WO2009081741A1 - Process and apparatus for producing glass plate - Google Patents

Process and apparatus for producing glass plate Download PDF

Info

Publication number
WO2009081741A1
WO2009081741A1 PCT/JP2008/072451 JP2008072451W WO2009081741A1 WO 2009081741 A1 WO2009081741 A1 WO 2009081741A1 JP 2008072451 W JP2008072451 W JP 2008072451W WO 2009081741 A1 WO2009081741 A1 WO 2009081741A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
glass ribbon
cooling
ribbon
Prior art date
Application number
PCT/JP2008/072451
Other languages
French (fr)
Japanese (ja)
Inventor
Noritomo Nishiura
Koki Ueda
Hidetaka Oda
Tomonori Kano
Daisuke Nagata
Original Assignee
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008276565A external-priority patent/JP5428287B2/en
Application filed by Nippon Electric Glass Co., Ltd. filed Critical Nippon Electric Glass Co., Ltd.
Priority to KR1020107004099A priority Critical patent/KR101518984B1/en
Priority to US12/810,173 priority patent/US8322161B2/en
Priority to CN2008801102880A priority patent/CN101815680B/en
Publication of WO2009081741A1 publication Critical patent/WO2009081741A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets

Definitions

  • the present invention relates to a method for manufacturing a glass plate and a manufacturing facility therefor, in which molten glass is caused to flow down from a molded body and a glass ribbon is stretch-formed in the vertical direction.
  • a down draw method is known in which glass glass is drawn by flowing molten glass from a molded body and drawing a glass ribbon in a vertical direction. Yes.
  • the overflow downdraw method has a very small surface waviness and roughness and provides a glass plate with excellent surface quality. It is widely known as a method that can
  • molten glass continuously supplied to the top of a molded body having a wedge-shaped cross-sectional shape is caused to flow down from the top of the molded body along both side surfaces, and is fused at the lower end of the molded body.
  • a plate-like glass ribbon is formed, and both edges of the glass ribbon are stretched and formed into a glass ribbon by flowing down a conveying path extending in the vertical direction while being sandwiched by a plurality of pulling rollers.
  • the glass ribbon gradually solidifies and becomes a glass plate having a predetermined width and thickness.
  • the ambient temperature in the transport path is strictly controlled, and thereby the internal strain (thermal strain) of the glass plate is sufficiently reduced, and then cooled to near room temperature.
  • JP-A-10-53427 a plurality of chambers are formed by horizontally dividing the inside of a forming furnace or an annealing furnace, each room is provided with a room temperature adjusting function, and sufficient slow cooling is performed.
  • a method for producing a glass plate with low internal strain is disclosed.
  • Japanese Patent Laid-Open No. 2001-31435 discloses a technique for suppressing minute internal distortion and deformation by forming a temperature distribution of an annealing furnace also in the width direction of the glass ribbon.
  • Japanese Patent Laid-Open No. 5-124826 Japanese Patent Laid-Open No. 10-53426 JP 2001-31435 A
  • liquid crystal displays are required to have higher definition and higher image quality, and glass plates used therefor are required to have a maximum internal strain of 1.0 MPa or less.
  • the glass plate for liquid crystal displays has been rapidly increased in size, and for example, glass ribbons having a width dimension (effective width) of 2000 mm or more at a part finally becoming a glass product have been formed. Yes.
  • the internal strain of the glass plate also tends to increase, making it difficult to reduce the internal strain to 1.0 MPa or less.
  • a low temperature air flow One of the causes of the internal distortion of the glass plate is an air flow rising along the surface of the glass ribbon (hereinafter referred to as a low temperature air flow). That is, in the glass ribbon conveyance path, the low-temperature air flow always rises along the surface of the glass ribbon, and the ambient temperature in the annealing furnace is likely to fluctuate.
  • Japanese Patent Application Laid-Open No. 5-139766 discloses that a convection prevention plate is formed in the annealing furnace. However, since the low-temperature air flow rises in the vicinity of the surface of the glass ribbon, the convection prevention plate is sufficiently blocked. Can not do it.
  • the present invention has been made in view of the above circumstances, and provides a method for obtaining a high-quality glass plate with high productivity by avoiding the problem of internal distortion that increases as the glass plate becomes larger. Technical issue.
  • the present inventors have reduced the amount of low-temperature air flow flowing from the cooling chamber into the annealing furnace by providing an exhaust passage in the cooling chamber. It has been found that an increase in the low-temperature air flow in the transport path can be suppressed, and the present invention has been proposed.
  • the invention according to claim 1 is to supply molten glass to a molded body provided in a molding furnace and to flow the molten glass from the molded body to a conveying path extending in a vertical direction.
  • a glass plate manufacturing method including a cutting step of cutting into a size, wherein the cooling chamber is provided with an exhaust path and the air in the cooling chamber is discharged to the outside.
  • the invention according to claim 2 which has been made to solve the above-mentioned problems, is characterized in that the air in the cooling chamber is exhausted through the exhaust path to a chamber surrounding the forming furnace and / or the annealing furnace.
  • the manufacturing method of the glass plate is characterized in that the air in the cooling chamber is exhausted through the exhaust path to a chamber surrounding the forming furnace and / or the annealing furnace.
  • the invention according to claim 3 made to solve the above-mentioned problem is characterized in that the forming step is a step of forming a glass ribbon by an overflow down draw method or a slot down draw method. It exists in the manufacturing method of the glass plate as described in above.
  • the invention according to claim 4 made to solve the above-mentioned problems is characterized in that the short side of the glass plate has a length of 2000 mm or more. Lies in the manufacturing method.
  • the invention according to claim 6 is characterized in that the glass plate has a mass percentage of SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, MgO 0-10%, CaO 0-15%, SrO 0-10%, BaO 0-15%, ZnO 0-10%, ZrO 2 0-10%, fining agent 0-2%
  • the glass plate manufacturing method according to any one of claims 1 to 5 is characterized.
  • the invention according to claim 7 is to supply molten glass to the molded body and to flow the molten glass from the molded body to a conveying path extending in the vertical direction to form a plate-shaped glass ribbon.
  • a forming furnace for drawing and forming, an annealing furnace for removing internal strain of the glass ribbon, a cooling chamber for cooling the glass ribbon to near room temperature, and for cutting the glass ribbon to a predetermined dimension A glass plate manufacturing facility comprising a cutting chamber, wherein the cooling chamber is provided with an exhaust passage.
  • the invention according to claim 8 made to solve the above-mentioned problems is characterized in that the exhaust passage of the cooling chamber communicates with a chamber surrounding the forming furnace and / or the annealing furnace. Located in glass plate manufacturing equipment.
  • the pressure in the chamber surrounding the forming furnace and the annealing furnace is increased, and the glass
  • the effect of suppressing the rise of the low-temperature air flow in the ribbon transport path is increased. That is, the low-temperature air flow rising from the cooling chamber into the annealing furnace is heated in the annealing furnace, and then a part of the low-temperature air flow leaks to the outside atmosphere through the gap between the furnace wall of the forming furnace and the annealing furnace.
  • the forming step is a step of forming a glass ribbon by the overflow down draw method or the slot down draw method, it is possible to efficiently form the thin glass.
  • the slot down draw method is a method in which molten glass is supplied to a molded body having an elongated hole-shaped (slot-shaped) opening, and then the molten glass is drawn out from the opening of the molded body to form a plate-like glass ribbon. In this method, a glass ribbon is produced by stretching a glass ribbon in the vertical direction.
  • the glass ribbon flowing down in the vertical direction from the cooling step may be cut in the width direction (direction perpendicular to the flowing direction of the glass ribbon)
  • the ribbon may be bent from the vertical direction to the horizontal direction and cut in the width direction while moving in the horizontal direction.
  • the present invention is particularly useful for producing a large glass plate, specifically, a glass plate having a short side of 2000 mm or more, preferably 2500 mm or more, and more preferably 3000 mm or more.
  • the maximum value of the internal strain of the glass plate is 1.0 MPa or less, the image of the liquid crystal display can be prevented from becoming inhomogeneous due to birefringence.
  • the maximum value of internal strain can be set to 1.0 MPa or less, 0.8 MPa or less, and further 0.7 MPa or less.
  • the glass plate has a mass percentage of SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, MgO 0 to 10%, CaO. Contains 0-15%, SrO 0-10%, BaO 0-15%, ZnO 0-10%, ZrO 2 0-10%, fining agent 0-2%, chemical resistance (good acid resistance , Alkali resistance, buffered hydrofluoric acid), heat resistance (strain point 630 ° C. or higher), meltability (temperature corresponding to a viscosity of 10 2.5 poise 1600 ° C.), moldability (liquidus temperature 1150 ° C.
  • a glass plate for a liquid crystal display which satisfies characteristics such as a coefficient of thermal expansion (25 to 45 ⁇ 10 ⁇ 7 / ° C. at a temperature of 30 to 380 ° C.) and easily suppresses internal distortion after molding.
  • the reason why the above glass composition is preferable is as follows.
  • SiO 2 is a component that forms a network of glass, reduces the thermal expansion coefficient of glass, reduces internal strain, improves the acid resistance of glass, increases the strain point of glass, There is an effect of reducing thermal shrinkage.
  • the content of SiO 2 increases, the high-temperature viscosity of the glass increases, the meltability deteriorates, and the devitrification blisters of cristobalite tend to precipitate. Therefore, the content of SiO 2 is 40 to 70%, preferably 50 to 67%, more preferably 57 to 64%.
  • Al 2 O 3 is a component that lowers the thermal expansion coefficient of glass or reduces the internal strain of the glass plate. It also has the effect of raising the strain point of the glass and suppressing the devitrification of cristobalite.
  • Al 2 O 3 is 2 to 25%, preferably 10 to 20%, more preferably 14 to 17%.
  • B 2 O 3 is a component that acts as a flux, lowers the viscosity of the glass, and improves the meltability. Moreover, it is a component which reduces the thermal expansion coefficient of glass or reduces the internal distortion of a glass plate. However, when the content of B 2 O 3 increases, the strain point of the glass decreases and the acid resistance tends to deteriorate. Therefore, the content of B 2 O 3 is 0 to 20%, preferably 5 to 15%, more preferably 7.5 to 12%.
  • MgO is a component that improves the meltability of the glass by reducing only the high temperature viscosity without reducing the strain point of the glass.
  • the content of MgO increases, devitrification bumps are likely to precipitate in the glass. Further, the resistance to buffered hydrofluoric acid is lowered, and when the glass plate is treated with buffered hydrofluoric acid, the surface thereof is eroded and the reaction product adheres, and it tends to become cloudy. Therefore, the content of MgO is 0 to 10%, preferably 0 to 5%, more preferably 0 to 3.5%.
  • CaO is a component that improves the meltability of the glass by lowering only the high temperature viscosity without lowering the strain point of the glass.
  • the CaO content is 0 to 15%, preferably 0 to 12%, more preferably 3.5 to 9%.
  • SrO is a component that improves the chemical resistance and devitrification resistance of glass.
  • the SrO content is 0 to 10%, preferably 0 to 8%, more preferably more than 0.5 to 8%.
  • BaO is a component that improves the chemical resistance and devitrification resistance of glass in the same manner as SrO.
  • the content of BaO is 0 to 15%, preferably 0 to 10%, more preferably 0 to 8%.
  • ZnO is a component that improves the buffered hydrofluoric acid resistance and meltability of glass, but when its content increases, the devitrification resistance and strain point of the glass tend to decrease. Therefore, the content of ZnO is 0 to 10%, preferably 0 to 5%, more preferably 0 to 1%.
  • ZrO 2 is a component that increases the strain point of the glass.
  • the content of ZrO 2 is 0 to 10%, preferably 0 to 7%, more preferably 0 to 5%.
  • Y 2 O 3 , La 2 O 3 , Nb 2 O 3 , and P 2 O 5 are added for the purpose of reducing the liquidus temperature of the glass and improving the formability. It is possible to contain up to 3% of each. However, if an alkali metal oxide (R 2 O) such as Na 2 O, K 2 O, or Li 2 O is contained, there is a risk of deteriorating the characteristics of various films and TFT elements formed on the liquid crystal display glass plate. Therefore, the inclusion of these components should be avoided. Specifically, it should be regulated to 0.1% or less with R 2 O.
  • R 2 O alkali metal oxide
  • a molding furnace for supplying molten glass to the molded body and causing the molten glass to flow down from the molded body to a conveying path extending in the vertical direction to draw and form into a sheet-like glass ribbon.
  • an annealing furnace for removing internal strain of the glass ribbon, a cooling chamber for cooling the glass ribbon to near room temperature, and a cutting chamber for cutting the glass ribbon to a predetermined dimension.
  • the exhaust passage is provided in the cooling chamber, the air in the cooling chamber is dispersed and discharged in both the transport path and the exhaust path of the glass ribbon, The rise of the low-temperature air flow at can be suppressed.
  • variation in the atmospheric temperature in the annealing furnace can be minimized, and the internal strain can be sufficiently reduced even when the size of the glass plate is increased.
  • the exhaust passage of the cooling chamber communicates with the chamber surrounding the molding furnace and / or the annealing furnace, the air in the cooling chamber flows into the chamber surrounding the molding furnace and the annealing furnace.
  • the atmospheric pressure in these chambers becomes high, and the internal air in the furnace becomes difficult to leak outside through the gaps in the furnace walls of the forming furnace and the annealing furnace.
  • the effect of suppressing the rise of the low-temperature air flow in the conveyance path of the glass ribbon is increased.
  • FIG. 1 is a schematic front view showing equipment for manufacturing a glass plate of the present invention.
  • This manufacturing equipment is for manufacturing a glass plate (glass substrate) for a liquid crystal display by the overflow down draw method, and is supplied from the top to the molten glass 10 having a wedge-shaped cross-sectional shape.
  • Overflowing A from the top and fusing at the lower end thereof, a forming furnace 11 for forming the glass ribbon B, an annealing furnace 12 for removing the internal strain while gradually cooling the glass ribbon B, and A cooling chamber 13 that sufficiently cools the cooled glass ribbon B and a cutting chamber 14 that cuts the cooled glass ribbon B into a predetermined dimension are provided.
  • an exhaust passage 15 is provided in the ceiling portion of the cooling chamber 13, the molding furnace 11 and the annealing furnace 12 are surrounded by the molding chamber 16, and the cooling chamber 13 and the molding chamber 16 are communicated by the exhaust passage 15. .
  • the cooling chamber 13, the cutting chamber 14 and the molding chamber 16 adjacent to each other in the vertical direction are surrounded by an airtight peripheral wall portion 17. Are communicated with each other through a conveying path 18 that flows down.
  • the cutting chamber 14 is additionally provided with a transport path for transporting the glass plate C to a subsequent process (for example, an end surface polishing process) that is not shown.
  • molten glass A is supplied to the top of the molded body 10 provided in the molding furnace 11, and the molten glass A overflows from the top of the molded body 10 and is fused at the lower end thereof.
  • a shaped glass ribbon B is formed.
  • a pair of cooling rollers (edge rollers) 19 are provided in the vicinity of the molded body 10, and both edges of the glass ribbon B are held between the cooling rollers 19, and shrinkage in the width direction is minimized.
  • the formed glass ribbon B is gradually cooled in the annealing furnace 12 to remove internal strain.
  • a plurality of pairs of pulling rollers (annealing rollers) 19 are arranged in the vertical direction, and pulled downward while pulling in the width direction by the pulling roller 20 so that the glass ribbon B does not contract in the width direction due to surface tension or the like.
  • the inside of the annealing furnace 12 is set to have a predetermined temperature gradient by a heater (not shown), and the glass ribbon B gradually decreases in temperature as it flows through the annealing furnace 12, so that the internal strain is reduced. Removed.
  • a plurality of pairs of support rollers 21 are arranged in the cooling chamber 13 below the annealing furnace 12, and the glass ribbon B solidified to a predetermined width and thickness is pulled downward.
  • the glass ribbon B is cooled to approximately room temperature in the cooling chamber 13. Air in the cooling chamber 13 flows into both the annealing furnace 12 and the exhaust path 15, and the air that flows into the exhaust path 15 flows into the molding chamber 16. As a result, the amount of air flowing into the annealing furnace 12 is reduced, and an increase in the low-temperature air flow in the glass ribbon conveyance path 18 can be suppressed.
  • the glass ribbon cooled to near room temperature in the cooling chamber 14 is cut into a glass plate C having a predetermined size in the cutting chamber 14 and then conveyed to the subsequent process.
  • the dimension of the obtained glass plate was 2360 ⁇ 2030 ⁇ 0.7 mm, and the maximum strain of this glass plate was measured and found to be 0.8 MPa.
  • FIG. 2 is a schematic front view showing a glass plate manufacturing facility of a comparative example. This facility is not provided with an exhaust passage in the cooling chamber 13, and the other structure is the same as the facility of FIG. is there. Using the equipment shown in FIG. 2, a glass plate was produced under the same conditions as in the above embodiment, and the maximum strain of this glass plate was measured.
  • the glass plate according to the embodiment has a smaller maximum strain than the glass plate according to the comparative example. From this, by providing an exhaust passage leading from the cooling chamber to the chamber surrounding the annealing furnace, the inside of the glass plate It was understood that the effect of reducing distortion can be obtained.
  • the maximum strain of the glass plate is obtained by measuring the strain stress from the birefringence amount of the glass plate by an optical heterodyne interferometry using a strain meter made by UNIOPTO.
  • the reason why the maximum strain of the glass plate is obtained is that if there is a strong strain even at one place in the glass plate, the product standard of the glass plate for liquid crystal display is not satisfied.
  • this invention is not limited to said embodiment, In the range which does not deviate from the summary of this invention, it can implement with a various form further.
  • the present invention is applied to the production of a glass plate by the overflow downdraw method.
  • the present invention is similarly applied to the production of a glass plate by, for example, the slot downdraw method. Can be applied.
  • the molding furnace and the annealing furnace are surrounded by one chamber (molding chamber) has been described.
  • the molding furnace and the annealing furnace are surrounded by different chambers (for example, the molding chamber and the annealing chamber). May be.
  • the exhaust passage of the cooling chamber is provided so as to communicate with the annealing chamber.
  • the exhaust path may be provided close to the annealing furnace.
  • the shape and size of the exhaust passage may be set as appropriate depending on the size of the cooling chamber and the annealing furnace.
  • the glass plate manufacturing method and manufacturing equipment of the present invention includes a glass plate used for various flat panel displays such as a liquid crystal display glass plate, an electroluminescence display such as a plasma display, an organic EL, a field emission display, and the like. It can use for manufacture of the glass plate used as a base material for forming an electronic display functional element and a thin film.
  • Molding body 11 Molding furnace 11a Furnace wall 12 of annealing furnace Furnace wall 12 of annealing furnace 13 Cooling chamber 14 Cutting chamber 15 Exhaust path 16 Molding chamber 17 Peripheral wall part 18 Conveyance path 19 Cooling roller (edge roller) 20 Pulling roller (annealing roller) 21 Support roller 22 Air circulation hole A Molten glass B Glass ribbon C Glass plate

Abstract

A process for producing a glass plate (C) which comprises: a forming step in which a molten glass (A) is fed to a trough (10) disposed in a forming furnace (11) and the molten glass (A) is caused to flow down from the trough (10) through a conveyance passage (18) extending vertically to thereby stretch and form the glass (A) into a platy glass ribbon (B); an annealing step in which internal strain in the glass ribbon (B) is removed in an annealing lehr (12); a cooling step in which the glass ribbon (B) is cooled to around room temperature in a cooling chamber (13); and a cutting step in which the glass ribbon (B) is cut into a given size, wherein the cooling chamber (13) has a gas discharge passage (15) and the air in the cooling chamber is discharged outside.

Description

ガラス板の製造方法及び製造設備Glass plate manufacturing method and manufacturing equipment
 本発明は、成形体から溶融ガラスを流下させて鉛直方向にガラスリボンを延伸成形するガラス板の製造方法及びその製造設備に関するものである。 The present invention relates to a method for manufacturing a glass plate and a manufacturing facility therefor, in which molten glass is caused to flow down from a molded body and a glass ribbon is stretch-formed in the vertical direction.
 各種電子機器、とりわけ液晶ディスプレイ等のフラットパネルディスプレイ用板ガラスの製造方法として、成形体から溶融ガラスを流下させて鉛直方向にガラスリボンを延伸成形することによってガラス板とするダウンドロー法が知られている。 As a manufacturing method of flat glass for flat panel displays such as various electronic devices, particularly liquid crystal displays, a down draw method is known in which glass glass is drawn by flowing molten glass from a molded body and drawing a glass ribbon in a vertical direction. Yes.
 ダウンドロー法には、オーバーフローダウンドロー法とスロットダウンドロー法の二つの方法があり、特にオーバーフローダウンドロー法は、表面のうねりや粗さが非常に小さく、表面品位に優れたガラス板を得ることができる方法として広く知られている。 There are two types of downdraw methods: the overflow downdraw method and the slot downdraw method. In particular, the overflow downdraw method has a very small surface waviness and roughness and provides a glass plate with excellent surface quality. It is widely known as a method that can
 オーバーフローダウンドロー法とは、くさび状の断面形状を有する成形体の頂部に連続的に供給される溶融ガラスを、成形体の頂部から両側面に沿って流下させ、成形体の下端部で融合させることによって板状のガラスリボンとし、このガラスリボンの両縁部を、複数の引っ張りローラーで挟持しつつ鉛直方向に延びる搬送経路を流下させてガラスリボンに延伸成形する方法である。これによってガラスリボンは、次第に固化していき、所定の幅と厚みを有するガラス板となる。また搬送経路内の雰囲気温度は厳格に管理され、これによってガラス板の内部歪(熱歪)は十分に低減されてから、室温付近まで冷却される。 In the overflow down draw method, molten glass continuously supplied to the top of a molded body having a wedge-shaped cross-sectional shape is caused to flow down from the top of the molded body along both side surfaces, and is fused at the lower end of the molded body. Thus, a plate-like glass ribbon is formed, and both edges of the glass ribbon are stretched and formed into a glass ribbon by flowing down a conveying path extending in the vertical direction while being sandwiched by a plurality of pulling rollers. As a result, the glass ribbon gradually solidifies and becomes a glass plate having a predetermined width and thickness. Further, the ambient temperature in the transport path is strictly controlled, and thereby the internal strain (thermal strain) of the glass plate is sufficiently reduced, and then cooled to near room temperature.
 特に液晶ディスプレイ用ガラス板の場合は、ガラス板の内部に僅かでも内部歪が残存すると、複屈折のために均質な画像が得られなくなるため、従来よりガラスリボンを所定の温度勾配で極力均一に冷却する工夫が様々提案されている。 In particular, in the case of a glass plate for liquid crystal display, if even a slight internal strain remains inside the glass plate, a homogeneous image cannot be obtained due to birefringence. Various ideas for cooling have been proposed.
 例えば、特開平5-124826号公報には、ローラー軸の冷却の影響により、ガラス板に内部歪みが生じ、変形するのを防ぐため、ローラーを片支持することや、ガラスリボンの搬送経路内で生じる熱対流による内部歪を防ぐために搬送経路内を水平に仕切る対流防止板が開示されている。 For example, in Japanese Patent Laid-Open No. 5-124826, in order to prevent internal deformation of the glass plate due to the influence of cooling of the roller shaft, and to prevent the glass plate from being deformed, the roller is supported in one piece, or in the conveyance path of the glass ribbon. In order to prevent internal distortion caused by thermal convection, a convection prevention plate that partitions the inside of the conveyance path horizontally is disclosed.
 また特開平10-53427号公報には、成形炉やアニール炉の内部を水平に複数分割することによって複数の室を形成し、それぞれの室に室温調節機能をもたせて十分な徐冷を行い、内部歪の少ないガラス板を製造する方法が開示されている。 In JP-A-10-53427, a plurality of chambers are formed by horizontally dividing the inside of a forming furnace or an annealing furnace, each room is provided with a room temperature adjusting function, and sufficient slow cooling is performed. A method for producing a glass plate with low internal strain is disclosed.
 さらに特開2001-31435号公報には、アニール炉の温度分布をガラスリボンの幅方向にも形成して、微小な内部歪や変形を抑える技術が開示されている。
特開平5-124826号公報 特開平10-53426号公報 特開2001-31435号公報
Furthermore, Japanese Patent Laid-Open No. 2001-31435 discloses a technique for suppressing minute internal distortion and deformation by forming a temperature distribution of an annealing furnace also in the width direction of the glass ribbon.
Japanese Patent Laid-Open No. 5-124826 Japanese Patent Laid-Open No. 10-53426 JP 2001-31435 A
 近年、液晶ディスプレイには、ますます高精細で、高画質であることが要求され、それに使用するガラス板には、内部歪の最大値が1.0MPa以下であることが要求されている。また液晶ディスプレイ用ガラス板は、急速に大板化が進められており、例えば最終的にガラス製品となる部位の幅寸法(有効幅)が2000mm以上のガラスリボンも成形されるようになってきている。しかしながら生産されるガラス板のサイズが大きくなるに伴ってガラス板の内部歪も大きくなる傾向にあり、内部歪を1.0MPa以下にすることが困難となってきている。 In recent years, liquid crystal displays are required to have higher definition and higher image quality, and glass plates used therefor are required to have a maximum internal strain of 1.0 MPa or less. Moreover, the glass plate for liquid crystal displays has been rapidly increased in size, and for example, glass ribbons having a width dimension (effective width) of 2000 mm or more at a part finally becoming a glass product have been formed. Yes. However, as the size of the glass plate to be produced increases, the internal strain of the glass plate also tends to increase, making it difficult to reduce the internal strain to 1.0 MPa or less.
 ガラス板の内部歪の原因の一つとして、ガラスリボンの表面に沿って上昇する空気の流れ(以下、低温空気流という)がある。つまりガラスリボンの搬送経路内では、常にガラスリボンの表面に沿って低温空気流が上昇しており、これによってアニール炉内の雰囲気温度が変動しやすくなっている。特開平5-139766号公報には、アニール炉内に対流防止板を形成することが開示されているが、低温空気流は、ガラスリボンの表面近傍を上昇するため、対流防止板では十分に遮断することができない。また対流防止板で低温空気流を完全に防止しようとすると、ガラスリボンと対流防止板との間隔を非常に小さくする必要があるが、ガラスリボンが対流防止板に接触し、その表面に傷が形成される虞れがある。 One of the causes of the internal distortion of the glass plate is an air flow rising along the surface of the glass ribbon (hereinafter referred to as a low temperature air flow). That is, in the glass ribbon conveyance path, the low-temperature air flow always rises along the surface of the glass ribbon, and the ambient temperature in the annealing furnace is likely to fluctuate. Japanese Patent Application Laid-Open No. 5-139766 discloses that a convection prevention plate is formed in the annealing furnace. However, since the low-temperature air flow rises in the vicinity of the surface of the glass ribbon, the convection prevention plate is sufficiently blocked. Can not do it. In order to completely prevent low-temperature airflow with the convection prevention plate, it is necessary to make the distance between the glass ribbon and the convection prevention plate very small, but the glass ribbon comes into contact with the convection prevention plate and the surface is scratched. There is a risk of formation.
 本発明は、上記事情に鑑みなされたものであり、ガラス板の大板化に伴って大きくなる内部歪の問題を回避して、生産性良く高品質のガラス板を得る方法を提供することを技術的課題とする。 The present invention has been made in view of the above circumstances, and provides a method for obtaining a high-quality glass plate with high productivity by avoiding the problem of internal distortion that increases as the glass plate becomes larger. Technical issue.
 本発明者等は、上記課題を解決すべく種々の検討を重ねた結果、冷却室に排気路を設けることによって、冷却室からアニール炉に流入する低温空気流の量が減少し、ガラスリボンの搬送経路内における低温空気流の上昇を抑えることができることを見いだし、本発明を提案するに到った。 As a result of various studies to solve the above-mentioned problems, the present inventors have reduced the amount of low-temperature air flow flowing from the cooling chamber into the annealing furnace by providing an exhaust passage in the cooling chamber. It has been found that an increase in the low-temperature air flow in the transport path can be suppressed, and the present invention has been proposed.
 すなわち上記課題を解決するためになされた請求項1記載の発明は、成形炉内に設けられた成形体に溶融ガラスを供給すると共に、該成形体から溶融ガラスを鉛直方向に延びる搬送経路に流下させて板状のガラスリボンに延伸成形する成形工程と、該ガラスリボンの内部歪をアニール炉内で除去するアニール工程と、該ガラスリボンを室温付近まで冷却する冷却工程と、該ガラスリボンを所定寸法に切断する切断工程と、を含むガラス板の製造方法において、前記冷却室に排気路を設け、冷却室内の空気を外部に排出させることを特徴とするガラス板の製造方法に存する。 That is, in order to solve the above-mentioned problem, the invention according to claim 1 is to supply molten glass to a molded body provided in a molding furnace and to flow the molten glass from the molded body to a conveying path extending in a vertical direction. Forming a sheet-shaped glass ribbon, forming an annealing process, removing the internal distortion of the glass ribbon in an annealing furnace, cooling the glass ribbon to near room temperature, and fixing the glass ribbon to a predetermined level. A glass plate manufacturing method including a cutting step of cutting into a size, wherein the cooling chamber is provided with an exhaust path and the air in the cooling chamber is discharged to the outside.
 上記課題を解決するためになされた請求項2記載の発明は、冷却室内の空気を、排気路を通して、成形炉及び/又はアニール炉を取り囲む室に排出させることを特徴とする請求項1に記載のガラス板の製造方法に存する。 The invention according to claim 2, which has been made to solve the above-mentioned problems, is characterized in that the air in the cooling chamber is exhausted through the exhaust path to a chamber surrounding the forming furnace and / or the annealing furnace. The manufacturing method of the glass plate.
 上記課題を解決するためになされた請求項3記載の発明は、成形工程が、オーバーフローダウンドロー法、又はスロットダウンドロー法でガラスリボンを成形する工程であることを特徴とする請求項1又は2に記載のガラス板の製造方法に存する。 The invention according to claim 3 made to solve the above-mentioned problem is characterized in that the forming step is a step of forming a glass ribbon by an overflow down draw method or a slot down draw method. It exists in the manufacturing method of the glass plate as described in above.
