WO2007040222A1 - Clock synchronization system and method in audio transmission system - Google Patents

Clock synchronization system and method in audio transmission system Download PDF

Info

Publication number
WO2007040222A1
WO2007040222A1 PCT/JP2006/319783 JP2006319783W WO2007040222A1 WO 2007040222 A1 WO2007040222 A1 WO 2007040222A1 JP 2006319783 W JP2006319783 W JP 2006319783W WO 2007040222 A1 WO2007040222 A1 WO 2007040222A1
Authority
WO
WIPO (PCT)
Prior art keywords
time stamp
synchronization
value
clock
packet
Prior art date
Application number
PCT/JP2006/319783
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Suzuki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007040222A1 publication Critical patent/WO2007040222A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0632Synchronisation of packets and cells, e.g. transmission of voice via a packet network, circuit emulation service [CES]

Definitions

  • the present invention relates to a clock synchronization system and method provided in an audio transmission system composed of a main device and a remote device connected via a network, and in particular, a preset one main device (clock master)
  • the present invention relates to a clock synchronization system and method for synchronizing each remote device (slave device) force S clock with reference to a synchronization packet transmitted separately from the voice packet from the device.
  • IP Internet Protocol
  • FIG. 12 is a diagram showing an example of a clock synchronization method in a conventional audio transmission system.
  • a conventional audio transmission system 50 includes a master device 51 and a slave device 52, which are connected via a network 53.
  • the master device 51 one device is set in advance in the system.
  • the master device 51 has a function of transmitting a packet containing its own clock signal information to another slave device 52 via the network 53.
  • one or more slave devices 52 exist in the system, and A function of receiving the packet via the network 53;
  • the master device 51 includes a clock source 54, a time stamp extraction unit 55, and a packet transmission unit 56. If the clock synchronization is to be started, the time stamp extraction unit 55 transmits the time stamp information obtained by counting the clock frequency from the clock source 54 to the packet transmission unit 56. The packet transmission unit 56 packetizes the received time stamp information and transmits it to the network 52.
  • There are various forms of communication protocols to be sent over the network but here we consider an example using the IP protocol. In the case of a voice transmission system composed of a large number of slave devices 52, a plurality of slave devices can easily receive packets by transmitting packets from the master device 51 by IP multicast.
  • the slave device 52 includes a packet reception unit 57, a packet transmission interval calculation unit 58, a frequency variable clock source 59, a time stamp extraction unit 60, a packet reception interval calculation unit 61, and an operation correction unit 62.
  • the packet transmission interval calculation unit 58 takes the difference between the time stamp information included in the packet and the time stamp information when the previous packet arrived, and transmits the packet. Calculate the interval Ts.
  • the packet reception interval calculation unit 61 extracts a time stamp ⁇ blueprint counting the clock frequency from its own frequency variable clock source 59 by the time stamp extraction unit 60, and obtains a difference from the previous time stamp extraction time.
  • the packet reception interval Tr is calculated.
  • the arithmetic correction unit 62 uses the packet transmission interval Tr and the packet reception interval Ts to calculate a frequency variable clock source based on a value calculated by an arithmetic expression of a * (Tr Ts) ZTr ( a is a predetermined constant). 59 to control the clock frequency of the slave device 52 to match the clock frequency of the master device 51.
  • the conventional clock synchronization system performs clock synchronization for the purpose of matching the phases of the transmission device and the reception device and preventing the audio buffer of the reception device from failing.
  • Japanese Patent Application Laid-Open No. 2004-153546 discloses a clock synchronization method for matching the clock signal frequency of one terminal device with the clock signal frequency of another terminal device.
  • the frequency variable clock source is controlled based on the calculated differential force between the packet transmission interval of the master device and the packet reception interval of the slave device.
  • the clock signal frequencies can be easily matched.
  • the above-described conventional technique is a technique for matching the phases of the transmission side and the reception side.
  • the clock frequency is controlled based on the difference between the packet interval on the transmitting side and the packet interval on the receiving side, and the clock frequencies on the transmitting side and the receiving side are matched.
  • the phases of the transmission side and the reception side can be matched.
  • the conventional clock synchronization system does not realize clock synchronization that accurately matches the audio output times between a plurality of receiving devices. For this reason, there is a problem that a difference in audio output time may occur between a plurality of receiving apparatuses. This problem will be described in more detail below.
  • the control value for the frequency variable clock source is smaller than the resolution allowed by the oscillator and cannot be set to a unit value. To do. For this reason, every time the frequency variable clock source is controlled, an error of a unit size less than the resolution occurs between the value that is originally set and the value that is actually set after truncation by the resolution.
  • the present invention has been made under the above-described background, and its object is to reduce the expansion and contraction of the delay time of the sound and to minimize the difference in the sound output time between the receiving devices. It is to provide a clock synchronization system and method.
  • the clock synchronization system of the present invention is a system that uses a synchronization packet to perform clock synchronization between a main apparatus that performs audio transmission via a network and a remote apparatus
  • the main apparatus includes a clock source
  • a time stamp generating unit that generates time stamp information and a packet transmitting unit that transmits a synchronization packet in which the time stamp information is embedded to the network
  • the remote device includes a packet receiving unit that receives the synchronization packet from the network
  • the main unit cumulative time stamp calculation unit that calculates the main unit total type stamp value To, which is the total time stamp value of the synchronization start force, from the time stamp information included in the synchronization bucket, and a clock capable of variable frequency control Source time stamp information is extracted, and the total time of remote device is the time stamp value of the synchronous start force.
  • the remote device cumulative time stamp calculation unit that calculates the time stamp value Ti and the frequency of the clock source capable of variable frequency control are corrected based on the difference between the main device cumulative time stamp value To and the remote
  • Another aspect of the present invention is a clock synchronization method that uses a synchronization packet to synchronize clocks between a main device and a remote device that perform voice transmission via a network.
  • the master unit generates the time stamp information to generate the clock source time stamp information, and transmits the synchronization packet in which the time stamp information is embedded to the network, and the remote unit receives the synchronization packet from the network and is included in the synchronization packet.
  • Calculates the main device cumulative type stamp value To which is the cumulative time stamp value of the synchronization start force from the time stamp information that is generated, extracts the clock source power time stamp information that allows variable frequency control, and accumulates from the start of synchronization.
  • the remote device cumulative time stamp value Ti which is the time stamp value of the clock, is calculated and the frequency of the clock source capable of variable frequency control is calculated.
  • Another aspect of the present invention is a remote device that is provided in a system that performs voice transmission via a network and that performs clock synchronization using a synchronization packet that has also received the main device power.
  • the packet receiving unit that receives the synchronization packet in which the time stamp information generated from the clock source of the device is embedded, and the time stamp information included in the synchronization packet are the time stamp values accumulated from the start of synchronization.
  • the main unit cumulative time stamp calculation unit that calculates the unit total type stamp value To and the clock source power capable of variable frequency control on the remote unit side Extract the time stamp information and the remote time stamp value is the cumulative time stamp value of the synchronization start power
  • Remote device cumulative time stamp calculation unit that calculates device cumulative time stamp value Ti, and a clock that can be controlled with variable frequency.
  • FIG. 1 is a block diagram showing a clock synchronization system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an audio transmission system equipped with a clock synchronization system.
  • Figure 3A is a diagram for explaining the outline of the Haas effect.
  • Figure 3B is a diagram for explaining the outline of the Haas effect.
  • FIG. 4 is a diagram showing an example in which the audio transmission system is applied to evacuation guidance broadcasting.
  • FIG. 5 is a diagram showing an embodiment in which a Dolby Digital 5.1 channel acoustic broadcast is broadcast from a distant place to multiple points in an audio transmission system.
  • FIG. 6 is a diagram for showing the transition of the time stamp value in the clock synchronization system.
  • Fig. 7 is a diagram for showing an overview of synchronization packet transmission and reception in the clock synchronization system.
  • Fig.8 is a diagram to show the setting error of the frequency variable clock source in the clock synchronization system
  • Fig. 9A is a diagram to show the error when clock synchronization is performed.
  • Fig. 9B Fig. 9B is a diagram for showing the time stamp value transition when clock synchronization is performed.
  • Fig. 10 is a diagram for showing an outline of processing when a packet including a delay arrives.
  • Fig. 11 is a diagram for showing an overview of the processing when the timestamp value difference exceeds the threshold.
  • FIG. 12 is a diagram for showing a conventional clock synchronization system.
  • the clock synchronization system of the present invention is a system that uses a synchronization packet to perform clock synchronization between a main apparatus that performs audio transmission via a network and a remote apparatus
  • the main apparatus includes a clock source
  • a time stamp generating unit that generates time stamp information and a packet transmitting unit that transmits a synchronization packet in which the time stamp information is embedded to the network
  • the remote device includes a packet receiving unit that receives the synchronization packet from the network
  • a master unit cumulative time stamp calculation unit that calculates a master unit cumulative type stamp value To, which is a cumulative time stamp value of the synchronization start force, from the time stamp information included in the synchronization bucket; Clock source power capable of variable wave number control Time stamp information is extracted, and the remote device cumulative time stamp calculation unit for calculating the remote device cumulative time stamp value Ti, which is the time stamp value of the synchronous start power, and frequency variable control
  • a correction calculation unit that corrects the frequency of the clock source capable of being corrected based on the difference between the main
  • the correction calculation unit obtains the control value P for controlling the frequency of the clock source capable of variable frequency control as the difference between the main device cumulative time stamp value To and the remote device cumulative time stamp value Ti (To-Ti ) And the difference (To-Ti) may be determined based on the degree of continuous tilting in one direction.
  • tilt means that the difference (To-Ti) deviates from 0, that is, becomes positive or negative.
  • tilt means that Ti is larger or smaller than To.
  • the degree of tilt is typically expressed as the number of tilts (number of consecutive tilts) as follows.
  • the clock frequency is controlled based on the degree to which the time stamp difference is tilted in one direction.
  • the wiggle constant a is a fixed constant and the variability coefficient c is a value that fluctuates in proportion to the degree to which the difference (To-Ti) is continuously tilted in one direction.
  • the variation coefficient c is used, and the variation coefficient c is changed in proportion to the degree that the time stamp difference is tilted in one direction.
  • the value of constant a used at this time is a fixed constant. If the constant a is set to a large value, the time stamp difference will be controlled to vibrate up and down densely from 0 as time passes. If the constant a is set to a small value, the time stamp value difference gently swings up and down at 0.
  • the constant a is set in consideration of such a phenomenon, and suitable control according to the time stamp difference can be performed using the variation coefficient c as described above.
  • N is a predetermined number of times and k may be a predetermined constant.
  • the time difference of the time stamp ⁇ can be detected earlier, and the difference can be pulled back and reduced.
  • the value of k used here the greater the value k, the greater the control that pulls back the time stamp difference in the reverse direction, but the difference when tilted in the reverse direction also increases. .
  • the smaller the value k the difference in timestamps over time. The control works to slowly pull the minute in the reverse direction, but the difference when tilting in the reverse direction can be reduced. Considering such a phenomenon, the value k is set, and a suitable control according to the time stamp difference can be performed using the coefficient of variation C as described above.
  • the main apparatus may be configured to transmit the synchronization packet by IP multicast or IP broadcast.
  • the main device transmits the synchronization packet at regular intervals, and the remote device monitors the estimated arrival time of the synchronization packet received from the main device, and exceeds the predetermined range from the estimated packet arrival time. Remove the synchronization packets that arrived from the target of the processing that controls the frequency of the clock source that can be controlled with variable frequency.
  • exceeding the predetermined range means that the synchronization packet arrives before or after the predetermined range. To wear.
  • the remote device When the difference (To-Ti) exceeds a predetermined threshold value R, the remote device resets the accumulated cumulative time stamp value To and the accumulated remote time stamp value Ti that have been accumulated so far. The accumulation of time stamp values may be resumed.
  • the above-described reset processing may be performed when the difference (To-Ti) increases to either the positive or negative side and exceeds the threshold value.
  • This configuration provides the following advantages. If the reference time stamp value acquired immediately after the start of synchronization contains a large delay, the slave device performs synchronization control using the incorrect value, and there is a problem that normal synchronization control cannot be performed. In order to solve this problem, it is preferable to adopt the above configuration. With the above configuration, even when the reference time stamp value acquired for the first time includes a delay exceeding the threshold, if the normal time stamp value is received even once, the difference value exceeds the threshold. Then, a new accurate time stamp value can be acquired again. In this way, it becomes possible to further enhance the tolerance to delays caused by disturbance factors such as the network.
  • clock synchronization can be performed without changing the load of network traffic.
  • the clock synchronization system with high clock synchronization accuracy can be obtained by eliminating the bucket information including large fluctuations and always referring to only the accurate time stamp value. Can be provided.
  • a clock synchronization system according to an embodiment of the present invention will be described with reference to the drawings.
  • the clock synchronization system of the present embodiment is provided in an audio transmission system as shown in FIG. 2, and realizes clock synchronization between audio transmission / reception devices 33.
  • the audio transmission system in FIG. 2 includes a sound source 31, a speaker 32, an audio transmission / reception device 33, a local LAN 34, and a WAN 35.
  • the voice transmission / reception device 33 is a device capable of sending and receiving voice data via the local LAN 34 and WAN 35, and has a function of packetizing voice data in order to stream the voice data and transmit it over the network.
  • the sound source 31 is connected to the sound transmitting / receiving device 33 as a signal source
  • the speaker 32 is connected to the sound transmitting / receiving device 33 as sound emitting means.
  • multipoint broadcasting is mainly assumed.
  • voice communication is realized in buildings such as office buildings, multi-store commercial facilities, stations, and airports.
  • the sound source 31 for example, a CD player, an MD player, an IC player, a remote control microphone, etc. for broadcasting BGM and emergency broadcast sound source are connected.
  • the speaker 32 for example, various types of speakers such as a ceiling-embedded speaker and a hanging speaker are connected.
  • the configuration via the WAN 35 enables voice transmission between different LANs via a wide area network such as the Internet.
  • FIG. 3A and FIG. 3B are diagrams for explaining the phenomenon of the Haas effect.
  • the Haas effect is a phenomenon that gives a sense of direction to sound using the characteristics of human hearing.
  • humans recognize that the sound is coming in the direction of the speaker that emitted the first sound.
  • the same sound is being output from two speakers with the same receiving point power, if one speaker is delayed, humans can hear the direction force of the other speaker.
  • Fig. 3A if speakers A and B emit sound at the same time, humans recognize that the sound is being heard from nearby speaker B.
  • Figure 3B if a delay is applied so that the sound from nearby speaker B arrives later than far away speaker A, humans recognize that far away speaker A is sounding.
  • a service using sound field control can be provided by intentionally controlling the direction of sound using this phenomenon.
  • various services such as evacuation guidance broadcasting in office buildings, acoustic design in theaters and concert halls, and Dolby Digital 5.1 channel acoustic broadcasting can be realized via the network.
  • FIG. 4 is a diagram showing an embodiment using evacuation guidance broadcasting in an office building.
  • An audio transmission unit 41 is arranged on the broadcast room side, and a plurality of audio reception units 42 are arranged on the reception side.
  • the voice transmission unit 41 and the plurality of voice reception units 42 are arranged via the campus lan 34.
  • the audio transmission unit 41 includes a sound source and an audio transmission device.
