。そして基板支持機構15と基板支持機構16との協働により、基板G全体がほぼ水平に支持されるようにしてある。1回のレーザ走査において分断予定ラインに沿って基板Gの一端から他端に向かって垂直クラックが進行するのに伴い、分断予定ラインより中央側の基板Gから縁材G1となって分離し中央側の基板Gによる支持を徐々に失って垂直方向にずれが生じる。そのずれが生じた縁材G1は、フック機構17のアーム17c上で支持される。なお、フロートテーブル16aには、その上面を傾斜させる傾斜機構16bが付設してあり、後述するフック機構17、18およびフック機構移動部19、20によって切り離された縁材G1を、落下することができるようにしてある。 A float table 16a is installed as a substrate support mechanism 16 below the edge G1 side of the substrate G0. A large number of holes for blowing gas (dry air) onto the substrate are provided on the upper surface of the float table 16a so that the substrate (the portion of the edge material G1) can be floated. The entire substrate G is supported substantially horizontally by the cooperation of the substrate support mechanism 15 and the substrate support mechanism 16. As a vertical crack progresses from one end of the substrate G to the other end along the planned dividing line in one laser scanning, the substrate G is separated from the substrate G on the center side from the planned dividing line and separated into the center. The support by the side substrate G is gradually lost, causing a shift in the vertical direction. The edge member G1 in which the deviation occurs is supported on the arm 17c of the hook mechanism 17. The float table 16a is provided with an inclination mechanism 16b for inclining the upper surface thereof, and the edge member G1 cut off by the hook mechanisms 17, 18 and the hook mechanism moving parts 19, 20 described later can be dropped. I can do it.
 フック機構17、18は、凸部17a、18aを有する係止部17b、18bと、モータ駆動により、旋回可能なアーム17c、18cとからなり、係止部17b、18bが基板Gから離れた待機位置と、凸部17a、18aが基板Gに形成された垂直クラックの内部に入り込んでなる係止位置との間でアーム17cを回動させる。
 フック機構移動部19、20は、係止部17b、18bが基板Gから分離を始めた縁材G1に当接する位置にあるときに、モータ駆動により、縁材G1を基板本体G0(中央側)から横方向(X方向)に引き離すように移動することができるようにしてある。
The hook mechanisms 17 and 18 include locking portions 17b and 18b having convex portions 17a and 18a, and arms 17c and 18c that can be swiveled by motor driving, and the locking portions 17b and 18b are separated from the substrate G. The arm 17c is rotated between the position and the locking position where the protrusions 17a and 18a enter the vertical crack formed in the substrate G.
The hook mechanism moving portions 19 and 20 are driven by the motor when the locking portions 17b and 18b are in contact with the edge material G1 that has started to be separated from the substrate G, and the substrate body G0 (center side). It can be moved so as to be separated in the horizontal direction (X direction).
 なお、上記以外に基板の分断開始端に初期亀裂(トリガークラック)を形成する昇降式のカッタホイールが加熱冷却機構部10とともに設けられ、分断予定ラインの分断開始端に初期亀裂が形成できるようにしてある。加工領域に搬入された基板Gには、予めカッタホイールにより初期亀裂が形成される。
 また、実施形態1ではレーザビーム照射機構11、冷却機構12を基板Gの下面側に設けているが、これらを上面側に設けてもよい。
In addition to the above, an elevating type cutter wheel for forming an initial crack (trigger crack) at the division start end of the substrate is provided together with the heating / cooling mechanism unit 10 so that an initial crack can be formed at the division start end of the line to be divided. It is. An initial crack is formed in advance by a cutter wheel in the substrate G carried into the processing region.
In the first embodiment, the laser beam irradiation mechanism 11 and the cooling mechanism 12 are provided on the lower surface side of the substrate G. However, these may be provided on the upper surface side.
 次に、レーザ加工装置LB1の制御系について説明する。図2は制御系のブロック図である。レーザスクライブ装置LB1において、加熱冷却機構部10(レーザビーム照射機構11、冷却機構12)、走査機構13、搬送機構14、基板支持機構(支持体)15、基板支持機構(フロートテーブル)16、フック機構17、18、フック機構移動部19、20の各部が、コンピュータ(CPU)で構成される制御部21によってコントロールされる。制御部21には、キーボード、マウスなどからなる入力部22、および各種の表示を行う表示画面からなる表示部23が接続され、必要なメッセージが画面に表示されるとともに、必要な指示や設定が入力できるようにしてある。そして予め記憶させたシーケンスプログラムに基づいて、加工動作を実行する。 Next, the control system of the laser processing apparatus LB1 will be described. FIG. 2 is a block diagram of the control system. In the laser scribing device LB1, the heating / cooling mechanism 10 (laser beam irradiation mechanism 11, cooling mechanism 12), scanning mechanism 13, transport mechanism 14, substrate support mechanism (support) 15, substrate support mechanism (float table) 16, hook Each unit of the mechanisms 17 and 18 and the hook mechanism moving units 19 and 20 is controlled by a control unit 21 configured by a computer (CPU). The control unit 21 is connected to an input unit 22 including a keyboard and a mouse, and a display unit 23 including a display screen for performing various displays. Necessary messages are displayed on the screen and necessary instructions and settings are made. It can be input. Then, the machining operation is executed based on the sequence program stored in advance.
 次に、レーザ加工装置LM1による分断動作について説明する。図3は分断加工中の各時点での基板Gのクラックの進行状態を示す図であり、図4はフック機構17、18の各時点の作動状態を示す図(図1(b)に相当する図)である。 Next, the cutting operation by the laser processing apparatus LM1 will be described. FIG. 3 is a view showing a progress state of a crack of the substrate G at each time point during the cutting process, and FIG. 4 is a view showing an operating state at each time point of the hook mechanisms 17 and 18 (corresponding to FIG. 1B). Figure).
 図3(a)は、分断開始端からビームスポットBSおよび冷却スポットCSの走査を開始した直後の状態である。図4(a)に示すように、搬送機構14により搬送されてきた基板Gは、基板本体側G0が支持体15a~15cにより吸着され、固定されている。一方、縁材G1側はフロートテーブル16aから吹き付けられる気体により浮上させてある。フック機構17、18はともに基板Gから離れた待機位置に移動してある。 FIG. 3A shows a state immediately after the scanning of the beam spot BS and the cooling spot CS is started from the division start end. As shown in FIG. 4A, the substrate G that has been transported by the transport mechanism 14 has the substrate body side G0 adsorbed and fixed by the supports 15a to 15c. On the other hand, the edge material G1 side is levitated by the gas blown from the float table 16a. Both hook mechanisms 17 and 18 have moved to a standby position away from the substrate G.
 図3(b)は、ビームスポットBSおよび冷却スポットCSが分断開始端から少し進行した時点の状態である。分断開始端側の分断予定ライン上に、上面から下面まで貫通するクラックが発生し、開口Gcが形成される。開口Gcが形成された状態になると、図4(b)に示すように、フック機構17が作動して、フック機構17の凸部17aが開口Gcに入り込む。その際、開口した前記クラックの中央側基板の分断面と縁側部分の分断面との距離が十分になったときに、好ましくは、凸部17aが分断面Gfとは接しないように、凸部17aを入れるタイミングが調整される。具体的には走査開始からフック機構17が作動するまでの遅延時間を設定しておき、ビームスポットBSおよび冷却スポットCSが、分断予定ラインに沿ってある程度進行するまで待ってから、凸部17aが開口Gcに入るようにする。 FIG. 3 (b) shows a state when the beam spot BS and the cooling spot CS have slightly advanced from the dividing start end. A crack penetrating from the upper surface to the lower surface is generated on the planned dividing line on the dividing start end side, and an opening Gc is formed. When the opening Gc is formed, as shown in FIG. 4B, the hook mechanism 17 is operated, and the convex portion 17a of the hook mechanism 17 enters the opening Gc. At this time, when the distance between the divided cross section of the central substrate of the opened crack and the divided cross section of the edge side portion is sufficient, preferably the convex portion 17a is not in contact with the partial cross section Gf. The timing for inserting 17a is adjusted. Specifically, a delay time from the start of scanning to the operation of the hook mechanism 17 is set, the beam spot BS and the cooling spot CS wait until the beam spot BS and the cooling spot CS progress to some extent along the planned dividing line, and then the convex portion 17a is moved. Enter the opening Gc.
