WO2007119401A1 - Blood component collecting apparatus - Google Patents

Blood component collecting apparatus Download PDF

Info

Publication number
WO2007119401A1
WO2007119401A1 PCT/JP2007/055391 JP2007055391W WO2007119401A1 WO 2007119401 A1 WO2007119401 A1 WO 2007119401A1 JP 2007055391 W JP2007055391 W JP 2007055391W WO 2007119401 A1 WO2007119401 A1 WO 2007119401A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
plasma
collection
component
liquid
Prior art date
Application number
PCT/JP2007/055391
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Takagi
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to JP2008510800A priority Critical patent/JP4956528B2/en
Publication of WO2007119401A1 publication Critical patent/WO2007119401A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36224Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit with sensing means or components thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36225Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit with blood pumping means or components thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36226Constructional details of cassettes, e.g. specific details on material or shape
    • A61M1/362265Details of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
    • A61M1/3696Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation

Definitions

  • the present invention relates to a blood component collection device.
  • blood collected from a blood donor using a blood component collection device is introduced into a blood component collection circuit, and a centrifuge bowl installed in the blood component collection circuit; It is separated into plasma, buffy coat and erythrocytes by a centrifuge, and platelets (platelet containing plasma) are separated from the buffy coat, and platelets containing plasma are collected in a platelet collection bag to obtain a platelet product
  • the plasma is also collected in a plasma collection bag and used as a raw material for the plasma product or plasma fractionation product, and the remaining plasma, white blood cells and red blood cells are returned to the donor (see, for example, Japanese Patent No. 2776988) ).
  • a plasma collection step for collecting plasma in a plasma collection bag, the collection of the plasma is stopped (interrupted), and a plasma is collected from the plasma collected in the plasma collection bag
  • a plasma circulation process (dwell) that circulates to pass through, and a platelet collection process that circulates the plasma collected in the plasma collection bag to the centrifuge so that the flow rate increases and collects platelets in the platelet collection bag (Surge) and a blood return process (return) in which the remaining blood components are returned to the donor.
  • the plasma collected in the plasma collection bag is also circulated so as to pass through the centrifuge.
  • An object of the present invention is to provide a blood component collection device capable of shortening the blood collection time while increasing the recovery rate of collected blood cell components.
  • the blood component collection device of the present invention comprises:
  • a blood collection means comprising a hollow needle for collecting blood from a donor
  • a blood separator for separating blood collected by the blood collecting means
  • a plasma collection bag for collecting plasma separated by the blood separator
  • a blood component collection bag for collecting predetermined blood cell components separated by the blood separator
  • Blood comprising: a blood processing line connecting the hollow needle and the inlet of the blood separator; a branching force provided in the blood processing line; and a blood circulation line connected to the plasma collection bag.
  • Component collection circuit
  • a first liquid delivery means installed in the blood treatment line and delivering at least a fluid in the blood treatment line;
  • a second liquid feeding means installed in the plasma circulation line and feeding at least the plasma collected in the plasma collection bag;
  • the collected blood is separated and collected in the plasma collection bag by the plasma collection step of collecting plasma in the plasma collection bag by the operation of the first liquid delivery means and the operation of the second liquid delivery means.
  • Blood components for collecting blood components by performing a plasma circulation step for circulating the collected plasma to the blood separator via a plasma circulation line and a blood component collection step for collecting a predetermined blood cell component in the blood component collection bag A collecting device,
  • the amount of liquid fed by the second liquid feeding unit is increased while continuing the operation of the first liquid feeding unit, thereby the plasma circulation step.
  • the plasma collected in the plasma collection bag is circulated to the blood separator via a plasma circulation line, and a liquid introduced into the blood separator is collected.
  • the flow rate of the sex component is configured to be larger than the flow rate of the liquid component introduced into the blood separator in the plasma collection step.
  • the flow rate of the liquid component introduced into the blood separator is relatively reduced.
  • blood cell components for example, platelets
  • the recovery rate of the blood cell component can be improved.
  • blood is collected from a donor and collected in a plasma collection bag, so that the time for collecting blood can be shortened. Thereby, the occupation time of the blood component collection device can be reduced, and the burden on the blood donor can be reduced.
  • the flow rate of the liquid component introduced into the blood separator in the plasma circulation step is preferably 40 to 250 mL / min! /.
  • the blood cell component collected by the separated red blood cell layer can be surely washed out while preventing the outflow of the blood cell component collected by the blood separator force, and the buffy coat layer can be washed out.
  • An excessive increase in internal viscosity can be prevented, and the recovery rate of collected blood cell components can be improved.
  • the flow rate of the liquid component introduced into the blood separator in the plasma circulation step and the plasma collection step! The difference from the flow rate of the liquid component introduced into the blood separator is preferably 10 to 220 mLZmin! /.
  • the blood cell component collected by the separated red blood cell layer can be surely washed out while preventing the outflow of the blood cell component collected by the blood separator force, and the buffy coat layer can be washed out.
  • An excessive increase in internal viscosity can be prevented, and the recovery rate of collected blood cell components can be improved.
  • the second liquid feeding means is activated during the plasma collection step, and the plasma collected in the plasma collection bag is passed through the plasma circulation line. And is preferably configured to circulate through the blood separator.
  • the second feeding is performed so that the flow rate of the liquid component introduced into the blood separator becomes a predetermined target value during the plasma collection step. It is preferable that the operation of the liquid supply means is controlled to adjust the liquid supply amount of the second liquid supply means. This reduces the amount of blood collected and places an excessive load on the blood and blood components in the blood separator (for example, if the centrifuge is used as a blood separator, excessive centrifugation). It is possible to prevent the recovery rate from decreasing.
  • the second liquid feeding means in the plasma circulation step, is operated so that the flow rate of the liquid component introduced into the blood separator becomes a predetermined target value. It is preferable that the second liquid feeding means is controlled to control the liquid feeding amount.
  • the plasma collection step is executed a plurality of times before the blood component collection step, and the plasma circulation step is executed between the plasma collection steps. It is preferred to be structured.
  • the blood component collection device includes the plasma collection step, the plasma circulation step, the blood component collection step, and a return for returning the remaining blood components to the donor. It is preferable that at least one cycle of a blood component collecting operation including a blood process is performed.
  • the blood collection process plasma collection process
  • the return process can be repeated using a single blood collection needle (hollow needle), so that the donor (donor) is restrained in both arms.
  • the burden on blood donors can be reduced.
  • the predetermined blood cell component is preferably platelets.
  • platelets confined by the separated red blood cell layer or the like can be reliably washed out, and the platelet recovery rate can be improved.
  • a blood collection means comprising a hollow needle for collecting blood from a donor
  • a centrifuge for separating blood collected by the blood collection means Connecting a plasma collection bag for collecting plasma components separated by the centrifuge, a platelet collection bag for collecting platelet components separated by the centrifuge, and the hollow needle and the inlet of the centrifuge
  • a blood component collection circuit comprising: a blood treatment line that branches; a branching force provided in the blood treatment line; and a plasma circulation line that is connected to the plasma collection bag;
  • a first liquid feeding means installed in the blood processing line for transferring a liquid in the blood processing line
  • a second liquid feeding means installed in the plasma circulation line for transferring the liquid in the plasma collection bag
  • the second liquid feeding means is operated to transfer the plasma component collected in the plasma collection bag to the centrifuge, and the plasma component is circulated between the plasma collection bag and the centrifuge.
  • the plasma circulation step and the second liquid feeding means are operated to transfer the plasma component collected in the plasma collection bag while accelerating at a predetermined acceleration, and the platelet component flowing out from the centrifuge is transferred to the platelet
  • a blood component collecting apparatus having a first liquid feeding means and a control means for controlling the operation of the second liquid feeding means so as to execute a platelet collecting step for collecting in a collection bag.
  • the control means operates the second liquid supply means without interrupting the blood collection process while the first blood supply means is operated to execute the blood collection process.
  • the plasma circulation step is executed, and the platelet collection step is executed after the blood collection step is completed.
  • control means performs a plurality of times without interrupting the blood collecting step during the blood collecting step before executing the platelet collecting step.
  • FIG. 1 is a plan view showing a first embodiment of a blood component collection device of the present invention.
  • FIG. 2 is a partially cutaway cross-sectional view showing a state in which a centrifuge is attached to the centrifuge driving device provided in the blood component collection device shown in FIG.
  • FIG. 3 is a flowchart for explaining the operation of the blood component collection device shown in FIG. 1.
  • FIG. 4 is a flowchart for explaining the operation of the blood component collection device shown in FIG. 1.
  • FIG. 5 is a diagram for explaining the characteristics of the blood component collection device shown in FIG. 1.
  • FIG. 6 is a diagram for explaining the operation control of the second liquid feeding pump of the blood component collection device shown in FIG. 1.
  • FIG. 7 is a diagram for explaining another operation control of the second liquid feeding pump of the blood component collection device shown in FIG. 1.
  • FIG. 1 is a plan view showing a first embodiment of a blood component collection device of the present invention
  • FIG. 2 shows a centrifuge in a centrifuge driving device provided in the blood component collection device shown in FIG.
  • FIG. 4 is a partially cutaway sectional view of a state where the device is mounted.
  • a blood component collection apparatus 1 shown in FIG. 1 separates blood into a plurality of blood components and separates the separated blood cell components, which are platelets (platelets including plasma) (blood components) and plasma (blood components). Liquid component).
  • This blood component collection device 1 has a rotor 142 having a blood storage space 146 therein, an inlet 143 and an outlet (outlet) 144 communicating with the blood storage space 146, and the inlet 142 is rotated by the rotation of the rotor 142.
  • the first line 21 that connects the centrifuge (blood separator) 20 that centrifuges the introduced blood in the blood storage space 146, the blood collection needle (blood collection means) 29, and the inlet 143 of the centrifuge 20 21
  • the second line 22 connected to the outlet 144 of the centrifuge 20, the third line 23 connected to the first line 21, and the first line 21 via the tubes 49 and 50.
  • a plasma collection bag (collection bag) 25 connected and connected to the second line 22 via tubes 43 and 44; Air bag 27b connected to the second line 22 via the tube 42 and an intermediate dog (temporary storage bag) connected to the second line 22 via the tubes 43 and 45 (collection bag) 27a And a platelet collection bag (collection bag) 26 connected to the intermediate bag 27a via the tubes 46, 47 and 48, and a bag 28 connected to the platelet collection bag 26 via the tube 51.
  • a blood component collection circuit (collection circuit) 2 is provided.
  • the blood component collection device 1 includes a centrifuge drive device 10 for rotating the rotor 142 of the centrifuge 20 and a first liquid feed pump for the first line 21 (first Liquid feeding means) 11, a second liquid feeding pump (second liquid feeding means) 12, a third liquid feeding pump (third liquid feeding means) 13 for the third line 23, A plurality of (in this embodiment, first to sixth six) channel opening / closing means 81, 82, 83, 84, 85, 86, which can open and close the middle of the channel of the blood component collection circuit 2, and centrifugation Control unit (control means) for controlling the separator driving device 10, the first liquid feeding pump 11, the second liquid feeding pump 12, the third liquid feeding pump 13, and the plurality of flow path opening / closing means 81 to 86. 3), turbidity sensor (platelet concentration sensor) 14, optical sensor 15, weight sensor 16, and a plurality (6 in this embodiment) of bubble sensors 31, 32, 33, 34, 35, 36 And with There Ru.
  • turbidity sensor platelet concentration sensor
  • weight sensor 16
  • This blood component collection circuit 2 connects a blood collection needle (hollow needle) (blood collection means) 29 for collecting blood from a donor (blood donor) and an inlet 143 of a centrifuge 20 and connects a first pump tube 21g to The first line 21 (blood collection and blood return line) (blood treatment line) 21 that is also used as both a blood collection line and a blood return line, and one end side to the outlet (outlet) 144 of the centrifuge 20 A second line 22 connected, a third line (anticoagulant infusion line) 23 connected near the blood collection needle 29 of the first line 21 and having a third pump tube 23a, and a first line
  • the first line 21 includes a blood collection needle side first line 21a to which a blood collection needle 29 is connected, one end side connected to the blood collection needle side first line 21a, and the other end side to the inlet of the centrifuge 20 143 and a centrifuge side first line 21b connected to 143.
  • a blood collection needle 29 for example, a known metal needle is used.
  • the blood collection needle-side first line 21a, the centrifuge-side first line 21b, the second line 22 and the third line 23, which will be described later, are each a soft resin tube or its soft It is formed by connecting a plurality of grease tubes!
  • the blood collection needle side first line 21a is connected from the blood collection needle 29 side to a branch connector 21c for connection to the third line 23, a chamber 21d for removing bubbles and microaggregates, and a tube. And a first pump tube 21g formed between the chamber 21d and the branch connector 21f.
  • bubble sensors 35, 36, and 32 are installed along the blood collection needle side first line 21a from the blood collection needle 29 side.
  • the bubble sensors 35 and 36 are disposed between the branch connector 21c and the chamber 21d, and the bubble sensor 32 is disposed between the chamber 21d and the first pump tube 2lg.
  • the bubble sensors 35, 36, and 32 transmit and receive ultrasonic waves as well as the external force of the tube, and utilize the difference in ultrasonic conductivity between the liquid and bubbles (gas).
  • This is a detection means capable of detecting (separation of gas Z liquid, gas Z liquid level, etc.).
  • the bubble sensors 31, 33 and 34 are detection means having the same function as described above.
  • the bubble sensor (gas and liquid detection means) is not limited to the ultrasonic sensor, and for example, an optical sensor or an infrared sensor may be used.
  • a breathable and bacteria-impermeable filter 21i is connected to the chamber 21d via a tube 2lh.
  • This line can be used, for example, for detecting the internal pressure of the blood collection needle side first line 21a.
  • the centrifuge-side first line 21b is connected to a branch connector 21f for connection with the tube 50.
  • the second line 22 has one end connected to the outlet 144 of the centrifuge 20.
  • the second line 22 includes a branch connector 22b for connection to the tubes 42 and 43.
  • a turbidity sensor 14 and a bubble sensor 34 are installed along the second line 22 from the centrifuge 20 side.
  • the turbidity sensor 14 and the bubble sensor 34 are disposed between the centrifugal separator 20 and the branch connector 22b.
  • a breathable and bacteria-impermeable filter 22f is connected to the branch connector 22b via a tube 41.
  • This line can be used, for example, for detecting the internal pressure of the second line 22.
  • the third line 23 has one end connected to a connection branch connector 2 lc provided on the first line 21. That is, the third line (flow path) 23 branches from the first line (flow path) 21 via the branch connector (branch portion) 21c. Further, the branch connector 21c is located near the blood collection needle 29 (provided).
  • the third line 23 is connected from the branch connector 21c side to the third pump tube 23a, the sterilization filter (foreign matter removal filter) 23b, the bubble removal chamber 23c, and the anticoagulant container. Roll with needle 23d.
  • a bubble sensor 31 is installed along the third line 23.
  • the bubble sensor 31 is disposed between the branch connector 21c and the third pump tube 23a.
  • the anticoagulant container connecting needle 23d of the third line 23 is connected to a container (not shown) in which an anticoagulant (anticoagulant liquid) is stored (contained), thereby As will be described later, the anticoagulant flows through the third line 23 from the anticoagulant container connecting needle 23d toward the branch connector 21c and is supplied (injected) to the blood collection needle side first line 21a. Thereby, for example, the anticoagulant can be added (mixed) to the blood collected by the blood collection needle 29 via the third line 23.
  • the anticoagulant is not particularly limited.
  • an ACD-A solution or the like can be used.
  • the plasma collection bag 25, which is a blood component collection bag, is a container for collecting (reserving) plasma (plasma component) (second blood component).
  • One end of the tube 49 is connected to the plasma collection bag 25, and a connecting branch connector 22d is provided in the middle thereof.
  • One end of the tube 50 is connected to the branch connector 22d, and the other end is connected to the branch connector 21f.
  • the second pump tube 22a is located between the plasma collection bag 25 and the branch connector 22d.
  • the main parts of the plasma circulation line 24 are constituted by the tubes 49 and 50 and the branch connector 22d.
  • One end of the tube 43 is connected to the branch connector 22b, and the other end is provided with a connection branch connector 22c.
  • One end of the tube 44 is connected to the branch connector 22c, and the other end is connected to the plasma collection bag 25.
  • a bubble sensor 33 is installed in the middle of the tube 46 along the tube 46.
  • a plasma collection branch line for collecting plasma is constituted by the plasma collection bag 25 and tubes 43 and 44.
  • Platelet (platelet preparation) collection bag 26 which is a blood component collection bag, is a platelet (platelet component) (blood cell component) containing plasma after passing white blood cell removal filter 261 described later (first blood component) It is a container for collecting (storage).
  • platelets containing plasma (first blood component) are referred to as “thick platelets”, and concentrated platelets collected (stored) in the platelet collection bag 26 are referred to as “platelet preparations”. .
  • One end of the tube 51 is connected to the platelet collection bag 26, and the bag 28 is connected to the other end.
  • the air bag 27b is a container for temporarily storing (storing) air.
  • the air (sterilized air) in the blood component collection circuit 2 such as in the blood storage space 146 of the centrifuge 20 is transferred and stored in the airbag 27b.
  • the air stored in the airbag 27b is transferred into the blood storage space 146 of the centrifuge 20 and returned.
  • a predetermined blood component is returned to the donor.
  • One end of the tube 42 is connected to the branch connector 22b, and the other end is connected to the airbag 27b.
  • An intermediate bag (temporary storage bag) 27a which is a blood component collection bag, is a container for temporarily storing concentrated platelets, that is, platelets containing blood (blood cell component) (first blood component). (Reservoir).
  • One end of the tube 45 is connected to the branch connector 22c, and the other end is connected to the intermediate bag 27a.
  • One end of the tube 46 is connected to the intermediate bag 27a, and a connecting branch connector 22e is provided at the other end.
  • the other end of the tube 49 is connected to the branch connector 22e.
  • one end of a tube 47 is connected to the branch connector 22e for connection, and in the middle of the tube 47, a leukocyte removal filter (cell separation) that separates and removes leukocytes (predetermined cells) from the concentrated platelets.
  • Filter filter 261 is installed.
  • a branch connector 22g for connection is provided at the other end of the tube 47, and the other end of the tube 48 having one end connected to the platelet collection bag 26 is connected to the branch connector 22g. ing.
  • a filter single body provided with a vent filter and a filter 22h including a cap are installed at the port of the branch connector 22g.
  • tubes 46 and 47 constitute a supply tube for supplying the concentrated platelets from the intermediate bag 27a to the leukocyte removal filter 261.
  • Tube 48 is also equipped with leukocyte removal filter 2
  • the tubes 46, 47, 48, the intermediate bag 27a, the leukocyte removal filter 261, and the platelet collection bag 26 constitute a filtration line for separating and removing concentrated platelet-powered leukocytes.
  • these intermediate bag 27a, leukocyte removal filter 261, platelet collection bag 26, and plasma collection bag 25 are:
  • the middle nog 27a is lower than the plasma collection bag 25 (
  • the leukocyte removal filter 261 is set at a position lower than the intermediate bag 27a and the platelet collection bag 26 is set at a position lower than the leukocyte removal filter 261 (positioned vertically).
  • the intermediate nog 27a and the plasma collection bag 25 are respectively positioned higher (upward in the vertical direction) than the blood storage space 146 of the rotor 142 of the centrifuge 20.
  • the blood component collection device 1 is provided with a hanger (hook) force (not shown) that is a support part that detachably supports the plasma collection bag 25, the intermediate bag 27a, and the air bag 27b. Yes. Then, each of the plasma collection bag 25 and the intermediate bag 27a is hooked and hung (suspended) on the corresponding hanger so that the outlet side (inlet side) is vertically downward.
  • a hanger hook
  • the plasma collection bag 25 and the intermediate bag 27a is hooked and hung (suspended) on the corresponding hanger so that the outlet side (inlet side) is vertically downward.
  • the leukocyte removal filter 26 for example, in a casing having an inlet and an outlet at both ends, for example, a woven fabric, a nonwoven fabric, a mesh, and a synthetic resin such as polypropylene, polyester, polyurethane, polyamide, etc.
  • a material formed by inserting a filtration member in which one layer or two or more layers of a porous material such as foam is laminated can be used.
  • Constituent materials of the tubes used for forming the first to third lines 21 to 23, the pump tubes 21g, 22a, 23a, and the other tubes 41-51, 21h are as follows. Each of them is preferably a polysalt gel.
  • these tubes are made of poly salt bulbu, sufficient flexibility and softness can be obtained, so that they are easy to handle and suitable for clogging with a clamp or the like.
  • the pump tubes 21g, 22a, and 23a have strengths that do not cause damage even when pressed by the respective liquid feeding pumps (for example, roller pumps) 11, 12, and 13, which will be described later. What is provided is used.
  • Each of the plasma collection bag 25, the platelet collection bag 26, the intermediate bag 27a, the air bag 27b, and the nod 28 is laminated with a flexible sheet material made of greaves, and its peripheral portion is fused ( Heat-sealed, high-frequency fused, ultrasonic fused, etc.) or a bag formed by bonding with an adhesive is used.
  • the air bag 27b and the intermediate bag 27a are integrated with each other. Are formed (integrated).
  • the sheet material used for the platelet collection bag 26 it is more preferable to use a material having excellent gas permeability in order to improve platelet storage stability.
  • a sheet material for example, polyolefin, DnDP plasticized polychlorinated butyl chloride, or the like is used, and a sheet material of the above-described material without using such a material is used.
  • a comparatively thin film for example, about 0.1 to 0.5 mm, particularly about 0.1 to 0.3 mm is preferable.
  • the main part of such a blood component collection circuit 2 is, for example, a cassette type although not shown. That is, the blood component collection circuit 2 partially stores each line (first line 21, second line 22, third line 23) and each predetermined tube and partially holds them. In other words, it has a cassette housing in which they are partially fixed.
  • Both ends of the first pump tube 21g, both ends of the second pump tube 22a, and both ends of the third pump tube 23a are fixed to the cassette housing.
  • the pump tubes 21g, 22a, 23a are Each protrudes from the cassette housing in a loop shape corresponding to the shape of each liquid feed pump (eg, roller pump, etc.) 11, 12, 13. Therefore, the first, second and third pump tubes 21g, 22a and 23a can be easily attached to the liquid feeding pumps 11, 12, and 13, respectively.
  • the cassette housing is provided with respective flow path opening / closing means 81 to 86 described later.
  • the centrifuge 20 provided in the blood component collection circuit 2 is generally called a centrifuge bowl, and separates blood into a plurality of blood components by centrifugal force.
  • the centrifuge 20 has a vertically extending pipe body 141 with an inlet 143 formed at the upper end, and rotates around the pipe body 141 so as to be liquid-tight with respect to the upper part 145. And a sealed hollow rotor 142.
  • An annular blood storage space 146 is formed in the rotor 142 along the inner surface of the peripheral wall.
  • the blood storage space 146 is shaped so that the inner and outer diameters of the lower force in FIG.
  • the lower part communicates with the lower end opening of the tube body 141 through a substantially disc-shaped channel formed along the bottom of the rotor 142, and the upper part is the discharge port. (Outflow) Communicate with 144.
  • the volume of the blood storage space 146 is, for example, about 100 to 350 mL, and the maximum inner diameter (maximum radius) from the rotating shaft of the rotor 142 is, for example, about 55 to 65 mm.
  • Such a rotor 142 rotates under predetermined centrifugal conditions (rotation speed and rotation time) set in advance by the centrifuge drive device 10 included in the blood component collection device 1. Under this centrifugal condition, the blood separation pattern (for example, the number of blood components to be separated) in the rotor 142 can be set.
  • the centrifugation conditions are set so that the blood is separated into the plasma layer 131, the buffy coat layer 132, and the red blood cell layer 133 from the inner layer in the blood storage space 146 of the rotor 142. Is done.
  • the blood component collection device 1 includes a centrifuge drive device 10 for rotating the rotor 142 of the centrifuge 20, a first liquid feed pump 11 installed in the middle of the first line 21, and a tube. 49, a second liquid pump 12 installed in the middle of 49, a third liquid pump 13 installed in the middle of the third line 23, and a blood component collection circuit 2 (first line 21, tube 42 Tube 44, Tube 45, Tube 47, Tube 49) Multiple channel opening / closing means 81, 82, 83, 84, 85, 86 that can be opened and closed in the middle of the channel.
  • Display means (notification means) and display / operation unit 17 which is an operation means for performing each operation, storage unit (storage unit) 18, centrifuge drive device 10, first liquid feed pump 11, second control unit Liquid feed pump 12, third liquid feed pump 13, a plurality of flow path opening / closing means 81 to 86, display 'operation section 17 and storage section 18 etc. Controller for controlling the part and a (control means) 3.
  • blood component collection device 1 includes turbidity sensor 14 installed (installed) in second line 22, optical sensor 15 installed in the vicinity of centrifuge 20, and a plurality of bubble sensors. 31 to 36 and a weight sensor 16 for measuring the weight of the plasma together with the plasma collection bag 25.
  • the control unit 3 includes a first liquid feed pump 11, a second liquid feed pump 12, and a third liquid feed pump 1 3 and 3 pump controllers (not shown), the control unit 3 and the first liquid pump 11, the second liquid pump 12 and the third liquid pump 13 are connected via the pump controller. Electrically connected.
  • a drive controller (not shown) included in the centrifuge drive device 10 is electrically connected to the control unit 3.
  • Each flow path opening / closing means 81 to 86 is electrically connected to the control unit 3, respectively.
  • the turbidity sensor 14, the optical sensor 15, the weight sensor 16, the bubble sensors 31 to 36, the display / operation unit 17, and the storage unit 18 are electrically connected to the control unit 3.
  • the control unit 3 is composed of, for example, a microcomputer (including a calculation unit and a memory).
  • the control unit 3 includes the turbidity sensor 14, the optical sensor 15, the weight sensor 16, and the bubble. Detection signals from the sensors 31 to 36 are input as needed.
  • a signal (input) from the display / operation unit 17 is also input to the control unit 3.
  • the control unit 3 is a program set in advance based on the detection signal from the turbidity sensor 14, the optical sensor 15, the weight sensor 16, the bubble sensor 31 to 36 and the signal from the display / operation unit 17.
  • the operation of each part of the blood component collection device 1, that is, the rotation, stop, and rotation direction (forward rotation Z reverse rotation) of each liquid pump 11, 11, 2, and 13 are controlled as necessary. Control of the opening and closing of the means 81 to 86, the operation of the centrifuge drive device 10 and the drive of the display operation unit 17 are performed.
  • the first flow path opening / closing means 81 opens and closes the first line 21 from the first pump tube 21g to the blood collection needle 29 side, that is, between the first pump tube 21g and the chamber 21d. It is provided for.
  • the second channel opening / closing means 82 is provided for opening and closing the tube 47.
  • the third flow path opening / closing means 83 is provided for opening and closing the tube 44.
  • the fourth flow path opening / closing means 84 is provided for opening and closing the tube 45.
  • the fifth flow path opening / closing means 85 is provided for opening and closing the tube 42.
  • the sixth channel opening / closing means 86 is provided to open and close the tube 49 between the branch connector 22d and the branch connector 22e.
  • Each flow path opening / closing means 81 to 86 includes a first line 21, tubes 47, 44, 45, 42, respectively. 49 can be inserted, and the insertion portion has a clamp that is operated by a drive source such as a solenoid, an electric motor, a cylinder (hydraulic pressure or air pressure), for example. Specifically, an electromagnetic clamp operated by a solenoid is preferable.
  • the display / operation unit 17 includes, for example, a touch panel including a liquid crystal display panel, an EL display panel, and the like.
  • the display / operation unit 17 constitutes an input means for inputting predetermined information and data (for example, an initial value of the target number of blood platelets (blood cell components) to be collected, a blood count of a donor (blood donor), etc.).
  • predetermined information and data for example, an initial value of the target number of blood platelets (blood cell components) to be collected, a blood count of a donor (blood donor), etc.
  • a display unit for example, a liquid crystal display panel, an EL display panel, etc.
  • a display unit notification unit
  • an operation unit eg, a liquid crystal display panel, an EL display panel
  • an operation button, an operation switch, an operation dial, etc. may be provided separately.
  • the storage unit 18 has a storage medium (also referred to as a recording medium) in which various information, data, tables, arithmetic expressions, programs, and the like are stored (also referred to as recording).
  • a storage medium also referred to as a recording medium
  • volatile memory such as RAM
  • non-volatile memory such as ROM
  • rewritable (erasable and rewritable) non-volatile memory such as EPROM, EEPRO M
  • flash memory etc. Is done.
  • Control such as writing (storing), rewriting, erasing, and reading in the storage unit 18 is performed by the control unit 3.
  • the centrifuge drive device 10 holds a housing 201 that houses the centrifuge 20, a leg 202, a motor 203 that is a drive source, and the centrifuge 20 It has a disk-shaped fixed base 205.
  • the housing 201 is placed on and fixed to the upper part of the leg portion 202.
  • a motor 203 is fixed to the lower surface of the housing 201 by a bolt 206 via a spacer 207.
  • a fixed base 205 is fitted on the tip of the rotating shaft 204 of the motor 203 so as to be coaxial with the rotating shaft 204 and rotate integrally therewith.
  • a recess is formed in which the bottom is fitted.
  • the upper portion 145 of the centrifuge 20 is attached to the housing 201 by a fixing member (not shown). It is fixed.
  • the housing 201 is provided with an optical sensor 15 on its side (left side in FIG. 2).
  • the optical sensor 15 is configured to project light toward the blood storage space 146 and receive the reflected light.
  • the optical sensor 15 irradiates (projects) light (for example, laser light) from the light projecting unit 151, and the reflected light reflected by the reflecting surface 147 of the rotor 142 is received by the light receiving unit 152. Then, the light receiving unit 152 converts the received light amount into an electrical signal.
  • projects for example, laser light
  • the optical sensor 15 has a reflection surface on one side and a reflection plate 153 that changes the optical path, and the light emitted from the light projecting unit 151 passes through the reflection plate 153.
  • the light that is incident on the reflection surface 147 and reflected by the reflection surface 147 is received by the light receiving unit 152 via the reflection plate 153.
  • the projected light and the reflected light are transmitted through the blood component in the blood storage space 146, respectively, but the blood component interface (in this embodiment, the interface between the plasma layer 131 and the buffy coat layer 132).
  • the blood component interface in this embodiment, the interface between the plasma layer 131 and the buffy coat layer 1302.
  • the transmittance thereof changes.
  • the amount of light received by the light receiving unit 152 varies (changes), and this variation can be detected as a change in the output voltage from the light receiving unit 152.
  • the optical sensor 15 can detect the position of the blood component interface based on the change in the amount of light received by the light receiving unit 152.
  • the interface of blood components detected by the optical sensor 15 is not limited to the interface B, and may be, for example, the interface between the buffy coat layer 132 and the red blood cell layer 133.
  • each of the layers 131 to 133 in the blood storage space 146 has a different color depending on the blood component, and in particular, the red blood cell layer 133 is red with the color of the red blood cells.
  • the wavelength range is not particularly limited, but is preferably about 600 to 900 nm, and more preferably about 750 to 800 nm.
  • the turbidity sensor 14 is for detecting the turbidity (platelet concentration) of the fluid flowing in the second line 22, and outputs a voltage value corresponding to the turbidity. Specifically, the turbidity sensor 14
  • the bubble sensor 34 can detect, for example, the replacement of the aerodynamic force of the fluid flowing through the second line 22 with plasma.
  • turbidity sensor 14 and the bubble sensors 31 to 36 for example, an ultrasonic sensor, an optical sensor, an infrared sensor, or the like can be used.
  • the first liquid delivery pump 11 to which the first pump tube 21g is attached, the second liquid delivery pump 12 to which the second pump tube 22a is attached, and the third pump tube 23a are attached.
  • a non-blood contact type pump such as a roller pump is preferably used.
  • the first liquid feeding pump (blood pump) 11 a pump capable of feeding blood in any direction is used. Specifically, a roller pump capable of forward and reverse rotation is used.
  • liquid (fluid) such as blood and blood components in the first line 21 can be fed (transferred).
  • the operation of the second liquid feeding pump 12 for example, plasma (liquid) collected in the plasma collection bag 25 can be sent (transferred).
  • the operation of the third liquid feeding pump 13 for example, a liquid (fluid) such as an anticoagulant (anticoagulant liquid) in the third line 23 can be fed (transferred).
  • the blood component collection device 1 includes a first plasma collection step of collecting plasma in the plasma collection bag 25 by the operation of the first liquid feed pump 11, and a second supply of blood.
  • the first constant-speed plasma circulation process (plasma circulation process) in which the plasma collected in the plasma collection bag 25 is circulated in the blood storage space 14 6 of the centrifuge 20 by the operation of the liquid pump 12;
  • Pump 11 The second plasma collection step for collecting plasma in the plasma collection bag 25 by the operation of the second and the second blood collection pump 12 for circulating the plasma collected in the plasma collection bag 25 in the blood storage space 146 by the operation of the second liquid pump 12.
  • a plasma circulation line 24 the main part of which is composed of a tube 49, a branch connector 22d and a tube 50, is branched.
  • Connector 21f centrifuge side first line 21b, centrifuge 20 blood reservoir space 146, second line 22, branch connector 22b, tube 43, branch connector one 22c, tube 44
  • a circulation circuit is formed (configured) with the plasma collection bag 25, and the operation of the second liquid feeding pump 12 causes the circulation circuit (to pass through the blood storage space 146) to operate the plasma in the plasma collection bag 25. It is going to circulate.
  • the first plasma collection step, the second plasma collection step, the third plasma collection step, the first plasma circulation step, and the second plasma circulation step are performed before the platelet collection step.
  • the first constant-speed plasma circulation step is executed between the first plasma collection step and the second plasma collection step, and the second constant-speed plasma circulation step is performed in the second plasma collection step.
  • the third plasma collection step is performed at least once (cycle).
  • FIG. 5 is a diagram for explaining the characteristics (operation) of the blood component collection device shown in FIG. 1, and FIG. 6 shows the operation control of the second liquid feeding pump of the blood component collection device shown in FIG.
  • FIG. 7 is a diagram for explaining another operation control of the second liquid feeding pump of the blood component collection device shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the flow rate of the liquid (fluid) introduced into the blood storage space 146 of the centrifuge 20.
  • the solid line in FIGS. 5, 6 and 7 indicates the liquid (fluid) introduced into the blood storage space 146 of the centrifugal separator 20 by the operation of the first liquid feeding pump 11, that is, Blood (with anticoagulant Blood flow).
  • the flow rate of the blood cell component is the flow rate of the blood component
  • the part without the diagonal line is the flow rate of the liquid component, that is, plasma (anticoagulant-added plasma).
  • the broken line (dotted line) in FIGS. 5, 6, and 7 indicates the liquid component introduced into the blood storage space 146 of the centrifuge 20 by the operation of the second liquid feeding pump 12, that is, The flow rate of plasma (plasma supplemented with anticoagulant).
  • the flow rate indicated by the broken line indicates that the plasma collected in the plasma collection bag 25 is moved into the blood storage space 146 of the centrifuge 20 via the plasma circulation line 24 or the like by the operation of the second liquid feeding pump 12. This is the plasma flow rate (circulation flow rate) when circulating.
  • the blood component collection device 1 is used when the first plasma collection process power shifts to the first constant-speed plasma circulation process and the second plasma collection process to the second constant measurement.
  • the liquid feed amount (discharge amount) of the second liquid feed pump 12 is increased while the operation of the first liquid feed pump 11 is continued.
  • the plasma collected in the plasma collection bag 25 is collected while the plasma is collected in the plasma collection nog 25, respectively.
  • the flow rate of the liquid component introduced into the blood storage space 146 in the blood plasma collection process is changed to the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 through the Make it bigger.
  • the liquid component includes not only separated plasma but also unseparated blood plasma, anticoagulant (anticoagulant solution), and the like.
  • the second liquid delivery pump 12 is operated without interrupting the blood collection process. It operates to perform a plasma circulation process (in this embodiment, a plurality of plasma circulation processes). That is, in each of the first plasma collection process, the second plasma collection process, the third plasma collection process, the first plasma circulation process, and the second plasma circulation process, the first liquid feeding pump 11
  • the blood is collected from the donor, the blood is introduced into the blood storage space 146 of the centrifuge 20 and separated, and the plasma is collected in the plasma collection bag 25, whereby the plasma in the plasma collection bag 25 is collected. Since blood sampling is continuously performed, blood collection time can be shortened. As a result, the occupation time of the blood component collection device 1 can be reduced, and the burden on the donor can be reduced. It can be done.
  • each of the transition from the first plasma collection step to the first constant-speed plasma circulation step and the transition from the second plasma collection step to the second constant-speed plasma circulation step respectively.
  • the flow rate of the liquid component introduced into the blood storage space 146 in each constant-speed plasma circulation step (plasma circulation flow rate) is increased in the plasma collection step! Since the flow rate of the liquid component introduced into the blood storage space 146 (the circulating flow rate of plasma) is increased, the platelets trapped by the separated red blood cell layer can be washed out reliably, and the buffy coat An excessive increase in the internal viscosity of the layer (excessive concentration of the puffy coat layer) can be prevented (blocked), thereby improving the recovery rate (yield) of platelets.
  • the second liquid feeding pump 12 operates in each of the first plasma collection step, the second plasma collection step, and the third plasma collection step.
  • the plasma collected in the plasma collection bag 25 is circulated in the blood storage space 146 of the centrifuge 20 via the plasma circulation line 24 or the like. Thereby, the recovery rate of platelets can be further improved.
  • the second liquid feeding pump 12 is activated.
  • the circulation of the plasma collected in the plasma collection bag 25 is started, and FIG. 5 shows the case of the first cycle.
  • the plasma is not circulated and is performed when the amount is not less than the predetermined amount.
  • the rotation speed (number of rotations) of the first liquid delivery pump 11 depends on the first plasma collection step, the first plasma circulation step, the second plasma collection step, the second plasma circulation step, It is preferably substantially constant throughout the three plasma collection steps. That is, it is preferable that the flow rate of the blood cell component introduced into the blood storage space 146 of the centrifuge 20 (flowing through the first line 21) by the operation of the first liquid feeding pump 11 is substantially constant.
  • the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 in each plasma collection step is preferably about 30 to 150 mLZmin, and preferably about 40 to 135 mLZM. Is more preferred.
  • the amount of liquid fed by the second liquid feed pump 12 in each plasma collection step is preferably about 0 to 125 mLZmin, and preferably about 5 to 105 mLZmin. More preferred.
  • the flow rate of the liquid component introduced into the blood storage space 146 in the first plasma collection step, the flow rate of the liquid component introduced into the blood storage space 146 in the second plasma collection step, and the third flow rate It is preferable that the flow rate of the liquid component introduced into the blood storage space 146 in the plasma collection step is substantially the same.
  • the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 in each constant-speed plasma circulation step is a force depending on the rotational speed of the centrifuge 20 and the blood collection speed, respectively. It is preferably about 250 mLZmin, more preferably about 60 to 200 mLZmin.
  • the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 in each constant-speed plasma circulation step and the flow rate of the liquid component introduced into the blood storage space 146 in each plasma collection step is about 10 to 20 mLZmin. It is preferable that it is about 60 to 200 mLZmin.
  • the flow rate of the liquid component introduced into the blood storage space 146 in the second constant-speed plasma circulation step is the flow rate of the liquid component introduced into the blood storage space 146 in the first constant-speed plasma circulation step. Less (smaller) is preferred than the amount. [0128] Specifically, the flow rate of the liquid component introduced into the blood storage space 146 in the first constant-speed plasma circulation step is preferably about 100 to 250 mLZmin, and is about 120 to 200 mLZmin. Is more preferable.
  • the flow rate of the liquid component introduced into the blood storage space 146 in the second constant-speed plasma circulation step is preferably about 40 to 200 mLZmin, more preferably about 60 to 175 mLZmin. .
  • the flow rate of the liquid component introduced into the blood storage space 146 in the first constant-speed plasma circulation process and the blood flow introduced into the blood storage space 146 in the first plasma collection process which is the plasma collection process immediately before the blood flow. That is, the flow rate of the second liquid pump 12 during the transition to the first constant-speed plasma circulation process from the power of the first plasma collection process (the circulating flow rate of plasma) ) Is preferably about 60 to 220 mLZmin, more preferably about 80 to 180 mLZmin.
  • the flow rate of the liquid component introduced into the blood storage space 146 in the second constant-speed plasma circulation step, and the blood flow introduced into the blood storage space 146 in the second plasma collection step which is the immediately preceding plasma collection step. That is, the flow rate of the second liquid pump 12 during the transition to the second constant-speed plasma circulation process from the power of the second plasma collection process (the plasma circulation flow rate) ) Is preferably about 15 to 150 mLZmin, more preferably 70 to about LOOmLZmin.
  • the blood component collection device 1 includes a first plasma collection step, a second plasma collection step, a third plasma collection step, a first plasma circulation step, and a second plasma collection step.
  • the second liquid feed pump 12 is operated so that the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 becomes a predetermined target value (a constant value). It is configured to control and adjust the liquid feeding amount of the second liquid feeding pump 12! RU
  • the target value (constant value) can be set and changed by the operator operating the display / operation unit 17. For example, the donor's hematocrit value can be calculated. The target value can be appropriately changed according to the above.
  • each plasma collection step plasma circulation by the operation of the second liquid feeding pump 12 may not be performed. That is, the liquid feed amount of the second liquid feed pump 12 may be configured to increase from 0 when moving from each plasma collection step to each constant-speed plasma circulation step.
  • the liquid feeding pump 12 may be configured to adjust the liquid feeding amount.
  • the blood flow (blood collection speed) collected from the donor decreases, and the blood (blood cell components and blood) introduced into the blood storage space 146 of the centrifuge 20 decreases.
  • the second liquid pump 12 is operated to circulate the plasma (liquid component) collected in the plasma collection bag 25 into the blood storage space 146, thereby storing the blood.
  • Increase the flow rate of the liquid component introduced into the space 146 so that b2 bl.
  • the number of plasma collection steps in each cycle is not limited to 3 times, and may be, for example, 1 time, 2 times, or 4 times or more.
  • the number of constant-speed plasma circulation steps in each cycle is not limited to two. For example, it may be 1 time or 3 times or more.
  • the plasma circulation process is not limited to constant-speed plasma circulation in which plasma is circulated at a constant flow rate (speed). May be.
  • the volume (volume) is 100mL ⁇ 20%, and the number power 1. OX IO 11 ! ⁇ 9 X 10 11
  • the volume (volume) is 200mL ⁇ 20%, and the number is 2. 0 X 10 11 to 2. 9 X 10 11
  • the capacity (volume) is 250mL ⁇ 20% and the number is 3. ⁇ ⁇ ⁇ ' ⁇ ⁇ . 9 X 10 11
  • the volume (volume) is 250mL ⁇ 20% and the number is 4.0 X 10 11 or more
  • blood component collection device 1 that is, the platelet collection operation (blood component collection operation) using blood component collection device 1 is shown in the flow charts shown in Figs. The explanation will be made with reference to FIG.
  • the blood component collection device 1 repeats the platelet collection operation (blood component collection operation) a plurality of times (1st cycle to nth cycle, n is 2 or more) under the control of the control unit 3. Integer). This platelet collection operation will be described in detail later.
  • blood component collection device 1 is controlled by control unit 3 in intermediate bag 27a.
  • Concentrated platelets temporarily collected (stored) are supplied to the leukocyte removal filter 261, and the platelets are filtered, that is, a filtration operation (filtration process) is performed to separate and remove leukocytes in the concentrated platelets.
  • a filtration operation filtration process
  • the second flow path opening / closing means 82 is opened.
  • the concentrated platelets in the intermediate bag 27a are transferred into the platelet collection bag 26 via the tubes 46, 47, the leukocyte removal filter 261, and the tube 48 due to a drop (self-weight).
  • rich Most of the platelets are force passing through the filtration member of the leukocyte removal filter 261.
  • White blood cells are captured by the filtration member. For this reason, the removal rate of leukocytes in the platelet preparation can be made extremely high.
  • the timing of starting this filtration operation is not particularly limited, but from the viewpoint of shortening the donor's restraint time, this filtration operation is performed at the same time as the platelet collection operation in the final cycle (in particular, the platelet collection operation is performed earlier). It is preferred to start (in a step process).
  • the filtration operation is started almost simultaneously with the start of the second plasma collection step in the platelet collection operation in the final cycle (for example, before step S 105 in FIG. 3).
  • the description of the step of the filtration operation start (filtration process start) is omitted.
  • the blood collection needle 29 of the third line 23 and the first line 21 to the chamber 21d are primed with an anticoagulant, and then into the blood vessels of the donor (donor). Puncture blood collection needle 29.
  • the blood component collection device 1 performs the first plasma collection step.
  • blood is introduced into the blood storage space 146 of the rotor 142, and the plasma (PPP) separated by centrifuging the blood is collected in the plasma collection bag 25.
  • PPP plasma
  • the control unit 3 collects plasma (step S101 in Fig. 3).
  • the first flow path opening / closing means 81 and the fifth flow path opening / closing means 85 are opened and the other flow path opening / closing means are closed under the control of the control unit 3.
  • One donor pump 11 is operated (forward rotation) at a predetermined rotation speed (preferably about 250 mLZmin or less, more preferably about 40 to 150 mLZmin, for example, 60 mLZmin), and donor force starts blood collection.
  • the third liquid feed pump 13 is operated under the control of the control unit 3, and an anticoagulant such as ACD-A liquid is applied via the third line 23, for example. Supply and mix this anticoagulant into the blood sample.
  • the rotation speed of the third liquid feeding pump 13 is such that the control unit 3 mixes the anticoagulant with the blood sample at a predetermined ratio (preferably about 1Z20 to 1Z6, for example, 1Z10). Controlled.
  • blood blood added with an anticoagulant
  • the first line 21 blood is transferred via the first line 21 and introduced into the blood storage space 146 of the rotor 142 through the tube body 141 from the inlet 143 of the centrifuge 20. Is done.
  • control unit 3 is provided with a centrifuge drive device.
  • the blood introduced into the blood storage space 146 by the rotation of the rotor 142 causes the plasma layer (PPP layer) 131, the buffy coat layer (BC layer) 132, and the red blood cell layer (CRC layer) 133 from the inside. Separated into three layers.
  • PPP layer plasma layer
  • BC layer buffy coat layer
  • CRC layer red blood cell layer
  • the rotational speed of the rotor 142 is preferably about 3000 to 6000 rpm, and more preferably about 4200 to 5800 rpm. In the following steps, the control unit 3 does not change the rotational speed of the rotor 142 unless otherwise specified.
  • the bubble sensor 34 installed in the second line 22 detects that the fluid flowing in the second line 22 has changed to aerodynamic plasma, and the control unit 3 Based on the detection signal 34, control is performed so that the fifth flow path opening / closing means 85 is closed and the third flow path opening / closing means 83 is opened.
  • the weight of the plasma collection bag 25 is measured by the weight sensor 16, and the measured weight signal is input to the control unit 3.
  • the control unit 3 Based on the information (weight signal) from the weight sensor 16, the control unit 3 It is determined whether or not a predetermined amount (preferably about 10 to 50 g, for example, 30 g) of plasma is collected, and if a predetermined amount of plasma is collected in the plasma collection bag 25, the plasma collection bag 25 The plasma inside is circulated through the blood storage space 146 at a constant speed.
  • a predetermined amount preferably about 10 to 50 g, for example, 30 g
  • the second liquid feeding pump 12 is operated (forward rotation) at a predetermined rotational speed (preferably about 5 to 105 mLZmin, for example, 55 mLZmin).
  • the plasma in the plasma collection bag 25 is introduced into the blood storage space 146 through the plasma circulation line 24 and the first line 21 at a constant speed, and flows out from the outlet 144 of the centrifuge 20.
  • the collected plasma is collected into the plasma collection bag 25 via the second line 22, tubes 43 and 44. That is, the plasma in the plasma collection bag 25 is circulated in the blood storage space 146 at a constant speed.
  • control unit 3 determines whether or not a predetermined amount of plasma has been collected in the plasma collection bag 25 based on information (weight signal) from the weight sensor 16 (step of FIG. 3). S102).
  • the amount of plasma collected (predetermined amount) is preferably about 10 to 50 g, more preferably about 20 to 40 g.
  • step S102 when a predetermined amount of plasma is not collected in plasma collection bag 25, control unit 3 returns to step S101, and repeats step S101 and subsequent steps again.
  • step S102 If a predetermined amount of plasma is collected in the plasma collection bag 25 in step S102, the control unit 3 ends this step [11] (first plasma collection step), Move to the first constant-speed plasma circulation process.
  • blood component collection apparatus 1 performs a first constant-speed plasma circulation step.
  • the first constant-speed plasma circulation process blood is introduced into the blood storage space 146 of the rotor 142, and the operation of collecting the plasma separated by centrifuging the blood into the plasma collection bag 25 is continued.
  • the circulation rate (circulation amount) of plasma into the blood storage space 146 is also increased during the first plasma collection process, and the plasma in the plasma collection bag 25 is circulated at a constant speed through the blood storage space 146.
  • control unit 3 collects the plasma into the collection bag 25, and moves to the first constant-speed plasma circulation process from the first plasma collection process. 2 pumps Increase (change) the rotational speed of step 12 to circulate plasma (step S103 in FIG. 3).
  • the rotational speed of the second liquid feeding pump 12 is increased to a predetermined rotational speed (preferably about 55 to 225 mLZmin, for example, 165 mLZmin), and the second liquid feeding pump 12 is increased. Operate fluid pump 12 (forward rotation).
  • control unit 3 starts the first constant-speed plasma circulation for a predetermined time (preferably 10
  • step S104 If the predetermined time has not elapsed since the start of the first constant-velocity plasma circulation in step S104, the control unit 3 returns to step S103 and repeats step S103 and subsequent steps again.
  • step S104 if a predetermined time has elapsed since the start of the first constant-speed plasma circulation, the control unit 3 performs this step [12] (first constant-speed plasma circulation step ) And move to the second plasma collection step.
  • blood component collection apparatus 1 performs a second plasma collection step.
  • the circulation rate of the plasma into the blood storage space 146 is made lower than that in the first constant-speed plasma circulation step, and the plasma in the plasma collection bag 25 is passed through the blood storage space 146.
  • blood is introduced into the blood storage space 146 of the rotor 142, and plasma separated by centrifugal separation of the blood is collected in the plasma collection bag 25.
  • the second plasma collection step instead of measuring the amount of plasma collected by the weight sensor 16, the position of the interface B between the plasma layer 131 and the buffy coat layer 132 is detected. Except for the completion, the same steps as in the above-mentioned step [11] (first plasma collecting step) are performed.
  • the control unit 3 collects the plasma in the collection bag 25 and moves the second plasma collection step from the first constant-speed plasma circulation step to the second plasma collection step.
  • Plasma is circulated by reducing (changing) the rotation speed of the liquid feed pump 12 (step S105 in FIG. 3).
  • the interface B also gradually moves in the direction of the rotation axis of the rotor 142.
  • control unit 3 determines whether or not the interface B has reached a predetermined level (first position) based on the detection signal (interface position detection information) from the optical sensor 15 (Fig. 1). 3 steps S106).
  • the first position of the interface B is the position at which the detection signal from the first optical sensor 15 (output voltage from the light receiving unit 152) force is preferably about 1 to 2V. It is said.
  • step S106 when interface B has not reached the first position, control unit 3 returns to step S105, and repeats step S105 and subsequent steps again.
  • step S106 when the interface B reaches the first position, the control unit 3 ends this step [13] (second plasma collection step) and performs the second determination. Move to fast plasma circulation process.
  • blood component collection apparatus 1 performs a second constant-speed plasma circulation step.
  • the second constant speed plasma circulation process blood is introduced into the blood storage space 146 of the rotor 142, and the operation of collecting the plasma separated by centrifuging the blood into the plasma collection bag 25 is continued. Then, the circulation rate of the plasma into the blood storage space 146 is made larger than that in the second plasma collection step, and the plasma in the plasma collection bag 25 is circulated through the blood storage space 146 at a constant speed.
  • control unit 3 collects the plasma into the collection bag 25, and moves to the second constant-speed plasma circulation step from the second plasma collection step. Circulating the plasma by increasing (changing) the rotational speed of the second liquid delivery pump 12 (step S10 7 in FIG. 3).
  • the rotation speed of the second liquid feeding pump 12 is increased to a predetermined rotation speed (preferably about 10 to 175 mLZmin, for example, 85 mLZmin), and the second feeding pump 12 Operate fluid pump 12 (forward rotation).
  • control unit 3 starts a second constant-speed plasma circulation for a predetermined time (preferably 10
  • step S108 if the predetermined time has not elapsed since the start of the second constant-velocity plasma circulation, the control unit 3 returns to step S107, and repeats step S107 and subsequent steps again.
  • step S108 when a predetermined time has elapsed since the start of the second constant-speed plasma circulation, the control unit 3 performs this process [14] (second constant-speed plasma circulation process). ) And move to the third plasma collection step.
  • the blood component collection device 1 performs a third plasma collection step.
  • the circulation rate of the plasma into the blood storage space 146 is made lower than that in the second constant-speed plasma circulation step, and the plasma in the plasma collection bag 25 is passed through the blood storage space 146 to be determined. While continuing the operation of circulating at high speed, blood is introduced into the blood storage space 146 of the rotor 142, and plasma separated by centrifugal separation of the blood is collected in the plasma collection bag 25.
  • control unit 3 determines whether or not the predetermined amount of plasma is collected in the plasma collection bag 25 based on the amount and the number of rotations of the first liquid pump 11 per rotation. (Step S110 in FIG. 3).
  • the amount of plasma collected (predetermined amount) is preferably about 2 to 30 g, more preferably about 5 to 15 g.
  • step S110 When a predetermined amount of plasma is collected in the plasma collection bag 25 in step S110, the control unit 3 ends this step [15] (third plasma collection step), Move to platelet collection process (shift to 1 in Fig. 4).
  • blood component collection apparatus 1 performs a platelet collection step.
  • the collection of plasma in the collection bag 25 is interrupted, and the plasma in the plasma collection bag 25 is circulated in the blood storage space 146 while being accelerated at the first acceleration, and then the first collection is performed.
  • the acceleration is changed to the second acceleration, and is circulated while accelerating at the second acceleration.
  • the platelets are discharged from the blood storage space 146, and the concentrated platelets are collected (stored) in the intermediate bag 27a. ))
  • the control unit 3 stops collecting plasma into the collection bag 25 and performs plasma circulation by the first acceleration (step S111 in Fig. 4).
  • the first flow path opening / closing means 81 is closed, the first liquid feed pump 11 and the third liquid feed pump 13 are stopped, and the second The liquid feed pump 12 is operated (forward rotation) so that its rotational speed increases (increases) at the first acceleration.
  • the blood collection is interrupted, and the plasma in the plasma collection bag 25 is introduced into the blood storage space 146 through the plasma circulation line 24 and the first line 21 while being accelerated at the first acceleration. Then, the plasma flowing out from the outlet 144 of the centrifuge 20 is collected in the plasma collection bag 25 through the second line 22 and the tubes 43 and 44. That is, plasma collection The plasma in the collection bag 25 is circulated in the blood storage space 146 while being accelerated at the first acceleration.
  • the red blood cell layer 133 diffuses (increase in the layer thickness), and the interface B gradually turns into the rotation axis of the rotor 142. Move in the direction.
  • the first acceleration is preferably 0.5 to: about LOmLZminZsec, more preferably
  • it may change stepwise or continuously within the above range.
  • the initial speed of the first liquid delivery pump 11 in the plasma circulation by the first acceleration is preferably about 40 to 150 mLZmin, more preferably about 50 to 80 mLZmin.
  • Step S111 the control unit 3 continues Step S111 until the circulating speed of plasma into the blood storage space 146 reaches a predetermined speed (Step S112 in FIG. 4).
  • the predetermined speed that is, the rotation speed of the first liquid delivery pump 11 when the plasma circulation by the first acceleration is completed is preferably about 100 to 180 mLZmin, more preferably 140 to 160 mLZmin. It is said to be about.
  • step S112 when the circulation speed of plasma into blood storage space 146 reaches a predetermined speed, control unit 3 performs plasma circulation by the second acceleration (step of FIG. 4). S 113).
  • the acceleration of the second liquid feeding pump 12 is changed from the first acceleration to the second acceleration, and the second liquid feeding pump 12 is It operates (forward rotation) so that its rotation speed increases tl (increase) at the second acceleration.
  • the plasma in the plasma collection bag 25 is circulated in the blood storage space 146 while being accelerated at the second acceleration.
  • the second acceleration is set to be larger than the first acceleration, preferably about 3 to 20 mLZminZsec, more preferably about 5 to: LOmLZminZsec.
  • the first The acceleration of 2 may not be constant. For example, it may change stepwise or continuously within the above range.
  • control unit 3 determines whether or not the circulating speed of plasma into the blood storage space 146 has reached a predetermined speed, that is, the rotational speed of the first liquid feeding pump 11 is a predetermined speed (preferably 120 to It is determined whether or not 3 OOmLZmin (eg, 250mLZmin) has been reached (step S114 in Fig. 4).
  • a predetermined speed preferably 120 to It is determined whether or not 3 OOmLZmin (eg, 250mLZmin) has been reached (step S114 in Fig. 4).
  • step S114 if the circulation speed of plasma into blood storage space 146 has not reached the predetermined speed, control unit 3 returns to step S113 and repeats step S113 and subsequent steps again.
  • step S114 when the circulation speed of plasma into blood storage space 146 reaches a predetermined speed, control unit 3 continues the plasma circulation (step S115 in FIG. 4).
  • control unit 3 controls to maintain (hold) the rotational speed of the second liquid feeding pump 12 at the predetermined speed in step S114.
  • the circulation rate of plasma into the blood storage space 146 is preferably about 120 to 300 mLZmin, for example, 250 mLZmin.
  • control unit 3 starts step S115 and determines whether or not a predetermined time (preferably about 5 to 15 seconds, for example, 10 seconds) has passed (step S116 in FIG. 4).
  • a predetermined time preferably about 5 to 15 seconds, for example, 10 seconds
  • step S116 if a predetermined time has passed since the start of step S115! / ⁇ !, then control unit 3 outputs the output voltage from turbidity sensor 14. It is determined whether or not the power (PC concentration voltage) has dropped below a predetermined value (preferably about 2.5 to 3.5 V, for example, 3. OV) (step S 117 in FIG. 4).
  • a predetermined value preferably about 2.5 to 3.5 V, for example, 3. OV
  • step S117 If the output voltage from the turbidity sensor 14 has not decreased below the predetermined value in step S117, the control unit 3 returns to step S115 and repeats step S115 and subsequent steps again.
  • step S116 While repeating steps S115 to S117, in step S116, when step S115 is started and the force has also passed for a predetermined time, the control unit 3 performs this step [16] (platelet collection step). And the process proceeds to step S122 described later.
  • step S117 the output voltage of 14 turbidity sensors is as low as the predetermined value. If the platelet concentration in the plasma flowing in the second line 22 reaches a predetermined value or more as platelets flow out from the outlet 144 of the rotor 142, the control unit 3 collects platelets (PC) (step S 118 in FIG. 4).
  • PC platelets
  • control unit 3 closes the third flow path opening / closing means 83 and opens the fourth flow path opening / closing means 84. Control.
  • control unit 3 calculates the platelet concentration (cumulative PC concentration) in the intermediate bag 27a based on the output voltage (detection signal) from the turbidity sensor 14. The platelet concentration continues to increase after starting to collect platelets, and once it reaches the maximum concentration, it begins to decrease.
  • control unit 3 determines whether or not a predetermined time (preferably about 10 to 25 seconds, for example, 15 seconds) has elapsed since the start of platelet collection (step S119 in FIG. 4).
  • a predetermined time preferably about 10 to 25 seconds, for example, 15 seconds
  • step S119 when the predetermined time has passed since the start of platelet collection, the control unit 3 then outputs the output voltage (PC concentration) of the turbidity sensor 14. It is determined whether or not the voltage has reached a predetermined value or less (step S120 in FIG. 4).
  • the predetermined value of the output voltage of the turbidity sensor 14 is a value near the time when red blood cells are mixed in the plasma flowing through the second line 22, and is preferably about 0.5 V or less.
  • step S120 if the output voltage of the turbidity sensor 14 has not reached the predetermined value or less, the control unit 3 then determines whether or not the concentrated platelets in the intermediate bag 27a have reached the predetermined amount. (Step S121 in FIG. 4).
  • the collection amount (predetermined amount) of the concentrated platelets is preferably about 20 to about LOOmL, and more preferably about 30 to 80mL.
  • step S121 If the platelet concentrate in the intermediate bag 27a does not reach the predetermined amount in step S121, the control unit 3 returns to step S118 and repeats step S118 and subsequent steps again.
  • step S119 when the collection of platelets starts and the force has also passed for a predetermined time, or in step S120, the turbidity
  • step S120 the control unit 3 ends this step [16] (platelet collection step), and proceeds to step S122 described later.
  • step S116 and S119 If a predetermined time has elapsed in steps S116 and S119, if the output voltage (PC concentration voltage) of the turbidity sensor 14 is equal to or lower than a predetermined value in step S120, intermediate in step S121.
  • the control unit 3 opens the fifth channel opening / closing means 85 and blocks all other channel opening / closing means 81 to 84, 86. In this state, the second liquid feeding pump 12 is stopped, and this step [16] (platelet collecting step) is completed.
  • blood component collection apparatus 1 performs a step of stopping centrifuge 20.
  • control unit 3 decelerates the centrifuge 20 (step S122 in FIG. 4).
  • control unit 3 stops the centrifuge 20 (step S123 in FIG. 4).
  • the rotation of the centrifuge drive device 10 is stopped and the rotor 142 is stopped.
  • blood component collection apparatus 1 performs a blood return step. Rotor in the blood return process 1
  • Blood components (remaining blood components) in 42 blood storage spaces 146 are returned.
  • control unit 3 performs blood return (step S124 in FIG. 4).
  • the first flow path opening / closing means 81 and the fifth flow path opening / closing means 85 are opened under the control of the control unit 3, and the first liquid feed pump 11 is set to a predetermined rotational speed. (Preferably 2
  • a filtration operation for separating and removing white blood cells from concentrated platelets is performed, and air discharged from the centrifuge 20 is detected by the bubble sensor 32 when returning blood. Then, if air is further detected by the bubble sensor 35 or 36, the same process as the platelet collection operation in the first cycle is performed except that the blood return process is terminated.
  • the platelet collection operation is not limited to being performed a plurality of times, and may be performed only once, for example.
  • the configuration of blood component collection circuit 2 can also be set as appropriate, and is not limited to the illustrated configuration.
  • the first plasma circulation step including only the first plasma collection step, the second plasma collection step, and the third plasma collection step, and Even in the second plasma circulation step, the first liquid delivery pump 11 operates, blood is collected from the donor, and the blood is introduced into the blood storage space 146 of the centrifuge 20 and separated to collect plasma. Since plasma is collected in bag 25, the blood collection time can be shortened. Thereby, the occupation time of the blood component collection apparatus 1 can be reduced, and the burden on the donor can be reduced.
  • each of the transition from the first plasma collection process to the first constant-speed plasma circulation process, and the transition from the second plasma collection process to the second constant-speed plasma circulation process respectively.
  • the flow rate of the liquid component introduced into the blood storage space 146 in each constant-speed plasma circulation step (plasma circulation flow rate) is increased in the plasma collection step! Since the flow rate of the liquid component introduced into the blood storage space 146 (the circulating flow rate of plasma) is increased, the platelets trapped by the separated red blood cell layer can be washed out reliably, and buffy coat An excessive increase in the internal viscosity of the layer (excessive concentration of the puffy coat layer) can be prevented (blocked), thereby improving the recovery rate (yield) of platelets.
  • the blood component collection device of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is of any configuration having the same function. Can be substituted. In addition, the present invention may include other arbitrary components and processes.
  • the blood component collection device of the present invention is not limited to the application to obtain both platelet preparations and plasma preparations (or the raw material plasma of plasma fractionation preparations), but only platelet preparations from blood. You may apply when you get.
  • the blood component collection device of the present invention is not limited to the case where it is applied to obtain a platelet preparation or a plasma preparation, but is applied, for example, to obtain an erythrocyte preparation, a leukocyte preparation, etc. from blood. May be. That is, in the blood component collection device of the present invention, the blood cell component collected in the blood component collection bag is not limited to platelets (platelets including plasma), but, for example, red blood cells (red blood cells including plasma), white blood cells (including plasma) White blood cells).
  • the blood separator is not limited to a centrifugal type, and may be, for example, a membrane type.
  • the cells separated and removed by the cell separation filter are also white blood. Not limited to spheres.
  • the optical sensor is not limited to the illustrated one, and may be a line sensor or the like, for example.
  • the method of the blood component collection device of the present invention is not limited to the intermittent type, and may be, for example, a continuous type. Moreover, the thing without a blood return process may be sufficient.
  • the flow rate of the liquid component introduced into the blood separator is made relatively large, that is, the plasma circulation step is set to be larger than the flow rate in the plasma collection step. Therefore, for example, blood cell components (for example, platelets) to be collected that are confined by the separated erythrocyte layer can be reliably washed out. Thereby, the recovery rate of the blood cell component can be improved.
  • blood cell components for example, platelets
  • the plasma circulation process blood from the donor is collected and the plasma is collected in the plasma collection bag, so that the blood collection time can be shortened. Thereby, the occupation time of the blood component collection device can be reduced, and the burden on the blood donor can be reduced. Therefore, it has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

A blood component collecting apparatus structured so that in each of the transition from the first plasma collecting step to the first constant-rate plasma circulating step and the transition from the second plasma collecting step to the second constant-rate plasma circulating step, the liquid feeding rate of second liquid feeding pump is increased while continuing the operation of first liquid feeding pump. Accordingly, in each of the first constant-rate plasma circulating step and the second constant-rate plasma circulating step, while collecting plasma in a plasma collection bag, not only is the plasma collected in the plasma collection bag circulated into a blood storage space of centrifugal separator via a plasma circulation line, etc. but also the flow rate of liquid component introduced in the blood storage space is made greater than that of liquid component introduced in the blood storage space during the plasma collecting step.

Description

明 細 書  Specification
血液成分採取装置  Blood component collection device
技術分野  Technical field
[0001] 本発明は、血液成分採取装置に関するものである。  The present invention relates to a blood component collection device.
背景技術  Background art
[0002] 採血を行う場合、血液の有効利用および供血者の負担軽減などの理由から、採血 血液を遠心分離などにより各血液成分に分離し、輸血者に必要な成分だけを採取し 、その他の成分は供血者に返還する成分採血が行われて!/、る。  [0002] When collecting blood, for the purpose of effective use of blood and reduction of burden on blood donors, blood is separated into each blood component by centrifugation or the like, and only components necessary for the transfuser are collected. Ingredients are collected and returned to the donor!
[0003] このような成分採血にお!、ては、血液成分採取装置を用いて、供血者から採血した 血液を血液成分採取回路に導入し、該血液成分採取回路に設置された遠心ボウル と呼ばれる遠心分離器により、血漿、バフィ一コートおよび赤血球に分離し、そのうち のバフィ一コートから血小板 (血漿を含む血小板)を分離し、血漿を含む血小板を血 小板採取バッグに回収して血小板製剤とし、血漿も血漿採取バッグに回収して血漿 製剤または血漿分画製剤の原料とし、残りの血漿、白血球および赤血球は、供血者 に返血することが行われる(例えば、特許第 2776988号公報参照)。  [0003] For such component blood collection !, blood collected from a blood donor using a blood component collection device is introduced into a blood component collection circuit, and a centrifuge bowl installed in the blood component collection circuit; It is separated into plasma, buffy coat and erythrocytes by a centrifuge, and platelets (platelet containing plasma) are separated from the buffy coat, and platelets containing plasma are collected in a platelet collection bag to obtain a platelet product The plasma is also collected in a plasma collection bag and used as a raw material for the plasma product or plasma fractionation product, and the remaining plasma, white blood cells and red blood cells are returned to the donor (see, for example, Japanese Patent No. 2776988) ).
[0004] この血液成分採取装置では、血漿採取バッグに血漿を採取する血漿採取工程 (ド ロー)と、前記血漿の採取を中止(中断)し、血漿採取バッグに採取した血漿を遠心 分離器を通過するように循環させる血漿循環工程 (ドゥエル)と、血漿採取バッグに採 取した血漿を、その流量が増大するように遠心分離器に循環させ、血小板採取バッ グに血小板を採取する血小板採取工程 (サージ)と、残りの血液成分を供血者に返 還する返血工程 (リターン)とが実行される。なお、血漿採取工程では、同時に、血漿 採取バッグに採取した血漿を遠心分離器を通過するように循環させることも行なわれ る。 [0004] In this blood component collection device, a plasma collection step (draw) for collecting plasma in a plasma collection bag, the collection of the plasma is stopped (interrupted), and a plasma is collected from the plasma collected in the plasma collection bag A plasma circulation process (dwell) that circulates to pass through, and a platelet collection process that circulates the plasma collected in the plasma collection bag to the centrifuge so that the flow rate increases and collects platelets in the platelet collection bag (Surge) and a blood return process (return) in which the remaining blood components are returned to the donor. In the plasma collection step, the plasma collected in the plasma collection bag is also circulated so as to pass through the centrifuge.
[0005] し力しながら、前記従来の血液成分採取装置では、血漿の採取を中止して血漿循 環工程を行なうので、採血時間が長くかかり、これにより、血液成分採取装置の占有 時間が長くなり、また、供血者の負担も増大するという欠点がある。  [0005] However, in the conventional blood component collection device, since the collection of plasma is stopped and the plasma circulation process is performed, it takes a long time to collect the blood, and thus the occupation time of the blood component collection device is increased. In addition, there is a disadvantage that the burden on blood donors also increases.
発明の開示 本発明の目的は、採取する血球成分の回収率を高くしつつ、採血時間を短縮する ことができる血液成分採取装置を提供することにある。 Disclosure of the invention An object of the present invention is to provide a blood component collection device capable of shortening the blood collection time while increasing the recovery rate of collected blood cell components.
上記目的を達成するために、本発明の血液成分採取装置は、  In order to achieve the above object, the blood component collection device of the present invention comprises:
供血者から血液を採取する中空針を備えた採血手段と、  A blood collection means comprising a hollow needle for collecting blood from a donor,
前記採血手段により採取された血液を分離する血液分離器と、  A blood separator for separating blood collected by the blood collecting means;
前記血液分離器により分離された血漿を採取する血漿採取バッグと、  A plasma collection bag for collecting plasma separated by the blood separator;
前記血液分離器により分離された所定の血球成分を採取する血液成分採取バッグ と、  A blood component collection bag for collecting predetermined blood cell components separated by the blood separator;
前記中空針と前記血液分離器の流入口とを接続する血液処理ラインと、 前記血液処理ラインに設けられた分岐部力 分岐し、前記血漿採取バッグに接続 された血漿循環用ラインとを備える血液成分採取回路と、  Blood comprising: a blood processing line connecting the hollow needle and the inlet of the blood separator; a branching force provided in the blood processing line; and a blood circulation line connected to the plasma collection bag. Component collection circuit;
前記血液処理ラインに設置され、少なくとも前記血液処理ライン内の流体を送液す る第 1の送液手段と、  A first liquid delivery means installed in the blood treatment line and delivering at least a fluid in the blood treatment line;
前記血漿循環用ラインに設置され、少なくとも前記血漿採取バッグに採取された血 漿を送液する第 2の送液手段とを有し、  A second liquid feeding means installed in the plasma circulation line and feeding at least the plasma collected in the plasma collection bag;
採取した血液を分離し、前記第 1の送液手段の作動により、前記血漿採取バッグに 血漿を採取する血漿採取工程と、前記第 2の送液手段の作動により、前記血漿採取 バッグに採取された血漿を血漿循環用ラインを介して前記血液分離器に循環させる 血漿循環工程と、前記血液成分採取バッグに所定の血球成分を採取する血液成分 採取工程とを実行して成分採血を行なう血液成分採取装置であって、  The collected blood is separated and collected in the plasma collection bag by the plasma collection step of collecting plasma in the plasma collection bag by the operation of the first liquid delivery means and the operation of the second liquid delivery means. Blood components for collecting blood components by performing a plasma circulation step for circulating the collected plasma to the blood separator via a plasma circulation line and a blood component collection step for collecting a predetermined blood cell component in the blood component collection bag A collecting device,
前記血漿採取工程から前記血漿循環工程に移行する際、前記第 1の送液手段の 作動を継続しつつ、前記第 2の送液手段の送液量を増大させ、これにより、前記血漿 循環工程において、前記血漿採取バッグに血漿を採取しつつ、前記血漿採取バッグ に採取された血漿を血漿循環用ラインを介して前記血液分離器に循環させるととも に、前記血液分離器に導入される液性成分の流量を、前記血漿採取工程において 前記血液分離器に導入される液性成分の流量より大きくするように構成されているこ とを特徴とする。  When shifting from the plasma collection step to the plasma circulation step, the amount of liquid fed by the second liquid feeding unit is increased while continuing the operation of the first liquid feeding unit, thereby the plasma circulation step. In this case, while collecting plasma in the plasma collection bag, the plasma collected in the plasma collection bag is circulated to the blood separator via a plasma circulation line, and a liquid introduced into the blood separator is collected. The flow rate of the sex component is configured to be larger than the flow rate of the liquid component introduced into the blood separator in the plasma collection step.
このような本発明によれば、血液分離器に導入される液性成分の流量を、比較的 大きぐすなわち、血漿採取工程における前記流量より大きく設定した血漿循環工程 を実行するようになっているので、例えば、分離された赤血球層等によって閉じ込め られている採取する血球成分 (例えば、血小板)を確実に洗い出すことができる。これ により、その血球成分の回収率を向上させることができる。 According to the present invention, the flow rate of the liquid component introduced into the blood separator is relatively reduced. In other words, since the plasma circulation process set to be larger than the flow rate in the plasma collection process is executed, for example, blood cell components (for example, platelets) to be collected confined by the separated red blood cell layer or the like are collected. Can be washed out reliably. Thereby, the recovery rate of the blood cell component can be improved.
また、血漿循環工程においても、供血者から血液を採取して血漿採取バッグに血 漿を採取するので、採血時間を短縮することができる。これにより、血液成分採取装 置の占有時間を低減させることができ、また、供血者の負担を軽減することができる。  In the plasma circulation process, blood is collected from a donor and collected in a plasma collection bag, so that the time for collecting blood can be shortened. Thereby, the occupation time of the blood component collection device can be reduced, and the burden on the blood donor can be reduced.
[0007] 本発明の血液成分採取装置では、前記血漿循環工程において前記血液分離器に 導入される液性成分の流量は、 40〜250mL/minであるのが好まし!/、。  [0007] In the blood component collection device of the present invention, the flow rate of the liquid component introduced into the blood separator in the plasma circulation step is preferably 40 to 250 mL / min! /.
これにより、血液分離器力 の採取する血球成分の流出を防止しつつ、分離された 赤血球層によって閉じ込められて ヽる採取する血球成分を確実に洗い出すことがで き、また、バフィ一コート層の内部粘度の過剰な上昇を防止することができ、採取する 血球成分の回収率を向上させることができる。  As a result, the blood cell component collected by the separated red blood cell layer can be surely washed out while preventing the outflow of the blood cell component collected by the blood separator force, and the buffy coat layer can be washed out. An excessive increase in internal viscosity can be prevented, and the recovery rate of collected blood cell components can be improved.
[0008] 本発明の血液成分採取装置では、前記血漿循環工程において前記血液分離器に 導入される液性成分の流量と、前記血漿採取工程にお!ヽて前記血液分離器に導入 される液性成分の流量との差は、 10〜220mLZminであるのが好まし!/、。  In the blood component collection device of the present invention, the flow rate of the liquid component introduced into the blood separator in the plasma circulation step and the plasma collection step! The difference from the flow rate of the liquid component introduced into the blood separator is preferably 10 to 220 mLZmin! /.
これにより、血液分離器力 の採取する血球成分の流出を防止しつつ、分離された 赤血球層によって閉じ込められて ヽる採取する血球成分を確実に洗い出すことがで き、また、バフィ一コート層の内部粘度の過剰な上昇を防止することができ、採取する 血球成分の回収率を向上させることができる。  As a result, the blood cell component collected by the separated red blood cell layer can be surely washed out while preventing the outflow of the blood cell component collected by the blood separator force, and the buffy coat layer can be washed out. An excessive increase in internal viscosity can be prevented, and the recovery rate of collected blood cell components can be improved.
[0009] 本発明の血液成分採取装置では、前記血漿採取工程にお!ヽて、前記第 2の送液 手段が作動し、前記血漿採取バッグに採取された血漿を前記血漿循環用ラインを介 して前記血液分離器に循環させるように構成されて 、るのが好ま 、。  In the blood component collection device of the present invention, the second liquid feeding means is activated during the plasma collection step, and the plasma collected in the plasma collection bag is passed through the plasma circulation line. And is preferably configured to circulate through the blood separator.
これにより、採取する血球成分の回収率をさらに向上させることができる。  Thereby, the collection rate of the collected blood cell components can be further improved.
[0010] 本発明の血液成分採取装置では、前記血漿採取工程にお!ヽて、前記血液分離器 に導入される液性成分の流量が所定の目標値になるように、前記第 2の送液手段の 作動を制御して該第 2の送液手段の送液量を調整するように構成されて ヽるのが好 ましい。 これにより、採血量が減少することで血液分離器内の血液や血液成分に過剰な負 荷 (例えば、血液分離器として遠心分離器を用いる場合は、過剰な遠心)がかかり、 採取する血球成分の回収率が低下してしまうのを防止することができる。 [0010] In the blood component collection device of the present invention, the second feeding is performed so that the flow rate of the liquid component introduced into the blood separator becomes a predetermined target value during the plasma collection step. It is preferable that the operation of the liquid supply means is controlled to adjust the liquid supply amount of the second liquid supply means. This reduces the amount of blood collected and places an excessive load on the blood and blood components in the blood separator (for example, if the centrifuge is used as a blood separator, excessive centrifugation). It is possible to prevent the recovery rate from decreasing.
[0011] 本発明の血液成分採取装置では、前記血漿循環工程において、前記血液分離器 に導入される液性成分の流量が所定の目標値になるように、前記第 2の送液手段の 作動を制御して該第 2の送液手段の送液量を調整するように構成されて ヽるのが好 ましい。  [0011] In the blood component collection device of the present invention, in the plasma circulation step, the second liquid feeding means is operated so that the flow rate of the liquid component introduced into the blood separator becomes a predetermined target value. It is preferable that the second liquid feeding means is controlled to control the liquid feeding amount.
これにより、採血量が減少することで血液分離器内の血液や血液成分に過剰な負 荷 (例えば、血液分離器として遠心分離器を用いる場合は、過剰な遠心)がかかり、 採取する血球成分の回収率が低下してしまうのを防止することができる。  This reduces the amount of blood collected and places an excessive load on the blood and blood components in the blood separator (for example, if the centrifuge is used as a blood separator, excessive centrifugation). It is possible to prevent the recovery rate from decreasing.
[0012] 本発明の血液成分採取装置では、前記血液成分採取工程の前に、前記血漿採取 工程を複数回実行し、該各血漿採取工程の間に、それぞれ、前記血漿循環工程を 実行するように構成されて 、るのが好ま 、。  In the blood component collection device of the present invention, the plasma collection step is executed a plurality of times before the blood component collection step, and the plasma circulation step is executed between the plasma collection steps. It is preferred to be structured.
これにより、採取する血球成分の回収率をさらに向上させることができる。  Thereby, the collection rate of the collected blood cell components can be further improved.
[0013] 本発明の血液成分採取装置では、当該血液成分採取装置は、前記血漿採取工程 と、前記血漿循環工程と、前記血液成分採取工程と、残りの血液成分を供血者に返 還する返血工程とを有する血液成分採取操作を少なくとも 1サイクル実行するもので あるのが好ましい。  [0013] In the blood component collection device of the present invention, the blood component collection device includes the plasma collection step, the plasma circulation step, the blood component collection step, and a return for returning the remaining blood components to the donor. It is preferable that at least one cycle of a blood component collecting operation including a blood process is performed.
これにより、 1本の採血針(中空針)を用いて、採血工程 (血漿採取工程)と返血ェ 程を繰り返し実行することができるため、供血者 (ドナー)は両腕を拘束されることがな ぐ供血者の負担を小さくすることができる。  As a result, the blood collection process (plasma collection process) and the return process can be repeated using a single blood collection needle (hollow needle), so that the donor (donor) is restrained in both arms. The burden on blood donors can be reduced.
[0014] 本発明の血液成分採取装置では、前記所定の血球成分は、血小板であるのが好 ましい。 In the blood component collection device of the present invention, the predetermined blood cell component is preferably platelets.
これにより、分離された赤血球層等によって閉じ込められている血小板を確実に洗 い出すことができ、血小板の回収率を向上させることができる。  As a result, platelets confined by the separated red blood cell layer or the like can be reliably washed out, and the platelet recovery rate can be improved.
[0015] 本発明の血液成分採取装置は、 [0015] The blood component collection device of the present invention,
供血者から血液を採取する中空針を備えた採血手段と、  A blood collection means comprising a hollow needle for collecting blood from a donor,
前記採血手段により採取された血液を分離する遠心分離器と、 前記遠心分離器により分離された血漿成分を採取する血漿採取バッグと、 前記遠心分離器により分離された血小板成分を採取する血小板採取バッグと、 前記中空針と前記遠心分離器の流入口とを接続する血液処理ラインと、 前記血液処理ラインに設けられた分岐部力 分岐し、前記血漿採取バッグに接続 された血漿循環用ラインとを備える血液成分採取回路と、 A centrifuge for separating blood collected by the blood collection means; Connecting a plasma collection bag for collecting plasma components separated by the centrifuge, a platelet collection bag for collecting platelet components separated by the centrifuge, and the hollow needle and the inlet of the centrifuge A blood component collection circuit comprising: a blood treatment line that branches; a branching force provided in the blood treatment line; and a plasma circulation line that is connected to the plasma collection bag;
前記血液処理ラインに設置され、前記血液処理ライン内の液体を移送する第 1の 送液手段と、  A first liquid feeding means installed in the blood processing line for transferring a liquid in the blood processing line;
前記血漿循環用ラインに設置され、前記血漿採取バッグ内の液体を移送する第 2 の送液手段と、  A second liquid feeding means installed in the plasma circulation line for transferring the liquid in the plasma collection bag;
前記第 1の送液手段を作動して、前記採血手段により採取した血液を前記遠心分 離器に移送し、前記遠心分離器により分離された血漿成分を前記血漿採取バッグに 採取する採血工程と、前記第 2の送液手段を作動して、前記血漿採取バッグに採取 された血漿成分を前記遠心分離器に移送し、前記血漿採取バッグと前記遠心分離 器との間で血漿成分を循環する血漿循環工程と、前記第 2の送液手段を作動して、 前記血漿採取バッグに採取された血漿成分を所定の加速度で加速させつつ移送し 、前記遠心分離器から流出した血小板成分を前記血小板採取バッグに採取する血 小板採取工程とを実行するように、前記第 1の送液手段と、前記第 2の送液手段の作 動を制御する制御手段とを有する血液成分採取装置であって、  A blood collecting step of operating the first liquid feeding means to transfer the blood collected by the blood collecting means to the centrifugal separator and collecting the plasma component separated by the centrifugal separator in the plasma collection bag; The second liquid feeding means is operated to transfer the plasma component collected in the plasma collection bag to the centrifuge, and the plasma component is circulated between the plasma collection bag and the centrifuge. The plasma circulation step and the second liquid feeding means are operated to transfer the plasma component collected in the plasma collection bag while accelerating at a predetermined acceleration, and the platelet component flowing out from the centrifuge is transferred to the platelet A blood component collecting apparatus having a first liquid feeding means and a control means for controlling the operation of the second liquid feeding means so as to execute a platelet collecting step for collecting in a collection bag. And
前記制御手段は、前記第 1の送液手段を作動して前記採血工程を実行して!/ヽる途 中で、前記採血工程を中断せずに、前記第 2の送液手段を作動して前記血漿循環 工程を実行し、前記採血工程が終了した後に、前記血小板採取工程を実行するよう に構成されて 、ることを特徴とする。  The control means operates the second liquid supply means without interrupting the blood collection process while the first blood supply means is operated to execute the blood collection process. The plasma circulation step is executed, and the platelet collection step is executed after the blood collection step is completed.
[0016] 本発明の血液成分採取装置では、前記制御手段は、前記血小板採取工程を実行 する前に、前記採血工程を実行している途中で、前記採血工程を中断せずに、複数 回の血漿循環工程を実行するように構成されて ヽるのが好まし 、。  [0016] In the blood component collecting device of the present invention, the control means performs a plurality of times without interrupting the blood collecting step during the blood collecting step before executing the platelet collecting step. Preferred to be configured to perform the plasma circulation process.
[0017] 本発明の血液成分採取装置では、前記制御手段は、前記採血工程を単独で実行 した後に、前記血小板採取工程を実行するように構成されて ヽるのが好ま ヽ。 図面の簡単な説明 [0018] [図 1]図 1は、本発明の血液成分採取装置の第 1実施形態を示す平面図である。 In the blood component collection device of the present invention, it is preferable that the control means is configured to execute the platelet collection step after performing the blood collection step alone. Brief Description of Drawings FIG. 1 is a plan view showing a first embodiment of a blood component collection device of the present invention.
[図 2]図 2は、図 1に示す血液成分採取装置が備える遠心分離器駆動装置に遠心分 離器が装着された状態の部分破断断面図である。  [FIG. 2] FIG. 2 is a partially cutaway cross-sectional view showing a state in which a centrifuge is attached to the centrifuge driving device provided in the blood component collection device shown in FIG.
[図 3]図 3は、図 1に示す血液成分採取装置の作用を説明するためのフローチャート である。  FIG. 3 is a flowchart for explaining the operation of the blood component collection device shown in FIG. 1.
[図 4]図 4は、図 1に示す血液成分採取装置の作用を説明するためのフローチャート である。  FIG. 4 is a flowchart for explaining the operation of the blood component collection device shown in FIG. 1.
[図 5]図 5は、図 1に示す血液成分採取装置の特徴を説明するための図である。  FIG. 5 is a diagram for explaining the characteristics of the blood component collection device shown in FIG. 1.
[図 6]図 6は、図 1に示す血液成分採取装置の第 2の送液ポンプの作動制御を説明 するための図である。  FIG. 6 is a diagram for explaining the operation control of the second liquid feeding pump of the blood component collection device shown in FIG. 1.
[図 7]図 7は、図 1に示す血液成分採取装置の第 2の送液ポンプの他の作動制御を 説明するための図である。  FIG. 7 is a diagram for explaining another operation control of the second liquid feeding pump of the blood component collection device shown in FIG. 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の血液成分採取装置を添付図面に示す好適実施形態に基づいて詳 細に説明する。 Hereinafter, the blood component collection device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
[0020] 図 1は、本発明の血液成分採取装置の第 1実施形態を示す平面図であり、図 2は、 図 1に示す血液成分採取装置が備える遠心分離器駆動装置に遠心分離器が装着さ れた状態の部分破断断面図である。  FIG. 1 is a plan view showing a first embodiment of a blood component collection device of the present invention, and FIG. 2 shows a centrifuge in a centrifuge driving device provided in the blood component collection device shown in FIG. FIG. 4 is a partially cutaway sectional view of a state where the device is mounted.
[0021] 図 1に示す血液成分採取装置 1は、血液を複数の血液成分に分離するとともに分 離された所定の血球成分である血小板 (血漿を含む血小板)(血液成分)と、血漿 (血 液成分)とを採取するための装置である。この血液成分採取装置 1は、内部に貯血空 間 146を有するローター 142と、貯血空間 146に連通する流入口 143および排出口 (流出口) 144とを有し、ローター 142の回転により流入口 143より導入された血液を 貯血空間 146内で遠心分離する遠心分離器 (血液分離器) 20と、採血針 (採血手段 ) 29と遠心分離器 20の流入口 143とを接続する第 1のライン 21と、遠心分離器 20の 排出口 144に接続された第 2のライン 22と、第 1のライン 21に接続された第 3のライン 23と、チューブ 49および 50を介して第 1のライン 21に接続され、かつチューブ 43お よび 44を介して第 2のライン 22に接続された血漿採取バッグ (採取バッグ) 25と、チュ ーブ 42を介して第 2のライン 22に接続されたエアーバッグ 27bと、チューブ 43および 45を介して第 2のライン 22に接続された中間ノ ッグ (一時貯留バッグ)(採取バッグ) 27aと、チューブ 46、 47および 48を介して中間バッグ 27aに接続された血小板採取 ノ ッグ (採取バッグ) 26と、チューブ 51を介して血小板採取バッグ 26に接続されたバ ッグ 28とを有する血液成分採取回路 (採取回路) 2を備えて ヽる。 [0021] A blood component collection apparatus 1 shown in FIG. 1 separates blood into a plurality of blood components and separates the separated blood cell components, which are platelets (platelets including plasma) (blood components) and plasma (blood components). Liquid component). This blood component collection device 1 has a rotor 142 having a blood storage space 146 therein, an inlet 143 and an outlet (outlet) 144 communicating with the blood storage space 146, and the inlet 142 is rotated by the rotation of the rotor 142. The first line 21 that connects the centrifuge (blood separator) 20 that centrifuges the introduced blood in the blood storage space 146, the blood collection needle (blood collection means) 29, and the inlet 143 of the centrifuge 20 21 The second line 22 connected to the outlet 144 of the centrifuge 20, the third line 23 connected to the first line 21, and the first line 21 via the tubes 49 and 50. A plasma collection bag (collection bag) 25 connected and connected to the second line 22 via tubes 43 and 44; Air bag 27b connected to the second line 22 via the tube 42 and an intermediate dog (temporary storage bag) connected to the second line 22 via the tubes 43 and 45 (collection bag) 27a And a platelet collection bag (collection bag) 26 connected to the intermediate bag 27a via the tubes 46, 47 and 48, and a bag 28 connected to the platelet collection bag 26 via the tube 51. A blood component collection circuit (collection circuit) 2 is provided.
[0022] さらに、血液成分採取装置 1は、遠心分離器 20のローター 142を回転させるための 遠心分離器駆動装置 10と、第 1のライン 21のための第 1の送液ポンプ (第 1の送液手 段) 11と、第 2の送液ポンプ (第 2の送液手段) 12と、第 3のライン 23のための第 3の 送液ポンプ (第 3の送液手段) 13と、血液成分採取回路 2の流路の途中を開閉し得る 複数 (本実施形態では、第 1〜第 6の 6個)の流路開閉手段 81、 82、 83、 84、 85、 8 6と、遠心分離器駆動装置 10、第 1の送液ポンプ 11、第 2の送液ポンプ 12、第 3の送 液ポンプ 13および複数の流路開閉手段 81〜86を制御するための制御部(制御手 段) 3と、濁度センサ (血小板濃度センサ) 14と、光学式センサ 15と、重量センサ 16と 、複数 (本実施形態では、 6個)の気泡センサ 31、 32、 33、 34、 35、 36とを備えてい る。 [0022] Furthermore, the blood component collection device 1 includes a centrifuge drive device 10 for rotating the rotor 142 of the centrifuge 20 and a first liquid feed pump for the first line 21 (first Liquid feeding means) 11, a second liquid feeding pump (second liquid feeding means) 12, a third liquid feeding pump (third liquid feeding means) 13 for the third line 23, A plurality of (in this embodiment, first to sixth six) channel opening / closing means 81, 82, 83, 84, 85, 86, which can open and close the middle of the channel of the blood component collection circuit 2, and centrifugation Control unit (control means) for controlling the separator driving device 10, the first liquid feeding pump 11, the second liquid feeding pump 12, the third liquid feeding pump 13, and the plurality of flow path opening / closing means 81 to 86. 3), turbidity sensor (platelet concentration sensor) 14, optical sensor 15, weight sensor 16, and a plurality (6 in this embodiment) of bubble sensors 31, 32, 33, 34, 35, 36 And with There Ru.
[0023] そこで、最初に、血液成分採取回路 2について説明する。  Therefore, first, blood component collection circuit 2 will be described.
この血液成分採取回路 2は、ドナー (供血者)から血液を採取する採血針(中空針) (採血手段) 29と遠心分離器 20の流入口 143とを接続し、第 1のポンプチューブ 21g を備え、採血ラインおよび返血ラインの双方として兼用される第 1のライン 21 (採血お よび返血ライン)(血液処理ライン) 21と、一端側が遠心分離器 20の排出口(流出口) 144に接続された第 2のライン 22と、第 1のライン 21の採血針 29の近くに接続され、 第 3のポンプチューブ 23aを備える第 3のライン (抗凝固剤注入ライン) 23と、第 1のラ イン 21の第 1のポンプチューブ 2 lgより遠心分離器 20側に接続されたチューブ 50と 、チューブ 50に接続され、一部が第 2のポンプチューブ 22aを構成するチューブ 49 と、第 2のライン 22に接続されたチューブ 43と、チューブ 43に接続されたチューブ 4 4と、チューブ 44および 49に接続された血漿採取バッグ 25と、第 2のライン 22に接続 されたチューブ 42と、チューブ 42に接続されたエアーバッグ 27bと、チューブ 43に 接続されたチューブ 45と、チューブ 45に接続された中間バッグ 27aと、中間バッグ 2 7aに接続されたチューブ 46と、チューブ 46に接続されたチューブ 47と、チューブ 48 と、チューブ 48に接続された血小板採取バッグ 26と、血小板採取バッグ 26に接続さ れたチューブ 51と、チューブ 51に接続されたバッグ 28とを備えている。エアーバッグ 27bと中間バッグ 27aとは、一体的に形成(一体化)されている。 This blood component collection circuit 2 connects a blood collection needle (hollow needle) (blood collection means) 29 for collecting blood from a donor (blood donor) and an inlet 143 of a centrifuge 20 and connects a first pump tube 21g to The first line 21 (blood collection and blood return line) (blood treatment line) 21 that is also used as both a blood collection line and a blood return line, and one end side to the outlet (outlet) 144 of the centrifuge 20 A second line 22 connected, a third line (anticoagulant infusion line) 23 connected near the blood collection needle 29 of the first line 21 and having a third pump tube 23a, and a first line The tube 50 connected to the centrifuge 20 side from the first pump tube 2 lg of the line 21, the tube 49 connected to the tube 50, a part of which constitutes the second pump tube 22 a, and the second Tube 43 connected to line 22 and tube connected to tube 43 , A plasma collection bag 25 connected to tubes 44 and 49, a tube 42 connected to the second line 22, an air bag 27b connected to the tube 42, and a tube connected to the tube 43. 45 and the intermediate bag 27a connected to the tube 45 and the intermediate bag 2 Tube 46 connected to 7a, tube 47 connected to tube 46, tube 48, platelet collection bag 26 connected to tube 48, tube 51 connected to platelet collection bag 26, and tube 51 And a bag 28 connected to the. The air bag 27b and the intermediate bag 27a are integrally formed (integrated).
[0024] 第 1のライン 21は、採血針 29が接続された採血針側第 1ライン 21aと、一端側が採 血針側第 1ライン 21aに接続され、他端側が遠心分離器 20の流入口 143に接続され た遠心分離器側第 1ライン 21bとを有している。採血針 29としては、例えば、公知の 金属針が使用される。 [0024] The first line 21 includes a blood collection needle side first line 21a to which a blood collection needle 29 is connected, one end side connected to the blood collection needle side first line 21a, and the other end side to the inlet of the centrifuge 20 143 and a centrifuge side first line 21b connected to 143. As the blood collection needle 29, for example, a known metal needle is used.
[0025] この採血針側第 1ライン 21a、遠心分離器側第 1ライン 21b、後述する第 2のライン 2 2、第 3のライン 23は、それぞれ、軟質榭脂製チューブ、または、その軟質榭脂製チ ユーブが複数接続されて形成されて!、る。  [0025] The blood collection needle-side first line 21a, the centrifuge-side first line 21b, the second line 22 and the third line 23, which will be described later, are each a soft resin tube or its soft It is formed by connecting a plurality of grease tubes!
[0026] 採血針側第 1ライン 21aは、採血針 29側より、第 3のライン 23との接続用分岐コネク ター 21cと、気泡およびマイクロァグリゲート除去のためのチャンバ一 21dと、チュー ブ 50との接続用分岐コネクター 21fとを備え、また、チャンバ一 21dと分岐コネクター 21fとの間に形成された第 1のポンプチューブ 21gを有している。  [0026] The blood collection needle side first line 21a is connected from the blood collection needle 29 side to a branch connector 21c for connection to the third line 23, a chamber 21d for removing bubbles and microaggregates, and a tube. And a first pump tube 21g formed between the chamber 21d and the branch connector 21f.
[0027] また、採血針側第 1ライン 21aに沿って、採血針 29側より、気泡センサ 35、 36およ び 32が設置されている。この場合、気泡センサ 35および 36は、分岐コネクター 21c とチャンバ一 21dとの間に配置され、気泡センサ 32は、チャンバ一 21dと第 1のポン プチューブ 2 lgとの間に配置されている。  In addition, bubble sensors 35, 36, and 32 are installed along the blood collection needle side first line 21a from the blood collection needle 29 side. In this case, the bubble sensors 35 and 36 are disposed between the branch connector 21c and the chamber 21d, and the bubble sensor 32 is disposed between the chamber 21d and the first pump tube 2lg.
[0028] 気泡センサ 35、 36および 32は、チューブの外側力も超音波を送受信し、液体と気 泡 (気体)とで超音波の伝導率が異なるのを利用して、チューブ内の気体および液体 (気 Z液の別、気 Z液面等)を検出することができる検出手段である。なお、気泡セン サ 31、 33および 34も、上記と同様の機能を有している検出手段である。また、気泡 センサ (気体および液体検出手段)としては、上記超音波式センサに限らず、例えば 、光学式センサ、赤外線センサ等を用いてもよい。  [0028] The bubble sensors 35, 36, and 32 transmit and receive ultrasonic waves as well as the external force of the tube, and utilize the difference in ultrasonic conductivity between the liquid and bubbles (gas). This is a detection means capable of detecting (separation of gas Z liquid, gas Z liquid level, etc.). The bubble sensors 31, 33 and 34 are detection means having the same function as described above. Further, the bubble sensor (gas and liquid detection means) is not limited to the ultrasonic sensor, and for example, an optical sensor or an infrared sensor may be used.
[0029] また、チャンバ一 21dには、チューブ 2 lhを介して通気性かつ菌不透過性のフィル ター 21iが接続されている。このラインは、例えば、採血針側第 1ライン 21aの内圧の 検出等に用いることができる。 [0030] 一方、遠心分離器側第 1ライン 21bは、チューブ 50との接続用分岐コネクター 21f に接続されている。 [0029] Further, a breathable and bacteria-impermeable filter 21i is connected to the chamber 21d via a tube 2lh. This line can be used, for example, for detecting the internal pressure of the blood collection needle side first line 21a. On the other hand, the centrifuge-side first line 21b is connected to a branch connector 21f for connection with the tube 50.
[0031] 第 2のライン 22は、その一端側が遠心分離器 20の排出口 144に接続されている。  The second line 22 has one end connected to the outlet 144 of the centrifuge 20.
この第 2のライン 22は、チューブ 42および 43との接続用分岐コネクター 22bとを備 えている。  The second line 22 includes a branch connector 22b for connection to the tubes 42 and 43.
[0032] また、第 2のライン 22に沿って、遠心分離器 20側より、濁度センサ 14および気泡セ ンサ 34が設置されている。この場合、濁度センサ 14および気泡センサ 34は、遠心分 離器 20と分岐コネクター 22bとの間に配置されている。  In addition, a turbidity sensor 14 and a bubble sensor 34 are installed along the second line 22 from the centrifuge 20 side. In this case, the turbidity sensor 14 and the bubble sensor 34 are disposed between the centrifugal separator 20 and the branch connector 22b.
[0033] また、分岐コネクター 22bには、チューブ 41を介して通気性かつ菌不透過性のフィ ルター 22fが接続されている。このラインは、例えば、第 2のライン 22の内圧の検出等 に用いることができる。 [0033] Further, a breathable and bacteria-impermeable filter 22f is connected to the branch connector 22b via a tube 41. This line can be used, for example, for detecting the internal pressure of the second line 22.
[0034] 第 3のライン 23は、その一端が第 1のライン 21に設けられた接続用分岐コネクター 2 lcに接続されている。すなわち、第 3のライン (流路) 23は、分岐コネクター (分岐部) 21cを介して第 1のライン (流路) 21から分岐している。また、分岐コネクター 21cは、 採血針 29の近傍に位置して 、る(設けられて ヽる)。  The third line 23 has one end connected to a connection branch connector 2 lc provided on the first line 21. That is, the third line (flow path) 23 branches from the first line (flow path) 21 via the branch connector (branch portion) 21c. Further, the branch connector 21c is located near the blood collection needle 29 (provided).
[0035] この第 3のライン 23は、分岐コネクター 21c側より、第 3のポンプチューブ 23aと、除 菌フィルター(異物除去用フィルター) 23bと、気泡除去用チャンバ一 23cと、抗凝固 剤容器接続用針 23dとを備えて ヽる。  [0035] The third line 23 is connected from the branch connector 21c side to the third pump tube 23a, the sterilization filter (foreign matter removal filter) 23b, the bubble removal chamber 23c, and the anticoagulant container. Roll with needle 23d.
[0036] また、第 3のライン 23に沿って、気泡センサ 31が設置されている。この気泡センサ 3 1は、分岐コネクター 21cと第 3のポンプチューブ 23aとの間に配置されている。  In addition, a bubble sensor 31 is installed along the third line 23. The bubble sensor 31 is disposed between the branch connector 21c and the third pump tube 23a.
[0037] この第 3のライン 23の抗凝固剤容器接続用針 23dは、抗凝固剤 (抗凝固剤液)が収 納 (収容)された図示しない容器に接続され、これにより、容器内の抗凝固剤は、後 述するように、抗凝固剤容器接続用針 23dから分岐コネクター 21cに向力つて第 3の ライン 23を流れ、採血針側第 1ライン 21aに供給 (注入)される。これにより、例えば、 第 3のライン 23を介して、採血針 29により採取された血液に抗凝固剤を添加 (混合) することができる。  [0037] The anticoagulant container connecting needle 23d of the third line 23 is connected to a container (not shown) in which an anticoagulant (anticoagulant liquid) is stored (contained), thereby As will be described later, the anticoagulant flows through the third line 23 from the anticoagulant container connecting needle 23d toward the branch connector 21c and is supplied (injected) to the blood collection needle side first line 21a. Thereby, for example, the anticoagulant can be added (mixed) to the blood collected by the blood collection needle 29 via the third line 23.
[0038] なお、抗凝固剤としては、特に限定されないが、例えば、 ACD— A液等を用いるこ とがでさる。 [0039] 血液成分採取バッグである血漿採取バッグ 25は、血漿 (血漿成分)(第 2の血液成 分)を採取 (貯留)するための容器である。チューブ 49の一端は、この血漿採取バッ グ 25に接続され、その途中に接続用分岐コネクター 22dが設けられている。そして、 チューブ 50の一端は、この分岐コネクター 22dに接続され、他端は、分岐コネクター 21fに接続されている。また、第 2のポンプチューブ 22aは、血漿採取バッグ 25と分 岐コネクター 22dとの間に位置している。なお、チューブ 49、 50および分岐コネクタ 一 22dにより、血漿循環用ライン 24の主要部が構成される。 [0038] The anticoagulant is not particularly limited. For example, an ACD-A solution or the like can be used. [0039] The plasma collection bag 25, which is a blood component collection bag, is a container for collecting (reserving) plasma (plasma component) (second blood component). One end of the tube 49 is connected to the plasma collection bag 25, and a connecting branch connector 22d is provided in the middle thereof. One end of the tube 50 is connected to the branch connector 22d, and the other end is connected to the branch connector 21f. The second pump tube 22a is located between the plasma collection bag 25 and the branch connector 22d. The main parts of the plasma circulation line 24 are constituted by the tubes 49 and 50 and the branch connector 22d.
[0040] また、チューブ 43の一端は、分岐コネクター 22bに接続され、その他端には、接続 用分岐コネクター 22cが設けられている。そして、チューブ 44の一端は、この分岐コ ネクター 22cに接続され、他端は、血漿採取バッグ 25に接続されている。  [0040] One end of the tube 43 is connected to the branch connector 22b, and the other end is provided with a connection branch connector 22c. One end of the tube 44 is connected to the branch connector 22c, and the other end is connected to the plasma collection bag 25.
[0041] また、チューブ 46の途中には、そのチューブ 46に沿って、気泡センサ 33が設置さ れている。  In addition, a bubble sensor 33 is installed in the middle of the tube 46 along the tube 46.
[0042] なお、血漿採取バッグ 25、チューブ 43および 44〖こより、血漿を採取する血漿採取 用分岐ラインが構成されている。  [0042] A plasma collection branch line for collecting plasma is constituted by the plasma collection bag 25 and tubes 43 and 44.
[0043] 血液成分採取バッグである血小板 (血小板製剤)採取バッグ 26は、後述する白血 球除去フィルター 261を通過した後の血漿を含む血小板 (血小板成分)(血球成分) (第 1の血液成分)を採取 (貯留)するための容器である。なお、以下の説明では、血 漿を含む血小板 (第 1の血液成分)を、「濃厚血小板」と言い、血小板採取バッグ 26 内に採取 (貯留)された濃厚血小板を、「血小板製剤」と言う。  [0043] Platelet (platelet preparation) collection bag 26, which is a blood component collection bag, is a platelet (platelet component) (blood cell component) containing plasma after passing white blood cell removal filter 261 described later (first blood component) It is a container for collecting (storage). In the following description, platelets containing plasma (first blood component) are referred to as “thick platelets”, and concentrated platelets collected (stored) in the platelet collection bag 26 are referred to as “platelet preparations”. .
[0044] チューブ 51の一端は、この血小板採取バッグ 26に接続され、その他端にはバッグ 28が接続されている。  [0044] One end of the tube 51 is connected to the platelet collection bag 26, and the bag 28 is connected to the other end.
[0045] エアーバッグ 27bは、空気 (エアー)を一時的に収納 (貯留)するための容器である  [0045] The air bag 27b is a container for temporarily storing (storing) air.
[0046] 後述する採血の際は、遠心分離器 20の貯血空間 146内等の血液成分採取回路 2 内の空気 (滅菌空気)は、このエアーバッグ 27b内に移送され、収納される。そして、 返血工程 (血液成分返還工程)の際、エアーバッグ 27b内に収納されている空気は、 遠心分離器 20の貯血空間 146内に移送され、戻される。これにより、所定の血液成 分が、ドナーへ返還される。 [0047] チューブ 42の一端は、分岐コネクター 22bに接続され、他端は、このエアーバッグ 27bに接続されている。 [0046] At the time of blood collection to be described later, the air (sterilized air) in the blood component collection circuit 2 such as in the blood storage space 146 of the centrifuge 20 is transferred and stored in the airbag 27b. In the blood return process (blood component return process), the air stored in the airbag 27b is transferred into the blood storage space 146 of the centrifuge 20 and returned. As a result, a predetermined blood component is returned to the donor. [0047] One end of the tube 42 is connected to the branch connector 22b, and the other end is connected to the airbag 27b.
[0048] 血液成分採取バッグである中間バッグ (一時貯留バッグ) 27aは、濃厚血小板、す なわち、血漿を含む血小板 (血球成分)(第 1の血液成分)を一時的に貯留するため の容器 (貯留部)である。チューブ 45の一端は、分岐コネクター 22cに接続され、他 端は、この中間バッグ 27aに接続されている。  [0048] An intermediate bag (temporary storage bag) 27a, which is a blood component collection bag, is a container for temporarily storing concentrated platelets, that is, platelets containing blood (blood cell component) (first blood component). (Reservoir). One end of the tube 45 is connected to the branch connector 22c, and the other end is connected to the intermediate bag 27a.
[0049] また、チューブ 46の一端は、この中間バッグ 27aに接続され、その他端には、接続 用分岐コネクター 22eが設けられている。前記チューブ 49の他端は、この分岐コネク ター 22eに接続されている。  [0049] One end of the tube 46 is connected to the intermediate bag 27a, and a connecting branch connector 22e is provided at the other end. The other end of the tube 49 is connected to the branch connector 22e.
[0050] また、接続用分岐コネクター 22eには、チューブ 47の一端が接続され、このチュー ブ 47の途中には、濃厚血小板中から白血球 (所定の細胞)を分離除去する白血球 除去フィルター(細胞分離フィルター)(濾過器) 261が設置されている。  [0050] In addition, one end of a tube 47 is connected to the branch connector 22e for connection, and in the middle of the tube 47, a leukocyte removal filter (cell separation) that separates and removes leukocytes (predetermined cells) from the concentrated platelets. Filter) (filter) 261 is installed.
[0051] また、チューブ 47の他端には、接続用分岐コネクター 22gが設けらており、一端が 前記血小板採取バッグ 26に接続されたチューブ 48の他端が、この分岐コネクター 2 2gに接続されている。  [0051] Further, a branch connector 22g for connection is provided at the other end of the tube 47, and the other end of the tube 48 having one end connected to the platelet collection bag 26 is connected to the branch connector 22g. ing.
[0052] また、分岐コネクター 22gのポートには、ベントフィルターが設けられたフィルタ一本 体およびキャップを備えたフィルター 22hが設置されている。  [0052] In addition, a filter single body provided with a vent filter and a filter 22h including a cap are installed at the port of the branch connector 22g.
[0053] ここで、後述する濃厚血小板中の白血球を分離除去する濾過操作等において、チ ユーブ 46および 47は、中間バッグ 27aから白血球除去フィルター 261に濃厚血小板 を供給する供給用チューブを構成し、また、チューブ 48は、白血球除去フィルター 2[0053] Here, in a filtration operation or the like for separating and removing leukocytes in the concentrated platelets described later, tubes 46 and 47 constitute a supply tube for supplying the concentrated platelets from the intermediate bag 27a to the leukocyte removal filter 261. Tube 48 is also equipped with leukocyte removal filter 2
61から白血球を分離除去した後の濃厚血小板を排出する(血小板採取バッグ 26に 供給する)排出用チューブを構成する。 Construct a discharge tube that discharges concentrated platelets after separating and removing leukocytes from 61 (supplied to platelet collection bag 26).
[0054] すなわち、チューブ 46、 47、 48、中間バッグ 27a、白血球除去フィルター 261およ び血小板採取バッグ 26により、濃厚血小板力 白血球を分離除去する濾過ラインが 構成されている。 [0054] That is, the tubes 46, 47, 48, the intermediate bag 27a, the leukocyte removal filter 261, and the platelet collection bag 26 constitute a filtration line for separating and removing concentrated platelet-powered leukocytes.
[0055] 血液成分採取装置 1を組み立てた状態で (血液成分採取装置 1を使用する際)、こ れらの中間バッグ 27a、白血球除去フィルター 261、血小板採取バッグ 26および血 漿採取バッグ 25は、それぞれ、中間ノッグ 27aが血漿採取バッグ 25より低い位置( 鉛直方向下方)に、白血球除去フィルター 261が中間バッグ 27aより低い位置に、さ らに、血小板採取バッグ 26が白血球除去フィルター 261より低い位置にセットされる( 位置する)。そして、中間ノッグ 27aおよび血漿採取バッグ 25は、それぞれ、遠心分 離器 20のローター 142の貯血空間 146より高い位置 (鉛直方向上方)に位置する。 [0055] With the blood component collection device 1 assembled (when using the blood component collection device 1), these intermediate bag 27a, leukocyte removal filter 261, platelet collection bag 26, and plasma collection bag 25 are: In each case, the middle nog 27a is lower than the plasma collection bag 25 ( The leukocyte removal filter 261 is set at a position lower than the intermediate bag 27a and the platelet collection bag 26 is set at a position lower than the leukocyte removal filter 261 (positioned vertically). Then, the intermediate nog 27a and the plasma collection bag 25 are respectively positioned higher (upward in the vertical direction) than the blood storage space 146 of the rotor 142 of the centrifuge 20.
[0056] この場合、血液成分採取装置 1には、血漿採取バッグ 25と、中間バッグ 27aおよび エアーバッグ 27bとを着脱自在に支持する支持部である図示しないハンガー(フック) 力 それぞれ、設けられている。そして、血漿採取バッグ 25および中間バッグ 27aは 、それぞれ、出口側 (入口側)が鉛直方向下方になるように、対応するハンガーに引 つ掛けられ、吊り下げられる(吊られる)。  [0056] In this case, the blood component collection device 1 is provided with a hanger (hook) force (not shown) that is a support part that detachably supports the plasma collection bag 25, the intermediate bag 27a, and the air bag 27b. Yes. Then, each of the plasma collection bag 25 and the intermediate bag 27a is hooked and hung (suspended) on the corresponding hanger so that the outlet side (inlet side) is vertically downward.
[0057] また、白血球除去フィルター 261としては、例えば、両端に流入口および排出口を 有するケーシング内に、例えば、ポリプロピレン、ポリエステル、ポリウレタン、ポリアミ ド等の合成樹脂よりなる織布、不織布、メッシュ、発泡体等の多孔質体を 1層または 2 層以上積層した濾過部材を挿入して構成したもの等を用いることができる。  [0057] Further, as the leukocyte removal filter 261, for example, in a casing having an inlet and an outlet at both ends, for example, a woven fabric, a nonwoven fabric, a mesh, and a synthetic resin such as polypropylene, polyester, polyurethane, polyamide, etc. A material formed by inserting a filtration member in which one layer or two or more layers of a porous material such as foam is laminated can be used.
[0058] 上述した第 1〜第 3のライン 21〜23の形成に使用される各チューブ、各ポンプチュ ーブ 21g、 22a, 23a,さらに、その他の各チューブ 41〜51、 21hの構成材料として は、それぞれ、ポリ塩ィ匕ビュルが好ましい。  [0058] Constituent materials of the tubes used for forming the first to third lines 21 to 23, the pump tubes 21g, 22a, 23a, and the other tubes 41-51, 21h are as follows. Each of them is preferably a polysalt gel.
[0059] これらのチューブがポリ塩ィ匕ビュル製であれば、十分な可撓性、柔軟性が得られる ので取り扱いがし易ぐまた、クレンメ等による閉塞にも適するからである。  [0059] If these tubes are made of poly salt bulbu, sufficient flexibility and softness can be obtained, so that they are easy to handle and suitable for clogging with a clamp or the like.
[0060] また、上述した各分岐コネクター 21c、 21f、 22b, 22c, 22d、 22e、 22gの構成材 料についても、それぞれ、前記チューブで挙げた構成材料と同様のものを用いること ができる。  [0060] Further, as the constituent materials of the above-described branch connectors 21c, 21f, 22b, 22c, 22d, 22e, and 22g, the same constituent materials as those mentioned for the tube can be used.
[0061] なお、各ポンプチューブ 21g、 22a, 23aとしては、それぞれ、後述する各送液ポン プ (例えば、ローラーポンプ等) 11、 12、 13により押圧されても損傷を受けない程度 の強度を備えるものが使用されている。  [0061] The pump tubes 21g, 22a, and 23a have strengths that do not cause damage even when pressed by the respective liquid feeding pumps (for example, roller pumps) 11, 12, and 13, which will be described later. What is provided is used.
[0062] 血漿採取バッグ 25、血小板採取バッグ 26、中間バッグ 27a、エアーバッグ 27b、 ノ ッグ 28は、それぞれ、榭脂製の可撓性を有するシート材を重ね、その周縁部を融着( 熱融着、高周波融着、超音波融着等)または接着剤により接着等して袋状にしたもの が使用される。なお、前述したように、エアーバッグ 27bと中間バッグ 27aとは、一体 的に形成(一体化)されている。 [0062] Each of the plasma collection bag 25, the platelet collection bag 26, the intermediate bag 27a, the air bag 27b, and the nod 28 is laminated with a flexible sheet material made of greaves, and its peripheral portion is fused ( Heat-sealed, high-frequency fused, ultrasonic fused, etc.) or a bag formed by bonding with an adhesive is used. As described above, the air bag 27b and the intermediate bag 27a are integrated with each other. Are formed (integrated).
[0063] 各バッグ 25、 26、 27a、 27b、 28に使用される材料としては、それぞれ、例えば、軟 質ポリ塩ィ匕ビニルが好適に使用される。  [0063] As a material used for each of the bags 25, 26, 27a, 27b, 28, for example, soft polyvinyl chloride vinyl is preferably used.
[0064] なお、血小板採取バッグ 26に使用されるシート材としては、血小板保存性を向上す るためにガス透過性に優れるものを用いることがより好ま 、。  [0064] As the sheet material used for the platelet collection bag 26, it is more preferable to use a material having excellent gas permeability in order to improve platelet storage stability.
[0065] このようなシート材としては、例えば、ポリオレフインや DnDP可塑化ポリ塩化ビュル 等を用いること、また、このような素材を用いることなぐ上述したような材料のシート材 を用い、厚さを比較的薄く(例えば、 0. 1〜0. 5mm程度、特に、 0. 1〜0. 3mm程 度)したものが好適である。  [0065] As such a sheet material, for example, polyolefin, DnDP plasticized polychlorinated butyl chloride, or the like is used, and a sheet material of the above-described material without using such a material is used. A comparatively thin film (for example, about 0.1 to 0.5 mm, particularly about 0.1 to 0.3 mm) is preferable.
[0066] このような血液成分採取回路 2の主要部分は、図示しないが、例えば、カセット式と なっている。すなわち、血液成分採取回路 2は、各ライン (第 1のライン 21、第 2のライ ン 22、第 3のライン 23)および所定の各チューブを部分的に収納し、かつ部分的に それらを保持し、言い換えれば、部分的にそれらが固定されたカセットハウジングを 備えている。  [0066] The main part of such a blood component collection circuit 2 is, for example, a cassette type although not shown. That is, the blood component collection circuit 2 partially stores each line (first line 21, second line 22, third line 23) and each predetermined tube and partially holds them. In other words, it has a cassette housing in which they are partially fixed.
[0067] このカセットハウジングには、第 1のポンプチューブ 21gの両端、第 2のポンプチュ ーブ 22aの両端および第 3のポンプチューブ 23aの両端が固定され、これらのポンプ チューブ 21g、 22a、 23aは、それぞれ、カセットハウジングより、各送液ポンプ(例え ば、ローラーポンプ等) 11、 12、 13の形状に対応したループ状に突出している。この ため、第 1、第 2および第 3のポンプチューブ 21g、 22a、 23aは、それぞれ、各送液ポ ンプ 11、 12、 13への装着が容易である。また、このカセットハウジングには、後述す る各流路開閉手段 81〜86等が設置される。  [0067] Both ends of the first pump tube 21g, both ends of the second pump tube 22a, and both ends of the third pump tube 23a are fixed to the cassette housing. The pump tubes 21g, 22a, 23a are Each protrudes from the cassette housing in a loop shape corresponding to the shape of each liquid feed pump (eg, roller pump, etc.) 11, 12, 13. Therefore, the first, second and third pump tubes 21g, 22a and 23a can be easily attached to the liquid feeding pumps 11, 12, and 13, respectively. The cassette housing is provided with respective flow path opening / closing means 81 to 86 described later.
[0068] 血液成分採取回路 2に設けられている遠心分離器 20は、通常、遠心ボウルと呼ば れており、遠心力により血液を複数の血液成分に分離する。  [0068] The centrifuge 20 provided in the blood component collection circuit 2 is generally called a centrifuge bowl, and separates blood into a plurality of blood components by centrifugal force.
[0069] 遠心分離器 20は、図 2に示すように、上端に流入口 143が形成された鉛直方向に 伸びる管体 141と、管体 141の回りで回転し、上部 145に対し液密にシールされた中 空のローター 142とを有している。  [0069] As shown in FIG. 2, the centrifuge 20 has a vertically extending pipe body 141 with an inlet 143 formed at the upper end, and rotates around the pipe body 141 so as to be liquid-tight with respect to the upper part 145. And a sealed hollow rotor 142.
[0070] ローター 142には、その周壁内面に沿って環状の貯血空間 146が形成されている 。この貯血空間 146は、図 2中下部力も上部に向けてその内外径が漸減するような形 状 (テーパ状)をなしており、その下部は、ローター 142の底部に沿って形成されたほ ぼ円盤状の流路を介して管体 141の下端開口に連通し、その上部は、排出口(流出 口) 144に連通している。また、ローター 142において、貯血空間 146の容積は、例 えば、 100〜350mL程度とされ、ローター 142の回転軸からの最大内径(最大半径 )は、例えば、 55〜65mm程度とされる。 [0070] An annular blood storage space 146 is formed in the rotor 142 along the inner surface of the peripheral wall. The blood storage space 146 is shaped so that the inner and outer diameters of the lower force in FIG. The lower part communicates with the lower end opening of the tube body 141 through a substantially disc-shaped channel formed along the bottom of the rotor 142, and the upper part is the discharge port. (Outflow) Communicate with 144. Further, in the rotor 142, the volume of the blood storage space 146 is, for example, about 100 to 350 mL, and the maximum inner diameter (maximum radius) from the rotating shaft of the rotor 142 is, for example, about 55 to 65 mm.
[0071] このようなローター 142は、血液成分採取装置 1が備える遠心分離器駆動装置 10 によりあらかじめ設定された所定の遠心条件(回転速度および回転時間)で回転する 。この遠心条件により、ローター 142内の血液の分離パターン(例えば、分離する血 液成分数)を設定することができる。  [0071] Such a rotor 142 rotates under predetermined centrifugal conditions (rotation speed and rotation time) set in advance by the centrifuge drive device 10 included in the blood component collection device 1. Under this centrifugal condition, the blood separation pattern (for example, the number of blood components to be separated) in the rotor 142 can be set.
[0072] 本実施形態では、図 2に示すように、血液がローター 142の貯血空間 146内で内層 より血漿層 131、バフィ一コート層 132および赤血球層 133に分離されるように遠心 条件が設定される。  In this embodiment, as shown in FIG. 2, the centrifugation conditions are set so that the blood is separated into the plasma layer 131, the buffy coat layer 132, and the red blood cell layer 133 from the inner layer in the blood storage space 146 of the rotor 142. Is done.
[0073] 次に、図 1に示す血液成分採取装置 1の全体構成について説明する。  Next, the overall configuration of the blood component collection device 1 shown in FIG. 1 will be described.
血液成分採取装置 1は、遠心分離器 20のローター 142を回転させるための遠心分 離器駆動装置 10と、第 1のライン 21の途中に設置された第 1の送液ポンプ 11と、チ ユーブ 49の途中に設置された第 2の送液ポンプ 12と、第 3のライン 23の途中に設置 された第 3の送液ポンプ 13と、血液成分採取回路 2 (第 1のライン 21、チューブ 42、 チューブ 44、チューブ 45、チューブ 47、チューブ 49)の流路の途中を開閉し得る複 数の流路開閉手段 81、 82、 83、 84、 85、 86と、各種の情報を表示 (報知)する表示 手段 (報知手段)および各操作を行なう操作手段である表示 ·操作部 17と、記憶部( 記憶手段) 18と、遠心分離器駆動装置 10、第 1の送液ポンプ 11、第 2の送液ポンプ 12、第 3の送液ポンプ 13、複数の流路開閉手段 81〜86、表示'操作部 17および記 憶部 18等の各部を制御するための制御部(制御手段) 3とを備えている。  The blood component collection device 1 includes a centrifuge drive device 10 for rotating the rotor 142 of the centrifuge 20, a first liquid feed pump 11 installed in the middle of the first line 21, and a tube. 49, a second liquid pump 12 installed in the middle of 49, a third liquid pump 13 installed in the middle of the third line 23, and a blood component collection circuit 2 (first line 21, tube 42 Tube 44, Tube 45, Tube 47, Tube 49) Multiple channel opening / closing means 81, 82, 83, 84, 85, 86 that can be opened and closed in the middle of the channel. Display means (notification means) and display / operation unit 17 which is an operation means for performing each operation, storage unit (storage unit) 18, centrifuge drive device 10, first liquid feed pump 11, second control unit Liquid feed pump 12, third liquid feed pump 13, a plurality of flow path opening / closing means 81 to 86, display 'operation section 17 and storage section 18 etc. Controller for controlling the part and a (control means) 3.
[0074] さらに、血液成分採取装置 1は、第 2のライン 22に装着 (設置)された濁度センサ 14 と、遠心分離器 20の近傍に設置された光学式センサ 15と、複数の気泡センサ 31〜 36と、血漿の重量を血漿採取バッグ 25ごと重量測定するための重量センサ 16とを 備えている。  [0074] Furthermore, blood component collection device 1 includes turbidity sensor 14 installed (installed) in second line 22, optical sensor 15 installed in the vicinity of centrifuge 20, and a plurality of bubble sensors. 31 to 36 and a weight sensor 16 for measuring the weight of the plasma together with the plasma collection bag 25.
[0075] 制御部 3は、第 1の送液ポンプ 11、第 2の送液ポンプ 12および第 3の送液ポンプ 1 3のための 3つのポンプコントローラ(図示せず)を備え、制御部 3と第 1の送液ポンプ 11、第 2の送液ポンプ 12および第 3の送液ポンプ 13とはポンプコントローラを介して 電気的に接続されている。 [0075] The control unit 3 includes a first liquid feed pump 11, a second liquid feed pump 12, and a third liquid feed pump 1 3 and 3 pump controllers (not shown), the control unit 3 and the first liquid pump 11, the second liquid pump 12 and the third liquid pump 13 are connected via the pump controller. Electrically connected.
[0076] 遠心分離器駆動装置 10が備える駆動コントローラ(図示せず)は、制御部 3と電気 的に接続されている。 A drive controller (not shown) included in the centrifuge drive device 10 is electrically connected to the control unit 3.
[0077] 各流路開閉手段 81〜86は、それぞれ、制御部 3に電気的に接続されている。  [0077] Each flow path opening / closing means 81 to 86 is electrically connected to the control unit 3, respectively.
また、濁度センサ 14、光学式センサ 15、重量センサ 16、気泡センサ 31〜36、表示 •操作部 17、記憶部 18は、それぞれ、制御部 3と電気的に接続されている。  The turbidity sensor 14, the optical sensor 15, the weight sensor 16, the bubble sensors 31 to 36, the display / operation unit 17, and the storage unit 18 are electrically connected to the control unit 3.
[0078] 制御部 3は、例えばマイクロコンピュータ (演算部やメモリー等を内蔵)で構成されて おり、制御部 3には、上述した濁度センサ 14、光学式センサ 15、重量センサ 16、気 泡センサ 31〜36からの検出信号が、それぞれ、随時入力される。また、表示'操作 部 17からの信号 (入力)も、制御部 3に入力される。  The control unit 3 is composed of, for example, a microcomputer (including a calculation unit and a memory). The control unit 3 includes the turbidity sensor 14, the optical sensor 15, the weight sensor 16, and the bubble. Detection signals from the sensors 31 to 36 are input as needed. A signal (input) from the display / operation unit 17 is also input to the control unit 3.
[0079] 制御部 3は、濁度センサ 14、光学式センサ 15、重量センサ 16、気泡センサ 31〜3 6からの検出信号および表示 ·操作部 17からの信号に基づき、予め設定されたプロ グラムに従って、血液成分採取装置 1の各部の作動、すなわち、各送液ポンプ 11、 1 2、 13の回転、停止、回転方向(正転 Z逆転)を制御するとともに、必要に応じ、各流 路開閉手段 81〜86の開閉、遠心分離器駆動装置 10の作動および表示'操作部 17 の駆動をそれぞれ制御する。  [0079] The control unit 3 is a program set in advance based on the detection signal from the turbidity sensor 14, the optical sensor 15, the weight sensor 16, the bubble sensor 31 to 36 and the signal from the display / operation unit 17. The operation of each part of the blood component collection device 1, that is, the rotation, stop, and rotation direction (forward rotation Z reverse rotation) of each liquid pump 11, 11, 2, and 13 are controlled as necessary. Control of the opening and closing of the means 81 to 86, the operation of the centrifuge drive device 10 and the drive of the display operation unit 17 are performed.
[0080] 第 1の流路開閉手段 81は、第 1のポンプチューブ 21gより採血針 29側、すなわち、 第 1のポンプチューブ 21gとチャンバ一 21dとの間において第 1のライン 21を開閉す るために設けられている。  [0080] The first flow path opening / closing means 81 opens and closes the first line 21 from the first pump tube 21g to the blood collection needle 29 side, that is, between the first pump tube 21g and the chamber 21d. It is provided for.
[0081] 第 2の流路開閉手段 82は、チューブ 47を開閉するために設けられている。第 3の 流路開閉手段 83は、チューブ 44を開閉するために設けられている。第 4の流路開閉 手段 84は、チューブ 45を開閉するために設けられている。第 5の流路開閉手段 85 は、チューブ 42を開閉するために設けられている。第 6の流路開閉手段 86は、分岐 コネクター 22dと分岐コネクター 22eとの間のチューブ 49を開閉するために設けられ ている。  The second channel opening / closing means 82 is provided for opening and closing the tube 47. The third flow path opening / closing means 83 is provided for opening and closing the tube 44. The fourth flow path opening / closing means 84 is provided for opening and closing the tube 45. The fifth flow path opening / closing means 85 is provided for opening and closing the tube 42. The sixth channel opening / closing means 86 is provided to open and close the tube 49 between the branch connector 22d and the branch connector 22e.
[0082] 各流路開閉手段 81〜86は、それぞれ、第 1のライン 21、チューブ 47、 44、 45、 42 、 49を挿入可能な挿入部を備え、該揷入部には、例えば、ソレノイド、電動モーター 、シリンダ (油圧または空気圧)等の駆動源で作動するクランプを有している。具体的 には、ソレノイドで作動する電磁クランプが好適である。 [0082] Each flow path opening / closing means 81 to 86 includes a first line 21, tubes 47, 44, 45, 42, respectively. 49 can be inserted, and the insertion portion has a clamp that is operated by a drive source such as a solenoid, an electric motor, a cylinder (hydraulic pressure or air pressure), for example. Specifically, an electromagnetic clamp operated by a solenoid is preferable.
[0083] これらの流路開閉手段 (クランプ) 81〜86は、それぞれ、制御部 3からの信号に基 づいて作動する。 [0083] These flow path opening / closing means (clamps) 81 to 86 operate based on signals from the control unit 3, respectively.
[0084] 表示 ·操作部 17は、例えば、液晶表示パネル、 EL表示パネル等を備えたタツチパ ネル等で構成される。この表示 ·操作部 17により、所定の情報やデータ (例えば、血 小板 (血球成分)の目標採取数の初期値、ドナー (供血者)の血算等)を入力する入 力手段が構成される。  The display / operation unit 17 includes, for example, a touch panel including a liquid crystal display panel, an EL display panel, and the like. The display / operation unit 17 constitutes an input means for inputting predetermined information and data (for example, an initial value of the target number of blood platelets (blood cell components) to be collected, a blood count of a donor (blood donor), etc.). The
[0085] なお、各種の情報を表示 (報知)する表示手段 (報知手段)である表示部 (例えば、 液晶表示パネル、 EL表示パネル等)と、各操作を行なう操作手段である操作部(例 えば、操作ボタン、操作スィッチ、操作ダイヤル等)とを、別個に設けてもよい。  [0085] It should be noted that a display unit (for example, a liquid crystal display panel, an EL display panel, etc.) that is a display unit (notification unit) for displaying (notifying) various types of information, and an operation unit (eg, a liquid crystal display panel, an EL display panel). For example, an operation button, an operation switch, an operation dial, etc.) may be provided separately.
[0086] また、記憶部 18は、各種の情報、データ、テーブル、演算式、プログラム等が記憶( 記録とも言う)される記憶媒体 (記録媒体とも言う)を有しており、この記憶媒体は、例 えば、 RAM等の揮発性メモリー、 ROM等の不揮発性メモリー、 EPROM、 EEPRO M、フラッシュメモリー等の書き換え可能 (消去、書き換え可能)な不揮発性メモリー 等、各種半導体メモリー、 ICメモリー等で構成される。この記憶部 18における書き込 み (記憶)、書き換え、消去、読み出し等の制御は、制御部 3によりなされる。  [0086] Further, the storage unit 18 has a storage medium (also referred to as a recording medium) in which various information, data, tables, arithmetic expressions, programs, and the like are stored (also referred to as recording). For example, volatile memory such as RAM, non-volatile memory such as ROM, rewritable (erasable and rewritable) non-volatile memory such as EPROM, EEPRO M, flash memory, etc. Is done. Control such as writing (storing), rewriting, erasing, and reading in the storage unit 18 is performed by the control unit 3.
[0087] 遠心分離器駆動装置 10は、図 2に示すように、遠心分離器 20を収納するハウジン グ 201と、脚部 202と、駆動源であるモータ 203と、遠心分離器 20を保持する円盤状 の固定台 205とを有している。  As shown in FIG. 2, the centrifuge drive device 10 holds a housing 201 that houses the centrifuge 20, a leg 202, a motor 203 that is a drive source, and the centrifuge 20 It has a disk-shaped fixed base 205.
[0088] ハウジング 201は、脚部 202の上部に載置、固定されている。また、ハウジング 201 の下面には、ボルト 206によりスぺーサー 207を介してモータ 203が固定されている  The housing 201 is placed on and fixed to the upper part of the leg portion 202. A motor 203 is fixed to the lower surface of the housing 201 by a bolt 206 via a spacer 207.
[0089] モータ 203の回転軸 204の先端部には、固定台 205が回転軸 204と同軸でかつ一 体的に回転するように嵌入されており、固定台 205の上部には、ローター 142の底部 が嵌合する凹部が形成されている。 A fixed base 205 is fitted on the tip of the rotating shaft 204 of the motor 203 so as to be coaxial with the rotating shaft 204 and rotate integrally therewith. A recess is formed in which the bottom is fitted.
[0090] また、遠心分離器 20の上部 145は、図示しない固定部材によりハウジング 201に 固定されている。 [0090] The upper portion 145 of the centrifuge 20 is attached to the housing 201 by a fixing member (not shown). It is fixed.
[0091] このような遠心分離器駆動装置 10では、モータ 203を駆動すると、固定台 205およ びそれに固定されたローター 142力 例えば、回転数 3000〜6000rpm程度で回転 する。  In such a centrifuge drive device 10, when the motor 203 is driven, the fixed base 205 and the rotor 142 fixed thereto are rotated at, for example, about 3000 to 6000 rpm.
[0092] ハウジング 201には、その側部(図 2中、左側)に光学式センサ 15が設置されている  The housing 201 is provided with an optical sensor 15 on its side (left side in FIG. 2).
[0093] この光学式センサ 15は、貯血空間 146に向って投光するとともにその反射光を受 光するように構成されている。 The optical sensor 15 is configured to project light toward the blood storage space 146 and receive the reflected light.
[0094] 光学式センサ 15は、投光部 151から光 (例えばレーザー光)を照射 (投光)し、ロー ター 142の反射面 147で反射された反射光を受光部 152で受光する。そして、受光 部 152においてその受光光量に応じた電気信号に変換される。  The optical sensor 15 irradiates (projects) light (for example, laser light) from the light projecting unit 151, and the reflected light reflected by the reflecting surface 147 of the rotor 142 is received by the light receiving unit 152. Then, the light receiving unit 152 converts the received light amount into an electrical signal.
[0095] ここで、光学式センサ 15は、片面に反射面を有し、光路を変更する反射板 153を 有しており、投光部 151から照射された光は、反射板 153を介して反射面 147に照 射され、反射面 147で反射した光は、反射板 153を介して受光部 152で受光される ように構成されている。  Here, the optical sensor 15 has a reflection surface on one side and a reflection plate 153 that changes the optical path, and the light emitted from the light projecting unit 151 passes through the reflection plate 153. The light that is incident on the reflection surface 147 and reflected by the reflection surface 147 is received by the light receiving unit 152 via the reflection plate 153.
[0096] このとき、投光光および反射光は、それぞれ、貯血空間 146内の血液成分を透過 するが、血液成分の界面 (本実施形態では、血漿層 131とバフィ一コート層 132との 界面 B)の位置に応じて、投光光および反射光が透過する位置における各血液成分 の存在比が異なるため、それらの透過率が変化する。これにより、受光部 152での受 光光量が変動 (変化)し、この変動を受光部 152からの出力電圧の変化として検出す ることがでさる。  At this time, the projected light and the reflected light are transmitted through the blood component in the blood storage space 146, respectively, but the blood component interface (in this embodiment, the interface between the plasma layer 131 and the buffy coat layer 132). Depending on the position of B), since the abundance ratio of each blood component at the position where the projected light and the reflected light are transmitted differs, the transmittance thereof changes. As a result, the amount of light received by the light receiving unit 152 varies (changes), and this variation can be detected as a change in the output voltage from the light receiving unit 152.
[0097] すなわち、光学式センサ 15は、受光部 152での受光光量の変化に基づき、血液成 分の界面の位置を検出することができる。  That is, the optical sensor 15 can detect the position of the blood component interface based on the change in the amount of light received by the light receiving unit 152.
[0098] なお、光学式センサ 15が検出する血液成分の界面としては、界面 Bに限られず、 例えば、バフィ一コート層 132と赤血球層 133との界面であってもよい。 Note that the interface of blood components detected by the optical sensor 15 is not limited to the interface B, and may be, for example, the interface between the buffy coat layer 132 and the red blood cell layer 133.
[0099] ここで、貯血空間 146内の各層 131〜133は、それぞれ、血液成分により色が異な つており、特に、赤血球層 133は、赤血球の色に伴い赤色を呈している。このため、 光学式センサ 15の精度向上の観点からは、投光光の波長に好適な範囲が存在し、 この波長範囲としては、特に限定されないが、例えば、 600〜900nm程度であるの が好ましぐ 750〜800nm程度であるのがより好ましい。 Here, each of the layers 131 to 133 in the blood storage space 146 has a different color depending on the blood component, and in particular, the red blood cell layer 133 is red with the color of the red blood cells. For this reason, from the viewpoint of improving the accuracy of the optical sensor 15, there is a suitable range for the wavelength of the projection light, The wavelength range is not particularly limited, but is preferably about 600 to 900 nm, and more preferably about 750 to 800 nm.
[0100] 濁度センサ 14は、第 2のライン 22中を流れる流体の濁度 (血小板の濃度)を検知す るためのものであり、濁度に応じた電圧値を出力する。具体的には、濁度センサ 14は[0100] The turbidity sensor 14 is for detecting the turbidity (platelet concentration) of the fluid flowing in the second line 22, and outputs a voltage value corresponding to the turbidity. Specifically, the turbidity sensor 14
、濁度が高い時には低電圧値、濁度が低い時には高電圧値を出力する。 When the turbidity is high, a low voltage value is output. When the turbidity is low, a high voltage value is output.
[0101] この濁度センサ 14により、例えば、第 2のライン 22中を流れる血漿中の血小板濃度[0101] With this turbidity sensor 14, for example, the concentration of platelets in plasma flowing in the second line 22
、血漿中の血小板濃度の変化、血漿中への赤血球の混入等を検出することができる Can detect changes in platelet concentration in plasma, contamination of red blood cells in plasma, etc.
[0102] また、気泡センサ 34により、例えば、第 2のライン 22中を流れる流体の空気力も血 漿への置換等を検出することができる。 In addition, the bubble sensor 34 can detect, for example, the replacement of the aerodynamic force of the fluid flowing through the second line 22 with plasma.
[0103] 濁度センサ 14および各気泡センサ 31〜36としては、それぞれ、例えば、超音波セ ンサ、光学式センサ、赤外線センサ等を用いることがきる。 [0103] As the turbidity sensor 14 and the bubble sensors 31 to 36, for example, an ultrasonic sensor, an optical sensor, an infrared sensor, or the like can be used.
[0104] 第 1のポンプチューブ 21gが装着される第 1の送液ポンプ 11、第 2のポンプチュー ブ 22aが装着される第 2の送液ポンプ 12および、第 3のポンプチューブ 23aが装着さ れる第 3の送液ポンプ 13としては、それぞれ、例えば、ローラーポンプなどの非血液 接触型ポンプが好適に用いられる。 [0104] The first liquid delivery pump 11 to which the first pump tube 21g is attached, the second liquid delivery pump 12 to which the second pump tube 22a is attached, and the third pump tube 23a are attached. As the third liquid feeding pump 13, for example, a non-blood contact type pump such as a roller pump is preferably used.
[0105] また、第 1の送液ポンプ(血液ポンプ) 11としては、いずれの方向にも血液を送るこ とができるものが使用される。具体的には、正回転と逆回転が可能なローラーポンプ が用いられている。 [0105] Further, as the first liquid feeding pump (blood pump) 11, a pump capable of feeding blood in any direction is used. Specifically, a roller pump capable of forward and reverse rotation is used.
[0106] この第 1の送液ポンプ 11の作動により、例えば、第 1のライン 21内の血液や血液成 分等の液体 (流体)を送液 (移送)することができる。また、第 2の送液ポンプ 12の作 動により、例えば、血漿採取バッグ 25に採取された血漿 (液体)を送液 (移送)するこ とができる。また、第 3の送液ポンプ 13の作動により、例えば、第 3のライン 23内の抗 凝固剤 (抗凝固剤液)等の液体 (流体)を送液 (移送)することができる。  [0106] By the operation of the first liquid feeding pump 11, for example, liquid (fluid) such as blood and blood components in the first line 21 can be fed (transferred). Further, by the operation of the second liquid feeding pump 12, for example, plasma (liquid) collected in the plasma collection bag 25 can be sent (transferred). Further, by the operation of the third liquid feeding pump 13, for example, a liquid (fluid) such as an anticoagulant (anticoagulant liquid) in the third line 23 can be fed (transferred).
[0107] ここで、血液成分採取装置 1は、後述するように、第 1の送液ポンプ 11の作動により 、血漿採取バッグ 25に血漿を採取する第 1の血漿採取工程と、第 2の送液ポンプ 12 の作動により、血漿採取バッグ 25に採取された血漿を遠心分離器 20の貯血空間 14 6内に循環させる第 1の定速血漿循環工程 (血漿循環工程)と、第 1の送液ポンプ 11 の作動により、血漿採取バッグ 25に血漿を採取する第 2の血漿採取工程と、第 2の送 液ポンプ 12の作動により、血漿採取バッグ 25に採取された血漿を貯血空間 146内 に循環させる第 2の定速血漿循環工程 (血漿循環工程)と、第 1の送液ポンプ 11の作 動により、血漿採取バッグ 25に血漿を採取する第 3の血漿採取工程と、血小板採取 工程 (血液成分採取工程)と、返血工程 (血液成分返還工程)とを有する血小板採取 操作 (血液成分採取操作)を、制御部 3の制御によって実行するように構成されて!ヽ る(図 5参照)。 [0107] Here, as will be described later, the blood component collection device 1 includes a first plasma collection step of collecting plasma in the plasma collection bag 25 by the operation of the first liquid feed pump 11, and a second supply of blood. The first constant-speed plasma circulation process (plasma circulation process) in which the plasma collected in the plasma collection bag 25 is circulated in the blood storage space 14 6 of the centrifuge 20 by the operation of the liquid pump 12; Pump 11 The second plasma collection step for collecting plasma in the plasma collection bag 25 by the operation of the second and the second blood collection pump 12 for circulating the plasma collected in the plasma collection bag 25 in the blood storage space 146 by the operation of the second liquid pump 12. 2 constant-speed plasma circulation process (plasma circulation process), the third plasma collection process to collect plasma in the plasma collection bag 25 by the operation of the first liquid pump 11, and the platelet collection process (blood component collection) And a blood platelet collection operation (blood component collection operation) having a blood return process (blood component return process) are executed under the control of the control unit 3 (see FIG. 5).
[0108] 第 1の定速血漿循環工程および第 2の定速血漿循環工程では、それぞれ、チュー ブ 49、分岐コネクター 22dおよびチューブ 50で主要部が構成される血漿循環用ライ ン 24と、分岐コネクター 21fと、遠心分離器側第 1ライン 21bと、遠心分離器 20の貯 血空間 146と、第 2のライン 22と、分岐コネクター 22bと、チューブ 43と、分岐コネクタ 一 22cと、チューブ 44と、血漿採取バッグ 25とにより循環回路を形成 (構成)し、第 2 の送液ポンプ 12の作動により、その循環回路に (貯血空間 146内を通るように)、血 漿採取バッグ 25内の血漿を循環させるようになって 、る。  [0108] In the first constant-speed plasma circulation step and the second constant-speed plasma circulation step, respectively, a plasma circulation line 24, the main part of which is composed of a tube 49, a branch connector 22d and a tube 50, is branched. Connector 21f, centrifuge side first line 21b, centrifuge 20 blood reservoir space 146, second line 22, branch connector 22b, tube 43, branch connector one 22c, tube 44 Then, a circulation circuit is formed (configured) with the plasma collection bag 25, and the operation of the second liquid feeding pump 12 causes the circulation circuit (to pass through the blood storage space 146) to operate the plasma in the plasma collection bag 25. It is going to circulate.
[0109] なお、第 1の血漿採取工程、第 2の血漿採取工程、第 3の血漿採取工程、第 1の血 漿循環工程および第 2の血漿循環工程は、血小板採取工程の前に実行される。また 、第 1の定速血漿循環工程は、第 1の血漿採取工程と第 2の血漿採取工程との間に 実行され、また、第 2の定速血漿循環工程は、第 2の血漿採取工程と第 3の血漿採取 工程との間に実行される。また、この血小板採取操作は、少なくとも 1回(サイクル)行 われる。  [0109] The first plasma collection step, the second plasma collection step, the third plasma collection step, the first plasma circulation step, and the second plasma circulation step are performed before the platelet collection step. The In addition, the first constant-speed plasma circulation step is executed between the first plasma collection step and the second plasma collection step, and the second constant-speed plasma circulation step is performed in the second plasma collection step. And the third plasma collection step. This platelet collection operation is performed at least once (cycle).
[0110] 図 5は、図 1に示す血液成分採取装置の特徴 (動作)を説明するための図、図 6は、 図 1に示す血液成分採取装置の第 2の送液ポンプの作動制御を説明するための図、 図 7は、図 1に示す血液成分採取装置の第 2の送液ポンプの他の作動制御を説明す るための図である。  FIG. 5 is a diagram for explaining the characteristics (operation) of the blood component collection device shown in FIG. 1, and FIG. 6 shows the operation control of the second liquid feeding pump of the blood component collection device shown in FIG. FIG. 7 is a diagram for explaining another operation control of the second liquid feeding pump of the blood component collection device shown in FIG.
[0111] 図 5、図 6および図 7において、その横軸が、時間、縦軸が、遠心分離器 20の貯血 空間 146内に導入される液体 (流体)の流量である。  5, FIG. 6, and FIG. 7, the horizontal axis represents time, and the vertical axis represents the flow rate of the liquid (fluid) introduced into the blood storage space 146 of the centrifuge 20.
[0112] また、図 5、図 6および図 7中の実線は、第 1の送液ポンプ 11の作動により、遠心分 離器 20の貯血空間 146内に導入される液体 (流体)、すなわち、血液 (抗凝固剤添 加血液)の流量である。そして、斜線の部分力 そのうちの血球成分の流量であり、 斜線のない部分が、液性成分、すなわち、血漿 (抗凝固剤添加血漿)の流量である。 Further, the solid line in FIGS. 5, 6 and 7 indicates the liquid (fluid) introduced into the blood storage space 146 of the centrifugal separator 20 by the operation of the first liquid feeding pump 11, that is, Blood (with anticoagulant Blood flow). Of the partial force shown by the diagonal lines, the flow rate of the blood cell component is the flow rate of the blood component, and the part without the diagonal line is the flow rate of the liquid component, that is, plasma (anticoagulant-added plasma).
[0113] また、図 5、図 6および図 7中の破線(点線)は、第 2の送液ポンプ 12の作動により、 遠心分離器 20の貯血空間 146内に導入される液性成分、すなわち、血漿 (抗凝固 剤添加血漿)の流量である。換言すれば、破線で示す流量は、第 2の送液ポンプ 12 の作動により、血漿採取バッグ 25に採取された血漿を血漿循環用ライン 24等を介し て遠心分離器 20の貯血空間 146内に循環させる際の血漿の流量 (循環流量)であ る。  [0113] Further, the broken line (dotted line) in FIGS. 5, 6, and 7 indicates the liquid component introduced into the blood storage space 146 of the centrifuge 20 by the operation of the second liquid feeding pump 12, that is, The flow rate of plasma (plasma supplemented with anticoagulant). In other words, the flow rate indicated by the broken line indicates that the plasma collected in the plasma collection bag 25 is moved into the blood storage space 146 of the centrifuge 20 via the plasma circulation line 24 or the like by the operation of the second liquid feeding pump 12. This is the plasma flow rate (circulation flow rate) when circulating.
[0114] 図 5に示すように、この血液成分採取装置 1は、第 1の血漿採取工程力 第 1の定 速血漿循環工程に移行する際と、第 2の血漿採取工程から第 2の定速血漿循環工程 に移行する際は、それぞれ、第 1の送液ポンプ 11の作動を継続しつつ、第 2の送液 ポンプ 12の送液量(吐出量)を増大させるように構成されている。これにより、第 1の 定速血漿循環工程および第 2の定速血漿循環工程において、それぞれ、血漿採取 ノッグ 25に血漿を採取しつつ、血漿採取バッグ 25に採取された血漿を血漿循環用 ライン 24等を介して遠心分離器 20の貯血空間 146内に循環させるとともに、貯血空 間 146に導入される液性成分の流量を、血漿採取工程において貯血空間 146に導 入される液性成分の流量より大きくする。なお、液性成分には、分離後の血漿のみで なぐ例えば、分離されていない血液中の血漿や、抗凝固剤 (抗凝固剤液)等も含ま れる。  [0114] As shown in FIG. 5, the blood component collection device 1 is used when the first plasma collection process power shifts to the first constant-speed plasma circulation process and the second plasma collection process to the second constant measurement. When shifting to the fast plasma circulation step, the liquid feed amount (discharge amount) of the second liquid feed pump 12 is increased while the operation of the first liquid feed pump 11 is continued. . Thus, in the first constant-speed plasma circulation process and the second constant-speed plasma circulation process, the plasma collected in the plasma collection bag 25 is collected while the plasma is collected in the plasma collection nog 25, respectively. The flow rate of the liquid component introduced into the blood storage space 146 in the blood plasma collection process is changed to the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 through the Make it bigger. The liquid component includes not only separated plasma but also unseparated blood plasma, anticoagulant (anticoagulant solution), and the like.
このように、第 1のポンプ 11を作動して血漿を血漿採取バッグ 25に採取する採血ェ 程を実行している途中で、その採血工程を中断せずに、第 2の送液ポンプ 12を作動 して血漿循環工程 (本実施形態では、複数回の血漿循環工程)を実行する。すなわ ち、第 1の血漿採取工程、第 2の血漿採取工程、第 3の血漿採取工程、第 1の血漿循 環工程および第 2の血漿循環工程のそれぞれにおいて、第 1の送液ポンプ 11が作 動し、ドナーから血液を採取し、その血液を遠心分離器 20の貯血空間 146内に導入 して分離し、血漿採取バッグ 25に血漿を採取することにより、血漿採取バッグ 25への 血漿の採取を継続して行なうので、採血時間を短縮することができる。これにより、血 液成分採取装置 1の占有時間を低減させることができ、また、ドナーの負担を軽減す ることがでさる。 In this way, while the first pump 11 is operated and the blood collection process for collecting plasma in the plasma collection bag 25 is being performed, the second liquid delivery pump 12 is operated without interrupting the blood collection process. It operates to perform a plasma circulation process (in this embodiment, a plurality of plasma circulation processes). That is, in each of the first plasma collection process, the second plasma collection process, the third plasma collection process, the first plasma circulation process, and the second plasma circulation process, the first liquid feeding pump 11 The blood is collected from the donor, the blood is introduced into the blood storage space 146 of the centrifuge 20 and separated, and the plasma is collected in the plasma collection bag 25, whereby the plasma in the plasma collection bag 25 is collected. Since blood sampling is continuously performed, blood collection time can be shortened. As a result, the occupation time of the blood component collection device 1 can be reduced, and the burden on the donor can be reduced. It can be done.
[0115] また、第 1の血漿採取工程から第 1の定速血漿循環工程に移行する際と、第 2の血 漿採取工程力ゝら第 2の定速血漿循環工程に移行する際のそれぞれにおいて、第 2の 送液ポンプ 12の送液量を増大させ、各定速血漿循環工程において貯血空間 146に 導入される液性成分の流量 (血漿の循環流量)を、血漿採取工程にお!ヽて貯血空間 146に導入される液性成分の流量 (血漿の循環流量)より大きくするので、分離され た赤血球層によって閉じ込められて 、る血小板を確実に洗い出すことができ、また、 バフィ一コート層の内部粘度の過剰な上昇 (パフィーコート層の過剰な濃縮)を防止( 阻止)することができ、これにより、血小板の回収率 (収量)を向上させることができる。  [0115] In addition, each of the transition from the first plasma collection step to the first constant-speed plasma circulation step and the transition from the second plasma collection step to the second constant-speed plasma circulation step, respectively. In the plasma collection step, the flow rate of the liquid component introduced into the blood storage space 146 in each constant-speed plasma circulation step (plasma circulation flow rate) is increased in the plasma collection step! Since the flow rate of the liquid component introduced into the blood storage space 146 (the circulating flow rate of plasma) is increased, the platelets trapped by the separated red blood cell layer can be washed out reliably, and the buffy coat An excessive increase in the internal viscosity of the layer (excessive concentration of the puffy coat layer) can be prevented (blocked), thereby improving the recovery rate (yield) of platelets.
[0116] また、図 5に示すように、本実施形態では、第 1の血漿採取工程、第 2の血漿採取 工程および第 3の血漿採取工程において、それぞれ、第 2の送液ポンプ 12が作動し 、血漿採取バッグ 25に採取された血漿を血漿循環用ライン 24等を介して遠心分離 器 20の貯血空間 146内に循環させるように構成されている。これにより、血小板の回 収率をさらに向上させることができる。  In addition, as shown in FIG. 5, in the present embodiment, the second liquid feeding pump 12 operates in each of the first plasma collection step, the second plasma collection step, and the third plasma collection step. The plasma collected in the plasma collection bag 25 is circulated in the blood storage space 146 of the centrifuge 20 via the plasma circulation line 24 or the like. Thereby, the recovery rate of platelets can be further improved.
[0117] なお、第 1サイクルの第 1の血漿採取工程においては、血漿採取バッグ 25に所定 量 (例えば、 10〜50mL程度)の血漿が採取された後、第 2の送液ポンプ 12が作動 し、前記血漿採取バッグ 25に採取された血漿の循環を開始するようになっており、図 5には、その第 1サイクルの場合が示されている。  [0117] In the first plasma collection step of the first cycle, after a predetermined amount (for example, about 10 to 50 mL) of plasma is collected in the plasma collection bag 25, the second liquid feeding pump 12 is activated. The circulation of the plasma collected in the plasma collection bag 25 is started, and FIG. 5 shows the case of the first cycle.
[0118] 但し、血漿採取バッグ 25に採取する血漿の目標量が、前記所定量未満の場合は、 前記血漿の循環は、行なわれず、前記所定量以上のときに行なわれる。  [0118] However, when the target amount of plasma collected in the plasma collection bag 25 is less than the predetermined amount, the plasma is not circulated and is performed when the amount is not less than the predetermined amount.
[0119] また、第 1の送液ポンプ 11の回転速度(回転数)は、第 1の血漿採取工程、第 1の 血漿循環工程、第 2の血漿採取工程、第 2の血漿循環工程、第 3の血漿採取工程を 通じて、略一定であるのが好ましい。すなわち、第 1の送液ポンプ 11の作動により、 遠心分離器 20の貯血空間 146に導入される (第 1のライン 21を流れる)血球成分の 流量は、略一定であるのが好ましい。  [0119] In addition, the rotation speed (number of rotations) of the first liquid delivery pump 11 depends on the first plasma collection step, the first plasma circulation step, the second plasma collection step, the second plasma circulation step, It is preferably substantially constant throughout the three plasma collection steps. That is, it is preferable that the flow rate of the blood cell component introduced into the blood storage space 146 of the centrifuge 20 (flowing through the first line 21) by the operation of the first liquid feeding pump 11 is substantially constant.
[0120] また、各血漿採取工程において遠心分離器 20の貯血空間 146に導入される液性 成分の流量は、それぞれ、 30〜150mLZmin程度であるのが好ましぐ 40〜135m LZmin程度であるのがより好まし 、。 [0121] そして、各血漿採取工程における第 2の送液ポンプ 12の送液量 (血漿の循環流量 )は、それぞれ、 0〜125mLZmin程度であるのが好ましぐ 5〜105mLZmin程度 であるのがより好ましい。 [0120] In addition, the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 in each plasma collection step is preferably about 30 to 150 mLZmin, and preferably about 40 to 135 mLZM. Is more preferred. [0121] The amount of liquid fed by the second liquid feed pump 12 in each plasma collection step (circulation flow rate of plasma) is preferably about 0 to 125 mLZmin, and preferably about 5 to 105 mLZmin. More preferred.
[0122] また、第 1の血漿採取工程において貯血空間 146に導入される液性成分の流量と 、第 2の血漿採取工程において貯血空間 146に導入される液性成分の流量と、第 3 の血漿採取工程において貯血空間 146に導入される液性成分の流量とは、略同一 であるのが好ましい。  [0122] The flow rate of the liquid component introduced into the blood storage space 146 in the first plasma collection step, the flow rate of the liquid component introduced into the blood storage space 146 in the second plasma collection step, and the third flow rate It is preferable that the flow rate of the liquid component introduced into the blood storage space 146 in the plasma collection step is substantially the same.
[0123] また、各定速血漿循環工程において遠心分離器 20の貯血空間 146に導入される 液性成分の流量は、遠心分離器 20の回転速度や採血速度にもよる力 それぞれ、 4 0〜 250mLZmin程度であるのが好ましく、 60〜 200mLZmin程度であるのがより好 ましい。  [0123] Further, the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 in each constant-speed plasma circulation step is a force depending on the rotational speed of the centrifuge 20 and the blood collection speed, respectively. It is preferably about 250 mLZmin, more preferably about 60 to 200 mLZmin.
[0124] これにより、遠心分離器 20の排出口 144からの血小板の流出を防止しつつ、分離 された赤血球層によって閉じ込められて 、る血小板を確実に洗い出すことができ、ま た、バフィ一コート層の内部粘度の過剰な上昇を防止することができ、血小板の回収 率を向上させることができる。  [0124] This prevents platelets from flowing out from the outlet 144 of the centrifuge 20, and allows the platelets that are trapped by the separated red blood cell layer to be washed out reliably and buffy coat. An excessive increase in the internal viscosity of the layer can be prevented, and the recovery rate of platelets can be improved.
[0125] また、各定速血漿循環工程において遠心分離器 20の貯血空間 146に導入される 液性成分の流量と、各血漿採取工程において貯血空間 146に導入される液性成分 の流量との差、すなわち、各血漿採取工程から各定速血漿循環工程に移行する際 のそれぞれの第 2の送液ポンプ 12の送液量 (血漿の循環流量)の増大分は、 10〜2 20mLZmin程度であるのが好ましく、 60〜 200mLZmin程度であるのがより好まし い。  [0125] Further, the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 in each constant-speed plasma circulation step and the flow rate of the liquid component introduced into the blood storage space 146 in each plasma collection step The difference, that is, the increase in the liquid supply volume (plasma circulation flow rate) of each second liquid supply pump 12 when moving from each plasma collection process to each constant-speed plasma circulation process is about 10 to 20 mLZmin. It is preferable that it is about 60 to 200 mLZmin.
[0126] これにより、遠心分離器 20の排出口 144からの血小板の流出を防止しつつ、分離 された赤血球層によって閉じ込められて 、る血小板を確実に洗い出すことができ、ま た、バフィ一コート層の内部粘度の過剰な上昇を防止することができ、血小板の回収 率を向上させることができる。  [0126] This prevents platelets from flowing out from the outlet 144 of the centrifuge 20, and allows the platelets that are trapped by the separated red blood cell layer to be reliably washed out, and buffy coat An excessive increase in the internal viscosity of the layer can be prevented, and the recovery rate of platelets can be improved.
[0127] また、第 2の定速血漿循環工程において貯血空間 146に導入される液性成分の流 量は、第 1の定速血漿循環工程において貯血空間 146に導入される液性成分の流 量より、少ない(小さい)のが好まし 、。 [0128] 具体的には、第 1の定速血漿循環工程において貯血空間 146に導入される液性成 分の流量は、 100〜250mLZmin程度であるのが好ましぐ 120〜200mLZmin程 度であるのがより好ましい。 [0127] The flow rate of the liquid component introduced into the blood storage space 146 in the second constant-speed plasma circulation step is the flow rate of the liquid component introduced into the blood storage space 146 in the first constant-speed plasma circulation step. Less (smaller) is preferred than the amount. [0128] Specifically, the flow rate of the liquid component introduced into the blood storage space 146 in the first constant-speed plasma circulation step is preferably about 100 to 250 mLZmin, and is about 120 to 200 mLZmin. Is more preferable.
[0129] また、第 2の定速血漿循環工程において貯血空間 146に導入される液性成分の流 量は、 40〜200mLZmin程度であるのが好ましぐ 60〜175mLZmin程度であるの 力 り好ましい。 [0129] The flow rate of the liquid component introduced into the blood storage space 146 in the second constant-speed plasma circulation step is preferably about 40 to 200 mLZmin, more preferably about 60 to 175 mLZmin. .
[0130] また、第 1の定速血漿循環工程において貯血空間 146に導入される液性成分の流 量と、その直前の血漿採取工程である第 1の血漿採取工程において貯血空間 146 に導入される液性成分の流量との差、すなわち、第 1の血漿採取工程力ゝら第 1の定 速血漿循環工程に移行する際の第 2の送液ポンプ 12の送液量 (血漿の循環流量) の増大分は、 60〜220mLZmin程度であるのが好ましぐ 80〜180mLZmin程度 であるのがより好ましい。  [0130] Further, the flow rate of the liquid component introduced into the blood storage space 146 in the first constant-speed plasma circulation process and the blood flow introduced into the blood storage space 146 in the first plasma collection process, which is the plasma collection process immediately before the blood flow. That is, the flow rate of the second liquid pump 12 during the transition to the first constant-speed plasma circulation process from the power of the first plasma collection process (the circulating flow rate of plasma) ) Is preferably about 60 to 220 mLZmin, more preferably about 80 to 180 mLZmin.
[0131] また、第 2の定速血漿循環工程において貯血空間 146に導入される液性成分の流 量と、その直前の血漿採取工程である第 2の血漿採取工程において貯血空間 146 に導入される液性成分の流量との差、すなわち、第 2の血漿採取工程力ゝら第 2の定 速血漿循環工程に移行する際の第 2の送液ポンプ 12の送液量 (血漿の循環流量) の増大分は、 15〜150mLZmin程度であるのが好ましぐ 70〜: LOOmLZmin程度 であるのがより好ましい。  [0131] Further, the flow rate of the liquid component introduced into the blood storage space 146 in the second constant-speed plasma circulation step, and the blood flow introduced into the blood storage space 146 in the second plasma collection step, which is the immediately preceding plasma collection step. That is, the flow rate of the second liquid pump 12 during the transition to the second constant-speed plasma circulation process from the power of the second plasma collection process (the plasma circulation flow rate) ) Is preferably about 15 to 150 mLZmin, more preferably 70 to about LOOmLZmin.
[0132] また、図 6に示すように、この血液成分採取装置 1は、第 1の血漿採取工程、第 2の 血漿採取工程、第 3の血漿採取工程、第 1の血漿循環工程および第 2の血漿循環ェ 程のそれぞれにおいて、遠心分離器 20の貯血空間 146に導入される液性成分の流 量が所定の目標値 (一定値)になるように、第 2の送液ポンプ 12の作動を制御して第 2の送液ポンプ 12の送液量を調整するように構成されて!、る。  Further, as shown in FIG. 6, the blood component collection device 1 includes a first plasma collection step, a second plasma collection step, a third plasma collection step, a first plasma circulation step, and a second plasma collection step. In each of the plasma circulation processes, the second liquid feed pump 12 is operated so that the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 becomes a predetermined target value (a constant value). It is configured to control and adjust the liquid feeding amount of the second liquid feeding pump 12! RU
[0133] すなわち、ドナーから採取される血液の流量 (採血速度)が減少した場合は、それ に応じて第 1の送液ポンプ 11の回転速度を減少させるようになっており、例えば、図 6に示すように、期間 Tにおいて、採血量が減少し、遠心分離器 20の貯血空間 146 に導入される血液 (血球成分および液性成分)の流量が減少すると、第 2の送液ボン プ 12の回転速度を増大させ、その送液量、すなわち、血漿採取バッグ 25に採取され た血漿 (液性成分)の循環流量を増大させることで、貯血空間 146に導入される液性 成分の流量を増大させ、 a2 = alとなるようにする。 [0133] That is, when the flow rate of blood collected from the donor (blood collection speed) decreases, the rotational speed of the first liquid delivery pump 11 is decreased accordingly. As shown in Fig. 2, when the blood collection volume decreases during the period T and the flow rate of blood (blood cell component and liquid component) introduced into the blood storage space 146 of the centrifuge 20 decreases, the second liquid delivery pump 12 The amount of liquid delivered, i.e. collected in the plasma collection bag 25. By increasing the circulation flow rate of the plasma (liquid component), the flow rate of the liquid component introduced into the blood storage space 146 is increased so that a2 = al.
[0134] これにより、採血量が減少することで貯血空間 146内の血液や血液成分に過剰な 遠心がかかり、血小板の回収率が低下してしまうのを防止することができる。 Accordingly, it is possible to prevent the blood collection volume 146 from excessively centrifuging due to a decrease in the amount of collected blood, thereby reducing the platelet recovery rate.
[0135] 前記目標値 (一定値)の設定やその変更は、オペレータによる表示 ·操作部 17の操 作により行なうことができるようになっており、例えば、ドナーのへマトクリット値等の血 算等に応じて、前記目標値を適宜変更することができる。 [0135] The target value (constant value) can be set and changed by the operator operating the display / operation unit 17. For example, the donor's hematocrit value can be calculated. The target value can be appropriately changed according to the above.
[0136] なお、各血漿採取工程では、それぞれ、前記第 2の送液ポンプ 12の作動による血 漿の循環を行なわなくてもよい。すなわち、各血漿採取工程から各定速血漿循環ェ 程に移行する際、それぞれ、第 2の送液ポンプ 12の送液量が、 0から増大するように 構成されていてもよい。 [0136] In each plasma collection step, plasma circulation by the operation of the second liquid feeding pump 12 may not be performed. That is, the liquid feed amount of the second liquid feed pump 12 may be configured to increase from 0 when moving from each plasma collection step to each constant-speed plasma circulation step.
[0137] また、各血漿採取工程において、それぞれ、前記第 2の送液ポンプ 12の作動によ る血漿の循環を行なわない場合でも、前記遠心分離器 20の貯血空間 146に導入さ れる液性成分の流量を所定の目標値 (一定値)にするための調整 (制御)を行なうよう に構成されていてもよい。すなわち、図 7に示すように、血液成分採取装置 1は、第 1 の血漿採取工程、第 2の血漿採取工程、第 3の血漿採取工程、第 1の血漿循環工程 および第 2の血漿循環工程のそれぞれにおいて、遠心分離器 20の貯血空間 146に 導入される液性成分の流量が所定の目標値 (一定値)になるように、第 2の送液ボン プ 12の作動を制御して第 2の送液ポンプ 12の送液量を調整するように構成されてい てもよい。  [0137] Further, in each plasma collection step, the liquidity introduced into the blood storage space 146 of the centrifuge 20 even when plasma circulation by the operation of the second liquid feeding pump 12 is not performed. It may be configured to perform adjustment (control) for setting the flow rate of the component to a predetermined target value (a constant value). That is, as shown in FIG. 7, the blood component collection device 1 includes a first plasma collection step, a second plasma collection step, a third plasma collection step, a first plasma circulation step, and a second plasma circulation step. In each of these, the operation of the second liquid delivery pump 12 is controlled so that the flow rate of the liquid component introduced into the blood storage space 146 of the centrifuge 20 becomes a predetermined target value (a constant value). The liquid feeding pump 12 may be configured to adjust the liquid feeding amount.
[0138] 例えば、図 7に示すように、期間 Tにおいて、ドナーから採取される血液の流量 (採 血速度)が減少し、遠心分離器 20の貯血空間 146に導入される血液 (血球成分およ び液性成分)の流量が減少すると、第 2の送液ポンプ 12を作動させ、血漿採取バッ グ 25に採取された血漿 (液性成分)を貯血空間 146内に循環させることで、貯血空 間 146に導入される液性成分の流量を増大させ、 b2 =blとなるようにする。  For example, as shown in FIG. 7, during the period T, the blood flow (blood collection speed) collected from the donor decreases, and the blood (blood cell components and blood) introduced into the blood storage space 146 of the centrifuge 20 decreases. When the flow rate of the liquid component (and the liquid component) decreases, the second liquid pump 12 is operated to circulate the plasma (liquid component) collected in the plasma collection bag 25 into the blood storage space 146, thereby storing the blood. Increase the flow rate of the liquid component introduced into the space 146 so that b2 = bl.
[0139] なお、各サイクルにおける血漿採取工程の回数は、 3回には限定されず、例えば、 1回でもよぐまた、 2回でもよぐまた、 4回以上でもよい。  [0139] The number of plasma collection steps in each cycle is not limited to 3 times, and may be, for example, 1 time, 2 times, or 4 times or more.
[0140] また、各サイクルにおける定速血漿循環工程の回数は、 2回には限定されず、例え ば、 1回でもよぐまた、 3回以上でもよい。 [0140] The number of constant-speed plasma circulation steps in each cycle is not limited to two. For example, it may be 1 time or 3 times or more.
[0141] また、血漿循環工程では、血漿を一定の流量 (速度)で循環させる定速血漿循環に 限らず、例えば、血漿の流量 (速度)を増大させつつ循環させる加速血漿循環等を行 なってもよい。 [0141] In addition, the plasma circulation process is not limited to constant-speed plasma circulation in which plasma is circulated at a constant flow rate (speed). May be.
[0142] ところで、血小板の「1単位」は、 0. 2 X 1011個であり、また、血小板製剤 (製剤規格 で規定されて ヽるもの)としては、下記(1)〜(4)の 4種類のものがある。 [0142] Meanwhile, "1 unit" of platelets, 0.5 a 2 X 10 11 cells, and as the platelet products (defined in Formulation Standard Ru ones), the following (1) to (4) There are four types.
[0143] (1) 5単位製剤 [0143] (1) 5-unit preparation
容量(体積量)が、 100mL± 20%であり、個数力 1. O X IO11 !^ 9 X 1011The volume (volume) is 100mL ± 20%, and the number power 1. OX IO 11 ! ^ 9 X 10 11
(2) 10単位製剤 (2) 10 unit preparation
容量(体積量)が、 200mL± 20%であり、個数が、 2. 0 X 1011〜2. 9 X 1011The volume (volume) is 200mL ± 20%, and the number is 2. 0 X 10 11 to 2. 9 X 10 11
(3) 15単位製剤 (3) 15 unit preparation
容量(体積量)が、 250mL± 20%であり、個数が、 3. Ο Χ Ιθ'^Β. 9 X 1011The capacity (volume) is 250mL ± 20% and the number is 3. Ο Χ Ιθ '^ Β. 9 X 10 11
(4) 20単位製剤 (4) 20 unit preparation
容量 (体積量)が、 250mL± 20%であり、個数が、 4. 0 X 1011個以上 The volume (volume) is 250mL ± 20% and the number is 4.0 X 10 11 or more
[0144] 次に、血液成分採取装置 1の作用(動作)、すなわち、血液成分採取装置 1を用い た血小板採取操作 (血液成分採取操作)を、図 1、図 3および図 4に示すフローチヤ ートを参照しつつ説明する。  [0144] Next, the action (operation) of blood component collection device 1, that is, the platelet collection operation (blood component collection operation) using blood component collection device 1 is shown in the flow charts shown in Figs. The explanation will be made with reference to FIG.
[0145] 本実施形態では、血液成分採取装置 1は、制御部 3の制御により、血小板採取操 作 (血液成分採取操作)を繰り返して複数回 (第 1サイクル〜第 nサイクル、 nは 2以上 の整数)行なうようになっている。この血小板採取操作については、後に詳述する。  [0145] In this embodiment, the blood component collection device 1 repeats the platelet collection operation (blood component collection operation) a plurality of times (1st cycle to nth cycle, n is 2 or more) under the control of the control unit 3. Integer). This platelet collection operation will be described in detail later.
[0146] また、最終サイクルの血小板採取操作を行なうのに並行して、または、最終サイクル の血小板採取操作終了後、血液成分採取装置 1は、制御部 3の制御により、中間バ ッグ 27a内に一時的に採取 (貯留)した濃厚血小板を、白血球除去フィルター 261に 供給して、濃厚血小板の濾過、すなわち、濃厚血小板中の白血球を分離除去する 濾過操作 (濾過工程)を行なうよう構成されて 、る。  [0146] In parallel with the final cycle of platelet collection operation, or after the final cycle of platelet collection operation, blood component collection device 1 is controlled by control unit 3 in intermediate bag 27a. Concentrated platelets temporarily collected (stored) are supplied to the leukocyte removal filter 261, and the platelets are filtered, that is, a filtration operation (filtration process) is performed to separate and remove leukocytes in the concentrated platelets. RU
[0147] この濾過操作では、第 2の流路開閉手段 82を開放する。これにより、中間バッグ 27 a内の濃厚血小板は、落差(自重)により、チューブ 46、 47、白血球除去フィルター 2 61およびチューブ 48を経て、血小板採取バッグ 26内に移送される。このとき、濃厚 血小板は、そのほとんどが、白血球除去フィルター 261の濾過部材を通過する力 白 血球は濾過部材に捕捉される。このため、血小板製剤中の白血球の除去率を極めて 高いものとすることができる。 In this filtering operation, the second flow path opening / closing means 82 is opened. As a result, the concentrated platelets in the intermediate bag 27a are transferred into the platelet collection bag 26 via the tubes 46, 47, the leukocyte removal filter 261, and the tube 48 due to a drop (self-weight). At this time, rich Most of the platelets are force passing through the filtration member of the leukocyte removal filter 261. White blood cells are captured by the filtration member. For this reason, the removal rate of leukocytes in the platelet preparation can be made extremely high.
[0148] この濾過操作を開始するタイミングは、特に限定されないが、ドナーの拘束時間を 短縮する観点からは、この濾過操作を、最終サイクルの血小板採取操作と同時に (特 に、血小板採取操作の早い段階の工程において)開始するのが好ましい。なお、本 実施形態の血液成分採取装置 1では、濾過操作を最終サイクルの血小板採取操作 における第 2の血漿採取工程の開始とほぼ同時 (例えば、図 3のステップ S 105の前) に開始するように構成されているが、図 3および図 4に示すフローチャートには、その 濾過操作開始 (濾過工程開始)のステップの記載を省略する。  [0148] The timing of starting this filtration operation is not particularly limited, but from the viewpoint of shortening the donor's restraint time, this filtration operation is performed at the same time as the platelet collection operation in the final cycle (in particular, the platelet collection operation is performed earlier). It is preferred to start (in a step process). In the blood component collection device 1 of the present embodiment, the filtration operation is started almost simultaneously with the start of the second plasma collection step in the platelet collection operation in the final cycle (for example, before step S 105 in FIG. 3). However, in the flowcharts shown in FIGS. 3 and 4, the description of the step of the filtration operation start (filtration process start) is omitted.
[0149] なお、濃厚血小板の中間バッグ 27a内力 血小板採取バッグ 26への移送は、ポン プを用いて行なうようにしてもょ 、。  [0149] It should be noted that the transport of concentrated platelets to the intermediate bag 27a internal force platelet collection bag 26 may be carried out using a pump.
[0150] [0] まず、最初に、第 3のライン 23と第 1のライン 21の採血針 29からチャンバ一 21d までを、抗凝固剤でプライミングし、その後、ドナー (供血者)の血管に採血針 29を穿 刺する。  [0150] [0] First, the blood collection needle 29 of the third line 23 and the first line 21 to the chamber 21d are primed with an anticoagulant, and then into the blood vessels of the donor (donor). Puncture blood collection needle 29.
[I] 第 1サイクルの血小板採取操作(図 3および図 4参照)  [I] The first cycle of platelet collection (see Fig. 3 and Fig. 4)
[II] まず、血液成分採取装置 1は、第 1の血漿採取工程を行なう。第 1の血漿採取 工程では、ローター 142の貯血空間 146内に血液を導入し、血液を遠心分離するこ とにより分離された血漿 (PPP)を血漿採取バッグ 25内に採取する。  [II] First, the blood component collection device 1 performs the first plasma collection step. In the first plasma collection step, blood is introduced into the blood storage space 146 of the rotor 142, and the plasma (PPP) separated by centrifuging the blood is collected in the plasma collection bag 25.
[0151] 第 1の血漿採取工程では、まず、制御部 3は、血漿の採取を行なう(図 3のステップ S101)。  [0151] In the first plasma collection step, first, the control unit 3 collects plasma (step S101 in Fig. 3).
[0152] 具体的には、制御部 3の制御により、第 1の流路開閉手段 81および第 5の流路開 閉手段 85を開放し、他の流路開閉手段を閉塞した状態で、第 1の送液ポンプ 11を 所定の回転速度 (好ましくは 250mLZmin以下程度、より好ましくは 40〜150mLZ min程度、例えば 60mLZmin)で作動(正転)して、ドナー力も採血を開始する。  [0152] Specifically, the first flow path opening / closing means 81 and the fifth flow path opening / closing means 85 are opened and the other flow path opening / closing means are closed under the control of the control unit 3. One donor pump 11 is operated (forward rotation) at a predetermined rotation speed (preferably about 250 mLZmin or less, more preferably about 40 to 150 mLZmin, for example, 60 mLZmin), and donor force starts blood collection.
[0153] また、この採血と同時に、制御部 3の制御により、第 3の送液ポンプ 13を作動して、 第 3のライン 23を介して、例えば ACD— A液のような抗凝固剤を供給し、この抗凝固 剤を採血血液中に混入させる。 [0154] このとき、第 3の送液ポンプ 13の回転速度は、制御部 3により、採血血液に対して抗 凝固剤が所定比率 (好ましくは 1Z20〜1Z6程度、例えば 1Z10)で混合されるよう に制御される。 [0153] Simultaneously with this blood collection, the third liquid feed pump 13 is operated under the control of the control unit 3, and an anticoagulant such as ACD-A liquid is applied via the third line 23, for example. Supply and mix this anticoagulant into the blood sample. [0154] At this time, the rotation speed of the third liquid feeding pump 13 is such that the control unit 3 mixes the anticoagulant with the blood sample at a predetermined ratio (preferably about 1Z20 to 1Z6, for example, 1Z10). Controlled.
[0155] これにより、血液 (抗凝固剤添加血液)は、第 1のライン 21を介して移送され、遠心 分離器 20の流入口 143より管体 141を経てローター 142の貯血空間 146内に導入 される。  As a result, blood (blood added with an anticoagulant) is transferred via the first line 21 and introduced into the blood storage space 146 of the rotor 142 through the tube body 141 from the inlet 143 of the centrifuge 20. Is done.
[0156] このとき、遠心分離器 20内の空気 (滅菌空気)は、第 2のライン 22およびチューブ 4 [0156] At this time, the air in the centrifuge 20 (sterilized air) passes through the second line 22 and the tube 4
2を介してエアーバッグ 27b内に送り込まれる。 2 is sent into the air bag 27b.
[0157] また、前記採血と同時にまたはこれと前後して、制御部 3は、遠心分離器駆動装置[0157] Further, at the same time as or before and after the blood collection, the control unit 3 is provided with a centrifuge drive device.
10を作動し、ローター 142を所定の回転数で回転するよう制御する。 10 is operated and the rotor 142 is controlled to rotate at a predetermined rotational speed.
[0158] このローター 142の回転により、貯血空間 146内に導入された血液は、内側から血 漿層(PPP層) 131、バフィ一コート層(BC層) 132、赤血球層(CRC層) 133の 3層 に分離される。 [0158] The blood introduced into the blood storage space 146 by the rotation of the rotor 142 causes the plasma layer (PPP layer) 131, the buffy coat layer (BC layer) 132, and the red blood cell layer (CRC layer) 133 from the inside. Separated into three layers.
[0159] なお、ローター 142の回転数としては、好ましくは 3000〜6000rpm程度、より好ま しくは 4200〜5800rpm程度とされる。また、以下の工程において、特に記載しない 限り、制御部 3は、ローター 142の回転数を変更させない。  [0159] The rotational speed of the rotor 142 is preferably about 3000 to 6000 rpm, and more preferably about 4200 to 5800 rpm. In the following steps, the control unit 3 does not change the rotational speed of the rotor 142 unless otherwise specified.
[0160] さらに、前記採血および前記抗凝固剤の供給を継続し、貯血空間 146の容量を越 える血液 (約 270mL)が貯血空間 146内に導入されると、貯血空間 146内は血液に より満たされ、遠心分離器 20の排出口 144から血漿 (PPP)が流出する。  [0160] Furthermore, when the blood collection and the supply of the anticoagulant are continued and blood (approximately 270 mL) exceeding the capacity of the blood storage space 146 is introduced into the blood storage space 146, the blood storage space 146 is filled with blood. Filled and plasma (PPP) flows out from the outlet 144 of the centrifuge 20.
[0161] このとき、第 2のライン 22に設置された気泡センサ 34は、第 2のライン 22中を流れる 流体が、空気力 血漿に変わったことを検出し、制御部 3は、この気泡センサ 34の検 出信号に基づき、第 5の流路開閉手段 85を閉塞し、かつ、第 3の流路開閉手段 83を 開放するよう制御する。  [0161] At this time, the bubble sensor 34 installed in the second line 22 detects that the fluid flowing in the second line 22 has changed to aerodynamic plasma, and the control unit 3 Based on the detection signal 34, control is performed so that the fifth flow path opening / closing means 85 is closed and the third flow path opening / closing means 83 is opened.
[0162] これにより、第 2のライン 22、チューブ 43および 44を介して血漿を血漿採取バッグ 2 5内に導入、採取する。  [0162] This introduces and collects plasma into the plasma collection bag 25 via the second line 22, tubes 43 and 44.
[0163] なお、血漿採取バッグ 25は、その重量が重量センサ 16により計測されており、計測 された重量信号は制御部 3に入力される。  Note that the weight of the plasma collection bag 25 is measured by the weight sensor 16, and the measured weight signal is input to the control unit 3.
[0164] 制御部 3は、重量センサ 16からの情報 (重量信号)に基づき、血漿採取バッグ 25内 に所定量 (好ましくは、 10〜50g程度、例えば 30g)の血漿が採取されたか否かを判 断し、血漿採取バッグ 25内に所定量の血漿が採取された場合には、血漿採取バッグ 25内の血漿を貯血空間 146内に通して定速で循環させる。 [0164] Based on the information (weight signal) from the weight sensor 16, the control unit 3 It is determined whether or not a predetermined amount (preferably about 10 to 50 g, for example, 30 g) of plasma is collected, and if a predetermined amount of plasma is collected in the plasma collection bag 25, the plasma collection bag 25 The plasma inside is circulated through the blood storage space 146 at a constant speed.
[0165] 具体的には、制御部 3の制御により、第 2の送液ポンプ 12を所定の回転速度 (好ま しくは 5〜105mLZmin程度、例えば 55mLZmin)で作動(正転)する。  Specifically, under the control of the control unit 3, the second liquid feeding pump 12 is operated (forward rotation) at a predetermined rotational speed (preferably about 5 to 105 mLZmin, for example, 55 mLZmin).
[0166] これにより、血漿採取バッグ 25内の血漿を血漿循環用ライン 24および第 1のライン 21を介して貯血空間 146内に一定速度で導入し、遠心分離器 20の排出口 144から 流出してきた血漿を第 2のライン 22、チューブ 43および 44を介して血漿採取バッグ 2 5内に回収する。すなわち、血漿採取バッグ 25内の血漿を貯血空間 146内に定速に て循環させる。  As a result, the plasma in the plasma collection bag 25 is introduced into the blood storage space 146 through the plasma circulation line 24 and the first line 21 at a constant speed, and flows out from the outlet 144 of the centrifuge 20. The collected plasma is collected into the plasma collection bag 25 via the second line 22, tubes 43 and 44. That is, the plasma in the plasma collection bag 25 is circulated in the blood storage space 146 at a constant speed.
[0167] 次いで、制御部 3は、重量センサ 16からの情報 (重量信号)に基づき、血漿採取バ ッグ 25内に所定量の血漿が採取された力否かを判断する(図 3のステップ S102)。  [0167] Next, the control unit 3 determines whether or not a predetermined amount of plasma has been collected in the plasma collection bag 25 based on information (weight signal) from the weight sensor 16 (step of FIG. 3). S102).
[0168] なお、この血漿の採取量 (所定量)としては、好ましくは 10〜50g程度、より好ましく は 20〜40g程度とされる。 [0168] The amount of plasma collected (predetermined amount) is preferably about 10 to 50 g, more preferably about 20 to 40 g.
[0169] ステップ S102において、血漿採取バッグ 25内に所定量の血漿が採取されていな い場合には、制御部 3は、ステップ S101に戻り、再度、ステップ S101以降を繰り返 す。 [0169] In step S102, when a predetermined amount of plasma is not collected in plasma collection bag 25, control unit 3 returns to step S101, and repeats step S101 and subsequent steps again.
[0170] また、ステップ S102において、血漿採取バッグ 25内に所定量の血漿が採取された 場合には、制御部 3は、本工程 [11] (第 1の血漿採取工程)を終了して、第 1の定速 血漿循環工程に移行する。  [0170] If a predetermined amount of plasma is collected in the plasma collection bag 25 in step S102, the control unit 3 ends this step [11] (first plasma collection step), Move to the first constant-speed plasma circulation process.
[0171] [12] 次に、血液成分採取装置 1は、第 1の定速血漿循環工程を行なう。第 1の定速 血漿循環工程では、ローター 142の貯血空間 146内に血液を導入し、血液を遠心分 離することにより分離された血漿を血漿採取バッグ 25内に採取する動作を継続しつ つ、血漿の貯血空間 146内への循環速度 (循環量)を第 1の血漿採取工程のときょり も大きくし、血漿採取バッグ 25内の血漿を貯血空間 146内に通して定速で循環させ る。  [0171] [12] Next, blood component collection apparatus 1 performs a first constant-speed plasma circulation step. In the first constant-speed plasma circulation process, blood is introduced into the blood storage space 146 of the rotor 142, and the operation of collecting the plasma separated by centrifuging the blood into the plasma collection bag 25 is continued. The circulation rate (circulation amount) of plasma into the blood storage space 146 is also increased during the first plasma collection process, and the plasma in the plasma collection bag 25 is circulated at a constant speed through the blood storage space 146. The
[0172] 第 1の定速血漿循環工程では、制御部 3は、血漿を採取バッグ 25内へ採取しつつ 、第 1の血漿採取工程から第 1の定速血漿循環工程に移行する際に第 2の送液ボン プ 12の回転速度を増大させて (変更して)、血漿の循環を行なう(図 3のステップ S10 3)。 [0172] In the first constant-speed plasma circulation process, the control unit 3 collects the plasma into the collection bag 25, and moves to the first constant-speed plasma circulation process from the first plasma collection process. 2 pumps Increase (change) the rotational speed of step 12 to circulate plasma (step S103 in FIG. 3).
[0173] 具体的には、制御部 3の制御により、第 2の送液ポンプ 12の回転速度を所定の回 転速度 (好ましくは 55〜225mLZmin程度、例えば 165mLZmin)に増大させ、第 2 の送液ポンプ 12を作動(正転)する。  Specifically, under the control of the control unit 3, the rotational speed of the second liquid feeding pump 12 is increased to a predetermined rotational speed (preferably about 55 to 225 mLZmin, for example, 165 mLZmin), and the second liquid feeding pump 12 is increased. Operate fluid pump 12 (forward rotation).
[0174] 次いで、制御部 3は、第 1の定速血漿循環を開始してから所定時間(好ましくは 10[0174] Next, the control unit 3 starts the first constant-speed plasma circulation for a predetermined time (preferably 10
〜90秒程度、例えば 30秒)が経過したか否かを判断する(図 3のステップ S104)。 It is determined whether or not about 90 seconds (for example, 30 seconds) has elapsed (step S104 in FIG. 3).
[0175] ステップ S104において、第 1の定速血漿循環を開始してから所定時間が経過して いない場合には、制御部 3は、ステップ S103に戻り、再度、ステップ S103以降を繰り 返す。 [0175] If the predetermined time has not elapsed since the start of the first constant-velocity plasma circulation in step S104, the control unit 3 returns to step S103 and repeats step S103 and subsequent steps again.
[0176] また、ステップ S104において、第 1の定速血漿循環を開始してから所定時間が経 過した場合には、制御部 3は、本工程 [12] (第 1の定速血漿循環工程)を終了して、 第 2の血漿採取工程に移行する。  [0176] Also, in step S104, if a predetermined time has elapsed since the start of the first constant-speed plasma circulation, the control unit 3 performs this step [12] (first constant-speed plasma circulation step ) And move to the second plasma collection step.
[0177] [13] 次に、血液成分採取装置 1は、第 2の血漿採取工程を行なう。第 2の血漿採取 工程では、血漿の貯血空間 146内への循環速度を第 1の定速血漿循環工程のとき よりも小さくし、血漿採取バッグ 25内の血漿を貯血空間 146内に通して定速で循環さ せる動作を継続しつつ、ローター 142の貯血空間 146内に血液を導入し、血液を遠 心分離することにより分離された血漿を血漿採取バッグ 25内に採取する。  [13] [13] Next, blood component collection apparatus 1 performs a second plasma collection step. In the second plasma collection step, the circulation rate of the plasma into the blood storage space 146 is made lower than that in the first constant-speed plasma circulation step, and the plasma in the plasma collection bag 25 is passed through the blood storage space 146. While continuing the operation of circulating at high speed, blood is introduced into the blood storage space 146 of the rotor 142, and plasma separated by centrifugal separation of the blood is collected in the plasma collection bag 25.
[0178] なお、この第 2の血漿採取工程では、重量センサ 16により血漿の採取量を計測す るのに代わり、血漿層 131とバフィ一コート層 132との界面 Bの位置を検出したときに 終了する以外、前記工程 [11] (第 1の血漿採取工程)と同様の工程を行なう。  [0178] In the second plasma collection step, instead of measuring the amount of plasma collected by the weight sensor 16, the position of the interface B between the plasma layer 131 and the buffy coat layer 132 is detected. Except for the completion, the same steps as in the above-mentioned step [11] (first plasma collecting step) are performed.
[0179] 第 2の血漿採取工程では、制御部 3は、血漿を採取バッグ 25内へ採取しつつ、第 1 の定速血漿循環工程から第 2の血漿採取工程に移行する際に第 2の送液ポンプ 12 の回転速度を減少させて (変更して)、血漿の循環を行なう(図 3のステップ S105)。  [0179] In the second plasma collection step, the control unit 3 collects the plasma in the collection bag 25 and moves the second plasma collection step from the first constant-speed plasma circulation step to the second plasma collection step. Plasma is circulated by reducing (changing) the rotation speed of the liquid feed pump 12 (step S105 in FIG. 3).
[0180] これにより、貯血空間 146内の赤血球量が増カロ、すなわち、赤血球層 133の層厚 が増大するのに伴い、界面 Bも徐々にローター 142の回転軸方向へ移動する。  As a result, as the amount of red blood cells in the blood storage space 146 increases, that is, as the layer thickness of the red blood cell layer 133 increases, the interface B also gradually moves in the direction of the rotation axis of the rotor 142.
[0181] 次いで、制御部 3は、光学式センサ 15からの検出信号 (界面位置検出情報)に基 づき、界面 Bが所定レベル (第 1の位置)に到達したか否かを判断する(図 3のステツ プ S106)。 [0181] Next, the control unit 3 determines whether or not the interface B has reached a predetermined level (first position) based on the detection signal (interface position detection information) from the optical sensor 15 (Fig. 1). 3 steps S106).
[0182] なお、この界面 Bの第 1の位置としては、第 1の光学式センサ 15からの検出信号(受 光部 152からの出力電圧)力 好ましくは 1〜2V程度となった時点の位置とされる。  [0182] The first position of the interface B is the position at which the detection signal from the first optical sensor 15 (output voltage from the light receiving unit 152) force is preferably about 1 to 2V. It is said.
[0183] ステップ S106において、界面 Bが第 1の位置に到達していない場合には、制御部 3 は、ステップ S 105に戻り、再度、ステップ S 105以降を繰り返す。 In step S106, when interface B has not reached the first position, control unit 3 returns to step S105, and repeats step S105 and subsequent steps again.
[0184] また、ステップ S106において、界面 Bが第 1の位置に到達した場合には、制御部 3 は、本工程 [13] (第 2の血漿採取工程)を終了して、第 2の定速血漿循環工程に移 行する。 [0184] In step S106, when the interface B reaches the first position, the control unit 3 ends this step [13] (second plasma collection step) and performs the second determination. Move to fast plasma circulation process.
[0185] [14] 次に、血液成分採取装置 1は、第 2の定速血漿循環工程を行なう。第 2の定速 血漿循環工程では、ローター 142の貯血空間 146内に血液を導入し、血液を遠心分 離することにより分離された血漿を血漿採取バッグ 25内に採取する動作を継続しつ つ、血漿の貯血空間 146内への循環速度を第 2の血漿採取工程のときよりも大きくし 、血漿採取バッグ 25内の血漿を貯血空間 146内に通して定速で循環させる。  [14] [14] Next, blood component collection apparatus 1 performs a second constant-speed plasma circulation step. In the second constant speed plasma circulation process, blood is introduced into the blood storage space 146 of the rotor 142, and the operation of collecting the plasma separated by centrifuging the blood into the plasma collection bag 25 is continued. Then, the circulation rate of the plasma into the blood storage space 146 is made larger than that in the second plasma collection step, and the plasma in the plasma collection bag 25 is circulated through the blood storage space 146 at a constant speed.
[0186] 第 2の定速血漿循環工程では、制御部 3は、血漿を採取バッグ 25内へ採取しつつ 、第 2の血漿採取工程から第 2の定速血漿循環工程に移行する際に第 2の送液ボン プ 12の回転速度を増大させて (変更して)、血漿の循環を行なう(図 3のステップ S10 7)。  [0186] In the second constant-speed plasma circulation step, the control unit 3 collects the plasma into the collection bag 25, and moves to the second constant-speed plasma circulation step from the second plasma collection step. Circulating the plasma by increasing (changing) the rotational speed of the second liquid delivery pump 12 (step S10 7 in FIG. 3).
[0187] 具体的には、制御部 3の制御により、第 2の送液ポンプ 12の回転速度を所定の回 転速度 (好ましくは 10〜175mLZmin程度、例えば 85mLZmin)に増大させ、第 2 の送液ポンプ 12を作動(正転)する。  Specifically, under the control of the control unit 3, the rotation speed of the second liquid feeding pump 12 is increased to a predetermined rotation speed (preferably about 10 to 175 mLZmin, for example, 85 mLZmin), and the second feeding pump 12 Operate fluid pump 12 (forward rotation).
[0188] 次いで、制御部 3は、第 2の定速血漿循環を開始してから所定時間(好ましくは 10[0188] Next, the control unit 3 starts a second constant-speed plasma circulation for a predetermined time (preferably 10
〜90秒程度、例えば 30秒)が経過したか否かを判断する(図 3のステップ S108)。 It is determined whether or not about 90 seconds (for example, 30 seconds) has elapsed (step S108 in FIG. 3).
[0189] ステップ S108において、第 2の定速血漿循環を開始してから所定時間が経過して いない場合には、制御部 3は、ステップ S107に戻り、再度、ステップ S107以降を繰り 返す。 [0189] In step S108, if the predetermined time has not elapsed since the start of the second constant-velocity plasma circulation, the control unit 3 returns to step S107, and repeats step S107 and subsequent steps again.
[0190] また、ステップ S108において、第 2の定速血漿循環を開始してから所定時間が経 過した場合には、制御部 3は、本工程 [14] (第 2の定速血漿循環工程)を終了して、 第 3の血漿採取工程に移行する。 [0191] [15] 次に、血液成分採取装置 1は、第 3の血漿採取工程を行なう。第 3の血漿採取 工程では、血漿の貯血空間 146内への循環速度を第 2の定速血漿循環工程のとき よりも小さくし、血漿採取バッグ 25内の血漿を貯血空間 146内に通して定速で循環さ せる動作を継続しつつ、ローター 142の貯血空間 146内に血液を導入し、血液を遠 心分離することにより分離された血漿を血漿採取バッグ 25内に採取する。 [0190] In addition, in step S108, when a predetermined time has elapsed since the start of the second constant-speed plasma circulation, the control unit 3 performs this process [14] (second constant-speed plasma circulation process). ) And move to the third plasma collection step. [0191] [15] Next, the blood component collection device 1 performs a third plasma collection step. In the third plasma collection step, the circulation rate of the plasma into the blood storage space 146 is made lower than that in the second constant-speed plasma circulation step, and the plasma in the plasma collection bag 25 is passed through the blood storage space 146 to be determined. While continuing the operation of circulating at high speed, blood is introduced into the blood storage space 146 of the rotor 142, and plasma separated by centrifugal separation of the blood is collected in the plasma collection bag 25.
[0192] 次いで、制御部 3は、第 1の送液ポンプ 11の 1回転当たりの送液量および回転回数 に基づき、血漿採取バッグ 25内に所定量の血漿が採取された力否かを判断する(図 3のステップ S 110)。  [0192] Next, the control unit 3 determines whether or not the predetermined amount of plasma is collected in the plasma collection bag 25 based on the amount and the number of rotations of the first liquid pump 11 per rotation. (Step S110 in FIG. 3).
[0193] なお、この血漿の採取量 (所定量)としては、好ましくは 2〜30g程度、より好ましくは 5〜15g程度とされる。  [0193] The amount of plasma collected (predetermined amount) is preferably about 2 to 30 g, more preferably about 5 to 15 g.
[0194] また、ステップ S110において、血漿採取バッグ 25内に所定量の血漿が採取された 場合には、制御部 3は、本工程 [15] (第 3の血漿採取工程)を終了して、血小板採取 工程に移行する(図 4の 1に移行する)。  [0194] When a predetermined amount of plasma is collected in the plasma collection bag 25 in step S110, the control unit 3 ends this step [15] (third plasma collection step), Move to platelet collection process (shift to 1 in Fig. 4).
[0195] [16] 次に、血液成分採取装置 1は、血小板採取工程を行なう。血小板採取工程で は、採取バッグ 25内への血漿の採取を中断し、血漿採取バッグ 25内の血漿を、貯 血空間 146内に第 1の加速度にて加速させながら循環させ、次いで、第 1の加速度よ り大き 、第 2の加速度に変更して、この第 2の加速度にて加速させながら循環させて 、貯血空間 146内より血小板を流出させ、濃厚血小板を中間バッグ 27a内に採取 (貯 留)する。  [16] Next, blood component collection apparatus 1 performs a platelet collection step. In the platelet collection process, the collection of plasma in the collection bag 25 is interrupted, and the plasma in the plasma collection bag 25 is circulated in the blood storage space 146 while being accelerated at the first acceleration, and then the first collection is performed. The acceleration is changed to the second acceleration, and is circulated while accelerating at the second acceleration. The platelets are discharged from the blood storage space 146, and the concentrated platelets are collected (stored) in the intermediate bag 27a. ))
[0196] 血小板採取工程では、まず、制御部 3は、採取バッグ 25内への血漿の採取を中止 し、第 1の加速度による血漿循環を行なう(図 4のステップ S111)。  [0196] In the platelet collection step, first, the control unit 3 stops collecting plasma into the collection bag 25 and performs plasma circulation by the first acceleration (step S111 in Fig. 4).
[0197] 具体的には、制御部 3の制御により、第 1の流路開閉手段 81を閉塞し、第 1の送液 ポンプ 11および第 3の送液ポンプ 13を停止するとともに、第 2の送液ポンプ 12を、そ の回転速度が第 1の加速度にて増加 (増大)するよう作動 (正転)する。  Specifically, under the control of the control unit 3, the first flow path opening / closing means 81 is closed, the first liquid feed pump 11 and the third liquid feed pump 13 are stopped, and the second The liquid feed pump 12 is operated (forward rotation) so that its rotational speed increases (increases) at the first acceleration.
[0198] これにより、採血を中断するとともに、血漿採取バッグ 25内の血漿を血漿循環用ラ イン 24および第 1のライン 21を介して貯血空間 146内に第 1の加速度にて加速させ ながら導入し、遠心分離器 20の排出口 144から流出してきた血漿を第 2のライン 22、 チューブ 43および 44を介して血漿採取バッグ 25内に回収する。すなわち、血漿採 取バッグ 25内の血漿を貯血空間 146内に第 1の加速度にて加速させながら循環さ せる。 [0198] As a result, the blood collection is interrupted, and the plasma in the plasma collection bag 25 is introduced into the blood storage space 146 through the plasma circulation line 24 and the first line 21 while being accelerated at the first acceleration. Then, the plasma flowing out from the outlet 144 of the centrifuge 20 is collected in the plasma collection bag 25 through the second line 22 and the tubes 43 and 44. That is, plasma collection The plasma in the collection bag 25 is circulated in the blood storage space 146 while being accelerated at the first acceleration.
[0199] このとき、貯血空間 146内に血漿を第 1の加速度にて加速させながら循環すると、 赤血球層 133の拡散 (層厚の増大)が生じて、界面 Bも徐々にローター 142の回転軸 方向へ移動する。  [0199] At this time, if the plasma is circulated in the blood storage space 146 while accelerating at the first acceleration, the red blood cell layer 133 diffuses (increase in the layer thickness), and the interface B gradually turns into the rotation axis of the rotor 142. Move in the direction.
[0200] この第 1の加速度としては、好ましくは 0. 5〜: LOmLZminZsec程度、より好ましくは [0200] The first acceleration is preferably 0.5 to: about LOmLZminZsec, more preferably
1. 5〜2. 5mLZminZsec程度とされる。なお、第 1の加速度は、一定でなくてもよく1. About 5 to 2.5 mLZminZsec. The first acceleration need not be constant.
、例えば、前記範囲内で段階的または連続的に変化するものであってもよい。 For example, it may change stepwise or continuously within the above range.
[0201] また、第 1の加速度による血漿循環での第 1の送液ポンプ 11の初速としては、好ま しくは 40〜150mLZmin程度、より好ましくは 50〜80mLZmin程度とされる。 [0201] Further, the initial speed of the first liquid delivery pump 11 in the plasma circulation by the first acceleration is preferably about 40 to 150 mLZmin, more preferably about 50 to 80 mLZmin.
[0202] 次いで、制御部 3は、血漿の貯血空間 146内への循環速度が所定速度に到達する まで、ステップ S 111を継続する(図 4のステップ S 112)。 [0202] Next, the control unit 3 continues Step S111 until the circulating speed of plasma into the blood storage space 146 reaches a predetermined speed (Step S112 in FIG. 4).
[0203] なお、この所定の速度、すなわち、第 1の加速度による血漿循環が終了するときの 第 1の送液ポンプ 11の回転速度としては、好ましくは 100〜180mLZmin程度、より 好ましくは 140〜160mLZmin程度とされる。 [0203] The predetermined speed, that is, the rotation speed of the first liquid delivery pump 11 when the plasma circulation by the first acceleration is completed is preferably about 100 to 180 mLZmin, more preferably 140 to 160 mLZmin. It is said to be about.
[0204] また、ステップ S112において、血漿の貯血空間 146内への循環速度が所定速度 に到達した場合には、制御部 3は、第 2の加速度による血漿循環を行なう(図 4のステ ップ S 113)。 [0204] In step S112, when the circulation speed of plasma into blood storage space 146 reaches a predetermined speed, control unit 3 performs plasma circulation by the second acceleration (step of FIG. 4). S 113).
[0205] 具体的には、制御部 3の制御により、第 2の送液ポンプ 12の加速度を、第 1の加速 度から第 2の加速度に変更して、第 2の送液ポンプ 12を、その回転速度が第 2の加 速度にて増力 tl (増大)するよう作動(正転)する。これにより、血漿採取バッグ 25内の 血漿を貯血空間 146内に第 2の加速度にて加速させながら循環させる。  Specifically, under the control of the control unit 3, the acceleration of the second liquid feeding pump 12 is changed from the first acceleration to the second acceleration, and the second liquid feeding pump 12 is It operates (forward rotation) so that its rotation speed increases tl (increase) at the second acceleration. As a result, the plasma in the plasma collection bag 25 is circulated in the blood storage space 146 while being accelerated at the second acceleration.
[0206] このとき、貯血空間 146内に血漿を第 2の加速度にて加速させながら循環すると、 赤血球層 133の拡散 (層厚の増大)が生じて、界面 Bも徐々にローター 142の回転軸 方向へ移動するとともに、バフィ一コート層 132中の血小板が遠心力に抗して浮上し (舞い上がり)、ローター 142の排出口 144へ向って移動する。  [0206] At this time, if plasma is circulated in the blood storage space 146 while accelerating at the second acceleration, diffusion of the red blood cell layer 133 (increase in the layer thickness) occurs, and the interface B gradually becomes the rotation axis of the rotor 142. In addition to moving in the direction, the platelets in the buffy coat layer 132 rise against the centrifugal force (float up) and move toward the discharge port 144 of the rotor 142.
[0207] この第 2の加速度としては、第 1の加速度より大きくなるよう設定され、好ましくは 3〜 20mLZminZsec程度、より好ましくは 5〜: LOmLZminZsec程度とされる。なお、第 2の加速度は、一定でなくてもよぐ例えば、前記範囲内で段階的または連続的に変 ィ匕するものであってもよい。 [0207] The second acceleration is set to be larger than the first acceleration, preferably about 3 to 20 mLZminZsec, more preferably about 5 to: LOmLZminZsec. The first The acceleration of 2 may not be constant. For example, it may change stepwise or continuously within the above range.
[0208] 次いで、制御部 3は、血漿の貯血空間 146内への循環速度が所定速度に到達した か否か、すなわち、第 1の送液ポンプ 11の回転速度が所定速度 (好ましくは 120〜3 OOmLZmin程度、例えば 250mLZmin)に到達したか否かを判断する(図 4のステツ プ S114)。 [0208] Next, the control unit 3 determines whether or not the circulating speed of plasma into the blood storage space 146 has reached a predetermined speed, that is, the rotational speed of the first liquid feeding pump 11 is a predetermined speed (preferably 120 to It is determined whether or not 3 OOmLZmin (eg, 250mLZmin) has been reached (step S114 in Fig. 4).
[0209] ステップ S114において、血漿の貯血空間 146内への循環速度が所定速度に到達 していない場合には、制御部 3は、ステップ S113に戻り、再度、ステップ S113以降 を繰り返す。  [0209] In step S114, if the circulation speed of plasma into blood storage space 146 has not reached the predetermined speed, control unit 3 returns to step S113 and repeats step S113 and subsequent steps again.
[0210] また、ステップ S114において、血漿の貯血空間 146内への循環速度が所定速度 に到達した場合には、制御部 3は、血漿循環を継続する(図 4のステップ S 115)。  [0210] In step S114, when the circulation speed of plasma into blood storage space 146 reaches a predetermined speed, control unit 3 continues the plasma circulation (step S115 in FIG. 4).
[0211] 具体的には、制御部 3は、第 2の送液ポンプ 12の回転速度を、前記ステップ S114 における所定速度で維持 (保持)するよう制御する。これにより、血漿の貯血空間 146 内への循環速度を、好ましくは 120〜300mLZmin程度、例えば 250mLZminとす る。  [0211] Specifically, the control unit 3 controls to maintain (hold) the rotational speed of the second liquid feeding pump 12 at the predetermined speed in step S114. Thereby, the circulation rate of plasma into the blood storage space 146 is preferably about 120 to 300 mLZmin, for example, 250 mLZmin.
[0212] 次いで、制御部 3は、ステップ S115を開始して力も所定時間(好ましくは 5〜15秒 程度、例えば 10秒)が経過したか否かを判断する(図 4のステップ S116)。  [0212] Next, the control unit 3 starts step S115 and determines whether or not a predetermined time (preferably about 5 to 15 seconds, for example, 10 seconds) has passed (step S116 in FIG. 4).
[0213] ステップ S116にお!/、て、ステップ S115を開始してから所定時間が経過して!/ヽな!ヽ 場合には、次いで、制御部 3は、濁度センサ 14からの出力電圧 (PC濃度電圧)が所 定値 (好ましくは 2. 5〜3. 5V程度、例えば、 3. OV)以下に低下した力否かを判断 する(図 4のステップ S 117)。  [0213] In step S116, if a predetermined time has passed since the start of step S115! / ヽ !!, then control unit 3 outputs the output voltage from turbidity sensor 14. It is determined whether or not the power (PC concentration voltage) has dropped below a predetermined value (preferably about 2.5 to 3.5 V, for example, 3. OV) (step S 117 in FIG. 4).
[0214] ステップ S117において、濁度センサ 14からの出力電圧が所定値以下に低下して いない場合には、制御部 3は、ステップ S115に戻り、再度、ステップ S115以降を繰り 返す。  [0214] If the output voltage from the turbidity sensor 14 has not decreased below the predetermined value in step S117, the control unit 3 returns to step S115 and repeats step S115 and subsequent steps again.
[0215] ステップ S115〜S117を繰り返している間に、ステップ S116において、ステップ S1 15を開始して力も所定時間が経過した場合には、制御部 3は、本工程 [16] (血小板 採取工程)を終了して、後述するステップ S 122に移行する。  [0215] While repeating steps S115 to S117, in step S116, when step S115 is started and the force has also passed for a predetermined time, the control unit 3 performs this step [16] (platelet collection step). And the process proceeds to step S122 described later.
[0216] また、ステップ S117において、濁度センサ 14力もの出力電圧が所定値以下に低 下した場合には、すなわち、ローター 142の排出口 144から血小板が流出するのに 伴い、第 2のライン 22中を流れる血漿中の血小板濃度が所定値以上に到達した場 合には、制御部 3は、血小板 (PC)の採取を行なう(図 4のステップ S 118)。 [0216] In step S117, the output voltage of 14 turbidity sensors is as low as the predetermined value. If the platelet concentration in the plasma flowing in the second line 22 reaches a predetermined value or more as platelets flow out from the outlet 144 of the rotor 142, the control unit 3 collects platelets (PC) (step S 118 in FIG. 4).
[0217] 具体的には、制御部 3は、濁度センサ 14の検出信号に基づき、第 3の流路開閉手 段 83を閉塞し、かつ、第 4の流路開閉手段 84を開放するよう制御する。  Specifically, based on the detection signal of the turbidity sensor 14, the control unit 3 closes the third flow path opening / closing means 83 and opens the fourth flow path opening / closing means 84. Control.
[0218] これにより、第 2のライン 22、チューブ 43および 45を介して濃厚血小板を中間バッ グ 27a内へ導入し、採取 (貯留)する。なお、このとき、第 2の流路開閉手段 82は、閉 塞しているため、濃厚血小板は、中間バッグ 27a内から流出しない。  [0218] Thus, concentrated platelets are introduced into the intermediate bag 27a via the second line 22, tubes 43 and 45, and collected (stored). At this time, since the second flow path opening / closing means 82 is closed, concentrated platelets do not flow out from the intermediate bag 27a.
[0219] また、制御部 3は、濁度センサ 14からの出力電圧 (検出信号)に基づき、中間バッグ 27a内の血小板濃度(累積 PC濃度)を算出する。なお、この血小板濃度は、血小板 の採取を開始して力 上昇を続け、一旦、最高濃度に到達した後、下降に転じる。  [0219] Further, the control unit 3 calculates the platelet concentration (cumulative PC concentration) in the intermediate bag 27a based on the output voltage (detection signal) from the turbidity sensor 14. The platelet concentration continues to increase after starting to collect platelets, and once it reaches the maximum concentration, it begins to decrease.
[0220] 次いで、制御部 3は、血小板の採取を開始して力も所定時間(好ましくは 10〜25秒 程度、例えば 15秒)が経過したか否かを判断する(図 4のステップ S119)。  [0220] Next, the control unit 3 determines whether or not a predetermined time (preferably about 10 to 25 seconds, for example, 15 seconds) has elapsed since the start of platelet collection (step S119 in FIG. 4).
[0221] ステップ S119にお 、て、血小板の採取を開始して力 所定時間が経過して 、な!/ヽ 場合には、次いで、制御部 3は、濁度センサ 14の出力電圧 (PC濃度電圧)が所定値 以下に到達した力否かを判断する(図 4のステップ S120)。  [0221] In step S119, when the predetermined time has passed since the start of platelet collection, the control unit 3 then outputs the output voltage (PC concentration) of the turbidity sensor 14. It is determined whether or not the voltage has reached a predetermined value or less (step S120 in FIG. 4).
[0222] この濁度センサ 14の出力電圧の所定値としては、第 2のライン 22中を流れる血漿 中に赤血球の混入が生じる時点付近の値とされ、好ましくは 0. 5V以下程度とされる  [0222] The predetermined value of the output voltage of the turbidity sensor 14 is a value near the time when red blood cells are mixed in the plasma flowing through the second line 22, and is preferably about 0.5 V or less.
[0223] ステップ S120において、濁度センサ 14の出力電圧が所定値以下に到達していな い場合には、次いで、制御部 3は、中間バッグ 27a内の濃厚血小板が所定量に到達 した力否かを判断する(図 4のステップ S121)。 [0223] In step S120, if the output voltage of the turbidity sensor 14 has not reached the predetermined value or less, the control unit 3 then determines whether or not the concentrated platelets in the intermediate bag 27a have reached the predetermined amount. (Step S121 in FIG. 4).
[0224] なお、この濃厚血小板の採取量 (所定量)としては、好ましくは 20〜: LOOmL程度、 より好ましくは 30〜80mL程度とされる。 [0224] The collection amount (predetermined amount) of the concentrated platelets is preferably about 20 to about LOOmL, and more preferably about 30 to 80mL.
[0225] ステップ S121において、中間バッグ 27a内の濃厚血小板が所定量に到達しない場 合には、制御部 3は、ステップ S118に戻り、再度、ステップ S118以降を繰り返す。 [0225] If the platelet concentrate in the intermediate bag 27a does not reach the predetermined amount in step S121, the control unit 3 returns to step S118 and repeats step S118 and subsequent steps again.
[0226] ステップ S118〜S121を繰り返している間に、ステップ S119において、血小板の 採取を開始して力も所定時間が経過した場合、または、ステップ S120において、濁 度センサ 14の出力電圧が所定値以下に到達した場合には、制御部 3は、本工程 [1 6] (血小板採取工程)を終了して、後述するステップ S 122に移行する。 [0226] While the steps S118 to S121 are repeated, in step S119, when the collection of platelets starts and the force has also passed for a predetermined time, or in step S120, the turbidity When the output voltage of the degree sensor 14 reaches a predetermined value or less, the control unit 3 ends this step [16] (platelet collection step), and proceeds to step S122 described later.
[0227] また、ステップ S116、 S119において、所定時間経過した場合、ステップ S120にお いて、濁度センサ 14の出力電圧 (PC濃度電圧)が所定値以下になった場合、ステツ プ S121において、中間バッグ 27a内の濃厚血小板が所定量に到達した場合には、 制御部 3は、第 5の流路開閉手段 85を開放し、この他の全ての流路開閉手段 81〜8 4、 86を閉塞した状態とし、第 2の送液ポンプ 12を停止して、本工程 [16] (血小板採 取工程)を終了する。 [0227] If a predetermined time has elapsed in steps S116 and S119, if the output voltage (PC concentration voltage) of the turbidity sensor 14 is equal to or lower than a predetermined value in step S120, intermediate in step S121. When the concentrated platelets in the bag 27a reach a predetermined amount, the control unit 3 opens the fifth channel opening / closing means 85 and blocks all other channel opening / closing means 81 to 84, 86. In this state, the second liquid feeding pump 12 is stopped, and this step [16] (platelet collecting step) is completed.
[0228] [17] 次に、血液成分採取装置 1は、遠心分離器 20を停止する工程を行なう。  [0228] [17] Next, blood component collection apparatus 1 performs a step of stopping centrifuge 20.
この工程では、まず、制御部 3は、遠心分離器 20の減速を行なう(図 4のステップ S 122)。  In this process, first, the control unit 3 decelerates the centrifuge 20 (step S122 in FIG. 4).
[0229] 具体的には、制御部 3の制御により、遠心分離器駆動装置 10の回転数を減少して [0229] Specifically, the number of rotations of the centrifuge drive device 10 is reduced by the control of the control unit 3.
、ローター 142を減速する。 , Slow down the rotor 142.
さらに、制御部 3は、遠心分離器 20の停止を行なう(図 4のステップ S123)。  Further, the control unit 3 stops the centrifuge 20 (step S123 in FIG. 4).
[0230] 具体的には、制御部 3の制御により、遠心分離器駆動装置 10の回転を停止して、 ローター 142を停止する。 Specifically, under the control of the control unit 3, the rotation of the centrifuge drive device 10 is stopped and the rotor 142 is stopped.
[0231] [18] 次に、血液成分採取装置 1は、返血工程を行なう。返血工程では、ローター 1[18] [18] Next, blood component collection apparatus 1 performs a blood return step. Rotor in the blood return process 1
42の貯血空間 146内の血液成分 (残りの血液成分)を返血する。 Blood components (remaining blood components) in 42 blood storage spaces 146 are returned.
返血工程では、制御部 3は、返血を行なう(図 4のステップ S 124)。  In the blood return process, the control unit 3 performs blood return (step S124 in FIG. 4).
[0232] 具体的には、制御部 3の制御により、第 1の流路開閉手段 81および第 5の流路開 閉手段 85を開放するとともに、第 1の送液ポンプ 11を所定の回転速度 (好ましくは 2[0232] Specifically, the first flow path opening / closing means 81 and the fifth flow path opening / closing means 85 are opened under the control of the control unit 3, and the first liquid feed pump 11 is set to a predetermined rotational speed. (Preferably 2
0〜120mLZmin程度、例えば 90mLZmin)で作動(逆転)する。 Operates (reverses) at 0 to 120mLZmin (eg 90mLZmin).
[0233] これにより、ローター 142の貯血空間 146内に残存する血液成分(主に、赤血球、 白血球)は、遠心分離器 20の流入口 143から排出され、第 1のライン 21 (採血針 29) を介してドナーに返血 (返還)される。 [0233] As a result, blood components (mainly red blood cells and white blood cells) remaining in the blood storage space 146 of the rotor 142 are discharged from the inlet 143 of the centrifuge 20, and the first line 21 (blood collection needle 29) Blood is returned (returned) to the donor.
[0234] そして、気泡センサ 32によって遠心分離器 20から排出される空気を検出して、所 定の回数だけ第 1の送液ポンプ 11を回転した後、第 1の流路開閉手段 81および第 5 の流路開閉手段 85を閉塞するとともに、第 1の送液ポンプ 11を停止して、本工程 [1 8] (返血工程)を終了する。 [0234] Then, after the air discharged from the centrifugal separator 20 is detected by the bubble sensor 32 and the first liquid feed pump 11 is rotated a predetermined number of times, the first flow path opening / closing means 81 and The flow path opening / closing means 85 of FIG. 5 is closed, and the first liquid feeding pump 11 is stopped, and this process [1 8] End (blood return process).
これにより、第 1サイクルの血小板採取操作を終了する。  This completes the first cycle of platelet collection.
[0235] [2] 最終サイクルではない第 2サイクルの血小板採取操作(図 3および図 4参照) 続いて、第 2サイクルの血小板採取操作を行なう。 [2] Platelet collection operation in the second cycle that is not the final cycle (see FIGS. 3 and 4) Subsequently, the platelet collection operation in the second cycle is performed.
[0236] 第 2サイクルの血小板採取操作では、下記の通り、前記第 1サイクルの血小板採取 操作と同様の工程を行なう。 [0236] In the second-cycle platelet collection operation, the same steps as in the first-cycle platelet collection operation are performed as follows.
[0237] [21]〜[28] 前記工程 [11]〜[ 18]と同様の工程をそれぞれ行なう。 [21] to [28] Steps similar to the above steps [11] to [18] are performed, respectively.
これにより、第 2サイクルの血小板採取操作を終了する。  This completes the second cycle of platelet collection.
なお、最終サイクルではな 、第 3サイクル以降の血小板採取操作も同様である。  The same applies to the platelet collection operation after the third cycle, but not the last cycle.
[0238] [3] 最終サイクルの血小板採取操作(図 3および図 4参照) [0238] [3] Platelet collection operation in the final cycle (see Figure 3 and Figure 4)
続いて、最終サイクルの血小板採取操作を行なう。  Subsequently, the platelet collection operation for the final cycle is performed.
[0239] 最終サイクルの血小板採取操作では、濃厚血小板から白血球を分離除去する濾 過操作 (濾過工程)を行なうことと、返血時に気泡センサ 32で遠心分離器 20から排 出される空気を検出してさらに気泡センサ 35または 36で空気を検出したら返血工程 を終了すること以外は、前記第 1サイクルの血小板採取操作と同様の工程を行なう。 [0239] In the platelet collection operation in the final cycle, a filtration operation (filtration process) for separating and removing white blood cells from concentrated platelets is performed, and air discharged from the centrifuge 20 is detected by the bubble sensor 32 when returning blood. Then, if air is further detected by the bubble sensor 35 or 36, the same process as the platelet collection operation in the first cycle is performed except that the blood return process is terminated.
[0240] [31]〜[37] 前記濾過操作を行なうこと以外は、前記工程 [11]〜 [17]と同様のェ 程をそれぞれ行なう。 [0240] [31] to [37] Steps similar to those in the steps [11] to [17] are performed except that the filtration operation is performed.
[0241] [38] 気泡センサ 35または 36によって遠心分離器 20から排出される空気を検出し て、第 1の流路開閉手段 81および第 5の流路開閉手段 85を閉塞するとともに、第 1 の送液ポンプ 11を停止して、本工程 [38] (返血工程)を終了すること以外は、前記 工程 [18]と同様の工程を行なう。  [0241] [38] Air discharged from the centrifuge 20 is detected by the bubble sensor 35 or 36, and the first flow path opening / closing means 81 and the fifth flow path opening / closing means 85 are closed, and the first The step similar to the above step [18] is performed except that the liquid feeding pump 11 is stopped and this step [38] (blood return step) is ended.
これにより、最終サイクルの血小板採取操作を終了する。  Thereby, the platelet collection operation in the final cycle is completed.
[0242] なお、血小板採取操作は、複数回行なう場合に限定されず、例えば、 1回のみ行な つてもよい。  [0242] The platelet collection operation is not limited to being performed a plurality of times, and may be performed only once, for example.
[0243] また、血液成分採取回路 2の構成も、適宜設定可能であり、図示の構成に限定され ない。  [0243] The configuration of blood component collection circuit 2 can also be set as appropriate, and is not limited to the illustrated configuration.
[0244] 以上説明したように、この血液成分採取装置によれば、第 1の血漿採取工程、第 2 の血漿採取工程および第 3の血漿採取工程のみでなぐ第 1の血漿循環工程および 第 2の血漿循環工程おいても、第 1の送液ポンプ 11が作動し、ドナーから血液を採 取し、その血液を遠心分離器 20の貯血空間 146内に導入して分離し、血漿採取バ ッグ 25に血漿を採取するので、採血時間を短縮することができる。これにより、血液 成分採取装置 1の占有時間を低減させることができ、また、ドナーの負担を軽減する ことができる。 [0244] As described above, according to this blood component collection device, the first plasma circulation step including only the first plasma collection step, the second plasma collection step, and the third plasma collection step, and Even in the second plasma circulation step, the first liquid delivery pump 11 operates, blood is collected from the donor, and the blood is introduced into the blood storage space 146 of the centrifuge 20 and separated to collect plasma. Since plasma is collected in bag 25, the blood collection time can be shortened. Thereby, the occupation time of the blood component collection apparatus 1 can be reduced, and the burden on the donor can be reduced.
[0245] また、第 1の血漿採取工程から第 1の定速血漿循環工程に移行する際と、第 2の血 漿採取工程力ゝら第 2の定速血漿循環工程に移行する際のそれぞれにおいて、第 2の 送液ポンプ 12の送液量を増大させ、各定速血漿循環工程において貯血空間 146に 導入される液性成分の流量 (血漿の循環流量)を、血漿採取工程にお!ヽて貯血空間 146に導入される液性成分の流量 (血漿の循環流量)より大きくするので、分離され た赤血球層によって閉じ込められて 、る血小板を確実に洗い出すことができ、また、 バフィ一コート層の内部粘度の過剰な上昇 (パフィーコート層の過剰な濃縮)を防止( 阻止)することができ、これにより、血小板の回収率 (収量)を向上させることができる。  [0245] Also, each of the transition from the first plasma collection process to the first constant-speed plasma circulation process, and the transition from the second plasma collection process to the second constant-speed plasma circulation process, respectively. In the plasma collection step, the flow rate of the liquid component introduced into the blood storage space 146 in each constant-speed plasma circulation step (plasma circulation flow rate) is increased in the plasma collection step! Since the flow rate of the liquid component introduced into the blood storage space 146 (the circulating flow rate of plasma) is increased, the platelets trapped by the separated red blood cell layer can be washed out reliably, and buffy coat An excessive increase in the internal viscosity of the layer (excessive concentration of the puffy coat layer) can be prevented (blocked), thereby improving the recovery rate (yield) of platelets.
[0246] 以上、本発明の血液成分採取装置を、図示の実施形態に基づいて説明したが、本 発明はこれに限定されるものではなぐ各部の構成は、同様の機能を有する任意の 構成のものに置換することができる。また、本発明に、他の任意の構成物や、工程が 付カロされていてもよい。  [0246] The blood component collection device of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is of any configuration having the same function. Can be substituted. In addition, the present invention may include other arbitrary components and processes.
[0247] また、本発明の血液成分採取装置は、血小板製剤および血漿製剤 (または血漿分 画製剤の原料血漿)の両方を得るのに適用する場合に限らず、血液中から、血小板 製剤のみを得る場合に適用してもよい。  [0247] Furthermore, the blood component collection device of the present invention is not limited to the application to obtain both platelet preparations and plasma preparations (or the raw material plasma of plasma fractionation preparations), but only platelet preparations from blood. You may apply when you get.
[0248] また、本発明の血液成分採取装置は、血小板製剤や血漿製剤を得るのに適用す る場合に限らず、例えば、血液中から、赤血球製剤、白血球製剤等を得る場合に適 用してもよい。すなわち、本発明の血液成分採取装置では、血液成分採取バッグに 採取される血球成分は、血小板 (血漿を含む血小板)に限らず、例えば、赤血球 (血 漿を含む赤血球)、白血球 (血漿を含む白血球)等であってもよ ヽ。  [0248] Further, the blood component collection device of the present invention is not limited to the case where it is applied to obtain a platelet preparation or a plasma preparation, but is applied, for example, to obtain an erythrocyte preparation, a leukocyte preparation, etc. from blood. May be. That is, in the blood component collection device of the present invention, the blood cell component collected in the blood component collection bag is not limited to platelets (platelets including plasma), but, for example, red blood cells (red blood cells including plasma), white blood cells (including plasma) White blood cells).
[0249] また、本発明では、血液分離器は、遠心型のものに限定されず、例えば、膜型等の ものであってもよい。  [0249] In the present invention, the blood separator is not limited to a centrifugal type, and may be, for example, a membrane type.
[0250] また、本発明では、細胞分離フィルター (濾過器)により分離除去する細胞も、白血 球に限定されない。 [0250] In the present invention, the cells separated and removed by the cell separation filter (filter) are also white blood. Not limited to spheres.
[0251] また、本発明では、光学式センサは、図示のものに限定されず、例えば、ラインセン サ等であってもよい。  In the present invention, the optical sensor is not limited to the illustrated one, and may be a line sensor or the like, for example.
[0252] また、本発明の血液成分採取装置の方式は、間歇式に限らず、例えば、連続式で あってもよい。また、返血工程のないものであってもよい。  [0252] The method of the blood component collection device of the present invention is not limited to the intermittent type, and may be, for example, a continuous type. Moreover, the thing without a blood return process may be sufficient.
産業上の利用可能性  Industrial applicability
[0253] 本発明によれば、血液分離器に導入される液性成分の流量を、比較的大きぐす なわち、血漿採取工程における前記流量より大きく設定した血漿循環工程を実行す るようになっているので、例えば、分離された赤血球層等によって閉じ込められている 採取する血球成分 (例えば、血小板)を確実に洗い出すことができる。これにより、そ の血球成分の回収率を向上させることができる。また、血漿循環工程においても、供 血者力 血液を採取して血漿採取バッグに血漿を採取するので、採血時間を短縮す ることができる。これにより、血液成分採取装置の占有時間を低減させることができ、 また、供血者の負担を軽減することができる。したがって、産業上の利用可能性を有 する。 [0253] According to the present invention, the flow rate of the liquid component introduced into the blood separator is made relatively large, that is, the plasma circulation step is set to be larger than the flow rate in the plasma collection step. Therefore, for example, blood cell components (for example, platelets) to be collected that are confined by the separated erythrocyte layer can be reliably washed out. Thereby, the recovery rate of the blood cell component can be improved. In the plasma circulation process, blood from the donor is collected and the plasma is collected in the plasma collection bag, so that the blood collection time can be shortened. Thereby, the occupation time of the blood component collection device can be reduced, and the burden on the blood donor can be reduced. Therefore, it has industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 供血者から血液を採取する中空針を備えた採血手段と、  [1] Blood collection means equipped with a hollow needle for collecting blood from a donor,
前記採血手段により採取された血液を分離する血液分離器と、  A blood separator for separating blood collected by the blood collecting means;
前記血液分離器により分離された血漿を採取する血漿採取バッグと、  A plasma collection bag for collecting plasma separated by the blood separator;
前記血液分離器により分離された所定の血球成分を採取する血液成分採取バッグ と、  A blood component collection bag for collecting predetermined blood cell components separated by the blood separator;
前記中空針と前記血液分離器の流入口とを接続する血液処理ラインと、 前記血液処理ラインに設けられた分岐部力 分岐し、前記血漿採取バッグに接続 された血漿循環用ラインとを備える血液成分採取回路と、  Blood comprising: a blood processing line connecting the hollow needle and the inlet of the blood separator; a branching force provided in the blood processing line; and a blood circulation line connected to the plasma collection bag. Component collection circuit;
前記血液処理ラインに設置され、少なくとも前記血液処理ライン内の流体を送液す る第 1の送液手段と、  A first liquid delivery means installed in the blood treatment line and delivering at least a fluid in the blood treatment line;
前記血漿循環用ラインに設置され、少なくとも前記血漿採取バッグに採取された血 漿を送液する第 2の送液手段とを有し、  A second liquid feeding means installed in the plasma circulation line and feeding at least the plasma collected in the plasma collection bag;
採取した血液を分離し、前記第 1の送液手段の作動により、前記血漿採取バッグに 血漿を採取する血漿採取工程と、前記第 2の送液手段の作動により、前記血漿採取 バッグに採取された血漿を血漿循環用ラインを介して前記血液分離器に循環させる 血漿循環工程と、前記血液成分採取バッグに所定の血球成分を採取する血液成分 採取工程とを実行して成分採血を行なう血液成分採取装置であって、  The collected blood is separated and collected in the plasma collection bag by the plasma collection step of collecting plasma in the plasma collection bag by the operation of the first liquid delivery means and the operation of the second liquid delivery means. Blood components for collecting blood components by performing a plasma circulation step for circulating the collected plasma to the blood separator via a plasma circulation line and a blood component collection step for collecting a predetermined blood cell component in the blood component collection bag A collecting device,
前記血漿採取工程から前記血漿循環工程に移行する際、前記第 1の送液手段の 作動を継続しつつ、前記第 2の送液手段の送液量を増大させ、これにより、前記血漿 循環工程において、前記血漿採取バッグに血漿を採取しつつ、前記血漿採取バッグ に採取された血漿を血漿循環用ラインを介して前記血液分離器に循環させるととも に、前記血液分離器に導入される液性成分の流量を、前記血漿採取工程において 前記血液分離器に導入される液性成分の流量より大きくするように構成されているこ とを特徴とする血液成分採取装置。  When shifting from the plasma collection step to the plasma circulation step, the amount of liquid fed by the second liquid feeding unit is increased while continuing the operation of the first liquid feeding unit, thereby the plasma circulation step. In this case, while collecting plasma in the plasma collection bag, the plasma collected in the plasma collection bag is circulated to the blood separator via a plasma circulation line, and the liquid introduced into the blood separator A blood component collecting apparatus, wherein the flow rate of the sex component is configured to be larger than the flow rate of the liquid component introduced into the blood separator in the plasma collecting step.
[2] 前記血漿循環工程において前記血液分離器に導入される液性成分の流量は、 40 〜250mLZminである請求の範囲第 1項に記載の血液成分採取装置。  [2] The blood component collection device according to claim 1, wherein the flow rate of the liquid component introduced into the blood separator in the plasma circulation step is 40 to 250 mLZmin.
[3] 前記血漿循環工程にお!ヽて前記血液分離器に導入される液性成分の流量と、前 記血漿採取工程において前記血液分離器に導入される液性成分の流量との差は、[3] The flow rate of the liquid component introduced into the blood separator in the plasma circulation process, The difference from the flow rate of the liquid component introduced into the blood separator in the blood plasma collection step,
10〜220mLZminである請求の範囲第 1項に記載の液成分採取装置。 2. The liquid component collecting device according to claim 1, which is 10 to 220 mLZmin.
[4] 前記血漿採取工程にお!ヽて、前記第 2の送液手段が作動し、前記血漿採取バッグ に採取された血漿を前記血漿循環用ラインを介して前記血液分離器に循環させるよ うに構成されて!、る請求の範囲第 1項に記載の血液成分採取装置。 [4] In the plasma collection step, the second liquid feeding means is activated, and the plasma collected in the plasma collection bag is circulated to the blood separator via the plasma circulation line. The blood component collection device according to claim 1, wherein the blood component collection device is configured as described above.
[5] 前記血漿採取工程にお!ヽて、前記血液分離器に導入される液性成分の流量が所 定の目標値になるように、前記第 2の送液手段の作動を制御して該第 2の送液手段 の送液量を調整するように構成されている請求の範囲第 1項に記載の血液成分採取 装置。 [5] During the plasma collection step, the operation of the second liquid feeding means is controlled so that the flow rate of the liquid component introduced into the blood separator becomes a predetermined target value. 2. The blood component collection device according to claim 1, wherein the blood component collection device is configured to adjust a liquid feeding amount of the second liquid feeding means.
[6] 前記血漿循環工程にお!ヽて、前記血液分離器に導入される液性成分の流量が所 定の目標値になるように、前記第 2の送液手段の作動を制御して該第 2の送液手段 の送液量を調整するように構成されている請求の範囲第 1項に記載の血液成分採取 装置。  [6] During the plasma circulation step, the operation of the second liquid feeding means is controlled so that the flow rate of the liquid component introduced into the blood separator becomes a predetermined target value. 2. The blood component collection device according to claim 1, wherein the blood component collection device is configured to adjust a liquid feeding amount of the second liquid feeding means.
[7] 前記血液成分採取工程の前に、前記血漿採取工程を複数回実行し、該各血漿採 取工程の間に、それぞれ、前記血漿循環工程を実行するように構成されている請求 の範囲第 1項に記載の血液成分採取装置。  [7] The plasma collection step is executed a plurality of times before the blood component collection step, and the plasma circulation step is executed between the plasma collection steps. 2. The blood component collection apparatus according to item 1.
[8] 当該血液成分採取装置は、前記血漿採取工程と、前記血漿循環工程と、前記血 液成分採取工程と、残りの血液成分を供血者に返還する返血工程とを有する血液成 分採取操作を少なくとも 1サイクル実行するものである請求の範囲第 1項に記載の血 液成分採取装置。  [8] The blood component collection device includes the plasma collection step, the plasma circulation step, the blood component collection step, and the blood return step of returning the remaining blood components to the donor. The blood component collection device according to claim 1, wherein the operation is performed for at least one cycle.
[9] 前記所定の血球成分は、血小板である請求の範囲第 1項に記載の血液成分採取 装置。  [9] The blood component collection device according to [1], wherein the predetermined blood cell component is platelets.
PCT/JP2007/055391 2006-03-17 2007-03-16 Blood component collecting apparatus WO2007119401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510800A JP4956528B2 (en) 2006-03-17 2007-03-16 Blood component collection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006075663 2006-03-17
JP2006-075663 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007119401A1 true WO2007119401A1 (en) 2007-10-25

Family

ID=38609192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055391 WO2007119401A1 (en) 2006-03-17 2007-03-16 Blood component collecting apparatus

Country Status (2)

Country Link
JP (1) JP4956528B2 (en)
WO (1) WO2007119401A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226210A (en) * 2008-02-29 2009-10-08 Haemonetics Corp Apheresis apparatus
WO2013145374A1 (en) * 2012-03-27 2013-10-03 テルモ株式会社 Blood component separation device
CN117679569A (en) * 2024-02-04 2024-03-12 北京麦邦天工医疗技术有限公司 Blood treatment apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034468A (en) * 2004-07-23 2006-02-09 Terumo Corp Filter monitoring system and platelet sampling device
JP2006051252A (en) * 2004-08-13 2006-02-23 Terumo Corp Blood component sampling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8601891D0 (en) * 1986-04-24 1986-04-24 Svante Jonsson PLASMA SWITCH TREATMENT AND TROMBOCYTING MACHINE
US5954971A (en) * 1997-01-07 1999-09-21 Haemonetics Corporation Pumped-filter blood-processing apparatus and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034468A (en) * 2004-07-23 2006-02-09 Terumo Corp Filter monitoring system and platelet sampling device
JP2006051252A (en) * 2004-08-13 2006-02-23 Terumo Corp Blood component sampling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226210A (en) * 2008-02-29 2009-10-08 Haemonetics Corp Apheresis apparatus
WO2013145374A1 (en) * 2012-03-27 2013-10-03 テルモ株式会社 Blood component separation device
WO2013146010A1 (en) * 2012-03-27 2013-10-03 テルモ株式会社 Blood component separation device
CN104203303A (en) * 2012-03-27 2014-12-10 泰尔茂株式会社 Blood component separation device
JPWO2013145374A1 (en) * 2012-03-27 2015-12-10 テルモ株式会社 Blood component separator
JPWO2013146010A1 (en) * 2012-03-27 2015-12-10 テルモ株式会社 Blood component separator
CN104203303B (en) * 2012-03-27 2016-10-19 泰尔茂株式会社 blood component separation device
CN117679569A (en) * 2024-02-04 2024-03-12 北京麦邦天工医疗技术有限公司 Blood treatment apparatus
CN117679569B (en) * 2024-02-04 2024-05-03 北京麦邦天工医疗技术有限公司 Blood treatment apparatus

Also Published As

Publication number Publication date
JP4956528B2 (en) 2012-06-20
JPWO2007119401A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4050477B2 (en) Blood component collection device
JP3944279B2 (en) Blood component collection device
JP4956528B2 (en) Blood component collection device
JP4558401B2 (en) Blood component collection device
JP4607503B2 (en) Blood component collection device
JP4368810B2 (en) Filter device and blood component collection device
JP4516043B2 (en) Blood component collection device
JP4344592B2 (en) Blood component collection device
JP2005110748A (en) Blood component collecting apparatus
JP4500618B2 (en) Blood component collection device
JP4771452B2 (en) Blood component collection device
JP4549122B2 (en) Filter monitoring system and platelet collection device
JP4607508B2 (en) Blood component collection device
JP4871496B2 (en) Blood component collection device
JP4607803B2 (en) Blood component collection device
JP2006051252A (en) Blood component sampling device
JP4681393B2 (en) Blood component collection device
JP4758663B2 (en) Blood component collection device
JP4740075B2 (en) Blood component collection device
JP4594029B2 (en) Blood component collection device
JP5883436B2 (en) Blood component collection device
JP4434817B2 (en) Platelet collection device
JP2005177191A (en) Blood collecting device
JP2005218716A (en) Blood component sampling device
JP2008245942A (en) Blood component collecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510800

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738836

Country of ref document: EP

Kind code of ref document: A1