  • the sound receiving unit 42 includes a sound receiving device and a speaker provided on the aisle ceiling of the building.
  • FIG. 5 is a diagram showing an embodiment in which Dolby Digital 5.1 channel sound broadcasting is broadcast to a plurality of remote locations.
  • An audio transmission unit 41 is arranged on the broadcast room side, and the audio transmission unit 41 includes a sound source and an audio transmission / reception device.
  • a plurality of Dolby Digital 5.1 channel spaces 44 are arranged via the local area LAN 34.
  • In each 5.1 channel space there are multiple speakers corresponding to 5.1 channels.
  • Each speaker is equipped with a voice receiver.
  • Dolby Digital 5.1 channel unlike evacuation-guided broadcasting, the same stream is broadcasted in the same 5.1 channel space to provide sound effects used in movies, etc. There are many opportunities to broadcast independent audio on the channel! ,.
  • the original audio output time difference is the time difference when performance of the hearth effect is not emphasized (performance value). If the original audio output time difference is not small, the Haas effect will not occur well when delay is applied. Specifically, it is said that the limit value of the audio output time difference that can make effective use of the Haas effect when the installation interval of speakers is several meters to several tens of meters is 2 milliseconds. In order to minimize the original audio output time difference, clock synchronization must be accurately realized between the transmitting and receiving devices in the audio transmission system.
  • this system is to enable the provision of the above services.
  • this system can be suitably applied to services using the Haas effect.
  • this system can be suitably applied to sound field control such as 5.1 channel broadcasting.
  • FIG. 1 is a block diagram showing a configuration of clock synchronization system 10 according to the present exemplary embodiment.
  • the clock synchronization system 10 includes a master device 11 and a slave device 12, and the master device 11 and the slave device 12 are connected via a network 13.
  • the clock synchronization system 10 in FIG. 1 is realized by the configuration of the audio transmission system in FIG.
  • the master device 11 is composed of one of the plurality of audio transmission / reception devices 33 in FIG.
  • the slave device 12 is also composed of one of the plurality of audio transmission / reception devices 33 in FIG.
  • the network 13 corresponds to the LAN 34 and the WAN 35 in FIG.
  • one slave device 12 is shown.
  • a plurality of slave devices 12 may be provided. That is, each of the plurality of voice transmitting / receiving devices 33 in FIG.
  • the plurality of slave devices 12 have the same function and realize clock synchronization by the same operation. Therefore, in the following description, the clock synchronization system 10 of the present embodiment will be described by focusing on one slave device 12.
  • the master device 11 and the slave device 12 in FIG. 1 are respectively the main device of the present invention. And respond to remote devices.
  • the master device 11 As the master device 11, one device is set in advance in the system.
  • the master device 11 has a function of transmitting a packet containing its own time stamp information to the slave device 12 via the network 13.
  • the clock synchronization system 10 is not a type that adds time stamp information for clock synchronization to an audio stream.
  • one master device 11 existing in the system transmits its own clock synchronization packet. This is because one device considers the case where there are multiple audio channels. Suppose that the slave device that owns multiple channels performs clock synchronization for each time stamp information embedded in separate audio streams. In this case, it is necessary to configure the number of audio channels for all systems including the processor, so the configuration is effective.
  • the clock of one set master device 11 is used, it can be said that a configuration in which all the slave devices 12 and all the audio channels existing in the device are synchronized is effective.
  • mounting multiple audio channels in one device can reduce the number of devices existing in the system, and can provide an effective configuration from the viewpoint of cost and system construction. From this point of view, synchronous packets are advantageously used.
  • the master device 11 is not necessarily limited to the voice transmission device. In the audio transmission system 10, all the devices other than the master device 11 become the slave device 12. Therefore, one or more slave devices 12 exist in the system and have a function of receiving a synchronization packet from the master device 11 via the network 13.
  • the network 13 for example, a LAN or WAN capable of IP protocol communication can be used.
  • the master device 11 includes a clock source 14, a time stamp extraction unit 15, and a packet transmission unit 16.
  • the clock source 14 is composed of an element capable of generating a system reference clock such as a crystal oscillator.
  • the time stamp extraction unit 15 includes an interface for extracting clocks of 14 clock sources, and a time stamp that counts the frequency power of the obtained clocks. And an interface for discharging the packet information to the packet transmission unit 16 at the subsequent stage.
  • the packet sending unit 16 includes an interface for obtaining the time stamp information from the time stamp extracting unit 15 and an interface for packetizing the information and discharging it onto the network 13.
  • a packet method for example, communication based on the IP protocol can be performed. It is also preferable to implement a protocol that can use IP multicast. IP broadcast may also be used. This makes it possible to receive packets by multiple specific slave devices while keeping the load on the network constant.
  • the slave device 12 includes a packet receiving unit 17, a master device reference time stamp storage unit 18, a master device cumulative time stamp calculation unit 19, a frequency variable clock source 20, and a slave device reference time stamp storage unit 21.
  • the slave device cumulative time stamp calculation unit 22 and the calculation correction unit 23 are provided.
  • the packet receiving unit 17 includes an interface that receives a clock synchronization packet from the network 13.
  • the packet receiving unit 17 uses, for example, an interface having a protocol capable of receiving an IP multicast packet.
  • the plurality of slave devices 12 can receive the clock synchronization packet from the master device 11 with a constant load.
  • a packet may be received by IP broadcast.
  • the master device reference time stamp storage unit 18 is configured by a memory that stores the time stamp information of the master device received at the first time when clock synchronization starts as a reference value. This time stamp value becomes reference information for calculating the accumulated time stamp value of the master device when performing clock synchronization thereafter.
  • the master device cumulative time stamp calculation unit 19 refers to the master device time stamp information received from the second time onward, and the reference time stamp information at the start of clock synchronization obtained from the master device reference time stamp storage unit 18. Then, it has an interface for calculating the difference between the two stamp information, and thereby discharging the total time stamp of the master device from the start of clock synchronization to the arithmetic correction unit 23.
  • the frequency variable clock source 20 is a clock source in the slave device 12, and is composed of an element capable of changing the clock frequency.
  • the clock source 20 is, for example, a voltage It can be composed of a crystal oscillator whose frequency can be changed by fluctuation.
  • the slave device reference time stamp storage unit 21 is configured by a memory that stores, as a reference value, time stamp information of the slave device when clock synchronization starts and a synchronization packet is received for the first time. This time stamp value is used as reference information for calculating the accumulated time stamp value of the slave device in the subsequent clock synchronization.
  • the slave device cumulative time stamp calculation unit 22 refers to the time stamp information of the slave device received after the second time and the reference time stamp information at the start of clock synchronization obtained from the slave device reference time stamp storage unit 21. Then, it has an interface for calculating the difference between the time stamp information and discharging the total time stamp of the slave device having the power at the start of clock synchronization to the arithmetic correction unit 23.
  • the calculation correction unit 23 extracts an interface for extracting the time stamp value To from the master device cumulative time stamp calculation unit 21 and a time stamp value Ti from the slave device total time stamp calculation unit 22 Has an interface.
  • the arithmetic correction unit 23 adjusts the frequency of the frequency variable clock source 20 based on the integer value. Then, the arithmetic correction unit 20 controls the frequency variable clock source 20 based on the value calculated by the difference value (To-Ti) between the two time stamp values, thereby obtaining the cumulative time stamp value of the slave device 12. To the cumulative time stamp value of master device 11.
  • the clock synchronization system can minimize the difference between the accumulated time stamp values of the master device and the slave device.
  • the audio output time difference between the two can always be minimized.
  • the cumulative time stamp value of the master device and the cumulative time stamp value of the slave device correspond to the main device cumulative time stamp value To and the remote device cumulative time stamp value Ti of the present invention, respectively.
  • Figure 6 shows how to keep the audio output time difference at a minimum.
  • it is effective to control the clock source of the slave device 12 so that the accumulated time stamp values of the master device 11 and the slave device 12 are always close to each other.
  • Such control is realized by the clock synchronization system 10 and its clock synchronization method of the present embodiment.
  • the slave device 12 When the slave device 12 receives a synchronization packet for the first time, it is stored in the master device reference time stamp storage unit 18 as a reference value for clock synchronization control performed after the time stamp information included in the packet. At the same time, the slave device 10 stores the reference time stamp value acquired from the frequency variable clock source 20 of the slave device 10 in the slave device reference time stamp storage unit 21. Thereafter, since the master device 11 transmits the synchronization packet at regular intervals, the slave device 12 also periodically receives the synchronization packet.
  • packet arrival may be delayed more than usual due to the occurrence of disturbance factors such as a network.
  • the slave device 12 monitors the estimated arrival time of the next packet as well. Then, the slave device 12 determines whether or not the corresponding next packet arrives outside the allowable range W.
  • the allowable range is determined based on the estimated arrival time of the next packet, and specifically, is set to the estimated arrival time ⁇ W. Then, the slave device 12 invalidates the packet that has arrived outside the allowable range W (this corresponds to the case where the packet has arrived beyond the predetermined range to the front side or the rear side).
  • packets arriving within the allowable range W are determined not to affect the voice output reception difference. This normal and valid packet is processed as a target of clock synchronization control.
  • the cumulative time stamp values To (master device) and Ti (slave device) for the initial packet reception are expressed as shown in Fig. 7 on the time axis.
  • the arithmetic correction unit 23 of the slave device 12 controls the oscillation frequency by performing voltage control on the frequency variable clock source 20.
  • the calculation correction unit 23 is the master
  • the oscillation frequency is controlled according to the difference between the cumulative time stamp value To of one device 11 and the cumulative time stamp value Ti of the slave device 12.
  • the correction calculation unit 23 is configured to adjust the frequency based on the integer value. By this control, the cumulative time stamp value Ti of the slave device 12 is brought close to the cumulative time stamp value To of the master device 11.
  • the calculation correction unit 23 performs voltage control from the control value P calculated by the following calculation formula.
  • a is a fixed constant (coefficient)
  • c is a coefficient of variation described later.
  • FIG. 8 shows an error when controlling the frequency variable clock source 20.
  • the frequency variable clock source 20 has a set resolution. Therefore, it must be noted that the control of the frequency clock source 20 causes an error due to the resolution.
  • This error is an error due to the difference between the value that is originally set and the value that is actually set to the frequency variable clock source. This error occurs every time each packet is processed. In the conventional technology, this error accumulates, and the accumulated stamp value greatly deviates between the master device and the slave device. Also, the accumulated error differs between slave devices, and the accumulated time stamp value also deviates between slaves. As a result, the accuracy of clock synchronization decreases, and the difference in audio output time between slave devices increases.
  • control is performed with reference to the accumulated time stamp value from the start of synchronization. Therefore, as shown in Fig. 9A, even if an error occurs, only the error for one packet that arrives at that time is included. This error has little effect on the difference in cumulative timestamp values. Accordingly, the cumulative type stamp values of the master device 11 and each slave device 12 can be brought close to each other. As a result, the time stamp values can be made closer between the plurality of slave devices 12.
  • the constant a is a fixed constant.
  • the time stamp difference is controlled to vibrate up and down densely from 0 as time passes.
  • the value of the constant a is set to a small value, the control that the vertical difference of the time stamp value gently oscillates with 0 as the boundary works. In consideration of such a phenomenon, the constant a is set, and thus it is possible to perform suitable control according to the time stamp difference.
  • the variation coefficient c is a frequency control. Used for control.
  • the coefficient of variation c is added to a * (To—Ti) (a value corresponding to the difference between the time stamp values), whereby the control value P is calculated.
  • the change factor c changes in proportion to the degree to which the time stamp difference is tilted in one direction.
  • the variation coefficient c changes in proportion to the degree to which the time stamp difference is tilted in one direction.
  • tilt means that the difference (To—Ti) deviates from 0, that is, it becomes positive or negative.
  • tilt means that the force vj, where Ti is larger than To, It is also a difference between the two.
  • the degree of tilt is typically represented by the number of tilts (number of consecutive tilts) as follows. In this case, the correction calculation unit 23 determines the variation coefficient c according to the number of times the difference (To-Ti) is continuously tilted.
  • N is a predetermined number of times
  • k is a predetermined constant.
  • N 3. If the difference in time stamps is To> Ti for three consecutive times, the value P that controls the frequency of the clock source by increasing the value of c is set to a large value, and the oscillation frequency on the slave device side is set to a large value. And Ti is controlled to get closer to To sooner. On the other hand, if the difference in time stamps becomes To and Ti for 3 consecutive times, the value P that controls the frequency of the clock source is reduced by decreasing the value of c, and the oscillation frequency on the slave device side is reduced. It is set small and Ti is controlled to get closer to To sooner. By using these methods, the spread of the time stamp difference can be detected more quickly, and the difference can be pulled back in the direction of decreasing the difference.
  • the larger the value k the faster the time stamp difference is pulled back in the reverse direction, but the difference when tilted in the reverse direction is also larger accordingly. Become.
  • the value k is smaller, control is performed so that the time stamp difference is gradually pulled back in the reverse direction over time, but the difference when tilted in the reverse direction is reduced. Is possible. Considering this phenomenon, the value k is set appropriately. As described above, it is possible to perform suitable control according to the time stamp difference using the coefficient of variation C.
  • synchronous control is performed as follows.
  • master device 11 transmits a synchronization packet
  • slave device 12 receives the synchronization packet, and performs synchronization control on the clock source. By repeating this operation, the master device 11 and the slave device 12 adjust the cumulative time stamp value.
  • the master device 11 and the slave device 12 are in a one-to-one relationship.
  • the actual configuration may be one-to-many.
  • the other slave devices 12 have the same configuration and perform the same operation. In this way, it is possible to maintain the audio output time difference between the plurality of slave devices 12 to a minimum.
  • FIG. 11 is a diagram showing a coping method when a large delay is included in the packet received by the slave device 12 for the first time.
  • the standard time stamp value acquired for the first time includes a large delay.
  • the system continues synchronization control using the incorrect reference timestamp value.
  • a predetermined threshold R is set in this embodiment.
  • the slave device 12 accumulates the accumulated time status up to that point. Initialize the amplifier value and resume accumulating a new cumulative timestamp value. More specifically, the accumulated time stamp value To of the master device 11 and the accumulated time stamp value Ti of the slave device 12 are reset, and accumulation of the new time stamp value is resumed.
  • the first time stamp value that is acquired for the first time includes a delay exceeding the threshold value R.
  • the difference value (To-Ti) exceeds the threshold value, and a new accurate time stamp value can be obtained again. In this way, it is possible to further enhance resistance to delay caused by disturbance elements such as a network.
  • the above processing may be performed when the difference value (To-Ti) exceeds the threshold value on either the positive or negative side. More specifically, a positive threshold value and a negative threshold value are set, and the above process may be performed when the difference value exceeds either threshold value. Also, a positive threshold value may be set, and the absolute value of the difference value may be compared with the threshold value.
  • the clock synchronization system and the audio transmission system including the clock synchronization system can be used for broadcasting to remote places and multi-point broadcasting systems such as multi-store commercial facilities! / Applicable to.
  • this embodiment is a service that uses sound field control via a network, such as evacuation guidance broadcasting in office buildings, acoustic design in theaters and concert halls, and Dolby Digital 5.1 channel acoustic broadcasting. Can be applied to.
  • the clock synchronization system can increase the clock synchronization accuracy, and is useful as a clock synchronization system such as an audio transmission system that performs sound field control or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

In a clock synchronization system, a master device (11) corresponds to a main device and a sale device (12) corresponds to a remote device. The master device (11) transmits a synchronization packet in which time stamp information is embedded to a plurality of slave devices (12) via a network (13). Each of the slave devices (12) receives the synchronization packet, calculates a difference between the accumulated time stamp value To of the master device (11) and the accumulated time stamp value Ti of the slave device (12) itself, and adjusts frequency of a frequency-variable clock source (20) according to the difference (To - Ti). Furthermore, the slave device (12) controls frequency by using the fluctuation coefficient c proportional to the inclination degree of the difference (To - Ti). This eliminates expansion/shrinkage of the delay time of the audio in the audio transmission system and minimizes the audio output time difference between the reception devices.

Description

明 細 書  Specification
音声伝送システムにおけるクロック同期システム及び方法  Clock synchronization system and method in audio transmission system
技術分野  Technical field
[0001] 本発明は、ネットワークを介して接続される主装置と遠隔装置から構成される音声 伝送システムに設けられるクロック同期システム及び方法に関し、特に、予め設定さ れる 1台の主装置 (クロックマスター装置)から音声パケットとは別に送信される同期パ ケットを参照して各遠隔装置 (スレーブ装置)力 Sクロック同期を行うクロック同期システ ム及び方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a clock synchronization system and method provided in an audio transmission system composed of a main device and a remote device connected via a network, and in particular, a preset one main device (clock master) The present invention relates to a clock synchronization system and method for synchronizing each remote device (slave device) force S clock with reference to a synchronization packet transmitted separately from the voice packet from the device.
背景技術  Background art
[0002] ネットワーク環境が整備されるにつれ、インターネットプロトコル (IP)網を活用した通 信サービスの拡大が進んでいる。これらを活用した例として、 IP網上で音声を伝送す る音声伝送システムが注目されている。これらのシステムは、主に、遠隔地への放送 や、多店舗商業施設などの多地点間放送といった用途に使用される。  [0002] As the network environment is improved, communication services using the Internet Protocol (IP) network are expanding. As an example of utilizing these, voice transmission systems that transmit voice over an IP network are attracting attention. These systems are mainly used for broadcasting to remote locations and multipoint broadcasting such as multi-store commercial facilities.
[0003] ネットワークを介して接続される複数の装置カゝら構成される音声伝送システムにお いて、音声データはパケット化されて送信される。そのため、受信装置は、確実に音 声出力できる音声データが揃うまでバッファリングを行う必要がある。このとき、送信装 置および受信装置で使用するクロック周波数が一致して 、な 、と、 V、ずれは受信装 置の音声バッファがオーバーフローある 、はアンダーフローし、出力音声の途切れが 発生してしまうという問題が存在して 、た。  [0003] In an audio transmission system composed of a plurality of devices connected via a network, audio data is packetized and transmitted. Therefore, it is necessary for the receiving apparatus to perform buffering until audio data that can be reliably output is available. At this time, the clock frequencies used by the transmission device and the reception device are the same, V, and the difference is that the audio buffer of the reception device overflows or underflows, and the output audio is interrupted. There was a problem that would end up.
[0004] この点を解決するために、送信装置と受信装置間でクロック同期を行わなければな らな 、。この方法にっ 、て図 12を参照して説明する。  [0004] To solve this problem, clock synchronization must be performed between the transmission device and the reception device. This method will be described with reference to FIG.
[0005] 図 12は従来の音声伝送システムにおけるクロック同期方法の例を示す図である。  FIG. 12 is a diagram showing an example of a clock synchronization method in a conventional audio transmission system.
図 12に示すように、従来の音声伝送システム 50は、マスター装置 51とスレーブ装置 52を備え、これらがネットワーク 53を介して接続される。マスター装置 51としては、シ ステム内で予め 1台の装置が設定されている。マスター装置 51は、ネットワーク 53を 介して、他のスレーブ装置 52に対して、自身のクロック信号情報が入ったパケットを 送信する機能を備える。一方、スレーブ装置 52は、システム上に 1台以上存在し、ネ ットワーク 53を介して上記パケットを受信する機能を備える。 As shown in FIG. 12, a conventional audio transmission system 50 includes a master device 51 and a slave device 52, which are connected via a network 53. As the master device 51, one device is set in advance in the system. The master device 51 has a function of transmitting a packet containing its own clock signal information to another slave device 52 via the network 53. On the other hand, one or more slave devices 52 exist in the system, and A function of receiving the packet via the network 53;
[0006] マスター装置 51は、クロック源 54、タイムスタンプ抽出部 55及びパケット送信部 56 を備える。いま、クロック同期を開始しょうとする場合、タイムスタンプ抽出部 55は、ク ロック源 54からのクロック周波数をカウントしたタイムスタンプ情報をパケット送信部 5 6に送信する。パケット送信部 56は、受け取ったタイムスタンプ情報をパケットィ匕しネ ットワーク 52上に送信する。ネットワーク上に送信する通信プロトコルとしては様々な 形態が存在するが、ここでは IPプロトコルを使用した例を考える。多数のスレーブ装 置 52から構成される音声伝送システムの場合、マスター装置 51からのパケットを IP マルチキャストで送信することで、容易に複数のスレーブ装置がパケットを受信するこ とがでさる。 [0006] The master device 51 includes a clock source 54, a time stamp extraction unit 55, and a packet transmission unit 56. If the clock synchronization is to be started, the time stamp extraction unit 55 transmits the time stamp information obtained by counting the clock frequency from the clock source 54 to the packet transmission unit 56. The packet transmission unit 56 packetizes the received time stamp information and transmits it to the network 52. There are various forms of communication protocols to be sent over the network, but here we consider an example using the IP protocol. In the case of a voice transmission system composed of a large number of slave devices 52, a plurality of slave devices can easily receive packets by transmitting packets from the master device 51 by IP multicast.
[0007] スレーブ装置 52は、パケット受信部 57、パケット送信間隔算出部 58、周波数可変 クロック源 59、タイムスタンプ抽出部 60、パケット受信間隔算出部 61及び演算補正 部 62を備える。パケット受信部 57でマスター装置 51からのパケットを受信した場合、 パケット送信間隔算出部 58は、パケット中に含まれるタイムスタンプ情報と前回バケツ ト到着時のタイムスタンプ情報との差分をとり、パケット送信間隔 Tsを算出する。同時 にパケット受信間隔算出部 61は、自身の周波数可変クロック源 59からのクロック周波 数をカウントしたタイムスタンプ†青報をタイムスタンプ抽出部 60によって抽出し、前回 タイムスタンプ抽出時からの差分を求めることによってパケット受信間隔 Trを算出す る。演算補正部 62は、このパケット送信間隔 Trとパケット受信間隔 Tsを用いて、 a * ( Tr Ts) ZTr (aは所定の定数)の演算式により算出された値に基づいて周波数可 変クロック源 59を制御し、これにより、スレーブ装置 52のクロック周波数をマスター装 置 51のクロック周波数に一致させる。 The slave device 52 includes a packet reception unit 57, a packet transmission interval calculation unit 58, a frequency variable clock source 59, a time stamp extraction unit 60, a packet reception interval calculation unit 61, and an operation correction unit 62. When the packet reception unit 57 receives a packet from the master device 51, the packet transmission interval calculation unit 58 takes the difference between the time stamp information included in the packet and the time stamp information when the previous packet arrived, and transmits the packet. Calculate the interval Ts. At the same time, the packet reception interval calculation unit 61 extracts a time stamp † blueprint counting the clock frequency from its own frequency variable clock source 59 by the time stamp extraction unit 60, and obtains a difference from the previous time stamp extraction time. Thus, the packet reception interval Tr is calculated. The arithmetic correction unit 62 uses the packet transmission interval Tr and the packet reception interval Ts to calculate a frequency variable clock source based on a value calculated by an arithmetic expression of a * (Tr Ts) ZTr ( a is a predetermined constant). 59 to control the clock frequency of the slave device 52 to match the clock frequency of the master device 51.
[0008] このように従来のクロック同期システムは、送信装置と受信装置の位相を合わせ、受 信装置の音声バッファ破綻を防ぐことを目的として、クロック同期を実施している。  As described above, the conventional clock synchronization system performs clock synchronization for the purpose of matching the phases of the transmission device and the reception device and preventing the audio buffer of the reception device from failing.
[0009] また、特開 2004— 153546号公報は、 1台の端末装置のクロック信号周波数に他 の端末装置のクロック信号周波数を一致させるクロック同期方法を開示している。こ の文献に記載された方法では、マスター装置のパケット送信間隔とスレーブ装置の パケット受信間隔の差分力 算出された値に基づき周波数可変クロック源を制御する ことにより、容易にクロック信号周波数を一致させることができる。 [0009] Further, Japanese Patent Application Laid-Open No. 2004-153546 discloses a clock synchronization method for matching the clock signal frequency of one terminal device with the clock signal frequency of another terminal device. In the method described in this document, the frequency variable clock source is controlled based on the calculated differential force between the packet transmission interval of the master device and the packet reception interval of the slave device. Thus, the clock signal frequencies can be easily matched.
[0010] し力しながら、上述した図 12の音声伝送システムにおけるクロック同期方法を行う場 合、以下のような問題が存在する。  However, the following problems exist when performing the clock synchronization method in the audio transmission system of FIG. 12 described above.
[0011] 上述の従来技術は、送信側と受信側の位相を合わせる技術である。従来技術は、 送信側のパケット間隔と受信側のパケット間隔の差分に基づいてクロック周波数を制 御し、送信側と受信側のクロック周波数を一致させている。このように従来技術では、 送信側と受信側の位相を合わせることはできる。し力しながら、従来のクロック同期シ ステムは、複数の受信装置間での音声出力時間を正確に一致させるようなクロック同 期を実現してはいない。そのため、複数の受信装置間で音声出力時間差が生じる可 能性があるという問題がある。この問題について、以下により詳細に説明する。  [0011] The above-described conventional technique is a technique for matching the phases of the transmission side and the reception side. In the prior art, the clock frequency is controlled based on the difference between the packet interval on the transmitting side and the packet interval on the receiving side, and the clock frequencies on the transmitting side and the receiving side are matched. Thus, in the prior art, the phases of the transmission side and the reception side can be matched. However, the conventional clock synchronization system does not realize clock synchronization that accurately matches the audio output times between a plurality of receiving devices. For this reason, there is a problem that a difference in audio output time may occur between a plurality of receiving apparatuses. This problem will be described in more detail below.
[0012] 周波数可変クロック源を制御する際の前提条件として、周波数可変クロック源への 制御値は、発振器の許容する分解能よりも小さ 、単位の値には設定できな 、と 、う 制約が存在する。このため、周波数可変クロック源を制御するたびに、本来設定した い値と、分解能による切捨てを経て実際に設定される値との間に、分解能以下の単 位の大きさの誤差が生じる。  As a precondition for controlling the frequency variable clock source, there is a restriction that the control value for the frequency variable clock source is smaller than the resolution allowed by the oscillator and cannot be set to a unit value. To do. For this reason, every time the frequency variable clock source is controlled, an error of a unit size less than the resolution occurs between the value that is originally set and the value that is actually set after truncation by the resolution.
[0013] この誤差が従来技術では問題になる。従来技術は、マスター装置のパケット送信間 隔とスレーブ装置のパケット受信間隔の差分から算出された値に基づき周波数可変 クロック源への制御を行っている。そのため、上記の分解能以下の誤差が、ノ ケットを 受信するたびに生じ、この誤差が蓄積されていく。誤差が蓄積されると、スレーブ側 の同期開始からのトータルのタイムスタンプ値が、マスター側のトータルのタイムスタ ンプ値から離れることになる。このようなトータルのタイムスタンプの差分は、従来のパ ケット間隔を用いる制御方法では判断不能である。複数のスレーブ装置の各々で誤 差が蓄積されるので、複数のスレーブ装置の間でもトータルのタイムスタンプ値がず れてしまう。その結果、複数のスレーブ装置で音声の遅延時間に伸縮が存在してしま うという問題があった。さらに、この遅延時間の相違が、複数のスレーブ装置間での 音声出力時間差を生じさせてしまうという問題があった。  [0013] This error becomes a problem in the prior art. In the prior art, the frequency variable clock source is controlled based on the value calculated from the difference between the packet transmission interval of the master device and the packet reception interval of the slave device. Therefore, an error below the above resolution occurs every time a knot is received, and this error is accumulated. If errors are accumulated, the total time stamp value from the start of synchronization on the slave side will deviate from the total time stamp value on the master side. Such a total time stamp difference cannot be determined by a conventional control method using a packet interval. Since errors are accumulated in each of the plurality of slave devices, the total time stamp value is shifted among the plurality of slave devices. As a result, there was a problem that the expansion and contraction of the audio delay time existed in multiple slave devices. Furthermore, there is a problem that the difference in delay time causes a difference in audio output time between a plurality of slave devices.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0014] 本発明は、上記の背景の下でなされたものであり、その目的は、音声の遅延時間の 伸縮を低減し、受信装置間での音声出力時間差を最小限におさえることが可能なク ロック同期システム及び方法を提供することにある。 Problems to be solved by the invention [0014] The present invention has been made under the above-described background, and its object is to reduce the expansion and contraction of the delay time of the sound and to minimize the difference in the sound output time between the receiving devices. It is to provide a clock synchronization system and method.
[0015] また、本発明の目的は、外乱要素のあるネットワーク環境においても受信装置間で の音声出力時間差を最小限におさえることが可能なクロック同期システム及び方法を 提供することにある。 [0015] It is another object of the present invention to provide a clock synchronization system and method capable of minimizing a difference in audio output time between receiving apparatuses even in a network environment having disturbance elements.
課題を解決するための手段  Means for solving the problem
[0016] 本発明のクロック同期システムは、ネットワークを介して音声伝送を行う主装置と遠 隔装置との間のクロック同期を、同期パケットを使用して行うシステムであり、主装置 は、クロック源力 タイムスタンプ情報を生成するタイムスタンプ生成部と、タイムスタン プ情報が埋め込まれた同期パケットをネットワークに送信するパケット送信部とを備え 、遠隔装置は、ネットワークから同期パケットを受信するパケット受信部と、同期バケツ ト内に含まれるタイムスタンプ情報より同期開始力 の累計のタイムスタンプ値である 主装置累計タイプスタンプ値 Toを算出する主装置累計タイムスタンプ算出部と、周 波数可変制御が可能なクロック源力 タイムスタンプ情報を抽出し同期開始力 の累 計のタイムスタンプ値である遠隔装置累計タイムスタンプ値 Tiを算出する遠隔装置累 計タイムスタンプ算出部と、周波数可変制御が可能なクロック源の周波数を、主装置 累計タイムスタンプ値 Toと遠隔装置累計タイムスタンプ値 Tiの差分に基づいて補正 する補正演算部と、を備えている。  The clock synchronization system of the present invention is a system that uses a synchronization packet to perform clock synchronization between a main apparatus that performs audio transmission via a network and a remote apparatus, and the main apparatus includes a clock source A time stamp generating unit that generates time stamp information and a packet transmitting unit that transmits a synchronization packet in which the time stamp information is embedded to the network, and the remote device includes a packet receiving unit that receives the synchronization packet from the network, The main unit cumulative time stamp calculation unit that calculates the main unit total type stamp value To, which is the total time stamp value of the synchronization start force, from the time stamp information included in the synchronization bucket, and a clock capable of variable frequency control Source time stamp information is extracted, and the total time of remote device is the time stamp value of the synchronous start force. The remote device cumulative time stamp calculation unit that calculates the time stamp value Ti and the frequency of the clock source capable of variable frequency control are corrected based on the difference between the main device cumulative time stamp value To and the remote device cumulative time stamp value Ti. A correction calculation unit.
[0017] 本発明の別の態様は、ネットワークを介して音声伝送を行う主装置と遠隔装置との 間のクロック同期を、同期パケットを使用して行うクロック同期方法であり、この方法で は、主装置は、クロック源力 タイムスタンプ情報を生成するタイムスタンプ生成し、タ ィムスタンプ情報が埋め込まれた同期パケットをネットワークに送信し、遠隔装置は、 ネットワークから同期パケットを受信し、同期パケット内に含まれるタイムスタンプ情報 より同期開始力ゝらの累計のタイムスタンプ値である主装置累計タイプスタンプ値 Toを 算出し、周波数可変制御が可能なクロック源力 タイムスタンプ情報を抽出し同期開 始からの累計のタイムスタンプ値である遠隔装置累計タイムスタンプ値 Tiを算出し、 周波数可変制御が可能なクロック源の周波数を、主装置累計タイムスタンプ値 Toと 遠隔装置累計タイムスタンプ値 Tiの差分に応じて補正する。 [0017] Another aspect of the present invention is a clock synchronization method that uses a synchronization packet to synchronize clocks between a main device and a remote device that perform voice transmission via a network. The master unit generates the time stamp information to generate the clock source time stamp information, and transmits the synchronization packet in which the time stamp information is embedded to the network, and the remote unit receives the synchronization packet from the network and is included in the synchronization packet. Calculates the main device cumulative type stamp value To, which is the cumulative time stamp value of the synchronization start force from the time stamp information that is generated, extracts the clock source power time stamp information that allows variable frequency control, and accumulates from the start of synchronization. The remote device cumulative time stamp value Ti, which is the time stamp value of the clock, is calculated and the frequency of the clock source capable of variable frequency control is calculated. The number, and the main apparatus cumulative time stamp value To Correct according to the difference of the remote device cumulative time stamp value Ti.
[0018] 本発明の別の態様は、ネットワークを介して音声伝送を行うシステムに設けられ、主 装置力も受信した同期パケットを使用してクロック同期を行う遠隔装置であり、この装 置は、主装置のクロック源から生成されたタイムスタンプ情報が埋め込まれた同期パ ケットをネットワーク力 受信するパケット受信部と、同期パケット内に含まれるタイムス タンプ情報より同期開始からの累計のタイムスタンプ値である主装置累計タイプスタ ンプ値 Toを算出する主装置累計タイムスタンプ算出部と、遠隔装置側の周波数可変 制御が可能なクロック源力 タイムスタンプ情報を抽出し同期開始力 の累計のタイ ムスタンプ値である遠隔装置累計タイムスタンプ値 Tiを算出する遠隔装置累計タイム スタンプ算出部と、周波数可変制御が可能なクロック源の周波数を、主装置累計タイ ムスタンプ値 Toと遠隔装置累計タイムスタンプ値 Tiの差分に基づいて補正する補正 演算部と、を備えている。 [0018] Another aspect of the present invention is a remote device that is provided in a system that performs voice transmission via a network and that performs clock synchronization using a synchronization packet that has also received the main device power. The packet receiving unit that receives the synchronization packet in which the time stamp information generated from the clock source of the device is embedded, and the time stamp information included in the synchronization packet are the time stamp values accumulated from the start of synchronization. The main unit cumulative time stamp calculation unit that calculates the unit total type stamp value To and the clock source power capable of variable frequency control on the remote unit side Extract the time stamp information and the remote time stamp value is the cumulative time stamp value of the synchronization start power Remote device cumulative time stamp calculation unit that calculates device cumulative time stamp value Ti, and a clock that can be controlled with variable frequency. The frequency of the source, and a, a correction operation unit for correcting, based on the difference of the main apparatus cumulative timestamp value To and the remote device cumulative time stamp value Ti.
以下に説明するように、本発明には他の態様が存在する。したがって、この発明の 開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発 明の範囲を制限することは意図していない。  As described below, there are other aspects of the present invention. Accordingly, this disclosure is intended to provide some aspects of the invention and is not intended to limit the scope of the invention described and claimed herein.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は、本発明の実施の形態におけるクロック同期システムを示すブロック図 [図 2]図 2は、クロック同期システムを備えた音声伝送システムのブロック図  FIG. 1 is a block diagram showing a clock synchronization system according to an embodiment of the present invention. FIG. 2 is a block diagram of an audio transmission system equipped with a clock synchronization system.
[図 3A]図 3Aは、ハース効果の概要を説明するための図  [Figure 3A] Figure 3A is a diagram for explaining the outline of the Haas effect.
[図 3B]図 3Bは、ハース効果の概要を説明するための図  [Figure 3B] Figure 3B is a diagram for explaining the outline of the Haas effect.
[図 4]図 4は、音声伝送システムを避難誘導放送に応用した例を示す図  [FIG. 4] FIG. 4 is a diagram showing an example in which the audio transmission system is applied to evacuation guidance broadcasting.
[図 5]図 5は、音声伝送システムでドルビーデジタル 5. 1チャンネルの音響放送を遠 隔地から複数地点へ放送する実施例を示す図  [FIG. 5] FIG. 5 is a diagram showing an embodiment in which a Dolby Digital 5.1 channel acoustic broadcast is broadcast from a distant place to multiple points in an audio transmission system.
[図 6]図 6は、クロック同期システムにおけるタイムスタンプ値の推移を示すための図 [図 7]図 7は、クロック同期システムにおける同期パケット送受信の概要を示すための 図  [Fig. 6] Fig. 6 is a diagram for showing the transition of the time stamp value in the clock synchronization system. [Fig. 7] Fig. 7 is a diagram for showing an overview of synchronization packet transmission and reception in the clock synchronization system.
[図 8]図 8は、クロック同期システムにおける周波数可変クロック源の設定誤差を示す ための図 [図 9A]図 9 Aは、クロック同期を実施した際の誤差を示すための図 [Fig.8] Fig.8 is a diagram to show the setting error of the frequency variable clock source in the clock synchronization system [Fig. 9A] Fig. 9A is a diagram to show the error when clock synchronization is performed.
[図 9B]図 9Bは、クロック同期を実施した際のタイムスタンプ値推移を示すための図 [図 10]図 10は、遅延を含むパケットが到着したときの処理の概要を示すための図 [図 11]図 11は、タイムスタンプ値差分が閾値を超えたときの処理の概要を示すため の図  [Fig. 9B] Fig. 9B is a diagram for showing the time stamp value transition when clock synchronization is performed. [Fig. 10] Fig. 10 is a diagram for showing an outline of processing when a packet including a delay arrives. [Fig. 11] Fig. 11 is a diagram for showing an overview of the processing when the timestamp value difference exceeds the threshold.
[図 12]図 12は、従来のクロック同期システムを示すための図  [FIG. 12] FIG. 12 is a diagram for showing a conventional clock synchronization system.
符号の説明  Explanation of symbols
[0020] 10 クロック同期システム(同期手段)  [0020] 10 clock synchronization system (synchronization means)
11 マスター装置  11 Master device
12 スレーブ装置  12 Slave device
13, 34, 35 ネットワーク  13, 34, 35 network
31 音源  31 sound source
32 スピーカー  32 Speaker
33 音声送受信装置  33 Audio transceiver
41 音声达信ユニット  41 Voice delivery unit
42 音声受信ユニット  42 Audio reception unit
44 ドルビーデジタル 5. 1チャンネル空間  44 Dolby Digital 5. 1 channel space
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は 発明を限定するものではない。代わりに、発明の範囲は添付の請求の範囲により規 定される。  [0021] A detailed description of the present invention will be described below. However, the following detailed description and the accompanying drawings do not limit the invention. Instead, the scope of the invention is defined by the appended claims.
[0022] 本発明のクロック同期システムは、ネットワークを介して音声伝送を行う主装置と遠 隔装置との間のクロック同期を、同期パケットを使用して行うシステムであり、主装置 は、クロック源力 タイムスタンプ情報を生成するタイムスタンプ生成部と、タイムスタン プ情報が埋め込まれた同期パケットをネットワークに送信するパケット送信部とを備え 、遠隔装置は、ネットワークから同期パケットを受信するパケット受信部と、同期バケツ ト内に含まれるタイムスタンプ情報より同期開始力 の累計のタイムスタンプ値である 主装置累計タイプスタンプ値 Toを算出する主装置累計タイムスタンプ算出部と、周 波数可変制御が可能なクロック源力 タイムスタンプ情報を抽出し同期開始力 の累 計のタイムスタンプ値である遠隔装置累計タイムスタンプ値 Tiを算出する遠隔装置累 計タイムスタンプ算出部と、周波数可変制御が可能なクロック源の周波数を、主装置 累計タイムスタンプ値 Toと遠隔装置累計タイムスタンプ値 Tiの差分に基づいて補正 する補正演算部と、を備えている。 The clock synchronization system of the present invention is a system that uses a synchronization packet to perform clock synchronization between a main apparatus that performs audio transmission via a network and a remote apparatus, and the main apparatus includes a clock source A time stamp generating unit that generates time stamp information and a packet transmitting unit that transmits a synchronization packet in which the time stamp information is embedded to the network, and the remote device includes a packet receiving unit that receives the synchronization packet from the network, A master unit cumulative time stamp calculation unit that calculates a master unit cumulative type stamp value To, which is a cumulative time stamp value of the synchronization start force, from the time stamp information included in the synchronization bucket; Clock source power capable of variable wave number control Time stamp information is extracted, and the remote device cumulative time stamp calculation unit for calculating the remote device cumulative time stamp value Ti, which is the time stamp value of the synchronous start power, and frequency variable control And a correction calculation unit that corrects the frequency of the clock source capable of being corrected based on the difference between the main device accumulated time stamp value To and the remote device accumulated time stamp value Ti.
[0023] この構成により、同期開始時力 のタイムスタンプ (To, Ti)を参照することにより、ト 一タルのタイムスタンプがどれだけ離れて ヽるかを監視しながら、クロック源の周波数 の制御が行われる。したがって、周波数可変クロック源を制御するたびに発生する誤 差 (すなわち、本来設定したい値と分解能による切捨てを経て実際に設定される値と の差分によって発生する誤差)については、誤差が蓄積されていくことはない。そのと き到着した 1パケット分の誤差だけが制御に含まれることになる。この 1パケット分の誤 差は、トータルのタイムスタンプの差分にほとんど影響しない。このようにして、マスタ 一装置とスレーブ装置のタイムスタンプ値の差分を最小限におさえることができ、スレ ーブ装置間での音声出力時間差を最小限におさえることができる。  [0023] With this configuration, it is possible to control the frequency of the clock source while monitoring the distance of the total time stamp by referring to the time stamp (To, Ti) of the synchronization start time. Is done. Therefore, for errors that occur each time the frequency variable clock source is controlled (that is, errors that occur due to the difference between the value that you originally want to set and the value that is actually set after truncation by the resolution), the error is accumulated. Never go. Only the error for one packet that arrives is included in the control. This one-packet error has little effect on the total timestamp difference. In this way, the difference between the time stamp values of the master device and the slave device can be minimized, and the difference in the audio output time between the slave devices can be minimized.
[0024] また、補正演算部は、周波数可変制御が可能なクロック源の周波数を制御する制 御値 Pを、主装置累計タイムスタンプ値 Toと遠隔装置累計タイムスタンプ値 Tiの差分 (To— Ti)と、差分 (To— Ti)が連続して片方向へ傾倒した度合いに基づいて決定 するように構成されてよい。  [0024] Further, the correction calculation unit obtains the control value P for controlling the frequency of the clock source capable of variable frequency control as the difference between the main device cumulative time stamp value To and the remote device cumulative time stamp value Ti (To-Ti ) And the difference (To-Ti) may be determined based on the degree of continuous tilting in one direction.
[0025] ここで、「傾倒」は、差分 (To— Ti)が 0からずれることであり、つまり、正または負に なることを意味する。また、「傾倒」は Toに対して Tiが大きい方カゝ小さい方のどちらか ずれることでもある。傾倒の度合いは、典型的には、下記のように傾倒の回数 (連続 傾倒回数)で表される。  [0025] Here, "tilt" means that the difference (To-Ti) deviates from 0, that is, becomes positive or negative. In addition, “tilt” means that Ti is larger or smaller than To. The degree of tilt is typically expressed as the number of tilts (number of consecutive tilts) as follows.
[0026] この構成により、タイムスタンプの差分が片方向へ傾倒した度合いに基づいてクロッ ク周波数を制御する。これにより、差分が発生したときに、発生した差分とは逆方向へ 向けて、差分をより急速に引き戻し低減する制御を働力せることができる。このため、 タイムスタンプの差分が大きく広がることを防ぐことができ、スレーブ装置間での音声 出力時間差を安定して最小限に保つことができる。  With this configuration, the clock frequency is controlled based on the degree to which the time stamp difference is tilted in one direction. As a result, when a difference occurs, it is possible to operate a control that pulls back and reduces the difference more rapidly in the direction opposite to the generated difference. For this reason, it is possible to prevent the time stamp difference from spreading greatly, and to stably keep the audio output time difference between slave devices to a minimum.
[0027] また、補正演算部は、制御値 Pを、 P = a * (To— Ti) +cの算出式に従い決定して よぐ定数 aは固定的な定数であってよぐ変動係数 cは差分 (To— Ti)が連続して片 方向へ傾倒した度合いに比例して変動する値であってょ 、。 [0027] Further, the correction calculation unit determines the control value P according to the calculation formula of P = a * (To-Ti) + c. The wiggle constant a is a fixed constant and the variability coefficient c is a value that fluctuates in proportion to the degree to which the difference (To-Ti) is continuously tilted in one direction.
[0028] この構成により、変動係数 cを使用し、タイムスタンプの差分が片方向へ傾倒した度 合いに比例して変動係数 cを変化させる。これにより、差分が発生したときに、発生し た差分とは逆方向へ向けて、差分をより急速に引き戻す制御を働かせることができる 。このため、タイムスタンプの差分が大きく広がることを防ぐことができ、スレーブ装置 間での音声出力時間差を安定して最小限に保つことができる。また、このときに使用 する定数 aの値は固定的な定数である。定数 aの値を大きく設定すると、タイムスタン プの差分が時間の経過とともに 0を境に密に上下振動する制御が働く。また、定数 a の値を小さく設定すると、タイムスタンプ値の差分が 0を境になだらかに上下振動する 制御が働く。こうした現象を考慮して定数 aが設定され、そして、上述のように変動係 数 cを用いてタイムスタンプの差分に応じた好適な制御を行うことができる。  [0028] With this configuration, the variation coefficient c is used, and the variation coefficient c is changed in proportion to the degree that the time stamp difference is tilted in one direction. As a result, when a difference occurs, it is possible to operate a control for pulling back the difference more rapidly in the direction opposite to the generated difference. For this reason, it is possible to prevent the time stamp difference from spreading greatly, and to stably keep the audio output time difference between slave devices to a minimum. The value of constant a used at this time is a fixed constant. If the constant a is set to a large value, the time stamp difference will be controlled to vibrate up and down densely from 0 as time passes. If the constant a is set to a small value, the time stamp value difference gently swings up and down at 0. The constant a is set in consideration of such a phenomenon, and suitable control according to the time stamp difference can be performed using the variation coefficient c as described above.
[0029] また、補正演算部は、変動係数 cを、差分 (To— Ti)が連続して傾倒する回数に応 じて決定してよい。より詳細には、補正演算部は、変動係数 cを、(To— Ti) >0が N 回連続した場合に、 c = (前回の c) +kと定め、(To— Ti) < 0が N回連続した場合に 、 c= (前回の c)—kと定めるように構成されてよい。ここで、 Nは所定の回数でよぐ k は所定の定数でよい。  [0029] Further, the correction calculation unit may determine the variation coefficient c according to the number of times the difference (To-Ti) continuously tilts. More specifically, the correction calculation unit determines that the coefficient of variation c is c = (previous c) + k when (To-Ti)> 0 continues N times, and (To-Ti) <0 It may be configured to define c = (previous c) −k when N times in succession. Here, N is a predetermined number of times and k may be a predetermined constant.
[0030] このような変動係数 cを用いることにより、例えば N = 3としたとき、タイムスタンプの 差分が 3回連続で To >Tiとなった場合、 cの値を増カロさせる。これにより、クロック源 の周波数を制御する値 Pが大きく設定され、スレーブ装置側の発振周波数が大きく 設定され、 Tiがより早く Toに近づくように制御される。一方、タイムスタンプの差分が 3 回連続で Toく Tiとなった場合、 cの値を減少させる。これにより、クロック源の周波数 を制御する値 Pが小さく設定され、スレーブ装置側の発振周波数が小さく設定され、 Tiがより早く Toに近づくように制御される。これらの手法により、タイムスタンプの差分 の広力 ^をより早く検知し、差分が小さくなる方向へと差分を引き戻し低減することが できる。ここで使用する kの値については、値 k力大きいほど、タイムスタンプの差分を より早く逆方向へ引き戻すような制御が働くが、その分、逆方向に傾倒したときの差 分もまた大きくなる。一方、値 kが小さいほど、時間の経過とともにタイムスタンプの差 分をゆっくりと逆方向へ引き戻すような制御が働くが、逆方向に傾倒したときの差分 は小さくすませることが可能である。こうした現象を考慮して値 kが設定され、そして、 上述のように変動係数 Cを用いてタイムスタンプの差分に応じた好適な制御を行うこと ができる。 [0030] By using such a variation coefficient c, for example, when N = 3, if the difference in time stamps becomes To> Ti three times in succession, the value of c is increased. As a result, the value P for controlling the frequency of the clock source is set to a large value, the oscillation frequency on the slave device side is set to a large value, and Ti is controlled so as to approach To earlier. On the other hand, if the time stamp difference is To and Ti for 3 consecutive times, the value of c is decreased. As a result, the value P for controlling the frequency of the clock source is set small, the oscillation frequency on the slave device side is set small, and Ti is controlled so as to approach To earlier. By these methods, the time difference of the time stamp ^ can be detected earlier, and the difference can be pulled back and reduced. As for the value of k used here, the greater the value k, the greater the control that pulls back the time stamp difference in the reverse direction, but the difference when tilted in the reverse direction also increases. . On the other hand, the smaller the value k, the difference in timestamps over time. The control works to slowly pull the minute in the reverse direction, but the difference when tilting in the reverse direction can be reduced. Considering such a phenomenon, the value k is set, and a suitable control according to the time stamp difference can be performed using the coefficient of variation C as described above.
[0031] また、補正演算部は、変動係数 cを、 (To-Ti) =0の場合は、 c= (前回設定した P )と定めるように構成されてよ 、。  [0031] The correction calculation unit may be configured to determine the coefficient of variation c as c = (P set last time) when (To-Ti) = 0.
[0032] このように、 (To-Ti) =0のときは、マスター装置およびスレーブ装置のタイムスタ ンプ値がほぼ一致している。このような状態では、補正演算部は、前回設定したクロッ ク源の周波数を制御する値 Pをそのまま変化させない。これにより、暫くの期間は同 期確立状態を保つことができる。しかし、この状態が続いた場合も、マスター装置の 周波数とスレーブ装置の周波数が長時間にわたり厳密に一致することは考えにくい。 そのため、いずれはどちらかの方向に差分が生じるはずである。その場合は、再び同 様に本発明で示すクロック同期制御が実施され、マスター装置とスレーブ装置の周 波数を一致させることができる。このようにして、マスター装置とスレーブ装置の好適 な同期制御を行うことができる。  [0032] Thus, when (To-Ti) = 0, the time stamp values of the master device and the slave device are substantially the same. In such a state, the correction calculation unit does not change the value P that controls the frequency of the clock source set last time. As a result, the synchronization establishment state can be maintained for a while. However, even if this condition continues, it is unlikely that the frequency of the master device and the frequency of the slave device will be exactly the same over a long period of time. Therefore, the difference should occur in either direction. In that case, the clock synchronization control shown in the present invention is again performed in the same manner, and the frequencies of the master device and the slave device can be matched. In this way, suitable synchronization control between the master device and the slave device can be performed.
[0033] また、主装置は、同期パケットを IPマルチキャストまたは IPブロードキャストで送信す るように構成されてよい。  [0033] Further, the main apparatus may be configured to transmit the synchronization packet by IP multicast or IP broadcast.
[0034] この構成により、システム内に多数のスレーブ装置が存在する場合でも、 IPマルチ キャストまたは IPブロードキャストで同期パケットを送信することにより、ネットワーク上 の負荷を一定に保ったまま、容易にすべてのスレーブ装置が同期パケットを受信す ることが可能である。システム上にスレーブ装置が新たに追加参入された場合などに おいても、特に新たな負荷が増えることなぐネットワークトラフィックを一定に保ったま まクロック同期を開始することができる。  [0034] With this configuration, even when there are a large number of slave devices in the system, by transmitting synchronization packets by IP multicast or IP broadcast, it is easy to keep all the loads on the network constant. Slave devices can receive synchronization packets. Even when a new slave device is added to the system, clock synchronization can be started while keeping the network traffic constant, especially without increasing the new load.
[0035] また、主装置は、同期パケットを一定間隔で送信してよぐ遠隔装置は、主装置から 受信される同期パケットの到着予定時刻を監視し、パケット到着予定時刻から所定の 範囲を超えて到着した同期パケットを、周波数可変制御が可能なクロック源の周波数 を制御する処理の対象から除外してょ ヽ。  [0035] In addition, the main device transmits the synchronization packet at regular intervals, and the remote device monitors the estimated arrival time of the synchronization packet received from the main device, and exceeds the predetermined range from the estimated packet arrival time. Remove the synchronization packets that arrived from the target of the processing that controls the frequency of the clock source that can be controlled with variable frequency.
[0036] ここで、所定の範囲を超えるとは、所定の範囲よりも前または後に同期パケットが到 着することをいう。 Here, exceeding the predetermined range means that the synchronization packet arrives before or after the predetermined range. To wear.
[0037] この構成により、次パケット到着予定時刻が監視され、許容される範囲 Wの範囲外 に到着したパケットは無効となる。したがって、大きな到着遅延を含んだパケットを排 除することができる。無効となったパケットの回は同期制御は行われないが、次回到 着した正常パケットにより容易に補正可能である。したがって、クロック同期に大きな 影響はない。このように正確なタイムスタンプのみを参照することにより、ネットワーク などの外乱要素による同期精度の低下を防ぐことができる。  [0037] With this configuration, the scheduled arrival time of the next packet is monitored, and packets that arrive outside the allowable range W are invalidated. Therefore, packets containing large arrival delays can be eliminated. Synchronous control is not performed for invalidated packets, but can be easily corrected by normal packets that arrive next time. Therefore, there is no significant effect on clock synchronization. By referencing only accurate time stamps in this way, it is possible to prevent a decrease in synchronization accuracy due to disturbance factors such as a network.
[0038] また、遠隔装置は、差分 (To— Ti)が所定の閾値 Rを超えた場合に、それまで蓄積 していた主装置累計タイムスタンプ値 Toと遠隔地累計タイムスタンプ値 Tiをリセットし 、新たにタイムスタンプ値の蓄積を再開してよい。  [0038] When the difference (To-Ti) exceeds a predetermined threshold value R, the remote device resets the accumulated cumulative time stamp value To and the accumulated remote time stamp value Ti that have been accumulated so far. The accumulation of time stamp values may be resumed.
[0039] 上記のリセット処理は、差分 (To— Ti)が正負のどちら側に大きくなつて閾値を超え たときにも行われてよいことはもちろんである。  [0039] Of course, the above-described reset processing may be performed when the difference (To-Ti) increases to either the positive or negative side and exceeds the threshold value.
[0040] この構成により下記のような利点が得られる。同期開始直後に取得する基準となる タイムスタンプ値に大きな遅延が含まれると、スレーブ装置はその誤った値を使って 同期制御を行ってしまい、正常な同期制御が行えないという問題が存在する。この点 を解決するために、上記構成をとることが好適である。上記構成により、初回に取得 する基準となるタイムスタンプ値が閾値を超える遅延を含んでいる場合でも、以降に 正常な値のタイムスタンプ値を一度でも受信すれば差分値が閾値オーバーとなる。 そして、新たに正確な値のタイムスタンプ値を取得し直すことができる。このようにして 、ネットワークなどの外乱要素による遅延への耐性をさらに強化することが可能となる  [0040] This configuration provides the following advantages. If the reference time stamp value acquired immediately after the start of synchronization contains a large delay, the slave device performs synchronization control using the incorrect value, and there is a problem that normal synchronization control cannot be performed. In order to solve this problem, it is preferable to adopt the above configuration. With the above configuration, even when the reference time stamp value acquired for the first time includes a delay exceeding the threshold, if the normal time stamp value is received even once, the difference value exceeds the threshold. Then, a new accurate time stamp value can be acquired again. In this way, it becomes possible to further enhance the tolerance to delays caused by disturbance factors such as the network.
[0041] 以上説明したように、本発明によれば、スレーブ装置間での音声出力時間差を低 減することができる。 [0041] As described above, according to the present invention, it is possible to reduce the audio output time difference between slave devices.
[0042] また、システム中に存在するスレーブ装置数が増加しても、ネットワークトラフィック の負荷を変化させずにクロック同期を行うことができる。  [0042] Further, even if the number of slave devices existing in the system increases, clock synchronization can be performed without changing the load of network traffic.
[0043] さらに WANのような広域ネットワークを介した場合でも、大きな揺らぎを含むバケツ ト情報を排除し、常に正確なタイムスタンプ値のみを参照することができ、クロック同 期精度が高いクロック同期システムを提供することができる。 [0044] 以下、本発明の実施の形態に係るクロック同期システムについて、図面を用いて説 明する。本実施の形態のクロック同期システムは、図 2に示すような音声伝送システム に設けられ、音声送受信装置 33間でのクロック同期を実現する。 [0043] Furthermore, even when a wide area network such as a WAN is used, the clock synchronization system with high clock synchronization accuracy can be obtained by eliminating the bucket information including large fluctuations and always referring to only the accurate time stamp value. Can be provided. Hereinafter, a clock synchronization system according to an embodiment of the present invention will be described with reference to the drawings. The clock synchronization system of the present embodiment is provided in an audio transmission system as shown in FIG. 2, and realizes clock synchronization between audio transmission / reception devices 33.
[0045] 図 2の音声伝送システムは、音源 31、スピーカー 32、音声送受信装置 33、構内 L AN34及び WAN35を備えている。音声送受信装置 33は、構内 LAN34および WA N35を介して音声データの送受信が可能な装置であり、音声データをストリーム化し ネットワーク上を伝送させるために音声データをパケットィ匕する機能を有して 、る。ま た、信号源として音源 31が音声送受信装置 33に接続され、放音手段としてスピーカ 一 32が音声送受信装置 33に接続される。  The audio transmission system in FIG. 2 includes a sound source 31, a speaker 32, an audio transmission / reception device 33, a local LAN 34, and a WAN 35. The voice transmission / reception device 33 is a device capable of sending and receiving voice data via the local LAN 34 and WAN 35, and has a function of packetizing voice data in order to stream the voice data and transmit it over the network. . In addition, the sound source 31 is connected to the sound transmitting / receiving device 33 as a signal source, and the speaker 32 is connected to the sound transmitting / receiving device 33 as sound emitting means.
[0046] このようなシステムの用途としては、主として多地点間放送が想定される。この放送 のために、オフィスビル、多店舗商業施設、駅、空港等の建物内での音声通信が実 現される。音源 31としては、例えば、 BGMや非常用放送音源を放送するための、 C Dプレーヤー、 MDプレーヤー、 ICプレーヤー、リモコンマイクなどが接続される。ス ピーカー 32としては、例えば、天井埋め込みスピーカー、吊り下げスピーカーなどの 各種形態のスピーカーが接続される。また、 WAN35を介する構成は、インターネット のような広域ネットワークを介した別々の LAN間での音声伝送を行うことを可能とす る。  [0046] As an application of such a system, multipoint broadcasting is mainly assumed. For this broadcast, voice communication is realized in buildings such as office buildings, multi-store commercial facilities, stations, and airports. As the sound source 31, for example, a CD player, an MD player, an IC player, a remote control microphone, etc. for broadcasting BGM and emergency broadcast sound source are connected. As the speaker 32, for example, various types of speakers such as a ceiling-embedded speaker and a hanging speaker are connected. In addition, the configuration via the WAN 35 enables voice transmission between different LANs via a wide area network such as the Internet.
[0047] 上記のような放送用途に加え、スピーカー 32側でハース効果を用いた音場制御を 実現することにより、さらに高機能なサービスの提供が可能となる。  [0047] In addition to the above-mentioned broadcasting use, by realizing sound field control using the Haas effect on the speaker 32 side, it is possible to provide a more sophisticated service.
[0048] 図 3Aおよび図 3Bは、ハース効果の現象を説明するための図である。ハース効果と は、人間の聴覚の特性を利用して音に方向感を持たせる現象である。複数のスピー カーから音が出力されると、人間は、最初に届いた音を発したスピーカーの方向で音 が鳴っていると認識する。受音点力も等距離にある 2つのスピーカーから同じ音を出 力している場合には、一方のスピーカ一音にディレイをかけると、人間は他方のスピ 一力の方向力も音が聞こえているように認識する。図 3Aの例では、スピーカー A、 B が同時に音を発すると、人間は、近くのスピーカー Bで音が鳴っていると認識する。し かし、図 3Bに示されるように、近くのスピーカー Bの音が遠くのスピーカー Aより遅れ て届くようにディレイがかけられると、人間は遠くのスピーカー Aが鳴っていると認識す る。 FIG. 3A and FIG. 3B are diagrams for explaining the phenomenon of the Haas effect. The Haas effect is a phenomenon that gives a sense of direction to sound using the characteristics of human hearing. When sound is output from multiple speakers, humans recognize that the sound is coming in the direction of the speaker that emitted the first sound. When the same sound is being output from two speakers with the same receiving point power, if one speaker is delayed, humans can hear the direction force of the other speaker. To recognize. In the example of Fig. 3A, if speakers A and B emit sound at the same time, humans recognize that the sound is being heard from nearby speaker B. However, as shown in Figure 3B, if a delay is applied so that the sound from nearby speaker B arrives later than far away speaker A, humans recognize that far away speaker A is sounding. The
[0049] この現象を利用して意図的に音に方向感を出す制御を行うことにより、音場制御を 利用したサービスを提供することができる。具体的には、オフィスビル構内における避 難誘導放送や、劇場やコンサートホールにおける音響設計、ドルビーデジタル 5. 1 チャンネルの音響放送などの各種サービスを、ネットワークを介して実現することがで きる。  [0049] A service using sound field control can be provided by intentionally controlling the direction of sound using this phenomenon. Specifically, various services such as evacuation guidance broadcasting in office buildings, acoustic design in theaters and concert halls, and Dolby Digital 5.1 channel acoustic broadcasting can be realized via the network.
[0050] 図 4は、オフィスビル構内における避難誘導放送を使用した実施例を示す図である 。放送室側には音声送信ユニット 41が配置され、受信側には複数の音声受信ュ-ッ ト 42が配置されている。音声送信ユニット 41と複数の音声受信ユニット 42は構内 LA N34を介して配置されている。音声送信ユニット 41は音源と音声送信装置を含む。 音声受信ユニット 42は、音声受信装置と、ビル構内の通路天井に備えられたスピー カーを含む。  [0050] FIG. 4 is a diagram showing an embodiment using evacuation guidance broadcasting in an office building. An audio transmission unit 41 is arranged on the broadcast room side, and a plurality of audio reception units 42 are arranged on the reception side. The voice transmission unit 41 and the plurality of voice reception units 42 are arranged via the campus lan 34. The audio transmission unit 41 includes a sound source and an audio transmission device. The sound receiving unit 42 includes a sound receiving device and a speaker provided on the aisle ceiling of the building.
[0051] いま、避難誘導放送を開始するとき、複数の音声受信ユ ット 42 (スピーカー)に対 し、各々個別に遅延時間を設定する。これにより、避難させたい方向力 音が聞こえ てくると人間に認識させることができる。この場合、それぞれのスピーカ一力も出力さ れる音声ストリームは、同じ内容のデータである。しかし、出力の遅延時間が複数のス ピーカー間で異なる。避難誘導を実現するためには、避難させたい方向の遅延時間 を小さく設定して、その方向のスピーカーの音を最も早く人間の耳に届ける必要があ る。  [0051] Now, when evacuation guidance broadcasting is started, delay times are individually set for a plurality of audio receiving units 42 (speakers). This allows humans to recognize when they hear the direction force sound they want to evacuate. In this case, the audio streams that are also output by each speaker are data having the same content. However, the output delay time is different among multiple speakers. In order to realize evacuation guidance, it is necessary to set the delay time in the direction of evacuation to be small and to deliver the sound of the speaker in that direction to the ear of human earliest.
[0052] 図 5は、ドルビーデジタル 5. 1チャンネルの音響放送を遠隔地力 複数地点へ放 送した実施例を示す図である。放送室側には音声送信ユニット 41が配置されており 、音声送信ユニット 41は音源と音声送受信装置を含む。また、構内 LAN34を介して 、複数のドルビーデジタル 5. 1チャンネル空間 44が配置されている。各 5. 1チャンネ ル空間内には、複数のスピーカーが、 5. 1チャンネルに対応して存在している。各ス ピーカーが音声受信装置を備えている。ドルビーデジタル 5. 1チャンネルの場合は、 避難誘導放送とは異なり、同一 5. 1チャンネル空間内で同一ストリームが放送される ことよりも、映画などで使用される効果音を提供するためにそれぞれのチャンネルで 独立した音声が放送される機会が多!、。 [0053] ネットワークを介してこれらのサービスを実現するためには、外乱要素のあるネットヮ ーク上で音声データを伝送したときでも、スピーカ一間に存在する元々の音声出力 時間差を最小限に抑える必要がある。元々の音声出力時間差とは、ハース効果のデ ィレイを力けない状態での時間差である (性能値)。元々の音声出力時間差が小さく ないと、ディレイをかけたときにハース効果が上手く生じない。具体的には、スピーカ 一設置間隔を数メートル〜 10数メートルとした場合に、ハース効果を有効利用できる 音声出力時間差の限界値は 2ミリ秒と言われている。元々の音声出力時間差を最小 限におさえるためには、音声伝送システム内の送受信装置間でクロック同期が正確 に実現されて 、る必要がある。 FIG. 5 is a diagram showing an embodiment in which Dolby Digital 5.1 channel sound broadcasting is broadcast to a plurality of remote locations. An audio transmission unit 41 is arranged on the broadcast room side, and the audio transmission unit 41 includes a sound source and an audio transmission / reception device. In addition, a plurality of Dolby Digital 5.1 channel spaces 44 are arranged via the local area LAN 34. In each 5.1 channel space, there are multiple speakers corresponding to 5.1 channels. Each speaker is equipped with a voice receiver. In the case of Dolby Digital 5.1 channel, unlike evacuation-guided broadcasting, the same stream is broadcasted in the same 5.1 channel space to provide sound effects used in movies, etc. There are many opportunities to broadcast independent audio on the channel! ,. [0053] In order to realize these services via a network, even when audio data is transmitted over a network with disturbance factors, the original audio output time difference existing between the speakers is minimized. There is a need. The original audio output time difference is the time difference when performance of the hearth effect is not emphasized (performance value). If the original audio output time difference is not small, the Haas effect will not occur well when delay is applied. Specifically, it is said that the limit value of the audio output time difference that can make effective use of the Haas effect when the installation interval of speakers is several meters to several tens of meters is 2 milliseconds. In order to minimize the original audio output time difference, clock synchronization must be accurately realized between the transmitting and receiving devices in the audio transmission system.
[0054] 以下、本発明の実施形態に係るクロック同期システムについて、図面を参照しなが ら説明する。このシステムは、上記のサービスの提供を可能とすることを目的としてい る。具体的には、このシステムは、ハース効果を利用したサービスに好適に適用可能 である。また、このシステムは、 5. 1チャンネル放送等の音場制御に好適に適用可能 である。  Hereinafter, a clock synchronization system according to an embodiment of the present invention will be described with reference to the drawings. The purpose of this system is to enable the provision of the above services. Specifically, this system can be suitably applied to services using the Haas effect. In addition, this system can be suitably applied to sound field control such as 5.1 channel broadcasting.
[0055] 図 1は、本実施の形態に係るクロック同期システム 10の構成を示すブロック図であ る。図 1に示すように、クロック同期システム 10は、マスター装置 11とスレーブ装置 12 を備え、これらマスター装置 11及びスレーブ装置 12はネットワーク 13を介して接続さ れる。  FIG. 1 is a block diagram showing a configuration of clock synchronization system 10 according to the present exemplary embodiment. As shown in FIG. 1, the clock synchronization system 10 includes a master device 11 and a slave device 12, and the master device 11 and the slave device 12 are connected via a network 13.
[0056] 図 1のクロック同期システム 10は、図 2の音声伝送システムの構成によって実現され る。マスター装置 11は、図 2の複数の音声送受信装置 33の一つで構成される。スレ ーブ装置 12も、図 2の複数の音声送受信装置 33の一つで構成される。また、ネットヮ ーク 13は、図 2の LAN34及び WAN35と対応する。  [0056] The clock synchronization system 10 in FIG. 1 is realized by the configuration of the audio transmission system in FIG. The master device 11 is composed of one of the plurality of audio transmission / reception devices 33 in FIG. The slave device 12 is also composed of one of the plurality of audio transmission / reception devices 33 in FIG. The network 13 corresponds to the LAN 34 and the WAN 35 in FIG.
[0057] 図 1では、一つのスレーブ装置 12が示されている。実際には、複数のスレーブ装置 12が設けられてよい。すなわち、図 2の複数の音声送受信装置 33の各々力 スレー ブ装置 12として機能してよい。これら複数のスレーブ装置 12は同様の機能を有し、 同様の動作によってクロック同期を実現する。そこで、以下の説明では、一つのスレ ーブ装置 12に着目して、本実施の形態のクロック同期システム 10を説明する。  In FIG. 1, one slave device 12 is shown. In practice, a plurality of slave devices 12 may be provided. That is, each of the plurality of voice transmitting / receiving devices 33 in FIG. The plurality of slave devices 12 have the same function and realize clock synchronization by the same operation. Therefore, in the following description, the clock synchronization system 10 of the present embodiment will be described by focusing on one slave device 12.
[0058] また、図 1のマスター装置 11及びスレーブ装置 12は、それぞれ、本発明の主装置 及び遠隔装置と対応して ヽる。 Further, the master device 11 and the slave device 12 in FIG. 1 are respectively the main device of the present invention. And respond to remote devices.
[0059] 図 1において、マスター装置 11としては、システム内で予め 1台の装置が設定され ている。マスター装置 11は、ネットワーク 13を介してスレーブ装置 12に対して、自身 のタイムスタンプ情報が入ったパケットを送信する機能を備える。  In FIG. 1, as the master device 11, one device is set in advance in the system. The master device 11 has a function of transmitting a packet containing its own time stamp information to the slave device 12 via the network 13.
[0060] 本実施の形態のクロック同期システム 10は、クロック同期用のタイムスタンプ情報を 音声ストリームに付加するタイプではない。クロック同期システム 10では、システム内 に存在する 1台のマスター装置 11が、独自のクロック同期パケットを送信する。これは 、 1つの装置に複数の音声チャンネルが存在する場合を考慮しているためである。仮 に、複数チャンネルを所有するスレーブ装置力 別々の音声ストリームに埋め込まれ たタイムスタンプ情報カゝらそれぞれクロック同期を行うとする。この場合、プロセッサを はじめとするすべての系統に関し、音声チャンネルの数の構成が必要となるため、構 成が効果的とは 、えな 、。 1台の設定されたマスター装置 11のクロックにしたが 、す ベてのスレーブ装置 12および装置中に存在するすべての音声チャンネルを同期さ せる構成が有効であるといえる。また、 1つの装置に複数の音声チャンネルを実装す ることは、システム内に存在する装置数を削減でき、コスト面、システム構築面からも 効果的な構成を提供することができる。このような観点で、同期パケットが有利に用い られる。  The clock synchronization system 10 according to the present embodiment is not a type that adds time stamp information for clock synchronization to an audio stream. In the clock synchronization system 10, one master device 11 existing in the system transmits its own clock synchronization packet. This is because one device considers the case where there are multiple audio channels. Suppose that the slave device that owns multiple channels performs clock synchronization for each time stamp information embedded in separate audio streams. In this case, it is necessary to configure the number of audio channels for all systems including the processor, so the configuration is effective. Although the clock of one set master device 11 is used, it can be said that a configuration in which all the slave devices 12 and all the audio channels existing in the device are synchronized is effective. In addition, mounting multiple audio channels in one device can reduce the number of devices existing in the system, and can provide an effective configuration from the viewpoint of cost and system construction. From this point of view, synchronous packets are advantageously used.
[0061] また、本実施の形態のクロック同期は、システム全体を一つのクロックに従属させる ことを目的とするので、マスター装置 11は必ずしも音声送信装置に限定される必要 はない。音声伝送システム 10内において、マスター装置 11以外の装置は、すべてス レーブ装置 12となる。したがってスレーブ装置 12は、システム上に 1台以上存在し、 ネットワーク 13を介してマスター装置 11からの同期パケットを受信する機能を備える 。ネットワーク 13としては、例えば IPプロトコルの通信が可能である LANまたは WAN 等を使用することができる。  [0061] In addition, since the clock synchronization of the present embodiment aims to make the entire system subordinate to one clock, the master device 11 is not necessarily limited to the voice transmission device. In the audio transmission system 10, all the devices other than the master device 11 become the slave device 12. Therefore, one or more slave devices 12 exist in the system and have a function of receiving a synchronization packet from the master device 11 via the network 13. As the network 13, for example, a LAN or WAN capable of IP protocol communication can be used.
[0062] マスター装置 11は、クロック源 14、タイムスタンプ抽出部 15及びパケット送信部 16 を備える。クロック源 14は、例えば、水晶発振子などシステムの基準クロックを生成可 能な素子により構成される。タイムスタンプ抽出部 15は、クロック源 14力ゝらのクロックを 抽出するインターフェースと、得られたクロックの周波数力 カウントしたタイムスタン プ情報を後段のパケット送信部 16に排出するインターフェースとを備える。パケット送 出部 16は、タイムスタンプ抽出部 15からのタイムスタンプ情報を得るためのインター フェースと、上記情報をパケットィ匕しネットワーク 13上へ排出するためのインターフエ 一スとを備える。パケットィ匕の方法としては、例えば IPプロトコルに基づいた通信を行 うことができる。さらに IPマルチキャストを使用可能なプロトコルを実装することが好適 である。また、 IPブロードキャストが用いられてもよい。これにより、ネットワーク上の負 荷を一定に保ったまま、特定の複数のスレーブ装置によるパケット受信が可能となる The master device 11 includes a clock source 14, a time stamp extraction unit 15, and a packet transmission unit 16. The clock source 14 is composed of an element capable of generating a system reference clock such as a crystal oscillator. The time stamp extraction unit 15 includes an interface for extracting clocks of 14 clock sources, and a time stamp that counts the frequency power of the obtained clocks. And an interface for discharging the packet information to the packet transmission unit 16 at the subsequent stage. The packet sending unit 16 includes an interface for obtaining the time stamp information from the time stamp extracting unit 15 and an interface for packetizing the information and discharging it onto the network 13. As a packet method, for example, communication based on the IP protocol can be performed. It is also preferable to implement a protocol that can use IP multicast. IP broadcast may also be used. This makes it possible to receive packets by multiple specific slave devices while keeping the load on the network constant.
[0063] 一方、スレーブ装置 12は、パケット受信部 17、マスター装置基準タイムスタンプ格 納部 18、マスター装置累計タイムスタンプ算出部 19、周波数可変クロック源 20、スレ ーブ装置基準タイムスタンプ格納部 21、スレーブ装置累計タイムスタンプ算出部 22 及び演算補正部 23を備える。 On the other hand, the slave device 12 includes a packet receiving unit 17, a master device reference time stamp storage unit 18, a master device cumulative time stamp calculation unit 19, a frequency variable clock source 20, and a slave device reference time stamp storage unit 21. The slave device cumulative time stamp calculation unit 22 and the calculation correction unit 23 are provided.
[0064] パケット受信部 17は、ネットワーク 13からクロック同期パケットを受信するインターフ エースを備える。パケット受信部 17は、例えば、 IPマルチキャストパケットを受信可能 なプロトコルを備えたインターフェースを使用する。これにより、複数のスレーブ装置 1 2がマスター装置 11からのクロック同期パケットを一定の負荷で受信することができる 。また、 IPブロードキャストでパケットが受信されてもよい。  The packet receiving unit 17 includes an interface that receives a clock synchronization packet from the network 13. The packet receiving unit 17 uses, for example, an interface having a protocol capable of receiving an IP multicast packet. As a result, the plurality of slave devices 12 can receive the clock synchronization packet from the master device 11 with a constant load. A packet may be received by IP broadcast.
[0065] マスター装置基準タイムスタンプ格納部 18は、クロック同期開始時の初回に受信し たマスター装置のタイムスタンプ情報を基準値として格納しておくメモリで構成されて いる。このタイムスタンプ値は、以降クロック同期を行うにあたりマスター装置のタイム スタンプ累算値を算出するための基準情報となる。  The master device reference time stamp storage unit 18 is configured by a memory that stores the time stamp information of the master device received at the first time when clock synchronization starts as a reference value. This time stamp value becomes reference information for calculating the accumulated time stamp value of the master device when performing clock synchronization thereafter.
[0066] マスター装置累計タイムスタンプ算出部 19は、 2回目以降に受信したマスター装置 のタイムスタンプ情報と、マスター装置基準タイムスタンプ格納部 18より得たクロック 同期開始時の基準タイムスタンプ情報とを参照し、そして、両スタンプ情報の差分を 算出し、これにより、クロック同期開始時からのマスター装置のトータルタイムスタンプ を演算補正部 23へ排出するインターフェースを有する。  [0066] The master device cumulative time stamp calculation unit 19 refers to the master device time stamp information received from the second time onward, and the reference time stamp information at the start of clock synchronization obtained from the master device reference time stamp storage unit 18. Then, it has an interface for calculating the difference between the two stamp information, and thereby discharging the total time stamp of the master device from the start of clock synchronization to the arithmetic correction unit 23.
[0067] 周波数可変クロック源 20は、スレーブ装置 12内におけるクロック源であり、クロック 周波数を変化させることができる素子で構成される。クロック源 20は、例えば、電圧の 変動によって周波数を変化させることが可能な水晶発振子などで構成することができ る。 [0067] The frequency variable clock source 20 is a clock source in the slave device 12, and is composed of an element capable of changing the clock frequency. The clock source 20 is, for example, a voltage It can be composed of a crystal oscillator whose frequency can be changed by fluctuation.
[0068] スレーブ装置基準タイムスタンプ格納部 21は、クロック同期が開始し、初めて同期 パケットを受信したときのスレーブ装置のタイムスタンプ情報を基準値として格納して おくメモリで構成される。このタイムスタンプ値は、以降クロック同期を行うにあたりスレ ーブ装置のタイムスタンプ累算値を算出するための基準情報となる。  The slave device reference time stamp storage unit 21 is configured by a memory that stores, as a reference value, time stamp information of the slave device when clock synchronization starts and a synchronization packet is received for the first time. This time stamp value is used as reference information for calculating the accumulated time stamp value of the slave device in the subsequent clock synchronization.
[0069] スレーブ装置累計タイムスタンプ算出部 22は、 2回目以降に受信したスレーブ装置 のタイムスタンプ情報と、スレーブ装置基準タイムスタンプ格納部 21より得たクロック 同期開始時の基準タイムスタンプ情報とを参照し、そして、両タイムスタンプ情報の差 分を算出し、これにより、クロック同期開始時力ものスレーブ装置のトータルタイムスタ ンプを演算補正部 23へ排出するインターフェースを有する。  [0069] The slave device cumulative time stamp calculation unit 22 refers to the time stamp information of the slave device received after the second time and the reference time stamp information at the start of clock synchronization obtained from the slave device reference time stamp storage unit 21. Then, it has an interface for calculating the difference between the time stamp information and discharging the total time stamp of the slave device having the power at the start of clock synchronization to the arithmetic correction unit 23.
[0070] 演算補正部 23は、マスター装置累計タイムスタンプ算出部 21からのタイムスタンプ 値 Toを抽出するためのインターフェースと、スレーブ装置累計タイムスタンプ算出部 22からのタイムスタンプ値 Tiを抽出するためのインターフェースを有する。演算補正 部 23は、整数値に基づいて周波数可変クロック源 20の周波数を調整する。そして、 演算補正部 20は、上記 2つのタイムスタンプ値の差分値 (To— Ti)カゝら算出された値 に基づき周波数可変クロック源 20を制御することで、スレーブ装置 12の累計タイムス タンプ値をマスター装置 11の累計タイムスタンプ値に近付ける。  [0070] The calculation correction unit 23 extracts an interface for extracting the time stamp value To from the master device cumulative time stamp calculation unit 21 and a time stamp value Ti from the slave device total time stamp calculation unit 22 Has an interface. The arithmetic correction unit 23 adjusts the frequency of the frequency variable clock source 20 based on the integer value. Then, the arithmetic correction unit 20 controls the frequency variable clock source 20 based on the value calculated by the difference value (To-Ti) between the two time stamp values, thereby obtaining the cumulative time stamp value of the slave device 12. To the cumulative time stamp value of master device 11.
[0071] このようにして、本実施の形態のクロック同期システムは、マスター装置およびスレ ーブ装置の累計タイムスタンプ値の差分を最小限に抑えられ、さらに、このことによつ て、スレーブ装置間の音声出力時間差を常に最小限に抑えることができる。上記の マスター装置の累計タイムスタンプ値及びスレーブ装置の累計タイムスタンプ値は、 それぞれ、本発明の主装置累計タイムスタンプ値 To及び遠隔装置累計タイムスタン プ値 Tiに対応する。  In this manner, the clock synchronization system according to the present embodiment can minimize the difference between the accumulated time stamp values of the master device and the slave device. The audio output time difference between the two can always be minimized. The cumulative time stamp value of the master device and the cumulative time stamp value of the slave device correspond to the main device cumulative time stamp value To and the remote device cumulative time stamp value Ti of the present invention, respectively.
[0072] 以下、実施形態の動作について説明する。ここでは、スレーブ装置 12がネットヮー ク 13を介してマスター装置 11のクロックに従属する動作について、各々の図を用い て説明する。  Hereinafter, the operation of the embodiment will be described. Here, the operation of the slave device 12 depending on the clock of the master device 11 via the network 13 will be described with reference to the respective drawings.
[0073] 音声出力時間差を常に最小限におさえた状態を維持するためには、図 6に示すよ うに、マスター装置 11とスレーブ装置 12の累計タイムスタンプ値を常時近 、値とする ように、スレーブ装置 12のクロック源を制御することが有効である。このような制御が、 本実施の形態のクロック同期システム 10とそのクロック同期方法により実現される。 [0073] Figure 6 shows how to keep the audio output time difference at a minimum. Thus, it is effective to control the clock source of the slave device 12 so that the accumulated time stamp values of the master device 11 and the slave device 12 are always close to each other. Such control is realized by the clock synchronization system 10 and its clock synchronization method of the present embodiment.
[0074] スレーブ装置 12が同期パケットをはじめて受信した場合、そのパケットに含まれるタ ィムスタンプ情報力 以降に行うクロック同期制御の基準値としてマスター装置基準タ ィムスタンプ格納部 18にメモリされる。これと同時に、スレーブ装置 10は、該スレーブ 装置 10の周波数可変クロック源 20から取得した基準タイムスタンプ値をスレーブ装 置基準タイムスタンプ格納部 21にメモリする。以降、マスター装置 11は定期間隔で 同期パケットを送信するので、スレーブ装置 12も定期的に同期パケットを受信する。 When the slave device 12 receives a synchronization packet for the first time, it is stored in the master device reference time stamp storage unit 18 as a reference value for clock synchronization control performed after the time stamp information included in the packet. At the same time, the slave device 10 stores the reference time stamp value acquired from the frequency variable clock source 20 of the slave device 10 in the slave device reference time stamp storage unit 21. Thereafter, since the master device 11 transmits the synchronization packet at regular intervals, the slave device 12 also periodically receives the synchronization packet.
[0075] ただし、ネットワークなどの外乱要素の発生によりパケット到着が通常より遅れること があり得る。このことを考慮し、スレーブ装置 12は、図 10に示すように、パケットが到 着したら、その到着時点力も次パケット到着予定時刻を監視する。そして、スレーブ 装置 12は、該当する次パケットが、許容される範囲 Wの外に到着するか否かを判定 する。本実施の形態では、図示のように、許容範囲は、次パケットの到着予定時刻を 基準として定められており、具体的には、到着予定時刻 ±Wに設定されている。そし て、スレーブ装置 12は、許容範囲 Wの外にて到着したパケットを無効とする(これは、 パケットが所定の範囲を前側または後側に超えて到着した場合に相当する)。一方、 許容範囲 W内に到着したパケットは、音声出力受信差に影響を及ぼさないと判断さ れる。そして、この正常で有効なパケットが、クロック同期制御の対象として処理される [0075] However, packet arrival may be delayed more than usual due to the occurrence of disturbance factors such as a network. In consideration of this, as shown in FIG. 10, when the packet arrives, the slave device 12 monitors the estimated arrival time of the next packet as well. Then, the slave device 12 determines whether or not the corresponding next packet arrives outside the allowable range W. In the present embodiment, as shown in the figure, the allowable range is determined based on the estimated arrival time of the next packet, and specifically, is set to the estimated arrival time ± W. Then, the slave device 12 invalidates the packet that has arrived outside the allowable range W (this corresponds to the case where the packet has arrived beyond the predetermined range to the front side or the rear side). On the other hand, packets arriving within the allowable range W are determined not to affect the voice output reception difference. This normal and valid packet is processed as a target of clock synchronization control.
[0076] このようなパケット無効処理により、無効となったパケットの回は同期制御が行われ ない。しかし、次回到着する正常なパケットによって容易に補正が可能であるため、 パケット無効化の影響は殆ど無 、。 [0076] By such packet invalidation processing, synchronization control is not performed for a packet that is invalidated. However, since it can be easily corrected by normal packets that arrive next time, there is almost no effect of packet invalidation.
[0077] 上記処理により、正常に到着したパケットが、クロック同期制御の対象となる。ここで[0077] With the above processing, a packet that has arrived normally is subject to clock synchronization control. here
、初回パケット受信時力もの累計タイムスタンプ値 To (マスター装置)、 Ti (スレーブ装 置)は、時間軸上では図 7のように表現される。 The cumulative time stamp values To (master device) and Ti (slave device) for the initial packet reception are expressed as shown in Fig. 7 on the time axis.
[0078] スレーブ装置 12の演算補正部 23は、周波数可変クロック源 20に対して電圧制御 を行うことで、発振周波数を制御する。本実施の形態では、演算補正部 23が、マスタ 一装置 11の累計タイムスタンプ値 Toとスレーブ装置 12の累計タイムスタンプ値 Tiの 差分に応じて発振周波数を制御する。補正演算部 23は整数値に基づいて周波数を 調整するように構成されている。この制御により、スレーブ装置 12の累計タイムスタン プ値 Tiがマスター装置 11の累計タイムスタンプ値 Toに近づけられる。 The arithmetic correction unit 23 of the slave device 12 controls the oscillation frequency by performing voltage control on the frequency variable clock source 20. In the present embodiment, the calculation correction unit 23 is the master The oscillation frequency is controlled according to the difference between the cumulative time stamp value To of one device 11 and the cumulative time stamp value Ti of the slave device 12. The correction calculation unit 23 is configured to adjust the frequency based on the integer value. By this control, the cumulative time stamp value Ti of the slave device 12 is brought close to the cumulative time stamp value To of the master device 11.
[0079] より詳細には、演算補正部 23は、下記の演算式により算出される制御値 Pから電圧 制御を行う。 aは、固定的な定数 (係数)であり、 cは、後述する変動係数である。  More specifically, the calculation correction unit 23 performs voltage control from the control value P calculated by the following calculation formula. a is a fixed constant (coefficient), and c is a coefficient of variation described later.
[0080] P = a水(To— Ti) + c  [0080] P = a water (To—Ti) + c
[0081] ここで、図 8は、周波数可変クロック源 20への制御を行うときの誤差を示している。  Here, FIG. 8 shows an error when controlling the frequency variable clock source 20.
図 8に示すように、周波数可変クロック源 20には設定分解能が存在する。そのため、 周波数クロック源 20の制御では、分解能に起因して誤差が生じることに注意しなけれ ばならない。この誤差は、本来設定したい値と、実際に周波数可変クロック源に設定 される値との差分による誤差である。この誤差は各パケットの処理のたびに生じる。従 来技術では、この誤差が累積してしまい、累計のタイプスタンプ値がマスター装置と スレーブ装置で大きくずれてしまう。また、スレーブ装置間で累積誤差が異なり、累積 タイムスタンプ値もスレーブ間でずれてしまう。そのため、クロック同期の精度が低下 し、スレーブ装置間での音声出力時間差が増大する。  As shown in FIG. 8, the frequency variable clock source 20 has a set resolution. Therefore, it must be noted that the control of the frequency clock source 20 causes an error due to the resolution. This error is an error due to the difference between the value that is originally set and the value that is actually set to the frequency variable clock source. This error occurs every time each packet is processed. In the conventional technology, this error accumulates, and the accumulated stamp value greatly deviates between the master device and the slave device. Also, the accumulated error differs between slave devices, and the accumulated time stamp value also deviates between slaves. As a result, the accuracy of clock synchronization decreases, and the difference in audio output time between slave devices increases.
[0082] しかし、本実施の形態では、同期開始からの累積タイムスタンプ値を参照して制御 が行われる。したがって、図 9Aのように、誤差が生じても、そのとき到着した 1パケット 分の誤差のみが含まれるだけである。この誤差は、累計のタイムスタンプ値の差分へ 殆ど影響しない。したがって、マスター装置 11と各々のスレーブ装置 12の累計のタイ プスタンプ値を近づけることができる。その結果、複数のスレーブ装置 12の間でもタ ィムスタンプ値を近づけることができる。  However, in the present embodiment, control is performed with reference to the accumulated time stamp value from the start of synchronization. Therefore, as shown in Fig. 9A, even if an error occurs, only the error for one packet that arrives at that time is included. This error has little effect on the difference in cumulative timestamp values. Accordingly, the cumulative type stamp values of the master device 11 and each slave device 12 can be brought close to each other. As a result, the time stamp values can be made closer between the plurality of slave devices 12.
[0083] また、上記の定数 aは固定的な定数である。定数 aの値を大きく設定すると、タイムス タンプの差分が時間の経過とともに 0を境に密に上下振動する制御が働く。また、定 数 aの値を小さく設定するとタイムスタンプ値の差分が 0を境になだらかに上下振動す る制御が働く。こうした現象を考慮して定数 aが設定され、これにより、タイムスタンプ の差分に応じた好適な制御を行うことができる。  [0083] The constant a is a fixed constant. When the constant a is set to a large value, the time stamp difference is controlled to vibrate up and down densely from 0 as time passes. In addition, if the value of the constant a is set to a small value, the control that the vertical difference of the time stamp value gently oscillates with 0 as the boundary works. In consideration of such a phenomenon, the constant a is set, and thus it is possible to perform suitable control according to the time stamp difference.
[0084] また、上記の演算式に示されるように、本実施の形態では、変動係数 cが周波数制 御に使用される。変動係数 cが、 a * (To— Ti) (タイムスタンプ値の差分に応じた値) に加算されて、これにより制御値 Pが算出される。変更係数 cは、タイムスタンプの差 分が片方向へ傾倒した度合いに比例して変化する。このように変動係数 cの値を変 ィ匕させることにより、図 9Bに示すように、発生した差分を急速に逆方向へ引き戻し低 減する効果を得ることができ、タイムスタンプの差分が大きく広がることを防ぐことがで きる。このため、タイムスタンプの差分が大きく広がることを防ぐことができ、スレーブ装 置間での音声出力時間差を安定して最小限に保つことができる。 [0084] Further, as shown in the above arithmetic expression, in the present embodiment, the variation coefficient c is a frequency control. Used for control. The coefficient of variation c is added to a * (To—Ti) (a value corresponding to the difference between the time stamp values), whereby the control value P is calculated. The change factor c changes in proportion to the degree to which the time stamp difference is tilted in one direction. By changing the value of the coefficient of variation c in this way, as shown in FIG. 9B, it is possible to obtain the effect of rapidly pulling back the generated difference in the reverse direction and reducing it, and the time stamp difference is greatly expanded. Can be prevented. For this reason, it is possible to prevent the time stamp difference from spreading greatly, and to stably keep the audio output time difference between the slave devices to a minimum.
[0085] 上記のように、変動係数 cは、タイムスタンプの差分が片方向へ傾倒した度合いに 比例して変化する。「傾倒」は、差分 (To— Ti)が 0からずれることであり、つまり、正ま たは負になることを意味し、また、「傾倒」は Toに対して Tiが大きい方力 vj、さい方のど ちらかずれることでもある。傾倒の度合いは、典型的には、下記のように傾倒の回数( 連続傾倒回数)で表される。この場合、補正演算部 23は、変動係数 cを、差分 (To— Ti)が連続して傾倒する回数に応じて決定する。より具体的には、補正演算部 23は、 変動係数 cを、(To— Ti) >0が N回連続した場合に、 c= (前回の c) +kと定める。ま た、補正演算部 23は、変動係数 cを、(To— Ti)く 0が N回連続した場合に、 c= (前 回の c) kと定める。ここで、 Nは所定の回数であり、 kは所定の定数である。  [0085] As described above, the variation coefficient c changes in proportion to the degree to which the time stamp difference is tilted in one direction. “Tilt” means that the difference (To—Ti) deviates from 0, that is, it becomes positive or negative. “Tilt” means that the force vj, where Ti is larger than To, It is also a difference between the two. The degree of tilt is typically represented by the number of tilts (number of consecutive tilts) as follows. In this case, the correction calculation unit 23 determines the variation coefficient c according to the number of times the difference (To-Ti) is continuously tilted. More specifically, the correction calculation unit 23 determines the coefficient of variation c as c = (previous c) + k when (To−Ti)> 0 continues N times. In addition, the correction calculation unit 23 determines the coefficient of variation c as c = (previous c) k when (To—Ti) く 0 continues N times. Here, N is a predetermined number of times, and k is a predetermined constant.
[0086] 例えば、 N = 3であるとする。タイムスタンプの差分が 3回連続で To >Tiとなった場 合、 cの値を増加させることでクロック源の周波数を制御する値 Pが大きく設定され、ス レーブ装置側の発振周波数が大きく設定され、 Tiがより早く Toに近づくように制御さ れる。一方、タイムスタンプの差分が 3回連続で Toく Tiとなった場合、 cの値を減少さ せることでクロック源の周波数を制御する値 Pが小さく設定され、スレーブ装置側の発 振周波数が小さく設定され、 Tiがより早く Toに近づくように制御される。これらの手法 によりタイムスタンプの差分の広がりをより早く検知し、差分が小さくなる方向へと差分 を引き戻すことができる。  For example, assume that N = 3. If the difference in time stamps is To> Ti for three consecutive times, the value P that controls the frequency of the clock source by increasing the value of c is set to a large value, and the oscillation frequency on the slave device side is set to a large value. And Ti is controlled to get closer to To sooner. On the other hand, if the difference in time stamps becomes To and Ti for 3 consecutive times, the value P that controls the frequency of the clock source is reduced by decreasing the value of c, and the oscillation frequency on the slave device side is reduced. It is set small and Ti is controlled to get closer to To sooner. By using these methods, the spread of the time stamp difference can be detected more quickly, and the difference can be pulled back in the direction of decreasing the difference.
[0087] ここで使用する kの値については、値 kが大きいほどタイムスタンプの差分をより早く 逆方向へ引き戻すような制御が働くが、その分、逆方向に傾倒したときの差分もまた 大きくなる。一方、値 kが小さいほど時間の経過とともにタイムスタンプの差分をゆつく りと逆方向へ引き戻すような制御が働くが、逆方向に傾倒したときの差分は小さくすま せることが可能である。こうした現象を考慮して値 kが適当に設定される。そして、上 述のように変動係数 Cを用いてタイムスタンプの差分に応じた好適な制御を行うことが できる。 [0087] Regarding the value of k used here, the larger the value k, the faster the time stamp difference is pulled back in the reverse direction, but the difference when tilted in the reverse direction is also larger accordingly. Become. On the other hand, as the value k is smaller, control is performed so that the time stamp difference is gradually pulled back in the reverse direction over time, but the difference when tilted in the reverse direction is reduced. Is possible. Considering this phenomenon, the value k is set appropriately. As described above, it is possible to perform suitable control according to the time stamp difference using the coefficient of variation C.
[0088] また、補正演算部 23は、変動係数 cを、 (To-Ti) =0の場合は、 c= (前回設定し た P)と定める。この処理により、下記のように同期制御が行われる。  Further, the correction calculation unit 23 determines the variation coefficient c as c = (P set last time) when (To-Ti) = 0. By this processing, synchronous control is performed as follows.
[0089] (To-Ti) =0のときは、マスター装置およびスレーブ装置のタイムスタンプ値がほ ぼ一致している。このような状態では、補正演算部 23は、前回設定したクロック源の 周波数を制御する値 Pをそのまま変化させない。これにより、暫くの期間は同期確立 状態を保つことができる。しかし、この状態が続いた場合も、マスター装置の周波数と スレーブ装置の周波数が長時間にわたり厳密に一致することは考えにくい。そのため 、いずれはどちらかの方向に差分が生じるはずである。その場合は、再び同様に本 発明で示すクロック同期制御が実施され、マスター装置とスレーブ装置の周波数を一 致させることができる。このようにして、マスター装置とスレーブ装置の好適な同期制 御を行うことができる。  [0089] When (To-Ti) = 0, the time stamp values of the master device and the slave device are almost the same. In such a state, the correction calculation unit 23 does not change the value P that controls the frequency of the previously set clock source. As a result, the synchronization establishment state can be maintained for a while. However, even if this condition continues, it is unlikely that the frequency of the master device and the frequency of the slave device will be exactly the same over a long period of time. Therefore, the difference should occur in either direction. In that case, the clock synchronization control shown in the present invention is again performed in the same manner, and the frequencies of the master device and the slave device can be matched. In this way, suitable synchronization control between the master device and the slave device can be performed.
[0090] 以上のようにして、マスター装置 11が同期パケットを送信し、スレーブ装置 12が同 期パケットを受信して、クロック源に対して同期制御を行う。マスター装置 11およびス レーブ装置 12はこの動作を繰り返していくことで累計のタイムスタンプ値を合わせて いく。  As described above, master device 11 transmits a synchronization packet, slave device 12 receives the synchronization packet, and performs synchronization control on the clock source. By repeating this operation, the master device 11 and the slave device 12 adjust the cumulative time stamp value.
[0091] なお、上記の実施の形態では、マスター装置 11とスレーブ装置 12が 1対 1であった 。しかし、実際の構成は 1対多でよい。他のスレーブ装置 12は同様の構成を有し、同 様の動作を行う。このようにして、複数のスレーブ装置 12間での音声出力時間差を 最小限に維持することを実現する。  In the above embodiment, the master device 11 and the slave device 12 are in a one-to-one relationship. However, the actual configuration may be one-to-many. The other slave devices 12 have the same configuration and perform the same operation. In this way, it is possible to maintain the audio output time difference between the plurality of slave devices 12 to a minimum.
[0092] また、図 11は、スレーブ装置 12が初回に受信したパケットに大きな遅延が含まれて いる場合の対処方法について示した図である。初回に取得される基準のタイムスタン プ値に大きな遅延が含まれていたとする。この場合、システムは、その誤った基準タイ ムスタンプ値を使ったまま同期制御を継続してしまう。この点を解決するために、本実 施の形態では、所定の閾値 Rが設定されている。スレーブ装置 12は、タイムスタンプ の差分 (To— Ti)が閾値 Rを超えた場合に、それまで蓄積していた累計のタイムスタ ンプ値を初期化し、新たな累計タイムスタンプ値の蓄積を再開する。より詳細には、マ スター装置 11の累計タイムスタンプ値 Toと、スレーブ装置 12の累計タイムスタンプ値 Tiがリセットされ、新たにタイムスタンプ値の蓄積が再開される。 Further, FIG. 11 is a diagram showing a coping method when a large delay is included in the packet received by the slave device 12 for the first time. Assume that the standard time stamp value acquired for the first time includes a large delay. In this case, the system continues synchronization control using the incorrect reference timestamp value. In order to solve this point, a predetermined threshold R is set in this embodiment. When the time stamp difference (To—Ti) exceeds the threshold value R, the slave device 12 accumulates the accumulated time status up to that point. Initialize the amplifier value and resume accumulating a new cumulative timestamp value. More specifically, the accumulated time stamp value To of the master device 11 and the accumulated time stamp value Ti of the slave device 12 are reset, and accumulation of the new time stamp value is resumed.
[0093] この構成により下記の利点が得られる。初回に取得され基準となるタイムスタンプ値 が閾値 Rを超える遅延を含んでいたとする。この場合、以降に正常な値のタイムスタ ンプ値が到着したときに、差分値 (To— Ti)が閾値オーバーとなり、新たな正確な値 のタイムスタンプ値を取り直すことができる。このようにして、ネットワークなどの外乱要 素による遅延への耐性をさらに強化することが可能となる。  This configuration provides the following advantages. Suppose that the first time stamp value that is acquired for the first time includes a delay exceeding the threshold value R. In this case, when a normal time stamp value arrives after that, the difference value (To-Ti) exceeds the threshold value, and a new accurate time stamp value can be obtained again. In this way, it is possible to further enhance resistance to delay caused by disturbance elements such as a network.
[0094] なお、上記の処理は、差分値 (To— Ti)が正負の側のどちら側で閾値を超えたとき にも行われてよいことはもちろんである。より詳細には、正の閾値と負の閾値が設定さ れ、どちらかの閾値を差分値が超えたときに上記処理が行われてよい。また、正の値 の閾値が設定され、差分値の絶対値が閾値と比較されてよい。  [0094] It should be noted that the above processing may be performed when the difference value (To-Ti) exceeds the threshold value on either the positive or negative side. More specifically, a positive threshold value and a negative threshold value are set, and the above process may be performed when the difference value exceeds either threshold value. Also, a positive threshold value may be set, and the absolute value of the difference value may be compared with the threshold value.
[0095] 以上のように、本実施の形態によるクロック同期システム又は方法を使用することに より、スレーブ装置間で音声出力時間差のない音声伝送システムを構築することが 可能である。  As described above, by using the clock synchronization system or method according to the present embodiment, it is possible to construct an audio transmission system with no audio output time difference between slave devices.
[0096] また、システム中に存在するスレーブ装置数が増加しても、ネットワークトラフィック の負荷を変化させずにクロック同期を行うことができる。  [0096] Even if the number of slave devices existing in the system increases, clock synchronization can be performed without changing the load of network traffic.
[0097] さらに WANのような広域ネットワークを介した場合でも、大きな揺らぎを含むバケツ ト情報を排除し、常に正確なタイムスタンプ値のみを参照することにより、クロック同期 精度の高 、音声伝送システムを提供することができる。  [0097] Further, even when a wide area network such as a WAN is used, the bucket information including large fluctuations is eliminated, and only an accurate time stamp value is always referred to, thereby enabling a voice transmission system with high clock synchronization accuracy. Can be provided.
[0098] そして、本実施の形態のクロック同期システムとそれを備えた音声伝送システムは、 遠隔地への放送や、多店舗商業施設などの多地点間放送システムの拡声放送と!/、 つた用途に適用できる。さらにカ卩えて、本実施の形態は、オフィスビル構内における 避難誘導放送、劇場やコンサートホールにおける音響設計、ドルビーデジタル 5. 1 チャンネルの音響放送など、ネットワークを介して音場制御を利用する各種サービス に適用することできる。  [0098] Then, the clock synchronization system and the audio transmission system including the clock synchronization system according to the present embodiment can be used for broadcasting to remote places and multi-point broadcasting systems such as multi-store commercial facilities! / Applicable to. In addition, this embodiment is a service that uses sound field control via a network, such as evacuation guidance broadcasting in office buildings, acoustic design in theaters and concert halls, and Dolby Digital 5.1 channel acoustic broadcasting. Can be applied to.
[0099] 以上に現時点で考えられる本発明の好適な実施の形態を説明した力 本実施の形 態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範 囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されてい る。 [0099] The power of explaining the preferred embodiment of the present invention considered at the present time. It will be understood that various modifications can be made to the present embodiment, and the true spirit and scope of the present invention can be understood. It is intended that the appended claims include all such variations that fall within the scope.
産業上の利用可能性 Industrial applicability
以上のように、本発明に力かるクロック同期システムは、クロック同期精度を高くする ことができ、例えば、音場制御等を行う音声伝送システム等のクロック同期システムと して有用である。  As described above, the clock synchronization system according to the present invention can increase the clock synchronization accuracy, and is useful as a clock synchronization system such as an audio transmission system that performs sound field control or the like.

Claims

請求の範囲 The scope of the claims
[1] ネットワークを介して音声伝送を行う主装置と遠隔装置との間のクロック同期を、同 期パケットを使用して行うクロック同期システムであって、  [1] A clock synchronization system that uses synchronous packets to synchronize clocks between a main device and a remote device that perform voice transmission over a network.
前記主装置は、  The main unit is
クロック源力 タイムスタンプ情報を生成するタイムスタンプ生成部と、  Clock source time stamp generation unit for generating time stamp information;
前記タイムスタンプ情報が埋め込まれた前記同期パケットを前記ネットワークに送信 するパケット送信部とを備え、  A packet transmission unit that transmits the synchronization packet in which the time stamp information is embedded to the network;
前記遠隔装置は、  The remote device is:
前記ネットワーク力 前記同期パケットを受信するパケット受信部と、  A packet receiver that receives the synchronization packet; and
前記同期パケット内に含まれる前記タイムスタンプ情報より同期開始力 の累計の タイムスタンプ値である主装置累計タイプスタンプ値 Toを算出する主装置累計タイム スタンプ算出部と、  A main device cumulative time stamp calculating unit that calculates a main device cumulative type stamp value To that is a cumulative time stamp value of the synchronization start power from the time stamp information included in the synchronization packet;
前記遠隔装置側の周波数可変制御が可能なクロック源力 タイムスタンプ情報を抽 出し同期開始からの累計のタイムスタンプ値である遠隔装置累計タイムスタンプ値 Ti を算出する遠隔装置累計タイムスタンプ算出部と、  A remote device cumulative time stamp calculating unit for extracting clock source power time stamp information capable of variable frequency control on the remote device side and calculating a remote device cumulative time stamp value Ti that is a cumulative time stamp value from the start of synchronization;
前記周波数可変制御が可能なクロック源の周波数を、前記主装置累計タイムスタン プ値 Toと前記遠隔装置累計タイムスタンプ値 Tiの差分に基づいて補正する補正演 算部と、  A correction arithmetic unit for correcting the frequency of the clock source capable of variable frequency control based on a difference between the main device accumulated time stamp value To and the remote device accumulated time stamp value Ti;
を備えたことを特徴とするクロック同期システム。  A clock synchronization system comprising:
[2] 前記補正演算部は、前記周波数可変制御が可能なクロック源の周波数を制御する 制御値 Pを、前記主装置累計タイムスタンプ値 Toと前記遠隔装置累計タイムスタンプ 値 Tiの差分 (To— Ti)と、前記差分 (To— Ti)が連続して片方向へ傾倒した度合い に基づいて決定することを特徴とする請求項 1に記載のクロック同期システム。  [2] The correction calculation unit controls the control value P for controlling the frequency of the clock source capable of variable frequency control as a difference between the main device accumulated time stamp value To and the remote device accumulated time stamp value Ti (To— 2. The clock synchronization system according to claim 1, wherein the clock synchronization system is determined based on a degree of Ti) and the difference (To-Ti) continuously tilted in one direction.
[3] 前記補正演算部は、前記制御値 Pを、 P = a * (To— Ti) +cの算出式に従い決定 し、定数 aは固定的な定数であり、変動係数 cは前記差分 (To— Ti)が連続して片方 向へ傾倒した度合いに比例して変動する値であることを特徴とする請求項 2に記載 のクロック同期システム。  [3] The correction calculation unit determines the control value P according to a calculation formula of P = a * (To—Ti) + c, where the constant a is a fixed constant and the variation coefficient c is the difference ( 3. The clock synchronization system according to claim 2, wherein To—Ti) is a value that varies in proportion to the degree of continuous tilting in one direction.
[4] 前記補正演算部は、前記変動係数 cを、前記差分 (To— Ti)が連続して傾倒する 回数に応じて決定することを特徴とする請求項 3に記載のクロック同期システム。 [4] The correction calculation unit tilts the variation coefficient c continuously with the difference (To-Ti). 4. The clock synchronization system according to claim 3, wherein the clock synchronization system is determined according to the number of times.
[5] 前記補正演算部は、前記変動係数 cを、(To— Ti) >0が N回連続した場合に、 c = [5] The correction calculation unit calculates the variation coefficient c when (To−Ti)> 0 continues N times, c =
(前回の c) +kと定め、(To— Ti) < 0が N回連続した場合に、 c= (前回の c)— kと定 めることを特徴とする請求項 4に記載のクロック同期システム。  5. The clock according to claim 4, wherein (previous c) + k is defined, and c = (previous c) —k when (To—Ti) <0 continues N times. Synchronous system.
[6] 前記補正演算部は、前記変動係数 cを、(To— Ti) =0の場合は、 c= (前回設定し た P)と定めることを特徴とする請求項 3に記載のクロック同期システム。 [6] The clock synchronization according to claim 3, wherein the correction calculation unit defines the variation coefficient c as c = (P set last time) when (To-Ti) = 0. system.
[7] 前記主装置は、前記同期パケットを IPマルチキャストまたは IPブロードキャストで送 信することを特徴とする請求項 1に記載のクロック同期システム。 7. The clock synchronization system according to claim 1, wherein the main device transmits the synchronization packet by IP multicast or IP broadcast.
[8] 前記主装置は、前記同期パケットを一定間隔で送信し、 [8] The main device transmits the synchronization packet at regular intervals,
前記遠隔装置は、前記主装置から受信される前記同期パケットの到着予定時刻を 監視し、パケット到着予定時刻から所定の範囲を超えて到着した前記同期パケットを The remote device monitors the estimated arrival time of the synchronization packet received from the main device, and detects the synchronization packet that has arrived beyond a predetermined range from the estimated packet arrival time.
、前記周波数可変制御が可能なクロック源の周波数を制御する処理の対象から除外 することを特徴とする請求項 7に記載のクロック同期システム。 8. The clock synchronization system according to claim 7, wherein the clock synchronization system is excluded from a processing target for controlling a frequency of a clock source capable of variable frequency control.
[9] 前記遠隔装置は、前記差分 (To— Ti)が所定の閾値 Rを超えた場合に、それまで 蓄積していた前記主装置累計タイムスタンプ値 Toと前記遠隔地累計タイムスタンプ 値 Tiをリセットし、新たにタイムスタンプ値の蓄積を再開することを特徴とする請求項 7 に記載のクロック同期システム。 [9] When the difference (To-Ti) exceeds a predetermined threshold R, the remote device uses the accumulated cumulative time stamp value To and the accumulated remote time stamp value Ti that have been accumulated so far. The clock synchronization system according to claim 7, wherein the clock synchronization system is reset and newly accumulates a time stamp value.
[10] ネットワークを介して音声伝送を行う主装置と遠隔装置との間のクロック同期を、同 期パケットを使用して行うクロック同期方法であって、 [10] A clock synchronization method for performing clock synchronization between a main apparatus and a remote apparatus that performs voice transmission via a network, using synchronization packets,
前記主装置は、  The main unit is
クロック源カゝらタイムスタンプ情報を生成するタイムスタンプ生成し、  Generate a time stamp to generate time stamp information from the clock source,
前記タイムスタンプ情報が埋め込まれた前記同期パケットを前記ネットワークに送信 し、  Sending the synchronization packet in which the time stamp information is embedded to the network;
前記遠隔装置は、  The remote device is:
前記ネットワーク力 前記同期パケットを受信し、  The network power receiving the synchronization packet;
前記同期パケット内に含まれる前記タイムスタンプ情報より同期開始力 の累計の タイムスタンプ値である主装置累計タイプスタンプ値 Toを算出し、  The main unit cumulative type stamp value To, which is the cumulative time stamp value of the synchronization start power, is calculated from the time stamp information included in the synchronous packet,
周波数可変制御が可能なクロック源力 タイムスタンプ情報を抽出し同期開始から の累計のタイムスタンプ値である遠隔装置累計タイムスタンプ値 Tiを算出し、 前記周波数可変制御が可能なクロック源の周波数を、前記主装置累計タイムスタン プ値 Toと前記遠隔装置累計タイムスタンプ値 Tiの差分に応じて補正することを特徴 とするクロック同期方法。 Clock source capable of variable frequency control Extracting time stamp information and starting synchronization The remote device cumulative time stamp value Ti, which is the cumulative time stamp value of the remote device, is calculated, and the frequency of the clock source capable of variable frequency control is calculated as the main device cumulative time stamp value To and the remote device cumulative time stamp value Ti. The clock synchronization method is characterized in that correction is performed according to the difference between the two.
ネットワークを介して音声伝送を行うシステムに設けられ、主装置から受信した同期 パケットを使用してクロック同期を行う遠隔装置であって、  A remote device that is provided in a system that performs voice transmission via a network and that performs clock synchronization using a synchronization packet received from a main device,
前記主装置のクロック源力 生成されたタイムスタンプ情報が埋め込まれた前記同 期パケットを前記ネットワーク力も受信するパケット受信部と、  A packet receiving unit for receiving the synchronization packet in which the generated time stamp information is embedded, and the network power;
前記同期パケット内に含まれる前記タイムスタンプ情報より同期開始力 の累計の タイムスタンプ値である主装置累計タイプスタンプ値 Toを算出する主装置累計タイム スタンプ算出部と、  A main device cumulative time stamp calculating unit that calculates a main device cumulative type stamp value To that is a cumulative time stamp value of the synchronization start power from the time stamp information included in the synchronization packet;
前記遠隔装置側の周波数可変制御が可能なクロック源力 タイムスタンプ情報を抽 出し同期開始からの累計のタイムスタンプ値である遠隔装置累計タイムスタンプ値 Ti を算出する遠隔装置累計タイムスタンプ算出部と、  A remote device cumulative time stamp calculating unit for extracting clock source power time stamp information capable of variable frequency control on the remote device side and calculating a remote device cumulative time stamp value Ti that is a cumulative time stamp value from the start of synchronization;
前記周波数可変制御が可能なクロック源の周波数を、前記主装置累計タイムスタン プ値 Toと前記遠隔装置累計タイムスタンプ値 Tiの差分に基づいて補正する補正演 算部と、  A correction arithmetic unit for correcting the frequency of the clock source capable of variable frequency control based on a difference between the main device accumulated time stamp value To and the remote device accumulated time stamp value Ti;
を備えたことを特徴とする遠隔装置。  A remote device characterized by comprising:
PCT/JP2006/319783 2005-10-05 2006-10-03 Clock synchronization system and method in audio transmission system WO2007040222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-291880 2005-10-05
JP2005291880A JP2007104347A (en) 2005-10-05 2005-10-05 Clock synchronization system and method of audio transmission system

Publications (1)

Publication Number Publication Date
WO2007040222A1 true WO2007040222A1 (en) 2007-04-12

Family

ID=37906263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319783 WO2007040222A1 (en) 2005-10-05 2006-10-03 Clock synchronization system and method in audio transmission system

Country Status (2)

Country Link
JP (1) JP2007104347A (en)
WO (1) WO2007040222A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037347A1 (en) * 2008-09-27 2010-04-08 华为技术有限公司 Time synchronizing method, device and system of master clock side and slave clock side in synchronous network
JP2010212945A (en) * 2009-03-10 2010-09-24 Nec Corp Receiving-side node for clock synchronization, method thereof and program thereof
CN101217330B (en) * 2008-01-02 2012-07-25 中兴通讯股份有限公司 A method and device for time synchronism calibration
JP2013520137A (en) * 2010-02-16 2013-05-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Rate-variable multicast transmission for clock distribution in packet networks
WO2023273601A1 (en) * 2021-06-29 2023-01-05 Oppo广东移动通信有限公司 Audio synchronization method, audio playback device, audio source, and storage medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035091A1 (en) 2007-09-14 2009-03-19 Nec Corporation Clock synchronization system, its method and program
WO2010058831A1 (en) 2008-11-20 2010-05-27 日本電気株式会社 Packet-filter-used clock synchronization system, apparatus, method and program thereof
KR101313104B1 (en) 2009-07-24 2013-09-30 한국전자통신연구원 System and apparatus for synchronization between heterogeneous periodic clock domains, circuit for detecting synchronization failure and data receiving method
CN104205860B (en) 2012-04-04 2017-09-26 三菱电机株式会社 Numerical data distributing device and method, numerical data transcriber and method and sync reproduction system
JP5911584B2 (en) 2012-09-11 2016-04-27 三菱電機株式会社 Correction parameter calculation apparatus and system, correction parameter calculation method, and computer program
JP6183639B2 (en) * 2013-04-24 2017-08-23 株式会社チノー Sensing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332802A (en) * 1999-05-24 2000-11-30 Sony Corp Communication method, communication system, communication terminal and repeater
JP2003249922A (en) * 2002-02-26 2003-09-05 Sony Corp Data receiver, method for processing received data and computer program
JP2003258894A (en) * 2002-03-05 2003-09-12 Matsushita Electric Ind Co Ltd Method for receiving and reproducing data and data communication equipment
JP2004153546A (en) * 2002-10-30 2004-05-27 Toa Corp Clock signal adjusting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332802A (en) * 1999-05-24 2000-11-30 Sony Corp Communication method, communication system, communication terminal and repeater
JP2003249922A (en) * 2002-02-26 2003-09-05 Sony Corp Data receiver, method for processing received data and computer program
JP2003258894A (en) * 2002-03-05 2003-09-12 Matsushita Electric Ind Co Ltd Method for receiving and reproducing data and data communication equipment
JP2004153546A (en) * 2002-10-30 2004-05-27 Toa Corp Clock signal adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217330B (en) * 2008-01-02 2012-07-25 中兴通讯股份有限公司 A method and device for time synchronism calibration
WO2010037347A1 (en) * 2008-09-27 2010-04-08 华为技术有限公司 Time synchronizing method, device and system of master clock side and slave clock side in synchronous network
JP2010212945A (en) * 2009-03-10 2010-09-24 Nec Corp Receiving-side node for clock synchronization, method thereof and program thereof
JP2013520137A (en) * 2010-02-16 2013-05-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Rate-variable multicast transmission for clock distribution in packet networks
WO2023273601A1 (en) * 2021-06-29 2023-01-05 Oppo广东移动通信有限公司 Audio synchronization method, audio playback device, audio source, and storage medium

Also Published As

Publication number Publication date
JP2007104347A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
WO2007040222A1 (en) Clock synchronization system and method in audio transmission system
JP4865717B2 (en) Message synchronization on probabilistic networks
US8351437B2 (en) Stereo bit clock tuning
US20080259966A1 (en) Synchronization of one or more source RTP streams at multiple receiver destinations
CN114257328A (en) Synchronization of multiple audio devices
US7809452B2 (en) Delay management of presentation output system and method
EP2882120B1 (en) A method and apparatus for mitigation of packet delay variation
JP2005253033A (en) Network synchronization device, clock transmission method, and clock transmission packet network
US8477810B2 (en) Synchronization using multicasting
JP4042396B2 (en) Data communication system, data transmission apparatus, data reception apparatus and method, and computer program
WO2014188664A1 (en) Broadcast system, client, synchronization program, and synchronization method
JP3906678B2 (en) Data communication system, data transmission apparatus, data reception apparatus and method, and computer program
EP2707977B1 (en) Content delivery system
JP2010212945A (en) Receiving-side node for clock synchronization, method thereof and program thereof
JP2021044629A (en) Network system, transmission device and reception device
WO2024055067A1 (en) A method of streaming synchronized audio over a network
JP2020202444A (en) Transmission device and control method thereof
KR20190031889A (en) Sound system based on real-time synchronous ethernet and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821812

Country of ref document: EP

Kind code of ref document: A1