 上記課題を解決するためになされた請求項4記載の発明は、ガラス板の短辺の長さが、2000mm以上であることを特徴とする請求項1~3のいずれかに記載のガラス板の製造方法に存する。 The invention according to claim 4 made to solve the above-mentioned problems is characterized in that the short side of the glass plate has a length of 2000 mm or more. Lies in the manufacturing method.
 上記課題を解決するためになされた請求項5記載の発明は、ガラス板の内部歪の最大値が1.0MPa以下であることを特徴とする請求項1~4のいずれかに記載のガラス板の製造方法に存する。 The glass plate according to any one of claims 1 to 4, characterized in that the maximum value of internal strain of the glass plate is 1.0 MPa or less. Exist in the manufacturing method.
 上記課題を解決するためになされた請求項6記載の発明は、ガラス板が、質量百分率で、SiO 40~70%、Al 2~25%、B 0~20%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%、清澄剤 0~2%の組成を含有することを特徴とする請求項1~5のいずれかに記載のガラス板の製造方法に存する。 In order to solve the above-mentioned problems, the invention according to claim 6 is characterized in that the glass plate has a mass percentage of SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, MgO 0-10%, CaO 0-15%, SrO 0-10%, BaO 0-15%, ZnO 0-10%, ZrO 2 0-10%, fining agent 0-2% The glass plate manufacturing method according to any one of claims 1 to 5 is characterized.
 上記課題を解決するためになされた請求項7記載の発明は、成形体に溶融ガラスを供給すると共に、該成形体から溶融ガラスを鉛直方向に延びる搬送経路に流下させて板状のガラスリボンに延伸成形するための成形炉と、該ガラスリボンの内部歪を除去するためのアニール炉と、該ガラスリボンを室温付近まで冷却するための冷却室と、該ガラスリボンを所定寸法に切断するための切断室と、を備えてなるガラス板の製造設備において、前記冷却室に排気路を設けてなることを特徴とするガラス板の製造設備に存する。 In order to solve the above-mentioned problems, the invention according to claim 7 is to supply molten glass to the molded body and to flow the molten glass from the molded body to a conveying path extending in the vertical direction to form a plate-shaped glass ribbon. A forming furnace for drawing and forming, an annealing furnace for removing internal strain of the glass ribbon, a cooling chamber for cooling the glass ribbon to near room temperature, and for cutting the glass ribbon to a predetermined dimension A glass plate manufacturing facility comprising a cutting chamber, wherein the cooling chamber is provided with an exhaust passage.
 上記課題を解決するためになされた請求項8記載の発明は、冷却室の排気路が、成形炉及び/又はアニール炉を取り囲む室に連通してなることを特徴とする請求項7に記載のガラス板の製造設備に存する。 The invention according to claim 8 made to solve the above-mentioned problems is characterized in that the exhaust passage of the cooling chamber communicates with a chamber surrounding the forming furnace and / or the annealing furnace. Located in glass plate manufacturing equipment.
 請求項1記載の発明によれば、成形炉内に設けられた成形体に溶融ガラスを供給すると共に、該成形体から溶融ガラスを鉛直方向に延びる搬送経路に流下させて板状のガラスリボンに延伸成形する成形工程と、該ガラスリボンの内部歪をアニール炉内で除去するアニール工程と、該ガラスリボンを室温付近まで冷却する冷却工程と、該ガラスリボンを所定寸法に切断する切断工程と、を含むガラス板の製造方法において、前記冷却室に排気路を設け、冷却室内の空気を外部に排出させるため、冷却室内の空気が、ガラスリボンの搬送経路と排気路の両方に分散して排出されることになり、搬送経路内における低温空気流の上昇を抑えることができる。その結果、アニール炉内の雰囲気温度の変動を最小限に抑えることができ、ガラス板のサイズが大きくなっても、その内部歪を十分に低減することが可能となる。排気路は、冷却室の天井部に設けると、空気の排出効果が大きくなるため好ましい。 According to invention of Claim 1, while supplying molten glass to the molded object provided in the molding furnace, it is made to flow down from the molded object to the conveyance path | route extended in a perpendicular direction, and it is made into a plate-shaped glass ribbon. A forming step for stretch molding, an annealing step for removing internal strain of the glass ribbon in an annealing furnace, a cooling step for cooling the glass ribbon to near room temperature, a cutting step for cutting the glass ribbon to a predetermined dimension, In the method for manufacturing a glass plate, the exhaust passage is provided in the cooling chamber, and the air in the cooling chamber is discharged to the outside, so that the air in the cooling chamber is dispersed and discharged in both the conveyance path and the exhaust passage of the glass ribbon. As a result, an increase in the low-temperature air flow in the transport path can be suppressed. As a result, variation in the atmospheric temperature in the annealing furnace can be minimized, and the internal strain can be sufficiently reduced even when the size of the glass plate is increased. It is preferable to provide the exhaust path in the ceiling portion of the cooling chamber because the air exhaust effect is increased.
 請求項2記載の発明によれば、冷却室内の空気を、排気路を通して、成形炉及び/又はアニール炉を取り囲む室に排出させるため、成形炉やアニール炉を取り囲む室の気圧が高くなり、ガラスリボンの搬送経路内における低温空気流の上昇を抑える効果が大きくなる。つまり冷却室からアニール炉内に上昇した低温空気流は、アニール炉内で加熱された後、その一部が成形炉やアニール炉の炉壁の隙間を通して外部雰囲気に漏れ出す。しかしながら成形炉やアニール炉を取り囲む室の気圧を高くすると、成形炉やアニール炉の内部空気の漏れ出しが抑えられ、ガラスリボンの搬送経路内における低温空気流の上昇を抑える効果が大きくなる。 According to the second aspect of the present invention, since the air in the cooling chamber is discharged through the exhaust passage to the chamber surrounding the forming furnace and / or the annealing furnace, the pressure in the chamber surrounding the forming furnace and the annealing furnace is increased, and the glass The effect of suppressing the rise of the low-temperature air flow in the ribbon transport path is increased. That is, the low-temperature air flow rising from the cooling chamber into the annealing furnace is heated in the annealing furnace, and then a part of the low-temperature air flow leaks to the outside atmosphere through the gap between the furnace wall of the forming furnace and the annealing furnace. However, if the pressure in the chamber surrounding the forming furnace or annealing furnace is increased, leakage of internal air in the forming furnace or annealing furnace is suppressed, and the effect of suppressing an increase in the low-temperature air flow in the glass ribbon conveyance path is increased.
 請求項3記載の発明によれば、成形工程が、オーバーフローダウンドロー法、又はスロットダウンドロー法でガラスリボンを成形する工程であるため、薄板ガラスを効率良く成形することが可能である。特に表面品位に優れた板ガラスを得る場合には、スロットダウンドロー法よりも、オーバーフローダウンドロー法を採用することが望ましい。尚、スロットダウンドロー法とは、長孔状(スロット状)の開口部を有する成形体に溶融ガラスを供給した後、成形体の開口部から溶融ガラスを引き出して板状のガラスリボンとし、このガラスリボンを鉛直方向に延伸成形してガラス板を製造するという方法である。 According to the invention described in claim 3, since the forming step is a step of forming a glass ribbon by the overflow down draw method or the slot down draw method, it is possible to efficiently form the thin glass. In particular, when obtaining a plate glass having excellent surface quality, it is desirable to employ the overflow downdraw method rather than the slot downdraw method. The slot down draw method is a method in which molten glass is supplied to a molded body having an elongated hole-shaped (slot-shaped) opening, and then the molten glass is drawn out from the opening of the molded body to form a plate-like glass ribbon. In this method, a glass ribbon is produced by stretching a glass ribbon in the vertical direction.
 また本発明では、ガラスリボンを所定長に切断する場合、冷却工程から鉛直方向に流下するガラスリボンを、その幅方向(ガラスリボンの流下方向と直交する方向)に切断しても良いし、ガラスリボンを鉛直方向から水平方向に湾曲させ、水平方向に移動させながら幅方向に切断しても良い。 In the present invention, when the glass ribbon is cut into a predetermined length, the glass ribbon flowing down in the vertical direction from the cooling step may be cut in the width direction (direction perpendicular to the flowing direction of the glass ribbon) The ribbon may be bent from the vertical direction to the horizontal direction and cut in the width direction while moving in the horizontal direction.
 請求項4記載の発明によれば、ガラス板の短辺の長さが、2000mm以上であるため、一枚のガラス板(原板)から多数枚のディスプレイパネル用ガラス板を切り出すことができ、生産効率を向上することが可能となる。ガラス板のサイズが大きくなるほど、その内部歪も大きくなる傾向にある。この理由の一つは、ガラス板のサイズが大きくなると、その製造設備が大型化し、ガラスリボンの搬送経路内に低温空気が流入しやすくなり、アニール炉内の雰囲気温度が変動しやすくなるためであると考えられる。そのため本発明は、特に大型のガラス板、具体的には、短辺が2000mm以上、好ましくは2500mm以上、さらには3000mm以上のガラス板を製造する場合に有用となる。 According to invention of Claim 4, since the length of the short side of a glass plate is 2000 mm or more, many glass plates for display panels can be cut out from one glass plate (original plate), and production is carried out. Efficiency can be improved. As the size of the glass plate increases, the internal strain tends to increase. One reason for this is that as the size of the glass plate increases, the manufacturing equipment becomes larger, low-temperature air tends to flow into the glass ribbon transport path, and the ambient temperature in the annealing furnace tends to fluctuate. It is believed that there is. Therefore, the present invention is particularly useful for producing a large glass plate, specifically, a glass plate having a short side of 2000 mm or more, preferably 2500 mm or more, and more preferably 3000 mm or more.
 請求項5記載の発明によれば、ガラス板の内部歪の最大値が1.0MPa以下であるため、液晶ディスプレイの画像が複屈折により不均質になるのを防止できる。本発明によれば、アニール炉内の雰囲気温度の変動を最小限に抑えることができるため、ガラス板のサイズが大きくなっても、内部歪の発生を抑えることができる。具体的には、内部歪の最大値を1.0MPa以下、0.8MPa以下、さらには0.7MPa以下にすることが可能となる。 According to the invention described in claim 5, since the maximum value of the internal strain of the glass plate is 1.0 MPa or less, the image of the liquid crystal display can be prevented from becoming inhomogeneous due to birefringence. According to the present invention, since the fluctuation of the atmospheric temperature in the annealing furnace can be minimized, the occurrence of internal strain can be suppressed even if the size of the glass plate is increased. Specifically, the maximum value of internal strain can be set to 1.0 MPa or less, 0.8 MPa or less, and further 0.7 MPa or less.
 請求項6記載の発明によれば、ガラス板が、質量百分率で、SiO 40~70%、Al 2~25%、B 0~20%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%、清澄剤 0~2%の組成を含有するため、耐薬品性(良好な耐酸性、耐アルカリ性、耐バッファードフッ酸性)、耐熱性(歪点630℃以上)、溶融性(102.5ポイズの粘度に相当する温度1600℃)、成形性(液相温度1150℃以下)、熱膨張係数(30~380℃の温度で25~45×10-7/℃)等の特性を満足し、成形後の内部歪を抑えやすい液晶ディスプレイ用ガラス板を得ることが可能となる。 According to the sixth aspect of the present invention, the glass plate has a mass percentage of SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, MgO 0 to 10%, CaO. Contains 0-15%, SrO 0-10%, BaO 0-15%, ZnO 0-10%, ZrO 2 0-10%, fining agent 0-2%, chemical resistance (good acid resistance , Alkali resistance, buffered hydrofluoric acid), heat resistance (strain point 630 ° C. or higher), meltability (temperature corresponding to a viscosity of 10 2.5 poise 1600 ° C.), moldability (liquidus temperature 1150 ° C. or lower) In addition, it is possible to obtain a glass plate for a liquid crystal display which satisfies characteristics such as a coefficient of thermal expansion (25 to 45 × 10 −7 / ° C. at a temperature of 30 to 380 ° C.) and easily suppresses internal distortion after molding.
 上記ガラス組成が好ましい理由は、次のとおりである。 The reason why the above glass composition is preferable is as follows.
 SiOは、ガラスのネットワークとなる成分であり、ガラスの熱膨張係数を低下させたり、内部歪を小さくしたり、ガラスの耐酸性を向上させたり、ガラスの歪点を高くしてガラス板の熱収縮を小さくするという効果がある。しかしながらSiOの含有量が多くなると、ガラスの高温粘度が高くなり、溶融性が悪化すると共にクリストバライトの失透ブツが析出しやすくなる傾向にある。よってSiOの含有量は、40~70%、好ましくは50~67%、より好ましくは57~64%である。 SiO 2 is a component that forms a network of glass, reduces the thermal expansion coefficient of glass, reduces internal strain, improves the acid resistance of glass, increases the strain point of glass, There is an effect of reducing thermal shrinkage. However, when the content of SiO 2 increases, the high-temperature viscosity of the glass increases, the meltability deteriorates, and the devitrification blisters of cristobalite tend to precipitate. Therefore, the content of SiO 2 is 40 to 70%, preferably 50 to 67%, more preferably 57 to 64%.
 Alは、ガラスの熱膨張係数を低下させたり、ガラス板の内部歪を小さくする成分である。またガラスの歪点を上昇させたり、クリストバライトの失透ブツの析出を抑える効果もある。しかしながらAlの含有量が多くなると、ガラスの耐バッファードフッ酸性が悪化したり、液相温度が上昇して成形しにくくなる。よってAlは、2~25%、好ましくは10~20%、より好ましくは14~17%である。 Al 2 O 3 is a component that lowers the thermal expansion coefficient of glass or reduces the internal strain of the glass plate. It also has the effect of raising the strain point of the glass and suppressing the devitrification of cristobalite. However, when the content of Al 2 O 3 increases, the buffered hydrofluoric acid resistance of the glass deteriorates, or the liquidus temperature rises and it becomes difficult to mold. Therefore, Al 2 O 3 is 2 to 25%, preferably 10 to 20%, more preferably 14 to 17%.
 Bは、融剤として作用し、ガラスの粘性を低下し、溶融性を改善する成分である。またガラスの熱膨張係数を低下させたり、ガラス板の内部歪を小さくする成分である。しかしながらBの含有量が多くなると、ガラスの歪点が低下したり、耐酸性が悪化しやすくなる。よってBの含有量は、0~20%、好ましくは5~15%、より好ましくは7.5~12%である。 B 2 O 3 is a component that acts as a flux, lowers the viscosity of the glass, and improves the meltability. Moreover, it is a component which reduces the thermal expansion coefficient of glass or reduces the internal distortion of a glass plate. However, when the content of B 2 O 3 increases, the strain point of the glass decreases and the acid resistance tends to deteriorate. Therefore, the content of B 2 O 3 is 0 to 20%, preferably 5 to 15%, more preferably 7.5 to 12%.
 MgOは、ガラスの歪点を低下させずに高温粘性のみを低下させて、ガラスの溶融性を改善する成分である。しかしながらMgOの含有量が多くなると、ガラス中に失透ブツが析出しやすくなる。また耐バッファードフッ酸性が低下し、ガラス板をバッファードフッ酸で処理する際、その表面が浸食されて反応生成物が付着し、白濁しやすくなる。よってMgOの含有量は、0~10%、好ましくは0~5%、より好ましくは0~3.5%である。 MgO is a component that improves the meltability of the glass by reducing only the high temperature viscosity without reducing the strain point of the glass. However, when the content of MgO increases, devitrification bumps are likely to precipitate in the glass. Further, the resistance to buffered hydrofluoric acid is lowered, and when the glass plate is treated with buffered hydrofluoric acid, the surface thereof is eroded and the reaction product adheres, and it tends to become cloudy. Therefore, the content of MgO is 0 to 10%, preferably 0 to 5%, more preferably 0 to 3.5%.
 CaOは、ガラスの歪点を低下させずに高温粘性のみを低下させてガラスの溶融性を改善する成分である。しかしながらCaOの含有量が多くなると、耐バッファードフッ酸性が悪化しやすくなる。よってCaOの含有量は、0~15%、好ましくは0~12%、より好ましくは3.5~9%である。 CaO is a component that improves the meltability of the glass by lowering only the high temperature viscosity without lowering the strain point of the glass. However, when the content of CaO increases, the resistance to buffered hydrofluoric acid tends to deteriorate. Therefore, the CaO content is 0 to 15%, preferably 0 to 12%, more preferably 3.5 to 9%.
 SrOは、ガラスの耐薬品性と耐失透性を向上させる成分である。しかしながらSrOの含有量が多くなると、ガラスの熱膨張係数が大きくなりやすく、ガラス板の内部歪が大きくなる傾向もある。よってSrOの含有量は、0~10%、好ましくは0~8%、より好ましくは0.5超~8%である。 SrO is a component that improves the chemical resistance and devitrification resistance of glass. However, when the SrO content increases, the thermal expansion coefficient of the glass tends to increase, and the internal strain of the glass plate tends to increase. Accordingly, the SrO content is 0 to 10%, preferably 0 to 8%, more preferably more than 0.5 to 8%.
 BaOは、SrOと同様にガラスの耐薬品性と耐失透性を向上させる成分である。しかしながらBaOの含有量が多くなると、ガラスの密度や熱膨張係数が大きくなったり、溶融性が著しく悪化する傾向にある。よってBaOの含有量は、0~15%、好ましくは0~10%、より好ましくは0~8%である。 BaO is a component that improves the chemical resistance and devitrification resistance of glass in the same manner as SrO. However, when the content of BaO increases, the density and thermal expansion coefficient of the glass tend to increase, and the meltability tends to deteriorate significantly. Therefore, the content of BaO is 0 to 15%, preferably 0 to 10%, more preferably 0 to 8%.
 ZnOは、ガラスの耐バッファードフッ酸性や溶融性を改善する成分であるが、その含有量が多くなると、ガラスの耐失透性や歪点が低下しやすくなる。よってZnOの含有量は、0~10%、好ましくは0~5%、より好ましくは0~1%である。 ZnO is a component that improves the buffered hydrofluoric acid resistance and meltability of glass, but when its content increases, the devitrification resistance and strain point of the glass tend to decrease. Therefore, the content of ZnO is 0 to 10%, preferably 0 to 5%, more preferably 0 to 1%.
 ZrOは、ガラスの歪点を高める成分であるが、その含有量が多くなると、ガラスの密度が著しく上昇したり、ZrOに起因する失透物が析出しやすくなる。よってZrOの含有量は、0~10%、好ましくは0~7%、より好ましくは0~5%である。 ZrO 2 is a component that increases the strain point of the glass. However, when the content of ZrO 2 increases, the density of the glass increases remarkably, and devitrified materials due to ZrO 2 tend to precipitate. Therefore, the content of ZrO 2 is 0 to 10%, preferably 0 to 7%, more preferably 0 to 5%.
 清澄剤としては、As、Sb、SnO、SO、F、Cl等を2%まで使用できる。ただしAsとSbは、環境負荷物質であることから使用は避けるべきであり、その場合には、SnOを0.01~2%含有させることが好ましい。 As a clarifier, As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , F, Cl, etc. can be used up to 2%. However, As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances and should not be used. In that case, it is preferable to contain 0.01 to 2% of SnO 2 .
 また本発明では、上記成分以外にも、例えば、ガラスの液相温度を低下させて成形性を向上する目的で、Y、La、Nb、Pを各々3%まで含有させることが可能である。ただしNaO、KO、LiO等のアルカリ金属酸化物(RO)を含有すると、液晶ディスプレイガラス板上に形成される各種の膜やTFT素子の特性を劣化させる虞れがあるため、これらの成分の含有は避けるべきである。具体的には、ROで0.1%以下に規制すべきである。 In the present invention, in addition to the above components, for example, Y 2 O 3 , La 2 O 3 , Nb 2 O 3 , and P 2 O 5 are added for the purpose of reducing the liquidus temperature of the glass and improving the formability. It is possible to contain up to 3% of each. However, if an alkali metal oxide (R 2 O) such as Na 2 O, K 2 O, or Li 2 O is contained, there is a risk of deteriorating the characteristics of various films and TFT elements formed on the liquid crystal display glass plate. Therefore, the inclusion of these components should be avoided. Specifically, it should be regulated to 0.1% or less with R 2 O.
 請求項7記載の発明によれば、成形体に溶融ガラスを供給すると共に、該成形体から溶融ガラスを鉛直方向に延びる搬送経路に流下させて板状のガラスリボンに延伸成形するための成形炉と、該ガラスリボンの内部歪を除去するためのアニール炉と、該ガラスリボンを室温付近まで冷却するための冷却室と、該ガラスリボンを所定寸法に切断するための切断室と、を備えてなるガラス板の製造設備において、前記冷却室に排気路を設けてなるため、冷却室内の空気が、ガラスリボンの搬送経路と排気路の両方に分散されて排出されることになり、搬送経路内における低温空気流の上昇を抑えることができる。その結果、アニール炉内の雰囲気温度の変動を最小限に抑えることができ、ガラス板のサイズが大きくなっても、その内部歪を十分に低減することが可能となる。 According to the seventh aspect of the present invention, a molding furnace for supplying molten glass to the molded body and causing the molten glass to flow down from the molded body to a conveying path extending in the vertical direction to draw and form into a sheet-like glass ribbon. And an annealing furnace for removing internal strain of the glass ribbon, a cooling chamber for cooling the glass ribbon to near room temperature, and a cutting chamber for cutting the glass ribbon to a predetermined dimension. In the glass plate manufacturing facility, since the exhaust passage is provided in the cooling chamber, the air in the cooling chamber is dispersed and discharged in both the transport path and the exhaust path of the glass ribbon, The rise of the low-temperature air flow at can be suppressed. As a result, variation in the atmospheric temperature in the annealing furnace can be minimized, and the internal strain can be sufficiently reduced even when the size of the glass plate is increased.
 請求項8記載の発明によれば、冷却室の排気路が、成形炉及び/又はアニール炉を取り囲む室に連通してなるため、冷却室の空気が、成形炉やアニール炉を取り囲む室に流入し、これらの室内の気圧が高くなり、成形炉やアニール炉の炉壁の隙間を通して炉内の内部空気が外部に漏れ出しにくくなる。その結果、ガラスリボンの搬送経路内における低温空気流の上昇を抑える効果が大きくなる。 According to the invention described in claim 8, since the exhaust passage of the cooling chamber communicates with the chamber surrounding the molding furnace and / or the annealing furnace, the air in the cooling chamber flows into the chamber surrounding the molding furnace and the annealing furnace. However, the atmospheric pressure in these chambers becomes high, and the internal air in the furnace becomes difficult to leak outside through the gaps in the furnace walls of the forming furnace and the annealing furnace. As a result, the effect of suppressing the rise of the low-temperature air flow in the conveyance path of the glass ribbon is increased.
 以下、本発明の実施形態を、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明のガラス板の製造設備を示す概略正面図である。この製造設備は、オーバーフローダウンドロー法によって液晶ディスプレイ用のガラス板(ガラス基板)を製造するためのものであって、上方から順に、くさび状の断面形状を有する成形体10に供給される溶融ガラスAを頂部から溢れさせると共に、その下端部で融合させることで、ガラスリボンBを成形する成形炉11と、ガラスリボンBを徐冷しながらその内部歪を除去するためのアニール炉12と、徐冷されたガラスリボンBを十分に冷却する冷却室13と、冷却されたガラスリボンBを所定寸法に切断する切断室14とを備えている。また冷却室13の天井部には、排気路15が設けられ、成形炉11とアニール炉12は、成形室16によって取り囲まれ、冷却室13と成形室16は、排気路15によって連通している。これら上下方向に隣接する冷却室13、切断室14及び成形室16は、気密性のある周壁部17によって取り囲まれ、成形炉11、アニール炉12、冷却室13及び切断室14は、ガラスリボンBが流下する搬送経路18で連通している。また切断室14には、図外の後続工程(例えば端面研磨工程等)へガラス板Cを搬送するための搬送経路が別途設けられている。 FIG. 1 is a schematic front view showing equipment for manufacturing a glass plate of the present invention. This manufacturing equipment is for manufacturing a glass plate (glass substrate) for a liquid crystal display by the overflow down draw method, and is supplied from the top to the molten glass 10 having a wedge-shaped cross-sectional shape. Overflowing A from the top and fusing at the lower end thereof, a forming furnace 11 for forming the glass ribbon B, an annealing furnace 12 for removing the internal strain while gradually cooling the glass ribbon B, and A cooling chamber 13 that sufficiently cools the cooled glass ribbon B and a cutting chamber 14 that cuts the cooled glass ribbon B into a predetermined dimension are provided. Further, an exhaust passage 15 is provided in the ceiling portion of the cooling chamber 13, the molding furnace 11 and the annealing furnace 12 are surrounded by the molding chamber 16, and the cooling chamber 13 and the molding chamber 16 are communicated by the exhaust passage 15. . The cooling chamber 13, the cutting chamber 14 and the molding chamber 16 adjacent to each other in the vertical direction are surrounded by an airtight peripheral wall portion 17. Are communicated with each other through a conveying path 18 that flows down. The cutting chamber 14 is additionally provided with a transport path for transporting the glass plate C to a subsequent process (for example, an end surface polishing process) that is not shown.
 次に、上記ガラス板の製造設備によるガラス板の製造工程を説明する。 Next, the manufacturing process of the glass plate by the said glass plate manufacturing equipment is demonstrated.
 この製造設備では、まず成形炉11内に設けられた成形体10の頂部に溶融ガラスAを供給し、その溶融ガラスAを成形体10の頂部から溢れ出させると共にその下端部で融合させて板状のガラスリボンBを成形する。成形体10の付近には、一対の冷却ローラー(エッジローラー)19が設けられ、ガラスリボンBは、この冷却ローラー19で両縁部を挟持され、幅方向の収縮が最小限に抑えられる。 In this manufacturing facility, first, molten glass A is supplied to the top of the molded body 10 provided in the molding furnace 11, and the molten glass A overflows from the top of the molded body 10 and is fused at the lower end thereof. A shaped glass ribbon B is formed. A pair of cooling rollers (edge rollers) 19 are provided in the vicinity of the molded body 10, and both edges of the glass ribbon B are held between the cooling rollers 19, and shrinkage in the width direction is minimized.
 次に、この成形されたガラスリボンBをアニール炉12で徐冷することによって内部歪を除去する。アニール炉12には、鉛直方向に複数対の引っ張りローラー(アニールローラー)19が配置され、ガラスリボンBが表面張力等で幅方向に収縮しないように引っ張りローラー20で幅方向に引っ張りながら下方に牽引する。またアニール炉12内は、ヒーター(図示省略)によって所定の温度勾配となるように設定されており、ガラスリボンBはアニール炉12内を流下するに従って徐々に温度を低下させることで、内部歪が除去される。 Next, the formed glass ribbon B is gradually cooled in the annealing furnace 12 to remove internal strain. In the annealing furnace 12, a plurality of pairs of pulling rollers (annealing rollers) 19 are arranged in the vertical direction, and pulled downward while pulling in the width direction by the pulling roller 20 so that the glass ribbon B does not contract in the width direction due to surface tension or the like. To do. Further, the inside of the annealing furnace 12 is set to have a predetermined temperature gradient by a heater (not shown), and the glass ribbon B gradually decreases in temperature as it flows through the annealing furnace 12, so that the internal strain is reduced. Removed.
 またアニール炉12の下方の冷却室13には、複数対の支持ローラー21が配置され、所定の幅と厚みに固化したガラスリボンBを下方に牽引する。ガラスリボンBは、冷却室13内でほぼ室温まで冷却される。また冷却室13内の空気は、アニール炉12と排気路15の両方に流れ込み、排気路15に流れ込んだ空気は成形室16内に流入する。これによってアニール炉12内に流入する空気の量が減少し、ガラスリボンの搬送経路18内における低温空気流の上昇を抑えることができる。 Also, a plurality of pairs of support rollers 21 are arranged in the cooling chamber 13 below the annealing furnace 12, and the glass ribbon B solidified to a predetermined width and thickness is pulled downward. The glass ribbon B is cooled to approximately room temperature in the cooling chamber 13. Air in the cooling chamber 13 flows into both the annealing furnace 12 and the exhaust path 15, and the air that flows into the exhaust path 15 flows into the molding chamber 16. As a result, the amount of air flowing into the annealing furnace 12 is reduced, and an increase in the low-temperature air flow in the glass ribbon conveyance path 18 can be suppressed.
 冷却室14で室温付近まで冷却されたガラスリボンは、切断室14で所定寸法のガラス板Cに切断された後、後続工程に搬送される。 The glass ribbon cooled to near room temperature in the cooling chamber 14 is cut into a glass plate C having a predetermined size in the cutting chamber 14 and then conveyed to the subsequent process.
 上記のガラス板の製造設備を使用して、質量%で、SiO 60%、Al 15%、B 10%、CaO 6%、SrO 6%、BaO 2%、清澄剤 1%の組成を有する液晶ディスプレイ用ガラス板(日本電気硝子株式会社製OA-10)を成形した。 Using the above glass plate manufacturing equipment, by mass%, SiO 2 60%, Al 2 O 3 15%, B 2 O 3 10%, CaO 6%, SrO 6%, BaO 2%, fining agent 1 % Glass composition for liquid crystal display (OA-10, manufactured by Nippon Electric Glass Co., Ltd.).
 得られたガラス板の寸法は、2360×2030×0.7mmであり、このガラス板の最大歪を測定したところ、0.8MPaであった。 The dimension of the obtained glass plate was 2360 × 2030 × 0.7 mm, and the maximum strain of this glass plate was measured and found to be 0.8 MPa.
 また図2は、比較例のガラス板の製造設備を示す概略正面図であり、この設備は、冷却室13に排気路が設けられておらず、その他の構造は、図1の設備と同一である。この図2の設備を使用し、上記実施形態と同じ条件でガラス板を作製し、このガラス板の最大歪を測定したところ、1.1MPaであった。 FIG. 2 is a schematic front view showing a glass plate manufacturing facility of a comparative example. This facility is not provided with an exhaust passage in the cooling chamber 13, and the other structure is the same as the facility of FIG. is there. Using the equipment shown in FIG. 2, a glass plate was produced under the same conditions as in the above embodiment, and the maximum strain of this glass plate was measured.
 以上のことから、実施形態によるガラス板は、比較例によるガラス板に比べて、最大歪が小さく、このことから冷却室からアニール炉を取り囲む室に通じる排気路を設けることによって、ガラス板の内部歪を低減する効果が得られることが理解できた。 From the above, the glass plate according to the embodiment has a smaller maximum strain than the glass plate according to the comparative example. From this, by providing an exhaust passage leading from the cooling chamber to the chamber surrounding the annealing furnace, the inside of the glass plate It was understood that the effect of reducing distortion can be obtained.
 ここでガラス板の最大歪は、ユニオプト社製の歪計を用いて光ヘテロダイン干渉法により、ガラス板の複屈折量から歪応力を測定することによって求めたものである。ガラス板の最大歪を求めた理由は、ガラス板の中に1箇所でも強い歪が存在すると、液晶ディスプレイ用ガラス板の製品規格を満たさなくなるからである。 Here, the maximum strain of the glass plate is obtained by measuring the strain stress from the birefringence amount of the glass plate by an optical heterodyne interferometry using a strain meter made by UNIOPTO. The reason why the maximum strain of the glass plate is obtained is that if there is a strong strain even at one place in the glass plate, the product standard of the glass plate for liquid crystal display is not satisfied.
 尚、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施することができる。 In addition, this invention is not limited to said embodiment, In the range which does not deviate from the summary of this invention, it can implement with a various form further.
 例えば、上記実施形態では、オーバーフローダウンドロー法によるガラス板の製造に本発明を適用した場合を説明したが、これ以外にも、例えばスロットダウンドロー法によるガラス板の製造にも同様にして本発明を適用することができる。 For example, in the above-described embodiment, the case where the present invention is applied to the production of a glass plate by the overflow downdraw method has been described. However, the present invention is similarly applied to the production of a glass plate by, for example, the slot downdraw method. Can be applied.
 また実施形態では、成形炉とアニール炉が一つの室(成形室)に取り囲まれている場合を説明したが、成形炉とアニール炉がそれぞれ異なる室(例えば成形室とアニール室)で取り囲まれていても良い。その場合には、冷却室の排気路は、アニール室に通じるように設けられることになる。 In the embodiment, the case where the molding furnace and the annealing furnace are surrounded by one chamber (molding chamber) has been described. However, the molding furnace and the annealing furnace are surrounded by different chambers (for example, the molding chamber and the annealing chamber). May be. In that case, the exhaust passage of the cooling chamber is provided so as to communicate with the annealing chamber.
 さらに実施形態では、排気路をアニール炉に近接して設けた場合を説明したが、アニール炉から離間させて設けても良い。また排気路の形状や大きさは、冷却室やアニール炉の大きさ等によって適宜設定すれば良い。 Furthermore, in the embodiment, the case where the exhaust path is provided close to the annealing furnace has been described, but the exhaust path may be provided apart from the annealing furnace. The shape and size of the exhaust passage may be set as appropriate depending on the size of the cooling chamber and the annealing furnace.
 本発明のガラス板の製造方法及び製造設備は、液晶ディスプレイ用ガラス板を始めとして、プラズマディスプレイ、有機EL等のエレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ等といった各種フラットパネルディスプレイに用いられるガラス板や、各種電子表示機能素子や薄膜を形成するための基材として用いられるガラス板の製造に使用することができる。 The glass plate manufacturing method and manufacturing equipment of the present invention includes a glass plate used for various flat panel displays such as a liquid crystal display glass plate, an electroluminescence display such as a plasma display, an organic EL, a field emission display, and the like. It can use for manufacture of the glass plate used as a base material for forming an electronic display functional element and a thin film.
本発明のガラス板の製造設備を示す概略正面図である。It is a schematic front view which shows the manufacturing equipment of the glass plate of this invention. 比較例のガラス板の製造設備を示す概略正面図である。It is a schematic front view which shows the manufacturing equipment of the glass plate of a comparative example.
符号の説明Explanation of symbols
10 成形体
11 成形炉
11a 成形炉の炉壁
12 アニール炉
12a アニール炉の炉壁
13 冷却室
14 切断室
15 排気路
16 成形室
17 周壁部
18 搬送経路
19 冷却ローラー(エッジローラー)
20 引っ張りローラー(アニールローラー)
21 支持ローラー
22 空気流通孔
A 溶融ガラス
B ガラスリボン
C ガラス板
DESCRIPTION OF SYMBOLS 10 Molding body 11 Molding furnace 11a Furnace wall 12 of annealing furnace Furnace wall 12 of annealing furnace 13 Cooling chamber 14 Cutting chamber 15 Exhaust path 16 Molding chamber 17 Peripheral wall part 18 Conveyance path 19 Cooling roller (edge roller)
20 Pulling roller (annealing roller)
21 Support roller 22 Air circulation hole A Molten glass B Glass ribbon C Glass plate

Claims (8)

  1.  成形炉内に設けられた成形体に溶融ガラスを供給すると共に、該成形体から溶融ガラスを鉛直方向に延びる搬送経路に流下させて板状のガラスリボンに延伸成形する成形工程と、該ガラスリボンの内部歪をアニール炉内で除去するアニール工程と、該ガラスリボンを冷却室内で室温付近まで冷却する冷却工程と、該ガラスリボンを所定寸法に切断する切断工程と、を含むガラス板の製造方法において、前記冷却室に排気路を設け、冷却室内の空気を外部に排出させることを特徴とするガラス板の製造方法。 A molding step of supplying molten glass to a molded body provided in a molding furnace and drawing the molten glass from the molded body to a conveying path extending in the vertical direction to draw a glass ribbon, and the glass ribbon. An annealing process for removing the internal distortion of the glass ribbon in an annealing furnace, a cooling process for cooling the glass ribbon to near room temperature in a cooling chamber, and a cutting process for cutting the glass ribbon into a predetermined dimension. The method for producing a glass plate according to claim 1, wherein an exhaust passage is provided in the cooling chamber, and the air in the cooling chamber is discharged to the outside.
  2.  冷却室内の空気を、排気路を通して、成形炉及び/又はアニール炉を取り囲む室に排出させることを特徴とする請求項1に記載のガラス板の製造方法。 The method for producing a glass sheet according to claim 1, wherein the air in the cooling chamber is discharged through an exhaust path to a chamber surrounding the forming furnace and / or the annealing furnace.
  3.  成形工程が、オーバーフローダウンドロー法、又はスロットダウンドロー法でガラスリボンを成形する工程であることを特徴とする請求項1又は2に記載のガラス板の製造方法。 The method for producing a glass sheet according to claim 1 or 2, wherein the forming step is a step of forming a glass ribbon by an overflow down draw method or a slot down draw method.
  4.  ガラス板の短辺の長さが、2000mm以上であることを特徴とする請求項1~3のいずれかに記載のガラス板の製造方法。 4. The method for producing a glass plate according to claim 1, wherein the length of the short side of the glass plate is 2000 mm or more.
  5.  ガラス板の内部歪の最大値が1.0MPa以下であることを特徴とする請求項1~4のいずれかに記載のガラス板の製造方法。 The method for producing a glass plate according to any one of claims 1 to 4, wherein the maximum value of internal strain of the glass plate is 1.0 MPa or less.
  6.  ガラス板が、質量百分率で、SiO 40~70%、Al 2~25%、B 0~20%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%、清澄剤 0~2%の組成を含有することを特徴とする請求項1~5のいずれかに記載のガラス板の製造方法。 Glass plate, by mass percentage, SiO 2 40 ~ 70%, Al 2 O 3 2 ~ 25%, B 2 O 3 0 ~ 20%, MgO 0 ~ 10%, CaO 0 ~ 15%, SrO 0 ~ 10% The glass plate according to any one of claims 1 to 5, comprising a composition of BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10%, and fining agent 0 to 2%. Production method.
  7.  成形体に溶融ガラスを供給すると共に、該成形体から溶融ガラスを鉛直方向に延びる搬送経路に流下させて板状のガラスリボンに延伸成形するための成形炉と、該ガラスリボンの内部歪を除去するためのアニール炉と、該ガラスリボンを室温付近まで冷却するための冷却室と、該ガラスリボンを所定寸法に切断するための切断室と、を備えてなるガラス板の製造設備において、前記冷却室に排気路を設けてなることを特徴とするガラス板の製造設備。 The molten glass is supplied to the molded body, and the molten glass flows down from the molded body to a conveying path extending in the vertical direction so as to be stretch-formed into a plate-shaped glass ribbon, and internal distortion of the glass ribbon is removed. An apparatus for manufacturing a glass plate, comprising: an annealing furnace for cooling, a cooling chamber for cooling the glass ribbon to near room temperature, and a cutting chamber for cutting the glass ribbon into a predetermined dimension. A glass plate manufacturing facility, characterized in that an exhaust passage is provided in the chamber.
  8.  冷却室の排気路が、成形炉及び/又はアニール炉を取り囲む室に連通してなることを特徴とする請求項7に記載のガラス板の製造設備。 8. The glass plate manufacturing equipment according to claim 7, wherein the exhaust passage of the cooling chamber communicates with a chamber surrounding the forming furnace and / or the annealing furnace.
PCT/JP2008/072451 2007-12-25 2008-12-10 Process and apparatus for producing glass plate WO2009081741A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107004099A KR101518984B1 (en) 2007-12-25 2008-12-10 Process and apparatus for producing glass plate
US12/810,173 US8322161B2 (en) 2007-12-25 2008-12-10 Process and apparatus for producing glass sheet
CN2008801102880A CN101815680B (en) 2007-12-25 2008-12-10 Process and apparatus for producing glass plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-331304 2007-12-25
JP2007331304 2007-12-25
JP2008276565A JP5428287B2 (en) 2007-12-25 2008-10-28 Glass plate manufacturing method and manufacturing equipment
JP2008-276565 2008-10-28

Publications (1)

Publication Number Publication Date
WO2009081741A1 true WO2009081741A1 (en) 2009-07-02

Family

ID=40801049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072451 WO2009081741A1 (en) 2007-12-25 2008-12-10 Process and apparatus for producing glass plate

Country Status (1)

Country Link
WO (1) WO2009081741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8707737B2 (en) 2009-11-30 2014-04-29 Corning Incorporated Method and apparatus for pressure control of glass-making thickness-control zone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149438A (en) * 1988-11-30 1990-06-08 Hoya Corp Glass plate production device
JPH05163032A (en) * 1991-12-10 1993-06-29 Hoya Corp Apparatus for producing glass plate
JP2004091244A (en) * 2002-08-30 2004-03-25 Nippon Electric Glass Co Ltd Alkali-free glass substrate and method for manufacturing the same
US20060236722A1 (en) * 2005-04-26 2006-10-26 Robert Delia Forming apparatus with extensions attached thereto used in a glass manufacturing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149438A (en) * 1988-11-30 1990-06-08 Hoya Corp Glass plate production device
JPH05163032A (en) * 1991-12-10 1993-06-29 Hoya Corp Apparatus for producing glass plate
JP2004091244A (en) * 2002-08-30 2004-03-25 Nippon Electric Glass Co Ltd Alkali-free glass substrate and method for manufacturing the same
US20060236722A1 (en) * 2005-04-26 2006-10-26 Robert Delia Forming apparatus with extensions attached thereto used in a glass manufacturing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8707737B2 (en) 2009-11-30 2014-04-29 Corning Incorporated Method and apparatus for pressure control of glass-making thickness-control zone
US9296635B2 (en) 2009-11-30 2016-03-29 Corning Incorporated Method and apparatus for pressure control of glass-making thickness-control zone

Similar Documents

Publication Publication Date Title
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
JP5428287B2 (en) Glass plate manufacturing method and manufacturing equipment
KR101465423B1 (en) Process for production of glass substrates and glass substrates
TWI402223B (en) Manufacture method of glass plate and manufacturing apparatus for glass plate
KR101497251B1 (en) Method and apparatus for making glass sheet
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP5582446B2 (en) Film glass manufacturing method and manufacturing apparatus
JP5594351B2 (en) Glass substrate for display
TWI417255B (en) A manufacturing method of a glass plate and a manufacturing apparatus for a glass plate
TWI600622B (en) Method of manufacturing glass plate and glass plate manufacturing apparatus
TWI592374B (en) Method for manufacturing sheet glass and sheet glass manufacturing apparatus
JP5365970B2 (en) Glass substrate for display
WO2009081741A1 (en) Process and apparatus for producing glass plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880110288.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107004099

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12810173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864939

Country of ref document: EP

Kind code of ref document: A1