WO2007049356A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2007049356A1
WO2007049356A1 PCT/JP2005/019931 JP2005019931W WO2007049356A1 WO 2007049356 A1 WO2007049356 A1 WO 2007049356A1 JP 2005019931 W JP2005019931 W JP 2005019931W WO 2007049356 A1 WO2007049356 A1 WO 2007049356A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
semiconductor
wafer
scribe area
scribe
Prior art date
Application number
PCT/JP2005/019931
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoko Higashino
Chuichi Miyazaki
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to PCT/JP2005/019931 priority Critical patent/WO2007049356A1/en
Publication of WO2007049356A1 publication Critical patent/WO2007049356A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/585Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a dicing technique for dividing a semiconductor wafer into semiconductor chips.
  • a measurement unit including a test element in a lattice area called a scribe area on a main surface of a semiconductor wafer (hereinafter referred to as wafer) is used.
  • the integrated circuit formed in each chip region is inspected for characteristics.
  • the wafer is cut along the scribe area, and each chip area is separated into semiconductor chips (hereinafter referred to as chips).
  • a cutting tool called a dicing blade having a disk shape with a width of several tens of meters (micrometers) is used. Therefore, the width of the scribe area provided on the wafer is currently set to a width of about 80 m to 200 m in consideration of tolerances at the time of cutting.
  • chipping chips
  • pure water is used for the purpose of cooling and cleaning the wafer. This pure water may enter the cutting surface force chip and corrode the Cu wiring.
  • the low dielectric constant film has poor adhesion to other interlayer insulation films, and the inside is porous, so it cannot be cut accurately with a dicing blade, or peeling occurs at the interface between films. May occur.
  • This method is a method of cutting a wafer by irradiating a laser beam along a scribe area of a single crystal silicon wafer and selectively forming a fractured layer inside the wafer.
  • this laser dicing method not only the above-mentioned problems can be improved, but also the wafer can be cut with a width of several ⁇ m, so that the width of the scribe area can be reduced to 10 ⁇ m or less. The effect of increasing the number of chips that can be obtained from wafers of the same size can also be expected.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-221286 discloses a method in which a laser beam is irradiated to a scribe area in which a dummy wiring layer is formed to form a molten region (fracture layer) inside the wafer.
  • the dummy wiring layer is formed for the purpose of making the laser irradiation region uniform and making it easier to absorb the laser.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-221286
  • a TEG for inspecting the characteristics of the integrated circuit formed in each chip region is arranged in the scribe area of the wafer.
  • a probe probe
  • the width of the TEG is required to be at least about several tens of meters. It is difficult to reduce.
  • the width of the scribe area is limited by the size of the TEG and cannot be reduced to a width that can be cut by a laser (10 ⁇ m or less), so even if the laser dicing method is introduced at present I can hardly expect an increase in the number of chips acquired.
  • a scribe area having a width of about several tens of ⁇ m is cut with a laser
  • the chip region is divided into TEGs when dividing each chip region by the expanding method.
  • a whisker-like conductor wire is formed. This is because the TEG is formed of a metal pattern, and a fracture layer is formed in a silicon region made of a material different from that of the TEG. Therefore, when extending by the expanding method, cracks running from the fractured layer are difficult to be transmitted to the TEG. Therefore, in order to separate the chip from the TEG, the laser must be scanned twice along both sides of the TEG per scribe area, resulting in a complicated cutting process. .
  • An object of the present invention is to provide a technique capable of increasing the number of chips that can be obtained from a wafer of the same size.
  • Another object of the present invention is to provide a technique for quickly cutting a wafer by a laser dicing method.
  • Another object of the present invention is to provide a technique for improving the mounting density of a package in which a plurality of chips are stacked.
  • the present invention includes a reader main body and a reader antenna connected to the reader main body, and for wireless IC tags that read data of a wireless IC tag using microwaves transmitted from the reader main body.
  • a reader wherein the reader antenna is a ceramic antenna.
  • the width of the scribe area can be cut with a laser while securing a region for arranging the TEG.
  • FIG. 1 is an overall plan view of a semiconductor wafer used in an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing a chip region of the semiconductor wafer shown in FIG. 3 is an enlarged plan view showing a chip region of the semiconductor wafer shown in FIG.
  • FIG. 4 is a sectional view showing a semiconductor wafer cutting step according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a semiconductor wafer cutting step following FIG. 4.
  • FIG. 6 is a cross-sectional view showing a semiconductor wafer cutting step following FIG. 5.
  • FIG. 7 is a perspective view showing a semiconductor wafer cutting step continued from FIG. 5.
  • FIG. 8 is a perspective view showing a semiconductor wafer cutting process continued from FIGS. 6 and 7.
  • FIG. 8 is a perspective view showing a semiconductor wafer cutting process continued from FIGS. 6 and 7.
  • FIG. 9 is a cross-sectional view showing a semiconductor wafer cutting step following FIGS. 6 and 7.
  • FIG. 10 is a cross-sectional view showing a semiconductor wafer cutting step following FIGS. 8 and 9.
  • FIG. 11 is a perspective view showing a semiconductor wafer cutting step continued from FIGS. 8 and 9.
  • FIG. 11 is a perspective view showing a semiconductor wafer cutting step continued from FIGS. 8 and 9.
  • FIG. 12 is a cross-sectional view showing a semiconductor chip peeling step subsequent to FIGS. 10 and 11.
  • FIG. 12 is a cross-sectional view showing a semiconductor chip peeling step subsequent to FIGS. 10 and 11.
  • FIG. 13 is a cross-sectional view showing a semiconductor chip mounting process following FIG. 12.
  • FIG. 14 is a plan view showing a semiconductor chip mounting process following FIG. 12.
  • FIG. 15 is a cross-sectional view showing a step of mounting the semiconductor chip following FIG. 13 and FIG.
  • FIG. 16 is a cross-sectional view showing the mounting process of the semiconductor chip following FIG. 13 and FIG.
  • FIG. 17 is a cross-sectional view showing a step of mounting the semiconductor chip following FIG. 15 and FIG.
  • FIG. 18 is a plan view showing another example of a semiconductor chip mounting method.
  • FIG. 19 is a plan view showing another example of a semiconductor chip cutting method.
  • 20 is a cross-sectional view showing the vicinity of a corner portion of the semiconductor chip along the line A-B in FIG.
  • FIG. 21 is a plan view showing another example of the planar shape of the semiconductor chip.
  • FIG. 22 is a plan view showing another example of a semiconductor chip mounting method.
  • FIG. 23 is a plan view showing another example of a semiconductor chip mounting method.
  • a semiconductor wafer (hereinafter simply referred to as a wafer) 1 as shown in FIG. 1 is prepared.
  • This The wafer 1 is made of, for example, single crystal silicon having a diameter of 300 mm and a thickness force of 50 ⁇ m to 800 ⁇ m, and its main surface is partitioned in a lattice shape by a plurality of chip regions 1A ′.
  • An integrated circuit is built in each chip region 1A ′ by a well-known semiconductor manufacturing process.
  • the semiconductor manufacturing process includes a film forming process, an impurity ion implantation process, a photolithographic process, an etching process, a metallization process, a cleaning process, and an inspection process between the processes.
  • the quality of each chip region 1A ′ is determined by an electrical test using a probe.
  • a case where a memory circuit is formed in each chip region 1A ′ will be described.
  • FIG. 2 and 3 are partially enlarged plan views of the main surface of the wafer 1.
  • FIG. FIG. 2 is an enlarged plan view showing about four chip areas 1A ′
  • FIG. 3 is an enlarged plan view showing about one chip area 1A ′.
  • Each chip region 1A ' is separated from other chip regions 1A' by a grid-like scribe area SA extending in the X direction and the Y direction orthogonal thereto! .
  • the width of the scribe area was set to about 80 ⁇ m to 200 ⁇ m in consideration of the width of the dicing blade.
  • the width of the scribing area SA is determined by taking a dicing blade in both the X and Y directions in consideration of the diameter of the laser beam. It is set to a few meters narrower than the case of use.
  • the diameter of the laser beam is much narrower than the width of the dicing blade, so that the width of the scribe area SA can be greatly reduced.
  • the chip regions 1A 'separated from each other by the scribe area SA have a substantially rectangular planar shape, and a plurality of bonding pads constituting external connection terminals of the memory circuit are located near the short sides.
  • BP is arranged in a row.
  • the chip area 1A ' four corners are chamfered. Therefore, the area where the scribe area SA extending in the X direction and the scribe area SA extending in the Y direction intersect (the area that touches the corner of the chip area 1 A ′) is the width of the scribe area SA is another area.
  • the scribe area SA extending in the X direction and the scribe area SA extending in the Y direction intersect is the width of the scribe area SA is another area.
  • TEG2 is arranged in the above-mentioned intersection region of scribe area SA (region in contact with the corner of chip region 1A ').
  • This TEG2 is a memo formed in the chip area 1A '. It is configured to include a predetermined number of measuring elements for evaluating the characteristics of the re-circuit and a predetermined number of nodes electrically connected to these measuring elements via wiring. It is electrically connected to any one of the four chip areas 1A ′.
  • a probe is applied to the TEG2 pad to evaluate the characteristics of the memory circuit and determine the quality of each chip area 1A '.
  • the TEG2 pad needs a space enough to contact the probe, and therefore has a diameter of at least several tens of ⁇ m.
  • the width of the scribe area SA is set to about several ⁇ m. That is, the width of the scribe area SA is set narrower than the width of TEG2. Therefore, TEG2 cannot be placed in the scribe area SA as it is. Therefore, the corner area of chip area 1A 'is chamfered, and the width of scribe line SA in the area in contact with this corner area is made wider than in other areas, thereby securing a space for placing TEG2. .
  • TEG2 is arranged at a position several m away from the corner of chip area 1A '.
  • the width of the scribe area can be narrowed to a laser-cuttable width (less than 10 m) without being restricted by the TEG dimensions.
  • the interval between the extended chip areas 1A ′ can be reduced. This can increase the number of chips acquired.
  • the back surface of the wafer 1 is ground to reduce its thickness to about 50 to 60 m.
  • a backgrind tape for integrated circuit protection to the main surface of wafer 1 and grind the back side with a grinder.
  • the damaged layer generated in the wafer 1 by this grinding is removed by a method such as wet etching, dry polishing, or plasma etching.
  • the wafer 1 is placed on a flat glass substrate 3 as shown in FIG.
  • the wafer 1 is attached to the glass substrate 3 via a tape coated with an ultraviolet curable pressure sensitive adhesive.
  • a suction port penetrating the upper and lower surfaces of the glass substrate 3 may be provided, and the wafer 1 may be adhered to the glass substrate 3 by a vacuum suction method.
  • TEG2 and alignment mark are arranged in scribe area SA, the laser beam will be shielded by TEG2 and alignment mark, so that a fracture layer may be formed inside wafer 1. Have difficulty.
  • the TEG 2 and alignment mark chamfer the corner portion of the chip region 1A ′ and place it in the region in contact with the corner portion. It is possible to form a crushing layer in the interior of the UENO 1 even when the surface side force is irradiated.
  • any surface may be directed upward, but the case where the wafer 1 is placed on the glass substrate 3 with the back surface facing upward will be described below.
  • the pattern of the chip area 1A and the scribe area SA on the main surface of the wafer 1 is recognized, and the laser scanning area is determined based on the recognition data. To do. Since the wafer 1 is extremely thin, the pattern can be recognized not only from the main surface side but also from the back surface side.
  • the laser beam LB emitted from the laser generator 30 is irradiated onto the wafer 1 while scanning along the scribe line SA.
  • a laser generator 30 is disposed above the wafer 1 and the laser beam LB is irradiated from the back side of the wafer 1.
  • the laser generator 30 may be disposed below the glass substrate 3 and the main surface side of the wafer 1 may be irradiated with the laser beam LB that has passed through the glass substrate 3.
  • a YAG laser having a wavelength of 1064 nm is used, and the center of the wafer 1 in the thickness direction is aligned and irradiated. As a result, a fractured layer 31 is formed inside the wafer 1 along the scribe line SA.
  • the laser beam LB is scanned along the corner portion of the chip region 1A. At this time, the laser beam LB is irradiated to the gap between the chip region 1A ′ and TEG2. As a result, a crushing layer can be formed inside the wafer 1 along the corner portion, and TEG2 can be separated from the chip area 1A ′ when the chip areas 1A ′ are separated from each other in the later process. .
  • one surface of a die attach film 4 is attached to the back surface of the wafer 1 fixed to the glass substrate 3, and a dicing tape is attached to the other surface of the die attach film 4.
  • Paste 5 the wafer ring 6 is attached to the periphery of the dicing tape 5.
  • the wafer ring 6 is a jig for holding the dicing tape 5 and applying a horizontal tension to the dicing tape 5.
  • the die attach film 4 is a film-like adhesive having a thickness of 20 to about L 00 m that serves as an adhesive layer when a chip separated from the wafer 1 is mounted on a wiring board or another chip.
  • the dicing tape 5 has a tackiness by applying an ultraviolet curable pressure sensitive adhesive or the like on one side of a tape substrate made of polyolefin (PO), polyvinyl chloride (PVC) or the like.
  • PO polyolefin
  • PVC polyvinyl chloride
  • the tape is about 90m to 120m thick. Conventionally, when dicing tape 5 is used to cut a wafer with a dicing blade, the dicing tape 5 is pasted on the back surface of the wafer and used as it is!
  • the glass substrate 3 is removed from the wafer 1.
  • the adhesive is irradiated with ultraviolet rays. In this way, the pressure-sensitive adhesive is cured and the adhesive strength is reduced, so that the glass substrate 3 can be easily removed from the wafer 1.
  • FIGS. 8 and 9 the dicing tape 5 to which the wafer 1 is bonded is positioned horizontally on the support ring 11 of the pickup device 10 and bonded to the peripheral portion of the dicing tape 5.
  • the expanded wafer ring 6 is held by the expanding ring 12.
  • FIG. 8 is an external perspective view of the pick-up device 10
  • FIG. 9 is a schematic cross-sectional view showing the positional relationship between the wafer ring 6, the support ring 11 and the expanding ring 12.
  • a suction piece 13 for pushing the chip 1 upward is disposed.
  • the die attach film 4 on the back surface of the wafer 1 is also stretched together with the dicing tape 5 and separated in units of chips, so that the die attach of the same size as the chip 1 is placed on the back surface of the chip 1 that has been separated. Film 4 remains.
  • TEG2 arranged in the intersecting area of the scribe area SA (the area in contact with the corner of the chip area 1A ') is separated from the chip area 1A', and therefore does not remain in the chip 1. Therefore, the planar shape of the diced chip 1 is a rectangle with chamfered corners.
  • the suction piece 13 is disposed immediately below one chip 1 and the suction collet 14 is brought into close contact with the upper surface of the chip 1.
  • a suction port 14a in which the inside is depressurized, so that only one chip 1 to be peeled can be selectively sucked and held.
  • the dicing tape 5 is irradiated with ultraviolet rays. By rubbing in this way, the pressure-sensitive adhesive applied to the dicing tape 5 is cured and the adhesive strength is lowered, so that the die attach film 4 can be easily peeled off from the dicing tape 5.
  • the suction piece 13 is pushed upward, and the suction collet 14 is moved upward to peel off the chip 1 and the die attach film 4 from the dicing tape 5.
  • the chip 1 peeled from the dicing tape 5 is adsorbed and held by the adsorption collet 14, and conveyed to the next process (pellet attaching process). As shown in FIG. 13 and FIG. After being mounted on the wiring board 17A via the die attach film 4, it is electrically connected to the electrode 16 of the wiring board 17A via the Au wire 15.
  • the second chip 1 is peeled off from the dicing tape 5 in accordance with the procedure described above, and the pelletizing process is performed again. Be transported. Then, as shown in FIG. 15 and FIG. 16, after being mounted on the first chip 1 via the die attach film 4, it is electrically connected to the electrode 16 of the wiring board 17A via the Au wire 15. Is done. Next, as shown in Figure 17, The package 19 is completed by sealing the chip 1 and the Au wire 15 on the substrate 17A with the resin 18.
  • the package 19 shown in the figure is an example in which two chips 1 are stacked, but one or a plurality of chips 1 can be sequentially stacked on the second chip 1 in accordance with the procedure described above.
  • the corner portion of the chip region 1A ′ of the wafer 1 is chamfered, and the TEG 2 is arranged in the scribe area SA in the region in contact with the corner portion.
  • the width of the scribe area SA can be narrowed to a width that can be cut by a laser (10 m or less) while securing a region where the TEG 2 is arranged, so that it can be obtained from the wafer 1 having the same diameter.
  • the number of chips 1 can be increased.
  • the chip area 1A 'and TEG2 can be obtained by scanning the laser beam only once around the chip area 1A'. Therefore, it is possible to quickly cut the wafer and 1 with a laser.
  • the package 19 in which the chip 1 mounted on the wiring board 17 is sealed with the grease 18 is caused by the difference in thermal expansion coefficient between the wiring board 17 and the chip 1.
  • the fact that stress is easily applied to 1 contributes to a decrease in the reliability of the package 19.
  • the corner portion of chip 1 has a large thermal stress because the amount of expansion and contraction due to heat that the distance of the center force of chip 1 is long is maximized.
  • the chip 1 of the present embodiment has a corner portion that is chamfered, so that the distance from the center portion to the corner portion is substantially shorter than a chip of the same diameter that is not chamfered. Accordingly, the thermal stress concentrated on the corner portion of the chip 1 is reduced correspondingly, so that the reliability of the knock 19 can be improved.
  • the force for separating the chip 1 and the TEG 2 may be cut so that the TEG 2 remains in the corner portion of the chip 1 as shown in FIG. Chip 1 corner
  • the planar shape of chip 1 is apparently rectangular, but the planar shape of the region that substantially functions as chip 1 is chamfered at the corner as in the previous embodiment. It becomes a rectangle.
  • FIG. 20 is a cross-sectional view showing the vicinity of the corner portion of chip 1 along the line AB in FIG.
  • a one-dot chain line C in the figure indicates a chamfered area
  • the chip 1 is on the left side
  • the scribe area SA is on the right side.
  • a guard ring 20 having a metal layer force in the same layer as the wiring of the integrated circuit formed in the chip 1.
  • the guard ring 20 is formed so as to surround the entire peripheral portion of the chip 1, and prevents moisture and foreign matter from entering the inside of the chip 1 from the end of the chip 1.
  • the wafer 1 is cut so that the TEG2 remains in the corner portion of the chip 1, it is only necessary to scan the laser in the X direction and the Y direction in FIG. Compared to the first embodiment, the laser scanning distance is shortened, and the wafer 1 can be cut more quickly by the laser.
  • the package 19 in which the chip 1 mounted on the wiring board 17 is sealed with the resin 18 is attached to the chip 1 due to the difference in thermal expansion coefficient between the wiring board 17 and the chip 1. Stress tends to be applied, especially stress tends to concentrate on the corner of the chip 1 where the center force distance is long.
  • what is arranged at the corner of chip 1 is TEG2 and alignment marks. Since TEG2 and alignment mark are necessary wiring in the manufacturing process, the reliability of package 19 will not be reduced even if TEG2 and alignment mark are damaged by thermal stress after sealing is completed. .
  • the present invention is not limited to this, and the nonvolatile memory circuit in which the bonding pad is formed on one short side.
  • the present invention can be applied to cutting various wafers on which logic circuits having bonding pads formed on a plurality of sides are formed.
  • the wafer irradiated with the laser is attached to the dicing tape,
  • the chips are separated by stretching the dicing tape, but the method for separating the chips is not limited to this.
  • the chip may be singulated by bending the wafer from the scribe area.
  • the planar shape of the chip to be cut by the laser is not limited to a quadrangle whose corners are chamfered, but may be a polygon other than a quadrangle.
  • FIG. 21 is a plan view of the chip 1B cut so that the planar shape is an octagon.
  • FIG. 22 is a plan view in which the chip 1C cut so that the planar shape is circular is mounted on a circular wiring board 17C.
  • FIG. 23 is a plan view in which the circular chip 1C shown in FIG. 22 is mounted on the wiring board 17D in multiple stages.
  • the present invention can be applied to the manufacture of a semiconductor device having a semiconductor wafer cutting process using a laser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dicing (AREA)

Abstract

On a main plane of a wafer (1), a plurality of chip areas (1A’) separated from each other by scribe areas (SA) having a width of several μm are formed. A planar shape of the chip area (1A’) is rectangular with chamfered corner sections. The scribe area (SA) in an area in contact with the corner section has a wider width compared with widths of other areas, and has a TEG (2) arranged thereon. To divide the wafer (1) into chips, a laser dicing method is employed for irradiating the scribe area (SA) with a laser beam and forming a breaking layer inside the wafer (1) along the scribe line (SA).

Description

明 細 書  Specification
半導体装置およびその製造方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体装置およびその製造方法に関し、特に、半導体ウェハを半導体 チップに個片化するダイシング技術に関するものである。  The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a dicing technique for dividing a semiconductor wafer into semiconductor chips.
背景技術  Background art
[0002] 半導体装置の製造工程では、半導体ウェハ(以下、ゥェハと 、う)の主面のスクライ ブエリアと呼ばれる格子状の領域内に検査用素子を含む測定部 (TEG :Test Eleme nt Group)を設け、各チップ領域に形成された集積回路の特性検査を行っている。こ の TEGを使った特性検査が終了すると、ウェハはスクライブエリアに沿って切断され 、各チップ領域が半導体チップ (以下、チップという)に個片化される。ウェハの切断 には、ダイシングブレードと呼ばれる幅数十 m (マイクロメートル)の円盤形状を有 する切断工具が使われる。従って、ウェハに設けるスクライブエリアの幅は、切断時の 公差などを考慮し、現状では、幅 80 m〜200 m程度に設定されている。  In the manufacturing process of a semiconductor device, a measurement unit (TEG: Test Element Group) including a test element in a lattice area called a scribe area on a main surface of a semiconductor wafer (hereinafter referred to as wafer) is used. The integrated circuit formed in each chip region is inspected for characteristics. When the characteristic inspection using this TEG is completed, the wafer is cut along the scribe area, and each chip area is separated into semiconductor chips (hereinafter referred to as chips). For cutting the wafer, a cutting tool called a dicing blade having a disk shape with a width of several tens of meters (micrometers) is used. Therefore, the width of the scribe area provided on the wafer is currently set to a width of about 80 m to 200 m in consideration of tolerances at the time of cutting.
[0003] 近年、携帯電話やデジタルカメラなどに代表される情報記憶媒体の小型軽量化に 伴い、これらに組み込まれるチップの薄型化が進められている。また、集積回路の動 作速度を向上させる観点から、配線材料として銅 (Cu)を使用し、層間絶縁膜材料と して、酸化シリコンよりも誘電率が低い材料 (低誘電率膜)を使用する半導体製品が 増加しつつある。  In recent years, with the reduction in size and weight of information storage media such as mobile phones and digital cameras, the thickness of chips incorporated therein has been reduced. Also, from the viewpoint of improving the operation speed of integrated circuits, copper (Cu) is used as the wiring material, and a material (low dielectric constant film) having a lower dielectric constant than silicon oxide is used as the interlayer insulating film material. Increasing number of semiconductor products.
[0004] ところが、このような薄いウェハをダイシングブレードで切断すると、チップのエッジ にチッビング (欠け)が生じ易くなる。また、ダイシングブレードを用いた切断工程では 、ウェハの冷却や洗浄を目的として純水を使用するので、この純水が切断面力 チッ プ内に浸入して Cu配線を腐食させる恐れがある。さらに、低誘電率膜は、他の層間 絶縁膜との接着力が乏しかったり、内部がポーラスになったりしているので、ダイシン グブレードでは精度良く切断できなかったり、膜同士の界面で剥離が生じたりする場 合がある。  However, when such a thin wafer is cut with a dicing blade, chipping (chips) easily occurs on the edge of the chip. In the cutting process using a dicing blade, pure water is used for the purpose of cooling and cleaning the wafer. This pure water may enter the cutting surface force chip and corrode the Cu wiring. In addition, the low dielectric constant film has poor adhesion to other interlayer insulation films, and the inside is porous, so it cannot be cut accurately with a dicing blade, or peeling occurs at the interface between films. May occur.
[0005] そこで、このような問題を改善するために、レーザを利用したダイシング方式が開発 されている。この方式は、単結晶シリコンウェハのスクライブエリアに沿ってレーザビ ームを照射し、ウェハの内部に選択的に破砕層を形成することによって、ウェハの切 断を行う方法である。このレーザダイシング方式によれば、上記した問題を改善でき るのみならず、数 μ mの幅でウェハを切断できるので、スクライブエリアの幅を 10 μ m 以下まで狭くすることができ、その分、同一サイズのウェハから取得できるチップの数 を増やせる、という効果も期待できる。 [0005] Therefore, in order to improve such problems, a dicing method using a laser was developed. Has been. This method is a method of cutting a wafer by irradiating a laser beam along a scribe area of a single crystal silicon wafer and selectively forming a fractured layer inside the wafer. According to this laser dicing method, not only the above-mentioned problems can be improved, but also the wafer can be cut with a width of several μm, so that the width of the scribe area can be reduced to 10 μm or less. The effect of increasing the number of chips that can be obtained from wafers of the same size can also be expected.
[0006] 特許文献 1 (特開 2004— 221286号公報)は、ダミーの配線層を形成したスクライ ブエリアにレーザビームを照射してウェハの内部に溶融領域 (破砕層)を形成した後 [0006] Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2004-221286) discloses a method in which a laser beam is irradiated to a scribe area in which a dummy wiring layer is formed to form a molten region (fracture layer) inside the wafer.
、クラッキング法またはエキスパンド法によってウェハをチップに個片化する技術を開 示している。ダミーの配線層は、レーザの照射領域を均一化したり、レーザーを吸収 し易くしたりする目的で形成される。 In addition, a technology for dividing wafers into chips by cracking or expanding methods is disclosed. The dummy wiring layer is formed for the purpose of making the laser irradiation region uniform and making it easier to absorb the laser.
特許文献 1 :特開 2004— 221286号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-221286
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明者の検討によれば、ウェハの切断をブレードダイシング方式からレーザダイ シング方式に切り替えようとする場合には、次のような問題が生じる。  According to the study by the present inventor, the following problems arise when trying to switch the wafer cutting from the blade dicing method to the laser dicing method.
[0008] 前述したように、ウェハのスクライブエリア内には、各チップ領域に形成された集積 回路の特性を検査するための TEGが配置される。検査工程では、この TEGにプロ ーブ (探針)を当てて特性を検査するが、このプローブの径を考慮した場合、 TEGの 幅は少なくとも数十 m程度は必要となり、現状ではそれ以下に縮小することが困難 である。  [0008] As described above, a TEG for inspecting the characteristics of the integrated circuit formed in each chip region is arranged in the scribe area of the wafer. In the inspection process, a probe (probe) is applied to the TEG to inspect the characteristics, but considering the diameter of the probe, the width of the TEG is required to be at least about several tens of meters. It is difficult to reduce.
[0009] すなわち、スクライブエリアの幅は、 TEGの寸法によって制約され、レーザで切断 可能な幅(10 μ m以下)まで狭くすることができな 、ので、現状ではレーザダイシング 方式を導入したとしても、チップ取得数の増加はほとんど期待できな 、。  In other words, the width of the scribe area is limited by the size of the TEG and cannot be reduced to a width that can be cut by a laser (10 μm or less), so even if the laser dicing method is introduced at present I can hardly expect an increase in the number of chips acquired.
[0010] また、数十 μ m程度の幅を有するスクライブエリアをレーザで切断する場合、 TEG と平面的に重なる領域に破砕層を形成すると、エキスパンド法により各チップ領域を 分割する際、 TEGにひげ状の導体線が形成されてしまう。これは TEGが金属パター ンで形成されて ヽることと、 TEGとは材質の異なるシリコン領域に破砕層を形成する ため、エキスパンド法により引き延ばす際、破砕層から走る亀裂が TEGに伝わり難い ことにある。そこで、チップと TEGとを分離するためには、一本のスクライブエリア当た り、 TEGの両側に沿ってレーザを 2回走査しなければならないので、切断工程が煩 雑になるという問題も生じる。 [0010] Further, when a scribe area having a width of about several tens of μm is cut with a laser, if a fractured layer is formed in a region overlapping the TEG in a plane, the chip region is divided into TEGs when dividing each chip region by the expanding method. A whisker-like conductor wire is formed. This is because the TEG is formed of a metal pattern, and a fracture layer is formed in a silicon region made of a material different from that of the TEG. Therefore, when extending by the expanding method, cracks running from the fractured layer are difficult to be transmitted to the TEG. Therefore, in order to separate the chip from the TEG, the laser must be scanned twice along both sides of the TEG per scribe area, resulting in a complicated cutting process. .
[0011] 本発明の目的は、同一サイズのウェハから取得できるチップの数を増やすことので きる技術を提供することにある。  An object of the present invention is to provide a technique capable of increasing the number of chips that can be obtained from a wafer of the same size.
[0012] 本発明の他の目的は、レーザダイシング方式によるウェハの切断を迅速に行う技術 を提供することにある。  Another object of the present invention is to provide a technique for quickly cutting a wafer by a laser dicing method.
[0013] 本発明の他の目的は、複数のチップを積層したパッケージの実装密度を向上させ る技術を提供することにある。  Another object of the present invention is to provide a technique for improving the mounting density of a package in which a plurality of chips are stacked.
[0014] 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添 付図面から明らかになるであろう。 [0014] The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
課題を解決するための手段  Means for solving the problem
[0015] 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。 [0015] Among the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.
[0016] 本発明は、リーダ本体と、前記リーダ本体に接続されたリーダアンテナとを備え、前 記リーダ本体力 発信されるマイクロ波を利用して無線 ICタグのデータを読み取る無 線 ICタグ用リーダであって、前記リーダアンテナをセラミックアンテナで構成したもの である。  The present invention includes a reader main body and a reader antenna connected to the reader main body, and for wireless IC tags that read data of a wireless IC tag using microwaves transmitted from the reader main body. A reader, wherein the reader antenna is a ceramic antenna.
発明の効果  The invention's effect
[0017] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。  [0017] The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
[0018] TEGを配置する領域を確保しつつ、スクライブエリアの幅をレーザで切断可能な幅 [0018] The width of the scribe area can be cut with a laser while securing a region for arranging the TEG.
(10 m以下)まで狭くすることができるので、同一径のウェハから取得できるチップ の数を増やすことが可能となる。  Since it can be narrowed to 10 m or less, it is possible to increase the number of chips that can be obtained from a wafer of the same diameter.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の一実施の形態で用いる半導体ウェハの全体平面図である。 FIG. 1 is an overall plan view of a semiconductor wafer used in an embodiment of the present invention.
[図 2]図 1に示す半導体ウェハのチップ領域を示す拡大平面図である。 [図 3]図 1に示す半導体ウェハのチップ領域を示す拡大平面図である。 2 is an enlarged plan view showing a chip region of the semiconductor wafer shown in FIG. 3 is an enlarged plan view showing a chip region of the semiconductor wafer shown in FIG.
[図 4]本発明の一実施の形態である半導体ウェハの切断工程を示す断面図である。  FIG. 4 is a sectional view showing a semiconductor wafer cutting step according to an embodiment of the present invention.
[図 5]図 4に続く半導体ウェハの切断工程を示す断面図である。  FIG. 5 is a cross-sectional view showing a semiconductor wafer cutting step following FIG. 4.
[図 6]図 5に続く半導体ウェハの切断工程を示す断面図である。  FIG. 6 is a cross-sectional view showing a semiconductor wafer cutting step following FIG. 5.
[図 7]図 5に続く半導体ウェハの切断工程を示す斜視図である。  FIG. 7 is a perspective view showing a semiconductor wafer cutting step continued from FIG. 5.
[図 8]図 6および図 7に続く半導体ウェハの切断工程を示す斜視図である。  FIG. 8 is a perspective view showing a semiconductor wafer cutting process continued from FIGS. 6 and 7. FIG.
[図 9]図 6および図 7に続く半導体ウェハの切断工程を示す断面図である。  FIG. 9 is a cross-sectional view showing a semiconductor wafer cutting step following FIGS. 6 and 7.
[図 10]図 8および図 9に続く半導体ウェハの切断工程を示す断面図である。  FIG. 10 is a cross-sectional view showing a semiconductor wafer cutting step following FIGS. 8 and 9.
[図 11]図 8および図 9に続く半導体ウェハの切断工程を示す斜視図である。  FIG. 11 is a perspective view showing a semiconductor wafer cutting step continued from FIGS. 8 and 9. FIG.
[図 12]図 10および図 11に続く半導体チップの剥離工程を示す断面図である。  12 is a cross-sectional view showing a semiconductor chip peeling step subsequent to FIGS. 10 and 11. FIG.
[図 13]図 12に続く半導体チップの実装工程を示す断面図である。  FIG. 13 is a cross-sectional view showing a semiconductor chip mounting process following FIG. 12.
[図 14]図 12に続く半導体チップの実装工程を示す平面図である。  FIG. 14 is a plan view showing a semiconductor chip mounting process following FIG. 12.
[図 15]図 13および図 14に続く半導体チップの実装工程を示す断面図である。  FIG. 15 is a cross-sectional view showing a step of mounting the semiconductor chip following FIG. 13 and FIG.
[図 16]図 13および図 14に続く半導体チップの実装工程を示す断面図である。  FIG. 16 is a cross-sectional view showing the mounting process of the semiconductor chip following FIG. 13 and FIG.
[図 17]図 15および図 16に続く半導体チップの実装工程を示す断面図である。  FIG. 17 is a cross-sectional view showing a step of mounting the semiconductor chip following FIG. 15 and FIG.
[図 18]半導体チップの実装方法の別例を示す平面図である。  FIG. 18 is a plan view showing another example of a semiconductor chip mounting method.
[図 19]半導体チップの切断方法の別例を示す平面図である。  FIG. 19 is a plan view showing another example of a semiconductor chip cutting method.
[図 20]図 19の A— B線に沿った半導体チップのコーナー部近傍を示す断面図である  20 is a cross-sectional view showing the vicinity of a corner portion of the semiconductor chip along the line A-B in FIG.
[図 21]半導体チップの平面形状の別例を示す平面図である。 FIG. 21 is a plan view showing another example of the planar shape of the semiconductor chip.
[図 22]半導体チップの実装方法の別例を示す平面図である。  FIG. 22 is a plan view showing another example of a semiconductor chip mounting method.
[図 23]半導体チップの実装方法の別例を示す平面図である。  FIG. 23 is a plan view showing another example of a semiconductor chip mounting method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一の部材には原則として同一の符号を付し、そ の繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[0021] (実施の形態 1) [0021] (Embodiment 1)
まず、図 1に示すような半導体ウェハ(以下、単にウェハという) 1を用意する。このゥ ェハ 1は、例えば直径が 300mm、厚さ力 50 μ m〜800 μ mの単結晶シリコンから なり、その主面が複数のチップ領域 1A'によって格子状に区画されている。それぞれ のチップ領域 1A'には、周知の半導体製造プロセスによって集積回路が作り込まれ ている。半導体製造プロセスには、成膜工程、不純物のイオン注入工程、フォトリソグ ラフイエ程、エッチング工程、メタライズ工程、洗浄工程および各工程間の検査工程 などが含まれる。また、半導体製造プロセスの最終工程では、プローブを使った電気 的試験によって、それぞれのチップ領域 1A'の良否が判定される。以下では、それ ぞれのチップ領域 1A'にメモリ回路が形成されている場合について説明する。 First, a semiconductor wafer (hereinafter simply referred to as a wafer) 1 as shown in FIG. 1 is prepared. This The wafer 1 is made of, for example, single crystal silicon having a diameter of 300 mm and a thickness force of 50 μm to 800 μm, and its main surface is partitioned in a lattice shape by a plurality of chip regions 1A ′. An integrated circuit is built in each chip region 1A ′ by a well-known semiconductor manufacturing process. The semiconductor manufacturing process includes a film forming process, an impurity ion implantation process, a photolithographic process, an etching process, a metallization process, a cleaning process, and an inspection process between the processes. In the final step of the semiconductor manufacturing process, the quality of each chip region 1A ′ is determined by an electrical test using a probe. Hereinafter, a case where a memory circuit is formed in each chip region 1A ′ will be described.
[0022] 図 2および図 3は、上記ウェハ 1の主面の部分拡大平面図である。図 2は、チップ領 域 1A'の約 4個分を示す拡大平面図、図 3は、チップ領域 1A'の約 1個分を示す拡 大平面図である。 2 and 3 are partially enlarged plan views of the main surface of the wafer 1. FIG. FIG. 2 is an enlarged plan view showing about four chip areas 1A ′, and FIG. 3 is an enlarged plan view showing about one chip area 1A ′.
[0023] それぞれのチップ領域 1A'は、図の X方向およびこれに直交する Y方向にそれぞ れ延在する格子状のスクライブエリア SAによって他のチップ領域 1A'と隔てられて!/ヽ る。ダイシングブレードを使ってウェハを切断する場合は、ダイシングブレードの幅を 考慮し、スクライブエリアの幅を 80 μ m〜200 μ m程度に設定していた。これに対し、 本実施の形態では、後述するように、レーザを使ってウェハ 1を切断するので、スクラ イブエリア SAの幅は、レーザビームの径を考慮し、 X方向および Y方向共にダイシン グブレードを使用する場合よりも狭い数 m程度に設定されている。このように、レー ザを使ってウェハ 1を切断する場合は、レーザビームの径がダイシングブレードの幅 よりも遥かに狭いので、スクライブエリア SAの幅を大幅に狭くすることができる。  [0023] Each chip region 1A 'is separated from other chip regions 1A' by a grid-like scribe area SA extending in the X direction and the Y direction orthogonal thereto! . When cutting a wafer using a dicing blade, the width of the scribe area was set to about 80 μm to 200 μm in consideration of the width of the dicing blade. In contrast, in the present embodiment, as will be described later, since the wafer 1 is cut using a laser, the width of the scribing area SA is determined by taking a dicing blade in both the X and Y directions in consideration of the diameter of the laser beam. It is set to a few meters narrower than the case of use. Thus, when the wafer 1 is cut using a laser, the diameter of the laser beam is much narrower than the width of the dicing blade, so that the width of the scribe area SA can be greatly reduced.
[0024] 上記スクライブエリア SAによって互いに隔てられたチップ領域 1A'は、略長方形の 平面形状を有しており、短辺の近傍には、メモリ回路の外部接続端子を構成する複 数のボンディングパッド BPがー列に配置されている。また、チップ領域 1A'は、 4つ のコーナー部が面取りされている。そのため、 X方向に延在するスクライブエリア SAと Y方向に延在するスクライブエリア S Aとが交差する領域 (チップ領域 1 A 'のコーナー 部に接する領域)は、スクライブエリア SAの幅が他の領域に比べて広くなつている。  [0024] The chip regions 1A 'separated from each other by the scribe area SA have a substantially rectangular planar shape, and a plurality of bonding pads constituting external connection terminals of the memory circuit are located near the short sides. BP is arranged in a row. In the chip area 1A ', four corners are chamfered. Therefore, the area where the scribe area SA extending in the X direction and the scribe area SA extending in the Y direction intersect (the area that touches the corner of the chip area 1 A ′) is the width of the scribe area SA is another area. Compared to
[0025] 上記したスクライブエリア SAの交差領域 (チップ領域 1A'のコーナー部に接する領 域)には、 TEG2が配置されている。この TEG2は、チップ領域 1A'に形成されたメモ リ回路の特性を評価するための所定数の測定用素子、および配線を介してこれらの 測定用素子と電気的に接続された所定数のノッドを含んだ構成になっており、その 周囲を囲む 4つのチップ領域 1A'のいずれ力と電気的に接続されている。半導体製 造プロセスの最終工程では、 TEG2のパッドにプローブを当ててメモリ回路の特性を 評価し、それぞれのチップ領域 1A'の良否を判定する。このように、 TEG2のパッド は、プローブを当てるだけのスペースを必要とするので、少なくとも数十 μ m程度の 径を有している。 [0025] TEG2 is arranged in the above-mentioned intersection region of scribe area SA (region in contact with the corner of chip region 1A '). This TEG2 is a memo formed in the chip area 1A '. It is configured to include a predetermined number of measuring elements for evaluating the characteristics of the re-circuit and a predetermined number of nodes electrically connected to these measuring elements via wiring. It is electrically connected to any one of the four chip areas 1A ′. In the final step of the semiconductor manufacturing process, a probe is applied to the TEG2 pad to evaluate the characteristics of the memory circuit and determine the quality of each chip area 1A '. As described above, the TEG2 pad needs a space enough to contact the probe, and therefore has a diameter of at least several tens of μm.
[0026] 前述したように、本実施の形態のウェハ 1は、スクライブエリア SAの幅を数 μ m程度 に設定している。すなわち、 TEG2の幅よりスクライブエリア SAの幅は狭く設定してい る。従って、このままでは、スクライブエリア SA内に TEG2を配置することができない。 そこで、チップ領域 1A'のコーナー部を面取りし、このコーナー部に接する領域のス クライブライン SAの幅を他の領域よりも広くすることによって、 TEG2を配置するスぺ ースを確保している。また、 TEG2は、チップ領域 1A'のコーナー部から数 m程度 離れた位置に配置されている。このようにすると、スクライブエリアの幅は TEGの寸法 によって制約されることはなぐレーザで切断可能な幅(10 m以下)まで狭くすること ができるので、 X方向およびこれに直交する Y方向にそれぞれ延在する各チップ領 域 1A'の配置間隔を狭くすることができる。これによりチップ取得数を増加することが できる。  As described above, in the wafer 1 according to the present embodiment, the width of the scribe area SA is set to about several μm. That is, the width of the scribe area SA is set narrower than the width of TEG2. Therefore, TEG2 cannot be placed in the scribe area SA as it is. Therefore, the corner area of chip area 1A 'is chamfered, and the width of scribe line SA in the area in contact with this corner area is made wider than in other areas, thereby securing a space for placing TEG2. . TEG2 is arranged at a position several m away from the corner of chip area 1A '. In this way, the width of the scribe area can be narrowed to a laser-cuttable width (less than 10 m) without being restricted by the TEG dimensions. The interval between the extended chip areas 1A ′ can be reduced. This can increase the number of chips acquired.
[0027] なお、通常、スクライブエリア SA内には、上記 TEG2の他に、フォトリソグラフイエ程 でフォトマスクとチップ領域 1A'とを位置合わせするためのァライメントマークも配置さ れる。しかし、 TEG2と同様にァライメントマークがスクライブエリア SAに配置されてい ると、各チップ領域 1A'の配置間隔を狭くすることができない。従って、スクライブエリ ァ SA内にァライメントマークを配置する場合は、 TEG2と同様、チップ領域 1A'のコ ーナ一部に接する領域に配置することが望ましい。  [0027] Normally, in the scribe area SA, in addition to the above TEG2, alignment marks for aligning the photomask and the chip area 1A 'in the photolithography process are also arranged. However, if alignment marks are arranged in the scribe area SA as in the case of TEG2, the arrangement interval of each chip area 1A ′ cannot be reduced. Therefore, when the alignment mark is arranged in the scribe area SA, it is desirable to arrange the alignment mark in an area in contact with a part of the corner of the chip area 1A ′ as in the case of TEG2.
[0028] 次に、上記ウェハ 1を切断してチップ領域 1A'を互いに分離する方法について説 明する。ウェハ 1を切断するには、まず、ウェハ 1の裏面を研削することによって、その 厚さを 50 m〜60 m程度まで薄くする。ウェハ 1を薄くするには、ウェハ 1の主面 に集積回路保護用のバックグラインドテープを貼り付け、裏面側をグラインダで研削 する。その後、この研削によってウェハ 1の内部に発生したダメージ層を、ウエットエツ チング、ドライポリツシング、プラズマエッチングなどの方法によって除去する。 [0028] Next, a method for cutting the wafer 1 and separating the chip regions 1A 'from each other will be described. In order to cut the wafer 1, first, the back surface of the wafer 1 is ground to reduce its thickness to about 50 to 60 m. To make wafer 1 thinner, attach a backgrind tape for integrated circuit protection to the main surface of wafer 1 and grind the back side with a grinder. To do. Thereafter, the damaged layer generated in the wafer 1 by this grinding is removed by a method such as wet etching, dry polishing, or plasma etching.
[0029] 次に、ウェハ 1の主面からバックグラインドテープを剥がした後、図 4に示すように、 ウェハ 1を平坦なガラス基板 3上に載置する。このとき、ウェハ 1をガラス基板 3上に確 実に固定するために、例えば紫外線硬化型感圧粘着剤を塗布したテープなどを介し てウェハ 1をガラス基板 3に貼り付ける。あるいは、ガラス基板 3の上下面に貫通する 吸引口を設け、真空吸引方式によってウェハ 1をガラス基板 3に密着させてもよい。こ こで、 TEG2およびァライメントマークがスクライブエリア SA内に配置されていると、レ 一ザビームが TEG2およびァライメントマークに遮蔽されてしまうので、ウェハ 1の内 部に破砕層を形成することが困難である。し力しながら、上記したように、 TEG2およ びァライメントマークはチップ領域 1A'のコーナー部を面取りし、このコーナー部に接 する領域に配置しているため、レーザビームをウェハ 1の主面側力 照射してもゥェ ノ、 1の内部に破砕層を形成することが可能である。ウェハ 1をガラス基板 3上に載置 する際は、いずれの面を上に向けてもよいが、以下では裏面を上に向けてガラス基 板 3上に載置する場合について説明する。  Next, after the back grind tape is peeled off from the main surface of the wafer 1, the wafer 1 is placed on a flat glass substrate 3 as shown in FIG. At this time, in order to securely fix the wafer 1 on the glass substrate 3, for example, the wafer 1 is attached to the glass substrate 3 via a tape coated with an ultraviolet curable pressure sensitive adhesive. Alternatively, a suction port penetrating the upper and lower surfaces of the glass substrate 3 may be provided, and the wafer 1 may be adhered to the glass substrate 3 by a vacuum suction method. Here, if TEG2 and alignment mark are arranged in scribe area SA, the laser beam will be shielded by TEG2 and alignment mark, so that a fracture layer may be formed inside wafer 1. Have difficulty. However, as described above, the TEG 2 and alignment mark chamfer the corner portion of the chip region 1A ′ and place it in the region in contact with the corner portion. It is possible to form a crushing layer in the interior of the UENO 1 even when the surface side force is irradiated. When the wafer 1 is placed on the glass substrate 3, any surface may be directed upward, but the case where the wafer 1 is placed on the glass substrate 3 with the back surface facing upward will be described below.
[0030] 次に、赤外線カメラなどの画像認識手段を用いて、ウェハ 1の主面のチップ領域 1 A,ゃスクライブエリア SAのパターンを認識し、この認識データに基づいてレーザの 走査領域を決定する。ウェハ 1は極めて薄いので、その主面側のみならず、裏面側 からもパターンを認識することが可能である。  [0030] Next, by using an image recognition means such as an infrared camera, the pattern of the chip area 1A and the scribe area SA on the main surface of the wafer 1 is recognized, and the laser scanning area is determined based on the recognition data. To do. Since the wafer 1 is extremely thin, the pattern can be recognized not only from the main surface side but also from the back surface side.
[0031] 続いて、レーザ発生部 30から放射されたレーザビーム LBをスクライブライン SA 沿って走査しながらウェハ 1に照射する。ウェハ 1にレーザビーム LBを照射する際は 、図 4に示すように、ウェハ 1上方にレーザ発生部 30を配置し、ウェハ 1の裏面側から レーザビーム LBを照射する。あるいは、ガラス基板 3の下方にレーザ発生部 30を配 置し、ガラス基板 3を透過したレーザビーム LBをウェハ 1の主面側に照射してもよ 、。 レーザビーム LBは、例えば波長が 1064nmの YAGレーザなどを使用し、ウェハ 1の 厚さ方向の中心部に集光点を合わせて照射する。これにより、スクライブライン SAに 沿ったウェハ 1の内部に破砕層 31が形成される。  Subsequently, the laser beam LB emitted from the laser generator 30 is irradiated onto the wafer 1 while scanning along the scribe line SA. When irradiating the wafer 1 with the laser beam LB, as shown in FIG. 4, a laser generator 30 is disposed above the wafer 1 and the laser beam LB is irradiated from the back side of the wafer 1. Alternatively, the laser generator 30 may be disposed below the glass substrate 3 and the main surface side of the wafer 1 may be irradiated with the laser beam LB that has passed through the glass substrate 3. For the laser beam LB, for example, a YAG laser having a wavelength of 1064 nm is used, and the center of the wafer 1 in the thickness direction is aligned and irradiated. As a result, a fractured layer 31 is formed inside the wafer 1 along the scribe line SA.
[0032] 前述したように、チップ領域 1A,のコーナー部に沿ってレーザビーム LBを走査する 際は、チップ領域 1A'と TEG2との隙間にレーザビーム LBを照射する。これにより、 コーナー部に沿ったウェハ 1の内部に破砕層を形成することができると共に、後のェ 程でチップ領域 1A'を互いに分離する際、 TEG2をチップ領域 1A'から分離すること ができる。 [0032] As described above, the laser beam LB is scanned along the corner portion of the chip region 1A. At this time, the laser beam LB is irradiated to the gap between the chip region 1A ′ and TEG2. As a result, a crushing layer can be formed inside the wafer 1 along the corner portion, and TEG2 can be separated from the chip area 1A ′ when the chip areas 1A ′ are separated from each other in the later process. .
[0033] 次に、図 5に示すように、ガラス基板 3に固定されたウェハ 1の裏面にダイアタッチフ イルム (Die Attach Film)4の一面を貼り付け、ダイアタッチフィルム 4の他の面にダイシ ングテープ 5を貼り付ける。また、ダイシングテープ 5の周辺部にウェハリング 6を貼り 付ける。ウェハリング 6は、ダイシングテープ 5を保持し、かつダイシングテープ 5に水 平方向の張力を付与するための治具である。  Next, as shown in FIG. 5, one surface of a die attach film 4 is attached to the back surface of the wafer 1 fixed to the glass substrate 3, and a dicing tape is attached to the other surface of the die attach film 4. Paste 5 In addition, the wafer ring 6 is attached to the periphery of the dicing tape 5. The wafer ring 6 is a jig for holding the dicing tape 5 and applying a horizontal tension to the dicing tape 5.
[0034] ダイアタッチフィルム 4は、ウェハ 1から分離されたチップを配線基板や他のチップ の上に搭載する際の接着層となる厚さ 20〜: L 00 m程度のフィルム状接着剤である 。一方、ダイシングテープ 5は、ポリオレフイン (PO)、ポリ塩ィ匕ビニル (PVC)などから なるテープ基材の片面に紫外線硬化型感圧粘着剤などを塗布して粘着性 (tackness) を持たせた厚さ 90 m〜120 m程度のテープである。このダイシングテープ 5は、 従来、ダイシングブレードを使ってウェハを切断する際に、ウェハの裏面に貼り付け て 、るものをそのまま使用すればよ!、。  [0034] The die attach film 4 is a film-like adhesive having a thickness of 20 to about L 00 m that serves as an adhesive layer when a chip separated from the wafer 1 is mounted on a wiring board or another chip. . On the other hand, the dicing tape 5 has a tackiness by applying an ultraviolet curable pressure sensitive adhesive or the like on one side of a tape substrate made of polyolefin (PO), polyvinyl chloride (PVC) or the like. The tape is about 90m to 120m thick. Conventionally, when dicing tape 5 is used to cut a wafer with a dicing blade, the dicing tape 5 is pasted on the back surface of the wafer and used as it is!
[0035] 次に、図 6および図 7に示すように、ガラス基板 3をウェハ 1から取り除く。紫外線硬 化型感圧粘着剤を使用してウェハ 1をガラス基板 3に貼り付けた場合には、この粘着 剤に紫外線を照射する。このようにすると、粘着剤が硬化して粘着力が低下するので 、ガラス基板 3をウェハ 1から容易に取り除くことができる。  Next, as shown in FIGS. 6 and 7, the glass substrate 3 is removed from the wafer 1. When the wafer 1 is attached to the glass substrate 3 using an ultraviolet curable pressure sensitive adhesive, the adhesive is irradiated with ultraviolet rays. In this way, the pressure-sensitive adhesive is cured and the adhesive strength is reduced, so that the glass substrate 3 can be easily removed from the wafer 1.
[0036] 次に、図 8および図 9に示すように、ウェハ 1が接着された上記ダイシングテープ 5を ピックアップ装置 10の支持リング 11上に水平に位置決めし、ダイシングテープ 5の周 辺部に接着されたウェハリング 6をエキスパンドリング 12で保持する。図 8は、ピックァ ップ装置 10の外観斜視図、図 9は、ウェハリング 6、支持リング 11およびエキスパンド リング 12の位置関係を示す概略断面図である。図 9に示すように、支持リング 11の内 側には、チップ 1を上方に突き上げるための吸着駒 13が配置される。  Next, as shown in FIGS. 8 and 9, the dicing tape 5 to which the wafer 1 is bonded is positioned horizontally on the support ring 11 of the pickup device 10 and bonded to the peripheral portion of the dicing tape 5. The expanded wafer ring 6 is held by the expanding ring 12. FIG. 8 is an external perspective view of the pick-up device 10, and FIG. 9 is a schematic cross-sectional view showing the positional relationship between the wafer ring 6, the support ring 11 and the expanding ring 12. As shown in FIG. 9, on the inner side of the support ring 11, a suction piece 13 for pushing the chip 1 upward is disposed.
[0037] 次に、図 10に示すように、ピックアップ装置 10のエキスパンドリング 12を下降させる ことによって、ダイシングテープ 5の周辺部に接着されたウエノ、リング 6を下方に押し 下げる。このようにすると、ダイシングテープ 5が、その中心部から周辺部に向かう強 い張力を受けて水平方向に弛みなく引き伸ばされる。この張力により、ウェハ 1のスク ライブエリア SAに形成された破砕層に沿ってチップ領域 1A'が互いに分離する結果 、図 10および図 11に示すように、個片化された複数のチップ 1が得られる。このとき、 ウェハ 1の裏面のダイアタッチフィルム 4もダイシングテープ 5と共に引き伸ばされ、チ ップ単位で分離されるので、個片化されたチップ 1の裏面には、チップ 1と同サイズの ダイアタッチフィルム 4が残る。一方、スクライブエリア SAの交差領域 (チップ領域 1A 'のコーナー部に接する領域)に配置された TEG2は、チップ領域 1A'と分離するの で、チップ 1には残らない。従って、個片化されたチップ 1の平面形状は、コーナー部 が面取りされた長方形となる。 Next, as shown in FIG. 10, by lowering the expanding ring 12 of the pickup device 10, the weno bonded to the peripheral portion of the dicing tape 5 and the ring 6 are pushed downward. Lower. In this way, the dicing tape 5 is stretched in the horizontal direction without slack under the strong tension from the center to the periphery. As a result of separation of the chip regions 1A ′ from each other along the fractured layer formed in the scribe area SA of the wafer 1 by this tension, as shown in FIGS. 10 and 11, a plurality of separated chips 1 are formed. can get. At this time, the die attach film 4 on the back surface of the wafer 1 is also stretched together with the dicing tape 5 and separated in units of chips, so that the die attach of the same size as the chip 1 is placed on the back surface of the chip 1 that has been separated. Film 4 remains. On the other hand, TEG2 arranged in the intersecting area of the scribe area SA (the area in contact with the corner of the chip area 1A ') is separated from the chip area 1A', and therefore does not remain in the chip 1. Therefore, the planar shape of the diced chip 1 is a rectangle with chamfered corners.
[0038] 次に、図 12に示すように、 1個のチップ 1の真下に吸着駒 13を配置すると共に、こ のチップ 1の上面に吸着コレット 14を密着させる。吸着コレット 14の底面の中央部に は、内部が減圧される吸着口 14aが設けられており、剥離の対象となる 1個のチップ 1 のみを選択的に吸着、保持できるようになつている。続いて、ダイシングテープ 5に紫 外線を照射する。このよう〖こすると、ダイシングテープ 5に塗布された粘着剤が硬化し て粘着力が低下するので、ダイアタッチフィルム 4をダイシングテープ 5から容易に剥 離させることができる。次に、吸着駒 13を上方に突き上げると共に、吸着コレット 14を 上方に移動させ、チップ 1およびダイアタッチフィルム 4をダイシングテープ 5から剥離 する。 Next, as shown in FIG. 12, the suction piece 13 is disposed immediately below one chip 1 and the suction collet 14 is brought into close contact with the upper surface of the chip 1. At the center of the bottom surface of the suction collet 14, there is provided a suction port 14a in which the inside is depressurized, so that only one chip 1 to be peeled can be selectively sucked and held. Subsequently, the dicing tape 5 is irradiated with ultraviolet rays. By rubbing in this way, the pressure-sensitive adhesive applied to the dicing tape 5 is cured and the adhesive strength is lowered, so that the die attach film 4 can be easily peeled off from the dicing tape 5. Next, the suction piece 13 is pushed upward, and the suction collet 14 is moved upward to peel off the chip 1 and the die attach film 4 from the dicing tape 5.
[0039] このようにして、ダイシングテープ 5から剥離されたチップ 1は、吸着コレット 14に吸 着、保持されて次工程 (ペレット付け工程)に搬送され、図 13および図 14に示すよう に、ダイアタッチフィルム 4を介して配線基板 17A上に実装された後、 Auワイヤ 15を 介して配線基板 17Aの電極 16と電気的に接続される。  [0039] In this way, the chip 1 peeled from the dicing tape 5 is adsorbed and held by the adsorption collet 14, and conveyed to the next process (pellet attaching process). As shown in FIG. 13 and FIG. After being mounted on the wiring board 17A via the die attach film 4, it is electrically connected to the electrode 16 of the wiring board 17A via the Au wire 15.
[0040] また、チップ 1をペレット付け工程に搬送した吸着コレット 14がピックアップ装置 10 に戻ってくると、前述した手順に従って、第 2のチップ 1がダイシングテープ 5から剥離 され、再びペレット付け工程に搬送される。そして、図 15および図 16に示すように、 ダイアタッチフィルム 4を介して第 1のチップ 1の上に実装された後、 Auワイヤ 15を介 して配線基板 17Aの電極 16と電気的に接続される。次に、図 17に示すように、配線 基板 17A上のチップ 1および Auワイヤ 15が榭脂 18で封止されることによって、パッ ケージ 19が完成する。図に示すパッケージ 19は、チップ 1を 2個積層した例であるが 、前述した手順に従って、第 2のチップ 1の上に 1個または複数個のチップ 1を順次積 層することができる。 [0040] When the suction collet 14 that has transported the chip 1 to the pelletizing process returns to the pickup device 10, the second chip 1 is peeled off from the dicing tape 5 in accordance with the procedure described above, and the pelletizing process is performed again. Be transported. Then, as shown in FIG. 15 and FIG. 16, after being mounted on the first chip 1 via the die attach film 4, it is electrically connected to the electrode 16 of the wiring board 17A via the Au wire 15. Is done. Next, as shown in Figure 17, The package 19 is completed by sealing the chip 1 and the Au wire 15 on the substrate 17A with the resin 18. The package 19 shown in the figure is an example in which two chips 1 are stacked, but one or a plurality of chips 1 can be sequentially stacked on the second chip 1 in accordance with the procedure described above.
[0041] このように、本実施の形態では、ウェハ 1のチップ領域 1A'のコーナー部を面取りし 、このコーナー部に接する領域のスクライブエリア SAに TEG2を配置する。これによ り、 TEG2を配置する領域を確保しつつ、スクライブエリア SAの幅を、レーザで切断 可能な幅(10 m以下)まで狭くすることができるので、同じ径のウェハ 1から取得で きるチップ 1の数を増やすことが可能となる。  As described above, in the present embodiment, the corner portion of the chip region 1A ′ of the wafer 1 is chamfered, and the TEG 2 is arranged in the scribe area SA in the region in contact with the corner portion. As a result, the width of the scribe area SA can be narrowed to a width that can be cut by a laser (10 m or less) while securing a region where the TEG 2 is arranged, so that it can be obtained from the wafer 1 having the same diameter. The number of chips 1 can be increased.
[0042] また、スクライブエリア SAの幅をレーザで切断可能な幅まで狭くしたことにより、チッ プ領域 1A'の周囲に沿ってレーザビームを一回走査するだけで、チップ領域 1A'と TEG2とを分離できるので、レーザによるウエノ、 1の切断を迅速に行うことが可能とな る。  [0042] Further, by reducing the width of the scribe area SA to a width that can be cut by a laser, the chip area 1A 'and TEG2 can be obtained by scanning the laser beam only once around the chip area 1A'. Therefore, it is possible to quickly cut the wafer and 1 with a laser.
[0043] また、前記図 17に示すように、配線基板 17上に実装したチップ 1を榭脂 18で封止 したパッケージ 19は、配線基板 17とチップ 1の熱膨張係数差に起因してチップ 1に 応力が加わり易ぐこれがパッケージ 19の信頼性を低下させる一因となる。特にチッ プ 1のコーナー部は、チップ 1の中心部力 の距離が長ぐ熱による伸縮量が最大と なるので、大きな熱応力が加わる。本実施の形態のチップ 1は、コーナー部が面取り されているので、コーナー部が面取りされていない同一径のチップに比べて、中心部 からコーナー部までの距離が実質的に短い。従って、その分、チップ 1のコーナー部 に集中する熱応力が低減されるので、ノ ッケージ 19の信頼性を向上させることがで きる。  Further, as shown in FIG. 17, the package 19 in which the chip 1 mounted on the wiring board 17 is sealed with the grease 18 is caused by the difference in thermal expansion coefficient between the wiring board 17 and the chip 1. The fact that stress is easily applied to 1 contributes to a decrease in the reliability of the package 19. In particular, the corner portion of chip 1 has a large thermal stress because the amount of expansion and contraction due to heat that the distance of the center force of chip 1 is long is maximized. The chip 1 of the present embodiment has a corner portion that is chamfered, so that the distance from the center portion to the corner portion is substantially shorter than a chip of the same diameter that is not chamfered. Accordingly, the thermal stress concentrated on the corner portion of the chip 1 is reduced correspondingly, so that the reliability of the knock 19 can be improved.
[0044] また、チップ 1のコーナー部を面取りし、中心部からコーナー部までの距離を短くす ることにより、図 18に示すように、チップ 1を実装する配線基板 17Bの面積を縮小し、 ノ ッケージの実装密度を向上させる効果も得られる。  [0044] Further, by chamfering the corner portion of chip 1 and shortening the distance from the center portion to the corner portion, the area of wiring board 17B on which chip 1 is mounted is reduced as shown in FIG. The effect of increasing the packaging density of the knock can also be obtained.
[0045] (実施の形態 2)  [0045] (Embodiment 2)
前記実施の形態 1では、チップ 1と TEG2を切り離した力 図 19に示すように、チッ プ 1のコーナー部に TEG2が残るようにウェハ 1を切断してもよい。チップ 1のコーナ 一部に TEG2を残した場合、チップ 1の平面形状は見掛け上、長方形となるが、実質 的にチップ 1として機能する領域の平面形状は、前記実施の形態と同様、コーナー 部が面取りされた長方形となる。 In the first embodiment, the force for separating the chip 1 and the TEG 2 may be cut so that the TEG 2 remains in the corner portion of the chip 1 as shown in FIG. Chip 1 corner When TEG2 is left in a part, the planar shape of chip 1 is apparently rectangular, but the planar shape of the region that substantially functions as chip 1 is chamfered at the corner as in the previous embodiment. It becomes a rectangle.
[0046] 図 20は、図 19の A—B線に沿ったチップ 1のコーナー部近傍を示す断面図である 。図中の一点鎖線 Cは、面取り領域を示し、それよりも左側がチップ 1、右側の領域が スクライブエリア SAである。チップ 1の周辺部には、チップ 1の内部に形成された集積 回路の配線と同層のメタル層力もなるガードリング 20が形成されている。ガードリング 20は、チップ 1の周辺部全域を囲むように形成され、チップ 1の端部からチップ 1の内 部に水分や異物が侵入するのを防 、で 、る。  FIG. 20 is a cross-sectional view showing the vicinity of the corner portion of chip 1 along the line AB in FIG. A one-dot chain line C in the figure indicates a chamfered area, the chip 1 is on the left side, and the scribe area SA is on the right side. Around the periphery of the chip 1 is formed a guard ring 20 having a metal layer force in the same layer as the wiring of the integrated circuit formed in the chip 1. The guard ring 20 is formed so as to surround the entire peripheral portion of the chip 1, and prevents moisture and foreign matter from entering the inside of the chip 1 from the end of the chip 1.
[0047] チップ 1のコーナー部に TEG2が残るようにウェハ 1を切断する本実施の形態によ れば、前記図 2の X方向および Y方向にレーザを走査するだけでよいので、前記実 施の形態 1に比べてレーザを走査する距離が短縮され、レーザによるウェハ 1の切断 をより迅速に行うことが可能となる。  [0047] According to the present embodiment in which the wafer 1 is cut so that the TEG2 remains in the corner portion of the chip 1, it is only necessary to scan the laser in the X direction and the Y direction in FIG. Compared to the first embodiment, the laser scanning distance is shortened, and the wafer 1 can be cut more quickly by the laser.
[0048] また、上記したように配線基板 17上に実装したチップ 1を榭脂 18で封止したパッケ ージ 19は、配線基板 17とチップ 1の熱膨張係数差に起因してチップ 1に応力が加わ り易ぐ特にチップ 1の中心部力 距離が長いコーナー部に応力が集中し易い。しか しながら、図 19に示すように、チップ 1のコーナー部に配置されているものは、 TEG2 およびァライメントマークである。 TEG2およびァライメントマークは製造工程の段階 で必要な配線であるため、封止完了した後であれば熱応力により TEG2およびァライ メントマークが破損してもパッケージ 19の信頼性を低下することはない。  Further, as described above, the package 19 in which the chip 1 mounted on the wiring board 17 is sealed with the resin 18 is attached to the chip 1 due to the difference in thermal expansion coefficient between the wiring board 17 and the chip 1. Stress tends to be applied, especially stress tends to concentrate on the corner of the chip 1 where the center force distance is long. However, as shown in FIG. 19, what is arranged at the corner of chip 1 is TEG2 and alignment marks. Since TEG2 and alignment mark are necessary wiring in the manufacturing process, the reliability of package 19 will not be reduced even if TEG2 and alignment mark are damaged by thermal stress after sealing is completed. .
[0049] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが 、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは 、うまでもな!/、。  [0049] While the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. There's nothing wrong!
[0050] 前記実施の形態では、メモリ回路が形成されたウェハを切断する場合について説 明したが、これに限定されるものではなぐ一方の短辺にボンディングパッドが形成さ れた不揮発性メモリ回路や、複数の辺にボンディングパッドが形成された論理回路が 形成された各種ウェハの切断に適用できることは勿論である。  In the above embodiment, the case where the wafer on which the memory circuit is formed is cut has been described. However, the present invention is not limited to this, and the nonvolatile memory circuit in which the bonding pad is formed on one short side. Of course, the present invention can be applied to cutting various wafers on which logic circuits having bonding pads formed on a plurality of sides are formed.
[0051] 前記実施の形態では、レーザが照射されたウェハをダイシングテープに貼り付け、 このダイシングテープを引き伸ばすことによって、チップを個片化したが、チップを個 片化する方法は、これに限定されるものではない。例えばウェハのスクライブエリアに レーザを照射した後、このスクライブエリアを起点にウェハを折り曲げることによって、 チップを個片化してもよい。 [0051] In the embodiment, the wafer irradiated with the laser is attached to the dicing tape, The chips are separated by stretching the dicing tape, but the method for separating the chips is not limited to this. For example, after irradiating a laser to the scribe area of the wafer, the chip may be singulated by bending the wafer from the scribe area.
[0052] レーザで切断するチップの平面形状は、コーナー部が面取りされた四角形に限定 されるものではなぐ四角形以外の多角形とすることもできる。例えば図 21は、平面 形状が八角形となるように切断されたチップ 1Bの平面図である。また、図 22は、平面 形状が円形となるように切断されたチップ 1Cを円形の配線基板 17C上に実装した平 面図である。図 23は、図 22に示す円形のチップ 1Cを配線基板 17D上に多段実装し た平面図である。このように、レーザ切断方式を採用することにより、任意の平面形状 を有するチップを容易に得ることができるので、配線基板上に複数のチップを高密度 に実装することが可能となり、パッケージの実装密度を向上させることができる。 産業上の利用可能性  [0052] The planar shape of the chip to be cut by the laser is not limited to a quadrangle whose corners are chamfered, but may be a polygon other than a quadrangle. For example, FIG. 21 is a plan view of the chip 1B cut so that the planar shape is an octagon. FIG. 22 is a plan view in which the chip 1C cut so that the planar shape is circular is mounted on a circular wiring board 17C. FIG. 23 is a plan view in which the circular chip 1C shown in FIG. 22 is mounted on the wiring board 17D in multiple stages. In this way, by adopting the laser cutting method, it is possible to easily obtain a chip having an arbitrary planar shape, so that it is possible to mount a plurality of chips on a wiring board at a high density, and to mount a package. The density can be improved. Industrial applicability
[0053] 本発明は、レーザを使った半導体ウェハの切断工程を有する半導体装置の製造に 適用することができる。 The present invention can be applied to the manufacture of a semiconductor device having a semiconductor wafer cutting process using a laser.

Claims

請求の範囲 The scope of the claims
[1] (a)複数のスクライブエリアと、前記複数のスクライブエリアによって互いに隔てられた 複数のチップ領域とが主面に設けられ、前記複数のチップ領域のそれぞれに集積回 路が形成された半導体ウェハを用意する工程と、  [1] (a) A semiconductor in which a plurality of scribe areas and a plurality of chip regions separated from each other by the plurality of scribe areas are provided on a main surface, and an integrated circuit is formed in each of the plurality of chip regions. Preparing a wafer;
(b)前記スクライブエリアにレーザを照射することにより、前記スクライブエリアに沿つ た前記半導体ウェハの内部に破砕層を形成する工程と、  (b) irradiating the scribe area with a laser to form a crushed layer inside the semiconductor wafer along the scribe area;
(c)前記破砕層を起点として前記半導体ウェハを切断し、前記複数のチップ領域を 互いに分離、個片化することによって、複数の半導体チップを得る工程とを有する半 導体装置の製造方法であって、  (c) cutting the semiconductor wafer from the crushing layer as a starting point, separating the plurality of chip regions from each other and dividing them into individual pieces, thereby obtaining a plurality of semiconductor chips. And
前記チップ領域の平面形状は、コーナー部が面取りされた四角形であり、 前記コーナー部に接する領域の前記スクライブエリアには、前記集積回路の特性 検査に用いる TEGが配置されることを特徴とする半導体装置の製造方法。  A planar shape of the chip region is a quadrangle with a corner portion chamfered, and a TEG used for characteristic inspection of the integrated circuit is disposed in the scribe area in the region in contact with the corner portion. Device manufacturing method.
[2] 前記スクライブエリアは、前記コーナー部に接する領域を除いた領域の幅が 10 m以下であることを特徴とする請求項 1記載の半導体装置の製造方法。 [2] The method of manufacturing a semiconductor device according to [1], wherein the scribe area has a width of 10 m or less excluding a region in contact with the corner portion.
[3] 前記工程 (b)に先だち、前記半導体ウェハの裏面を研削することによって、前記半 導体ウェハの厚さを薄くする工程をさらに含むことを特徴とする請求項 1記載の半導 体装置の製造方法。 [3] The semiconductor device according to [1], further comprising a step of reducing a thickness of the semiconductor wafer by grinding a back surface of the semiconductor wafer prior to the step (b). Manufacturing method.
[4] 前記工程 (c)の後、 [4] After the step (c),
(d)前記半導体チップを配線基板に実装する工程と、  (d) mounting the semiconductor chip on a wiring board;
(e)前記配線基板に実装された前記半導体チップを榭脂封止する工程とをさらに含 むことを特徴とする請求項 1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, further comprising: (e) a step of sealing the semiconductor chip mounted on the wiring board.
[5] 前記工程 (c)は、前記半導体ウェハの裏面に貼り付けたテープを引き延ばすことに よって、前記複数のチップ領域を互いに分離、個片化する工程を含むことを特徴とす る請求項 1記載の半導体装置の製造方法。  [5] The step (c) includes a step of separating and dividing the plurality of chip regions from each other by stretching a tape attached to a back surface of the semiconductor wafer. 1. A method for manufacturing a semiconductor device according to 1.
[6] 前記半導体チップの平面形状は、コーナー部が面取りされた四角形であることを特 徴とする請求項 1記載の半導体装置の製造方法。  6. The method for manufacturing a semiconductor device according to claim 1, wherein the planar shape of the semiconductor chip is a quadrangle with chamfered corners.
[7] 前記半導体チップの平面形状は、四角形であり、  [7] The planar shape of the semiconductor chip is a quadrangle,
前記半導体チップの周辺部には、前記集積回路を囲むガードリングが形成され、 前記ガードリングの平面形状は、前記半導体チップのコーナー部の近傍が面取りさ れた四角形であり、 A guard ring surrounding the integrated circuit is formed on the periphery of the semiconductor chip, The planar shape of the guard ring is a quadrangle with a chamfered portion near the corner of the semiconductor chip,
前記ガードリングよりも外側の前記コーナー部には、前記 TEGが配置されているこ とを特徴とする請求項 1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the TEG is disposed at the corner portion outside the guard ring.
[8] 配線基板と、前記配線基板に実装された半導体チップとを備え、前記半導体チッ プの平面形状は、コーナー部が面取りされた四角形であることを特徴とする半導体装 置。 [8] A semiconductor device comprising a wiring board and a semiconductor chip mounted on the wiring board, wherein the planar shape of the semiconductor chip is a quadrangle with a corner portion chamfered.
[9] 配線基板と、前記配線基板に実装された半導体チップとを備え、前記半導体チッ プの平面形状は、コーナー部に TEGが配置された四角形であり、前記半導体チップ の周辺部を囲むガードリングの平面形状は、前記コーナー部の近傍が面取りされた 四角形であり、前記 TEGは、前記ガードリングよりも外側に配置されていることを特徴 とする半導体装置。  [9] A wiring board and a semiconductor chip mounted on the wiring board, and the planar shape of the semiconductor chip is a quadrangle in which a TEG is arranged at a corner, and a guard that surrounds the periphery of the semiconductor chip The semiconductor device according to claim 1, wherein a planar shape of the ring is a quadrangular shape in which the vicinity of the corner portion is chamfered, and the TEG is disposed outside the guard ring.
[10] (a)スクライブエリアと、前記スクライブエリアによって互いに隔てられた複数のチップ 領域とが主面に設けられ、前記複数のチップ領域のそれぞれに集積回路が形成され た半導体ウェハを用意する工程と、  [10] (a) A step of preparing a semiconductor wafer in which a scribe area and a plurality of chip regions separated from each other by the scribe area are provided on a main surface, and an integrated circuit is formed in each of the plurality of chip regions. When,
(b)前記半導体ウェハを前記スクライブエリアに沿って切断し、前記複数のチップ領 域を互いに分離、個片化することによって、複数の半導体チップを得る工程とを有す る半導体装置の製造方法であって、  (b) cutting the semiconductor wafer along the scribe area, separating the plurality of chip regions from each other, and dividing the chip into individual pieces, thereby obtaining a plurality of semiconductor chips. Because
前記半導体チップの平面形状は、コーナー部が面取りされた四角形であることを特 徴とする半導体装置の製造方法。  A method for manufacturing a semiconductor device, wherein the planar shape of the semiconductor chip is a quadrangle with a corner portion chamfered.
[11] 前記工程 (b)は、前記スクライブエリアに沿ってレーザを照射することにより、前記ス クライブエリアに沿った前記半導体ウェハの内部に破碎層を形成する工程と、前記 破砕層を起点として前記半導体ウェハを切断する工程を含むことを特徴とする請求 項 10記載の半導体装置の製造方法。 [11] The step (b) includes a step of forming a fracture layer inside the semiconductor wafer along the scribe area by irradiating a laser along the scribe area, and starting from the crushed layer. 11. The method of manufacturing a semiconductor device according to claim 10, further comprising a step of cutting the semiconductor wafer.
[12] (a)第 1方向および前記第 1方向と交差する第 2方向にそれぞれ延在する複数のスク ライブエリアと、前記複数のスクライブエリアによって互いに隔てられた複数のチップ 領域とが主面に設けられ、前記複数のチップ領域のそれぞれに集積回路が形成され た半導体ウェハを用意する工程と、 (b)前記スクライブエリアにレーザを照射し、前記レーザが照射された領域の前記半 導体ウェハの内部に破砕層を形成する工程と、 [12] (a) A main surface includes a plurality of scribe areas extending in a first direction and a second direction intersecting the first direction, and a plurality of chip regions separated from each other by the plurality of scribe areas. Providing a semiconductor wafer having an integrated circuit formed in each of the plurality of chip regions; and (b) irradiating the scribe area with a laser, and forming a crushed layer inside the semiconductor wafer in the region irradiated with the laser;
(c)前記破砕層を起点として前記半導体ウェハを切断し、前記複数のチップ領域を 互いに分離、個片化することによって、複数の半導体チップを得る工程とを有する半 導体装置の製造方法であって、  (c) cutting the semiconductor wafer from the crushing layer as a starting point, separating the plurality of chip regions from each other and dividing them into individual pieces, thereby obtaining a plurality of semiconductor chips. And
前記チップ領域の平面形状は、円形または多角形であり、  The planar shape of the chip region is circular or polygonal,
前記第 1方向に延在するスクライブエリアと前記第 2方向に延在するスクライブエリ ァとが交差する領域には、前記集積回路の特性検査に用いる TEGが配置されること を特徴とする半導体装置の製造方法。  A TEG used for characteristic inspection of the integrated circuit is disposed in a region where a scribe area extending in the first direction and a scribe area extending in the second direction intersect. Manufacturing method.
前記工程 (c)の後、  After the step (c),
(d)前記半導体チップを配線基板に実装する工程と、  (d) mounting the semiconductor chip on a wiring board;
(e)前記配線基板に実装された前記半導体チップを榭脂封止する工程とをさらに含 むことを特徴とする請求項 12記載の半導体装置の製造方法。  13. The method for manufacturing a semiconductor device according to claim 12, further comprising: (e) a step of resin-sealing the semiconductor chip mounted on the wiring board.
PCT/JP2005/019931 2005-10-28 2005-10-28 Semiconductor device and method for manufacturing same WO2007049356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019931 WO2007049356A1 (en) 2005-10-28 2005-10-28 Semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019931 WO2007049356A1 (en) 2005-10-28 2005-10-28 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2007049356A1 true WO2007049356A1 (en) 2007-05-03

Family

ID=37967480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019931 WO2007049356A1 (en) 2005-10-28 2005-10-28 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2007049356A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076787A (en) * 2007-09-21 2009-04-09 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method therefor, as well as designing method therefor
JP2012156258A (en) * 2011-01-25 2012-08-16 Toshiba Corp Method of manufacturing semiconductor chip and semiconductor device
JP2018063986A (en) * 2016-10-11 2018-04-19 株式会社ディスコ Wafer processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217657A (en) * 1988-07-05 1990-01-22 Mitsubishi Electric Corp Semiconductor integrated circuit
JP2002043528A (en) * 2000-07-27 2002-02-08 Nec Microsystems Ltd Semiconductor wafer and characteristic evaluating circuit thereof
JP2004079667A (en) * 2002-08-13 2004-03-11 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2004079746A (en) * 2002-08-16 2004-03-11 Tokyo Seimitsu Co Ltd Method of manufacturing chip
JP2005228892A (en) * 2004-02-12 2005-08-25 Toshiba Corp Semiconductor wafer, semiconductor element and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217657A (en) * 1988-07-05 1990-01-22 Mitsubishi Electric Corp Semiconductor integrated circuit
JP2002043528A (en) * 2000-07-27 2002-02-08 Nec Microsystems Ltd Semiconductor wafer and characteristic evaluating circuit thereof
JP2004079667A (en) * 2002-08-13 2004-03-11 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2004079746A (en) * 2002-08-16 2004-03-11 Tokyo Seimitsu Co Ltd Method of manufacturing chip
JP2005228892A (en) * 2004-02-12 2005-08-25 Toshiba Corp Semiconductor wafer, semiconductor element and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076787A (en) * 2007-09-21 2009-04-09 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method therefor, as well as designing method therefor
JP2012156258A (en) * 2011-01-25 2012-08-16 Toshiba Corp Method of manufacturing semiconductor chip and semiconductor device
JP2018063986A (en) * 2016-10-11 2018-04-19 株式会社ディスコ Wafer processing method

Similar Documents

Publication Publication Date Title
JP4769429B2 (en) Manufacturing method of semiconductor device
US7098077B2 (en) Semiconductor chip singulation method
JP5608521B2 (en) Semiconductor wafer dividing method, semiconductor chip and semiconductor device
JP3530158B2 (en) Semiconductor device and manufacturing method thereof
KR100944285B1 (en) A method of manufacturing a semiconductor device
US8129259B2 (en) Manufacturing method of preparing a substrate with forming and removing the check patterns in scribing regions before dicing to form semiconductor device
TWI284960B (en) Manufacturing method of semiconductor device
US20050260829A1 (en) Manufacturing method of a semiconductor device
US20070275543A1 (en) Manufacturing method of a semiconductor device
US20050179127A1 (en) Stack MCP and manufacturing method thereof
US9240398B2 (en) Method for producing image pickup apparatus and method for producing semiconductor apparatus
JP2001313350A (en) Chip-shaped electronic component and its manufacturing method, and pseudo-wafer used for manufacture of chip- shaped electronic component and its manufacturing method
US20070141752A1 (en) Manufacturing method of semiconductor integrated circuit device
US10490531B2 (en) Manufacturing method of semiconductor device and semiconductor device
US20050121781A1 (en) Semiconductor device and manufacturing method thereof
JP2009135348A (en) Semiconductor chip, semiconductor device and method of manufacturing them
US20090152683A1 (en) Rounded die configuration for stress minimization and enhanced thermo-mechanical reliability
JP2013120767A (en) Semiconductor device manufacturing method
JP2013026440A (en) Method of manufacturing semiconductor device
WO2007049356A1 (en) Semiconductor device and method for manufacturing same
KR20200137971A (en) Method for manufacturing wafer and method for manufacturing stacked device chip
JP3803214B2 (en) Manufacturing method of semiconductor device
JPH097975A (en) Semiconductor device and its manufacture
US7705432B2 (en) Three dimensional six surface conformal die coating
KR20060085848A (en) Method of fabricating semiconductor wafer having bump forming process after back grinding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP