WO2007099637A1 - Image transmission device, image reception device, and image transmission/reception system - Google Patents

Image transmission device, image reception device, and image transmission/reception system Download PDF

Info

Publication number
WO2007099637A1
WO2007099637A1 PCT/JP2006/303993 JP2006303993W WO2007099637A1 WO 2007099637 A1 WO2007099637 A1 WO 2007099637A1 JP 2006303993 W JP2006303993 W JP 2006303993W WO 2007099637 A1 WO2007099637 A1 WO 2007099637A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
data
image data
transmission
important
Prior art date
Application number
PCT/JP2006/303993
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Saito
Kazuo Kaneko
Kazuyuki Tanaka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008502623A priority Critical patent/JPWO2007099637A1/en
Priority to PCT/JP2006/303993 priority patent/WO2007099637A1/en
Publication of WO2007099637A1 publication Critical patent/WO2007099637A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder

Definitions

  • Image transmission device image reception device, and image transmission / reception system
  • the present invention relates to a transmission / reception method of image data, for example, moving image data, and more specifically, an image data transmission / reception method when image processing performance on a transmission side and a reception side, mainly an image display area and resolution are different.
  • image data for example, moving image data
  • the full-fledged image communication era such as broadband communication, multimedia, mopile communication, and fusion of communication and broadcasting has begun.
  • image communication there is a difference in communication performance between a communication device having a relatively low image processing performance, such as a portable terminal, and a communication device having a relatively high image processing performance, such as a stream data distribution server. Communication is performed according to
  • FIG. 1 is an explanatory diagram of a conventional example of an image communication method between communication devices having such different image processing performance.
  • PDA personal 'digital' assistance
  • VGA video 'graphics' array, 640 x 480 dots
  • QVGA quarter VGA, 320 x 240 dots
  • SXGA super 'tendered' graphics' array, 1280 x 1024 dots
  • VGA resolution PDA Since there is a mobile terminal with a camera with a lower resolution, a reception error (unreceivable) will occur on the mobile terminal with camera unless specially crafted by the distributor.
  • a high-resolution personal computer or the like treats the sent image as small image data and does not cause communication problems.
  • the distribution source matches the performance of the camera-equipped mobile device on the receiving side. In other words, there was a problem in that it was impossible to transmit or receive images, and to give up data distribution to mobile terminals equipped with performance.
  • FIG. 2 is a conventional example in the case where the transmission side distributes an image in accordance with a distribution destination having the lowest image processing performance.
  • the image data distribution source PDA sends the moving image at the QVGA resolution in accordance with the resolution QVGA of the mobile terminal with the camera. Broadcast distribution of image data becomes possible.
  • Patent Document 1 as a prior art relating to such image data transmission / reception, in a videophone that displays the other party's video and one's own video on two screens, the own video and the other's video are displayed. If overlapping makes it difficult to see important parts of the other video, technology is disclosed to solve the problem.
  • Patent Document 2 for example, in a surveillance system for an automobile, even if a surveillance image is transmitted through a narrow bandwidth transmission path, an image area including a person considered to be important by the user is included. A technique for transmitting with higher image quality by encoding and transmitting at a low compression rate is disclosed.
  • Patent Document 3 an image data is transmitted on the receiving side in an image data communication system by transmitting image data so that an image can be displayed so that resolution gradually increases from an image of an important part.
  • a technique capable of displaying a high-resolution image for an important part before the entire display is completed is disclosed.
  • Patent Document 4 in a system that transmits an image by dividing the image into slices, encoding that can increase resistance to a transmission path error by overlapping and encoding and decoding a part of the image, And a decoding method is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-200873 “Videophone Device”
  • Patent Document 2 JP-A-11 215482 “Monitoring System”
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-333593 “Image Data Transmitting Device and Image Data Receiving Device”
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-236337 “Duplicate Video Coding and Decoding Method and Apparatus”
  • an object of the present invention is to receive images with low resolution even when the image data transmission side transmits image data without causing the image processing performance of the reception side, particularly resolution, to be a problem.
  • the image data transmitted on the side can be displayed.
  • the image transmission apparatus of the present invention includes an image encoding unit that encodes an image, and encoded image data as an essential display area when an image is displayed on the reception side of the image data.
  • An image data transmitting means for sending data designating the important area to the image data receiving side.
  • the image receiving device of the present invention has an image size determining means for determining whether or not the size of the received image data exceeds a maximum display size that can be displayed by the device, and when the size exceeds the maximum display size, Image decoding means for decoding and displaying the image data of the important area specified in the received data and not displaying all one screen of the received image data.
  • the image transmission / reception system of the present invention includes such an image transmission device and one or more such image reception devices.
  • FIG. 1 is an explanatory diagram of a conventional example of an image distribution method in accordance with image processing performance on a transmission side.
  • FIG. 2 is an explanatory diagram of a conventional example of an image distribution method in accordance with image processing performance on the receiving side.
  • FIG. 3 is a block diagram showing the principle configuration of the image transmission / reception system of the present invention.
  • FIG. 4 is a basic configuration block diagram of an image transmission device or an image reception device in the present embodiment.
  • FIG. 5 is an explanatory diagram of an error correction method using redundant slices.
  • FIG. 6 is a diagram showing the structure of an access unit in H.264.
  • FIG. 7 is an explanatory diagram of a method for performing strong coding for error correction on important image areas.
  • FIG. 8 An illustration of flexible macroblock ordering.
  • FIG. 9 is an explanatory diagram of a method for specifying an important region in an image according to the present embodiment.
  • FIG. 10 is an explanatory diagram of storing important area designation data in an access unit in the present embodiment.
  • FIG. 11 is an explanatory diagram of encoding and transmission processing centering on software processing.
  • FIG. 12 is an explanatory diagram of a decoding process centering on software processing.
  • FIG. 13 is an explanatory diagram of a decoding process centering on hardware processing.
  • FIG. 14 is a configuration block diagram of a video codec on the transmission side.
  • FIG. 15 is a configuration block diagram of a video codec on the receiving side.
  • FIG. 3 is a block diagram showing the principle configuration of the image transmission / reception system of the present invention.
  • the image transmission / reception system includes an image transmission device 1 and one or more, generally a plurality of image reception devices 2.
  • the image transmission device 1 includes an image encoding unit 3 that encodes an image, and an important area as an essential display area when the image is displayed on the receiving side of the image data together with the encoded image data. And an image data transmission unit 4 for sending data designating to the receiving side.
  • the image reception device 2 has an image size determination unit 5 that determines whether or not the size of the received image data exceeds the maximum display size that can be displayed by the device itself, and when the image display device 2 exceeds the maximum display size, An image data decoding unit 6 is provided that decodes and displays the image data of the important area specified in the received data and does not display the entire screen of the received image data.
  • the plurality of image receiving apparatuses 2 have different resolutions, that is, maximum display sizes.
  • the above-mentioned important area is an area corresponding to a redundant slice transmitted for transmission error correction at the time of image slice division transmission. It can also be an area corresponding to an important slice in which.
  • an essential display area when an image is displayed from the image transmission side Even when the data specifying the important area as the area is sent together with the image data, and the size of the image data received on the receiving side exceeds the maximum display size that can be displayed on the transmitting side, the image data in that important area Control is performed so that the entire screen of the received image data is not displayed while being decoded and displayed.
  • FIG. 4 is a basic configuration block diagram of an image transmission device and an image reception device that constitute the image communication system of the present invention.
  • the image transmitting device or the image receiving device is composed mainly of a video codec 10 that encodes and decodes image data, and the CPU 11 and the memory 12 are connected to the video codec 10, and the CPU 11 There is a cache 13 connected to it.
  • the image transmission apparatus having the configuration of FIG. 2 encodes image data with the video codec 10, and user data indicating an important area in the image together with encoded data. Send to the image data receiver. On the image receiving device side, corresponding to the data indicating the important area in the image, the image data of only the important area or the entire image data is decoded as necessary, and the decoded image data is displayed. To do.
  • the analysis of the data indicating the important area and the image display processing are basically processed by software by the CPU 11, and the parts that require processing speed, such as encoding and decoding, are processed.
  • video codec10 performs hardware processing.
  • the H.264 video compression and coding standard is based on ITU-T (International Nanole 'Telecommunication' Union 1 Telecommunications' Standardization 'Sector 1') and MPEG ( This is the latest image compression technology jointly standardized by the moving (picture “experts” group), and the embodiment of the present invention will be described using the bitstream transmission error countermeasure in this standardization technology.
  • ITU-T International Nanole 'Telecommunication' Union 1 Telecommunications' Standardization 'Sector 1'
  • MPEG This is the latest image compression technology jointly standardized by the moving (picture “experts” group), and the embodiment of the present invention will be described using the bitstream transmission error countermeasure in this standardization technology.
  • a slice as a small screen obtained by subdividing a picture corresponding to one screen is a basic unit of the code.
  • Each slice is composed of a plurality of macroblocks.
  • the image data of each macroblock is encoded / decoded only once, there is a method of encoding / decoding the same macroblock multiple times in order to improve error correction capability when the transmission path quality is poor. is there.
  • the same macroblock is not allowed to be included in one slice more than once, so create a redundant slice and perform error correction using the data of the redundant slice according to the transmission error status. Can do.
  • FIG. 5 is an explanatory diagram of an error correction method using such redundant slices.
  • redundant slice data is transmitted in addition to normal slice data, and even if an error occurs in normal transmission slice data, the macro block corresponding to the error location is included in the redundant slice. If there is no error with respect to the redundant slice, the image without error can be reproduced by decoding the image data using the macroblock data in the redundant slice. If the data of the macro block corresponding to the error location does not exist in the redundant slice, error correction cannot be performed.
  • ⁇ ⁇ 264 includes multiple slices.
  • groups such as alternating slices of macroblocks, rectangular slices, clockwise 'counterclockwise, reverse raster order, etc.
  • Slice 'group has a force S, the details of which are not directly related to the present invention, so the explanation is omitted.
  • NAL network substructure
  • VCL video 'coding layer'
  • VCL video 'coding layer'
  • a layer called 'layer' is defined, and bitstream mapping (association) with lower systems is performed in units of NAL units as one NAL delimiter.
  • bitstream mapping association
  • FIG. 6 shows the structure of this access unit.
  • the AU (access unit) delimiter at the head of the access unit is a start code indicating the head of the access unit
  • the next SPS (sequence 'parameter' set) is information (header) about the sequence
  • P PS The picture 'parameter' set is information (header) of the coding mode of the entire picture
  • SEI supplemental 'enhancement' information
  • the main picture corresponding to the entire image data, and then the redundant slice Redundant pictures are stored, and EOS (end-of-sequence) indicating the end of the sequence and EOS (end-of-stream) indicating the end of the stream are stored at the end.
  • the redundant slice in the redundant picture stored after the main picture corresponding to normal image data is used for channel error correction as described in FIG.
  • an important area of an image is used as an important slice that has been subjected to a coding scheme that is strong for error correction using a coding scheme different from the normal slice corresponding to other areas.
  • Fig. 7 is an illustration of an image error correction method using such an important slice. The important region in the image is transmitted to the receiving side with a sign that is stronger in error correction than the normal slices for the other normal regions, and is transmitted to the receiving side even if an error occurs in the important slice. Can be encoded.
  • FIG. 8 is an explanatory diagram of the order of slices (macroblocks) when different coding schemes are used, distinguishing between important slices and normal slices as described above. Such an order is called FMO (flexible 'macroblock' ordering), and normal slices with normal coding are stored after important slices with strong error tolerance coding.
  • FMO flexible 'macroblock' ordering
  • FIG. 9 is an explanatory diagram of a method for specifying an important area in the present embodiment.
  • image data is utilized so that image display performance does not occur between an image transmission apparatus and an image reception apparatus having different image processing performances, mainly display image sizes, by utilizing the above-described techniques such as redundant slice and FMO. Shall be sent and received.
  • the important area in the image is defined by the center point A and the size B of the important area, that is, the number of pixels in the horizontal direction and the number of pixels in the vertical direction.
  • the designation of such an important area is defined by ON / OFF indicating whether or not such designation is used on the image data transmission side, the position of the center point A of the important area, and the size B of the important area.
  • the image data is sent to the receiving side, and the receiving side analyzes the data and selects, for example, whether to display all the image data or only the important area.
  • CIF Common 'Interface' format, 352 X 288 dots
  • QCIF Quadrature ' CIF, 176 X 144 dots
  • Shall general image sizes
  • the data such as the position A of the center point of the important area and the size B thereof as information related to the important area set on the image data transmission side, and the power to use the redundant slice as described above.
  • Data such as whether to use the FMO method described in FIG. 8 is stored in the additional information SEI area in the access unit described in FIG. 6 and is sent to the image data receiving side.
  • This SEI is supplementary information that is not directly related to the image decoding process, and since there is a user data area in this SEI, as shown in FIG. These data are stored and sent to the receiving side.
  • FIG. 11 is an explanatory diagram of the image data encoding / transmission process that is mainly performed using software on the transmission side.
  • step S1 when transmitting image data, it is first determined in step S1 whether the designation of the important area is on or off. If off, that is, if the designation of the important area is not performed, step S1 is performed. In S2, the normal code processing as hardware processing is performed, and in step S3, the image data is transmitted, and the processing ends.
  • the important area information is obtained in step S4. That is, the center point, the size, etc. are extracted.
  • the default value can be used as described above, or the data specified by the user can be used. Then, depending on whether the redundant slice explained in Fig. 5 and Fig. 6 or the FM ⁇ method explained in Fig. 7 and Fig. 8 is used, the processing of steps S5 and S6 is performed, or the processing of steps S7 and S8 It is determined whether processing is performed.
  • step S5 When a redundant slice is used, coding parameter information is specified in step S5. That is, after the size and position of the important area (redundant slice) are specified, and the important area information is specified as user data in SEI, the code processing for specifying the redundant slice as hardware processing is performed in step S6. In step S3, the image data is transmitted and the process ends.
  • step S8 the slice division as hardware processing, that is, the coding process in which the division between the important slice and the normal slice is designated is performed.
  • step S3 the image data is transmitted and the processing is terminated.
  • FIG. 12 is an explanatory diagram of processing on the receiving side centering on software processing.
  • the header decoding process of the access unit is performed as the header decoding process in step S11, and the received image size is larger than the image display size in the own device in step S12. It is determined whether or not. If it is not larger than the image display size, that is, if the entire received image can be displayed, normal decoding processing of a picture (slice) as hardware processing is performed in step S13, and the decoded image is converted in step S14. Displayed and the process is terminated. In this case, an image of the size of the received image itself is displayed.
  • step S15 If the received image size is greater than or equal to the image display size of the own device in step S12, it is determined in step S15 whether or not to display an image. If not, step S16 is performed. As a result, the decoding process is stopped as reception is impossible, and the process ends.
  • step S17 When image display is to be performed, the user data in the SEI in the access unit sent from the transmission side in step S17 is analyzed, and the position and size of the important area are extracted.
  • step S18 the decoding process of the slice inside the important area is performed as hardware processing.
  • step S19 the decoded image is displayed, that is, only the important area is displayed, and the process is terminated. Instead of displaying only the important area, it is also possible not to display the entire received image data screen.
  • FIG. 13 is an explanatory diagram of processing on the reception side mainly using hardware processing.
  • the access unit section is processed as hardware processing in step S22.
  • step S23 it is determined whether or not the size of the received image is equal to or larger than the image display size of the own device. If not, the normal picture (slice) is determined in step S24. Decoding processing is performed, and in step S25, the decoded image is displayed as software processing, and the processing ends.
  • step S23 If it is determined in step S23 that the size of the received image is equal to or larger than the image display size of the own device, the user data inside the SEI is analyzed in step S26, and the size of the important area is extracted. In step S27, the important area is decoded, and in step S25, the decoded image is displayed as the software process, and the process ends.
  • the decoding process for the important region includes decoding processes corresponding to the method described in FIGS. 5 and 6 using redundant slices and the FMO method using important slices described in FIGS. Done.
  • FIG. 14 is an explanatory diagram of the hardware configuration of the video codec corresponding to the processing on the transmission side described in FIG.
  • the video codec 10 is composed of a header encoding unit 15 that encodes the header of input image data and an image data encoding unit 16 that encodes the image data itself.
  • FIG. 15 is a configuration block diagram of a video codec corresponding to FIG.
  • header decoding of the access unit is performed by the header decoding unit 17, and user data in the SEI of the access unit is analyzed by the SEI user information analysis unit 18.
  • the position of the center point of the important area and its size are extracted, and the image data decoding unit 19 decodes the image data of only the important area, for example Is done.
  • the video codec corresponding to FIG. 12 includes only the header decoding unit 17 and the image data decoding unit 19 and does not include the SEI user information analysis unit.
  • the SEI user information analysis unit 18 is basically configured using a logic circuit or the like.
  • the present invention even when the resolution on the image data receiving side is low and the maximum image display size is small, it is possible to display an image of the important region designated from the transmitting side. It becomes possible.
  • the image processing performance on the receiving side that is, the resolution is the same as that on the transmitting side, all image data sent from the transmitting side is displayed, so that it is possible to prevent deterioration of the received display image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

It is possible to display image data transmitted from a transmission side of the image data, at a reception side having a lower resolution than the transmission side. An image transmission device includes an image data transmission unit for transmitting data specifying an important region as an indispensable display region when displaying the image at the reception side. An image reception device includes an image size judging unit for judging whether the size of the reception data exceeds a maximum size which can be displayed at the local device and an image decoding unit for decoding the image data in the important region specified in the reception data for display if the maximum size is exceeded and not displaying the entire image of the received image data.

Description

明 細 書  Specification
画像送信装置、画像受信装置、および画像送受信システム  Image transmission device, image reception device, and image transmission / reception system
技術分野  Technical field
[0001] 本発明は、画像データ、例えば動画像データの送受信方式に係り、さらに詳しくは 送信側と受信側における画像処理性能、主として画像の表示領域や解像度が異な る場合の画像データの送受信方式に関する。  [0001] The present invention relates to a transmission / reception method of image data, for example, moving image data, and more specifically, an image data transmission / reception method when image processing performance on a transmission side and a reception side, mainly an image display area and resolution are different. About.
背景技術  Background art
[0002] ブロードバンド通信、マルチメディア、モパイル通信、通信と放送の融合など、本格 的な画像通信時代が始まっている。このような画像通信において、特に携帯端末な ど、比較的画像処理性能が低い通信装置と、ストリームデータ配信サーバのように比 較的画像処理性能が高い通信装置との間では、通信性能の差に応じた通信が行わ れる。  [0002] The full-fledged image communication era such as broadband communication, multimedia, mopile communication, and fusion of communication and broadcasting has begun. In such image communication, there is a difference in communication performance between a communication device having a relatively low image processing performance, such as a portable terminal, and a communication device having a relatively high image processing performance, such as a stream data distribution server. Communication is performed according to
[0003] 図 1は、そのように画像処理性能が異なる通信機器間での画像通信方式の従来例 の説明図である。同図では VGA (ビデオ'グラフィックス 'アレー、 640 X 480ドット)の 解像度を持つ PDA (パーソナル'デジタル'アシスタンッ)から、 QVGA (クォーター VGA, 320 X 240ドット)の解像度を持つカメラ付き携帯端末、 SXGA (スーパー 'ェ タステンデッド 'グラフィックス 'アレー、 1280 X 1024ドット)の解像度を持つパソコン 、および解像度 VGAの PDAに対して画像を同報配信するものとする力 配信先の 中に配信元の PDAより解像度が劣るカメラ付き携帯端末が存在するために、配信元 で特に細工しない限りはカメラ付き携帯端末側で受信エラー (受信不可能)が発生す る。解像度の高いパソコンなどでは、送られた画像が小さな画像データとして扱われ るだけで通信上の問題は発生しないが、このような場合には配信元が受信側のカメラ 付き携帯端末の性能に合わせて画像を送信するか、あるいは受信できなレ、性能の力 メラ付き携帯端末へのデータ配信をあきらめるしかないという問題点があった。  FIG. 1 is an explanatory diagram of a conventional example of an image communication method between communication devices having such different image processing performance. In the figure, PDA (personal 'digital' assistance) with VGA (video 'graphics' array, 640 x 480 dots) resolution, QVGA (quarter VGA, 320 x 240 dots) mobile phone with camera, The ability to broadcast images to a PC with a resolution of SXGA (super 'tendered' graphics' array, 1280 x 1024 dots) and a VGA resolution PDA. Since there is a mobile terminal with a camera with a lower resolution, a reception error (unreceivable) will occur on the mobile terminal with camera unless specially crafted by the distributor. A high-resolution personal computer or the like treats the sent image as small image data and does not cause communication problems.In this case, the distribution source matches the performance of the camera-equipped mobile device on the receiving side. In other words, there was a problem in that it was impossible to transmit or receive images, and to give up data distribution to mobile terminals equipped with performance.
[0004] 図 2は、このように最も画像処理性能が劣る配信先にあわせて、送信側が画像を配 信する場合の従来例である。同図ではカメラ付き携帯端末の解像度 QVGAに合わ せて、画像データ配信元の PDAが QVGAの解像度で動画像を送ることによって、画 像データの同報配信が可能となる。 [0004] FIG. 2 is a conventional example in the case where the transmission side distributes an image in accordance with a distribution destination having the lowest image processing performance. In this figure, the image data distribution source PDA sends the moving image at the QVGA resolution in accordance with the resolution QVGA of the mobile terminal with the camera. Broadcast distribution of image data becomes possible.
[0005] し力しながら、このような場合には配信元で性能が一番低い配信先、およびその画 像処理性能を知っている必要があり、またそれに合わせた画像処理が必要となるとい う問題点と、画像処理性能が高い配信先においてはあまりに解像度の低い画像は小 さくて見づらかったり、単純に拡大するとブロック化などが起きるという問題点があった  [0005] However, in such a case, it is necessary to know the delivery destination with the lowest performance at the delivery source and the image processing performance thereof, and it is necessary to perform image processing according to the delivery destination. In addition, there is a problem that images with too low resolution are too small and difficult to see at distribution destinations with high image processing performance, or that they can be blocked when simply enlarged.
[0006] このような画像データ送受信に関する従来技術としての特許文献 1では、相手側の 映像と自分の映像とを 1つの画面上に 2画面表示するテレビ電話において、 自分の 映像と相手映像とが重なり合うことによって、相手映像の重要な部分が見にくくなると レ、う問題点を解決する技術が開示されている。 [0006] In Patent Document 1 as a prior art relating to such image data transmission / reception, in a videophone that displays the other party's video and one's own video on two screens, the own video and the other's video are displayed. If overlapping makes it difficult to see important parts of the other video, technology is disclosed to solve the problem.
[0007] また特許文献 2では、例えば自動車を対象とする監視システムにおレ、て、監視画像 を狭い帯域幅の伝送路で伝送するとしても、ユーザが重要と考える人物が含まれる 画像領域を低い圧縮率で符号化して伝送することによって、より高画質で伝送する 技術が開示されている。  [0007] Further, in Patent Document 2, for example, in a surveillance system for an automobile, even if a surveillance image is transmitted through a narrow bandwidth transmission path, an image area including a person considered to be important by the user is included. A technique for transmitting with higher image quality by encoding and transmitting at a low compression rate is disclosed.
[0008] 次に特許文献 3では、画像データ通信システムにおける受信側で、重要な部分の 画像から順に徐々に解像度が高くなるように画像を表示できるように画像データを送 信することによって、画像全体の表示が終了する前に、重要な部分については高解 像度の画像を表示することができる技術が開示されている。  [0008] Next, in Patent Document 3, an image data is transmitted on the receiving side in an image data communication system by transmitting image data so that an image can be displayed so that resolution gradually increases from an image of an important part. A technique capable of displaying a high-resolution image for an important part before the entire display is completed is disclosed.
[0009] さらに特許文献 4では、画像をスライス分割して伝送するシステムにおいて、画像の 一部を重複して符号化、および復号化することによって伝送路エラーに対する耐性 を高めることができる符号化、および復号化方法が開示されている。  [0009] Further, in Patent Document 4, in a system that transmits an image by dividing the image into slices, encoding that can increase resistance to a transmission path error by overlapping and encoding and decoding a part of the image, And a decoding method is disclosed.
[0010] し力、しながらこのような従来技術を用いても、画像データの送信側と受信側とで画 像処理性能、特に解像度が異なるときに解像度が高いままで画像データを送信する 場合には、解像度の低い受信側は画像を受信できなくなるという問題点と、逆にもつ とも解像度の低い受信側に合わせて画像データを同報配信する場合には、解像度 が高い受信側で受信画像が小さくて見づらかったり、単純拡大するとブロック化が起 きるなどの問題点を解決することができなかった。  [0010] However, even when such conventional technology is used, image data is transmitted at a high resolution when the image data transmission side and the reception side have different image processing performance, particularly when the resolution is different. On the other hand, the receiving side with low resolution cannot receive images, and conversely, when broadcasting image data to the receiving side with low resolution, the received image is received on the receiving side with high resolution. However, it was difficult to solve the problems such as being difficult to see because of small size, or blocking when simple enlargement.
特許文献 1 :特開平 10— 200873号 「テレビ電話装置」 特許文献 2 :特開平 11 215482号 「監視システム」 Patent Document 1: Japanese Patent Laid-Open No. 10-200873 “Videophone Device” Patent Document 2: JP-A-11 215482 “Monitoring System”
特許文献 3 :特開 2003— 333593号 「画像データ送信装置および画像データ受信 装置」  Patent Document 3: Japanese Patent Application Laid-Open No. 2003-333593 “Image Data Transmitting Device and Image Data Receiving Device”
特許文献 4 :特開 2004— 236337号 「映像の重複符号化および複号化方法とその 装置」  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-236337 “Duplicate Video Coding and Decoding Method and Apparatus”
発明の開示  Disclosure of the invention
[0011] 本発明の目的は、上述の問題点に鑑み、画像データの送信側が受信側の画像処 理性能、特に解像度を問題にすることなしに画像データを送信しても、解像度の低い 受信側で送信された画像データを表示可能にすることである。  [0011] In view of the above-described problems, an object of the present invention is to receive images with low resolution even when the image data transmission side transmits image data without causing the image processing performance of the reception side, particularly resolution, to be a problem. The image data transmitted on the side can be displayed.
[0012] 本発明の画像送信装置は、画像を符号化する画像符号化手段と、符号化された画 像データとともに、その画像データの受信側で画像を表示するときの必須表示領域と しての重要領域を指定するデータを、画像データの受信側に送る画像データ送信手 段とを備える。  [0012] The image transmission apparatus of the present invention includes an image encoding unit that encodes an image, and encoded image data as an essential display area when an image is displayed on the reception side of the image data. An image data transmitting means for sending data designating the important area to the image data receiving side.
[0013] また本発明の画像受信装置は、受信した画像データのサイズが自装置で表示可能 な最大表示サイズを超えるか否かを判定する画像サイズ判定手段と、最大表示サイ ズを超えるとき、受信データ内で指定されている重要領域の画像データを複号化し て表示するとともに、受信した画像データの一画面全ては表示させない画像複号化 手段とを備える。  [0013] Further, the image receiving device of the present invention has an image size determining means for determining whether or not the size of the received image data exceeds a maximum display size that can be displayed by the device, and when the size exceeds the maximum display size, Image decoding means for decoding and displaying the image data of the important area specified in the received data and not displaying all one screen of the received image data.
[0014] さらに本発明の画像送受信システムは、このような画像送信装置と、 1つ以上のこの ような画像受信装置とによって構成される。  [0014] Further, the image transmission / reception system of the present invention includes such an image transmission device and one or more such image reception devices.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]送信側の画像処理性能に合わせた画像配信方式の従来例の説明図である。  FIG. 1 is an explanatory diagram of a conventional example of an image distribution method in accordance with image processing performance on a transmission side.
[図 2]受信側の画像処理性能に合わせた画像配信方式の従来例の説明図である。  FIG. 2 is an explanatory diagram of a conventional example of an image distribution method in accordance with image processing performance on the receiving side.
[図 3]本発明の画像送受信システムの原理構成ブロック図である。  FIG. 3 is a block diagram showing the principle configuration of the image transmission / reception system of the present invention.
[図 4]本実施形態における画像送信装置、または画像受信装置の基本構成ブロック 図である。  FIG. 4 is a basic configuration block diagram of an image transmission device or an image reception device in the present embodiment.
[図 5]冗長スライスを用いたエラー訂正方式の説明図である。  FIG. 5 is an explanatory diagram of an error correction method using redundant slices.
[図 6]H. 264におけるアクセスユニットの構造を示す図である。 [図 7]重要な画像領域に対してエラー訂正に強い符号化を行う方式の説明図である FIG. 6 is a diagram showing the structure of an access unit in H.264. FIG. 7 is an explanatory diagram of a method for performing strong coding for error correction on important image areas.
[図 8]フレキシブル.マクロブロック ·オーダリングの説明図である。 [Fig. 8] An illustration of flexible macroblock ordering.
[図 9]本実施形態における画像内の重要領域の指定法の説明図である。  FIG. 9 is an explanatory diagram of a method for specifying an important region in an image according to the present embodiment.
[図 10]本実施形態における重要領域指定データのアクセスユニットへの格納の説明 図である。  FIG. 10 is an explanatory diagram of storing important area designation data in an access unit in the present embodiment.
[図 11]ソフトウェア処理を中心とする符号化'送信処理の説明図である。  FIG. 11 is an explanatory diagram of encoding and transmission processing centering on software processing.
[図 12]ソフトウェア処理を中心とする復号ィ匕処理の説明図である。  FIG. 12 is an explanatory diagram of a decoding process centering on software processing.
[図 13]ハードウェア処理を中心とする復号ィ匕処理の説明図である。  FIG. 13 is an explanatory diagram of a decoding process centering on hardware processing.
[図 14]送信側におけるビデオ CODECの構成ブロック図である。  FIG. 14 is a configuration block diagram of a video codec on the transmission side.
[図 15]受信側におけるビデオ CODECの構成ブロック図である。  FIG. 15 is a configuration block diagram of a video codec on the receiving side.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 図 3は、本発明の画像送受信システムの原理構成ブロック図である。同図において 画像送受信システムは、画像送信装置 1と、 1つ以上、一般には複数の画像受信装 置 2とによって構成される。  FIG. 3 is a block diagram showing the principle configuration of the image transmission / reception system of the present invention. In the figure, the image transmission / reception system includes an image transmission device 1 and one or more, generally a plurality of image reception devices 2.
[0017] 画像送信装置 1は、画像を符号化する画像符号化部 3と、符号化された画像デー タとともに、その画像データの受信側で画像を表示するときの必須表示領域としての 重要領域を指定するデータを受信側に送る画像データ送信部 4とを備える。  [0017] The image transmission device 1 includes an image encoding unit 3 that encodes an image, and an important area as an essential display area when the image is displayed on the receiving side of the image data together with the encoded image data. And an image data transmission unit 4 for sending data designating to the receiving side.
[0018] 画像受信装置 2は、受信した画像データのサイズが自装置で表示可能な最大表示 サイズを超えるか否力、を判定する画像サイズ判定部 5と、その最大表示サイズを超え るとき、受信データ内で指定されている重要領域の画像データを復号化して表示す るとともに、受信した画像データの一画面全体は表示させない画像データ複号化部 6とを備える。一般に複数の画像受信装置 2は、異なる解像度、すなわち最大表示サ ィズを持つものとする。  [0018] The image reception device 2 has an image size determination unit 5 that determines whether or not the size of the received image data exceeds the maximum display size that can be displayed by the device itself, and when the image display device 2 exceeds the maximum display size, An image data decoding unit 6 is provided that decodes and displays the image data of the important area specified in the received data and does not display the entire screen of the received image data. In general, the plurality of image receiving apparatuses 2 have different resolutions, that is, maximum display sizes.
[0019] 本発明においては、前述の重要領域が画像のスライス分割伝送時において伝送ェ ラー訂正のために伝送される冗長スライスに対応する領域であることも、また伝送エラ 一耐性の強い符号化が行われる重要スライスに対応する領域であることもできる。  In the present invention, the above-mentioned important area is an area corresponding to a redundant slice transmitted for transmission error correction at the time of image slice division transmission. It can also be an area corresponding to an important slice in which.
[0020] 以上のように本発明によれば、画像送信側から画像を表示するときの必須表示領 域としての重要領域を指定するデータが画像データとともに送られ、受信側で受信し た画像データのサイズが送信側で表示可能な最大表示サイズを超えるときにも、そ の重要領域の画像データが復号化されて表示されるとともに、受信した画像データ の一画面全体は表示させないような制御が行われる。 [0020] As described above, according to the present invention, an essential display area when an image is displayed from the image transmission side. Even when the data specifying the important area as the area is sent together with the image data, and the size of the image data received on the receiving side exceeds the maximum display size that can be displayed on the transmitting side, the image data in that important area Control is performed so that the entire screen of the received image data is not displayed while being decoded and displayed.
[0021] 図 4は、本発明の画像通信システムを構成する画像送信装置、および画像受信装 置の基本的な構成ブロック図である。同図において画像送信装置、または画像受信 装置は、画像データの符号化、および復号化を行うビデオ CODEC10を中心として 構成されており、ビデオ CODEC10には CPU11とメモリ 12とが接続され、さらに CP U11にはキャッシュ 13が接続されてレ、る。  FIG. 4 is a basic configuration block diagram of an image transmission device and an image reception device that constitute the image communication system of the present invention. In the figure, the image transmitting device or the image receiving device is composed mainly of a video codec 10 that encodes and decodes image data, and the CPU 11 and the memory 12 are connected to the video codec 10, and the CPU 11 There is a cache 13 connected to it.
[0022] 後述するように、図 2の構成を持つ画像送信装置は、画像データをビデオ CODEC 10によって符号ィ匕するとともに、画像のうちで重要な領域を示すユーザデータを、符 号化データとともに画像データの受信側に送信する。画像受信装置側では、画像内 の重要領域を示すデータに対応して、必要に応じて重要領域のみの画像データ、ま たは全体の画像データを復号化して、復号化後の画像データを表示する。本実施形 態では、基本的には重要領域を示すデータの解析や画像の表示処理などは CPU1 1によるソフトウェアによって処理し、符号化、および復号化のように処理速度を必要 とする部分については、ビデオ CODEC10によるハードウェア処理を行うものとする。  As will be described later, the image transmission apparatus having the configuration of FIG. 2 encodes image data with the video codec 10, and user data indicating an important area in the image together with encoded data. Send to the image data receiver. On the image receiving device side, corresponding to the data indicating the important area in the image, the image data of only the important area or the entire image data is decoded as necessary, and the decoded image data is displayed. To do. In this embodiment, the analysis of the data indicating the important area and the image display processing are basically processed by software by the CPU 11, and the parts that require processing speed, such as encoding and decoding, are processed. Suppose that video codec10 performs hardware processing.
[0023] 本発明の実施形態についてさらに詳細に説明する前に、本実施形態において適 用するビットストリーム伝送におけるエラー対策に関する技術を、 H. 264動画像圧縮 符号化標準方式を例として説明する。  [0023] Before describing the embodiment of the present invention in further detail, a technique relating to error countermeasures in bitstream transmission applied in the present embodiment will be described using the H.264 moving image compression coding standard system as an example.
[0024] H. 264動画像圧縮符号化標準は、通信に関する国際標準化機関としての ITU— T (インターナショナノレ'テレコミュニケーション 'ユニオン一テレコミュニケーション'ス タンダーダイゼーシヨン'セクタ一)と、 MPEG (ムービング 'ピクチャ'エキスパーツ'グ ループ)によって共同で標準化された最新の画像圧縮技術であるが、本発明の実施 形態をこの標準化技術におけるビットストリーム伝送エラー対策を用いて説明するも のとする。  [0024] The H.264 video compression and coding standard is based on ITU-T (International Nanole 'Telecommunication' Union 1 Telecommunications' Standardization 'Sector 1') and MPEG ( This is the latest image compression technology jointly standardized by the moving (picture “experts” group), and the embodiment of the present invention will be described using the bitstream transmission error countermeasure in this standardization technology.
[0025] H. 264では、 1つの画面に相当するピクチャを細分化した小画面としてのスライス が符号ィ匕の基本単位となる。各スライスは複数のマクロブロックから構成される。一般 的には各マクロブロックの画像データは一度だけ符号化/復号化されるが、伝送路 品質が悪い場合にエラー訂正能力を高めるために、同じマクロブロックを複数回符号 化/復号化する方法がある。基本的には 1つのスライスに 2回以上同じマクロブロック が含まれることは許されないため、冗長なスライスを作成して、伝送エラーの状態に 応じて冗長スライスのデータを用いてエラー訂正を行うことができる。 [0025] In H.264, a slice as a small screen obtained by subdividing a picture corresponding to one screen is a basic unit of the code. Each slice is composed of a plurality of macroblocks. General Although the image data of each macroblock is encoded / decoded only once, there is a method of encoding / decoding the same macroblock multiple times in order to improve error correction capability when the transmission path quality is poor. is there. Basically, the same macroblock is not allowed to be included in one slice more than once, so create a redundant slice and perform error correction using the data of the redundant slice according to the transmission error status. Can do.
[0026] 図 5は、このような冗長スライスを用いたエラー訂正方式の説明図である。同図にお いては、通常のスライスデータに加えて冗長スライスのデータも伝送され、通常の伝 送スライスデータにエラーが生じたとしても、そのエラー箇所に該当するマクロブロッ クが冗長スライスに含まれ、かつその冗長スライスに対するエラーがなレ、場合には、 冗長スライス内のマクロブロックのデータを用いて画像データの復号を行うことによつ て、エラーのない画像を再現することができる。エラー箇所に該当するマクロブロック のデータが冗長スライスに存在しない場合にはエラー訂正を行うことはできない。  FIG. 5 is an explanatory diagram of an error correction method using such redundant slices. In the figure, redundant slice data is transmitted in addition to normal slice data, and even if an error occurs in normal transmission slice data, the macro block corresponding to the error location is included in the redundant slice. If there is no error with respect to the redundant slice, the image without error can be reproduced by decoding the image data using the macroblock data in the redundant slice. If the data of the macro block corresponding to the error location does not exist in the redundant slice, error correction cannot be performed.
[0027] なお、 Η· 264では複数のスライスを含むスライス.グループに多くの種類があり、マ クロブロックを交互に並べたスライス、矩形のスライス、時計回り '反時計回り、逆ラスタ 順などのスライス 'グループがある力 S、その詳細は本発明と直接の関連はないので、 その説明を省略する。  [0027] Note that Η · 264 includes multiple slices. There are many types of groups, such as alternating slices of macroblocks, rectangular slices, clockwise 'counterclockwise, reverse raster order, etc. Slice 'group has a force S, the details of which are not directly related to the present invention, so the explanation is omitted.
[0028] H. 264では、動画像符号化処理そのものを扱う VCL (ビデオ'コーディング.レイヤ )と、符号化された情報を伝送、蓄積する下位システムとの間に NAL (ネットワーク'ァ ブストラクシヨン'レイヤ)というレイヤが規定されており、下位システムとの間のビットス トリームのマッピング(対応づけ)は、 NALの 1区切りとしての NALユニットを単位とし て行われる。そしてさらにビットストリーム中の情報をピクチャ単位でアクセスするため に、レ、くつかの NALユニットがまとめられ、アクセスユニットと呼ばれる。  [0028] In H.264, NAL (network substructure) is used between a VCL (video 'coding layer') that handles the video encoding process itself and a lower system that transmits and stores the encoded information. A layer called 'layer' is defined, and bitstream mapping (association) with lower systems is performed in units of NAL units as one NAL delimiter. Furthermore, in order to access the information in the bitstream on a picture-by-picture basis, several NAL units are grouped together and are called access units.
[0029] 図 6は、このアクセスユニットの構造を示す。同図においてアクセスユニットの先頭の AU (アクセスユニット)デリミタ一はアクセスユニットの先頭を示す開始符号であり、次 の SPS (シーケンス 'パラメータ 'セット)はシーケンスに関する情報(ヘッダ)であり、 P PS (ピクチャ'パラメータ 'セット)はピクチャ全体の符号化モードの情報(ヘッダ)であ り、 SEI (サプリメンタル 'エンハンスメント 'インフォメーション)は付加情報である。その 後に画像データ全体に対応する主ピクチャ、さらにその後に冗長スライスに対応する 冗長ピクチヤが格納され、最後にシーケンスの終了を示す EOS (エンド ·ォブ ·シーケ ンス)、およびストリームの終了を示す EOS (エンド'ォブ'ストリーム)が格納される構 造となっている。そして通常の画像データに相当する主ピクチャの後に格納される冗 長ピクチャ内の冗長スライスは、図 5で説明したように伝送路エラー訂正のために用 いられる。 FIG. 6 shows the structure of this access unit. In the figure, the AU (access unit) delimiter at the head of the access unit is a start code indicating the head of the access unit, the next SPS (sequence 'parameter' set) is information (header) about the sequence, and P PS ( The picture 'parameter' set is information (header) of the coding mode of the entire picture, and the SEI (supplemental 'enhancement' information) is additional information. After that, the main picture corresponding to the entire image data, and then the redundant slice Redundant pictures are stored, and EOS (end-of-sequence) indicating the end of the sequence and EOS (end-of-stream) indicating the end of the stream are stored at the end. The redundant slice in the redundant picture stored after the main picture corresponding to normal image data is used for channel error correction as described in FIG.
[0030] H. 264において冗長スライスを使用する代わりに、画像の重要領域を、その他の 領域に対応する通常スライスと異なる符号化方式を用いてエラー訂正に強い符号ィ匕 を行った重要スライスとして受信側に伝送する方式がある。図 7はこのような重要スラ イスを用いる画像エラー訂正方式の説明図である。画像内の重要領域を、その他の 通常領域に対する通常スライスよりもエラー訂正に強い符号ィヒを行って受信側に伝 送することによって、重要スライス内にエラーが生じてもエラー訂正を行った複号化が 可能となる。  [0030] Instead of using redundant slices in H.264, an important area of an image is used as an important slice that has been subjected to a coding scheme that is strong for error correction using a coding scheme different from the normal slice corresponding to other areas. There is a transmission method to the receiving side. Fig. 7 is an illustration of an image error correction method using such an important slice. The important region in the image is transmitted to the receiving side with a sign that is stronger in error correction than the normal slices for the other normal regions, and is transmitted to the receiving side even if an error occurs in the important slice. Can be encoded.
[0031] 図 8は、このように重要スライスと通常スライスとに区別して、異なる符号化方式を用 レ、る場合のスライス(マクロブロック)の順序の説明図である。このような順序は FMO ( フレキシブル 'マクロブロック 'オーダリング)と呼ばれており、エラー耐性の強い符号 化が行われた重要スライスの後に、通常の符号化が行われた通常スライスが格納さ れる。  FIG. 8 is an explanatory diagram of the order of slices (macroblocks) when different coding schemes are used, distinguishing between important slices and normal slices as described above. Such an order is called FMO (flexible 'macroblock' ordering), and normal slices with normal coding are stored after important slices with strong error tolerance coding.
[0032] 次に本実施形態において、以上のような伝送エラー対策を応用した画像伝送につ いて説明する。図 9は、本実施形態における重要領域の指定法の説明図である。本 実施形態では前述の冗長スライスや FMOなどの技術を活用して、画像処理性能、 主として表示画像サイズが異なる画像送信装置と画像受信装置の間で画像表示上 の問題が生じないように画像データの送受信を行うものとする。  Next, in the present embodiment, image transmission applying the above transmission error countermeasure will be described. FIG. 9 is an explanatory diagram of a method for specifying an important area in the present embodiment. In the present embodiment, image data is utilized so that image display performance does not occur between an image transmission apparatus and an image reception apparatus having different image processing performances, mainly display image sizes, by utilizing the above-described techniques such as redundant slice and FMO. Shall be sent and received.
[0033] 図 9において本実施形態では、画像内の重要領域はその中心点 Aと、重要領域の サイズ B、すなわち横方向の画素数と縦方向の画素数によって定義するものとする。 このような重要領域の指定は、画像データの送信側でそのような指定を用いるか否か を示すオン/オフ、および重要領域の中心点 Aの位置、重要領域のサイズ Bとが定 義されて画像データの受信側に送られ、受信側ではそのデータを解析して、例えば 画像データのすべてを表示するか、重要領域だけを表示するかなどの選択が行われ る。 In FIG. 9, in the present embodiment, the important area in the image is defined by the center point A and the size B of the important area, that is, the number of pixels in the horizontal direction and the number of pixels in the vertical direction. The designation of such an important area is defined by ON / OFF indicating whether or not such designation is used on the image data transmission side, the position of the center point A of the important area, and the size B of the important area. The image data is sent to the receiving side, and the receiving side analyzes the data and selects, for example, whether to display all the image data or only the important area. The
[0034] このような重要領域の指定が行われる場合、すなわちオンの場合には、まずデフォ ノレトの領域としての中心点 Aの位置、および領域のサイズ Bが設定されているものとし 、またこれらのデータについてはユーザのカスタマイズが可能なものとする。ユーザに よるカスタマイズの方法としては、中心点 Aの位置を画面のイメージ上で設定させるこ とによって、また重要領域のサイズ Bについては、一般的な画像サイズから選択させ ることを基本とする力 ユーザが希望するサイズを指定することもできるものとする。た だし、ユーザが指定する場合には、サイズオーバーなどの問題を防ぐために画面上 で指定させるような工夫が必要である。  [0034] When such an important area is designated, that is, when it is ON, it is assumed that the position of the center point A as the default area and the size B of the area are set. This data can be customized by the user. As a method of customization by the user, the basic force is to set the position of the center point A on the image on the screen, and the size B of the important area to be selected from general image sizes. The user can also specify a desired size. However, when the user designates it, it is necessary to devise it so that it is designated on the screen in order to prevent problems such as oversize.
[0035] 一般的な画像サイズとしては前述の VGA、 QVGA、 SXGAの他に、 CIF (コモン' インターフェース'フォーマット、 352 X 288ドット)、および QCIF (クォータ CIF、 176 X 144ドット)などを指定させるものとする。  [0035] In addition to the VGA, QVGA, and SXGA mentioned above, CIF (Common 'Interface' format, 352 X 288 dots), QCIF (Quota CIF, 176 X 144 dots), etc. are specified as general image sizes Shall.
[0036] このように、画像データの送信側で設定された重要領域に関する情報としての重要 領域の中心点の位置 A、およびそのサイズ Bなどのデータと、前述のように冗長スライ スを用いる力、あるいは図 8で説明した FMOの方式を用いるかなどのデータは、図 6 で説明したアクセスユニット内の付加情報 SEIの領域に格納されて、画像データの受 信側に送られるものとする。この SEIは、画像のデコード処理とは直接には関係のな い付カ卩情報であり、この SEIの中にユーザデータ領域が存在するため、図 10に示す ようにこの SEIの内部にユーザデータとしてこれらのデータを格納して、受信側に送 信するものとする。  [0036] In this way, the data such as the position A of the center point of the important area and the size B thereof as information related to the important area set on the image data transmission side, and the power to use the redundant slice as described above. Data such as whether to use the FMO method described in FIG. 8 is stored in the additional information SEI area in the access unit described in FIG. 6 and is sent to the image data receiving side. This SEI is supplementary information that is not directly related to the image decoding process, and since there is a user data area in this SEI, as shown in FIG. These data are stored and sent to the receiving side.
[0037] 以上に説明した冗長スライスや FMO方式を用いる画像データの送受信について、 図 11から図 15を用いてさらに説明する。図 11は、送信側において主としてソフトゥェ ァを用いて行われる画像データ符号化'送信処理の説明図である。  [0037] Transmission and reception of image data using the redundant slice and FMO method described above will be further described with reference to Figs. FIG. 11 is an explanatory diagram of the image data encoding / transmission process that is mainly performed using software on the transmission side.
[0038] 図 11において、画像データの送信時には、まずステップ S1で重要領域の指定が オン/オフのいずれであるかが判定され、オフ、すなわち重要領域の指定を行わな い場合には、ステップ S2でハードウェア処理としての通常符号ィ匕処理が行われ、ス テツプ S3で画像データが送信されて処理を終了する。  In FIG. 11, when transmitting image data, it is first determined in step S1 whether the designation of the important area is on or off. If off, that is, if the designation of the important area is not performed, step S1 is performed. In S2, the normal code processing as hardware processing is performed, and in step S3, the image data is transmitted, and the processing ends.
[0039] 重要領域の指定がオン、すなわち指定を行う場合にはステップ S4で重要領域情報 、すなわち中心点、サイズなどの抽出が行われる。この重要領域情報については、前 述のようにデフォルトの値を用いることも、あるいはユーザから指定されるデータを用 レ、ることも可能である。そして図 5、図 6で説明した冗長スライスを用いるカ あるいは 図 7、図 8で説明した FM〇方式を用いるかによつて、ステップ S5、 S6の処理が行わ れるか、あるいはステップ S7、 S8の処理が行われるかが決定される。 [0039] If the designation of the important area is on, that is, if designation is made, the important area information is obtained in step S4. That is, the center point, the size, etc. are extracted. For this important area information, the default value can be used as described above, or the data specified by the user can be used. Then, depending on whether the redundant slice explained in Fig. 5 and Fig. 6 or the FM ○ method explained in Fig. 7 and Fig. 8 is used, the processing of steps S5 and S6 is performed, or the processing of steps S7 and S8 It is determined whether processing is performed.
[0040] 冗長スライスを用いる場合には、ステップ S5で符号化パラメータ情報の指定が行わ れる。すなわち、重要領域 (冗長スライス)のサイズや位置が指定され、またその重要 領域情報が SEI内のユーザデータとして指定された後に、 ハードウェア処理としての 冗長スライス指定の符号ィ匕処理がステップ S6で行われ、ステップ S3で画像データが 送信されて処理を終了する。  [0040] When a redundant slice is used, coding parameter information is specified in step S5. That is, after the size and position of the important area (redundant slice) are specified, and the important area information is specified as user data in SEI, the code processing for specifying the redundant slice as hardware processing is performed in step S6. In step S3, the image data is transmitted and the process ends.
[0041] FM〇方式を用いる場合には、ステップ S7で同様に重要領域 (重要スライス)の位 置とサイズが指定され、その重要領域情報が SEI内部のユーザデータとして指定さ れた後に、ステップ S8でハードウェア処理としてのスライス分割、すなわち重要スライ スと通常スライスとの分割が指定された符号ィヒ処理が行われ、ステップ S3で画像デ ータが送信されて処理を終了する。  [0041] When using FM ○ method, the position and size of the important area (important slice) are specified in the same way in step S7, and after the important area information is specified as user data inside SEI, the step In S8, the slice division as hardware processing, that is, the coding process in which the division between the important slice and the normal slice is designated is performed. In step S3, the image data is transmitted and the processing is terminated.
[0042] 図 12は、ソフトウェア処理を中心とする受信側の処理の説明図である。同図におい て画像データを受信すると、ステップ S11でヘッダの復号化処理として、アクセスュニ ットのヘッダの復号化処理が行われ、ステップ S 12で受信画像サイズが自装置にお ける画像表示サイズ以上であるか否かが判定される。画像表示サイズ以上でない場 合、すなわち受信画像の全体を表示できる場合には、ステップ S 13でハードウェア処 理としてのピクチャ(スライス)の通常復号化処理が行われ、ステップ S 14で復号画像 が表示されて処理を終了する。この場合には受信画像そのもののサイズの画像の表 示が行われる。  FIG. 12 is an explanatory diagram of processing on the receiving side centering on software processing. When image data is received in the figure, the header decoding process of the access unit is performed as the header decoding process in step S11, and the received image size is larger than the image display size in the own device in step S12. It is determined whether or not. If it is not larger than the image display size, that is, if the entire received image can be displayed, normal decoding processing of a picture (slice) as hardware processing is performed in step S13, and the decoded image is converted in step S14. Displayed and the process is terminated. In this case, an image of the size of the received image itself is displayed.
[0043] ステップ S 12で受信画像サイズが自装置の画像表示サイズ以上である場合には、 ステップ S 15で画像表示を行うべきか否かが判定され、行うべきでない場合にはステ ップ S16で受信不可として復号処理が中止されて処理を終了する。  [0043] If the received image size is greater than or equal to the image display size of the own device in step S12, it is determined in step S15 whether or not to display an image. If not, step S16 is performed. As a result, the decoding process is stopped as reception is impossible, and the process ends.
[0044] 画像表示を行うべき場合には、ステップ S 17で送信側から送られたアクセスユニット 内の SEIにおけるユーザデータが解析され、重要領域の位置やサイズなどが抽出さ れ、ステップ S18でハードウェア処理としての重要領域の内部のスライスの復号化処 理が行われ、ステップ S 19で復号画像の表示、すなわち重要領域のみの表示が行 われて、処理を終了する。なお重要領域のみの表示を行う代わりに受信した画像デ 一ター画面全体は表示させないようにすることも可能である。 [0044] When image display is to be performed, the user data in the SEI in the access unit sent from the transmission side in step S17 is analyzed, and the position and size of the important area are extracted. In step S18, the decoding process of the slice inside the important area is performed as hardware processing. In step S19, the decoded image is displayed, that is, only the important area is displayed, and the process is terminated. Instead of displaying only the important area, it is also possible not to display the entire received image data screen.
[0045] 図 13は、主としてハードウェア処理を用いる受信側の処理の説明図である。同図に おいて画像データが受信されると、ステップ S21で例えば受信画像の表示サイズを 与える復号ィ匕パラメータの設定処理がソフトウェア処理として行われた後に、ハードウ エア処理としてステップ S22でアクセスユニット部のヘッダの復号化処理が行われ、ス テツプ S23で受信画像のサイズが自装置の画像表示サイズ以上であるか否かが判 定され、以上でない場合にはステップ S24でピクチャ (スライス)の通常復号化処理が 行われ、ステップ S25でソフトウェア処理として復号画像の表示が行われて処理を終 了する。 FIG. 13 is an explanatory diagram of processing on the reception side mainly using hardware processing. When the image data is received in the figure, after the decoding key parameter setting process for giving the display size of the received image is performed as software processing in step S21, the access unit section is processed as hardware processing in step S22. In step S23, it is determined whether or not the size of the received image is equal to or larger than the image display size of the own device. If not, the normal picture (slice) is determined in step S24. Decoding processing is performed, and in step S25, the decoded image is displayed as software processing, and the processing ends.
[0046] ステップ S23で受信画像のサイズが自装置の画像表示サイズ以上であると判定さ れると、ステップ S26で SEIの内部のユーザデータが解析され、重要領域のサイズな どが抽出されて、ステップ S27で重要領域の復号化処理が行われ、ステップ S25でソ フトウェア処理としての復号画像の表示が行われて処理を終了する。なおここで重要 領域の復号ィ匕処理としては冗長スライスを用いる図 5、図 6で説明した方式と図 7、図 8で説明した重要スライスを用いた FMO方式とでそれぞれ対応する復号化処理が行 われる。  [0046] If it is determined in step S23 that the size of the received image is equal to or larger than the image display size of the own device, the user data inside the SEI is analyzed in step S26, and the size of the important area is extracted. In step S27, the important area is decoded, and in step S25, the decoded image is displayed as the software process, and the process ends. Note that the decoding process for the important region includes decoding processes corresponding to the method described in FIGS. 5 and 6 using redundant slices and the FMO method using important slices described in FIGS. Done.
[0047] 図 14は、図 11で説明した送信側の処理に対応するビデオ CODECのハードウェア 構成の説明図である。同図においてビデオ CODEC10は、入力画像データのヘッダ の符号化を行うヘッダ符号化部 15と、画像データそのものの符号化を行う画像デー タ符号化部 16によって構成されてレ、る。  FIG. 14 is an explanatory diagram of the hardware configuration of the video codec corresponding to the processing on the transmission side described in FIG. In the figure, the video codec 10 is composed of a header encoding unit 15 that encodes the header of input image data and an image data encoding unit 16 that encodes the image data itself.
[0048] 図 15は、図 13に対応するビデオ CODECの構成ブロック図である。同図において 受信画像データが入力されると、ヘッダ復号ィ匕部 17によってアクセスユニット部のへ ッダ復号化処理が行われ、 SEIユーザ情報解析部 18によってアクセスユニットの SEI 内のユーザデータが解析されて重要領域の中心点の位置やそのサイズなどが抽出 され、画像データ複号化部 19によって、例えば重要領域のみの画像データの復号 化が行われる。なお、図 12に対応するビデオ CODECは、ヘッダ復号化部 17、およ び画像データ復号化部 19だけを備え、 SEIユーザ情報解析部を備えない構成とな る。この SEIユーザ情報解析部 18は基本的に論理回路などを用いて構成されるもの である。 FIG. 15 is a configuration block diagram of a video codec corresponding to FIG. In the figure, when received image data is input, header decoding of the access unit is performed by the header decoding unit 17, and user data in the SEI of the access unit is analyzed by the SEI user information analysis unit 18. The position of the center point of the important area and its size are extracted, and the image data decoding unit 19 decodes the image data of only the important area, for example Is done. Note that the video codec corresponding to FIG. 12 includes only the header decoding unit 17 and the image data decoding unit 19 and does not include the SEI user information analysis unit. The SEI user information analysis unit 18 is basically configured using a logic circuit or the like.
以上詳細に説明したように、本発明によれば、画像データの受信側における解像 度が低ぐ最大画像表示サイズが小さい場合にも送信側から指定される重要領域の 画像を表示することが可能となる。また、受信側の画像処理性能、すなわち解像度が 送信側と同じである場合には送信側から送られたすべての画像データが表示され、 受信表示画像の劣化を防ぐことができる。  As described above in detail, according to the present invention, even when the resolution on the image data receiving side is low and the maximum image display size is small, it is possible to display an image of the important region designated from the transmitting side. It becomes possible. In addition, when the image processing performance on the receiving side, that is, the resolution is the same as that on the transmitting side, all image data sent from the transmitting side is displayed, so that it is possible to prevent deterioration of the received display image.

Claims

請求の範囲 The scope of the claims
[1] 画像を符号化する画像符号化手段と、 [1] image encoding means for encoding an image;
該符号化された画像データとともに、該画像データの受信側で画像を表示するとき の必須表示領域としての重要領域を指定するデータを、該画像データの受信側に送 る画像データ送信手段とを備えることを特徴とする画像送信装置。  Image data transmission means for sending, together with the encoded image data, data specifying an important area as an essential display area when an image is displayed on the image data receiving side to the image data receiving side. An image transmitting apparatus comprising:
[2] 前記重要領域が、画像のスライス分割伝送時において、伝送エラー訂正のために 伝送される冗長スライスに対応する領域であることを特徴とする請求項 1記載の画像 送信装置。  2. The image transmitting apparatus according to claim 1, wherein the important area is an area corresponding to a redundant slice transmitted for transmission error correction at the time of image divided transmission.
[3] 前記重要領域が、画像のスライス分割伝送時にぉレ、て、伝送エラー耐性の強レヽ符 号化が行われる重要スライスに対応する領域であることを特徴とする請求項 1記載の 画像送信装置。  [3] The image according to claim 1, wherein the important area is an area corresponding to an important slice that is subjected to strong encoding in a transmission error tolerance when the image is divided and transmitted in slices. Transmitter device.
[4] 画像データを受信する手段と、 [4] means for receiving image data;
該受信手段により受信されたデータが重要領域を指定するデータが付加された画 像データである場合に、重要領域の画像データを復合化し表示するとともに、受信し た画像データの一画面全ては表示させない画像復合化手段と、  When the data received by the receiving means is image data to which data specifying an important area is added, the image data in the important area is decoded and displayed, and all one screen of the received image data is displayed. Image decoding means not to allow
を有することを特徴とする画像受信装置。  An image receiving apparatus comprising:
[5] 受信した画像データのサイズが、自装置で表示可能な最大表示サイズを超えるか 否かを判定する画像サイズ判定手段と、 [5] Image size determination means for determining whether or not the size of the received image data exceeds a maximum display size that can be displayed by the own device;
該最大表示サイズを超えるとき、受信データ内で指定される重要領域の画像デー タを復号化し表示するとともに、受信した画像データの一画面全ては表示させない画 像複号化手段とを備えることを特徴とする画像受信装置。  Image decoding means for decoding and displaying the image data of the important area specified in the received data when the maximum display size is exceeded, and not displaying all one screen of the received image data. A characteristic image receiving apparatus.
[6] 前記重要領域が、画像のスライス分割伝送時において、伝送エラー訂正のために 伝送される冗長スライスに対応する領域であることを特徴とする請求項 4および 5記載 の画像受信装置。 6. The image receiving apparatus according to claim 4 or 5, wherein the important area is an area corresponding to a redundant slice transmitted for transmission error correction at the time of image slice transmission.
[7] 前記重要領域が、画像のスライス分割伝送時にぉレ、て、伝送エラー耐性の強レヽ符 号化が行われる重要スライスに対応する領域であることを特徴とする請求項 4および 5記載の画像受信装置。  7. The important region is a region corresponding to an important slice that is subjected to strong encoding in a transmission error tolerance when the image is divided and transmitted in slice division. Image receiving device.
[8] 画像を符号化する画像符号化手段と、該符号化された画像データとともに、該画像 データの受信側で画像を表示するときの必須表示領域としての重要領域を指定する データを、該画像データの受信側に送る画像データ送信手段とを備える画像送信装 置と、 [8] Image encoding means for encoding an image, the encoded image data, and the image An image transmission device comprising: an image data transmission means for transmitting data for designating an important area as an essential display area when displaying an image on the data reception side to the image data reception side;
受信した画像データに重量領域を指定するデータが付加されていた場合に、受信 データ内で指定されている重要領域の画像データのみを複号化し表示させるととも に、該受信データの一画面全ては表示させない画像複号化手段とを備える画像受 信装置とで構成されることを特徴とする画像送受信システム。  When the data specifying the weight area is added to the received image data, only the image data of the important area specified in the received data is decoded and displayed, and the entire screen of the received data is displayed. An image transmission / reception system comprising: an image receiving device including image decoding means that is not displayed.
[9] 前記重要領域が、画像のスライス分割伝送時において、伝送エラー訂正のために 伝送される冗長スライスに対応する領域であることを特徴とする請求項 8記載の画像 送受信システム。  9. The image transmission / reception system according to claim 8, wherein the important area is an area corresponding to a redundant slice transmitted for transmission error correction at the time of image slice transmission.
[10] 前記重要領域が、画像のスライス分割伝送時にぉレ、て、伝送エラー耐性の強レ、符 号化が行われる重要スライスに対応する領域であることを特徴とする請求項 8記載の 画像送受信システム。  10. The important region according to claim 8, wherein the important region is a region corresponding to an important slice to be encoded during slice division transmission of an image, to have a strong transmission error resistance, and to be encoded. Image transmission / reception system.
PCT/JP2006/303993 2006-03-02 2006-03-02 Image transmission device, image reception device, and image transmission/reception system WO2007099637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008502623A JPWO2007099637A1 (en) 2006-03-02 2006-03-02 Image transmission device, image reception device, and image transmission / reception system
PCT/JP2006/303993 WO2007099637A1 (en) 2006-03-02 2006-03-02 Image transmission device, image reception device, and image transmission/reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303993 WO2007099637A1 (en) 2006-03-02 2006-03-02 Image transmission device, image reception device, and image transmission/reception system

Publications (1)

Publication Number Publication Date
WO2007099637A1 true WO2007099637A1 (en) 2007-09-07

Family

ID=38458762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303993 WO2007099637A1 (en) 2006-03-02 2006-03-02 Image transmission device, image reception device, and image transmission/reception system

Country Status (2)

Country Link
JP (1) JPWO2007099637A1 (en)
WO (1) WO2007099637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513313A (en) * 2014-03-18 2017-05-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and apparatus for encoding and decoding video data

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340583A (en) * 1989-07-06 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> Picture decoder
JPH0495471A (en) * 1990-08-10 1992-03-27 Fujitsu Ltd Picture data processing system
JPH099220A (en) * 1995-06-23 1997-01-10 Canon Inc Communication equipment and communication system
JP2004056616A (en) * 2002-07-23 2004-02-19 Media Glue Corp Device, method and program for decoding encoded signal
JP2004236337A (en) * 2003-01-30 2004-08-19 Samsung Electronics Co Ltd Method and apparatus for double encoding and decoding video
JP2005142654A (en) * 2003-11-04 2005-06-02 Matsushita Electric Ind Co Ltd Video transmitting apparatus and video receiving apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003122339A (en) * 2001-10-11 2003-04-25 Toshiba Corp Mobile communication terminal
JP2003150145A (en) * 2001-11-09 2003-05-23 Nec Corp Image display method and portable information equipment
JP2006031730A (en) * 2005-08-22 2006-02-02 Fuji Xerox Co Ltd System, device, method for adjusting image size and content document

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340583A (en) * 1989-07-06 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> Picture decoder
JPH0495471A (en) * 1990-08-10 1992-03-27 Fujitsu Ltd Picture data processing system
JPH099220A (en) * 1995-06-23 1997-01-10 Canon Inc Communication equipment and communication system
JP2004056616A (en) * 2002-07-23 2004-02-19 Media Glue Corp Device, method and program for decoding encoded signal
JP2004236337A (en) * 2003-01-30 2004-08-19 Samsung Electronics Co Ltd Method and apparatus for double encoding and decoding video
JP2005142654A (en) * 2003-11-04 2005-06-02 Matsushita Electric Ind Co Ltd Video transmitting apparatus and video receiving apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OKUBO S.: "H. 264/AVC Kyokasho", IMPRESS CORP., 11 August 2004 (2004-08-11), pages 197 - 200, XP003017332 *
WIEGAND T. ET AL.: "Overview of the H.264/AVC video Coding Standard", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 13, no. 7, July 2003 (2003-07-01), pages 560 - 576, XP011099249 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513313A (en) * 2014-03-18 2017-05-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and apparatus for encoding and decoding video data
US10313703B2 (en) 2014-03-18 2019-06-04 Huawei Technologies Co., Ltd. Video data encoding and decoding methods and apparatuses

Also Published As

Publication number Publication date
JPWO2007099637A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US8339440B2 (en) Method and apparatus for controlling multipoint conference
JP5089658B2 (en) Transmitting apparatus and transmitting method
US9148694B2 (en) Method and apparatus enabling fast channel change for DSL system
EP1721462B1 (en) Arrangement and method for generating continuous presence images
JP4820559B2 (en) Video data encoding and decoding method and apparatus
EP1274247A2 (en) JPEG 2000 for efficient imaging in a client/server environment
US20100262712A1 (en) Channel adaptive video transmission method, apparatus using the same, and system providing the same
US20060093036A1 (en) Method for encoding and decoding video signals
US20110274180A1 (en) Method and apparatus for transmitting and receiving layered coded video
JP2004536529A (en) Method and apparatus for continuously receiving frames from a plurality of video channels and alternately transmitting individual frames containing information about each of the video channels to each of a plurality of participants in a video conference
CN1578463A (en) Method for transcoding mpeg encoded streams
WO2004040914A1 (en) A method and device for transcoding images
EP0805600A2 (en) Compressed video text overlay
US7430327B2 (en) Image processing apparatus, image processing program, and storage medium
JPH07336462A (en) Communication terminal and communication system
US20020154331A1 (en) Image data transmission apparatus and image data receiving apparatus
US20110299605A1 (en) Method and apparatus for video resolution adaptation
US8731069B2 (en) Remote display system and method
US6560280B1 (en) Video transmission system
US6337882B1 (en) Method and apparatus for generating unlimited selected image views from a larger image
WO2007099637A1 (en) Image transmission device, image reception device, and image transmission/reception system
WO2015118664A1 (en) Image transmission device, image reception device, and surveillance camera system, teleconference system, and vehicle-mounted camera system using same
WO2021057480A1 (en) Video coding method and video decoding method, and related apparatuses
US20110211631A1 (en) Moving image data distribution system, its method, and its program
JP2009081622A (en) Moving image compression encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715102

Country of ref document: EP

Kind code of ref document: A1