 その後、ビームスポットBSおよび冷却スポットCSが進行するにつれて、図4(c)に示すように縁材G1がアーム17c上を移動し、クラックの開口Gcが少し拡がる。なお、もう一方のフック機構18(紙面奥側)については、いまだ待機位置にあって作動していない。 Thereafter, as the beam spot BS and the cooling spot CS proceed, the edge member G1 moves on the arm 17c as shown in FIG. 4C, and the crack opening Gc is slightly expanded. The other hook mechanism 18 (the back side of the paper) is still in the standby position and is not operating.
 図3(c)は、ビームスポットBSおよび冷却スポットCSがさらに進行して、分断開始端から遠ざかった状態である。このとき縁材G1のアーム17c上での移動量が低下(あるいは停止)している。図4(d)に示すように、フック機構移動部19がフック機構17を横方向(X方向)に引き始める。縁材G1の移動量が低下しているため、凸部17aが縁材G1の分断面Gfに次第に接近するようになり、やがて図4(e)に示すように、フック機構17の凸部17aが縁材G1の分断面Gfに接するようになる。その後は、フック機構17のX方向への移動とともに縁材G1が横方向(X方向)に移動するようになり、分断予定ラインLに沿って左右に裂こうとする力(分断力)が補助的に加わるようになる。
 すなわち、フック機構17が、前記基板Gの下面側に配置され、クラックの分断面と前記凸部17aとの距離を近づけていくとき、縁材G1側をフック機構17のアーム17c上で移動可能に支持する。ここで、凸部17aが縁材G1の分断面Gfに接する前で形成されたクラックの先端がフック機構17から基板Gの分断終了端に向かって十分な距離だけ進展していない場合は、縁材G1はアーム17c上で移動してX方向への移動が抑止される。凸部17aが縁材G1の分断面Gfに接する前でクラックの先端がフック機構17から基板Gの分断終了端に向かって十分な距離進展している場合は、縁材G1はアーム17cとの摩擦力でアーム17c上に留まりX方向へ移動する。なお、フック機構17はアーム17c上で縁材G1を移動可能に支持しているが、基板Gを浮上させる空気圧と縁材G1の重さとの関係によっては、縁材G1はアーム17cに当接することなく浮上する場合もある。
 このように、縁材G1はアーム17と適度な遊びを有して、すなわち縁材G1とアーム17との摩擦力を介して柔らかく接続されているので(タイトに接続されているのではないので)クラックの先頭位置あるいは形成された開口の幅等のクラック進展状態に応じて縁材をX方向へ押圧する力が自動的に調整される。
なお、この時点でも、もう一方のフック機構18については作動していない。
FIG. 3C shows a state in which the beam spot BS and the cooling spot CS have further advanced and have moved away from the division start end. At this time, the amount of movement of the edge member G1 on the arm 17c is reduced (or stopped). As shown in FIG. 4D, the hook mechanism moving unit 19 starts to pull the hook mechanism 17 in the lateral direction (X direction). Since the movement amount of the edge member G1 is reduced, the protrusion 17a gradually approaches the dividing surface Gf of the edge member G1, and eventually the protrusion 17a of the hook mechanism 17 as shown in FIG. 4 (e). Comes into contact with the dividing surface Gf of the edge member G1. After that, as the hook mechanism 17 moves in the X direction, the edge member G1 moves in the lateral direction (X direction), and the force to split right and left along the planned division line L (partitioning force) is assisted. Will be added.
That is, when the hook mechanism 17 is disposed on the lower surface side of the substrate G and the distance between the crack cross section and the convex portion 17a is reduced, the edge member G1 side can be moved on the arm 17c of the hook mechanism 17. To support. Here, when the tip of the crack formed before the convex portion 17a contacts the dividing surface Gf of the edge member G1, the edge does not advance from the hook mechanism 17 toward the cutting end of the substrate G by a sufficient distance. The material G1 moves on the arm 17c and is prevented from moving in the X direction. If the tip of the crack has advanced a sufficient distance from the hook mechanism 17 toward the cutting end of the substrate G before the projection 17a contacts the dividing surface Gf of the edge member G1, the edge member G1 is connected to the arm 17c. It stays on the arm 17c by the frictional force and moves in the X direction. Although the hook mechanism 17 supports the edge member G1 so as to be movable on the arm 17c, the edge member G1 contacts the arm 17c depending on the relationship between the air pressure that causes the substrate G to float and the weight of the edge member G1. In some cases, it will surface without any problems.
As described above, the edge member G1 has an appropriate play with the arm 17, that is, it is softly connected through the frictional force between the edge member G1 and the arm 17 (because it is not connected tightly). ) The force that presses the edge material in the X direction is automatically adjusted according to the crack progress state such as the leading position of the crack or the width of the formed opening.
At this time, the other hook mechanism 18 is not operated.
 図3(d)は、ビームスポットBSおよび冷却スポットCSがさらに進行し、ビームスポットBSが基板Gの分断予定ラインLの終端に近づいた状態である。このとき、分断終了端側に配設されたフック機構18が新たに作動し、図4(b)に示したフック機構17と同様の作動状態、すなわち、係止部18bの凸部18aが開口Gcに入り込んだ状態になる。その際、凸部18aが分断面Gfとは接しないように、凸部18aが作動するタイミングが調整される(走査開始からフック機構18が作動するまでの遅延時間を設定しておく)。その後、図4(e)に示したフック機構17と同様の作動状態で、縁材G1が横方向(X方向)に移動するようになり、分断予定ラインLに沿って左右に裂こうとする力(分断力)が補助的に加わるようになる。
 このとき、分断力は縁材G1の重量によって熱応力によるクラックの進展が妨げられないように横方向(X方向)に補助的な力(分断力)を加えるだけでよい。
FIG. 3D shows a state in which the beam spot BS and the cooling spot CS have further progressed, and the beam spot BS has approached the end of the division line L of the substrate G. At this time, the hook mechanism 18 disposed on the side of the dividing end is newly activated, and the same operation state as that of the hook mechanism 17 shown in FIG. 4B, that is, the convex portion 18a of the locking portion 18b is opened. Gc enters the state. At this time, the timing at which the convex portion 18a is actuated is adjusted so that the convex portion 18a does not contact the dividing surface Gf (a delay time from the start of scanning until the hook mechanism 18 is actuated is set). After that, in the same operating state as the hook mechanism 17 shown in FIG. 4E, the edge member G1 moves in the lateral direction (X direction), and tries to split left and right along the planned dividing line L. Force (breaking force) is added as an auxiliary.
At this time, it is only necessary to apply an auxiliary force (breaking force) in the lateral direction (X direction) so that the cracking force due to thermal stress is not hindered by the weight of the edge material G1.
 図3(e)は、冷却スポットCSが基板Gの分断終了端から離れた時点の状態である。フック機構18は、基板Gを横方向(X方向)に引くことにより、クラックの進行を補助する。これにより、基板終端までクラックが進行し、完全に分断される。分断された後は、傾斜機構16bが作動され、フロートテーブル16aが傾くことにより、縁材G1がテーブル面から落下するようになる。
 この実施形態では、縁材G1を基板本体側G0から分離されて廃棄される端材として例示したが、縁材G1はマザー基板である基板Gから個々に分離される単位基板あるいは単位基板の集合体であって単位基板に分離される短冊基板であっても、同様に本発明が適用される。
FIG. 3E shows a state at the time when the cooling spot CS is separated from the separation end of the substrate G. The hook mechanism 18 assists the progress of cracks by pulling the substrate G in the lateral direction (X direction). As a result, the crack progresses to the end of the substrate and is completely divided. After the division, the tilting mechanism 16b is operated, and the float table 16a is tilted, so that the edge member G1 falls from the table surface.
In this embodiment, the edge material G1 is illustrated as an end material that is separated from the substrate body side G0 and discarded. However, the edge material G1 is a unit substrate or a set of unit substrates that are individually separated from the substrate G that is a mother substrate. The present invention is similarly applied to a strip substrate that is a body and is separated into unit substrates.
 (実施形態2)
 図5は本発明の第二実施形態であるレーザ加工装置LM2の全体構成図であり、図5(a)は斜視図、図5(b)は正面図、図5(c)は平面図である。
 この実施形態は、図1で説明したフック機構17、18に代えて、基板Gの上面側にフック機構23、24を有している。また、レーザビーム照射機構11、冷却機構12は、基板Gの上方側に設けられた走査機構(不図示)により分断予定ラインLに沿って走査するようにしてある。それ以外は図1と同じ構成を備えているので、同一符号を付すことにより、同じ部分についての説明を省略する。
(Embodiment 2)
FIG. 5 is an overall configuration diagram of a laser processing apparatus LM2 according to the second embodiment of the present invention, FIG. 5 (a) is a perspective view, FIG. 5 (b) is a front view, and FIG. 5 (c) is a plan view. is there.
In this embodiment, hook mechanisms 23 and 24 are provided on the upper surface side of the substrate G in place of the hook mechanisms 17 and 18 described in FIG. Further, the laser beam irradiation mechanism 11 and the cooling mechanism 12 are configured to scan along the planned division line L by a scanning mechanism (not shown) provided on the upper side of the substrate G. Other than that, since it has the same configuration as FIG. 1, the same reference numerals are given, and the description of the same parts is omitted.
 フック機構23、24は、凸部23a、24aを有する係止部23b、24bと、モータ駆動により旋回可能なアーム23c、24cとからなり、係止部23b、24bが基板Gから離れた待機位置と、基板の分断予定ラインLに接する位置との間で、アーム17を回動させることができるようにしてある。
 フック機構移動部19、20は、係止部23b、24bが分断予定ラインLに接する位置にあるときに、モータ駆動により、縁材G1を基板本体G0(中央側)から横方向に引き離すように移動することができるようにしてある。
 また、制御系については実施形態1における図2と同様である。
The hook mechanisms 23, 24 include locking portions 23 b, 24 b having convex portions 23 a, 24 a and arms 23 c, 24 c that can be turned by motor drive, and the locking positions 23 b, 24 b are separated from the substrate G. And the arm 17 can be rotated between the position where it contacts the dividing line L of the substrate.
The hook mechanism moving portions 19 and 20 are driven by a motor so that the edge member G1 is pulled away from the substrate main body G0 (center side) in the lateral direction when the locking portions 23b and 24b are in a position in contact with the planned dividing line L. It can be moved.
The control system is the same as that in FIG. 2 in the first embodiment.
 次に、レーザ加工装置LM2による分断動作について説明する。図6は分断加工中の各時点での基板Gのクラックの進行状態を示す図であり、図7はフック機構23、24の各時点の作動状態を示す図(図5(b)に相当する図)である。なお、図6、図7は、それぞれ実施形態1での図3、図4に対応する。 Next, the cutting operation by the laser processing apparatus LM2 will be described. FIG. 6 is a diagram showing the progress of cracks in the substrate G at each time during the cutting process, and FIG. 7 is a diagram showing the operating states at each time of the hook mechanisms 23 and 24 (corresponding to FIG. 5B). Figure). 6 and 7 correspond to FIGS. 3 and 4 in the first embodiment, respectively.
 図6(a)は、分断開始端からビームスポットBSおよび冷却スポットCSの走査を開始した直後の状態である。図7(a)に示すように、搬送機構14により搬送されてきた基板Gは、基板本体側G0が支持体15a~15cにより吸着され、固定されている。一方、縁材G1側はフロートテーブル16aから吹き付けられる気体により浮上させてある。この実施形態2では、後述するように、縁材G1の上面側がフック機構17のアーム23c、24cの下面と当接した状態を維持できるように気体の吹き付け量が設定される。フック機構23、24はともに基板Gから離れた待機位置に移動してある。 FIG. 6A shows a state immediately after the scanning of the beam spot BS and the cooling spot CS is started from the division start end. As shown in FIG. 7A, the substrate G that has been transported by the transport mechanism 14 has the substrate body side G0 adsorbed and fixed by the supports 15a to 15c. On the other hand, the edge material G1 side is levitated by the gas blown from the float table 16a. In the second embodiment, as will be described later, the gas blowing amount is set so that the upper surface side of the edge member G1 can be kept in contact with the lower surfaces of the arms 23c and 24c of the hook mechanism 17. Both hook mechanisms 23 and 24 have been moved to a standby position away from the substrate G.
 図6(b)は、ビームスポットBSおよび冷却スポットCSが分断開始端から少し進行した時点の状態である。分断開始端側の分断予定ラインL上に、クラックが発生し、開口Gcが形成される。開口Gcが形成された状態になると、図7(b)に示すように、フック機構23が作動して、フック機構23の凸部23aが開口Gcに入り込む。その際、凸部23aが分断面Gfとは接しないように、凸部23aを入れるタイミングが調整される。具体的には走査開始からフック機構17が作動するまでの遅延時間を設定しておき、ビームスポットBSおよび冷却スポットCSが、分断予定ラインに沿ってある程度進行するまで待ってから、凸部23aが開口Gcに入るようにする。 FIG. 6B shows a state when the beam spot BS and the cooling spot CS have slightly advanced from the dividing start end. A crack is generated on the division planned line L on the division start end side, and an opening Gc is formed. When the opening Gc is formed, as shown in FIG. 7B, the hook mechanism 23 is operated, and the convex portion 23a of the hook mechanism 23 enters the opening Gc. In that case, the timing which inserts the convex part 23a is adjusted so that the convex part 23a may not contact the dividing surface Gf. Specifically, a delay time from the start of scanning until the hook mechanism 17 is activated is set, and the beam spot BS and the cooling spot CS wait until the beam spot BS and the cooling spot CS travel to some extent along the planned dividing line. Enter the opening Gc.
 その後、ビームスポットBSおよび冷却スポットCSが進行するにつれて、図7(c)に示すように縁材G1がアーム23cの下で浮上しつつ移動し、クラックの開口Gcが少し拡がる。なお、もう一方のフック機構24については、いまだ待機位置にあって作動していない。 Thereafter, as the beam spot BS and the cooling spot CS progress, the edge member G1 moves while floating under the arm 23c as shown in FIG. 7C, and the crack opening Gc is slightly expanded. The other hook mechanism 24 is still in the standby position and is not operating.
 図6(c)は、ビームスポットBSおよび冷却スポットCSがさらに進行して、分断開始端から遠ざかった状態である。このとき縁材G1の移動量が低下(あるいは停止)している。図7(d)に示すように、フック機構移動部19がフック機構23を横方向(X方向)に引き始める。縁材G1の移動量が低下しているため、凸部23aが縁材G1の分断面Gfに次第に接近するようになり、やがて図7(e)に示すように、フック機構23の凸部23aが縁材G1の分断面Gfに接するようになる。その後は、フック機構23のX方向への移動とともに縁材G1が横方向(X方向)に移動するようになり、分断予定ラインLに沿って左右に裂こうとする力(分断力)が補助的に加わるようになる。すなわち、フック機構23が、前記基板Gの上面側に配置され、適切な空気圧で下方から吹き付ける気体により浮上された基板Gがクラックの分断面Gfと前記凸部23aとの距離を近づけていくとき、縁材G1の上面側がフック機構17のアーム17cに移動可能に支持される。ここで、形成されたクラックの先端がフック機構17から基板Gの分断終了端に向かって十分な距離進展していない場合は、縁材G1の上面はアーム23c、24cの下面に当接してX方向への移動が抑止される。一方、クラックの先端がフック機構17から基板Gの分断終了端に向かって十分な距離進展している場合は、縁材G1の上面はアーム23c、24cの下面との摩擦力でアーム23c、24c上に留まりX方向へ移動する。
 このように、縁材G1はアーム23c、24cと適度な遊びを有して、すなわち縁材G1とアーム23c、24cとの摩擦力を介して柔らかく接続されているので(タイトに接続されているのではないので)クラックの先頭位置あるいは形成された開口の幅等のクラック進展状態に応じて縁材をX方向へ押圧する力が自動的に調整される。
なお、この時点でも、もう一方のフック機構24については作動していない。
FIG. 6C shows a state in which the beam spot BS and the cooling spot CS have further advanced and have moved away from the dividing start end. At this time, the moving amount of the edge material G1 is reduced (or stopped). As shown in FIG. 7D, the hook mechanism moving unit 19 starts to pull the hook mechanism 23 in the lateral direction (X direction). Since the amount of movement of the edge member G1 is reduced, the protrusion 23a gradually approaches the dividing surface Gf of the edge member G1, and eventually the protrusion 23a of the hook mechanism 23 as shown in FIG. Comes into contact with the dividing surface Gf of the edge member G1. After that, as the hook mechanism 23 moves in the X direction, the edge member G1 moves in the lateral direction (X direction), and the force to split right and left along the planned division line L (dividing force) is assisted. Will be added. That is, when the hook mechanism 23 is disposed on the upper surface side of the substrate G and the substrate G floated by a gas blown from below with an appropriate air pressure reduces the distance between the crack sectional surface Gf and the convex portion 23a. The upper surface side of the edge member G1 is movably supported by the arm 17c of the hook mechanism 17. Here, when the tip of the formed crack does not advance a sufficient distance from the hook mechanism 17 toward the end of the division of the substrate G, the upper surface of the edge member G1 comes into contact with the lower surfaces of the arms 23c and 24c. Movement in the direction is suppressed. On the other hand, when the tip of the crack has advanced a sufficient distance from the hook mechanism 17 toward the end of the division of the substrate G, the upper surface of the edge member G1 is caused by the frictional force between the lower surfaces of the arms 23c and 24c and the arms 23c and 24c. Stay on and move in the X direction.
As described above, the edge member G1 has moderate play with the arms 23c and 24c, that is, the edge member G1 is softly connected via the frictional force between the edge member G1 and the arms 23c and 24c (is connected tightly). The force for pressing the edge material in the X direction is automatically adjusted according to the crack progress state such as the crack start position or the width of the formed opening.
At this time, the other hook mechanism 24 is not operated.
 図6(d)は、ビームスポットBSおよび冷却スポットCSがさらに進行し、ビームスポットBSが基板Gの分断予定ラインLの終端に近づいた状態である。このとき、分断終了端側に配設されたフック機構24が新たに作動し、図7(b)に示したフック機構23と同様の作動状態、すなわち、係止部24bの凸部24aが開口Gcに入り込んだ状態になる。その際、凸部24aが分断面Gfとは接しないように、凸部24aが作動するタイミングが調整される(走査開始からフック機構24が作動するまでの遅延時間を設定しておく)。その後、図7(e)に示したフック機構23と同様の作動状態で、縁材G1が横方向(X方向)に移動するようになり、分断予定ラインLに沿って左右に裂こうとする力(分断力)が補助的に加わるようになる。すなわち、フック機構24からもクラックの進行を促進する強制的分断力が加わるようになる。 FIG. 6D shows a state in which the beam spot BS and the cooling spot CS have further progressed, and the beam spot BS has approached the end of the division line L of the substrate G. At this time, the hook mechanism 24 disposed on the dividing end end side is newly activated, and the same operation state as that of the hook mechanism 23 shown in FIG. 7B, that is, the convex portion 24a of the locking portion 24b is opened. Gc enters the state. At this time, the timing at which the convex portion 24a is actuated is adjusted so that the convex portion 24a does not contact the dividing surface Gf (a delay time from the start of scanning until the hook mechanism 24 is actuated is set). Thereafter, in the same operating state as the hook mechanism 23 shown in FIG. 7 (e), the edge member G1 moves in the lateral direction (X direction), and tries to split left and right along the planned dividing line L. Force (breaking force) is added as an auxiliary. That is, a forcible breaking force that promotes the progress of cracks is also applied from the hook mechanism 24.
 図6(e)は、冷却スポットCSが基板Gの分断終了端から離れた時点の状態である。フック機構24は、基板Gを横方向(X方向)に引くことにより、クラックの進行を補助する。これにより、基板Gの終端までクラックが進行し、完全に分断される。分断された後は、傾斜機構16bが作動され、フロートテーブル16aが傾くことにより、縁材G1がテーブル面から落下するようになる。 FIG. 6E shows a state at the time when the cooling spot CS is separated from the separation end of the substrate G. The hook mechanism 24 assists the progress of cracks by pulling the substrate G in the lateral direction (X direction). Thereby, a crack progresses to the termination | terminus of the board | substrate G, and it divides | segments completely. After the division, the tilting mechanism 16b is operated, and the float table 16a is tilted, so that the edge member G1 falls from the table surface.
 なお、実施形態2ではレーザビーム照射機構11、冷却機構12を上面側に設け、フック機構23、24も上面側に設けたが、一方を下面側に設け、他方を上面側に設けてもよい。 In the second embodiment, the laser beam irradiation mechanism 11 and the cooling mechanism 12 are provided on the upper surface side, and the hook mechanisms 23 and 24 are also provided on the upper surface side, but one may be provided on the lower surface side and the other may be provided on the upper surface side. .
(実施形態3)
 図8は本発明の第三実施形態であるレーザ加工装置LM3の正面図である。この実施形態では、貼り合せ基板HGの端子部を形成するために、貼り合せ基板の下側基板の端材(端部)だけを分断して上側基板の端子電極部を露出させる加工を行う。貼り合せ基板HGの下側基板の端材(端部)を分断するために、レーザ加工装置LM1と同様に、レーザ照射機構11によるビームスポットBSと冷却機構12による冷却スポットCSとを基板HGの下方から下側基板に向けて走査する。
 この場合も、図3、図4で説明した動作手順と同じ手順を実行することにより、基板Gを分断することができる。
(Embodiment 3)
FIG. 8 is a front view of a laser processing apparatus LM3 according to the third embodiment of the present invention. In this embodiment, in order to form the terminal portion of the bonded substrate board HG, only the end material (end portion) of the lower substrate of the bonded substrate board is divided to expose the terminal electrode portion of the upper substrate. In order to sever the end material (end) of the lower substrate of the bonded substrate stack HG, the beam spot BS by the laser irradiation mechanism 11 and the cooling spot CS by the cooling mechanism 12 are separated from each other on the substrate HG in the same manner as the laser processing apparatus LM1. Scan from below to the lower substrate.
Also in this case, the board | substrate G can be parted by performing the same procedure as the operation | movement procedure demonstrated in FIG. 3, FIG.
 また、貼り合せ基板HGに端子露出部を設けるのではなく、上下両側基板を同じ分断予定ラインLに沿って一挙に分断する場合もあるが、その場合には上方と下方とに、レーザ照射機構11および冷却機構12を設けることにより、同様の動作手順で基板を分断することができる。 Further, instead of providing a terminal exposed portion on the bonded substrate board HG, there are cases where the upper and lower substrates are divided at once along the same dividing line L. In such a case, the laser irradiation mechanism is arranged above and below. By providing 11 and the cooling mechanism 12, the substrate can be divided by the same operation procedure.
 (実施形態4)
 図9は本発明の第四実施形態であるレーザ加工装置のLM4の正面図である。この実施形態では、図8で示したレーザ加工装置LM3の構成において、フロートテーブル16aの端部に、冷却機構12から噴射される冷媒がフロートテーブル16aの上面に回り込むのを防ぐためのカーテンガスCGを噴射するカーテンガス用ノズル16cが設けられている。
(Embodiment 4)
FIG. 9 is a front view of the LM 4 of the laser processing apparatus according to the fourth embodiment of the present invention. In this embodiment, in the configuration of the laser processing apparatus LM3 shown in FIG. 8, the curtain gas CG for preventing the refrigerant injected from the cooling mechanism 12 from flowing around the upper surface of the float table 16a at the end of the float table 16a. Is provided with a curtain gas nozzle 16c.
 冷媒に冷却水が含まれている場合、フロートテーブル16aの上面と基板HGとの間に入ると、基板HGがフロートテーブル16aに密着してしまい、基板を分断できないようになる。したがって、フロートテーブル16aの先端側の端部にカーテンガスCGを噴射するようにして回り込みを防止することにより、冷却水を含む冷媒を用いることができる。 When cooling water is included in the coolant, the substrate HG comes into close contact with the float table 16a when entering between the upper surface of the float table 16a and the substrate HG, and the substrate cannot be divided. Therefore, the refrigerant including the cooling water can be used by preventing the wraparound by injecting the curtain gas CG to the end portion on the front end side of the float table 16a.
 なお、貼り合せ基板HGの場合には、カーテンガスCGを噴射することにより、形成されたクラックから貼り合せ基板HGの上側基板と下側基板との間に冷却水が入り込むことを防いで、ガラスどうしの密着を防止することもできる。 In the case of the bonded substrate HG, by spraying the curtain gas CG, it is possible to prevent the cooling water from entering between the upper substrate and the lower substrate of the bonded substrate HG from the formed cracks. It is also possible to prevent close contact between each other.
 (実施形態5)
 図10は本発明の第五実施形態であるレーザ加工装置のLM5の正面図である。この実施形態では、図9で示したレーザ加工装置LM4のカーテン用ノズル16cに代えて、水分を含む不要な冷媒を除去する吸引口16dが設けられている。噴射された冷媒を吸引して除去することにより、プッシュプル形式のエアカーテンが形成され、フロートテーブル16aへの回り込みを防ぐことができる。
(Embodiment 5)
FIG. 10 is a front view of the LM 5 of the laser processing apparatus according to the fifth embodiment of the present invention. In this embodiment, instead of the curtain nozzle 16c of the laser processing apparatus LM4 shown in FIG. 9, a suction port 16d for removing unnecessary refrigerant including moisture is provided. By sucking and removing the injected refrigerant, a push-pull type air curtain is formed, and wraparound to the float table 16a can be prevented.
 (実施形態6)
 図11は本発明の第六実施形態であるレーザ加工装置LM6の全体構成を示す斜視図である。図12はレーザ加工装置LM6の制御系を示す図である。この実施形態では、図1で説明したレーザ加工装置において、基板に形成されるクラックの開口Gcの状態を観察するカメラ25を搭載するようにしてある。そして制御系21には、カメラ25で撮影した画像に基づいて開口の大きさを検出する開口検出部26を設けている。開口検出部26は、分断開始端に置けるクラックの幅(開口幅)が予め設定した閾値以上であるかをカメラ25の画像から検出し、開口の幅が閾値以上である場合に、フック機構17を作動させるのに十分な開口が開かれたと判定するようにしている。この判定動作を組み込むことにより、何らかの理由で十分な開口が形成されていない場合に、フック機構17が作動することを防ぐようにしている。
 また、このカメラ25による観察結果に基いてフック機構17の動作タイミング、すなわちクラックの開口内に凸部17aを入れる工程、フック機構17の水平移動を開始してクラックの分断面と凸部17aとの距離を近づけていく工程、凸部17aを介してクラックの進展を補助する分断力を加える工程の開始および終了のタイミングを判断し、フック機構17の動作を開始あるいは停止してもよい。
(Embodiment 6)
FIG. 11 is a perspective view showing an overall configuration of a laser processing apparatus LM6 according to the sixth embodiment of the present invention. FIG. 12 is a diagram showing a control system of the laser processing apparatus LM6. In this embodiment, a camera 25 for observing the state of the opening Gc of the crack formed in the substrate is mounted in the laser processing apparatus described with reference to FIG. The control system 21 is provided with an aperture detection unit 26 that detects the size of the aperture based on the image captured by the camera 25. The opening detection unit 26 detects from the image of the camera 25 whether the width of the crack (opening width) that can be placed at the dividing start end is equal to or larger than a preset threshold value, and when the opening width is equal to or larger than the threshold value, the hook mechanism 17. It is determined that a sufficient opening has been opened to operate. By incorporating this determination operation, the hook mechanism 17 is prevented from operating when a sufficient opening is not formed for some reason.
Further, the operation timing of the hook mechanism 17 based on the observation result by the camera 25, that is, the step of inserting the convex portion 17a into the opening of the crack, the horizontal movement of the hook mechanism 17 is started, the crack cross section and the convex portion 17a The operation of the hook mechanism 17 may be started or stopped by judging the timing of starting and ending the step of reducing the distance of the step, and the step of applying a dividing force for assisting the progress of cracks via the convex portion 17a.
 (実施形態7)
 図13は上述した各実施形態におけるフック機構17(18、23、24)の係止部17b(18b、23b、24b)の変形実施形態である。以下フック機構17について説明する。フック機構17は、アーム17cと係止部17bとを支軸17dを介して連結し、XY面内で回転方向の自由度を持たせるようにしてある。
 縁材側基板G1は、クラックが進行するにつれて、X方向に移動するだけではなく、Y方向の移動あるいはXY面内での回転移動(θ回転という)が生じるようになる。フック機構17の凸部17aの基板と接触面が固定されていた場合には、Y方向の移動、あるいはθ回転を吸収することができないため、接触部分の位置ずれが発生し、縁側部分を引くための補助的な分断力が伝達されないことが起こりうるが、支軸17dによる回転方向の自由度を与えることにより、Y方向移動、θ回転を吸収することができ、縁材側基板G1への分断力の確実な伝達が可能になる。
(Embodiment 7)
FIG. 13 is a modified embodiment of the locking portion 17b (18b, 23b, 24b) of the hook mechanism 17 (18, 23, 24) in each of the above-described embodiments. Hereinafter, the hook mechanism 17 will be described. The hook mechanism 17 connects the arm 17c and the locking portion 17b via a support shaft 17d so as to have a degree of freedom in the rotational direction within the XY plane.
As the crack progresses, the edge side substrate G1 not only moves in the X direction, but also moves in the Y direction or rotates in the XY plane (referred to as θ rotation). If the substrate of the convex portion 17a of the hook mechanism 17 and the contact surface are fixed, the movement in the Y direction or the θ rotation cannot be absorbed, so that the displacement of the contact portion occurs and the edge portion is pulled. However, by providing a degree of freedom in the direction of rotation by the support shaft 17d, it is possible to absorb movement in the Y direction and θ rotation, and to the edge material side substrate G1. It is possible to reliably transmit the breaking force.
 図13では、フック機構17(18、23、24)の係止部の凸部がクラック分断面に対して面接触する例を示したが、フック機構17(18、23、24)の係止部17の凸部17aがクラック分断面に対して線接触あるいは点接触するようにしてもよい。例えば、図14に示すように、係止部17bのベース17f上にピン17eを設けるようにする。ピン17eは、ベース17fに設けた溝17gに沿ってスライドできるように支持され、その本数や互いの間隔を変更することができるようにしてある。なおピン17eの材料には、例えば、摩擦抵抗の少ないテフロン(登録商標)等の樹脂を用いるのが好ましい。 Although FIG. 13 shows an example in which the convex portion of the locking portion of the hook mechanism 17 (18, 23, 24) is in surface contact with the crack cross section, the hook mechanism 17 (18, 23, 24) is locked. The convex portion 17a of the portion 17 may be in line contact or point contact with the crack cross section. For example, as shown in FIG. 14, a pin 17e is provided on the base 17f of the locking portion 17b. The pins 17e are supported so as to be slidable along the grooves 17g provided in the base 17f, and the number of pins 17e and the interval between them can be changed. For the material of the pin 17e, for example, a resin such as Teflon (registered trademark) having a low frictional resistance is preferably used.
 上記の実施形態7では、フック機構17のアーム17cと係止部17bがX方向に移動可能で、XY面内で回転方向の自由度を持つように形成されたが、フック機構は、アーム17cと係止部17bをXYZの3軸方向への移動やθ回転(旋回)を行うように構成してもよい。
 Y方向の移動は、フック機構17のアーム17cと係止部17bをY方向に移動させるように構成することで可能となり、Y方向の移動を加えることによって、XY面内で任意の方向へより精確に補助的な分断力が縁側部分に伝達される。
 Z方向の移動は、フック機構17のアーム17cと係止部17bを、XY面と直交するZ方向に移動させるように構成することで可能となり、Z方向の移動を加えることによって、クラックの進展に伴う縁側部分のXY面からの垂れ下がりを防止し、クラックの進展をさらに精確に行える。
 θ回転は、フック機構17のアーム17cと係止部17bを、支点O(図13)を中心に旋回させるように構成することで可能となり、θ回転を加えることによって、XY面内で任意の方向へより精確に補助的な分断力が縁側部分に伝達される。
In the seventh embodiment, the arm 17c and the locking portion 17b of the hook mechanism 17 are movable in the X direction and have a degree of freedom in the rotational direction within the XY plane. The locking portion 17b may be configured to perform movement in the XYZ triaxial directions and θ rotation (turning).
The movement in the Y direction can be achieved by moving the arm 17c and the locking portion 17b of the hook mechanism 17 in the Y direction. By adding the movement in the Y direction, the movement in an arbitrary direction can be performed in the XY plane. A precise auxiliary breaking force is transmitted to the marginal part.
The movement in the Z direction can be achieved by moving the arm 17c and the locking portion 17b of the hook mechanism 17 in the Z direction perpendicular to the XY plane. It is possible to prevent the edge side portion from drooping from the XY plane and to develop the crack more accurately.
The θ rotation is possible by configuring the arm 17c and the locking portion 17b of the hook mechanism 17 to pivot about the fulcrum O (FIG. 13). By adding the θ rotation, any rotation in the XY plane is possible. The auxiliary breaking force is transmitted to the marginal part more precisely in the direction.
 前記実施形態では、2つのフック機構17、18(23、24)を配設したが、フック機構は1つ以上あればよく、例えば基板Gの分断開始端側だけにあってもよく、さらに、基板Gの分断長さに応じて2つのフック機構17、18(23、24)の間に追加して配設してもよい。
 前記実施形態では、補助分断力制御部は、前記クラックの開口内に前記凸部17aを入れる工程、フック機構17の水平移動を開始してクラックの分断面と凸部17aとの距離を近づけていく工程および凸部17aを介してクラックの進展を補助する分断力を加える工程を予め設定されたタイミングで動作させたが、上記一連の工程を連続して、すなわち、凸部17aを開口Gcに入れ込んだ後は、ただちに水平移動を開始し、やがて縁材G1の分断面に当接した後も凸部17aをさらにそのまま水平移動させてもよい。
 前記実施形態では、基板Gの一端側の縁部を浮上させてフルカット加工を行ったが、基板Gの両端の縁部あるいはそれ以上の基板他辺における端部の縁部に対してほぼ同時に、同様のフルカット加工を行うことができる。
 前記実施形態では、第一のフック機構17および第二のフック機構18を分断予定ラインLに沿って固定して設置したが、分断予定ラインLに沿った任意の位置に移動可能に設置してもよい。
 前記実施形態では、基板の縁材を除去したり端子電極を露出させる加工例を説明したが、加工の目的はこれに限定されることはなく、単板あるいは貼り合せ基板のマザー基板を短冊状に、あるいは短冊状からさらに個々の製品基板に分断するために本件装置が適用される。
In the above-described embodiment, the two hook mechanisms 17 and 18 (23, 24) are disposed. However, one or more hook mechanisms may be provided, for example, only on the dividing start end side of the substrate G. Depending on the dividing length of the substrate G, the two hook mechanisms 17, 18 (23, 24) may be additionally provided.
In the embodiment, the auxiliary cutting force control unit starts the horizontal movement of the hook mechanism 17 to place the convex portion 17a in the opening of the crack, and reduces the distance between the crack sectional surface and the convex portion 17a. The step of applying and the step of applying a breaking force for assisting the progress of cracks via the convex portion 17a were operated at a preset timing. However, the above-described series of steps were continuously performed, that is, the convex portion 17a was formed into the opening Gc. Immediately after the insertion, the horizontal movement may be started, and the convex portion 17a may be further moved horizontally as it is after coming into contact with the sectional surface of the edge member G1.
In the above-described embodiment, the edge on one end side of the substrate G is levitated to perform full-cut processing. However, the edge portions on both ends of the substrate G or the other edge on the other side of the substrate G are almost simultaneously. The same full cut processing can be performed.
In the said embodiment, although the 1st hook mechanism 17 and the 2nd hook mechanism 18 were fixed and installed along the division | segmentation planned line L, it installed so that it could move to the arbitrary positions along the division | segmentation planned line L. Also good.
In the above embodiment, a processing example in which the edge material of the substrate is removed or the terminal electrode is exposed has been described. However, the purpose of the processing is not limited to this, and the mother substrate of a single plate or a bonded substrate is formed in a strip shape. In addition, the present apparatus is applied to divide the strip into individual product substrates.
 本発明は、レーザ照射によるフルカット加工によるレーザ加工装置に利用することができる。 The present invention can be used for a laser processing apparatus using full cut processing by laser irradiation.

Claims (13)

  1.  脆性材料基板の分断予定ラインより縁側の部分を浮上させるとともに分断予定ラインよりも中央側で基板を固定する基板支持機構と、
     一端に凸部を有するアームと、前記アームの他端にあって、前記アームの凸部が前記基板から離れた待機位置と熱応力により前記基板に形成されたクラックの開口内に前記凸部が入り込む係止位置との間で前記アームを回動させるフック機構と、
     前記凸部が前記クラックの開口内に入り込んだ状態のときに前記縁側部分を中央側から引き離す方向にフック機構を水平移動させるフック機構移動部と、
     フック機構およびフック機構移動部を制御して前記クラックの進行を補助するための分断力を加える補助分断力制御部とを備え、
     前記補助分断力制御部は、開口した前記クラックの中央側基板の分断面と前記縁側部分の分断面との距離が十分になったときに、前記クラックの開口内に前記凸部を入れ、その後、フック機構の水平移動を開始して前記縁側部分の分断面と前記凸部との距離を近づけていき、前記凸部が前記縁側部分の分断面に当接した後、前記縁側部分の分断面に対して前記凸部を介してクラックの進展を補助する分断力を加えるように作動させる制御を行うことを特徴とする脆性材料基板のレーザ加工装置。
    A substrate support mechanism for levitating a portion of the brittle material substrate on the edge side from the division line and fixing the substrate on the center side from the division line;
    An arm having a convex portion at one end, and the convex portion at the other end of the arm, the convex portion of the arm being in a standby position where the convex portion of the arm is separated from the substrate and an opening of a crack formed in the substrate by thermal stress. A hook mechanism for rotating the arm between the locking position to enter;
    A hook mechanism moving portion that horizontally moves the hook mechanism in a direction to separate the edge portion from the center side when the convex portion enters the opening of the crack;
    An auxiliary cutting force control unit for controlling a hook mechanism and a hook mechanism moving unit to add a dividing force for assisting the progress of the crack,
    The auxiliary dividing force control unit inserts the convex portion into the opening of the crack when the distance between the dividing surface of the central substrate of the opened crack and the dividing surface of the edge portion becomes sufficient, and then The horizontal movement of the hook mechanism is started to reduce the distance between the dividing surface of the edge portion and the convex portion, and after the protruding portion abuts the dividing surface of the edge portion, the dividing surface of the edge portion A laser processing apparatus for a brittle material substrate, wherein control is performed so as to apply a dividing force that assists the development of cracks through the convex portion.
  2.  前記フック機構は、少なくとも分断開始側の基板端近傍の位置に設けられる請求項1に記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the hook mechanism is provided at least at a position near a substrate end on a division start side.
  3.  前記フック機構は、少なくとも分断開始側の基板端近傍の位置と、分断終了側の基板端より内側に所定距離離れた位置との二箇所に設けられる請求項1に記載のレーザ加工装置。 2. The laser processing apparatus according to claim 1, wherein the hook mechanism is provided at two locations, at least a position in the vicinity of a substrate end on a dividing start side and a position spaced a predetermined distance inward from a substrate end on a dividing end side.
  4.  前記補助分断力制御部は、予め設定されたタイミングで、前記クラックの開口内に前記凸部を入れる工程、フック機構の水平移動を開始してクラックの分断面と前記凸部との距離を近づけていく工程および前記凸部を介してクラックの進展を補助する分断力を加える工程を開始する請求項1に記載のレーザ加工装置。 The auxiliary dividing force control unit starts the horizontal movement of the hook mechanism by bringing the protrusion into the opening of the crack at a preset timing, and closes the distance between the crack section and the protrusion. The laser processing apparatus according to claim 1, wherein a starting step and a step of applying a breaking force for assisting the progress of a crack through the convex portion are started.
  5.  前記フック機構を、前記基板の下面側に配置し、クラックの分断面と前記凸部との距離を近づけていくとき、縁側部分をフック機構のアーム上で移動可能に支持してなる請求項1に記載のレーザ加工装置。 2. The hook mechanism is disposed on the lower surface side of the substrate, and when the distance between the crack section and the convex portion is made closer, the edge side portion is supported so as to be movable on the arm of the hook mechanism. The laser processing apparatus as described in.
  6.  前記フック機構は、前記係止部のXYZの3軸方向への移動および/または旋回を行う請求項1に記載のレーザ加工装置。 2. The laser processing apparatus according to claim 1, wherein the hook mechanism performs movement and / or turning of the locking portion in three XYZ directions.
  7.  前記フック機構は、前記係止部の凸部がクラック分断面に対して接触する接触部を有し、前記クラックの分断面に対して前記凸部を介してクラックの進行を補助する分断力を加えるとき、前記の接触部が前記クラックの分断面に対して密に接触しかつ移動するようにフック機構移動部による移動方向以外の自由度を与える調整機構を備えた請求項1に記載のレーザ加工装置。 The hook mechanism has a contact portion where the convex portion of the locking portion contacts the crack cross section, and has a dividing force that assists the progress of the crack through the convex portion with respect to the crack cross section. 2. The laser according to claim 1, further comprising an adjusting mechanism that gives a degree of freedom other than a moving direction by the hook mechanism moving unit so that the contact unit is in close contact with and moves with respect to the cross section of the crack. Processing equipment.
  8.  前記調整機構は、前記フック機構の前記アームに対し前記係止部を回動させる支軸により構成される請求項1に記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the adjustment mechanism is configured by a support shaft that rotates the locking portion with respect to the arm of the hook mechanism.
  9.  前記クラックの開口を検出する開口検出部をさらに設け、
     補助分断力制御部は、検出された前記クラックの開口に応じて前記フック機構の前記凸部を開口内に入れ込む請求項1に記載のレーザ加工装置。
    An opening detection unit for detecting the opening of the crack is further provided,
    The laser processing apparatus according to claim 1, wherein the auxiliary dividing force control unit inserts the convex portion of the hook mechanism into the opening in accordance with the detected opening of the crack.
  10.  前記基板支持機構は、分断予定ラインより縁側部分を浮上させるときに、浮上部分への冷媒の回り込みを防ぐカーテンガスを噴射する噴射機構を備えた請求項1に記載のレーザ加工装置。 2. The laser processing apparatus according to claim 1, wherein the substrate support mechanism includes an injection mechanism that injects a curtain gas that prevents a coolant from entering the floating portion when the edge portion floats from the line to be divided.
  11.  前記基板支持機構は、分断予定ラインより縁側部分を浮上させるときに、浮上部分への冷媒の回り込みを防ぐ吸引機構を備えた請求項1に記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the substrate support mechanism includes a suction mechanism that prevents a coolant from entering the floating portion when the edge side portion is lifted from the planned dividing line.
  12.  脆性材料基板を局部加熱し、その熱応力によって前記基板にクラックを形成して分断する脆性材料基板の加工方法において、前記基板の分断予定ラインより縁側の部分を浮上させるとともに分断予定ラインよりも中央側で基板を基板支持機構に固定する工程と、レーザ光を前記分断予定ラインに沿って移動させながら照射する工程と、一端に凸部を有するアームを移動させて前記基板に形成されたクラックの開口内に前記凸部を入れる工程と、アームの一部を前記縁側部分の主面に当接させ、この状態で前記縁側部分の分断面と前記凸部との距離を近づけるように、アームを水平移動させる工程とを具備してなる脆性材料基板のレーザ加工方法。 In a processing method of a brittle material substrate in which a brittle material substrate is locally heated and a crack is formed in the substrate by the thermal stress, and the portion on the edge side of the substrate is scheduled to be lifted and is centered from the planned division line. A step of fixing the substrate to the substrate support mechanism on the side, a step of irradiating while moving the laser beam along the planned dividing line, and a crack formed on the substrate by moving an arm having a convex portion at one end. The step of placing the convex portion in the opening, and a part of the arm is brought into contact with the main surface of the edge side portion, and in this state, the arm is moved so that the distance between the sectional surface of the edge side portion and the convex portion is reduced. A method of laser processing a brittle material substrate comprising a step of horizontally moving the substrate.
  13.  さらに、前記アームの凸部が前記縁側部分の分断面に当接した後、前記縁側部分の分断面に対して前記凸部を介してクラックの進展を補助する分断力を加えるよう作動させる工程を具備してなる請求項12に記載の脆性材料基板のレーザ加工方法。 Furthermore, after the convex part of the arm abuts against the sectional surface of the edge side part, the step of operating to apply a dividing force to assist the progress of cracks via the convex part to the sectional surface of the edge side part. The method for laser processing a brittle material substrate according to claim 12, comprising:
PCT/JP2008/073250 2007-12-28 2008-12-19 Laser working apparatus, and laser working method WO2009084489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-340049 2007-12-28
JP2007340049 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084489A1 true WO2009084489A1 (en) 2009-07-09

Family

ID=40824204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073250 WO2009084489A1 (en) 2007-12-28 2008-12-19 Laser working apparatus, and laser working method

Country Status (2)

Country Link
TW (1) TW200936291A (en)
WO (1) WO2009084489A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVI20090260A1 (en) * 2009-10-28 2011-04-28 G F P M Srl EXTRACTION DEVICE FOR THE CUTS OF GLASS SLABS IN A CUTTING MACHINE FOR THOSE SLABS
JP2011116611A (en) * 2009-12-07 2011-06-16 Nippon Electric Glass Co Ltd Method for cutting plate glass and cutting device therefor
JP2013103852A (en) * 2011-11-11 2013-05-30 Nippon Electric Glass Co Ltd Device and method for cutting brittle plate-like object
WO2014057879A1 (en) * 2012-10-12 2014-04-17 株式会社Ihi Cutting device
CN105328348A (en) * 2015-11-14 2016-02-17 苏州光韵达光电科技有限公司 Rotary type laser cutting device
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
CN109834392A (en) * 2017-11-24 2019-06-04 三星显示有限公司 The processing method of the processing unit (plant) and display device of display device
CN110919867A (en) * 2019-12-18 2020-03-27 段瑞兰 Glass lace distance keeper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446631B2 (en) * 2009-09-10 2014-03-19 アイシン精機株式会社 Laser processing method and laser processing apparatus
JP5691004B2 (en) * 2010-09-16 2015-04-01 パナソニックIpマネジメント株式会社 Laser processing apparatus and laser processing method
TWI694512B (en) * 2018-05-08 2020-05-21 藍德工業股份有限公司 Hot cutting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280321A (en) * 2001-03-21 2002-09-27 Ishikawajima Harima Heavy Ind Co Ltd Laser annealing device
JP2004167565A (en) * 2002-11-20 2004-06-17 Sumitomo Heavy Ind Ltd Strain processing method using laser, and work holder
WO2007020835A1 (en) * 2005-08-12 2007-02-22 Shibaura Mechatronics Corporation System for brittle material cutting process and method employed therein
JP3887394B2 (en) * 2004-10-08 2007-02-28 芝浦メカトロニクス株式会社 Brittle material cleaving system and method
JP2007090860A (en) * 2005-09-01 2007-04-12 Shibaura Mechatronics Corp System and method for cutting and working fragile material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280321A (en) * 2001-03-21 2002-09-27 Ishikawajima Harima Heavy Ind Co Ltd Laser annealing device
JP2004167565A (en) * 2002-11-20 2004-06-17 Sumitomo Heavy Ind Ltd Strain processing method using laser, and work holder
JP3887394B2 (en) * 2004-10-08 2007-02-28 芝浦メカトロニクス株式会社 Brittle material cleaving system and method
WO2007020835A1 (en) * 2005-08-12 2007-02-22 Shibaura Mechatronics Corporation System for brittle material cutting process and method employed therein
JP2007090860A (en) * 2005-09-01 2007-04-12 Shibaura Mechatronics Corp System and method for cutting and working fragile material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVI20090260A1 (en) * 2009-10-28 2011-04-28 G F P M Srl EXTRACTION DEVICE FOR THE CUTS OF GLASS SLABS IN A CUTTING MACHINE FOR THOSE SLABS
JP2011116611A (en) * 2009-12-07 2011-06-16 Nippon Electric Glass Co Ltd Method for cutting plate glass and cutting device therefor
KR20180057730A (en) * 2011-05-13 2018-05-30 니폰 덴키 가라스 가부시키가이샤 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
US10279568B2 (en) 2011-05-13 2019-05-07 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
KR101941483B1 (en) * 2011-05-13 2019-01-23 니폰 덴키 가라스 가부시키가이샤 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JP2013103852A (en) * 2011-11-11 2013-05-30 Nippon Electric Glass Co Ltd Device and method for cutting brittle plate-like object
US10214441B2 (en) 2012-10-12 2019-02-26 Ihi Corporation Cutting device
WO2014057879A1 (en) * 2012-10-12 2014-04-17 株式会社Ihi Cutting device
CN105328348B (en) * 2015-11-14 2017-09-01 苏州光韵达光电科技有限公司 A kind of rotary laser cutter device
CN105328348A (en) * 2015-11-14 2016-02-17 苏州光韵达光电科技有限公司 Rotary type laser cutting device
CN109834392A (en) * 2017-11-24 2019-06-04 三星显示有限公司 The processing method of the processing unit (plant) and display device of display device
CN110919867A (en) * 2019-12-18 2020-03-27 段瑞兰 Glass lace distance keeper

Also Published As

Publication number Publication date
TWI365114B (en) 2012-06-01
TW200936291A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
WO2009084489A1 (en) Laser working apparatus, and laser working method
JP5108886B2 (en) Method for processing brittle material substrate and crack forming apparatus used therefor
TWI629249B (en) Method for cutting tempered glass sheets
KR101369211B1 (en) Laser cutting device
JP5437333B2 (en) Glass substrate scribing method and processing apparatus
JP5750202B1 (en) Method and apparatus for dividing plate material of brittle material
WO2013039229A1 (en) Glass plate cutting method and glass plate cutting device
JP5627201B2 (en) Cleaving method of brittle material substrate
JP2006199553A (en) Apparatus and method for severing substrate
WO2006070825A1 (en) Method for cutting brittle material substrate and substrate cutting system
JP2007090860A (en) System and method for cutting and working fragile material
WO2009128334A1 (en) Method of machining vulnerable material substrate
US10766804B2 (en) Glass film production method
KR20080076711A (en) Method and apparatus for separating bonded glass plates
WO2009128314A1 (en) Method for processing fragile material substrate
KR101200789B1 (en) Method for dividing brittle material substrate
JP2000281375A (en) Method for cracking glass substrate md cracking device therefor
JP2011230940A (en) Cutting method for brittle material substrate
JP5076662B2 (en) Method and apparatus for cleaving brittle materials
JP2003034545A (en) Laser cutting device and method used for the same, method for cutting electroptical panel
KR101950451B1 (en) Laser cutting apparatus and method for film attached to glass substrate
JP2017014032A (en) Scribe method and scribe device
JP2009067618A (en) Apparatus and method for breaking substrate made of brittle material
JP2013087001A (en) Scribing apparatus
JP2003025323A (en) Method and device for laser cutting, method for cutting electro-optical panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP