WO2006134675A1 - Optical multiplexer/demultiplexer and assembling device thereof - Google Patents

Optical multiplexer/demultiplexer and assembling device thereof Download PDF

Info

Publication number
WO2006134675A1
WO2006134675A1 PCT/JP2005/016858 JP2005016858W WO2006134675A1 WO 2006134675 A1 WO2006134675 A1 WO 2006134675A1 JP 2005016858 W JP2005016858 W JP 2005016858W WO 2006134675 A1 WO2006134675 A1 WO 2006134675A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
block
demultiplexer
optical multiplexer
Prior art date
Application number
PCT/JP2005/016858
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Hadama
Takeshi Sakamoto
Yoshimitsu Arai
Nobuo Sato
Yukio Komine
Nobuyuki Tanaka
Yusuke Ohtomo
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2007521066A priority Critical patent/JPWO2006134675A1/en
Publication of WO2006134675A1 publication Critical patent/WO2006134675A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/362Vacuum holders for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3696Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier by moulding, e.g. injection moulding, casting, embossing, stamping, stenciling, printing, or with metallic mould insert manufacturing using LIGA or MIGA techniques

Definitions

  • the present invention relates to an optical multiplexer / demultiplexer that multiplexes and demultiplexes an optical signal and an assembling apparatus thereof.
  • an optical multiplexer / demultiplexer that multiplexes and demultiplexes an optical signal
  • an assembling apparatus thereof For example, a wavelength division multiplexing optical transmission device that multiplexes and transmits optical signals of a plurality of wavelengths on a single transmission line. And an assembly apparatus thereof.
  • a wavelength division multiplexing optical transmission technology is known as a technology that makes effective use of a single optical transmission line and enables large-capacity transmission.
  • wavelength division multiplexing optical transmission a plurality of optical signals with different wavelengths are generated on the transmission side, and these signals are multiplexed and transmitted on a single transmission line using an optical multiplexer, and optical demultiplexing is performed on the reception side.
  • Signals with different wavelengths are separated by a detector, and the signals are received by light receiving elements prepared for each wavelength.
  • Wavelength multiplexing transmission makes it easy to increase the transmission capacity per fiber compared to transmission using only one wavelength, and compared to the case where multiple transmission paths are used. Since the transmission path cost can be reduced, it is effective in reducing the communication cost and the communication capacity.
  • an optical multiplexer / demultiplexer is used to perform optical multiplexing on the transmitting side and optical demultiplexing on the receiving side.
  • FIG. 37 shows the schematic configuration of this optical multiplexer / demultiplexer.
  • This optical multiplexer / demultiplexer demultiplexes the optical signal received by the receiving element 1001a into a plurality of wavelength ranges by the wave converting elements 1003a to 1003d, and transmits the optical signals in the respective wavelength ranges from the transmitting elements 1002a to 1002d. Is.
  • the optical multiplexer / demultiplexer includes a lower carrier 1004a and an upper carrier 1004b.
  • Coupling devices 1005a to 1005c are attached to the lower carrier 1004a.
  • a receiving element 1001, a transmitting element 1002b, and 1002d are individually provided.
  • Upper carrier 1004b And the remaining transmitting elements 1002a and 1002c are disposed in the respective coupling devices.
  • wave conversion elements 1003a to 1003d are disposed in a space between the lower carrier 1004a and the upper carrier 1004b.
  • the wave conversion elements 1003a to 1003d are elements that transmit only light beams having different specific wavelengths and reflect light beams of other wavelengths.
  • the configuration of the coupling device 1005a will be further described with reference to FIG.
  • the coupling device 1005a has a stopper surface 1006 that holds the receiving element 1001.
  • the coupling device 1005a has a reflecting surface 1007 that reflects an optical signal from the receiving element 1001 in an angle direction forming 90 ° with respect to the incident direction, at a position facing the receiving element 1001 on the stopper surface 1006. Is formed.
  • the reflection surface 1007 has a vertical section depicting a part of a parabola, a hyperbola, or an ellipse.
  • a stopper 1008 is provided on the side of the stopper surface 1006 to facilitate positioning of the receiving element 1001 with respect to the coupling device 1005a.
  • the coupling devices 1005b and 1005c have the same configuration as the coupling device 1005a.
  • the optical multiplexer / demultiplexer configured as described above, when an optical signal is emitted from the receiving element 1001, the optical signal has a 90 ° optical axis as shown in FIG. 39 by the reflecting surface 1007 of the coupling device 1005a. It is converted and reflected toward the wave conversion element 1003a. Then, only a light beam having a specific wavelength passes through the wave conversion element 1003a and is transmitted from the transmission element 1002a. The light beam reflected by the wave conversion element 1003a reaches the wave conversion element 1003b, and a light beam having a wavelength region different from that of the wave conversion element 1003a is transmitted and transmitted from the transmission element 1002b. By repeating the same operation, the demultiplexed monochromatic light is transmitted from each of the transmitting elements 1002a to 1002d.
  • FIG. 1 A second example of a conventional optical multiplexer / demultiplexer is described in Document 2 (Japanese Patent Laid-Open No. 2004-206057).
  • This optical multiplexer / demultiplexer includes an optical fiber array 2003 in which optical fibers 2001a to 2001f are arranged in parallel and a connector 2002 is attached to the tip, a microlens array 2005 in which microlenses 2004a to 2004f are arranged on the bottom surface, Transparent Kano-Kou wood material 2006 and Finoleta 2007a ⁇ 2007d Powerful Finoleta layer 2 008, a light guide block 2009, and a planar mirror layer 2010 formed on the lower surface of the light guide block 2009.
  • the optical multiplexer / demultiplexer having such a configuration, light multiplexed with wavelengths ⁇ 1, e 2, ⁇ 3, and ⁇ 4 is emitted from the optical fiber 2001a and is output by the microlens 2004a of the microlens array 2005.
  • the axis is bent to become parallel light, which is reflected by the mirror layer 2010 and incident on the filter layer 2008.
  • a filter 2007a that transmits only light of wavelength ⁇ 1 and reflects light of other wavelengths is disposed. Therefore, the light of wavelength ⁇ 1 is transmitted through the filter 2007a, and the optical axis is bent by the microlens 2004c to be coupled to the optical fiber 2001c. Therefore, light of wavelength ⁇ 1 is extracted from the light emitting end of the optical fiber 2001c.
  • the light (wavelength 2, ⁇ 3, ⁇ 4) reflected by the filter 2007a is reflected again by the mirror layer 2010 and enters the filter layer 2008.
  • a filter 2 007b is disposed at this position of the filter layer 2008, and light having a wavelength ⁇ 2 transmitted through the filter 2007b is incident on the microlens 2044d, and the optical axis direction is bent and coupled to the optical fiber 2001d. Therefore, only light having a wavelength of 2 is extracted from the light exit end of the optical fiber 2001d.
  • light of wavelengths 3 and 4 is extracted from the light exit ends of the optical fibers 2001d and 2001e.
  • FIG. 1 A third example of a conventional optical multiplexer / demultiplexer is shown in FIG.
  • a dielectric multilayer filter 3102-1 to 3102-4 is fixed to a holding member 3101, and optical fibers 3103-1 to 3103-5 for inputting and outputting light are emitted from an optical fiber.
  • Lenses 3104-1 to 3 104-5 for converting the reflected light into parallel light and condensing the light that has passed through the dielectric multilayer filter to the optical fiber are mounted in alignment.
  • the wavelength multiplexed light emitted from the first optical fiber 3103-1 for light input is converted into parallel rays by the lens 3104-1, transmitted through the holding member 3101, and then the first dielectric multilayer filter. 3102—Is incident on 1.
  • the first dielectric multilayer filter 3102-1 has the characteristic of transmitting light of wavelength ⁇ 4 and reflecting light of other wavelengths.
  • the light of wavelength 4 selected by this filter is condensed by the lens 3104-2 onto the second fiber 3103-2 and output.
  • the light reflected by the first dielectric multilayer filter 3102-1 propagates through the holding member 3101 and sequentially enters the filters 3102-2 to 3102-4.
  • the second filter 3102-2 since the second filter 3102-2 transmits the wavelength 3 and reflects the other wavelengths, the light 3 is similarly output from the third fiber 3103-3.
  • the light of ⁇ 2 is transmitted from the fourth fiber 3103-4 by the third filter 3102-3 that transmits ⁇ 2
  • the light of ⁇ 1 is transmitted by the fourth filter 3102-4 that transmits ⁇ 1.
  • FIG. 42 shows the schematic configuration of this optical multiplexer / demultiplexer.
  • This optical multiplexer / demultiplexer obliquely guides wavelength-multiplexed light from a plurality of beam branching elements 3106 disposed at intervals between transparent holding members 3105 and a port 3107 to the beam branching element 3106.
  • the first lens 3109 and a plurality of second lenses 3110 that collect light of each wavelength reflected by the filter reflecting surface at the port 3107 are provided. In this configuration, since the first lens 3109 and the plurality of second lenses 3110 can be manufactured on one optical substrate, the number of components can be reduced by IJ.
  • FIG. 43 shows the schematic configuration of this optical demultiplexer.
  • This optical demultiplexer includes a plurality of focusing reflectors 3201 formed on the surface of the main optical block 3200 and a plurality of wavelength-specific filters. 3202 is connected, and the light reflected by each filter propagates through the main optical block 3200, is reflected by the converging reflector 3201, and is sequentially guided to the next adjacent wavelength specifying filter.
  • the light incident from the incident fiber 3203 is reflected and collected by the reflecting surface 3204, and then enters the first filter 3202a.
  • the transmitted light passes through the lens 3206a of the lens array block 3205, is collected, and is incident on the detector 3207a.
  • the light reflected by the first filter 3202a is reflected by the converging reflector 3201a and is incident on the second filter 3202b. Thereafter, the same operation is repeated in the second filter 3202b, the third filter 3202c, and the fourth filter 3202d to demultiplex the wavelength multiplexed light.
  • a lens array block 3205 force in which a plurality of lenses are integrated is aligned with a main optical block 3200 by a protrusion, and light incident from a fiber 3203 is Since it is converted into parallel rays by the reflecting surface 3204 built into the block 3200, it is not necessary to align individual lenses, and assembly costs can be reduced.
  • FIG. 1 A sixth example of a conventional optical multiplexer / demultiplexer is described in Reference 5 (Japanese Patent Laid-Open No. 2005-17811).
  • Reference 5 Japanese Patent Laid-Open No. 2005-17811.
  • a schematic configuration of this optical multiplexer / demultiplexer is shown in FIG.
  • This optical multiplexer / demultiplexer has a waveguide element block 3001 formed with waveguide elements 3003 to 3005 force S, and an array element mounting block 3002 formed with beam branch elements 3006 and 3007 and transmission windows 3008 and 3009. .
  • the waveguide element block 3001 is integrally formed with a holding structure for holding the array element mounting block 3002.
  • Light rays sent into the optical multiplexer / demultiplexer through the transmission window 3008 are alternately reflected by the waveguide elements and the light branching elements, and propagate along the zigzag optical path.
  • Light beams having wavelengths that pass through the light beam splitting elements 3006 and 3007 are extracted from the light beam splitting elements 3006 and 3007, and light beams having other wavelengths are extracted from the transmission window 3009.
  • the elements on the waveguide element block 3001 and the array element mounting block are simply placed on the waveguide element block 3001 by placing the array element mounting block 3002 on top of the waveguide element block 3001.
  • the device on the rack 3002 can be positioned accurately.
  • a receiving element 1001 and transmitting elements 1002a to 1002d are individually arranged in a plurality of coupling devices. For this reason, when assembling the optical multiplexer / demultiplexer, it is necessary to align the relative positions of the receiving side coupling device and the transmitting side coupling device so that the excess loss is reduced. Therefore, it is necessary to align the plurality of reception side coupling devices for each channel during the demultiplexing operation described above and the plurality of transmission side coupling devices for each channel during the multiplexing operation. For this reason, the number of alignment man-hours increases with the increase in the number of channels of the optical multiplexer / demultiplexer, and there is a problem that the assembly time is increased and the manufacturing cost is increased.
  • the receiving side coupling device and the transmitting side coupling device are separated. For this reason, if the environmental temperature changes after the optical multiplexer / demultiplexer is assembled, non-uniform expansion and contraction occurs due to the temperature gradient in the device, and the relative coupling between the receiving side coupling device and the transmitting side coupling device. There is a high possibility that misalignment will occur. Since the misalignment causes loss, the conventional optical multiplexer / demultiplexer has a problem that the fluctuation of loss due to environmental temperature change is large.
  • the mirror layer 2010 as a waveguide element that reflects the light propagating between the filters has a planar shape. For this reason, even if the position of the mirror layer 2010 is adjusted, the angle of the reflected light cannot be changed and alignment cannot be performed. Therefore, as shown in FIG. 45, alignment is performed by adjusting the position of the optical fiber array 2003 (or microlens array 2005). In this case, the positional deviation tolerance of the incident light with respect to the microlenses 2004a to 2004f as the coupling elements is important. Microlenses 2004a-2004f mutually convert collimated light and convergent light Therefore, it has a large light collecting power.
  • FIG. 46 shows the fiber array shift amount dependency of the coupling efficiency in the conventional optical multiplexer / demultiplexer shown in FIG.
  • this optical multiplexer / demultiplexer is manufactured because the alignment tolerance of the optical fiber array 2003 is severe with respect to the allowable excess loss, so a high-precision assembly device is required and the assembly time is increased. There was a problem that the cost increased.
  • the conventional optical multiplexer / demultiplexer shown in FIG. 40 when the adhesive used to fix the light guide block 2009 on which the mirror layer 2010 is formed expands and contracts due to changes in the environmental temperature, the mirror layer 2010 The design value may deviate from this angle. In this case, paying attention to the optical axis of the propagating light beam that is multiply reflected between the mirror layer 2010 and the filter layer 2008, neither the mirror layer 20 10 nor the filter layer 2008 can correct the optical axis angle deviation of the propagating light beam. . As a result, as shown in FIG. 47, the optical axis position deviation increases as the optical path length increases. Therefore, the conventional optical multiplexer / demultiplexer shown in FIG. 40 has a problem that large loss fluctuations occur with respect to changes in the environmental temperature.
  • the conventional optical multiplexer / demultiplexer shown in FIGS. 42 and 43 has a lens array that allows the diffused light, which has also been emitted from the fiber force, to enter the filter to be a lens array that can be integrally molded. Have reduced.
  • small optical multiplexers / demultiplexers using these lens arrays have the following problems.
  • the distance between the lens and the filter is uniquely determined by the dimensions of the optical substrate or optical block, and has no mechanism for adjusting the error.
  • the lenses 3109 and 3110, the filters 3106, and the optical fibers 3107 are manufactured as separate array elements and assembled. At this time, alignment work has to be performed, and furthermore, the number of alignment axes is large, and there is a problem that adjustment time increases. In addition, if the optical multiplexer / demultiplexer assembly device is provided with an adjustment function for each alignment shaft, the number of alignment shafts is large and the device itself becomes complicated.
  • the waveguide elements 3003 to 3005 are concave mirrors, and attention is paid to the optical axis of the propagating light beam that is multiply reflected between the waveguide element and the beam branching element. .
  • the holding structure of the array element mounting block 3002 is integrally formed with the waveguide element block 3001, if an angle shift occurs in the waveguide element block 3001, the array element mounting block The same amount of angular deviation occurs in 3002.
  • the beam splitters 3006 and 3007 formed in the array element mounting block 3002 correspond to plane mirrors, but the angle deviation of the plane mirrors amplifies the angle deviation of the incident optical axis. Therefore, every time the propagating light beam enters and reflects the light beam splitting elements 3006 and 3007, a large angular deviation occurs in the propagating optical axis, resulting in a large positional deviation when the propagating light beam enters the waveguide elements 3003 to 3005.
  • the angular deviation can be corrected each time the propagating light beam enters and reflects the waveguide elements 3003 to 3005.
  • the angle deviation may be amplified or the angle deviation may be amplified. The above effects act synergistically, and the angle deviation of the propagating light beam becomes larger than the case where the array element mounting block 3002 has no angle deviation.
  • FIGS. 48A and 48B An example is shown in FIGS. 48A and 48B.
  • Waveguide block 30 As shown in Figure 48A When 01 is not tilted, the incident / reflection angle of the propagating light beam to the waveguide element is 11.3.
  • the mirror curvature radius of the waveguide elements 3003 to 3005 is about 5 mm and the distance between the waveguide elements 3003 to 3005 and the beam branching elements 3006 and 3007 is about 5 mm
  • the waveguide is guided as shown in FIG. 48B.
  • the wave element block 3001 is inclined by 5 °
  • the incident / reflection angle of the propagating light beam is 2 ° to 17 °, and the angular deviation of the propagating light beam is increased.
  • the angular deviation of the propagating beam causes excess loss. Therefore, the conventional optical multiplexer / demultiplexer has a problem that a slight angular shift of the waveguide element block 3001 causes a large excess loss.
  • a main object of the present invention is to reduce the manufacturing cost of an optical multiplexer / demultiplexer.
  • the present invention has the following objects. That is, another object of the present invention is to reduce the loss fluctuation accompanying the environmental temperature change in the optical multiplexer / demultiplexer, increase the degree of freedom of material selection of the optical multiplexer / demultiplexer, reduce the optical loss of the optical multiplexer / demultiplexer, Reduces the number of alignment axes when assembling the optical multiplexer / demultiplexer, simplifies the position adjustment of the optical multiplexer / demultiplexer and reduces the adjustment time, simplifies the assembly device of the optical multiplexer / demultiplexer, and angle deviation of the waveguide element block Is to suppress excess losses caused by.
  • an optical multiplexer / demultiplexer transmits a plurality of light receiving and emitting elements that perform at least one of light reception and light emission and a part of incident light.
  • a plurality of beam branching elements that reflect the rest, a plurality of coupling elements arranged on the optical path connecting the corresponding light emitting / receiving element and the beam branching element, and a reflected beam from one beam branching element to another beam branching element
  • a waveguide element arranged on an optical path until the light enters, and all of the coupling elements are integrally formed in a single coupling element block.
  • the coupling element is a concave mirror made of a spherical surface.
  • the optical multiplexer / demultiplexer according to the present invention is characterized in that the waveguide element is a concave mirror.
  • the optical multiplexer / demultiplexer arranges the light emitting / receiving elements in parallel with a constant interval, and positions the end faces of the light receiving / emitting elements on the same plane.
  • Light receiving / emitting element fixing block having an element fixing structure, and the beam branching element
  • a beam splitter block in which each of the children is arranged on the same plane at the same regular intervals as the light receiving and emitting elements, and a waveguide in which each of the waveguide elements is arranged on the same plane at the same regular intervals as the light emitting and receiving elements
  • An element block, the light receiving / emitting element fixing block, the coupling element block, the light beam branching element block, and the waveguide element block are arranged through a space, and the coupling element block and the waveguide element block are arranged.
  • an optical main block that arranges the beam splitter block in parallel between the coupling element block and the waveguide element block, and the coupling element block includes
  • Each of the coupling elements is arranged on the same plane at the same regular intervals as the light emitting / receiving element, and the coupling element reflects a light beam from the light emitting / receiving element into parallel light.
  • the waveguide element block is positioned so that the light beam from the coupling element is reflected by the coupling element adjacent to the coupling element, and reflects the light beam to the light emitting / receiving element.
  • the light beam branching element block is positioned so that the light beam branching element is disposed on an optical path between the coupling element and the waveguide element.
  • the waveguide element block further includes a protrusion having a curved force on a surface opposite to a surface on which the waveguide elements are arranged.
  • the optical multiplexer / demultiplexer assembling apparatus includes a gripping means capable of gripping a protrusion having a curved force formed on a waveguide element block in which waveguide elements are arranged, and the gripping hand. It is characterized by comprising position adjusting means that can move the step vertically and horizontally, and reaction force generating means that generates a reaction force in accordance with the movement of the gripping means.
  • the optical multiplexer / demultiplexer In the optical multiplexer / demultiplexer according to the present invention, all of the waveguide elements are arranged in a single waveguide element block, and the coupling element block has a holding structure for holding the beam branching element. And the coupling element block and the waveguide element block are separated from each other.
  • the coupling element for the light receiving element and the coupling element for the light emitting element are integrally formed in a single coupling element block, an increase in assembly time is suppressed and the manufacturing cost is reduced. Can be suppressed. Further, the loss fluctuation accompanying the environmental temperature change is reduced.
  • the spherical mirror has few design parameters as the coupling element. By using one, the yield increases even if the coupling elements are arrayed in a single block, and as a result, the manufacturing cost can be suppressed.
  • the waveguide elements are concave mirrors, and all the waveguide elements are arranged in a single waveguide element block, so that assembly can be facilitated and manufactured. Cost can be reduced. Moreover, the loss fluctuation
  • the optical multiplexer / demultiplexer of the present invention since the signal light propagates through the space, it is possible to increase the degree of freedom in selecting the material of the block constituting the optical multiplexer / demultiplexer and reduce the optical loss. it can.
  • the light receiving / emitting element fixing block since it is not necessary to use an optically transparent member as the block, it is possible to manufacture the light receiving / emitting element fixing block with a material that is inexpensive and excellent in mechanical strength and thermal characteristics.
  • the optical multiplexer / demultiplexer when assembling the optical multiplexer / demultiplexer, simply fix a plurality of light emitting / receiving elements to the light receiving / emitting element fixing block in advance, adjust the position of the light receiving / emitting element fixing block, and fix it to the optical main block.
  • optical main block and the waveguide element block are independent blocks, they are formed on the coupling element block and assembled on the coupling element and waveguide element block when assembled. It is possible to adjust the angle and position of the waveguide element to the optimum position with less loss, and to reduce optical loss.
  • the optical multiplexer / demultiplexer and the assembling apparatus thereof of the present invention a complicated rotating mechanism such as a three-axis rotating stage is not required, and the assembling apparatus itself has a simple structure, thereby reducing the manufacturing cost. be able to. Since all the rotating shafts are assembled without having to be adjusted to a predetermined angle, the assembly procedure is simplified, and the assembly time and assembly work can be reduced.
  • the protrusion in the center of the substrate of the waveguide element block when the waveguide element block is gripped by the assembly device, the gripped position and the center of gravity position of the waveguide element block match.
  • the waveguide element block can be gripped stably.
  • the vacuum chuck pipe is smaller than the diameter of the projection of the waveguide block, the vacuum chuck pipe is in close contact with the projection of the waveguide block. The waveguide element block can be easily held.
  • the holding structure for holding the beam branching element separates the waveguide element block force, the influence of the angular deviation of the waveguide element block on the increase in excess loss is reduced. Can be suppressed.
  • FIG. 1 is a schematic perspective view of an internal structure of an optical multiplexer / demultiplexer according to the first embodiment.
  • FIG. 2 is a schematic internal configuration diagram in the direction of arrow II of the optical multiplexer / demultiplexer used in the first embodiment.
  • FIG. 3 is a schematic internal configuration diagram of the optical multiplexer / demultiplexer according to the first embodiment in the direction of arrow III.
  • FIG. 4 is a schematic internal configuration diagram of the optical multiplexer / demultiplexer according to the first embodiment in the direction of arrow IV.
  • FIG. 5 is a perspective view schematically showing a specific mirror array block of the optical multiplexer / demultiplexer according to the first embodiment.
  • FIG. 6 is a schematic perspective view of an optical multiplexer / demultiplexer according to the first embodiment in which a specific mirror array block and a specific waveguide structure are assembled.
  • FIG. 7 is a perspective schematic external view of a mirror array block of an optical multiplexer / demultiplexer according to a second embodiment, which has a structure for holding a beam splitter.
  • FIG. 8 is a perspective schematic external view of an optical multiplexer / demultiplexer according to a second embodiment.
  • FIG. 9 is a schematic side view showing the optical system of the optical multiplexer / demultiplexer according to the third embodiment.
  • FIG. 10 is a schematic perspective external view of a specific mirror array block of an optical multiplexer / demultiplexer that works on the third embodiment.
  • FIG. 11 is a schematic perspective view of an optical multiplexer / demultiplexer according to a third embodiment in which a specific mirror array block and a specific waveguide structure are assembled.
  • FIG. 12 is a schematic perspective view of a specific mirror array block of an optical multiplexer / demultiplexer according to the fourth embodiment.
  • FIG. 13 shows a specific mirror array block and a specific waveguide structure not assembled.
  • FIG. 6 is a schematic perspective view of an optical multiplexer / demultiplexer that works on the fourth embodiment.
  • FIG. 14 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a fifth embodiment, which is an application example of the first embodiment.
  • FIG. 15 is a conceptual diagram of an optical multiplexer / demultiplexer according to a sixth embodiment.
  • FIG. 16 is a graph showing the dependence of coupling efficiency on the waveguide block shift amount in the optical multiplexer / demultiplexer according to the sixth embodiment.
  • FIG. 17 is a conceptual diagram showing a state in which optical axis deviations do not accumulate in the optical multiplexer / demultiplexer according to the sixth embodiment.
  • FIG. 18 is a schematic perspective view of the optical multiplexer / demultiplexer according to the seventh embodiment (front side).
  • FIG. 19 is a schematic perspective view of the optical multiplexer / demultiplexer according to the seventh embodiment (rear side).
  • FIG. 20 is a schematic view of an optical main block according to a seventh embodiment.
  • FIG. 21 is a diagram showing a case where protrusions are formed on the filter block fixing surface and the optical waveguide mirror block fixing surface of the optical main block according to the seventh embodiment.
  • FIG. 22 is a schematic view of an optical fiber fixing block according to a seventh embodiment.
  • FIG. 23 is a schematic diagram of a beam splitter block according to a seventh embodiment.
  • FIG. 24 is a schematic view of a different form from FIG. 23 in the light-branching element block according to the seventh embodiment.
  • FIG. 25 is a schematic view of an optical waveguide mirror block according to a seventh embodiment.
  • FIG. 26 is a schematic internal structural diagram of the optical multiplexer / demultiplexer according to the seventh embodiment, and shows the optical path therein.
  • FIG. 27 is a perspective view of the optical element array according to the eighth example when the unidirectional force is also seen.
  • FIG. 28 is a perspective view of the optical element array in accordance with the eighth embodiment when viewed from the other direction.
  • FIG. 29 is a perspective view of an optical multiplexer / demultiplexer using the optical element array according to the eighth embodiment as seen from one direction.
  • FIG. 30 is a perspective view of the optical multiplexer / demultiplexer using the optical element array in accordance with the eighth embodiment when viewed from the other direction.
  • FIG. 31 is an explanatory view illustrating the operating principle of the optical multiplexer / demultiplexer using the optical element array according to the eighth embodiment.
  • FIG. 32 is a schematic view of an optical element array assembling apparatus according to an eighth embodiment.
  • FIG. 33 is a diagram showing a state in which the vacuum chuck of the optical device array assembly apparatus according to the eighth example is in contact with the optical device array.
  • FIG. 34 is a view showing a state in which the optical element array is chucked by the vacuum chuck of the optical element array assembling apparatus according to the eighth embodiment.
  • FIG. 35 is a view showing a state in which the optical element array chucked by the vacuum chuck of the optical element array assembling apparatus according to the eighth embodiment is moved in the Y-axis direction.
  • FIG. 36 is a diagram for explaining an optical multiplexer / demultiplexer according to a ninth embodiment of the present invention.
  • FIG. 37 is a schematic configuration diagram of the optical multiplexer / demultiplexer according to the first conventional example.
  • FIG. 38 is a schematic configuration diagram of a coupling device used in the optical multiplexer / demultiplexer according to the first conventional example.
  • FIG. 39 is a side view showing an optical path in the optical multiplexer / demultiplexer according to the first conventional example.
  • FIG. 40 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a second conventional example.
  • FIG. 41 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a third conventional example.
  • FIG. 42 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a fourth conventional example.
  • FIG. 43 is a schematic configuration diagram of an optical demultiplexer according to a fifth conventional example.
  • FIG. 44 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a sixth conventional example.
  • FIG. 45 is a conceptual diagram for explaining an alignment method of an optical multiplexer / demultiplexer according to a second conventional example.
  • FIG. 46 is a graph showing the dependence of the coupling efficiency on the fiber array shift amount in the optical multiplexer / demultiplexer according to the second conventional example.
  • FIG. 47 is a conceptual diagram showing a state in which optical axis deviations are accumulated in the optical multiplexer / demultiplexer according to the second conventional example.
  • FIG. 48A is a diagram showing a state when the waveguide element block is tilted in the optical multiplexer / demultiplexer according to the sixth conventional example.
  • FIG. 48B is a diagram showing a state when the waveguide element block is tilted in the optical multiplexer / demultiplexer according to the sixth conventional example.
  • 1 to 6 are diagrams for explaining an optical multiplexer / demultiplexer according to the first embodiment of the present invention.
  • 1 to 4 conceptually show the light rays propagating through the optical multiplexer / demultiplexer when the optical demultiplexer is used.
  • the optical multiplexer / demultiplexer includes a mirror array block 25 portion and a waveguide portion structure 24 portion.
  • the mirror array block 25 coupling elements (which are provided with auxiliary lines to show curved surfaces) 6 to 10 having concave spherical mirror force, and optical fibers 1 to 5 for inputting / outputting wavelength multiplexed rays or monochromatic rays are provided.
  • the waveguide structure 24 is provided with light beam branching elements 11 to 14 that transmit light including a specific wavelength range and reflect light rays outside the specific wavelength range, and reflection surfaces 15 to 18 that reflect light. It has been.
  • the reflecting surfaces 15 to 18 function as waveguide elements.
  • the mirror array block 25 provided with the coupling elements 6 to 10 can be called a coupling element block.
  • the operation principle when the optical multiplexer / demultiplexer according to the present embodiment is used as a demultiplexer will be described.
  • the wavelength multiplexed light input from the outside of the optical multiplexer / demultiplexer propagates through the optical fiber 1, is guided into the optical multiplexer / demultiplexer, and is emitted to the coupling element 6 as a slightly diffused wavelength multiplexed light.
  • the coupling element 6 reflects the emitted wavelength multiplexed light while collimating it and propagates it to the reflecting surface 15.
  • the propagated wavelength multiplexed light is reflected again on the reflecting surface 15 and enters the beam splitter 11.
  • the wavelength multiplexed light incident on the light beam splitting element 11 is transmitted to the light beam splitting element 11, and a light beam including a specific wavelength region is transmitted to become a monochromatic light beam and propagates to the coupling element 7.
  • the light is reflected and collected, coupled to the optical fiber 2, and output to the outside of the optical multiplexer / demultiplexer.
  • a wavelength-multiplexed light beam composed of a light beam outside a specific wavelength region is reflected by the light beam splitting element 11 without being transmitted and propagated to the reflecting surface 16.
  • Wavelength multiplexed light propagated to reflecting surface 16 The line is reflected by the reflecting surface 16 and enters the beam splitter 12.
  • the wavelength multiplexed light incident on the beam splitter 12 is transmitted through the beam splitter 12 with a light having a specific wavelength range different from that of the beam splitter 11, and is transmitted as a monochromatic beam to the coupling element 8. Then, the light is reflected and collected by the coupling element 8, coupled to the optical fiber 3, and output to the outside of the optical multiplexer / demultiplexer.
  • the wavelength multiplexed light incident from the optical fiber 1 can be extracted from the optical fibers 2 to 5 as a plurality of demultiplexed monochromatic light beams.
  • the optical multiplexer / demultiplexer according to the present embodiment when used as a multiplexer, this corresponds to a case where the traveling directions of the wavelength multiplexed light and the monochromatic light in the demultiplexing operation described above are reversed.
  • the optical multiplexer / demultiplexer by inputting monochromatic rays to the optical fibers 2 to 5 from the outside of the optical multiplexer / demultiplexer, it is possible to take out the force of the optical fiber as a combined wavelength multiplexed ray.
  • the number of beam branching elements is four, the number of coupling elements is five, the number of reflecting surfaces is four, and the number of optical fibers is five. Not limited to the number of.
  • the wavelength-multiplexed and monochromatic light-receiving / emitting elements are not limited to optical fibers, and some or all of the light-receiving / emitting elements may be light-receiving / emitting elements such as laser diodes and photodiodes.
  • the light emitting / receiving element refers to an element that performs at least one of light reception and light emission. Furthermore, a configuration may be adopted in which a plurality of light emitting points and light receiving points exist in one optical multiplexer / demultiplexer.
  • the light receiving and emitting points of all the optical fibers 1 to 5, all the coupling elements 6 to 10, and all the light branching elements 11 to 14 are used. All the reflecting surfaces 15 to 18 are arranged on one straight line. For this reason, each optical element can be collectively arranged in an array, and each optical element can be easily arranged and “formed” and fixed.
  • FIG. 2 shows a state in which the optical system of the optical multiplexer / demultiplexer that is useful in the present embodiment is viewed from the optical axis direction of the optical fiber (in the direction of arrow II).
  • the same members as those shown in FIG. 1 are denoted by the same reference numerals as in FIG.
  • wavelength multiplexed signal light is input to the optical fiber 1 from the outside, Monochromatic rays can be extracted from the optical fibers 2 to 5, respectively.
  • the optical path length between the reflecting surface and the light beam branching device, the distance between the adjacent light beam branching devices, the light beam component It can be uniquely determined by fixing two of the three elements of the incident angle of light on the junction. Therefore, in general, it is desirable to shorten the optical path length and reduce the light incident angle to the light beam branching element. These designs are limited by the size of the beam splitters 11-14 and the coupling elements 6-10.
  • the surfaces of the coupling elements 6 to 10 are spherical as in this embodiment, the radius of curvature of the reflecting surface felt by the incident light beam does not depend on the incident position of the light beam on the reflecting surface. Therefore, as shown in Fig. 2, the incident and reflection points of the light beam are arranged at appropriate positions on the reflection surface of the coupling element, so that the optical axis of the incident light beam and the reflected light beam are maintained while maintaining the desired focal length.
  • the angle formed by the optical axis can be set arbitrarily.
  • FIG. 3 shows a state in which the optical system of the optical multiplexer / demultiplexer that is useful in the present embodiment is viewed from the side surface direction (the direction of arrow III).
  • the same members as those shown in FIG. 1 are denoted by the same reference numerals as in FIG.
  • the portion indicated by reference numeral 30 is the end face of the optical fiber 1 that is the light receiving / emitting surface.
  • Convergent light in the case of a multiplexer
  • diffused light in the case of a demultiplexer
  • the radius of curvature of the coupling element 6 having a spherical mirror force and the optical path length from the optical fiber end surface 30 to the coupling element 6 are the mode field diameter (NA) of the optical fiber, and the reflection surface 15 from the coupling element 6. It is necessary to optimize the length of the optical path as a constraint.
  • the effective reflection area of the coupling element 6 also needs to be optimized so that vignetting of incident / reflected rays does not occur.
  • FIG. 4 shows a state in which the optical system of the optical multiplexer / demultiplexer that works in the present embodiment is viewed from the direction perpendicular to the plane including the plurality of optical fibers (in the direction of the arrow IV).
  • the same members as those shown in FIG. 1 are denoted by the same reference numerals as in FIG.
  • optical fibers 1 to 5 of all the channels are arranged so that the straight line Y connecting the adjacent end faces and the optical axes X to X of the light rays passing through the end faces are orthogonal to each other. Fiber 1 The optical path lengths up to the end face of ⁇ 5 are almost the same for all channels! /
  • the coupling elements 6 to 1 can obtain the highest possible coupling efficiency regardless of whether the propagation path of the collimated light is the shortest optical path length channel or the longest optical path length channel.
  • FIG. 5 shows a specific example of the mirror array block 25 in which the coupling element and the V-groove for fixing the optical fiber are formed as members of the optical multiplexer / demultiplexer that is useful in the present embodiment.
  • FIG. 5 shows a specific example of the mirror array block 25 in which the coupling element and the V-groove for fixing the optical fiber are formed as members of the optical multiplexer / demultiplexer that is useful in the present embodiment.
  • the mirror array block 25 includes a first V-groove 36 formed linearly at one substrate end on the surface of the plate-shaped substrate, and one of the V-grooves 36.
  • Coupling elements 6 to 10 formed by being arranged along the linear axis direction of the V-groove 36 on the inclined surface 3 6a, and perpendicular to the linear axis direction of the V-groove 36 and facing the coupling element 6: LO It consists of a plurality of linear V-grooves (fixed structure) 19-23 formed so as to be connected to the V-groove 36.
  • the plurality of V-grooves 19 to 23 are V-grooves for fixing optical fibers, and are formed so as to face the coupling elements 6 to 10, respectively.
  • a U-groove can be used instead of the V-groove 19-23.
  • V-grooves 19 to 23, V-grooves 36 and coupling elements 6 to 10 can be formed by cutting a plate-like substrate directly into a desired shape or cutting a saddle shape of a desired shape. Thereafter, injection molding may be considered in which a resin or the like is poured into the mold and heated and molded. When producing the same mirror array block 25 in large quantities, the injection molding method is suitable!
  • FIG. 6 is a schematic diagram of an optical composite according to the first embodiment in which the mirror array block 25 shown in FIG. 5 is combined with a waveguide structure for holding a reflecting surface and a plurality of beam splitters.
  • FIG. 5 is a schematic perspective view showing a specific example of a duplexer.
  • the optical multiplexer / demultiplexer has a waveguide structure 24 fixed so as to cover the upper part of the V groove 36 in the mirror array block 25 shown in FIG. It is configured.
  • the waveguide structure 24 includes a middle shelf 39 for installing the beam splitters 11 to 14 and a long plate shape inside a planar U-shaped structure consisting of walls extending upward in three directions.
  • An upper holding projection 38 for installing the reflective surface 35 is formed, and the inside of the planar U-shaped structure is partially hollow.
  • the waveguide structure 24 has a V-shaped structure on the side where the wall surface is not formed. It is installed on the mirror array block 25 so as to face the grooves 19-23.
  • the upper holding projection portion 38 supports both ends of the long plate-like reflecting surface 35, and the reflecting surface 35 is installed in the upper portion of the waveguide structure 24.
  • the middle shelf 39 has mounting portions 24-1 to 24-4 formed by notching positions corresponding to the coupling elements 6 to 10 formed in the lower V-groove 36, respectively.
  • the beam splitting elements 11 to 14 are also mounted, respectively, and are held so as not to fall downward.
  • the beam splitters 11 to 14 a configuration in which each element is fitted in each channel is conceivable.
  • an optical multiplexer / demultiplexer having an arbitrary multiplexing / demultiplexing spectrum can be realized by simply replacing the elements.
  • the reflecting surface 35 a single flat plate separate from the waveguide structure 24 can be applied, but if possible, it is integrally formed with the waveguide structure 24. May be.
  • the light propagating between each of the light beam splitting elements 11-14 propagates in the space.
  • the light beam propagates inside the optical block formed of glass or transparent resin. This embodiment is also conceivable.
  • a reflecting surface is formed on the surface of a rectangular parallelepiped optical block, and a light beam splitting element is formed in an array on the back surface.
  • this rectangular parallelepiped optical block is used instead of, for example, the reflecting surface 35, the middle shelf 39, and the beam splitters 11 to 14 in the planar U-shaped structure of the waveguide structure 24 shown in FIG.
  • This is an example of installing and configuring an optical multiplexer / demultiplexer. According to such an embodiment, there is an advantage that the optical path length accuracy between the beam splitter and the reflecting surface can be improved, or a plurality of beam splitters can be formed continuously.
  • a plurality of coupling elements 6 to 10 are integrally formed in the same mirror array block 25>
  • the coupling elements 6 to 10 corresponding to the optical fibers 1 to 5 are integrally formed in the same mirror array block 25! Therefore, all the optical fibers An optical system in which 1 to 5 are arranged so as to be adjacent to the mirror array block 25 is formed. Therefore, the alignment operation can be completed simply by adjusting the position of the single mirror array block 25. Therefore, even if the number of channels of the optical multiplexer / demultiplexer increases, the alignment man-hours It becomes constant. Therefore, as compared with the conventional optical multiplexer / demultiplexer shown in FIG. 37, the increase in assembly time can be suppressed and the manufacturing cost can be suppressed.
  • the coupling elements 6 to 10 corresponding to the optical fibers 1 to 5 are formed in the same mirror array block 25, the temperature is changed even if the environmental temperature changes after the optical multiplexer / demultiplexer is assembled. Gradient generation is suppressed. As a result, the expansion and contraction become uniform, and the relative displacement between the corresponding optical fiber and the coupling element is suppressed. Therefore, the loss fluctuation due to the environmental temperature change is smaller than that of the conventional optical multiplexer / demultiplexer shown in FIG.
  • the coupling element is integrally formed with the coupling element block, it is desirable that the coupling element is a concave mirror as in this embodiment.
  • the reason for this is that if the mirror is a concave mirror, the optical transparency of the coupling element block is not questioned, so it is possible to use low-cost materials such as grease for mass production, and at a lower cost. This is because the manufacturing becomes possible.
  • the reflecting surface 1007 as the coupling element has a rotating paraboloid, a rotating hyperboloid, or a rotating ellipsoid.
  • these shapes have many design parameters. Specifically, a total of seven parameters are required: focal point coordinates (three parameters), rotation axis direction vector (three parameters), and quadratic coefficient (one parameter).
  • focal point coordinates three parameters
  • rotation axis direction vector three parameters
  • quadratic coefficient one parameter
  • the coupling element 6-: LO is a spherical mirror, so that there are few design parameters. Specifically, only four parameters in total are required: the position coordinate of the center of curvature (three parameters) and the radius of curvature (one parameter). Therefore, as described above, even if the coupling elements 6 to 10 having the spherical mirror force are arrayed in a single block, a reflecting surface having a shape as designed can be easily formed, resulting in a high yield. It is also relatively easy to evaluate whether it is manufactured as designed. As a result, the manufacturing cost can be reduced.
  • the coupling elements 6 to 10 are spherical mirrors, they enter the coupling elements 6 to 10. It is desirable that the angle formed between the incident optical axis of the light beam and the reflected optical axis of the light beam reflected by the coupling elements 6 to 10 is sufficiently small. The reason is that when the beam is incident on the spherical mirror, the coma aberration increases and the excess loss increases as the incident angle increases. It is desirable that all the coupling elements 6 to 10 have the same radius of curvature. When forming coupling elements 6 to 10 having a plurality of curvature radii, it is desirable to make the difference in curvature radii sufficiently small in order to reduce the types of tools for cutting the mold as much as possible.
  • the receiving element 1001, the transmitting elements 1002b, and 1002d are placed on the lower carrier 1004a, and the transmitting elements 1002a and 1002c are arranged on the upper carrier 1004b. . That is, the receiving element 1001 and the transmitting elements 1002a to 1002d are arranged on two planes. For this reason, when assembling the optical multiplexer / demultiplexer, it is not possible to mount all the transmitting and receiving elements at once. As a result, assembly time is increased and manufacturing costs are increased.
  • the optical fibers 1 to 5 as light emitting / receiving elements corresponding to the transmitting / receiving elements are arranged on a single plane of the mirror array block 25. For this reason, all the optical fibers 1 to 5 can be mounted together. As a result, the assembly time can be shortened compared with the conventional optical multiplexer / demultiplexer, and the manufacturing cost can be reduced.
  • the optical axes of all the light emitting / receiving elements are parallel to each other, all the light receiving / emitting points are arranged on the same straight line (light receiving / emitting point connecting line),
  • An orthogonal optical system is desirable.
  • an optical fiber is used as a light emitting / receiving element, as shown in FIG. 4, it is not possible to align the optical fibers 1 to 5 so that all the fibers are parallel to each other and the protruding amount of all the fibers is uniform. It is relatively easy. Further, by preparing separately a fiber array block in which the optical fibers 1 to 5 are arranged and arranged in this manner, and inserting the fiber array block into the mirror array block, all the fibers can be easily mounted.
  • the conventional optical multiplexer / demultiplexer shown in FIG. 37 has a plurality of coupling devices 1005a to 1005c provided with stoppers 1008 for positioning transmitting and receiving elements. For this reason, when performing alignment work to reduce excess loss, the transmitting element 1001 or the receiving element 1002a After mounting ⁇ 1002d, coupling device 1005a ⁇ 1005c must be fine tuned. As a result, the assembly time of the optical multiplexer / demultiplexer becomes longer and the manufacturing cost becomes higher.
  • V grooves 19 to 23 used for positioning the plurality of optical fibers 1 to 5 are integrally formed in the mirror array block 25. Therefore, the relative position between the optical fibers 1 to 5 and the coupling element 6 to: LO can be determined accurately and easily, and fine adjustment of the coupling elements 6 to 10 after the optical fibers 1 to 5 are mounted is not necessary. . As a result, the assembly time can be shortened and the manufacturing cost can be reduced as compared with the conventional optical multiplexer / demultiplexer.
  • FIG. 7 is a perspective schematic external view of the mirror array block of the optical multiplexer / demultiplexer according to the second embodiment, which has a structure for holding the beam splitter.
  • FIG. 8 is a schematic perspective view of an optical multiplexer / demultiplexer according to the second embodiment. This embodiment is a modification of the first embodiment.
  • the mirror array block 25 of the optical multiplexer / demultiplexer according to the second embodiment has a V-shape formed linearly at one substrate end across the surface of the plate substrate.
  • the coupling elements 6 to 6 formed by arranging along the linear axis direction of the V groove 36 on one inclined surface 36a constituting the V groove 36, and the linear axis direction of the V groove 36. It is composed of a plurality of linear V-grooves 19 to 23 formed so as to be connected to the V-groove 36 in a vertical direction and coupled to the V-groove 36.
  • the plurality of V-grooves 19 to 23 are V-grooves for fixing an optical fiber, and are formed so as to be opposed to the coupling elements 6 to 10, respectively.
  • a plurality of upwardly extending wall portions provided so as to partition the coupling elements 6 to 10 are formed on the substrate end portion and the inclined surface 36a, and the planar comb-tooth-shaped beam branching element holding unit is held.
  • the beam splitter holding structure 24a constitutes a part of the waveguide structure 24.
  • the upper surfaces of the sidewalls on both sides sandwiching the coupling elements 6 to 10 are mounting parts 24-1 to 24-4, respectively, and a beam splitter is installed on each mounting part.
  • the optical multiplexer / demultiplexer covers the upper part of the V groove 36 (that is, the beam splitter holding structure 24a) in the mirror array block 25 shown in FIG.
  • a reflection surface holding structure 24b which is a part of the waveguide structure 24, is fixed.
  • the waveguide structure 24 includes a beam splitter holding structure 24a provided in the mirror array block 25 and a mirror. It comprises a reflecting surface holding structure 24b installed on the top of one array block 25.
  • the reflecting surface holding structure 24b includes a wall portion extending upward at both ends in the linear axis direction of the V-groove 36 of the mirror array block 25, and a ceiling portion extending over the upper surfaces of the two wall portions.
  • the block 25 is a structure that is formed so as to straddle from the V-groove 19 side to the V-groove 23 side. Reflecting surfaces 15 to 18 are formed on the lower surface of the ceiling portion at positions corresponding to the beam splitters 11 to 14 installed below the ceiling portion.
  • the waveguide structure 24 includes a light beam branching element holding structure 24a and a reflection surface holding structure 24b. Since the light beam branching element holding structure 24a is formed integrally with the mirror array block 25, the reflection surface The degree of freedom in processing the holding structure 24b can be improved. Therefore, it is optimal when the reflecting surfaces 15 to 18 are concave and formed integrally with the reflecting surface holding structure 24b.
  • the beam branching elements 11-14 can be simply mounted on the upper surface of the beam branching element holding structure 24a.
  • 14 and coupling element 6 ⁇ The relative position and angle of LO can be determined.
  • FIGS. 9 to 11 are diagrams for explaining an optical multiplexer / demultiplexer according to the third embodiment of the present invention.
  • Figure 9 is a schematic side view showing an optical system of an optical multiplexer / demultiplexer that works on the present embodiment.
  • Figure 9 conceptually shows the light rays propagating inside the optical multiplexer / demultiplexer.
  • the feature is that the angle formed is smaller than 45 °. Therefore, the incident angle of the light incident on the coupling element 43 is It can be made sufficiently small to reduce coma and loss.
  • the light branching elements 48-1 to 48-8 and the reflection are made on a plane including a plurality of V grooves 41, 42-1 to 42-8 (see Figs. 10 and 11). Since surface 49 (see Figure 11) must be accurately tilted with respect to the surface of the mirror array probe 40, structural features are provided to accurately and easily position these components. Desirable to give A specific example will be described with reference to FIGS.
  • FIG. 10 shows a configuration in which a coupling element, a V-groove for fixing an optical fiber, and a part of a waveguide structure are integrally formed among members constituting an optical multiplexer / demultiplexer that is useful in the present embodiment.
  • FIG. 7 is a perspective schematic external view showing a specific example of a mirror array block 40.
  • the mirror array block 40 includes a V-groove 51 formed linearly at one substrate end on the surface of the plate-shaped substrate, and one slope constituting the V-groove 51.
  • Coupling elements 43, 44-1 to 44-8 formed on the surface 5 la along the linear axis direction of the V groove 51, and perpendicular to the linear axis direction of the V groove 51 and the coupling element 43 44-1 to 44-8, and a plurality of linear V grooves 41 and 42-1 to 42-8 formed so as to be connected to the V groove 51.
  • the multiple V-grooves 41 and 42-1 to 42-8 are V-grooves for fixing optical fibers, and are formed so as to face each other corresponding to the coupling elements 43 and 44-1 to 44-8! RU
  • the V-groove 51 is not formed, and a pair of substantially prismatic protrusions are formed outside the V-grooves 43 and 44-8.
  • the light beam branching element holding part 45 and the reflection surface holding part 46 which are a pair of substantially prismatic protrusions are formed.
  • the beam splitter holding part 45 is formed closer to the coupling element than the reflecting surface holding part 46.
  • the surfaces opposite to the surface on the coupling element side are a flat inclined surface 45a and a flat inclined surface 46a, respectively.
  • the inclination angle of the inclined surface 51a is compared with the inclined surface of the mirror array shown in Fig. 5 in order to make the incident angle of light incident on the coupling elements 43 and 44-1 to 44-8 sufficiently small.
  • the surface is inclined (nearly perpendicular to the substrate surface).
  • the area of the beam splitter is sufficient. It is necessary to increase the size. However, if the area of the beam splitter increases, the manufacturing cost increases, the size of the optical multiplexer / demultiplexer increases, and the optical path length of the propagating light beam increases as the channel spacing increases, resulting in variations in loss between channels. Or problems that increase
  • a flat plate in which a plurality of beam branching elements are arranged in an array is prepared separately, and the position and angle of the filter array flat plate are accurately determined. It is desirable to form a holding portion for the mirror array block integrally.
  • the holding portion since the holding portion only needs to be formed outside the arrayed V-groove, a holding portion having a sufficiently large size can be formed, and a flat plate having a reflective region (a beam splitter arranged in each channel, or a plurality of The accuracy of the arrangement angle of the filter array flat plate formed by arraying the light beam branching elements can be improved.
  • this holding portion can also be used to accurately determine the position and angle of the reflecting surface other than the beam splitter.
  • FIG. 11 shows an optical multiplexer / demultiplexer in which the filter array flat plate 47 and the reflection surface 49 are held by the beam splitter holding unit 45 and the reflection surface holding unit 46, respectively.
  • the light beam branching element holding unit 45 and the filter array flat plate 47, the reflection surface holding unit 46, and the held reflection surface 49 constitute a waveguide structure.
  • the filter array flat plate 47 is held in an inclined manner by contacting the inclined surfaces 45a of the pair of beam branching element holding portions 45 at both end surfaces. Further, the flat reflection surface 49 is inclined and held by contacting the inclined surfaces 46a of the pair of reflection surface holding portions 46 at both end surfaces.
  • the filter array flat plate 47 has a frame-like appearance, and light branching elements 48-1 to 48-8 are fitted into the frame corresponding to the coupling elements 44-1 to 44-8.
  • the filter array flat plate 47 is not limited to the type in which each beam splitting element is fitted into a physical hole in the form of an array as in this embodiment, but is an optically transparent flat plate such as a glass plate.
  • a type in which each beam splitter is pasted in an array and an optically transparent flat plate In addition, a type in which dielectric multilayer films having different transmission wavelength ranges are directly formed in an array is also conceivable. In either case, it is necessary to manufacture the filter array flat plate with care so that the reflecting surfaces of all the beam splitters are arranged on the same plane.
  • the angle between the incident light incident on the coupling element and the reflected light reflected by the coupling element is greater than 0 °. Therefore, when the optical axes of all the light emitting / receiving elements are arranged in the same plane, the angle formed by the incident light and the reflected light at each coupling element is made uniform, and the optical path length connecting the light emitting / receiving element and the coupling element is made uniform.
  • a plane including the optical axis of the light emitting / receiving element (hereinafter referred to as the light receiving / emitting element plane) and a plane including the optical axis of the light beam transmitted and reflected by each light branching element (hereinafter referred to as the light beam splitting element plane) are used. It is necessary to intersect three-dimensionally. Furthermore, a reflection surface, that is, a waveguide element, is required for allowing a light beam reflected by a certain light beam branching element to enter another light beam branching element.
  • the reflecting surface 1007 corresponding to the coupling element is a paraboloid of revolution, a hyperboloid of revolution, and a ellipsoid of revolution.
  • the angle formed by the incident / reflection optical axis of the coupling element is about 90 °
  • the angle formed by the light beam splitting element plane and the light receiving / emitting element plane is often about 90 °. Therefore, the waveguide element is arranged at the furthest position with respect to the light emitting / receiving element plane, and it is difficult to form a structure for positioning the light emitting / receiving element and the waveguide element in a single block. is there.
  • the structure for positioning the light emitting / receiving element and the structure for positioning the waveguide element must be configured in separate blocks. Therefore, the number of parts and assembly man-hours increase, and the manufacturing cost increases. In addition, the excess loss immediately increases due to the influence of strain when the temperature gradient occurs. Furthermore, if the pitch of adjacent beam splitters and the incident angle of the beam incident on the beam splitter are the same, the size of the optical system will increase.
  • the angle formed by the incident / reflecting optical axes of the coupling elements 43, 44-1 to 44-8 is smaller, the angle formed by the light beam splitting element plane and the light receiving / emitting element plane is also smaller. It can be reduced to the same extent. Therefore, the reflection surface 49 corresponding to the waveguide element is It can be placed closer to the light emitting / receiving element plane than when the angle between the two planes is 90 °, and the structure for positioning the light emitting / receiving element and the waveguide element can be formed with a single block. Easy to configure.
  • the coupling element is a spherical mirror
  • it is desirable that the angle formed by the light beam splitting element plane and the light emitting / receiving element plane is as small as possible.
  • care must be taken so that the propagating light beam and the light emitting / receiving element do not interfere with each other!
  • ⁇ Light-branching element holding part 45 and reflecting surface holding part 46 are formed integrally with mirror block 45
  • the beam splitters 48-1 to 48-8 and the reflecting surface 49 have a function as a mirror. For this reason, these positional and angular deviations cause optical axis deviations of propagating light rays and increase excess loss, so that high mounting accuracy is required. In particular, it is necessary to pay attention because the beam splitters 48-1 to 48-8 are plane mirrors that amplify the angle deviation of the reflected beam.
  • the beam branching element holding part 45 and the reflecting surface holding part 46 are integrally formed with the mirror array block 40. Therefore, the filter array flat plate (filter array block) 47 in which the beam splitters 48-1 to 48-8 are formed in an array is reflected on the inclined surface 45a of the beam splitter holder 45, and the reflecting surface 49 is reflected.
  • the assembly is completed simply by pressing, abutting and bonding to the inclined surface 46a of the surface holding portion 46. This eliminates the need for special assembly equipment and advanced skills, and allows parts to be assembled with high precision and ease, thereby reducing manufacturing costs.
  • the beam branching element holding unit 45 and the reflecting surface holding unit 46 may be configured such that the deviation is integrally formed in the mirror array block, but both are in the mirror array block as in this embodiment. It is desirable that they are integrally formed. By doing so, the relative positions and angles of the three elements, the coupling elements 43, 44-1 to 44-8, the beam splitters 48-1 to 48-8, and the reflecting surface 49 can be determined accurately and easily. The assembly time can be greatly reduced. [0125] ⁇ Space is interposed between beam splitters 48-l to 48-8 and reflecting surface 49>
  • a space is interposed between the beam splitters 48-1 to 48-8 and the reflecting surface 49 corresponding to the waveguide element. Therefore, since light rays propagate through space, the propagation loss is negligibly small. Therefore, the propagation loss is much smaller than the conventional optical demultiplexer. Even if the pitch of the beam splitters 48-1 to 48-8 is increased or the incident angle of the propagating beam to the beam splitters 48-1 to 48-8 is increased, the propagation loss does not increase. Design flexibility can also be improved. In this embodiment, since the optical transparency of the waveguide element is not limited, it is desirable to use a material (such as resin) that is easy to process at low cost and suitable for mass production.
  • FIG. 12 and 13 are diagrams for explaining an optical multiplexer / demultiplexer according to the fourth embodiment of the present invention.
  • FIG. 12 is a schematic perspective view of a specific mirror array block of the optical multiplexer / demultiplexer that works on the present embodiment.
  • FIG. 13 is a schematic perspective view of an optical multiplexer / demultiplexer according to this embodiment in which a specific mirror array block and a specific waveguide structure are assembled. This embodiment is an application example of the third embodiment.
  • the mirror array block 40 includes, on the surface of the plate-like substrate, side walls 40a, 40b, 40c formed at three substrate end portions, and a substrate on which the side walls 40a are formed.
  • a V-groove 51 formed linearly along the side wall 40a at the end, and an array formed along the linear axis direction of the V-groove 51 on one inclined surface 51a constituting the V-groove 51
  • a plurality of linear V grooves 41, 42-1 to 42-8 formed so as to be connected to the V groove 51 so as to face 8 are also configured.
  • the plurality of V-grooves 41, 42-1 to 42-8 are V-grooves for fixing optical fibers, and are formed so as to face each other corresponding to each coupling element 43, 44-1 to 44-8. !
  • the side walls 40a, 40b, and 40c formed at the three substrate ends form a shape in which the outer side of the optical fiber array and the upper side of the coupling element are surrounded.
  • the side wall portion 40b is formed with an inclined surface 45a that serves as an optical beam branching element holding portion and an inclined surface 46a that serves as a reflecting surface holding portion.
  • the side wall portion 40c is provided with corresponding inclined surfaces 45a and 46a. Yes.
  • the inclined surface 45a of the beam branching element holding part is formed closer to the coupling element than the inclined surface 46a of the reflecting surface holding part.
  • Each inclined surface 45a, 46a is a flat inclined surface.
  • the length in the array direction of the filter array flat plate 47 in which a plurality of beam branching elements 48-1 to 48-8 are formed in an array is the longitudinal direction of the flat reflective surface 49.
  • the inclined surfaces 45a and 46a are formed in the side wall portions 40b and 40c so that the planar shape of the side wall portions is stepped.
  • the four inclined surfaces for positioning the filter array flat plate 47 and the reflecting surface 49 are rectangular flat surfaces, but two minute protrusion structures are provided on each rectangular plane. If formed, the flat plate can be positioned by point contact instead of surface contact, so that the positioning accuracy can be further improved.
  • the structure is such that side walls are formed on three surfaces so as to surround the V-groove portion, and a flat plate holding portion (inclined surface) and a plurality of coupling elements are formed on those side surfaces.
  • FIG. 14 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to the fifth embodiment of the present invention.
  • the light rays propagating through the optical multiplexer / demultiplexer are conceptually shown.
  • the optical multiplexer / demultiplexer includes a lens array block 110 in which lenses for inputting and outputting light rays are integrally formed, and light rays including a specific wavelength range.
  • the beam splitting elements 111 to 114 that transmit light and reflect light beams outside a specific wavelength range and a reflection surface 128 that reflects light beams are configured.
  • the optical multiplexer / demultiplexer is coupled with optical fibers 115 to 119 so that wavelength multiplexed light or monochromatic light can be input and output.
  • the lens array block 110 includes a lens 120 for inputting / outputting wavelength-multiplexed rays, lenses 101-104 for inputting / outputting monochromatic rays, and a beam branching element 111-114 protruding from the lens array block main body. And a beam branching element holding structure 105 to 109 for holding the light.
  • the lenses 101 to 104 and the beam branching element holding structures 105 to 109 are alternately arranged.
  • the lens 101 is disposed between the protruding beam branching element holding structure 105 and the beam branching element holding structure 106, and the other lenses 102 to 104 are respectively disposed between the two protruding beam branching element holding structures. Has been placed.
  • the light beam branch element 111 is held at both ends thereof on the upper surfaces of the protruding light beam branch element holding structure 105 and the light beam branch element holding structure 106, and the other light beam branch elements 112 to 114 are also Each of them is held by two projecting beam branching element holding structures.
  • the lenses 101 to 104 and the beam splitters 111 to 114 corresponding to the lenses 101 to 104 are paired (four pairs in FIG. 14) and arranged on the lens array block body! /.
  • the lenses 101 to 104 are lenses that are convex toward the beam splitters 111 to 114.
  • the light branching elements 111 to 114 hold the light branching element so that the light incident and reflecting surfaces thereof are parallel to the surfaces in which the lenses 101 to 104 and 120 in the lens array block 110 are aligned. Held in structures 105-109. Furthermore, the reflective surface 128 is a lens array block 1 On the side of the light beam branching elements 111 to 114 held by 10, the surface that reflects the light beam is installed so as to be parallel to the light incident / reflection surface of the light beam branching elements 111 to 114.
  • the optical fiber 115 for inputting / outputting wavelength-multiplexed rays is co-located with the optical fibers 116-119 for inputting / outputting monochromatic rays, and is installed on the opposite side of the reflecting surface 128 with the lens array block 110 interposed therebetween. .
  • the line connecting the light receiving and emitting points (light receiving and emitting points on the end faces) in each of the optical fibers 115 to 119 is parallel to the filter array surface and the reflecting surfaces of the beam branching elements 111 to 114. It is not parallel to the light receiving and emitting surfaces (end surfaces) of the fibers 115 to 119. That is, the optical fibers 115 to 119 are arranged such that their light receiving and emitting surfaces are inclined with respect to the filter array surface. Since the beam splitters 111 to 114 are parallel to the lens array surface or the filter array surface (inclined or not), it is possible to use a single flat plate as the reflecting surface 128.
  • the operation principle of the demultiplexer is as follows.
  • the wavelength multiplexed light that has propagated through the optical fiber 115 from the outside of the optical multiplexer / demultiplexer is guided to the inside of the optical multiplexer / demultiplexer and enters the lens 120 as a slightly diffused wavelength multiplexed light.
  • the wavelength multiplexed light is collimated by the lens 120 and then propagates to the reflecting surface 128.
  • the wavelength multiplexed light propagated to the reflecting surface 128 is reflected by the reflecting surface 128 and enters the light beam splitting element 111.
  • the wavelength multiplexed light that has entered the light beam splitting element 111 passes through the light beam splitting element 111 and passes through a light beam having a specific wavelength range, and enters the lens 101 as a monochromatic light beam. Then, the light is condensed in the lens 101, coupled to the optical fiber 116, and output to the outside of the optical multiplexer / demultiplexer.
  • a wavelength-multiplexed light beam composed of light beams outside a specific wavelength band is reflected without passing through the light beam splitting element 111 and propagates to the reflecting surface 128.
  • the wavelength multiplexed light propagated to the reflecting surface 128 is reflected by the reflecting surface 128 and enters the beam splitter 112.
  • the wavelength multiplexed light that has entered the light beam splitting element 112 is transmitted through the light beam splitting element 112 and includes a specific wavelength range, and becomes a monochromatic light beam and enters the lens 102. Then, the light is condensed in the lens 102, coupled to the optical fiber 117, and output to the outside of the optical multiplexer / demultiplexer. It is.
  • the wavelength multiplexed light incident from the optical fiber 115 can be extracted from the optical fibers 116 to 119 as a plurality of demultiplexed monochromatic light beams.
  • the optical multiplexer / demultiplexer according to the present embodiment when used as a multiplexer, this corresponds to a case where the traveling directions of the wavelength multiplexed light and the monochromatic light in the demultiplexing operation described above are reversed. That is, by inputting monochromatic light beams to the optical fibers 116 to 119 from the outside of the optical multiplexer / demultiplexer, the plurality of monochromatic light beams can be extracted from the optical fiber 115 as multiplexed wavelength multiplexed light beams. it can.
  • Convergent light in the case of a demultiplexer
  • diffused light in the case of a multiplexer
  • Convergent light propagates between the end faces of the optical fibers 116 to 119 and the lenses 101 to 104.
  • it is necessary to precisely determine the relative position and angle between the optical fiber and the lens. Therefore, it is desirable to integrally form a structure for fixing the optical fibers 116 to 119 in the lens array block 110 in a simple and accurate manner.
  • the optical fibers 116 to 119 for inputting / outputting monochromatic light, the lenses 101 to 104, and the light branching elements 111 to 114 are arranged on one straight line.
  • the optical elements can be collectively arranged in an array, and the optical elements can be easily arranged and formed. Further, in this embodiment, since all the optical fibers 115 to 119 are arranged on one surface of the optical multiplexer / demultiplexer, it is suitable for mounting the optical multiplexer / demultiplexer on the corner of the package.
  • the number of beam branching elements is four, the number of lenses is five, the number of reflecting surfaces is three, and the number of optical fibers is five.
  • the number is not limited.
  • the light receiving and emitting points for wavelength multiplexed light and monochromatic light are not limited to optical fibers, and some or all of the light receiving and emitting points may be light receiving and emitting elements such as laser diodes and photodiodes.
  • a configuration may be adopted in which a plurality of light emitting points and light receiving points exist in one optical multiplexer / demultiplexer.
  • FIG. 15 is a conceptual diagram of an optical multiplexer / demultiplexer according to the sixth embodiment of the present invention.
  • the optical multiplexer / demultiplexer according to the present embodiment is disposed on the optical path of the light beam propagating between the adjacent light beam branching elements.
  • the waveguide elements are concave mirrors 215 to 218, and all the concave mirrors 215 to 218 are integrally formed in a waveguide element block 220 that is separate from the mirror array block.
  • the positional deviation tolerance of the incident light with respect to the concave mirrors 215 to 218 is important.
  • the concave mirrors 215 to 218 have a light condensing power smaller than that of the coupling elements 206 to 210 because the purpose is to mutually convert collimated light (that is, to invert the phase of the wavefront while maintaining the beam diameter substantially). Therefore, it is possible to suppress the influence of the positional deviation of the incident light beam with respect to the concave mirrors 215 to 218 on the angular deviation of the reflected light beam, that is, the excessive loss due to the optical axis deviation.
  • FIG. 16 shows an example of the dependence of the coupling efficiency on the waveguide element block shift amount in this optical multiplexer / demultiplexer.
  • this optical multiplexer / demultiplexer can facilitate the assembly in which the alignment tolerance of the waveguide element block 220 is loose with respect to the allowable excess loss, so that the manufacturing cost can be reduced.
  • the optical multiplexer / demultiplexer according to the present embodiment eliminates the need for an optical block through which light propagates, thereby increasing the degree of freedom in material selection and reducing optical loss.
  • a fiber alignment member (a flange described later) Fixed surface 31 6) and an optical system that collects light (a coupling element block 305, which will be described later) are integrated to facilitate fiber alignment, and a filter (a beam splitter block 303, which will be described later) and an optical system (which will be described later).
  • the low-loss can be realized by the alignment of the optical waveguide mirror block 304 and the like. As a result, the size and the cost can be reduced.
  • this Example does not limit this invention. Note that members and portions that are common to all the drawings in the present embodiment are denoted by the same reference numerals, and redundant descriptions are omitted.
  • FIG. 18 and 19 are perspective external views of the optical multiplexer / demultiplexer according to the seventh embodiment of the present invention.
  • FIG. 18 is a perspective view of the front side force of the optical multiplexer / demultiplexer
  • FIG. 19 is a perspective view of the rear side force of the optical multiplexer / demultiplexer.
  • the optical multiplexer / demultiplexer according to the present embodiment can multiplex signal light of eight wavelengths into wavelength multiplexed light, or can demultiplex wavelength multiplexed light into signal light of eight wavelengths. This is an example of an 8-channel optical multiplexer / demultiplexer.
  • the optical multiplexer / demultiplexer includes an optical main block 301, a fiber fixing block 302 to which a plurality of optical fibers are fixed, and a plurality of dielectric multilayer filters. Is composed of a light beam splitter block 303 and an optical waveguide mirror block 304.
  • the optical waveguide mirror block 304 corresponds to a waveguide element block.
  • the coupling element block 305 and the optical main block 301 are integrally formed.
  • FIG. 20 is a schematic perspective view of the optical main block.
  • the optical main block 301 includes a flat bottom surface 313, and a coupling element block 305 and a wall surface 312 that are erected on the bottom surface 313 so as to surround three sides of the bottom surface 313.
  • a mirror surface 311 is formed in which a plurality of coupling elements 317 having a concave mirror, a plane mirror and the like are formed, and both ends of the mirror surface 311 are almost perpendicular to the mirror surface 311.
  • two wall surfaces 312 are formed.
  • a step having a filter block fixing surface 314 parallel to the mirror surface 311 is formed inside each wall surface 312, and the beam splitter block 303 can be fixed to the step. It has been.
  • a notch having an optical waveguide mirror block fixing surface 315 parallel to the mirror surface 311 is formed in the upper part of the wall surface 312 near the portion, and the optical waveguide mirror block 304 can be fixed to the notch.
  • a flange fixing surface 316 for fixing the optical fiber fixing block 302 is formed on the end portion opposite to the mirror surface 311 (coupling element block 305) on the bottom surface 313 and the two wall surfaces 312! Has been.
  • the wall surface 312 is on the near side (the coupling element block 305 side) in FIG.
  • the wall surface 312 having a high height (flange fixing surface 316 side) is viewed from the side, it has a substantially trapezoidal shape.
  • the arrangement position of the block 304 is increased.
  • the coupling element 317 has a mirror surface so that 13 coupling elements 317 are arranged in a row at the same interval as the fiber fixing groove 321 of the optical fiber fixing block 302 described later, that is, at the same interval as the optical fiber 323. It is formed on 311.
  • the filter block fixing surface 314 and the optical waveguide mirror block fixing surface 315 on the optical main block 301 do not need to be completely flat, and a projection 318 as shown in FIG. 21 is formed. Also good. If the surface force connecting the vertices of these projections 318 is made parallel to the mirror surface 311, the beam splitter block 303 and the optical waveguide mirror block 304 are pressed against the vertices of these projections 318, Aligned parallel to the mirror surface 311. If such a projection 318 is used, it is only necessary to control the height of each projection 318 without controlling the flatness of the entire surface with high accuracy, and thus the optical main block 301 can be easily molded.
  • FIG. 22 is a schematic view of the optical fiber fixing block 302.
  • a plurality of fiber fixing grooves 321 are formed in parallel on the upper surface of a rectangular parallelepiped block 320, and a flange 322 having a plane perpendicular to the fiber fixing groove 321 is formed.
  • the optical fiber 323 is fitted into the fiber fixing groove 321 on the upper surface of the optical fiber fixing block 302, and is fixed so that the plurality of optical fibers 323 are parallel to each other.
  • Examples of the cross-sectional shape of the fiber fixing groove 321 include a V shape, a U shape, and a trapezoid.
  • the tip of the optical fiber 323 is fixed to the optical main block 30. It is fixed at a position facing the coupling element 317 formed in 1, and is coupled to the coupling element 317 formed in the optical main block 301 that enters and exits from the end face of the optical fiber 323.
  • FIG. 23 is a cross-sectional view of the beam splitter block 303.
  • the beam splitter block 303 is a plate-like substrate that has nine through holes 332 arranged in a row at the same interval as the fiber fixing groove 321 of the optical fiber fixing block 302, that is, at the same interval as the optical fiber 323.
  • Eight dielectric multilayer filters 333 are affixed to the filter mounting surface 334 of 331 so as to block the eight through holes 332 except for one of the through holes 332. is there.
  • this beam splitter block 303 has a filter mounting surface 334 opposite to the filter mounting surface 334 and the filter block fixing surface 3 14 inside the wall surface 312 of the optical main block 301. It is adhered so as to come into contact with. Therefore, if the dielectric multilayer filter 333 is pasted so that the surface 336 opposite to the filter mounting surface 334 of the beam splitter block 303 and the surface of the dielectric multilayer filter 333 are parallel, the optical main block 301 Since the filter block fixing surface 314 and the mirror surface 311 are made parallel to each other, simply adjusting the wavelength selection block 3 to the filter block fixing surface 314 of the optical main block 30 1 and fixing it makes a complicated angle adjustment. Therefore, the surface of the dielectric multilayer filter 333 and the mirror surface 311 can be mounted in parallel to simplify the assembly procedure.
  • the beam branching element block 303 eight dielectric multilayer filters 333 are attached in a row to a plate-like transparent substrate 335 having no through-holes. It may be configured. In this case, it is desirable to form a non-reflective coating layer on the surface 336 opposite to the filter mounting surface 334 of the transparent substrate 335 to prevent reflection and to prevent the generation of reflection loss and stray light.
  • the adhesion area of the dielectric multilayer filter 333 can be increased, the adhesion strength can be increased, and the gap between the transparent substrate 335 and the dielectric multilayer filter 333 can be increased. By adhering while observing the generated interference fringes, it is possible to bond the transparent substrate 335 and the dielectric multilayer filter 333 with a high degree of accuracy and a high degree of parallelism.
  • FIG. 25 is a schematic diagram of the optical waveguide mirror block 304.
  • the optical waveguide mirror block 304 has an optical fiber on the waveguide mirror forming surface 342 of the plate-like member 341.
  • the eight concave mirrors 343 are formed at the same interval as the fiber fixing groove 321 of the bar fixing block, that is, at the same interval as the optical fiber 323.
  • the optical waveguide mirror block 304 is attached such that the waveguide mirror block fixing surface 315 and the waveguide mirror forming surface 342 formed in the cutout portion of the optical main block 301 are in contact with each other. That is, the optical waveguide block fixing surface 315 and the waveguide mirror forming surface 342 are mounted in parallel.
  • the optical waveguide block fixing surface 315 of the optical main block 301 is formed to be parallel to the mirror surface 311 of the optical main block 301
  • the optical waveguide mirror block 304 is connected to the waveguide mirror block of the optical main block 301.
  • the waveguide mirror forming surface 342 can be mounted so as to be parallel to the mirror surface 311 of the optical main block 301 without complicated angle adjustment, simplifying the assembly procedure. I can do it.
  • FIG. 26 is a schematic internal structural diagram of an optical multiplexer / demultiplexer that is useful in the present embodiment, and illustrates an optical path inside.
  • the coupling elements 317-1 to 317-9 can be formed by concave mirrors.
  • the diffused light emitted from the end face of the input optical fiber 323-1 is reflected by the common coupling element 317-1 formed in the optical main block 301, thereby being a parallel light beam or a light beam that is nearly parallel. And is folded back in the direction of the optical waveguide mirror block 304.
  • the folded light beam passes through the through-hole 332 of the beam splitter block 303, is reflected by the first concave mirror 343-1 of the optical waveguide mirror block 304, and is reflected on the first dielectric multilayer filter 333-1. Incident.
  • the light transmitted through the first dielectric multilayer filter 333-1 is collected by the channel 1 coupling element 317-2 onto the first output fiber 23-2 and output.
  • the light reflected by the first dielectric multilayer filter 333-1 is again reflected by the second concave mirror 3 43-2 of the optical waveguide mirror block 304, and the second dielectric multilayer filter 333-2 Is incident on.
  • the light transmitted through the second dielectric multilayer filter 333-2 is condensed and output to the second output fiber 23-3 by the channel 2 coupling element 317-3.
  • the light reflected by the second dielectric multilayer filter 333 2 is again reflected by the concave mirror 343-3 of the optical waveguide mirror block.
  • the light is reflected and incident on the third dielectric multilayer filter 333-3.
  • wavelength division multiplexed light is demultiplexed by sequentially repeating the incidence on the third, fourth,... Dielectric multilayer filters 333-3, 333-4,.
  • the coupling element 317 of the optical main block 301 is a curved surface having a radius of curvature approximately twice as long as the distance from the optical fiber 323 to the coupling element 317, it is emitted from the optical fiber 323 and reflected by the coupling element 317.
  • the emitted light becomes a substantially parallel light beam and propagates in space.
  • the respective curvatures are adjusted so that the coupling element 317 of the optical main block 301 and the concave mirror 343 of the optical waveguide mirror block 304 form a confocal system, and the dielectric multilayer film filter is positioned at the beam waist.
  • the beam spot diameters of the light beams on all the dielectric multilayer filter 333 are aligned, and at the same time, all of the outgoing light fibers 323-2 to 323-9 are end faces. Since the beam spot diameters are uniform, an optical system optimally coupled to all the output optical fibers 322-2 to 323-9 can be realized, and light loss can be reduced.
  • the optical path inside the optical multiplexer / demultiplexer is viewed from the side (in FIG. 26, when the inside of the optical multiplexer / demultiplexer is viewed from the wall surface 312 side), for example, when functioning as a demultiplexer,
  • the light emitted from the emission fiber 323-1 is reflected upward at a predetermined angle by the common coupling element 317-1 and passes through the beam branching element block 303 disposed above the optical fiber fixing block 302.
  • the light passes through the hole 332 and is incident on the concave mirror 343-1 of the optical waveguide mirror block 304 disposed above the optical fiber fixing block 302.
  • the light incident on the coupling element 343-1 is reflected downward at a predetermined angle by the concave mirror 343-1 and incident on the first dielectric multilayer filter 333-1 of the beam splitter block 303. Further, the optical power transmitted through the first dielectric multilayer filter 333-1 is incident on the channel 1 coupling element 317-2 of the optical main block 301, and then reflected and collected by the coupling element 317-2. , Output from optical fiber 323-2. The light reflected by the first dielectric multilayer filter 333-1 is reflected again by the second concave mirror 343-2 of the optical waveguide mirror block 304 and is incident on the second dielectric multilayer filter 333-2. Is done.
  • the light transmitted through the second dielectric multilayer filter 333-2 is condensed and output to the second output fiber 23-3 by the channel 2 coupling element 317-3. Thereafter, wavelength multiplexing light is demultiplexed by sequentially repeating the same incident and reflection. [0172]
  • the procedure for assembling the optical multiplexer / demultiplexer according to the present embodiment will be described in detail below.
  • the optical fiber 323 is bonded and fixed to the plurality of fiber fixing grooves 321 of the optical fiber fixing block 302.
  • bonding and fixing use a technique such as abutting the tip of the optical fiber 323 against the wall surface.
  • the tips of the optical fiber fixing blocks 302 may be polished so that the tip positions of all the optical fibers 323 are aligned. That is, the end surface force of the optical fiber 323 is arranged perpendicular to the optical axis of the optical fiber 323 and on the same plane. In addition, it is desirable that the tip of the optical fiber 323 has an anti-reflection coating to reduce reflection loss.
  • the adhesive fixing is performed.
  • the force to adjust the angle between the optical main block 301 and the optical fiber fixing block 302 using the plane mirror 317-10 consisting of the plane mirror of the optical main block 301 and the plane mirror fiber 323-10 is also included. start. Since the plane mirror 317-10 is made perpendicular to the optical axis design value of the optical fiber 323, the light emitted from the plane mirror fiber 323-10 is reflected by the plane mirror 317-10.
  • the alignment mirrors 317-11 and 317-12 at both ends of the optical main block 301 are spherical surfaces (from the optical fiber to the concave mirror) that are centered at the positions to be the end surfaces of the alignment optical fibers 323-11 and 323-12.
  • the amount of light is greatest when the end faces of the alignment optical fibers 323-11 and 323-12 are in the center of the alignment mirrors 317-11 and 317-12. Since these alignment mirrors 317-11 and 317-12 are provided at both ends of the mirror surface 311, light is incident from the two alignment optical fibers 323-11 and 323-12 and the returned light is monitored. By doing so, the optical fiber fixing block 302 can be adjusted to the position as designed.
  • the optical main block 301 and the optical fiber fixing block 302 having the adjusted angle and position are bonded and fixed.
  • the beam splitter block 303 is fixed to the optical main block 301.
  • the optical main block 301 is formed with the filter block fixing surface 314 parallel to the mirror surface 311, and the light branching element block 303 is pressed against the filter block fixing surface 314 to fix it.
  • the multilayer filter 333 is mechanically fixed at a predetermined angle! /. If the area of the dielectric multilayer filter 333 is sufficiently large compared to the beam diameter of the beam, the alignment accuracy of the beam splitter block 303 is not required. Therefore, the alignment of the beam splitter block 303 is adjusted to the optical main block. Adequate alignment is possible by using a method such as mechanical contact with the corner of the step of the filter block fixing surface 314 of 301.
  • the optical waveguide mirror block 304 is fixed to the optical main block 301. Also here, as described above, since the waveguide mirror block fixing surface 315 is formed on the optical main block 301, the optical main block 301 and the optical waveguide mirror block 304 are formed by pressing the optical waveguide mirror block 304 against this surface. It is adjusted to a predetermined angle.
  • the optical waveguide Block angle adjusting mirrors 317-13 are formed as one of the coupling elements 317 of the optical main block 301.
  • Light emitted from the optical waveguide mirror block angle adjusting fiber 323-13 is reflected by the optical waveguide mirror block angle adjusting mirror 317-13 and converted into parallel rays perpendicular to the waveguide mirror forming surface 342 of the optical waveguide mirror block 304. Is done.
  • This parallel light beam is reflected by the plane mirror 344 formed on the waveguide mirror forming surface 342 of the optical waveguide mirror block 304, and light is again emitted.
  • the light is reflected and collected by the waveguide mirror block angle adjusting mirror 317 13 and returned to the optical waveguide mirror block angle adjusting fiber 323-13.
  • the return light returning to the optical waveguide mirror block angle adjusting fiber 323-13 is the largest when the optical waveguide mirror block 304 is mounted at a predetermined angle, so monitor the intensity of this return light. Thus, it is possible to confirm whether or not the optical waveguide mirror block 304 is attached at a predetermined angle.
  • the light is incident from the input optical fiber 323-1, so that the output light from each of the output optical fibers 323-2 to 323-9 is maximized.
  • the optical multiplexer / demultiplexer corresponds to the transmission spectrum of each dielectric multilayer film from each output optical fino, with the input / output of light being in the direction opposite to that described above.
  • the input optical fiber By inputting a wavelength signal, it can be emitted from the input optical fiber as wavelength multiplexed light, and can also be used as an optical multiplexer.
  • the optical fiber 323 is exemplified as the light emitting / receiving element.
  • a laser diode, a photodiode, an optical fiber, a laser diode, a photodiode, and the like can be used as the light emitting / receiving element.
  • Examples include parts combined with a lens system, that is, optical package parts such as a tip spherical fiber, a fiber collimator, a transmission system optical subassembly (TOSA), and a reception system optical subassembly (ROSA).
  • TOSA transmission system optical subassembly
  • ROSA reception system optical subassembly
  • the light receiving and emitting element fixing structure for positioning them may be other structures such as a V-groove, U-groove and concave groove.
  • the end face of the optical fiber 323 is arranged on the same plane, and when the photodiode is used as the light emitting / receiving element, Use a V-groove to position the light emitting and receiving points on the same plane.
  • the coupling element 317 refers to an element that reflects incident light and collimates or collects light.
  • the force that exemplifies the dielectric multilayer filter 333 as a light beam splitting element transmits a light beam in a specific wavelength region among incident light beams, and reflects a light beam in other wavelength regions. It is an element to be made.
  • Specific examples of the light branching element when using a specific wavelength range fixedly include a bandpass filter using a dielectric multilayer film, an edge filter, and a wavelength-order fine lattice structure formed on the surface. A resonance mode filter is considered.
  • the wavelength range to be transmitted can be changed independently for each beam splitter by external control.
  • the wavelength range that transmits the light beam includes the entire wavelength range of the incident light beam.
  • the beam splitter corresponds to an optical transmission window.
  • the entire wavelength range of the incident light beam is not transmitted! /,
  • the light beam splitting element has the same function as a flat reflecting surface.
  • the light that has also received the light receiving and emitting element force such as the optical fiber 323 propagates through the space, is reflected by the coupling elements 317-1 to 317-9 formed in the optical main block 301, and again. After propagating through the space, the light is reflected by a waveguide element such as a concave mirror 343 formed on the optical waveguide mirror block 304. The reflected light is demultiplexed or multiplexed by being repeatedly reflected between the waveguide element formed on the optical waveguide mirror block 304 and the beam branching element such as the dielectric multilayer filter 333.
  • an optically transparent material is used as a material for forming the coupling element block 305 and the optical waveguide mirror block 304. Even if it is optically opaque, it is possible to use inexpensive materials with excellent mechanical strength and thermal properties. Further, the diffused light emitted from the light emitting / receiving element is collected by the coupling elements 317-1 to 317-9, not the lens, and converted into a light beam suitable for wave guiding.
  • a light beam that has been multiplexed and demultiplexed by repeating reflection between a waveguide element formed on the optical waveguide mirror block 304 and a beam branching element such as a dielectric multilayer filter 333 is Since the light is collected on the light receiving / emitting element by the coupling elements 317-1 to 317-9 formed on the optical main block 301, it can be efficiently coupled to the light receiving / emitting element to output the optical multiplexer / demultiplexer force.
  • a plurality of light emitting / receiving elements are fixed to the light receiving / emitting element fixing block such as the optical fiber fixing block 302, and the position of the light receiving / emitting element fixing block is determined when the optical multiplexer / demultiplexer is assembled.
  • the optical main block 301 and the optical waveguide mirror block 304 are independent blocks, they are mounted on the coupling element formed on the coupling element block and the optical waveguide mirror block 304 during assembly. It is possible to adjust the angle and position of the waveguide element to an optimum position with little loss, and light loss can be reduced.
  • concave mirrors having a spherical force having a radius of about twice the distance from the light emitting / receiving element to the coupling element can be used.
  • the light emitted from the light emitting / receiving element for light input / output is converted into a light beam by the concave mirror, but is converted into a light beam and enters the light beam branching element, although some spherical aberration occurs.
  • the light beam is combined by the light beam splitting element, it is close to the parallel light beam that has been split, and the light beam is collected by another concave mirror and output to the light emitting / receiving element force for light output.
  • the radius of curvature of the concave mirror should be approximately twice the distance to the light incident / exit point force coupling element of the light receiving / emitting element. Ideally, the beam waist of the light beam reflecting the light of the light receiving / emitting element force splits the beam. It is desirable to make the radius as formed on the element.
  • concave mirrors having a parabolic curved surface force having a focal point near the light emitting / receiving element can be used as the coupling elements 317-1 to 317-9.
  • the light emitted from the light receiving and emitting element force for light input / output is converted into a parallel light beam by the concave mirror and enters the light beam splitting element.
  • This parallel light beam is a light beam that can be best selected by the beam splitter.
  • the parallel light beam combined or demultiplexed by the light beam branching element is condensed by another concave mirror, and the light emitting / receiving element force for light output is also output.
  • the parallel light beam emitted from the light emitting / receiving element and converted by the coupling element is reflected by the plane mirror 344 formed on the optical waveguide mirror block 304 and then collected again by the coupling element on the light emitting / receiving element.
  • the light may be output.
  • a concave mirror having a spherical force having a radius substantially equal to the distance from the light emitting / receiving element to the coupling element can be used as the coupling elements 317-1 to 317-9.
  • the light emitted from the light receiving and emitting element force for light input / output is reflected by the concave mirror, and is again condensed and output to the light receiving and emitting point of the light receiving and emitting element.
  • the reflected light is collected at a point different from the light emitting / receiving point of the light emitting / receiving element. For this reason, by observing the intensity of the output light from the light emitting / receiving element, it is possible to confirm whether the light receiving / emitting element fixing block is attached at a predetermined position.
  • the fixed block can be fixed to the optical main block 301.
  • the plane mirror 317-10 having a surface perpendicular to the optical axis of the light emitting / receiving element can be used as the positioning mirror.
  • the plane mirror 317-10 is designed to be perpendicular to the optical axis of the light receiving / emitting element, the light emitted from the light receiving / emitting element is reflected by the plane mirror 317-10 toward the light receiving / emitting element. Reflected.
  • the output when the reflected light is received by the light emitting / receiving element is maximum when the light receiving / emitting element is mounted at the designed angle, and when the light receiving / emitting element is mounted at a deviation from the designed angle, the flat mirror is used.
  • the light receiving and emitting means are not perpendicular to each other, and the reflected light from the reflecting surface that can be received by the light emitting / receiving element is reduced compared to the case where it is installed as designed. For this reason, by observing the intensity of the output light from the light emitting / receiving element, it is possible to confirm whether the light receiving / emitting element fixing block is attached at a predetermined angle, so that the light receiving / emitting element is fixed with high positional accuracy.
  • the block can be fixed to the optical main block 301.
  • a concave mirror 343 can be used as the waveguide element of the optical waveguide mirror block 304.
  • the optical beam force in the optical multiplexer is similar to that of a lens array waveguide that propagates the beam while condensing it, so light loss can be reduced compared to the case of using a plane mirror.
  • the loss can be greatly reduced as compared with the case of using a plane mirror.
  • the light emitting / receiving element fixing block is used as the optical main block 301.
  • the light receiving / emitting element fixing block has a plurality of V-shaped, U-shaped or square-shaped grooves for fixing the optical fiber 323. Since the optical fiber 323 is formed in this groove, the light receiving / emitting element fixing block and the optical fiber 323 are aligned with each other, and the assembly procedure can be reduced.
  • the light beam branching element block is configured by using a transparent member such as glass as the substrate 335 and pasting the light beam branching element on the substrate 335, if a substrate 335 with high flatness is used, a plurality of light beam branching element blocks are formed on this plane.
  • a transparent member such as glass as the substrate 335
  • a plurality of light beam branching element blocks are formed on this plane.
  • a non-reflective coating is necessary so that reflection loss does not occur on the surface of the substrate 335, and it is necessary to use an expensive member with high optical transparency, which causes an increase in cost.
  • light loss due to absorption of the transparent member cannot be avoided.
  • the substrate 331 having the through-hole 332 is used as the beam branching element block, an expensive optically transparent member is not used, and a non-reflective coating is not required, thereby reducing costs. . Also, light loss due to light absorption of the substrate 331 can be avoided.
  • FIG. 27 is a perspective view of the optical element array in accordance with the eighth embodiment of the present invention viewed from one direction (projection portion side).
  • FIG. 28 is a perspective view of this optical element array as viewed from the other direction (optical element side).
  • the optical element array 410 has a hemispherical (dome-shaped) chuck dome 403 that is a protrusion having a curved surface force on one surface (dome forming surface) 402.
  • a concave mirror array composed of a plate-like substrate 401 formed by arranging the first to eighth concave mirrors 405a to 405h in a row on the other surface (mirror formation surface) 404 formed on Are reflected by the first to eighth concave mirrors 405a to 405h.
  • the chuck dome 4003 is molded such that its center coincides with the substantially center of the substrate 401, that is, the position of the center of gravity of the substrate 401.
  • the chuck dome 403 By molding the chuck dome 403 at such a position, when the optical element array 410 is gripped by an assembly device described later, the gripped position and the center of gravity of the optical element array 410 coincide with each other.
  • the element array 410 can be stably held.
  • FIG. 29 and 30 are perspective views of an 8-wave optical multiplexer / demultiplexer using the optical element array 410.
  • the optical multiplexer / demultiplexer 420 includes an optical main block 421, an input fiber 22, and output fibers 423a to 423h, which are first to eighth dielectric multilayers having different transmission wavelengths. It has a filter array flat plate 425 on which membrane filters 424a to 424h are arranged and attached in a row, and an optical element ray 410.
  • the first to ninth coupling elements 429a to 429i are arranged along the linear axis direction of the V groove 428 on one inclined surface 428a constituting the V groove 428. It is.
  • the input fiber 422 and the output fibers 423a to 423h are respectively installed in V grooves formed on the surface of the plate-like substrate of the optical main block 421 at predetermined intervals.
  • the nine coupling elements 429a to 429i are arranged to face each other.
  • the filter array holding portions 426a and 426b are made so as to hold the filter array flat plate 425 at a predetermined angle.
  • the reflection surface holding portions 427a and 427b are formed so as to hold the optical element array 410 at a predetermined angle. Further, when the side surface of the optical element array 410 is pressed against the holding portions 427a and 427b, the angle around the axis perpendicular to the mirror forming surface 404 is adjusted to be a predetermined angle.
  • the light in the specific wavelength range that has passed through the first dielectric multilayer filter 424a is collected by the second coupling element 429b and output from the first output fiber 423a.
  • the light beam reflected by the first dielectric multilayer filter 424a is reflected again by the second concave mirror 405b of the optical element array 410 and is incident on the second dielectric multilayer filter 424b.
  • the light beam transmitted through the second dielectric multilayer filter 424b is collected by the third coupling element 429c and output from the second output fiber 423b.
  • the light in the specific wavelength range reflected by the second dielectric multilayer filter 4 24b is reflected again by the third concave mirror 40 5c of the optical element array 410 and is incident on the third dielectric multilayer filter 424c.
  • the Thereafter, the same operation is repeated to demultiplex the wavelength multiplexed light. If the input and output are reversed, wavelength multiplexed light is multiplexed and functions as a multiplexer.
  • FIG. 32 is a schematic diagram of an optical multiplexer / demultiplexer assembling device according to the present embodiment.
  • This assembling device 450 has a gripping mechanism (which can grip the chuck dome 403 of the optical element array 410). (Gripping means) 441 and position adjusting mechanism (position adjusting means) 442 capable of moving the holding mechanism 441 in the vertical and horizontal directions, and reaction force generating means for generating reaction force as the position adjusting mechanism 442 moves. And an arm 452 that supports the gripping mechanism 441 via a holding member 459.
  • the arm 452 is installed on an XYZ stage 458 that can move in three directions: X, Y, and Z.
  • the position adjusting mechanism 442 includes two slide rails 453 and 454 that slide (move) in the Z direction (vertical direction) and the Y direction (horizontal direction), respectively.
  • the gripping mechanism 441 is a vacuum chuck 451 having a pipe at the tip, and the inner diameter of the pipe is formed smaller than the diameter of the chuck dome 403 of the optical element array 410. By forming the nove in such a shape, the pipe of the vacuum chuck 451 can be brought into close contact with the chuck dome 403 of the optical element array 410, and the optical element array 410 can be easily held (adsorbed).
  • the elastic member 443 is attached between the vacuum chuck 451 and the holding member 459, and is attached between the leaf spring 455 that generates a pressing force in the downward direction in the Z direction, and between the holding member 459 and the tip of the arm 452. And a coil spring 456 for generating a pressing force in a direction away from the arm 452 in the Y direction.
  • a rubber hose 457 connected to a vacuum pump (not shown) is connected to the upper end of the vacuum chuck 451, and the chuck dome 403 of the optical element array 410 described above is adsorbed (gripped) to the lower end of the vacuum chuck 451. .
  • the arm 452 has a shape that extends upward and the top end of the arm 452 extends further in the lateral direction, and the tip of the vacuum chuck 451 is attached to the tip of the arm 452 facing downward, so that it is attracted to the vacuum chuck 451.
  • the optical element array 410 can be arbitrarily moved in the X, Y, and Z directions.
  • FIG. 33 A procedure for aligning and attaching (assembling) the optical element array 410 to the optical main block 421 using the assembling apparatus 450 will be described with reference to FIGS. 33, 34, and 35.
  • FIG. 33 A procedure for aligning and attaching (assembling) the optical element array 410 to the optical main block 421 using the assembling apparatus 450 will be described with reference to FIGS. 33, 34, and 35.
  • FIG. 33 A procedure for aligning and attaching (assembling) the optical element array 410 to the optical main block 421 using the assembling apparatus 450 will be described with reference to FIGS. 33, 34, and 35.
  • the reflecting surface holding portion 427 of the optical main block 421 is fixed so as to face upward, and the optical element array 410 is mounted on the reflecting surface holding portion 427 so that the mirror forming surface 404 faces downward.
  • the X and Y directions of the XYZ stage 458 of the assembly device 450 are moved, and the vacuum chuck 451 is placed on the chuck dome 403 of the optical element array 410 mounted on the optical main block 421. Adjust so that is placed. Thereafter, the Z direction of the stage 458 is adjusted, the vacuum chuck 451 is lowered, and the tip of the vacuum chuck 451 is brought into contact with the chuck dome 4003 as shown in FIG.
  • the vacuum chuck 451 is pressed against the chuck dome 403 by the pressing force of the leaf spring 455 after contacting the chuck dome 403 as the arm 452 is lowered.
  • the vacuum pump 4 51 is pressed against the chuck dome 403 and the vacuum pump connected to the vacuum chuck 451 is operated, the vacuum chuck 451 forms a portion to be sucked, and the vacuum chuck 451
  • the reflective surface holding part 427 of the optical main block 421 has a reflective surface holding without adjusting the angle of the vacuum chuck 451 even if the reflective surface holding part 427 of the optical main block 421 is not pointing directly upward.
  • the optical element array 410 is fixed to the vacuum chuck 451 while the parallelism of the part 427 and the mirror forming surface 404 of the optical element array 410 is maintained.
  • the vacuum chuck 451 moves in the Y axis direction, and the optical element array 410 is brought into contact with the optical main block 421 as shown in FIG. You can hit 431. Since the vacuum chuck 451 has a pipe shape, the optical element array 410 pressed against the abutting surface 431 of the optical main block 421 has the vacuum chuck 451 so that the side surface 406 is at an angle along the abutting surface 431. It rotates as an axis, and the angle around the Z axis is adjusted to a predetermined angle.
  • the assembly device 450 has 0 ⁇ , ⁇ , and ⁇ . All the angle adjustments of the optical element array 410 can be performed without providing any rotation mechanism.
  • the optical element array 410 which has been angle-adjusted by the above-described operations, is adjusted in the X position and the heel position so as to obtain the optimum optical coupling by moving the ⁇ stage 458 in the X and ⁇ directions. . After that, move the ⁇ stage 458 ⁇ direction downward to maintain the optical element array 410 and the reflective surface.
  • the holding part 427 is brought into contact. After making contact between the optical element array 410 and the reflecting surface holding portion 427, it is confirmed again whether optimal optical coupling is obtained, and then fine adjustment in the X and Y directions is performed as necessary.
  • the optical multiplexer / demultiplexer is completed by fixing the optical main block 421 using a method such as bonding.
  • the assembly device 450 does not require a complicated rotation mechanism such as a three-axis rotation stage, and the assembly device itself has a simple structure, thereby reducing its manufacturing cost. be able to. Since it can be assembled without having to adjust all the rotating shafts to a predetermined angle, the assembling procedure is simplified, and the assembling time and the assembling work can be reduced.
  • the optical element of the optical element array 410 is not limited to the concave mirror 405 that reflects the light beam as described above.
  • a flat mirror, a dielectric multilayer filter, a diffraction grating, or a lens may be used. The same effect as the optical element array 410 is obtained.
  • FIG. 36 is a diagram for explaining an optical multiplexer / demultiplexer according to the ninth embodiment of the present invention, and shows a state when the waveguide element block of the optical multiplexer / demultiplexer is tilted.
  • the optical multiplexer / demultiplexer includes a waveguide element block 501 in which waveguide elements 502 to 505 also having concave mirror force are formed, and a beam branch element block in which beam branch elements 507 to 510 are formed. 506.
  • the beam branching element block 506 is held by block holding structures 511 and 512 formed in the coupling element block, and is arranged opposite to the waveguide element block 501.
  • the coupling element block and the waveguide element block 501 are separated. Therefore, unlike the conventional optical multiplexer / demultiplexer shown in FIG. 44, the block holding structures 511 and 512 are separated from the waveguide element block 501.
  • the block holding structure 511, 512 is separated from the waveguide element block 501, so that even if the angle of the waveguide element block 501 is deviated, the angle of the beam splitter block 506 does not change, and the beam splits.
  • the angle deviation does not affect the elements 507 to 510. Therefore, the propagating ray is Even if the light beams enter and reflect the light beam splitting elements 507 to 510, the angular deviation of the propagating optical axis is not amplified, and an extremely large shift does not occur in the incident position of the propagating light beam to the light guiding elements 502 to 505.
  • the waveguide elements 502 to 505 have a condensing power, the angular deviation can be corrected each time the propagating light beam is reflected on the waveguide elements 502 to 505. Therefore, as in the conventional optical multiplexer / demultiplexer shown in FIG. 44, the angle deviation of the propagating light beam can be suppressed as compared with the case where the holding structure is integrally formed with the waveguide element block.
  • the radius of curvature of the waveguide elements 502 to 505 is about 5 mm
  • the distance between the waveguide elements 502 to 505 and the beam branching elements 507 to 510 is also about 5 mm
  • the light beam propagates to the waveguide elements 502 to 505.
  • the design value of the incident / reflection angle is 11.31 °.
  • the incident / reflection angle of the propagating light beam to the waveguide elements 502 to 505 is conventionally about 2 ° to 17 °, whereas in this embodiment, it is 10 It is about 14 °, and the error from the design value of the incident / reflection angle is small. Therefore, according to the present embodiment, it is possible to suppress the influence of the angle shift of the waveguide element block 501 on the optical axis shift, that is, the increase in excess loss.
  • the present invention has been described with reference to the case where the present invention is applied to an optical multiplexer / demultiplexer.
  • a light ray having a function of transmitting a specific light amount of incident light and reflecting the remaining light amount.
  • a branch element that is, an optical power bra or an optical distributor, it is possible to provide substantially the same effect as that in an optical multiplexer / demultiplexer.

Abstract

An optical multiplexer/demultiplexer includes: a plurality of light emission/reception elements (1-5); a plurality of light branching elements (11-14) allowing a part of incident light to pass through and reflecting the remaining part; a plurality of connection elements (6-10) arranged on the optical path connecting the corresponding light emission/reception elements and the light branching elements; and waveguide elements (15-18) arranged on the optical path of a reflected light from a light branching element to another light branching element where the reflected light comes. All the connection elements are formed into a single connection element block (25). This suppresses increase of the assembling time and the production cost. Moreover, by using a spherical mirror requiring a smaller number of design parameters as a connection element, the yield can be increased even if the connection elements are formed in to a single block of array. Moreover, by using a concave mirror as a waveguide element and arranging all the waveguide elements into a single waveguide element block, it is possible to obtain a large alignment allowance of the waveguide element block, which facilitates assembling.

Description

明 細 書  Specification
光合分波器およびその組み立て装置  Optical multiplexer / demultiplexer and assembly apparatus therefor
技術分野  Technical field
[0001] 本発明は、光信号を合分波する光合分波器およびその組み立て装置に関し、例え ば、複数の波長の光信号を一本の伝送路に多重して伝送する波長多重光伝送装置 およびその組み立て装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical multiplexer / demultiplexer that multiplexes and demultiplexes an optical signal and an assembling apparatus thereof. For example, a wavelength division multiplexing optical transmission device that multiplexes and transmits optical signals of a plurality of wavelengths on a single transmission line. And an assembly apparatus thereof.
背景技術  Background art
[0002] 一本の光伝送路を有効に活用し、大容量伝送を可能にする技術として、波長多重 光伝送技術が知られている。波長多重光伝送は、送信側でそれぞれ波長の異なる 複数の光信号を発生させ、光合波器を用いて、これらの信号を一本の伝送路に多重 して伝送し、受信側で光分波器により異なる波長の信号を分離し、それぞれの波長 ごとに準備された受光素子によりその信号を受信するものである。  [0002] A wavelength division multiplexing optical transmission technology is known as a technology that makes effective use of a single optical transmission line and enables large-capacity transmission. In wavelength division multiplexing optical transmission, a plurality of optical signals with different wavelengths are generated on the transmission side, and these signals are multiplexed and transmitted on a single transmission line using an optical multiplexer, and optical demultiplexing is performed on the reception side. Signals with different wavelengths are separated by a detector, and the signals are received by light receiving elements prepared for each wavelength.
[0003] 波長多重伝送は、一つの波長のみを用いた伝送に比べ、一本のファイバあたりの 伝送容量の大容量化が容易であり、又、複数の伝送路を用いた場合に比較して、伝 送路コストが削減できるため、通信容量の大容量ィ匕および通信コストの低減に効果 的である。波長多重光伝送を行う際には、送信側で光合波、受信側で光分波を行な うために、光合分波器が用いられる。  [0003] Wavelength multiplexing transmission makes it easy to increase the transmission capacity per fiber compared to transmission using only one wavelength, and compared to the case where multiple transmission paths are used. Since the transmission path cost can be reduced, it is effective in reducing the communication cost and the communication capacity. When performing wavelength division multiplexing optical transmission, an optical multiplexer / demultiplexer is used to perform optical multiplexing on the transmitting side and optical demultiplexing on the receiving side.
[0004] <第 1の従来例 >  [0004] <First Conventional Example>
従来の光合分波器の第 1例として、文献 1 (米国特許公報 6832031号)に記載のも のがある。この光合分波器の概略構成を図 37に示す。この光合分波器は、受信素子 1001aによって受信された光信号を波変換素子 1003a〜1003dによって複数の波 長域に分波し、それぞれの波長域の光信号を送信素子 1002a〜1002dから送信す るものである。  A first example of a conventional optical multiplexer / demultiplexer is described in Document 1 (US Pat. No. 6832031). Figure 37 shows the schematic configuration of this optical multiplexer / demultiplexer. This optical multiplexer / demultiplexer demultiplexes the optical signal received by the receiving element 1001a into a plurality of wavelength ranges by the wave converting elements 1003a to 1003d, and transmits the optical signals in the respective wavelength ranges from the transmitting elements 1002a to 1002d. Is.
[0005] より具体的には、光合分波器は、下部キヤリャ 1004aおよび上部キヤリャ 1004bを 有している。下部キヤリャ 1004aには、カップリング装置 1005a〜1005cが取り付け られている。カップリング装置 1005a〜1005cには、受信素子 1001,送信素子 100 2b, 1002dがそれぞれ個別に配設される。上部キヤリャ 1004b〖こも 2つのカップリン グ装置が取り付けられ、それぞれのカップリング装置に残りの送信素子 1002a, 100 2cが配設される。また、下部キヤリャ 1004aと上部キヤリャ 1004bとの間の空間には 、波変換素子 1003a〜1003dが配設されている。波変換素子 1003a〜1003dは、 それぞれ異なる特定の波長の光線のみを透過させ、それ以外の波長の光線を反射 させる素子である。 [0005] More specifically, the optical multiplexer / demultiplexer includes a lower carrier 1004a and an upper carrier 1004b. Coupling devices 1005a to 1005c are attached to the lower carrier 1004a. In the coupling devices 1005a to 1005c, a receiving element 1001, a transmitting element 1002b, and 1002d are individually provided. Upper carrier 1004b And the remaining transmitting elements 1002a and 1002c are disposed in the respective coupling devices. Further, wave conversion elements 1003a to 1003d are disposed in a space between the lower carrier 1004a and the upper carrier 1004b. The wave conversion elements 1003a to 1003d are elements that transmit only light beams having different specific wavelengths and reflect light beams of other wavelengths.
[0006] 図 38を参照し、カップリング装置 1005aの構成について更に説明する。カップリン グ装置 1005aは、受信素子 1001を保持するストッパ面 1006を有する。また、カップ リング装置 1005aには、ストッパ面 1006上の受信素子 1001と対向する位置に、受 信素子 1001からの光信号を入射方向に対して 90°をなす角度方向に反射する反射 面 1007が形成されている。この反射面 1007は、その縦断面が放物線、双曲線また は楕円の一部を描いている。さらに、カップリング装置 1005aへの受信素子 1001の 位置決めを容易にするために、ストッパ面 1006の側部にストッパ 1008が設けられて いる。カップリング装置 1005b, 1005cもまた、カップリング装置 1005aと同様の構成 をしている。  [0006] The configuration of the coupling device 1005a will be further described with reference to FIG. The coupling device 1005a has a stopper surface 1006 that holds the receiving element 1001. In addition, the coupling device 1005a has a reflecting surface 1007 that reflects an optical signal from the receiving element 1001 in an angle direction forming 90 ° with respect to the incident direction, at a position facing the receiving element 1001 on the stopper surface 1006. Is formed. The reflection surface 1007 has a vertical section depicting a part of a parabola, a hyperbola, or an ellipse. Further, a stopper 1008 is provided on the side of the stopper surface 1006 to facilitate positioning of the receiving element 1001 with respect to the coupling device 1005a. The coupling devices 1005b and 1005c have the same configuration as the coupling device 1005a.
[0007] このような構成の光合分波器において、受信素子 1001から光信号が出射されると 、この光信号はカップリング装置 1005aの反射面 1007によって図 39に示すように光 軸が 90°変換され、波変換素子 1003aに向かって反射される。そして、特定の波長 の光線のみが波変換素子 1003aを透過し、送信素子 1002aから送信される。波変 換素子 1003aで反射された光線は、波変換素子 1003bに至り、波変換素子 1003a とは異なる波長域の光線が透過し、送信素子 1002bから送信される。同様の動作を 繰り返すことにより、分波された単色光線が送信素子 1002a〜1002dのそれぞれか ら送信される。  [0007] In the optical multiplexer / demultiplexer configured as described above, when an optical signal is emitted from the receiving element 1001, the optical signal has a 90 ° optical axis as shown in FIG. 39 by the reflecting surface 1007 of the coupling device 1005a. It is converted and reflected toward the wave conversion element 1003a. Then, only a light beam having a specific wavelength passes through the wave conversion element 1003a and is transmitted from the transmission element 1002a. The light beam reflected by the wave conversion element 1003a reaches the wave conversion element 1003b, and a light beam having a wavelength region different from that of the wave conversion element 1003a is transmitted and transmitted from the transmission element 1002b. By repeating the same operation, the demultiplexed monochromatic light is transmitted from each of the transmitting elements 1002a to 1002d.
[0008] <第 2の従来例 >  [0008] <Second conventional example>
従来の光合分波器の第 2例として、文献 2 (特開 2004— 206057号)に記載のもの がある。この光合分波器の概略構成を図 40に記載する。この光合分波器は、光ファ ィバ 2001a〜2001fを平行に並べて先端にコネクタ 2002を取り付けた光ファイバァ レイ 2003と、下面にマイクロレンズ 2004a〜2004fが配列されたマイクロレンズァレ ィ 2005と、透明なカノくー咅材 2006と、フイノレタ 2007a〜2007d力らなるフイノレタ層 2 008と、導光ブロック 2009と、導光ブロック 2009の下面に形成された平面状のミラー 層 2010とで構成されて 、る。 A second example of a conventional optical multiplexer / demultiplexer is described in Document 2 (Japanese Patent Laid-Open No. 2004-206057). A schematic configuration of this optical multiplexer / demultiplexer is shown in FIG. This optical multiplexer / demultiplexer includes an optical fiber array 2003 in which optical fibers 2001a to 2001f are arranged in parallel and a connector 2002 is attached to the tip, a microlens array 2005 in which microlenses 2004a to 2004f are arranged on the bottom surface, Transparent Kano-Kou wood material 2006 and Finoleta 2007a ~ 2007d Powerful Finoleta layer 2 008, a light guide block 2009, and a planar mirror layer 2010 formed on the lower surface of the light guide block 2009.
[0009] このような構成の光合分波器において、波長 λ 1、え 2、 λ 3、 λ 4の光を多重した 光は光ファイバ 2001aから出射しマイクロレンズアレー 2005のマイクロレンズ 2004a でその光軸を曲げられて平行光になり、ミラー層 2010で反射してフィルタ層 2008〖こ 入射する。フィルタ層 2008のこの位置には、波長 λ 1の光のみを透過し、それ以外 の波長の光を反射するフィルタ 2007aが配置されている。したがって、波長 λ 1の光 はフィルタ 2007aを透過し、マイクロレンズ 2004cで光軸を曲げられて光ファイバ 20 01cに結合する。よって、光ファイバ 2001cの光出射端からは波長 λ 1の光が取り出 される。 In the optical multiplexer / demultiplexer having such a configuration, light multiplexed with wavelengths λ 1, e 2, λ 3, and λ 4 is emitted from the optical fiber 2001a and is output by the microlens 2004a of the microlens array 2005. The axis is bent to become parallel light, which is reflected by the mirror layer 2010 and incident on the filter layer 2008. At this position of the filter layer 2008, a filter 2007a that transmits only light of wavelength λ1 and reflects light of other wavelengths is disposed. Therefore, the light of wavelength λ 1 is transmitted through the filter 2007a, and the optical axis is bent by the microlens 2004c to be coupled to the optical fiber 2001c. Therefore, light of wavelength λ1 is extracted from the light emitting end of the optical fiber 2001c.
[0010] 一方、フィルタ 2007aで反射された光(波長え 2、 λ 3、 λ 4)は、ミラー層 2010で再 度反射して、フィルタ層 2008に入射する。フィルタ層 2008のこの位置にはフィルタ 2 007bが配置されており、フィルタ 2007bを透過した波長 λ 2の光はマイクロレンズ 20 04dに入射し、光軸方向を曲げられて光ファイバ 2001dに結合する。よって、光ファ ィバ 2001dの光出射端からは波長え 2の光のみが取り出される。同様の動作を繰り 返すことにより、光ファイバ 2001d, 2001eの光出射端からは波長え 3, ぇ4の光が 取り出される。  On the other hand, the light (wavelength 2, λ 3, λ 4) reflected by the filter 2007a is reflected again by the mirror layer 2010 and enters the filter layer 2008. A filter 2 007b is disposed at this position of the filter layer 2008, and light having a wavelength λ 2 transmitted through the filter 2007b is incident on the microlens 2044d, and the optical axis direction is bent and coupled to the optical fiber 2001d. Therefore, only light having a wavelength of 2 is extracted from the light exit end of the optical fiber 2001d. By repeating the same operation, light of wavelengths 3 and 4 is extracted from the light exit ends of the optical fibers 2001d and 2001e.
[0011] <第 3の従来例 >  [0011] <Third conventional example>
従来の光合分波器の第 3例を図 41に示す。この光合分波器は、保持部材 3101に 誘電体多層膜フィルタ 3102— 1〜3102— 4が固定されており、光を入出力する光フ アイバ 3103— 1〜3103— 5、光ファイバから出射された光を平行光に変換したり、誘 電体多層膜フィルタを透過した光を光ファイバへ集光したりするレンズ 3104— 1〜3 104— 5がそれぞれ位置合わせされて搭載されて 、る。  A third example of a conventional optical multiplexer / demultiplexer is shown in FIG. In this optical multiplexer / demultiplexer, a dielectric multilayer filter 3102-1 to 3102-4 is fixed to a holding member 3101, and optical fibers 3103-1 to 3103-5 for inputting and outputting light are emitted from an optical fiber. Lenses 3104-1 to 3 104-5 for converting the reflected light into parallel light and condensing the light that has passed through the dielectric multilayer filter to the optical fiber are mounted in alignment.
[0012] この光合分波器は、 λ 1〜え 4の四つの波長の光が多重された波長多重光を合分 波するものである。光入力用の第 1の光ファイバ 3103— 1から出射された波長多重 光は、レンズ 3104— 1により平行光線に変換され、保持部材 3101の中を透過した 後、第 1の誘電体多層膜フィルタ 3102— 1に入射する。第 1の誘電体多層膜フィルタ 3102— 1は波長 λ 4の光を透過し、それ以外の波長の光を反射する特性を持って おり、このフィルタにより選択された波長え 4の光がレンズ 3104— 2により第 2のフアイ ノ 3103— 2に集光され、出力される。第 1の誘電体多層膜フィルタ 3102— 1により反 射された光は、保持部材 3101内を伝播して、順次、フィルタ 3102— 2〜3102— 4 に入射する。以下、第 2のフィルタ 3102— 2は波長え 3を透過し、それ以外の波長は 反射するため、同様にえ 3の光が第 3のファイバ 3103— 3より出力される。以下同様 に、 λ 2を透過する第 3のフィルタ 3102— 3によって λ 2の光が第 4のファイバ 3103 —4より、 λ 1を透過する第 4のフィルタ 3102— 4によって λ 1の光が第 5のファイバ 3 103— 5より出力される。 This optical multiplexer / demultiplexer multiplexes / demultiplexes wavelength multiplexed light in which lights of four wavelengths λ 1 to 4 are multiplexed. The wavelength multiplexed light emitted from the first optical fiber 3103-1 for light input is converted into parallel rays by the lens 3104-1, transmitted through the holding member 3101, and then the first dielectric multilayer filter. 3102—Is incident on 1. The first dielectric multilayer filter 3102-1 has the characteristic of transmitting light of wavelength λ 4 and reflecting light of other wavelengths. The light of wavelength 4 selected by this filter is condensed by the lens 3104-2 onto the second fiber 3103-2 and output. The light reflected by the first dielectric multilayer filter 3102-1 propagates through the holding member 3101 and sequentially enters the filters 3102-2 to 3102-4. Hereinafter, since the second filter 3102-2 transmits the wavelength 3 and reflects the other wavelengths, the light 3 is similarly output from the third fiber 3103-3. Similarly, the light of λ 2 is transmitted from the fourth fiber 3103-4 by the third filter 3102-3 that transmits λ 2, and the light of λ 1 is transmitted by the fourth filter 3102-4 that transmits λ 1. Output from 5 fiber 3 103-5.
[0013] このような構成では、ファイバから出射された光を平行光に変換し、また、平行光を ファイノ に集光するためのレンズがファイバの本数分必要となり、部品数が増加する 。また、各ファイバとレンズをそれぞ; 立置調整して取り付ける必要があり、組み立て 工数が増加する。これらの問題を解決するため、各ファイバからの出射光を平行光に 変換する、あるいは、平行光をファイバへ集光するためのレンズ部品数を削減するた めの発明が 、くつかなされて 、る。 [0013] In such a configuration, the number of lenses for converting the light emitted from the fiber into parallel light and condensing the parallel light on the finer is required, and the number of components increases. In addition, each fiber and lens must be installed in a standing position, which increases the number of assembly steps. In order to solve these problems, inventions for converting the emitted light from each fiber into parallel light, or reducing the number of lens parts for condensing the parallel light onto the fiber have been devised. The
[0014] <第 4の従来例 >  [0014] <Fourth conventional example>
従来の光合分波器の第 4例として、文献 3 (岡部、他 1名、「胃 DM用合分波器 S MOPの開発」、電子情報通信学会総合大会、 2002年、予稿集 C— 3— 76、 P208) に記載のものがある。この光合分波器の概略構成を図 42に示す。この光合分波器は 、透明な保持部材 3105の間に、相互に間隔を置いて配置された複数の光線分岐素 子 3106と、ポート 3107からこの光線分岐素子 3106に波長多重光を斜めに案内す る第 1のレンズ 3109と、フィルタ反射面で反射された各波長の光をポート 3107に集 光させる複数の第 2のレンズ 3110を備える。この構成では、第 1のレンズ 3109と複 数の第 2のレンズ 3110を 1つの光学基板上に作製することができるため、部品数を 肖 IJ減することがでさる。  As a fourth example of a conventional optical multiplexer / demultiplexer, reference 3 (Okabe, et al., "Development of a gas multiplexer / demultiplexer S MOP", IEICE General Conference, 2002, Proceedings C-3 — 76, page 208). Figure 42 shows the schematic configuration of this optical multiplexer / demultiplexer. This optical multiplexer / demultiplexer obliquely guides wavelength-multiplexed light from a plurality of beam branching elements 3106 disposed at intervals between transparent holding members 3105 and a port 3107 to the beam branching element 3106. The first lens 3109 and a plurality of second lenses 3110 that collect light of each wavelength reflected by the filter reflecting surface at the port 3107 are provided. In this configuration, since the first lens 3109 and the plurality of second lenses 3110 can be manufactured on one optical substrate, the number of components can be reduced by IJ.
[0015] <第 5の従来例 >  [0015] <Fifth conventional example>
従来の光分波器の第 5例として、文献 4 (米国特許第 6198864号)に記載のものが ある。この光分波器の概略構成を図 43に示す。この光分波器は、主光学ブロック 32 00の表面に複数の収束リフレクタ 3201が形成されると共に、複数の波長特定フィル タ 3202が接続されており、各フィルタで反射された光は主光学ブロック 3200内部を 伝播し、収束リフレクタ 3201で反射され、順次、隣接する次の波長特定フィルタに導 かれる構成となっている。 A fifth example of a conventional optical demultiplexer is described in Document 4 (US Pat. No. 6,1988,641). Figure 43 shows the schematic configuration of this optical demultiplexer. This optical demultiplexer includes a plurality of focusing reflectors 3201 formed on the surface of the main optical block 3200 and a plurality of wavelength-specific filters. 3202 is connected, and the light reflected by each filter propagates through the main optical block 3200, is reflected by the converging reflector 3201, and is sequentially guided to the next adjacent wavelength specifying filter.
[0016] この光分波器にぉ 、て、入射ファイバ 3203から入射された光は、反射面 3204で 反射、集光された後、第 1のフィルタ 3202aへ入射し、第 1のフィルタ 3202aを透過し た光は、レンズアレイブロック 3205のレンズ 3206aを通過し、集光されて検出器 320 7aへ入射される。第 1のフィルタ 3202aで反射された光は、収束リフレクタ 3201aで 反射され、第 2のフィルタ 3202bへ入射される。以降、第 2のフィルタ 3202b、第 3の フィルタ 3202c、第 4のフィルタ 3202dで同様な動作を繰り返し、波長多重光の分波 を行なう。 [0016] After entering the optical demultiplexer, the light incident from the incident fiber 3203 is reflected and collected by the reflecting surface 3204, and then enters the first filter 3202a. The transmitted light passes through the lens 3206a of the lens array block 3205, is collected, and is incident on the detector 3207a. The light reflected by the first filter 3202a is reflected by the converging reflector 3201a and is incident on the second filter 3202b. Thereafter, the same operation is repeated in the second filter 3202b, the third filter 3202c, and the fourth filter 3202d to demultiplex the wavelength multiplexed light.
[0017] この光分波器では、複数のレンズが一体化されたレンズアレイブロック 3205力 主 光学ブロック 3200に突起部で位置合わせされており、また、ファイバ 3203から入射 された光は、主光学ブロック 3200に作りこまれた反射面 3204により平行光線に変換 される構成となっているため、個別のレンズを位置合わせする必要が無ぐ組み立て コストを削減できる。  [0017] In this optical demultiplexer, a lens array block 3205 force in which a plurality of lenses are integrated is aligned with a main optical block 3200 by a protrusion, and light incident from a fiber 3203 is Since it is converted into parallel rays by the reflecting surface 3204 built into the block 3200, it is not necessary to align individual lenses, and assembly costs can be reduced.
[0018] <第 6の従来例 >  [0018] <Sixth conventional example>
従来の光合分波器の第 6例として、文献 5 (特開 2005— 17811号)に記載のもの がある。この光合分波器の概略構成を図 44に示す。この光合分波器は、導波素子 3 003〜3005力 S形成された導波素子ブロック 3001と、光線分岐素子 3006, 3007や 透過窓 3008, 3009が形成されたアレイ素子搭載ブロック 3002とを有する。導波素 子ブロック 3001には、アレイ素子搭載ブロック 3002を保持する保持構造が一体形 成されている。  A sixth example of a conventional optical multiplexer / demultiplexer is described in Reference 5 (Japanese Patent Laid-Open No. 2005-17811). A schematic configuration of this optical multiplexer / demultiplexer is shown in FIG. This optical multiplexer / demultiplexer has a waveguide element block 3001 formed with waveguide elements 3003 to 3005 force S, and an array element mounting block 3002 formed with beam branch elements 3006 and 3007 and transmission windows 3008 and 3009. . The waveguide element block 3001 is integrally formed with a holding structure for holding the array element mounting block 3002.
[0019] 透過窓 3008を介して光合分波器の内部に送られた光線は、導波素子と光線分岐 素子とに交互に反射され、ジグザグの光路に沿って伝播する。光線分岐素子 3006, 3007を透過する波長の光線は、光線分岐素子 3006, 3007のそれぞれから取り出 され、その他の波長の光線は透過窓 3009から取り出される。  Light rays sent into the optical multiplexer / demultiplexer through the transmission window 3008 are alternately reflected by the waveguide elements and the light branching elements, and propagate along the zigzag optical path. Light beams having wavelengths that pass through the light beam splitting elements 3006 and 3007 are extracted from the light beam splitting elements 3006 and 3007, and light beams having other wavelengths are extracted from the transmission window 3009.
[0020] このような構成にすることにより、導波素子ブロック 3001の上部にアレイ素子搭載ブ ロック 3002を載せるだけで、導波素子ブロック 3001上の素子とアレイ素子搭載ブロ ック 3002上の素子とを精度よく位置決めできる。 [0020] With this configuration, the elements on the waveguide element block 3001 and the array element mounting block are simply placed on the waveguide element block 3001 by placing the array element mounting block 3002 on top of the waveguide element block 3001. The device on the rack 3002 can be positioned accurately.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] し力しながら、上述した従来の光合分波器にはいくつかの課題がある。  However, there are several problems with the conventional optical multiplexer / demultiplexer described above.
[0022] く課題 1 >  [0022] Challenge 1>
図 37に示した従来の光合分波器では、受信素子 1001および送信素子 1002a〜 1002dが、複数のカップリング装置にそれぞれ個別に配設される。このため、光合分 波器を組み立てるときには、受信側カップリング装置と送信側カップリング装置との相 対位置を、過剰損失が低くなるようにァライメントする必要がある。したがって、上述し た分波動作時には複数の受信側カップリング装置を、また合波動作時には複数の送 信側カップリング装置を、各チャネルごとにァライメントする作業が必要になる。このた め、光合分波器のチャネル数増大に伴いァライメント工数が増大し、組み立て時間が 長くなり製造コストが高くなるという問題があった。  In the conventional optical multiplexer / demultiplexer shown in FIG. 37, a receiving element 1001 and transmitting elements 1002a to 1002d are individually arranged in a plurality of coupling devices. For this reason, when assembling the optical multiplexer / demultiplexer, it is necessary to align the relative positions of the receiving side coupling device and the transmitting side coupling device so that the excess loss is reduced. Therefore, it is necessary to align the plurality of reception side coupling devices for each channel during the demultiplexing operation described above and the plurality of transmission side coupling devices for each channel during the multiplexing operation. For this reason, the number of alignment man-hours increases with the increase in the number of channels of the optical multiplexer / demultiplexer, and there is a problem that the assembly time is increased and the manufacturing cost is increased.
[0023] く課題 2>  [0023] Ku 2>
また、図 37に示した従来の光合分波器では、受信側カップリング装置と送信側カツ プリング装置とが分離している。このため、光合分波器の組み立て後に環境温度が 変化すると、装置内の温度勾配などの影響によって不均一な膨張収縮が発生し、受 信側カップリング装置と送信側カップリング装置との相対的な位置ずれが発生する可 能性が高い。位置ずれは損失の原因となるため、従来の光合分波器には環境温度 変化に伴う損失変動が大き 、と 、う問題があった。  Also, in the conventional optical multiplexer / demultiplexer shown in FIG. 37, the receiving side coupling device and the transmitting side coupling device are separated. For this reason, if the environmental temperature changes after the optical multiplexer / demultiplexer is assembled, non-uniform expansion and contraction occurs due to the temperature gradient in the device, and the relative coupling between the receiving side coupling device and the transmitting side coupling device. There is a high possibility that misalignment will occur. Since the misalignment causes loss, the conventional optical multiplexer / demultiplexer has a problem that the fluctuation of loss due to environmental temperature change is large.
[0024] く課題 3 >  [0024] Ku 3>
図 40に示した従来の光合分波器では、フィルタ間を伝播する光線を反射する導波 素子としてのミラー層 2010が平面状をしている。このため、ミラー層 2010の位置を 調整しても反射光線の角度を変化させることができず、ァライメントすることができない 。したがって、図 45に示すように、光ファイバアレイ 2003 (またはマイクロレンズアレイ 2005)の位置を調整することで、ァライメントを実施することになる。この場合、結合 素子としてのマイクロレンズ 2004a〜2004fに対する入射光線の位置ずれ許容量が 重要となる。マイクロレンズ 2004a〜2004fはコリメート光と収束光を相互に変換する ことが目的なので、大きな集光パワーを有している。したがって、マイクロレンズ 2004 a〜2004fに対する入射光線の位置ずれが僅かでも、出射 (反射)光線に大きな角 度ずれが発生し、伝播光線の光路長が長くなるにつれて大きな光軸ずれをもたらす ので、過剰損失が発生する。 In the conventional optical multiplexer / demultiplexer shown in FIG. 40, the mirror layer 2010 as a waveguide element that reflects the light propagating between the filters has a planar shape. For this reason, even if the position of the mirror layer 2010 is adjusted, the angle of the reflected light cannot be changed and alignment cannot be performed. Therefore, as shown in FIG. 45, alignment is performed by adjusting the position of the optical fiber array 2003 (or microlens array 2005). In this case, the positional deviation tolerance of the incident light with respect to the microlenses 2004a to 2004f as the coupling elements is important. Microlenses 2004a-2004f mutually convert collimated light and convergent light Therefore, it has a large light collecting power. Therefore, even if there is a slight misalignment of the incident light with respect to the microlenses 2004a to 2004f, a large angular deviation occurs in the outgoing (reflected) light, resulting in a large optical axis deviation as the optical path length of the propagating light increases. Loss occurs.
[0025] 図 46は、図 40に示した従来の光合分波器における結合効率のファイバアレイシフ ト量依存性を示している。この図から分力るように、光ファイバアレイ 2003の位置が数 mずれるだけで、 5dB以上の大きな過剰損失が発生することもある。このように、こ の光合分波器は、許容される過剰損失に対して、光ファイバアレイ 2003のァライメン ト許容誤差が厳しいため、高精度な組み立て装置を必要とし、組み立て時間も増大 するため製造コストが増大するという問題があった。  FIG. 46 shows the fiber array shift amount dependency of the coupling efficiency in the conventional optical multiplexer / demultiplexer shown in FIG. As can be seen from this figure, even if the position of the optical fiber array 2003 is shifted by only a few meters, a large excess loss of 5 dB or more may occur. As described above, this optical multiplexer / demultiplexer is manufactured because the alignment tolerance of the optical fiber array 2003 is severe with respect to the allowable excess loss, so a high-precision assembly device is required and the assembly time is increased. There was a problem that the cost increased.
[0026] く課題 4 >  [0026] Issue 4>
また、図 40に示した従来の光合分波器において、ミラー層 2010が形成された導光 ブロック 2009の固定に用いられる接着剤が、環境温度の変化などにより膨張収縮す ると、ミラー層 2010の角度が設計値力もずれることがある。この場合、ミラー層 2010 とフィルタ層 2008との間を多重反射する伝播光線の光軸に注目すると、ミラー層 20 10でもフィルタ層 2008でも伝播光線の光軸角度ずれを補正することができな 、。そ の結果、図 47に示すように、光路長が伸びるにしたがって、光軸位置ずれが増大す る。したがって、図 40に示した従来の光合分波器には、環境温度の変化に対して大 きな損失変動が発生するという問題があった。  In addition, in the conventional optical multiplexer / demultiplexer shown in FIG. 40, when the adhesive used to fix the light guide block 2009 on which the mirror layer 2010 is formed expands and contracts due to changes in the environmental temperature, the mirror layer 2010 The design value may deviate from this angle. In this case, paying attention to the optical axis of the propagating light beam that is multiply reflected between the mirror layer 2010 and the filter layer 2008, neither the mirror layer 20 10 nor the filter layer 2008 can correct the optical axis angle deviation of the propagating light beam. . As a result, as shown in FIG. 47, the optical axis position deviation increases as the optical path length increases. Therefore, the conventional optical multiplexer / demultiplexer shown in FIG. 40 has a problem that large loss fluctuations occur with respect to changes in the environmental temperature.
[0027] く課題 5 >  [0027] Ku Challenge 5>
また、図 42および図 43に示した従来の光合分波器は、何れにおいても、ファイバ 力も出射した拡散光をフィルタへ入射するためのレンズを、一体成型可能なレンズァ レイとすることにより部品点数を削減している。しかし、これらのレンズアレイを用いた 小型光合分波器は、以下に示すような問題がある。  Also, the conventional optical multiplexer / demultiplexer shown in FIGS. 42 and 43 has a lens array that allows the diffused light, which has also been emitted from the fiber force, to enter the filter to be a lens array that can be integrally molded. Have reduced. However, small optical multiplexers / demultiplexers using these lens arrays have the following problems.
[0028] まず、光学ブロック内部を光が導波する構成のため、光学的に透明度が高い材料 を使う必要があり、材料選択の自由度が限られ、材料コストが高くなる。また、ブロック 内部を導波する際の光の損失が避けられない。  [0028] First, since light is guided inside the optical block, it is necessary to use a material having high optical transparency, so that the degree of freedom in material selection is limited and the material cost is increased. Also, light loss is unavoidable when guided inside the block.
次に、ファイバまたは光検出器の固定用部材とレンズアレイとが別体であるため、フ アイバまたは光検出器を固定する部材をレンズアレイとは別に準備し、レンズアレイに 対し位置調整して固定する必要がある。 Next, since the fixing member for the fiber or photodetector and the lens array are separate, It is necessary to prepare a member to fix the Aiba or photodetector separately from the lens array and adjust the position to the lens array.
更に、レンズとフィルタ間の距離は光学基板または光学ブロックの寸法により一意に 決まってしまい、誤差を調整する機構を持たない。  Furthermore, the distance between the lens and the filter is uniquely determined by the dimensions of the optical substrate or optical block, and has no mechanism for adjusting the error.
[0029] く課題 6 >  [0029] Ku Challenge 6>
図 42に示した従来の光合分波器では、各レンズ 3109, 3110、各フィルタ 3106、 各光ファイバ 3107を別々のアレイ素子として製造し、これらを組み立てる。この際、 調芯作業をしなければならず、そのうえ調芯軸数が多いため、調整時間が増大して しまうという問題があった。また、光合分波器の組み立て装置に各調芯軸の調整機能 をもたせると、調芯軸数が多いため、装置自体が複雑ィ匕してしまうという問題があった  In the conventional optical multiplexer / demultiplexer shown in FIG. 42, the lenses 3109 and 3110, the filters 3106, and the optical fibers 3107 are manufactured as separate array elements and assembled. At this time, alignment work has to be performed, and furthermore, the number of alignment axes is large, and there is a problem that adjustment time increases. In addition, if the optical multiplexer / demultiplexer assembly device is provided with an adjustment function for each alignment shaft, the number of alignment shafts is large and the device itself becomes complicated.
[0030] く課題 7 > [0030] Issue 7>
図 44に示した従来の光合分波器にぉ 、て、導波素子 3003〜3005を凹面ミラーと し、導波素子と光線分岐素子との間を多重反射する伝播光線の光軸に注目する。  In the conventional optical multiplexer / demultiplexer shown in FIG. 44, the waveguide elements 3003 to 3005 are concave mirrors, and attention is paid to the optical axis of the propagating light beam that is multiply reflected between the waveguide element and the beam branching element. .
[0031] この光合分波器では、導波素子ブロック 3001にアレイ素子搭載ブロック 3002の保 持構造が一体形成されているため、導波素子ブロック 3001に角度ずれが発生した 場合、アレイ素子搭載ブロック 3002にも同じ量の角度ずれが発生する。アレイ素子 搭載ブロック 3002に形成されている光線分岐素子 3006, 3007は平面ミラーに相当 するが、平面ミラーの角度ずれは入射光軸の角度ずれを増幅させてしまう。よって、 伝播光線が光線分岐素子 3006, 3007に入反射するたびに伝播光軸に大きな角度 ずれが発生し、伝播光線が導波素子 3003〜3005へ入射する際の大きな位置ずれ をもたらす。  [0031] In this optical multiplexer / demultiplexer, since the holding structure of the array element mounting block 3002 is integrally formed with the waveguide element block 3001, if an angle shift occurs in the waveguide element block 3001, the array element mounting block The same amount of angular deviation occurs in 3002. The beam splitters 3006 and 3007 formed in the array element mounting block 3002 correspond to plane mirrors, but the angle deviation of the plane mirrors amplifies the angle deviation of the incident optical axis. Therefore, every time the propagating light beam enters and reflects the light beam splitting elements 3006 and 3007, a large angular deviation occurs in the propagating optical axis, resulting in a large positional deviation when the propagating light beam enters the waveguide elements 3003 to 3005.
[0032] 一方、導波素子 3003〜3005は集光パワーをもっているため、伝播光線が導波素 子 3003〜3005に入反射するたびに角度ずれを補正することができる。しかし、入射 位置ずれが極端に大きい場合は、角度ずれの補正効果が十分得られな力つたり、角 度ずれを増幅させることもある。以上の効果が相乗的に作用し、アレイ素子搭載プロ ック 3002の角度ずれがない場合より、伝播光線の角度ずれが大きくなつてしまう。  On the other hand, since the waveguide elements 3003 to 3005 have a condensing power, the angular deviation can be corrected each time the propagating light beam enters and reflects the waveguide elements 3003 to 3005. However, if the incident position deviation is extremely large, the angle deviation may be amplified or the angle deviation may be amplified. The above effects act synergistically, and the angle deviation of the propagating light beam becomes larger than the case where the array element mounting block 3002 has no angle deviation.
[0033] その一例を図 48Aおよび図 48Bに示す。図 48Aに示すように導波素子ブロック 30 01が傾斜していないときには、導波素子への伝播光線の入反射角は 11. 3 である 。これに対し、例えば、導波素子 3003〜3005のミラー曲率半径が 5mm程度、導波 素子 3003〜3005と光線分岐素子 3006, 3007との距離ち 5mm程度の場合、図 48 Bに示すように導波素子ブロック 3001が 5°傾斜すると、伝播光線の入反射角は 2° 〜17°となり、伝播光線の角度ずれが大きくなることが分かる。伝播光線の角度ずれ は過剰損失の原因となる。したがって、従来の光合分波器には、わずかな導波素子 ブロック 3001の角度ずれが大きな過剰損失をもたらすという問題があった。 An example is shown in FIGS. 48A and 48B. Waveguide block 30 as shown in Figure 48A When 01 is not tilted, the incident / reflection angle of the propagating light beam to the waveguide element is 11.3. On the other hand, for example, when the mirror curvature radius of the waveguide elements 3003 to 3005 is about 5 mm and the distance between the waveguide elements 3003 to 3005 and the beam branching elements 3006 and 3007 is about 5 mm, the waveguide is guided as shown in FIG. 48B. It can be seen that when the wave element block 3001 is inclined by 5 °, the incident / reflection angle of the propagating light beam is 2 ° to 17 °, and the angular deviation of the propagating light beam is increased. The angular deviation of the propagating beam causes excess loss. Therefore, the conventional optical multiplexer / demultiplexer has a problem that a slight angular shift of the waveguide element block 3001 causes a large excess loss.
[0034] 本発明の主要な目的は、光合分波器の製造コストを低減することにある。 [0034] A main object of the present invention is to reduce the manufacturing cost of an optical multiplexer / demultiplexer.
その他、本発明には以下の目的もある。すなわち、本発明の他の目的は、光合分 波器における環境温度変化に伴う損失変動を低くする、光合分波器の材料選択の 自由度を高める、光合分波器の光損失を低減する、光合分波器を組み立てる際の 調芯軸数を減らし光合分波器の位置調整を簡易化して調整時間を低減する、光合 分波器の組み立て装置を簡易化する、導波素子ブロックの角度ずれがもたらす過剰 損失を抑制することにある。  In addition, the present invention has the following objects. That is, another object of the present invention is to reduce the loss fluctuation accompanying the environmental temperature change in the optical multiplexer / demultiplexer, increase the degree of freedom of material selection of the optical multiplexer / demultiplexer, reduce the optical loss of the optical multiplexer / demultiplexer, Reduces the number of alignment axes when assembling the optical multiplexer / demultiplexer, simplifies the position adjustment of the optical multiplexer / demultiplexer and reduces the adjustment time, simplifies the assembly device of the optical multiplexer / demultiplexer, and angle deviation of the waveguide element block Is to suppress excess losses caused by.
課題を解決するための手段  Means for solving the problem
[0035] このような目的を達成するために、本発明に係る光合分波器は、光線の受光および 発光の少なくとも一方を行う複数の受発光素子と、入射された光線の一部を透過させ 残りを反射させる複数の光線分岐素子と、対応する受発光素子と光線分岐素子とを 結ぶ光路上に配置された複数の結合素子と、ある光線分岐素子からの反射光線が 他の光線分岐素子に入射するまでの光路上に配置された導波素子とを備え、前記 結合素子の全てが単一の結合素子ブロックに一体形成されていることを特徴とする。  In order to achieve such an object, an optical multiplexer / demultiplexer according to the present invention transmits a plurality of light receiving and emitting elements that perform at least one of light reception and light emission and a part of incident light. A plurality of beam branching elements that reflect the rest, a plurality of coupling elements arranged on the optical path connecting the corresponding light emitting / receiving element and the beam branching element, and a reflected beam from one beam branching element to another beam branching element And a waveguide element arranged on an optical path until the light enters, and all of the coupling elements are integrally formed in a single coupling element block.
[0036] また、本発明に係る光合分波器は、前記結合素子が、球面からなる凹面ミラーであ ることを特徴とする。  [0036] In the optical multiplexer / demultiplexer according to the present invention, the coupling element is a concave mirror made of a spherical surface.
[0037] また、本発明に係る光合分波器は、前記導波素子が、凹面ミラーであることを特徴 とする。  [0037] The optical multiplexer / demultiplexer according to the present invention is characterized in that the waveguide element is a concave mirror.
[0038] また、本発明に係る光合分波器は、前記受発光素子のそれぞれを一定間隔かつ 平行に配置すると共に、前記受発光素子のそれぞれの端面を同一平面上に位置決 めする受発光素子固定構造を有する受発光素子固定ブロックと、前記光線分岐素 子のそれぞれを同一平面上に前記受発光素子と同じ一定間隔で配置する光線分岐 素子ブロックと、前記導波素子のそれぞれを同一平面上に前記受発光素子と同じ一 定間隔で配置する導波素子ブロックと、前記受発光素子固定ブロック、前記結合素 子ブロック、前記光線分岐素子ブロック、前記導波素子ブロックを、空間を介して配 置すると共に、前記結合素子ブロックと前記導波素子ブロックとを対向して平行に配 置し、前記光線分岐素子ブロックを前記結合素子ブロックと前記導波素子ブロックと の間に平行に配置する光メインブロックと更にを備え、前記結合素子ブロックは、前 記結合素子のそれぞれを同一平面上に前記受発光素子と同じ一定間隔で配置し、 前記結合素子は、前記受発光素子からの光線を反射して平行光にすると共に、前記 受発光素子への光線を反射して集光し、前記導波素子ブロックは、前記結合素子か らの光線が前記結合素子に隣接する結合素子に反射されるように位置決めされ、前 記光線分岐素子ブロックは、前記結合素子と前記導波素子の光路上に前記光線分 岐素子が配置されるように位置決めされて 、ることを特徴とする。 [0038] Further, the optical multiplexer / demultiplexer according to the present invention arranges the light emitting / receiving elements in parallel with a constant interval, and positions the end faces of the light receiving / emitting elements on the same plane. Light receiving / emitting element fixing block having an element fixing structure, and the beam branching element A beam splitter block in which each of the children is arranged on the same plane at the same regular intervals as the light receiving and emitting elements, and a waveguide in which each of the waveguide elements is arranged on the same plane at the same regular intervals as the light emitting and receiving elements An element block, the light receiving / emitting element fixing block, the coupling element block, the light beam branching element block, and the waveguide element block are arranged through a space, and the coupling element block and the waveguide element block are arranged. And an optical main block that arranges the beam splitter block in parallel between the coupling element block and the waveguide element block, and the coupling element block includes Each of the coupling elements is arranged on the same plane at the same regular intervals as the light emitting / receiving element, and the coupling element reflects a light beam from the light emitting / receiving element into parallel light. The waveguide element block is positioned so that the light beam from the coupling element is reflected by the coupling element adjacent to the coupling element, and reflects the light beam to the light emitting / receiving element. The light beam branching element block is positioned so that the light beam branching element is disposed on an optical path between the coupling element and the waveguide element.
[0039] また、本発明に係る光合分波器は、前記導波素子ブロックが、前記導波素子が配 列された面の反対側の面に、曲面力もなる突起部を更に備えることを特徴とする。  [0039] In the optical multiplexer / demultiplexer according to the present invention, the waveguide element block further includes a protrusion having a curved force on a surface opposite to a surface on which the waveguide elements are arranged. And
[0040] また、本発明に係る光合分波器の組み立て装置は、導波素子が配列された導波素 子ブロックに形成された曲面力 なる突起部を把持可能な把持手段と、前記把持手 段を垂直方向および水平方向へ移動自在な位置調整手段と、前記把持手段の移動 に伴って反力を発生させる反力発生手段とを備えることを特徴とする。  [0040] The optical multiplexer / demultiplexer assembling apparatus according to the present invention includes a gripping means capable of gripping a protrusion having a curved force formed on a waveguide element block in which waveguide elements are arranged, and the gripping hand. It is characterized by comprising position adjusting means that can move the step vertically and horizontally, and reaction force generating means that generates a reaction force in accordance with the movement of the gripping means.
[0041] また、本発明に係る光合分波器は、前記導波素子の全てが単一の導波素子ブロッ クに配列され、前記結合素子ブロックは、前記光線分岐素子を保持する保持構造を 備え、前記結合素子ブロックと前記導波素子ブロックとは分離して 、ることを特徴とす る。 [0041] In the optical multiplexer / demultiplexer according to the present invention, all of the waveguide elements are arranged in a single waveguide element block, and the coupling element block has a holding structure for holding the beam branching element. And the coupling element block and the waveguide element block are separated from each other.
発明の効果  The invention's effect
[0042] 本発明の光合分波器では、受光素子用の結合素子と発光素子用の結合素子が単 一の結合素子ブロックに一体形成されているので、組み立て時間の増加を抑え、製 造コストを抑制できる。また、環境温度変化に伴う損失変動が小さくなる。  [0042] In the optical multiplexer / demultiplexer of the present invention, since the coupling element for the light receiving element and the coupling element for the light emitting element are integrally formed in a single coupling element block, an increase in assembly time is suppressed and the manufacturing cost is reduced. Can be suppressed. Further, the loss fluctuation accompanying the environmental temperature change is reduced.
[0043] また、本発明の光合分波器では、結合素子として設計パラメータが少な 、球面ミラ 一を用 、ることにより、結合素子を単一ブロックにアレイ化形成しても歩留まりが高く なり、結果として製造コストを抑制できる。 [0043] Further, in the optical multiplexer / demultiplexer of the present invention, the spherical mirror has few design parameters as the coupling element. By using one, the yield increases even if the coupling elements are arrayed in a single block, and as a result, the manufacturing cost can be suppressed.
[0044] また、本発明の光合分波器では、導波素子が凹面ミラーであり、全ての導波素子が 単一の導波素子ブロックに配列されているので、組み立てを容易化でき、製造コスト を低減できる。また、環境温度の変化に対する損失変動を抑制できる。  [0044] In the optical multiplexer / demultiplexer of the present invention, the waveguide elements are concave mirrors, and all the waveguide elements are arranged in a single waveguide element block, so that assembly can be facilitated and manufactured. Cost can be reduced. Moreover, the loss fluctuation | variation with respect to the change of environmental temperature can be suppressed.
[0045] また、本発明の光合分波器では、信号光が空間を伝播するようにしたので、光合分 波器を構成するブロックの材料選択の自由度を高めると共に光損失を削減すること ができる。 [0045] Further, in the optical multiplexer / demultiplexer of the present invention, since the signal light propagates through the space, it is possible to increase the degree of freedom in selecting the material of the block constituting the optical multiplexer / demultiplexer and reduce the optical loss. it can.
また、ブロックとして光学透明な部材を利用しなくてもよいため、安価で機械的強度 や熱特性に優れる材料により受発光素子固定ブロックの製造が可能となる。  In addition, since it is not necessary to use an optically transparent member as the block, it is possible to manufacture the light receiving / emitting element fixing block with a material that is inexpensive and excellent in mechanical strength and thermal characteristics.
また、光合分波器の組み立てを行う際には、複数の受発光素子を受発光素子固定 ブロックに予め固定し、受発光素子固定ブロックの位置を調整して、光メインブロック に固定するだけで、個々の受発光素子を個別に調整することなぐ複数の受発光素 子の結合素子に対する位置合わせを行うことができる。その結果、両者の位置合わ せ作業を容易にすると共に、組み立てコストを削減することができる。  Also, when assembling the optical multiplexer / demultiplexer, simply fix a plurality of light emitting / receiving elements to the light receiving / emitting element fixing block in advance, adjust the position of the light receiving / emitting element fixing block, and fix it to the optical main block. In addition, it is possible to align a plurality of light emitting / receiving elements with respect to the coupling element without individually adjusting the individual light emitting / receiving elements. As a result, it is possible to facilitate the alignment work between the two and reduce the assembly cost.
また、光メインブロックと導波素子ブロックが独立したブロックとなっているため、組 み立ての際に、結合素子ブロック上に形成されて 、る結合素子と導波素子ブロック上 に搭載されている導波素子の角度や位置を損失の少ない最適な位置に調整するこ とが可能であり、光損失の削減が図れる。  In addition, since the optical main block and the waveguide element block are independent blocks, they are formed on the coupling element block and assembled on the coupling element and waveguide element block when assembled. It is possible to adjust the angle and position of the waveguide element to the optimum position with less loss, and to reduce optical loss.
[0046] 本発明の光合分波器およびその組み立て装置によれば、 3軸回転ステージなどの 複雑な回転機構が不要となり、組み立て装置自体が簡易な構造になるので、その製 造コストを低減することができる。全ての回転軸を所定の角度になるように調整する必 要なしに組み立てられるため、組み立て手順が簡単になり、組み立て時間および組 み立て作業を低減することができる。また、導波素子ブロックの基板の中央に突起部 を配置することにより、導波素子ブロックを組み立て装置で把持したときに、把持した 位置と導波素子ブロックの重心位置とがー致するので、導波素子ブロックを安定して 把持することができる。また、真空チャックのパイプが導波素子ブロックの突起部の直 径より小さいことにより、真空チャックのパイプを導波素子ブロックの突起部に密着さ せることができ、導波素子ブロックの把持が容易になる。 [0046] According to the optical multiplexer / demultiplexer and the assembling apparatus thereof of the present invention, a complicated rotating mechanism such as a three-axis rotating stage is not required, and the assembling apparatus itself has a simple structure, thereby reducing the manufacturing cost. be able to. Since all the rotating shafts are assembled without having to be adjusted to a predetermined angle, the assembly procedure is simplified, and the assembly time and assembly work can be reduced. In addition, by arranging the protrusion in the center of the substrate of the waveguide element block, when the waveguide element block is gripped by the assembly device, the gripped position and the center of gravity position of the waveguide element block match. The waveguide element block can be gripped stably. In addition, since the vacuum chuck pipe is smaller than the diameter of the projection of the waveguide block, the vacuum chuck pipe is in close contact with the projection of the waveguide block. The waveguide element block can be easily held.
[0047] また、本発明に係る光合分波器では、光線分岐素子を保持する保持構造が導波 素子ブロック力 分離しているので、導波素子ブロックの角度ずれが過剰損失増大に 及ぼす影響を抑制できる。  [0047] Further, in the optical multiplexer / demultiplexer according to the present invention, since the holding structure for holding the beam branching element separates the waveguide element block force, the influence of the angular deviation of the waveguide element block on the increase in excess loss is reduced. Can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]図 1は、第 1の実施例に力かる光合分波器の斜視概略内部構造図である。  [0048] FIG. 1 is a schematic perspective view of an internal structure of an optical multiplexer / demultiplexer according to the first embodiment.
[図 2]図 2は、第 1の実施例に力かる光合分波器の II矢視方向の概略内部構成図であ る。  [FIG. 2] FIG. 2 is a schematic internal configuration diagram in the direction of arrow II of the optical multiplexer / demultiplexer used in the first embodiment.
[図 3]図 3は、第 1の実施例に力かる光合分波器の III矢視方向の概略内部構成図で ある。  [Fig. 3] Fig. 3 is a schematic internal configuration diagram of the optical multiplexer / demultiplexer according to the first embodiment in the direction of arrow III.
[図 4]図 4は、第 1の実施例に力かる光合分波器の IV矢視方向の概略内部構成図で ある。  [FIG. 4] FIG. 4 is a schematic internal configuration diagram of the optical multiplexer / demultiplexer according to the first embodiment in the direction of arrow IV.
[図 5]図 5は、第 1の実施例に力かる光合分波器の具体的なミラーアレイブロックの斜 視概略外観図である。  [FIG. 5] FIG. 5 is a perspective view schematically showing a specific mirror array block of the optical multiplexer / demultiplexer according to the first embodiment.
[図 6]図 6は、具体的なミラーアレイブロックと具体的な導波部構造とを組み立ててな る第 1の実施例に力かる光合分波器の斜視概略外観図である。  [FIG. 6] FIG. 6 is a schematic perspective view of an optical multiplexer / demultiplexer according to the first embodiment in which a specific mirror array block and a specific waveguide structure are assembled.
[図 7]図 7は、第 2の実施例に係る光合分波器のミラーアレイブロックの斜視概略外観 図であり、光線分岐素子を保持する構造を有している。  FIG. 7 is a perspective schematic external view of a mirror array block of an optical multiplexer / demultiplexer according to a second embodiment, which has a structure for holding a beam splitter.
[図 8]図 8は、第 2の実施例に係る光合分波器の斜視概略外観図である。  FIG. 8 is a perspective schematic external view of an optical multiplexer / demultiplexer according to a second embodiment.
[図 9]図 9は、第 3の実施例にかかる光合分波器の光学系を示す側面概略構成図で ある。  FIG. 9 is a schematic side view showing the optical system of the optical multiplexer / demultiplexer according to the third embodiment.
[図 10]図 10は、第 3の実施例に力かる光合分波器の具体的なミラーアレイブロックの 斜視概略外観図である。  FIG. 10 is a schematic perspective external view of a specific mirror array block of an optical multiplexer / demultiplexer that works on the third embodiment.
[図 11]図 11は、具体的なミラーアレイブロックと具体的な導波部構造とを組み立てな る第 3の実施例に力かる光合分波器の斜視概略外観図である。  FIG. 11 is a schematic perspective view of an optical multiplexer / demultiplexer according to a third embodiment in which a specific mirror array block and a specific waveguide structure are assembled.
[図 12]図 12は、第 4の実施例に力かる光合分波器の具体的なミラーアレイブロックの 斜視概略外観図である。  [FIG. 12] FIG. 12 is a schematic perspective view of a specific mirror array block of an optical multiplexer / demultiplexer according to the fourth embodiment.
[図 13]図 13は、具体的なミラーアレイブロックと具体的な導波部構造とを組み立てな る第 4の実施例に力かる光合分波器の斜視概略外観図である。 [FIG. 13] FIG. 13 shows a specific mirror array block and a specific waveguide structure not assembled. FIG. 6 is a schematic perspective view of an optical multiplexer / demultiplexer that works on the fourth embodiment.
[図 14]図 14は、第 5の実施例に係る光合分波器の概略構成図であり、第 1の実施例 の応用例である。  FIG. 14 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a fifth embodiment, which is an application example of the first embodiment.
[図 15]図 15は、第 6の実施例に係る光合分波器の概念図である。  FIG. 15 is a conceptual diagram of an optical multiplexer / demultiplexer according to a sixth embodiment.
[図 16]図 16は、第 6の実施例に係る光合分波器における結合効率の導波ブロックシ フト量依存性を示すグラフである。  FIG. 16 is a graph showing the dependence of coupling efficiency on the waveguide block shift amount in the optical multiplexer / demultiplexer according to the sixth embodiment.
[図 17]図 17は、第 6の実施例に係る光合分波器において光軸ずれが累積しない様 子を示す概念図である。  FIG. 17 is a conceptual diagram showing a state in which optical axis deviations do not accumulate in the optical multiplexer / demultiplexer according to the sixth embodiment.
圆 18]図 18は、第 7の実施例に係る光合分波器の斜視概略図である (前方側)。 圆 19]図 19は、第 7の実施例に係る光合分波器の斜視概略図である (後方側)。 FIG. 18 is a schematic perspective view of the optical multiplexer / demultiplexer according to the seventh embodiment (front side). FIG. 19 is a schematic perspective view of the optical multiplexer / demultiplexer according to the seventh embodiment (rear side).
[図 20]図 20は、第 7の実施例に係る光メインブロックの概略図である。  FIG. 20 is a schematic view of an optical main block according to a seventh embodiment.
[図 21]図 21は、第 7の実施例に係る光メインブロックのフィルタブロック固定面および 光導波ミラーブロック固定面に突起を形成した場合を示す図である。  FIG. 21 is a diagram showing a case where protrusions are formed on the filter block fixing surface and the optical waveguide mirror block fixing surface of the optical main block according to the seventh embodiment.
[図 22]図 22は、第 7の実施例に係る光ファイバ固定ブロックの概略図である。  FIG. 22 is a schematic view of an optical fiber fixing block according to a seventh embodiment.
[図 23]図 23は、第 7の実施例に係る光線分岐素子ブロックの概略図である。  FIG. 23 is a schematic diagram of a beam splitter block according to a seventh embodiment.
[図 24]図 24は、第 7の実施例に係る光線分岐素子ブロックにおいて、図 23と異なる 形態の概略図である。  [FIG. 24] FIG. 24 is a schematic view of a different form from FIG. 23 in the light-branching element block according to the seventh embodiment.
[図 25]図 25は、第 7の実施例に係る光導波ミラーブロックの概略図である。  FIG. 25 is a schematic view of an optical waveguide mirror block according to a seventh embodiment.
[図 26]図 26は、第 7の実施例に係る光合分波器の概略内部構造図であり、内部にお ける光路を図示したものである。  FIG. 26 is a schematic internal structural diagram of the optical multiplexer / demultiplexer according to the seventh embodiment, and shows the optical path therein.
[図 27]図 27は、第 8の実施例に係る光素子アレイを一方向力も見た斜視図である。  FIG. 27 is a perspective view of the optical element array according to the eighth example when the unidirectional force is also seen.
[図 28]図 28は、第 8の実施例に係る光素子アレイを他方向カゝら見た斜視図である。 FIG. 28 is a perspective view of the optical element array in accordance with the eighth embodiment when viewed from the other direction.
[図 29]図 29は、第 8の実施例に係る光素子アレイを用いた光合分波器を一方向から 見た斜視図である。 FIG. 29 is a perspective view of an optical multiplexer / demultiplexer using the optical element array according to the eighth embodiment as seen from one direction.
[図 30]図 30は、第 8の実施例に係る光素子アレイを用いた光合分波器を他方向から 見た斜視図である。  FIG. 30 is a perspective view of the optical multiplexer / demultiplexer using the optical element array in accordance with the eighth embodiment when viewed from the other direction.
[図 31]図 31は、第 8の実施例に係る光素子アレイを用いた光合分波器の動作原理を 説明する説明図である。 [図 32]図 32は、第 8の実施例に係る光素子アレイの組み立て装置の概略図である。 FIG. 31 is an explanatory view illustrating the operating principle of the optical multiplexer / demultiplexer using the optical element array according to the eighth embodiment. FIG. 32 is a schematic view of an optical element array assembling apparatus according to an eighth embodiment.
[図 33]図 33は、第 8の実施例に係る光素子アレイの組み立て装置の真空チャックを 光素子アレイに接触させた状態を示す図である。 FIG. 33 is a diagram showing a state in which the vacuum chuck of the optical device array assembly apparatus according to the eighth example is in contact with the optical device array.
[図 34]図 34は、第 8の実施例に係る光素子アレイの組み立て装置の真空チャックに より光素子アレイをチャックした状態を示す図である。  FIG. 34 is a view showing a state in which the optical element array is chucked by the vacuum chuck of the optical element array assembling apparatus according to the eighth embodiment.
[図 35]図 35は、第 8の実施例に係る光素子アレイの組み立て装置の真空チャックに よりチャックされた光素子アレイを Y軸方向に移動した状態を示した図である。  FIG. 35 is a view showing a state in which the optical element array chucked by the vacuum chuck of the optical element array assembling apparatus according to the eighth embodiment is moved in the Y-axis direction.
[図 36]図 36は、本発明の第 9の実施例に係る光合分波器を説明する図である。 圆 37]図 37は、第 1の従来例に係る光合分波器の概略構成図である。 FIG. 36 is a diagram for explaining an optical multiplexer / demultiplexer according to a ninth embodiment of the present invention. 37] FIG. 37 is a schematic configuration diagram of the optical multiplexer / demultiplexer according to the first conventional example.
[図 38]図 38は、第 1の従来例に係る光合分波器で用いられるカップリング装置の概 略構成図である。 FIG. 38 is a schematic configuration diagram of a coupling device used in the optical multiplexer / demultiplexer according to the first conventional example.
[図 39]図 39は、第 1の従来例に係る光合分波器の内部における光路を示す側面図 である。  FIG. 39 is a side view showing an optical path in the optical multiplexer / demultiplexer according to the first conventional example.
[図 40]図 40は、第 2の従来例に係る光合分波器の概略構成図である。  FIG. 40 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a second conventional example.
[図 41]図 41は、第 3の従来例に係る光合分波器の概略構成図である。  FIG. 41 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a third conventional example.
[図 42]図 42は、第 4の従来例に係る光合分波器の概略構成図である。  FIG. 42 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a fourth conventional example.
[図 43]図 43は、第 5の従来例に係る光分波器の概略構成図である。  FIG. 43 is a schematic configuration diagram of an optical demultiplexer according to a fifth conventional example.
[図 44]図 44は、第 6の従来例に係る光合分波器の概略構成図である。  FIG. 44 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to a sixth conventional example.
[図 45]図 45は、第 2の従来例に係る光合分波器のァライメント方法を説明するための 概念図である。  FIG. 45 is a conceptual diagram for explaining an alignment method of an optical multiplexer / demultiplexer according to a second conventional example.
[図 46]図 46は、第 2の従来例に係る光合分波器における結合効率のファイバアレイ シフト量依存性を示すグラフである。  FIG. 46 is a graph showing the dependence of the coupling efficiency on the fiber array shift amount in the optical multiplexer / demultiplexer according to the second conventional example.
[図 47]図 47は、第 2の従来例に係る光合分波器において光軸ずれが累積していく様 子を示す概念図である。  FIG. 47 is a conceptual diagram showing a state in which optical axis deviations are accumulated in the optical multiplexer / demultiplexer according to the second conventional example.
[図 48A]図 48Aは、第 6の従来例に係る光合分波器において導波素子ブロックが傾 斜して 、な 、ときの状態を示す図である。  FIG. 48A is a diagram showing a state when the waveguide element block is tilted in the optical multiplexer / demultiplexer according to the sixth conventional example.
[図 48B]図 48Bは、第 6の従来例に係る光合分波器において導波素子ブロックが傾 斜したときの状態を示す図である。 発明を実施するための最良の形態 FIG. 48B is a diagram showing a state when the waveguide element block is tilted in the optical multiplexer / demultiplexer according to the sixth conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、図面に基づいて本発明の実施例を詳細に説明する。ただし、以下の実施例 は本発明を限定するものではない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the following examples do not limit the present invention.
[0050] <第 1の実施例 > [0050] <First embodiment>
図 1〜図 6は、本発明の第 1の実施例に係る光合分波器を説明する図である。なお 1 to 6 are diagrams for explaining an optical multiplexer / demultiplexer according to the first embodiment of the present invention. In addition
、図 1〜図 4には、光分波器とした場合の光合分波器内部を伝播する光線を概念的 に示してある。 1 to 4 conceptually show the light rays propagating through the optical multiplexer / demultiplexer when the optical demultiplexer is used.
[0051] 図 1に示すように、本実施例に力かる光合分波器は、ミラーアレイブロック 25の部分 と導波部構造 24の部分とから構成されている。ミラーアレイブロック 25には、凹面の 球面ミラー力もなる結合素子(曲面を示すために補助線をつけてある) 6〜 10と、波 長多重光線または単色光線を入出力する光ファイバ 1〜5とが設けられている。導波 部構造 24には、特定の波長域を含む光線を透過すると共に特定の波長域以外の光 線を反射する光線分岐素子 11〜14と、光線を反射する反射面 15〜18とが設けられ ている。  As shown in FIG. 1, the optical multiplexer / demultiplexer according to the present embodiment includes a mirror array block 25 portion and a waveguide portion structure 24 portion. In the mirror array block 25, coupling elements (which are provided with auxiliary lines to show curved surfaces) 6 to 10 having concave spherical mirror force, and optical fibers 1 to 5 for inputting / outputting wavelength multiplexed rays or monochromatic rays are provided. Is provided. The waveguide structure 24 is provided with light beam branching elements 11 to 14 that transmit light including a specific wavelength range and reflect light rays outside the specific wavelength range, and reflection surfaces 15 to 18 that reflect light. It has been.
[0052] ここで、反射面 15〜18は導波素子として機能する。結合素子 6〜10が設けられた ミラーアレイブロック 25は結合素子ブロックと呼ぶことができる。  Here, the reflecting surfaces 15 to 18 function as waveguide elements. The mirror array block 25 provided with the coupling elements 6 to 10 can be called a coupling element block.
[0053] 本実施例に係る光合分波器を、分波器として利用する場合の動作原理について説 明する。光合分波器の外部から入力された波長多重光線は、光ファイバ 1を伝播し 光合分波器の内部に導かれ、結合素子 6に対してやや拡散した波長多重光線として 出射される。結合素子 6は、この出射された波長多重光線をコリメ一トイ匕しつつ反射し て、反射面 15に伝播させる。伝播した波長多重光線は、反射面 15において再び反 射され、光線分岐素子 11に入射する。  The operation principle when the optical multiplexer / demultiplexer according to the present embodiment is used as a demultiplexer will be described. The wavelength multiplexed light input from the outside of the optical multiplexer / demultiplexer propagates through the optical fiber 1, is guided into the optical multiplexer / demultiplexer, and is emitted to the coupling element 6 as a slightly diffused wavelength multiplexed light. The coupling element 6 reflects the emitted wavelength multiplexed light while collimating it and propagates it to the reflecting surface 15. The propagated wavelength multiplexed light is reflected again on the reflecting surface 15 and enters the beam splitter 11.
[0054] 光線分岐素子 11に入射した波長多重光線は、光線分岐素子 11にお!、て特定の 波長域を含む光線が透過され、単色光線となり結合素子 7に伝播した後、結合素子 7において反射されると共に集光され、光ファイバ 2に結合して、光合分波器の外部 へ出力される。  The wavelength multiplexed light incident on the light beam splitting element 11 is transmitted to the light beam splitting element 11, and a light beam including a specific wavelength region is transmitted to become a monochromatic light beam and propagates to the coupling element 7. The light is reflected and collected, coupled to the optical fiber 2, and output to the outside of the optical multiplexer / demultiplexer.
[0055] 特定の波長域以外の光線からなる波長多重光線は、光線分岐素子 11にお 、て透 過されずに反射され、反射面 16に伝播される。反射面 16に伝播された波長多重光 線は、反射面 16において反射され、光線分岐素子 12に入射する。 A wavelength-multiplexed light beam composed of a light beam outside a specific wavelength region is reflected by the light beam splitting element 11 without being transmitted and propagated to the reflecting surface 16. Wavelength multiplexed light propagated to reflecting surface 16 The line is reflected by the reflecting surface 16 and enters the beam splitter 12.
[0056] 光線分岐素子 12に入射した波長多重光線は、光線分岐素子 12おいて、光線分岐 素子 11とは異なる特定の波長域を含む光線が透過され、単色光線となり結合素子 8 に伝播した後、結合素子 8において反射されると共に集光され、光ファイバ 3に結合 して、光合分波器の外部へ出力される。  The wavelength multiplexed light incident on the beam splitter 12 is transmitted through the beam splitter 12 with a light having a specific wavelength range different from that of the beam splitter 11, and is transmitted as a monochromatic beam to the coupling element 8. Then, the light is reflected and collected by the coupling element 8, coupled to the optical fiber 3, and output to the outside of the optical multiplexer / demultiplexer.
[0057] 以上の過程を繰り返すことで、光ファイバ 1から入射された波長多重光線を、分波さ れた複数の単色光線として、光ファイバ 2〜5から取り出すことができる。  By repeating the above process, the wavelength multiplexed light incident from the optical fiber 1 can be extracted from the optical fibers 2 to 5 as a plurality of demultiplexed monochromatic light beams.
[0058] また、本実施例に係る光合分波器を合波器として利用する場合は、上述した分波 動作における波長多重光線および単色光線の進行方向を逆向きにした場合に相当 する。すなわち、光合分波器の外部から、光ファイバ 2〜5にそれぞれ単色光線を入 力することで、当該複数の単色光線を、合波された波長多重光線として光ファイバ 1 力 取り出すことができる。  In addition, when the optical multiplexer / demultiplexer according to the present embodiment is used as a multiplexer, this corresponds to a case where the traveling directions of the wavelength multiplexed light and the monochromatic light in the demultiplexing operation described above are reversed. In other words, by inputting monochromatic rays to the optical fibers 2 to 5 from the outside of the optical multiplexer / demultiplexer, it is possible to take out the force of the optical fiber as a combined wavelength multiplexed ray.
[0059] なお、本実施例では、光線分岐素子の数を 4個、結合素子の数を 5個、反射面の数 を 4枚、光ファイバの数を 5本として説明した力 本発明はこれらの数に限定されない 。また、波長多重光線および単色光線の受発光素子としては、光ファイバに限定され ず、一部または全部の受発光素子がレーザダイオードやフォトダイオードなどの受発 光素子であってもよい。受発光素子とは、光線の受光および発光の少なくとも一方を 行う素子をいう。さらに、 1つの光合分波器に、発光点と受光点とがそれぞれ複数個 存在する構成としてもよい。  [0059] In the present embodiment, the number of beam branching elements is four, the number of coupling elements is five, the number of reflecting surfaces is four, and the number of optical fibers is five. Not limited to the number of. Further, the wavelength-multiplexed and monochromatic light-receiving / emitting elements are not limited to optical fibers, and some or all of the light-receiving / emitting elements may be light-receiving / emitting elements such as laser diodes and photodiodes. The light emitting / receiving element refers to an element that performs at least one of light reception and light emission. Furthermore, a configuration may be adopted in which a plurality of light emitting points and light receiving points exist in one optical multiplexer / demultiplexer.
[0060] 図 1に示すように、本実施例に力かる光合分波器では、全ての光ファイバ 1〜5の受 発光点、全ての結合素子 6〜10、全ての光線分岐素子 11〜14、全ての反射面 15 〜18がそれぞれ 1つの直線上に配置されている。このため、それぞれの光学素子を アレイ状に一括配置することができ、各光学素子を容易に配置 '形成'固定すること ができる。  As shown in FIG. 1, in the optical multiplexer / demultiplexer according to the present embodiment, the light receiving and emitting points of all the optical fibers 1 to 5, all the coupling elements 6 to 10, and all the light branching elements 11 to 14 are used. All the reflecting surfaces 15 to 18 are arranged on one straight line. For this reason, each optical element can be collectively arranged in an array, and each optical element can be easily arranged and “formed” and fixed.
[0061] 図 2は、本実施例に力かる光合分波器の光学系を光ファイバの光軸方向(II矢視方 向)から見た状態を示している。この図では、図 1に示した部材と同一部材を、図 1と 同じ符号で示している。  FIG. 2 shows a state in which the optical system of the optical multiplexer / demultiplexer that is useful in the present embodiment is viewed from the optical axis direction of the optical fiber (in the direction of arrow II). In this figure, the same members as those shown in FIG. 1 are denoted by the same reference numerals as in FIG.
[0062] 上述したように、分波動作時は、光ファイバ 1に外部から波長多重信号光を入力し、 光ファイバ 2〜5からそれぞれ単色光線を取り出すことができる。 [0062] As described above, during the demultiplexing operation, wavelength multiplexed signal light is input to the optical fiber 1 from the outside, Monochromatic rays can be extracted from the optical fibers 2 to 5, respectively.
[0063] 反射面 15〜 18と光線分岐素子 11〜 14との間を伝播する光線の光路については 、反射面と光線分岐素子との間の光路長、隣接する光線分岐素子の間隔、光線分 岐素子への光線入射角の 3つの要素のうち、 2つの要素を固定することで一意に決 定できる。したがって、一般的には光路長を短くして、光線分岐素子への光線入射角 を小さくするのが望ましい。これらの設計は、光線分岐素子 11〜14や結合素子 6〜 10の大きさにより制約される。  [0063] Regarding the optical path of the light beam that propagates between the reflecting surfaces 15 to 18 and the light beam branching elements 11 to 14, the optical path length between the reflecting surface and the light beam branching device, the distance between the adjacent light beam branching devices, the light beam component It can be uniquely determined by fixing two of the three elements of the incident angle of light on the junction. Therefore, in general, it is desirable to shorten the optical path length and reduce the light incident angle to the light beam branching element. These designs are limited by the size of the beam splitters 11-14 and the coupling elements 6-10.
[0064] 本実施例のように結合素子 6〜 10の表面が球面の場合、入射光線が感じる反射面 の曲率半径は、光線の反射面への入射位置に依存しない。したがって、図 2に示す ように、光線の入反射点を、結合素子の反射面の適当な位置に配置することで、所 望の焦点距離を維持しつつ、入射光線の光軸と反射光線の光軸とがなす角度を任 意に設定することができる。  [0064] When the surfaces of the coupling elements 6 to 10 are spherical as in this embodiment, the radius of curvature of the reflecting surface felt by the incident light beam does not depend on the incident position of the light beam on the reflecting surface. Therefore, as shown in Fig. 2, the incident and reflection points of the light beam are arranged at appropriate positions on the reflection surface of the coupling element, so that the optical axis of the incident light beam and the reflected light beam are maintained while maintaining the desired focal length. The angle formed by the optical axis can be set arbitrarily.
[0065] 図 3は、本実施例に力かる光合分波器の光学系を側面方向(III矢視方向)から見た 状態を示している。この図では、図 1に示した部材と同一部材を、図 1と同じ符号で示 している。なお、符号 30が示す部分は、受発光面である光ファイバ 1の端面である。  FIG. 3 shows a state in which the optical system of the optical multiplexer / demultiplexer that is useful in the present embodiment is viewed from the side surface direction (the direction of arrow III). In this figure, the same members as those shown in FIG. 1 are denoted by the same reference numerals as in FIG. The portion indicated by reference numeral 30 is the end face of the optical fiber 1 that is the light receiving / emitting surface.
[0066] 光ファイバ 1の端面 30と結合素子 6との間は、収束光 (合波器の場合)あるいは拡 散光 (分波器の場合)が伝播することになるので、設計どおりに光線を伝播させるた めには、光ファイバ 1と結合素子 6との相対的な位置と角度を精密に決定する必要が ある。  [0066] Convergent light (in the case of a multiplexer) or diffused light (in the case of a demultiplexer) propagates between the end face 30 of the optical fiber 1 and the coupling element 6, so that the light beam can be transmitted as designed. In order to propagate, it is necessary to precisely determine the relative position and angle between the optical fiber 1 and the coupling element 6.
[0067] また、球面ミラー力 なる結合素子 6の曲率半径と、光ファイバ端面 30から結合素 子 6までの光路長は、光ファイバのモードフィールド径 (NA)と、結合素子 6から反射 面 15までの光路長とを制約条件として最適化する必要がある。結合素子 6の有効反 射面積も、入反射光線のケラレが発生しないように最適化する必要がある。  [0067] Further, the radius of curvature of the coupling element 6 having a spherical mirror force and the optical path length from the optical fiber end surface 30 to the coupling element 6 are the mode field diameter (NA) of the optical fiber, and the reflection surface 15 from the coupling element 6. It is necessary to optimize the length of the optical path as a constraint. The effective reflection area of the coupling element 6 also needs to be optimized so that vignetting of incident / reflected rays does not occur.
[0068] 図 4は、本実施例に力かる光合分波器の光学系を複数の光ファイバを含む面に対 して垂直方向(IV矢視方向)から見た状態を示している。この図では、図 1に示した部 材と同一部材を、図 1と同じ符号で示している。  [0068] FIG. 4 shows a state in which the optical system of the optical multiplexer / demultiplexer that works in the present embodiment is viewed from the direction perpendicular to the plane including the plurality of optical fibers (in the direction of the arrow IV). In this figure, the same members as those shown in FIG. 1 are denoted by the same reference numerals as in FIG.
[0069] 全チャネルの光ファイバ 1〜5は、隣接する端面同士を結ぶ直線 Yと端面を通過す る光線の光軸 X〜Xとが直交するように配置され、結合素子 6〜10から光ファイバ 1 〜5の端面までのそれぞれの光路長が全チャネルにお!/、てほぼ一致して!/、る。 [0069] The optical fibers 1 to 5 of all the channels are arranged so that the straight line Y connecting the adjacent end faces and the optical axes X to X of the light rays passing through the end faces are orthogonal to each other. Fiber 1 The optical path lengths up to the end face of ~ 5 are almost the same for all channels! /
[0070] したがって、コリメート光の伝播光路が最短光路長のチャネルであっても、最長光路 長のチャネルであっても、できるだけ高い結合効率が得られるように、結合素子 6〜1[0070] Therefore, the coupling elements 6 to 1 can obtain the highest possible coupling efficiency regardless of whether the propagation path of the collimated light is the shortest optical path length channel or the longest optical path length channel.
0の曲率半径を光学設計する必要がある。 It is necessary to optically design a radius of curvature of zero.
[0071] 図 5は、本実施例に力かる光合分波器を構成する部材のうち、結合素子と光フアイ バ固定用の V溝とがー体形成されてなるミラーアレイブロック 25の具体例を示す斜視 概略外観図である。 FIG. 5 shows a specific example of the mirror array block 25 in which the coupling element and the V-groove for fixing the optical fiber are formed as members of the optical multiplexer / demultiplexer that is useful in the present embodiment. FIG.
[0072] 図 5に示すように、ミラーアレイブロック 25は、板状基板の表面において一つの基板 端部に直線状に形成された第 1の V溝 36と、当該 V溝 36を構成する一方の傾斜面 3 6aにおいて V溝 36の直線軸方向に沿って配列して形成された結合素子 6〜10と、 V 溝 36の直線軸方向と垂直かつ、結合素子 6〜: LOと対向して V溝 36に繋がるように形 成された複数の直線状の V溝(固定構造) 19〜23とから構成される。複数の V溝 19 〜23は光ファイバ固定用の V溝であり、それぞれ各結合素子 6〜10に対向するよう に形成されて ヽる。 V溝 19〜23の代わりに U溝を用いることもできる。  [0072] As shown in FIG. 5, the mirror array block 25 includes a first V-groove 36 formed linearly at one substrate end on the surface of the plate-shaped substrate, and one of the V-grooves 36. Coupling elements 6 to 10 formed by being arranged along the linear axis direction of the V-groove 36 on the inclined surface 3 6a, and perpendicular to the linear axis direction of the V-groove 36 and facing the coupling element 6: LO It consists of a plurality of linear V-grooves (fixed structure) 19-23 formed so as to be connected to the V-groove 36. The plurality of V-grooves 19 to 23 are V-grooves for fixing optical fibers, and are formed so as to face the coupling elements 6 to 10, respectively. A U-groove can be used instead of the V-groove 19-23.
[0073] V溝 19〜23、 V溝 36や結合素子 6〜 10の形成方法としては、板状基板を直接、目 的の形状に削りだす切削加工や、目的の形状の铸型を切削した後、当該铸型に榭 脂などを流し込み加熱 ·成型を行う射出成型などが考えられる。同一のミラーアレイブ ロック 25を大量に製造する場合には、射出成型法が適して!/、る。  [0073] V-grooves 19 to 23, V-grooves 36 and coupling elements 6 to 10 can be formed by cutting a plate-like substrate directly into a desired shape or cutting a saddle shape of a desired shape. Thereafter, injection molding may be considered in which a resin or the like is poured into the mold and heated and molded. When producing the same mirror array block 25 in large quantities, the injection molding method is suitable!
[0074] 図 6は、図 5に示すミラーアレイブロック 25に、反射面と複数の光線分岐素子とを保 持するための導波部構造を組み合わせてなる、第 1の実施例に力かる光合分波器の 具体例を示す斜視概略外観図である。  [0074] FIG. 6 is a schematic diagram of an optical composite according to the first embodiment in which the mirror array block 25 shown in FIG. 5 is combined with a waveguide structure for holding a reflecting surface and a plurality of beam splitters. FIG. 5 is a schematic perspective view showing a specific example of a duplexer.
[0075] 図 6に示すように、第 1の実施例に力かる光合分波器は、図 5に示すミラーアレイブ ロック 25における V溝 36の上部を覆うように導波部構造 24が固定されて構成されて いる。導波部構造 24は、三方を上方にのびる壁面で構成される平面コ字形状の構 造体の内部に、光線分岐素子 11〜14を設置するための中段の棚部 39と、長板状 の反射面 35を設置するための上段の保持突起部 38が形成され、平面コ字形状の構 造体の内部が部分的に空洞となった形状となっている。  As shown in FIG. 6, the optical multiplexer / demultiplexer according to the first embodiment has a waveguide structure 24 fixed so as to cover the upper part of the V groove 36 in the mirror array block 25 shown in FIG. It is configured. The waveguide structure 24 includes a middle shelf 39 for installing the beam splitters 11 to 14 and a long plate shape inside a planar U-shaped structure consisting of walls extending upward in three directions. An upper holding projection 38 for installing the reflective surface 35 is formed, and the inside of the planar U-shaped structure is partially hollow.
[0076] 導波部構造 24は、平面コ字形状の構造体における壁面が形成されていない側を V 溝 19〜23に面するようにして、ミラーアレイブロック 25の上に設置される。上段の保 持突起部 38は長板状の反射面 35の両端を支持して、導波部構造 24内の上部に反 射面 35が設置されている。 [0076] The waveguide structure 24 has a V-shaped structure on the side where the wall surface is not formed. It is installed on the mirror array block 25 so as to face the grooves 19-23. The upper holding projection portion 38 supports both ends of the long plate-like reflecting surface 35, and the reflecting surface 35 is installed in the upper portion of the waveguide structure 24.
[0077] 中段の棚部 39は、下方の V溝 36に形成された結合素子 6〜10に対応する位置が それぞれ切り欠かれて形成された搭載部 24-1〜24-4を有する。搭載部 24-1〜24-4 には、それぞれ光線分岐素子 11〜14が上力も搭載され、下方へ落下しないように保 持されている。 [0077] The middle shelf 39 has mounting portions 24-1 to 24-4 formed by notching positions corresponding to the coupling elements 6 to 10 formed in the lower V-groove 36, respectively. On the mounting parts 24-1 to 24-4, the beam splitting elements 11 to 14 are also mounted, respectively, and are held so as not to fall downward.
[0078] 本実施例のように、光線分岐素子 11〜14としては、各チャネルに各素子を嵌め込 むような形態が考えられる。この場合には、素子を載せかえるだけで、任意の合分波 スペクトルを有する光合分波器を実現することができる。また、本実施例のように、反 射面 35としては、導波部構造 24とは別体の一枚の平板を適用することができるが、 可能であれば導波部構造 24に一体形成してもよい。  As in the present embodiment, as the beam splitters 11 to 14, a configuration in which each element is fitted in each channel is conceivable. In this case, an optical multiplexer / demultiplexer having an arbitrary multiplexing / demultiplexing spectrum can be realized by simply replacing the elements. Further, as in the present embodiment, as the reflecting surface 35, a single flat plate separate from the waveguide structure 24 can be applied, but if possible, it is integrally formed with the waveguide structure 24. May be.
[0079] 本実施例では、各光線分岐素子 11〜14の間を伝播する光線は空間中を伝播する 力 例えばガラスまたは透明榭脂などで形成された光学ブロックの内部を光線が伝 播する別の実施例も考えられる。  [0079] In the present embodiment, the light propagating between each of the light beam splitting elements 11-14 propagates in the space. For example, the light beam propagates inside the optical block formed of glass or transparent resin. This embodiment is also conceivable.
[0080] すなわち、直方体形状の光学ブロックの表面に反射面を形成し、その裏面にアレイ 状に光線分岐素子を形成する。そして、この直方体形状の光学ブロックを、例えば図 6に示す導波部構造 24の平面コ字形状の構造体内部において、反射面 35と中段の 棚部 39と光線分岐素子 11〜14の代わりに設置して、光合分波器を構成する実施例 である。このような実施例にすれば、光線分岐素子と反射面と間の光路長精度を向 上させたり、複数の光線分岐素子を一括連続形成できたりするメリットがある。  That is, a reflecting surface is formed on the surface of a rectangular parallelepiped optical block, and a light beam splitting element is formed in an array on the back surface. Then, this rectangular parallelepiped optical block is used instead of, for example, the reflecting surface 35, the middle shelf 39, and the beam splitters 11 to 14 in the planar U-shaped structure of the waveguide structure 24 shown in FIG. This is an example of installing and configuring an optical multiplexer / demultiplexer. According to such an embodiment, there is an advantage that the optical path length accuracy between the beam splitter and the reflecting surface can be improved, or a plurality of beam splitters can be formed continuously.
[0081] 以下、本実施例の効果について説明する。  Hereinafter, effects of the present embodiment will be described.
[0082] く複数の結合素子 6〜 10を同一のミラーアレイブロック 25に一体形成〉  [0082] A plurality of coupling elements 6 to 10 are integrally formed in the same mirror array block 25>
本実施例に係る光合分波器では、光ファイバ 1〜5のそれぞれに対応する結合素 子 6〜 10が同一のミラーアレイブロック 25に一体形成されて!、るため、全ての光ファ ィバ 1〜5がミラーアレイブロック 25に隣接するように整列された光学系となる。したが つて、単一のミラーアレイブロック 25を位置調整するだけでァライメント作業を完了す ることができる。このため、光合分波器のチャネル数が増大しても、ァライメント工数は 一定となる。したがって、図 37に示した従来の光合分波器よりも、組み立て時間の増 加を抑え、製造コストを抑制することができる。 In the optical multiplexer / demultiplexer according to the present embodiment, the coupling elements 6 to 10 corresponding to the optical fibers 1 to 5 are integrally formed in the same mirror array block 25! Therefore, all the optical fibers An optical system in which 1 to 5 are arranged so as to be adjacent to the mirror array block 25 is formed. Therefore, the alignment operation can be completed simply by adjusting the position of the single mirror array block 25. Therefore, even if the number of channels of the optical multiplexer / demultiplexer increases, the alignment man-hours It becomes constant. Therefore, as compared with the conventional optical multiplexer / demultiplexer shown in FIG. 37, the increase in assembly time can be suppressed and the manufacturing cost can be suppressed.
[0083] また、光ファイバ 1〜5のそれぞれに対応する結合素子 6〜10が同一のミラーアレイ ブロック 25に形成されて 、るため、光合分波器の組み立て後に環境温度が変化して も温度勾配の発生が抑制される。その結果、膨張収縮が均一となり、対応する光ファ ィバと結合素子との相対的な位置ずれが抑制される。したがって、図 37に示した従 来の光合分波器よりも、環境温度変化に伴う損失変動が小さくなる。  [0083] In addition, since the coupling elements 6 to 10 corresponding to the optical fibers 1 to 5 are formed in the same mirror array block 25, the temperature is changed even if the environmental temperature changes after the optical multiplexer / demultiplexer is assembled. Gradient generation is suppressed. As a result, the expansion and contraction become uniform, and the relative displacement between the corresponding optical fiber and the coupling element is suppressed. Therefore, the loss fluctuation due to the environmental temperature change is smaller than that of the conventional optical multiplexer / demultiplexer shown in FIG.
[0084] 結合素子を結合素子ブロックに一体形成する場合には、本実施例のように結合素 子が凹面ミラーであることが望ましい。その理由は、凹面ミラーであれば結合素子ブ ロックの光学透明性が問われないので、榭脂などの低コストでカ卩ェしゃすい量産向き の材質を利用することができ、より低コストで製造が可能となるからである。  [0084] When the coupling element is integrally formed with the coupling element block, it is desirable that the coupling element is a concave mirror as in this embodiment. The reason for this is that if the mirror is a concave mirror, the optical transparency of the coupling element block is not questioned, so it is possible to use low-cost materials such as grease for mass production, and at a lower cost. This is because the manufacturing becomes possible.
[0085] <結合素子 6〜10の形状 >  [0085] <Shape of coupling element 6-10>
図 37に示した従来の光合分波器では、結合素子としての反射面 1007が回転放物 面、回転双曲面または回転楕円面を有している。しかし、これらの形状は設計パラメ ータが多い。具体的には、焦点の位置座標 (パラメータ 3つ)、回転軸の方向ベクトル (パラメータ 3つ)、二次係数 (パラメータ 1つ)の合計 7つのパラメータが必要となる。こ のような形状の反射面 1007を、本実施例と同様に、単一ブロックに金型を用いて射 出成型によりアレイ化形成すると、設計どおりの形状の反射面ができる確率が低下し 、歩留まりが低下してしまう。また、設計どおり製造できているかどうか、評価することも 困難である。結果として、製造コストが増大してしまう。  In the conventional optical multiplexer / demultiplexer shown in FIG. 37, the reflecting surface 1007 as the coupling element has a rotating paraboloid, a rotating hyperboloid, or a rotating ellipsoid. However, these shapes have many design parameters. Specifically, a total of seven parameters are required: focal point coordinates (three parameters), rotation axis direction vector (three parameters), and quadratic coefficient (one parameter). When the reflective surface 1007 having such a shape is arrayed by injection molding using a mold in a single block, as in this embodiment, the probability of forming a reflective surface as designed decreases. Yield decreases. It is also difficult to evaluate whether it is manufactured as designed. As a result, the manufacturing cost increases.
[0086] これに対し、本実施例では結合素子 6〜: LOが球面ミラーであるので、設計パラメ一 タが少ない。具体的には、曲率中心の位置座標 (パラメータ 3つ)と曲率半径 (パラメ ータ 1つ)の合計 4つのパラメータが必要となるだけである。したがって、上述したよう に球面ミラー力もなる結合素子 6〜10を単一ブロックにアレイ化形成しても、設計ど おりの形状の反射面をつくりやすいので、歩留まりが高くなる。また、設計どおり製造 できているかどうか、評価することも比較的容易である。結果として、製造コストを低減 することができる。  On the other hand, in this embodiment, the coupling element 6-: LO is a spherical mirror, so that there are few design parameters. Specifically, only four parameters in total are required: the position coordinate of the center of curvature (three parameters) and the radius of curvature (one parameter). Therefore, as described above, even if the coupling elements 6 to 10 having the spherical mirror force are arrayed in a single block, a reflecting surface having a shape as designed can be easily formed, resulting in a high yield. It is also relatively easy to evaluate whether it is manufactured as designed. As a result, the manufacturing cost can be reduced.
[0087] なお、結合素子 6〜10を球面ミラーとする場合には、結合素子 6〜10に入射する 光線の入射光軸と、結合素子 6〜10で反射される光線の反射光軸のなす角度が十 分小さいことが望ましい。その理由は、球面ミラーにビームが入射する場合、入射角 度が大きくなるとコマ収差が大きくなり、過剰損失が大きくなつてしまうからである。ま た、すべての結合素子 6〜 10の曲率半径が同一であることが望ましい。複数の曲率 半径からなる結合素子 6〜 10を形成する場合、金型を切削するための工具の種類を できるだけ減らすために、曲率半径の差を十分小さくすることが望ましい。 [0087] When the coupling elements 6 to 10 are spherical mirrors, they enter the coupling elements 6 to 10. It is desirable that the angle formed between the incident optical axis of the light beam and the reflected optical axis of the light beam reflected by the coupling elements 6 to 10 is sufficiently small. The reason is that when the beam is incident on the spherical mirror, the coma aberration increases and the excess loss increases as the incident angle increases. It is desirable that all the coupling elements 6 to 10 have the same radius of curvature. When forming coupling elements 6 to 10 having a plurality of curvature radii, it is desirable to make the difference in curvature radii sufficiently small in order to reduce the types of tools for cutting the mold as much as possible.
[0088] <全ての光ファイバ 1〜5を単一平面上に配置 > [0088] <All optical fibers 1 to 5 are arranged on a single plane>
図 37に示した従来の光合分波器では、下部キヤリャ 1004aに受信素子 1001,送 信素子 1002b, 1002d力 S酉己置され、上咅キヤリャ 1004bに送信素子 1002a, 1002 cが配置されている。すなわち、受信素子 1001および送信素子 1002a〜1002dが 2 つの平面上に配置されている。このため、光合分波器を組み立てる際に、全ての送 受信素子を一括して実装することができない。その結果、組み立て時間が長くなり、 製造コストが高くなる。  In the conventional optical multiplexer / demultiplexer shown in FIG. 37, the receiving element 1001, the transmitting elements 1002b, and 1002d are placed on the lower carrier 1004a, and the transmitting elements 1002a and 1002c are arranged on the upper carrier 1004b. . That is, the receiving element 1001 and the transmitting elements 1002a to 1002d are arranged on two planes. For this reason, when assembling the optical multiplexer / demultiplexer, it is not possible to mount all the transmitting and receiving elements at once. As a result, assembly time is increased and manufacturing costs are increased.
[0089] これに対し、本実施例では、送受信素子に対応する受発光素子としての光ファイバ 1〜5が、ミラーアレイブロック 25の単一平面上に配置される。このため、全ての光ファ ィバ 1〜5を一括して実装することができる。その結果、従来の光合分波器よりも組み 立て時間を短縮し、製造コストを低減することができる。  On the other hand, in the present embodiment, the optical fibers 1 to 5 as light emitting / receiving elements corresponding to the transmitting / receiving elements are arranged on a single plane of the mirror array block 25. For this reason, all the optical fibers 1 to 5 can be mounted together. As a result, the assembly time can be shortened compared with the conventional optical multiplexer / demultiplexer, and the manufacturing cost can be reduced.
[0090] なお、全受発光素子の光軸が互いに平行であり、全受発光点が同一直線 (受発光 点連結線)に配置され、全受発光素子の光軸と受発光点連結線が直交する光学系 が望ましい。例えば、受発光素子として光ファイバを用いる場合には、図 4に示したよ うに、全ファイバが互いに平行かつ、全ファイバの突き出し量が均一になるように光フ アイバ 1〜5を整列させることは比較的容易である。また、このように光ファイバ 1〜5が 整列配置されたファイバアレイブロックを別途準備し、当該ファイバアレイブロックをミ ラーアレイブロックに嵌め込むことにより、全ファイバを容易に実装することができる。  [0090] It should be noted that the optical axes of all the light emitting / receiving elements are parallel to each other, all the light receiving / emitting points are arranged on the same straight line (light receiving / emitting point connecting line), An orthogonal optical system is desirable. For example, when an optical fiber is used as a light emitting / receiving element, as shown in FIG. 4, it is not possible to align the optical fibers 1 to 5 so that all the fibers are parallel to each other and the protruding amount of all the fibers is uniform. It is relatively easy. Further, by preparing separately a fiber array block in which the optical fibers 1 to 5 are arranged and arranged in this manner, and inserting the fiber array block into the mirror array block, all the fibers can be easily mounted.
[0091] く V溝 19〜23 >  [0091] V-groove 19-23>
図 37に示した従来の光合分波器は、送受信素子位置決め用のストッパ 1008が設 けられた複数のカップリング装置 1005a〜1005cを有している。このため、過剰損失 を低減するようにァライメント作業を行う場合、送信素子 1001または受信素子 1002a 〜1002dを実装した後にカップリング装置 1005a〜1005cを微調整しなければなら ない。その結果、光合分波器の組み立て時間が長くなり、製造コストが高くなる。 The conventional optical multiplexer / demultiplexer shown in FIG. 37 has a plurality of coupling devices 1005a to 1005c provided with stoppers 1008 for positioning transmitting and receiving elements. For this reason, when performing alignment work to reduce excess loss, the transmitting element 1001 or the receiving element 1002a After mounting ~ 1002d, coupling device 1005a ~ 1005c must be fine tuned. As a result, the assembly time of the optical multiplexer / demultiplexer becomes longer and the manufacturing cost becomes higher.
[0092] これに対し、本実施例では、複数の光ファイバ 1〜5の位置決めに用いられる V溝 1 9〜23がミラーアレイブロック 25に一体形成されている。このため、光ファイバ 1〜5と 結合素子 6〜: LOとの相対位置を正確かつ簡易に決定することができ、光ファイバ 1〜 5実装後の結合素子 6〜10の微調整も不要となる。その結果、従来の光合分波器よ りも組み立て時間を短縮し、製造コストを低減することができる。  On the other hand, in this embodiment, V grooves 19 to 23 used for positioning the plurality of optical fibers 1 to 5 are integrally formed in the mirror array block 25. Therefore, the relative position between the optical fibers 1 to 5 and the coupling element 6 to: LO can be determined accurately and easily, and fine adjustment of the coupling elements 6 to 10 after the optical fibers 1 to 5 are mounted is not necessary. . As a result, the assembly time can be shortened and the manufacturing cost can be reduced as compared with the conventional optical multiplexer / demultiplexer.
[0093] <第 2の実施例 >  [0093] <Second embodiment>
図 7は、第 2の実施例に係る光合分波器のミラーアレイブロックの斜視概略外観図 であり、光線分岐素子を保持する構造を有している。図 8は、第 2の実施例に係る光 合分波器の斜視概略外観図である。なお、本実施例は、第 1の実施例の変形例であ る。  FIG. 7 is a perspective schematic external view of the mirror array block of the optical multiplexer / demultiplexer according to the second embodiment, which has a structure for holding the beam splitter. FIG. 8 is a schematic perspective view of an optical multiplexer / demultiplexer according to the second embodiment. This embodiment is a modification of the first embodiment.
[0094] 図 7に示すように、第 2の実施例に係る光合分波器のミラーアレイブロック 25は、板 状基板の表面にぉ ヽて一つの基板端部に直線状に形成された V溝 36と、当該 V溝 36を構成する一方の傾斜面 36aにおいて V溝 36の直線軸方向に沿って配列して形 成された結合素子 6〜: LOと、 V溝 36の直線軸方向と垂直かつ、結合素子 6〜: LOと対 向して V溝 36に繋がるように形成された複数の直線状の V溝 19〜23とから構成され る。複数の V溝 19〜23は光ファイバ固定用の V溝であり、それぞれ各結合素子 6〜1 0に対応して対向するように形成されて!、る。  [0094] As shown in FIG. 7, the mirror array block 25 of the optical multiplexer / demultiplexer according to the second embodiment has a V-shape formed linearly at one substrate end across the surface of the plate substrate. And the coupling elements 6 to 6 formed by arranging along the linear axis direction of the V groove 36 on one inclined surface 36a constituting the V groove 36, and the linear axis direction of the V groove 36. It is composed of a plurality of linear V-grooves 19 to 23 formed so as to be connected to the V-groove 36 in a vertical direction and coupled to the V-groove 36. The plurality of V-grooves 19 to 23 are V-grooves for fixing an optical fiber, and are formed so as to be opposed to the coupling elements 6 to 10, respectively.
[0095] 更に、前記基板端部および傾斜面 36aには、各結合素子 6〜10を仕切るようにして 設けられた上方へのびる複数の壁部が形成され、平面櫛歯状の光線分岐素子保持 構造 24aを構成して ヽる。光線分岐素子保持構造 24aは導波部構造 24の一部を構 成する。各結合素子 6〜10を挟む両側の側壁の上面がそれぞれ搭載部 24-1〜24-4 となっており、それぞれの搭載部に光線分岐素子が設置される。  [0095] Furthermore, a plurality of upwardly extending wall portions provided so as to partition the coupling elements 6 to 10 are formed on the substrate end portion and the inclined surface 36a, and the planar comb-tooth-shaped beam branching element holding unit is held. Form structure 24a. The beam splitter holding structure 24a constitutes a part of the waveguide structure 24. The upper surfaces of the sidewalls on both sides sandwiching the coupling elements 6 to 10 are mounting parts 24-1 to 24-4, respectively, and a beam splitter is installed on each mounting part.
[0096] 図 8に示すように、本実施例に力かる光合分波器は、図 7に示すミラーアレイブロッ ク 25における V溝 36 (すなわち光線分岐素子保持構造 24a)の上部を覆うように導波 部構造 24の一部である反射面保持構造 24bが固定されて構成されている。導波部 構造 24は、ミラーアレイブロック 25に設けられた光線分岐素子保持構造 24aと、ミラ 一アレイブロック 25の上部に設置される反射面保持構造 24bとからなる。 [0096] As shown in FIG. 8, the optical multiplexer / demultiplexer according to the present embodiment covers the upper part of the V groove 36 (that is, the beam splitter holding structure 24a) in the mirror array block 25 shown in FIG. A reflection surface holding structure 24b, which is a part of the waveguide structure 24, is fixed. The waveguide structure 24 includes a beam splitter holding structure 24a provided in the mirror array block 25 and a mirror. It comprises a reflecting surface holding structure 24b installed on the top of one array block 25.
[0097] 反射面保持構造 24bは、ミラーアレイブロック 25の V溝 36の直線軸方向の両端部 において上方にのびる壁部と、当該 2つの壁部の上面にまたがる天井部とからなり、 ミラーアレイブロック 25の V溝 19側から V溝 23側まで跨ぐように形成された、側面コ 字形状の内部が空洞となった構造体である。天井部の下面には、天井部の下方に ぉ 、て設置された光線分岐素子 11〜 14に対応する位置に、反射面 15〜 18が形成 されている。 The reflecting surface holding structure 24b includes a wall portion extending upward at both ends in the linear axis direction of the V-groove 36 of the mirror array block 25, and a ceiling portion extending over the upper surfaces of the two wall portions. The block 25 is a structure that is formed so as to straddle from the V-groove 19 side to the V-groove 23 side. Reflecting surfaces 15 to 18 are formed on the lower surface of the ceiling portion at positions corresponding to the beam splitters 11 to 14 installed below the ceiling portion.
[0098] 本実施例では、平面櫛歯状の光線分岐素子保持構造 24aにおける各チャネルの 隔離する壁部の間に、それぞれ結合素子 6〜10を形成する必要がある。したがって 、ミラーアレイブロック 25を直接、目的の形状に削りだす切削加工を適用するよりも、 目的形状の铸型を切削して製造する射出成型の方が、製造方法として適している、 In this embodiment, it is necessary to form the coupling elements 6 to 10 between the walls separating each channel in the planar comb-like beam branching element holding structure 24a. Therefore, rather than applying a cutting process that directly cuts the mirror array block 25 into the target shape, injection molding that cuts and manufactures the saddle shape of the target shape is more suitable as a manufacturing method.
[0099] また、導波部構造 24は光線分岐素子保持構造 24aと反射面保持構造 24bとから 構成され、光線分岐素子保持構造 24aはミラーアレイブロック 25と一体的に形成され るため、反射面保持構造 24bの加工自由度を向上させることができる。したがって、 反射面 15〜18を凹面にして、反射面保持構造 24bに一体形成する場合に最適であ る。 In addition, the waveguide structure 24 includes a light beam branching element holding structure 24a and a reflection surface holding structure 24b. Since the light beam branching element holding structure 24a is formed integrally with the mirror array block 25, the reflection surface The degree of freedom in processing the holding structure 24b can be improved. Therefore, it is optimal when the reflecting surfaces 15 to 18 are concave and formed integrally with the reflecting surface holding structure 24b.
[0100] また、光線分岐素子保持構造 24aを所定の設計に基づいて形成することにより、光 線分岐素子保持構造 24aの上面に光線分岐素子 11〜14を載せるだけで、光線分 岐素子 11〜 14と結合素子 6〜: LOとの相対的な位置および角度を決定することがで きる。  [0100] Further, by forming the beam branching element holding structure 24a based on a predetermined design, the beam branching elements 11-14 can be simply mounted on the upper surface of the beam branching element holding structure 24a. 14 and coupling element 6 ~: The relative position and angle of LO can be determined.
[0101] なお、本実施例においても、上述した第 1の実施例と同様の効果も得られる。  [0101] Also in this embodiment, the same effect as in the first embodiment described above can be obtained.
[0102] <第 3の実施例 > [0102] <Third embodiment>
図 9〜図 11は、本発明の第 3の実施例に係る光合分波器を説明する図である。図 9 to 11 are diagrams for explaining an optical multiplexer / demultiplexer according to the third embodiment of the present invention. Figure
9は、本実施例に力かる光合分波器の光学系を示す側面概略構成図である。図 9に は、光合分波器内部を伝播する光線を概念的に示してある。 9 is a schematic side view showing an optical system of an optical multiplexer / demultiplexer that works on the present embodiment. Figure 9 conceptually shows the light rays propagating inside the optical multiplexer / demultiplexer.
[0103] 本実施例では、図 9に示すように、光ファイバ 41の受発光面である端面 50を通過 する光線の光軸と、光線分岐素子 48-1を透過する光線の光軸とのなす角度が 45° よりも小さいことが特徴である。したがって、結合素子 43に入射する光線の入射角を 十分小さくして、コマ収差を低減し、損失を低減することができる。 In this embodiment, as shown in FIG. 9, the optical axis of the light beam that passes through the end face 50 that is the light receiving and emitting surface of the optical fiber 41 and the optical axis of the light beam that passes through the light beam splitting element 48-1. The feature is that the angle formed is smaller than 45 °. Therefore, the incident angle of the light incident on the coupling element 43 is It can be made sufficiently small to reduce coma and loss.
[0104] 本実施例では、複数の V溝 41、 42-1〜42-8 (図 10,図 11を参照。)を含む平面に 対して、光線分岐素子 48-1〜48-8や反射面 49 (図 11を参照。)を、ミラーアレイプロ ック 40の表面に対して精度よく傾斜させて配置する必要があるため、これらの部材を 正確かつ簡易に位置決めするための構造的な工夫を施すことが望ま 、。この具体 例について、図 10,図 11に基づいて説明する。  [0104] In this embodiment, the light branching elements 48-1 to 48-8 and the reflection are made on a plane including a plurality of V grooves 41, 42-1 to 42-8 (see Figs. 10 and 11). Since surface 49 (see Figure 11) must be accurately tilted with respect to the surface of the mirror array probe 40, structural features are provided to accurately and easily position these components. Desirable to give A specific example will be described with reference to FIGS.
[0105] 図 10は、本実施例に力かる光合分波器を構成する部材のうち、結合素子と光ファ ィバ固定用の V溝と、導波部構造の一部が一体形成されてなるミラーアレイブロック 4 0の具体例を示す斜視概略外観図である。  [0105] Fig. 10 shows a configuration in which a coupling element, a V-groove for fixing an optical fiber, and a part of a waveguide structure are integrally formed among members constituting an optical multiplexer / demultiplexer that is useful in the present embodiment. FIG. 7 is a perspective schematic external view showing a specific example of a mirror array block 40.
[0106] 図 10に示すように、ミラーアレイブロック 40は、板状基板の表面において一つの基 板端部に直線状に形成された V溝 51と、当該 V溝 51を構成する一方の傾斜面 5 la にお 、て V溝 51の直線軸方向に沿って配列して形成された結合素子 43、 44-1〜44 -8と、 V溝 51の直線軸方向と垂直かつ、結合素子 43、 44-1〜44-8と対向して V溝 51 に繋がるように形成された複数の直線状の V溝 41、 42-1〜42-8とから構成される。複 数の V溝 41、 42-1〜42-8は光ファイバ固定用の V溝であり、それぞれ各結合素子 43 、 44-1〜44-8に対応して対向するように形成されて!、る。  As shown in FIG. 10, the mirror array block 40 includes a V-groove 51 formed linearly at one substrate end on the surface of the plate-shaped substrate, and one slope constituting the V-groove 51. Coupling elements 43, 44-1 to 44-8 formed on the surface 5 la along the linear axis direction of the V groove 51, and perpendicular to the linear axis direction of the V groove 51 and the coupling element 43 44-1 to 44-8, and a plurality of linear V grooves 41 and 42-1 to 42-8 formed so as to be connected to the V groove 51. The multiple V-grooves 41 and 42-1 to 42-8 are V-grooves for fixing optical fibers, and are formed so as to face each other corresponding to the coupling elements 43 and 44-1 to 44-8! RU
[0107] 更に、前記基板端部とは垂直な 2つの基板端部において、 V溝 51が形成されてい ない部分であって、 V溝 43および 44-8の外側に、一対の略角柱突起部である光線 分岐素子保持部 45と、同様に一対の略角柱突起部である反射面保持部 46とが形 成されている。光線分岐素子保持部 45は、反射面保持部 46よりも結合素子側に形 成されている。また、光線分岐素子保持部 45および反射面保持部 46において、結 合素子側の面とは反対側の面は、それぞれ平坦な傾斜面 45a、平坦な傾斜面 46aと なっている。  [0107] Further, in the two substrate end portions perpendicular to the substrate end portion, the V-groove 51 is not formed, and a pair of substantially prismatic protrusions are formed outside the V-grooves 43 and 44-8. The light beam branching element holding part 45 and the reflection surface holding part 46 which are a pair of substantially prismatic protrusions are formed. The beam splitter holding part 45 is formed closer to the coupling element than the reflecting surface holding part 46. Further, in the light beam branching element holding part 45 and the reflecting surface holding part 46, the surfaces opposite to the surface on the coupling element side are a flat inclined surface 45a and a flat inclined surface 46a, respectively.
[0108] 傾斜面 51aの傾斜角については、結合素子 43、 44-1〜44-8に入射する光線の入 射角を十分小さくするため、図 5等に示すミラーアレイの傾斜面よりも比較的切り立つ た (基板表面に対してほぼ垂直に近 、)傾斜面となって 、る。  [0108] The inclination angle of the inclined surface 51a is compared with the inclined surface of the mirror array shown in Fig. 5 in order to make the incident angle of light incident on the coupling elements 43 and 44-1 to 44-8 sufficiently small. The surface is inclined (nearly perpendicular to the substrate surface).
[0109] ミラーアレイブロック 40に光線分岐素子を直接、斜めに配置するための保持構造を 形成する場合、配置角度の精度を向上させるためには、光線分岐素子の面積を十 分大きくする必要がある。しかし、光線分岐素子の面積を大きくすると製造コストが増 大したり、光合分波器のサイズが増大したり、チャネル間隔の増大にともない伝播光 線の光路長が長くなり、チャネル間の損失ばらつきが増大したりする問題が発生する [0109] When forming a holding structure for arranging the beam splitter directly and obliquely in the mirror array block 40, in order to improve the accuracy of the arrangement angle, the area of the beam splitter is sufficient. It is necessary to increase the size. However, if the area of the beam splitter increases, the manufacturing cost increases, the size of the optical multiplexer / demultiplexer increases, and the optical path length of the propagating light beam increases as the channel spacing increases, resulting in variations in loss between channels. Or problems that increase
[0110] そこで、これらの問題を回避するためには、複数の光線分岐素子をアレイ状に配置 した平板 (フィルタアレイ平板)を別途準備し、そのフィルタアレイ平板の位置および 角度を精度よく決定するための保持部を、ミラーアレイブロックに一体形成するのが 望ましい。 [0110] Therefore, in order to avoid these problems, a flat plate (filter array flat plate) in which a plurality of beam branching elements are arranged in an array is prepared separately, and the position and angle of the filter array flat plate are accurately determined. It is desirable to form a holding portion for the mirror array block integrally.
[0111] このようにすることで、隣接する光線分岐素子の間に、各光線分岐素子を保持する ための櫛歯状構造が不要となり、櫛歯状構造を形成するためにチャネル間隔を拡大 する必要もなくなる。また、アレイ化された V溝の外側に保持部を形成すればよいの で、十分大きなサイズの保持部を形成でき、反射領域を有する平板 (各チャネルに配 置された光線分岐素子や、複数の光線分岐素子がアレイ化形成されてなるフィルタ アレイ平板など)の配置角度の精度も向上させることができる。もちろん、この保持部 は、光線分岐素子以外の反射面の位置および角度を精度よく決定するためにも利用 できる。  [0111] This eliminates the need for a comb-like structure for holding each light-branching element between adjacent light-branching elements, and increases the channel spacing to form a comb-like structure. There is no need. In addition, since the holding portion only needs to be formed outside the arrayed V-groove, a holding portion having a sufficiently large size can be formed, and a flat plate having a reflective region (a beam splitter arranged in each channel, or a plurality of The accuracy of the arrangement angle of the filter array flat plate formed by arraying the light beam branching elements can be improved. Of course, this holding portion can also be used to accurately determine the position and angle of the reflecting surface other than the beam splitter.
[0112] 図 11は、光線分岐素子保持部 45および反射面保持部 46に、それぞれフィルタァ レイ平板 47および反射面 49が保持されてなる、光合分波器を示している。光線分岐 素子保持部 45およびフィルタアレイ平板 47と、反射面保持部 46および保持された 反射面 49とから導波部構造が構成されている。  FIG. 11 shows an optical multiplexer / demultiplexer in which the filter array flat plate 47 and the reflection surface 49 are held by the beam splitter holding unit 45 and the reflection surface holding unit 46, respectively. The light beam branching element holding unit 45 and the filter array flat plate 47, the reflection surface holding unit 46, and the held reflection surface 49 constitute a waveguide structure.
[0113] フィルタアレイ平板 47は、一対の光線分岐素子保持部 45の傾斜面 45aに両端面 で接することにより、傾斜して保持されている。また、平板状の反射面 49は、一対の 反射面保持部 46の傾斜面 46aに両端面で接することにより、傾斜して保持されてい る。フィルタアレイ平板 47は、外観が枠状の形状をしており、当該枠内に結合素子 44 -1〜44-8に対応して光線分岐素子 48-1〜48-8が嵌め込まれている。  [0113] The filter array flat plate 47 is held in an inclined manner by contacting the inclined surfaces 45a of the pair of beam branching element holding portions 45 at both end surfaces. Further, the flat reflection surface 49 is inclined and held by contacting the inclined surfaces 46a of the pair of reflection surface holding portions 46 at both end surfaces. The filter array flat plate 47 has a frame-like appearance, and light branching elements 48-1 to 48-8 are fitted into the frame corresponding to the coupling elements 44-1 to 44-8.
[0114] なお、フィルタアレイ平板 47としては、本実施例のように、各光線分岐素子を物理 的な穴にアレイ状に嵌め込んで形成するタイプ以外にも、ガラス板などの光学透明な 平板に各光線分岐素子をアレイ状に貼り付けて形成するタイプや、光学透明な平板 に透過波長域の異なる誘電体多層膜をアレイ状に直接、形成するタイプなども考え られる。いずれの場合も、全ての光線分岐素子の反射面が同一平面上に配置される ように注意してフィルタアレイ平板を製造する必要がある。 [0114] The filter array flat plate 47 is not limited to the type in which each beam splitting element is fitted into a physical hole in the form of an array as in this embodiment, but is an optically transparent flat plate such as a glass plate. A type in which each beam splitter is pasted in an array and an optically transparent flat plate In addition, a type in which dielectric multilayer films having different transmission wavelength ranges are directly formed in an array is also conceivable. In either case, it is necessary to manufacture the filter array flat plate with care so that the reflecting surfaces of all the beam splitters are arranged on the same plane.
[0115] 以下、本実施例の効果について説明する。  [0115] The effects of this example will be described below.
[0116] <入反射光軸の成す角が 45° より小さい >  [0116] <Angle formed by incident / reflecting optical axis is less than 45 °>
結合素子としてミラーを用いる場合、結合素子に入射する入射光線と結合素子で 反射される反射光線の成す角度は 0° よりも大きい。したがって、全ての受発光素子 の光軸を同一平面に配置する場合、各結合素子における入射光線と反射光線の成 す角度を均一化し、受発光素子と結合素子とを結ぶ光路長を均一化するためには、 受発光素子の光軸が含まれる平面 (以下、受発光素子平面)と、各光線分岐素子で 透過 '反射する光線の光軸が含まれる平面 (以下、光線分岐素子平面)を立体的に 交差させる必要がある。さらに、ある光線分岐素子で反射された光線を別の光線分 岐素子に入射させるための反射面、すなわち導波素子が必要になる。  When a mirror is used as the coupling element, the angle between the incident light incident on the coupling element and the reflected light reflected by the coupling element is greater than 0 °. Therefore, when the optical axes of all the light emitting / receiving elements are arranged in the same plane, the angle formed by the incident light and the reflected light at each coupling element is made uniform, and the optical path length connecting the light emitting / receiving element and the coupling element is made uniform. For this purpose, a plane including the optical axis of the light emitting / receiving element (hereinafter referred to as the light receiving / emitting element plane) and a plane including the optical axis of the light beam transmitted and reflected by each light branching element (hereinafter referred to as the light beam splitting element plane) are used. It is necessary to intersect three-dimensionally. Furthermore, a reflection surface, that is, a waveguide element, is required for allowing a light beam reflected by a certain light beam branching element to enter another light beam branching element.
[0117] ここで、図 37に示した従来の光合分波器では、結合素子に相当する反射面 1007 が回転放物面、回転双曲面、回転楕円面となっている。この場合は、結合素子の入 反射光軸の成す角度が 90° 程度になり、光線分岐素子平面と受発光素子平面の成 す角度も 90°程度になる場合が多い。したがって、受発光素子平面に対して導波素 子が最も遠い位置に配置されることになり、受発光素子や導波素子を位置決めする ための構造体を単一ブロックで構成することが困難である。  Here, in the conventional optical multiplexer / demultiplexer shown in FIG. 37, the reflecting surface 1007 corresponding to the coupling element is a paraboloid of revolution, a hyperboloid of revolution, and a ellipsoid of revolution. In this case, the angle formed by the incident / reflection optical axis of the coupling element is about 90 °, and the angle formed by the light beam splitting element plane and the light receiving / emitting element plane is often about 90 °. Therefore, the waveguide element is arranged at the furthest position with respect to the light emitting / receiving element plane, and it is difficult to form a structure for positioning the light emitting / receiving element and the waveguide element in a single block. is there.
[0118] このため、受発光素子を位置決めする構造体と、導波素子を位置決めする構造体 を別々のブロックで構成しなければならない。したがって、部品点数や組み立て工数 が増大し、製造コストが増大してしまう。また、温度勾配発生時の歪みの影響を受け やすぐ過剰損失が増大してしまう。さらに、隣接する光線分岐素子のピッチ、および 光線分岐素子に入射する光線の入射角が同じ場合、光学系のサイズが大きくなつて しまう。  [0118] For this reason, the structure for positioning the light emitting / receiving element and the structure for positioning the waveguide element must be configured in separate blocks. Therefore, the number of parts and assembly man-hours increase, and the manufacturing cost increases. In addition, the excess loss immediately increases due to the influence of strain when the temperature gradient occurs. Furthermore, if the pitch of adjacent beam splitters and the incident angle of the beam incident on the beam splitter are the same, the size of the optical system will increase.
[0119] これに対し、本実施例では、結合素子 43, 44-1〜44-8の入反射光軸の成す角度 力 よりも小さいので、光線分岐素子平面と受発光素子平面の成す角度も同程 度まで小さくすることが可能となる。したがって、導波素子に相当する反射面 49を、 前記二平面の成す角度が 90° の場合よりも、受発光素子平面に対して近い位置に 配置することができ、受発光素子や導波素子を位置決めするための構造体を単一ブ ロックで構成するのが容易になる。 On the other hand, in this embodiment, since the angle force formed by the incident / reflecting optical axes of the coupling elements 43, 44-1 to 44-8 is smaller, the angle formed by the light beam splitting element plane and the light receiving / emitting element plane is also smaller. It can be reduced to the same extent. Therefore, the reflection surface 49 corresponding to the waveguide element is It can be placed closer to the light emitting / receiving element plane than when the angle between the two planes is 90 °, and the structure for positioning the light emitting / receiving element and the waveguide element can be formed with a single block. Easy to configure.
[0120] このため、部品点数や組み立て工数を削減し、製造コストを抑制することができる。 [0120] For this reason, the number of parts and the number of assembly steps can be reduced, and the manufacturing cost can be suppressed.
また、温度勾配発生時の歪みの影響を受けにくぐ過剰損失を抑制することができる 。さらに、隣接する光線分岐素子のピッチ、および光線分岐素子に入射する光線の 入射角が同じ場合、光学系のサイズを小型化することができる。  In addition, it is possible to suppress excessive loss that is difficult to be affected by distortion when a temperature gradient occurs. Furthermore, when the pitch of adjacent beam splitters and the incident angle of the beam incident on the beam splitter are the same, the size of the optical system can be reduced.
[0121] なお、結合素子が球面ミラーの場合、コマ収差の影響を小さくするため、光線分岐 素子平面と受発光素子平面の成す角度はできるだけ小さい方が望ましい。ただし、 伝播光線と受発光素子が干渉しな!、ように注意する必要がある。  [0121] When the coupling element is a spherical mirror, in order to reduce the influence of coma aberration, it is desirable that the angle formed by the light beam splitting element plane and the light emitting / receiving element plane is as small as possible. However, care must be taken so that the propagating light beam and the light emitting / receiving element do not interfere with each other!
[0122] <光線分岐素子保持部 45および反射面保持部 46がミラーブロック 45に一体形成  [0122] <Light-branching element holding part 45 and reflecting surface holding part 46 are formed integrally with mirror block 45
>  >
光線分岐素子 48-1〜48-8および反射面 49は、ミラーとしての機能を有する。このた め、これらの位置 ·角度ずれが伝播光線の光軸ずれをもたらし過剰損失を増大させる ので、高い実装精度が要求される。特に、光線分岐素子 48-1〜48-8は反射光線の 角度ずれを増幅させる平面ミラーなので注意を払う必要がある。  The beam splitters 48-1 to 48-8 and the reflecting surface 49 have a function as a mirror. For this reason, these positional and angular deviations cause optical axis deviations of propagating light rays and increase excess loss, so that high mounting accuracy is required. In particular, it is necessary to pay attention because the beam splitters 48-1 to 48-8 are plane mirrors that amplify the angle deviation of the reflected beam.
[0123] ここで、本実施例では、光線分岐素子保持部 45および反射面保持部 46がミラーァ レイブロック 40に一体形成されている。したがって、光線分岐素子 48-1〜48-8がァレ ィ状に形成されたフィルタアレイ平板 (フィルタアレイブロック) 47を光線分岐素子保 持部 45の傾斜面 45aに、また反射面 49を反射面保持部 46の傾斜面 46aに押し付 け、突き当て、接着するだけで、組み立てが完了する。このため、特殊な組み立て装 置や高度なスキルを必要とせず、高精度かつ簡易に部品を組み立てられるため、製 造コストを削減することができる。  Here, in this embodiment, the beam branching element holding part 45 and the reflecting surface holding part 46 are integrally formed with the mirror array block 40. Therefore, the filter array flat plate (filter array block) 47 in which the beam splitters 48-1 to 48-8 are formed in an array is reflected on the inclined surface 45a of the beam splitter holder 45, and the reflecting surface 49 is reflected. The assembly is completed simply by pressing, abutting and bonding to the inclined surface 46a of the surface holding portion 46. This eliminates the need for special assembly equipment and advanced skills, and allows parts to be assembled with high precision and ease, thereby reducing manufacturing costs.
[0124] なお、光線分岐素子保持部 45および反射面保持部 46の 、ずれかがミラーアレイ ブロックに一体形成されている形態も可能であるが、本実施例のように両方がミラー アレイブロックに一体形成されている方が望ましい。そうすれば、結合素子 43, 44-1 〜44-8、光線分岐素子 48-1〜48-8、反射面 49という三者の相対的な位置および角 度を正確かつ簡易に決定できるので、組み立て時間を大幅に削減できる。 [0125] <光線分岐素子 48-l〜48-8と反射面 49との間に空間が介在 > [0124] It should be noted that the beam branching element holding unit 45 and the reflecting surface holding unit 46 may be configured such that the deviation is integrally formed in the mirror array block, but both are in the mirror array block as in this embodiment. It is desirable that they are integrally formed. By doing so, the relative positions and angles of the three elements, the coupling elements 43, 44-1 to 44-8, the beam splitters 48-1 to 48-8, and the reflecting surface 49 can be determined accurately and easily. The assembly time can be greatly reduced. [0125] <Space is interposed between beam splitters 48-l to 48-8 and reflecting surface 49>
伝播媒質に榭脂を用いる場合、長距離光通信で使用される 1. 程度の波長 の光信号の伝播損失が大きい。伝播媒質として光学ガラスを用いる場合、伝播損失 を低減できるものの、凹面ミラーなどの導波素子を高精度かつアレイ状に製造するの が困難となる。ガラス射出成型を用いて量産すると、ひとつの金型で製造可能な収量 が低下するので、製造コストの増大をもたらす。したがって、図 43に示した従来の光 分波器のように、光線分岐素子に相当する波長特定フィルタ 3202と導波素子に相 当する収束リフレクタ 3201との間を光線が伝播する形態にすると、伝播損失と製造コ ストがともに増大する。  When resin is used as the propagation medium, the propagation loss of optical signals with a wavelength of about 1. used in long-distance optical communications is large. When optical glass is used as the propagation medium, propagation loss can be reduced, but it becomes difficult to manufacture waveguide elements such as concave mirrors in a highly accurate array. Mass production using glass injection molding reduces the yield that can be produced with a single mold, leading to increased production costs. Therefore, as in the conventional optical demultiplexer shown in FIG. 43, when the light beam propagates between the wavelength specifying filter 3202 corresponding to the light branching element and the converging reflector 3201 corresponding to the waveguide element, Both propagation loss and manufacturing cost increase.
[0126] これに対し、本実施例では、光線分岐素子 48-1〜48-8と、導波素子に相当する反 射面 49との間に空間が介在している。したがって、光線は空間中を伝播するので、 伝播損失は無視できるほど小さい。したがって、従来の光分波器よりも、伝播損失が 非常に小さくなる。また、光線分岐素子 48-1〜48-8のピッチを大きくしたり、光線分岐 素子 48-1〜48-8への伝播光線の入射角を大きくしても、伝播損失は増大しないので 、光学設計自由度も向上できる。なお、本実施例では、導波素子の光学透明性は問 われないため、低コストで加工しやすく量産向きの材質 (榭脂など)を利用するのが望 ましい。  On the other hand, in this embodiment, a space is interposed between the beam splitters 48-1 to 48-8 and the reflecting surface 49 corresponding to the waveguide element. Therefore, since light rays propagate through space, the propagation loss is negligibly small. Therefore, the propagation loss is much smaller than the conventional optical demultiplexer. Even if the pitch of the beam splitters 48-1 to 48-8 is increased or the incident angle of the propagating beam to the beam splitters 48-1 to 48-8 is increased, the propagation loss does not increase. Design flexibility can also be improved. In this embodiment, since the optical transparency of the waveguide element is not limited, it is desirable to use a material (such as resin) that is easy to process at low cost and suitable for mass production.
[0127] <第 4の実施例 >  [0127] <Fourth embodiment>
図 12,図 13は、本発明の第 4の実施例に係る光合分波器を説明する図である。図 12は、本実施例に力かる光合分波器の具体的なミラーアレイブロックの斜視概略外 観図である。また、図 13は、具体的なミラーアレイブロックと具体的な導波部構造とを 組み立てなる本実施例に力かる光合分波器の斜視概略外観図である。なお、本実 施例は、第 3の実施例の応用例である。  12 and 13 are diagrams for explaining an optical multiplexer / demultiplexer according to the fourth embodiment of the present invention. FIG. 12 is a schematic perspective view of a specific mirror array block of the optical multiplexer / demultiplexer that works on the present embodiment. FIG. 13 is a schematic perspective view of an optical multiplexer / demultiplexer according to this embodiment in which a specific mirror array block and a specific waveguide structure are assembled. This embodiment is an application example of the third embodiment.
[0128] 図 12に示すように、ミラーアレイブロック 40は、板状基板の表面において、 3つの基 板端部に形成された側壁部 40a, 40b, 40cと、側壁部 40aが形成された基板端部 に当該側壁部 40aに沿って直線状に形成された V溝 51と、当該 V溝 51を構成する 一方の傾斜面 51aにおいて V溝 51の直線軸方向に沿って配列して形成された結合 素子 43、 44-1〜44-8と、 V溝 51の直線軸方向と垂直かつ、結合素子 43、 44-1〜44- 8と対向して V溝 51に繋がるように形成された複数の直線状の V溝 41、42-l〜42-8と 力も構成される。複数の V溝 41、 42-1〜42-8は光ファイバ固定用の V溝であり、それ ぞれ各結合素子 43、 44-1〜44-8に対応して対向するように形成されて!、る。 [0128] As shown in Fig. 12, the mirror array block 40 includes, on the surface of the plate-like substrate, side walls 40a, 40b, 40c formed at three substrate end portions, and a substrate on which the side walls 40a are formed. A V-groove 51 formed linearly along the side wall 40a at the end, and an array formed along the linear axis direction of the V-groove 51 on one inclined surface 51a constituting the V-groove 51 Coupling element 43, 44-1 to 44-8 and perpendicular to the linear axis direction of V groove 51, coupling element 43, 44-1 to 44- A plurality of linear V grooves 41, 42-1 to 42-8 formed so as to be connected to the V groove 51 so as to face 8 are also configured. The plurality of V-grooves 41, 42-1 to 42-8 are V-grooves for fixing optical fibers, and are formed so as to face each other corresponding to each coupling element 43, 44-1 to 44-8. !
[0129] 3つの基板端部に形成された側壁部 40a, 40b, 40cにより、光ファイバアレイの両 外側と結合素子の上方との三方が囲まれた形状となっている。側壁部 40bには、光 線分岐素子保持部となる傾斜面 45aおよび反射面保持部となる傾斜面 46aが形成さ れ、同様に側壁部 40cにも対応する傾斜面 45a, 46aが形成されている。光線分岐 素子保持部の傾斜面 45aは、反射面保持部の傾斜面 46aよりも結合素子側に形成さ れている。また、各傾斜面 45a, 46aは平坦な傾斜面である。  [0129] The side walls 40a, 40b, and 40c formed at the three substrate ends form a shape in which the outer side of the optical fiber array and the upper side of the coupling element are surrounded. The side wall portion 40b is formed with an inclined surface 45a that serves as an optical beam branching element holding portion and an inclined surface 46a that serves as a reflecting surface holding portion. Similarly, the side wall portion 40c is provided with corresponding inclined surfaces 45a and 46a. Yes. The inclined surface 45a of the beam branching element holding part is formed closer to the coupling element than the inclined surface 46a of the reflecting surface holding part. Each inclined surface 45a, 46a is a flat inclined surface.
[0130] 図 13に示すように、複数の光線分岐素子 48-1〜48-8がアレイ状に形成されたフィ ルタアレイ平板 47のアレイ方向の長さは、平板状の反射面 49の長手方向の長さより も短くなつており、これに対応して、傾斜面 45aと 46aとは側壁部の平面形状が階段 状となるように側壁部 40b, 40cに形成されている。  [0130] As shown in FIG. 13, the length in the array direction of the filter array flat plate 47 in which a plurality of beam branching elements 48-1 to 48-8 are formed in an array is the longitudinal direction of the flat reflective surface 49. Correspondingly, the inclined surfaces 45a and 46a are formed in the side wall portions 40b and 40c so that the planar shape of the side wall portions is stepped.
[0131] 本実施例では、フィルタアレイ平板 47および反射面 49を位置決めするための四箇 所の傾斜面は長方形状の平坦面であるが、各長方形状の平面に微小な突起構造を 2つずつ形成すれば、面接触ではなく点接触で平板を位置決めできるため、位置決 め精度をさらに向上させることができる。  [0131] In this embodiment, the four inclined surfaces for positioning the filter array flat plate 47 and the reflecting surface 49 are rectangular flat surfaces, but two minute protrusion structures are provided on each rectangular plane. If formed, the flat plate can be positioned by point contact instead of surface contact, so that the positioning accuracy can be further improved.
[0132] また、本実施例のように、 V溝部分を囲むように三面に側壁を形成し、それらの側面 に平板の保持部 (傾斜面)、複数の結合素子を形成するような構造にすることで、機 械的な強度を向上させ、環境温度の変化などに対しても変形しにくいミラーアレイブ ロックとすることができる。  [0132] Further, as in this embodiment, the structure is such that side walls are formed on three surfaces so as to surround the V-groove portion, and a flat plate holding portion (inclined surface) and a plurality of coupling elements are formed on those side surfaces. By doing so, the mechanical strength can be improved, and a mirror array block that does not easily deform even when the environmental temperature changes can be obtained.
[0133] なお、本実施例においても、上述した第 3の実施例と同様の効果も得られる。  [0133] It should be noted that this embodiment can also provide the same effects as those of the third embodiment described above.
[0134] 以上、各実施例で説明してきた結合素子、光線分岐素子保持構造、 V溝などを形 成する方法としては、基板を直接、目的の形状に削りだす切削加工や、目的の形状 の铸型を切削した後、当該铸型に樹脂などを流し込み加熱'成型を行う射出成型な どが考えられるが、同一のミラーアレイブロック等を大量に製造する場合には、射出 成型法が適している。また、 V溝の形状についても、結合素子に近い領域の形状精 度、結合素子との相対的な位置精度にのみ十分注意を払えば、それ以外の部分に はそれほど高 、精度は必要な 、。 As described above, as a method of forming the coupling element, the beam branching element holding structure, the V-groove, etc. described in each of the embodiments, a cutting process for directly cutting a substrate into a target shape, After cutting the mold, injection molding, in which resin, etc. is poured into the mold and heated and molded, is considered. However, when manufacturing the same mirror array block etc. in large quantities, the injection molding method is suitable. Yes. Also, regarding the shape of the V-groove, if sufficient attention is paid only to the shape accuracy of the region close to the coupling element and the relative positional accuracy with the coupling element, the other parts are not affected. Is so high, accuracy is required.
[0135] <第 5の実施例 >  <Fifth embodiment>
図 14は、本発明の第 5の実施例に係る光合分波器の概略構成図である。なお、同 図には、光合分波器内部を伝播する光線を概念的に示してある。  FIG. 14 is a schematic configuration diagram of an optical multiplexer / demultiplexer according to the fifth embodiment of the present invention. In the figure, the light rays propagating through the optical multiplexer / demultiplexer are conceptually shown.
[0136] 図 14に示すように、第 5の実施例に係る光合分波器は、光線を入出力するための レンズが一体形成されたレンズアレイブロック 110と、特定の波長域を含む光線を透 過すると共に特定の波長域以外の光線を反射する光線分岐素子 111〜114と、光 線を反射する反射面 128とから構成されている。また、光合分波器には、光ファイバ 1 15〜119が結合され、波長多重光線または単色光線が入出力されるようになってい る。  As shown in FIG. 14, the optical multiplexer / demultiplexer according to the fifth embodiment includes a lens array block 110 in which lenses for inputting and outputting light rays are integrally formed, and light rays including a specific wavelength range. The beam splitting elements 111 to 114 that transmit light and reflect light beams outside a specific wavelength range and a reflection surface 128 that reflects light beams are configured. The optical multiplexer / demultiplexer is coupled with optical fibers 115 to 119 so that wavelength multiplexed light or monochromatic light can be input and output.
[0137] レンズアレイブロック 110は、波長多重光線を入出力するためのレンズ 120と、単色 光線を入出力するためのレンズ 101〜104と、レンズアレイブロック本体から突き出て 、光線分岐素子 111〜114を保持する光線分岐素子保持構造 105〜109とから構 成されている。レンズアレイブロック 110において、レンズ 101〜104および光線分岐 素子保持構造 105〜109は交互に配置されている。例えばレンズ 101は突起状の 光線分岐素子保持構造 105と光線分岐素子保持構造 106との間に配置され、他の レンズ 102〜104についても、それぞれ 2つの突起状の光線分岐素子保持構造の間 に配置されている。  [0137] The lens array block 110 includes a lens 120 for inputting / outputting wavelength-multiplexed rays, lenses 101-104 for inputting / outputting monochromatic rays, and a beam branching element 111-114 protruding from the lens array block main body. And a beam branching element holding structure 105 to 109 for holding the light. In the lens array block 110, the lenses 101 to 104 and the beam branching element holding structures 105 to 109 are alternately arranged. For example, the lens 101 is disposed between the protruding beam branching element holding structure 105 and the beam branching element holding structure 106, and the other lenses 102 to 104 are respectively disposed between the two protruding beam branching element holding structures. Has been placed.
[0138] また、例えば光線分岐素子 111は、突起状の光線分岐素子保持構造 105および 光線分岐素子保持構造 106の上面においてその両端を保持されており、他の光線 分岐素子 112〜114についても、それぞれ 2つの突起状の光線分岐素子保持構造 にそれらの両端を保持されている。この結果、レンズ 101〜104およびそれらに対応 した光線分岐素子 111〜114が対(図 14では 4対)となってレンズアレイブロック本体 に並べられた構成となって!/、る。レンズ 101〜104は光線分岐素子 111〜114に向 力つて凸となるレンズである。  [0138] Further, for example, the light beam branch element 111 is held at both ends thereof on the upper surfaces of the protruding light beam branch element holding structure 105 and the light beam branch element holding structure 106, and the other light beam branch elements 112 to 114 are also Each of them is held by two projecting beam branching element holding structures. As a result, the lenses 101 to 104 and the beam splitters 111 to 114 corresponding to the lenses 101 to 104 are paired (four pairs in FIG. 14) and arranged on the lens array block body! /. The lenses 101 to 104 are lenses that are convex toward the beam splitters 111 to 114.
[0139] 光線分岐素子 111〜114は、その光入射.反射面がレンズアレイブロック 110にお けるレンズ 101〜104および 120がー列に並んだ面と平行になるように、光線分岐素 子保持構造 105〜 109に保持される。さらに、反射面 128は、レンズアレイブロック 1 10に保持された光線分岐素子 111〜 114の側にお 、て、その光線を反射する面が 光線分岐素子 111〜 114の光入射 ·反射面と平行になるように設置される。 [0139] The light branching elements 111 to 114 hold the light branching element so that the light incident and reflecting surfaces thereof are parallel to the surfaces in which the lenses 101 to 104 and 120 in the lens array block 110 are aligned. Held in structures 105-109. Furthermore, the reflective surface 128 is a lens array block 1 On the side of the light beam branching elements 111 to 114 held by 10, the surface that reflects the light beam is installed so as to be parallel to the light incident / reflection surface of the light beam branching elements 111 to 114.
[0140] 波長多重光線を入出力する光ファイバ 115は、単色光線を入出力する光ファイバ 1 16〜119と共〖こ、レンズアレイブロック 110を挟んで反射面 128とは反対側に設置さ れる。 [0140] The optical fiber 115 for inputting / outputting wavelength-multiplexed rays is co-located with the optical fibers 116-119 for inputting / outputting monochromatic rays, and is installed on the opposite side of the reflecting surface 128 with the lens array block 110 interposed therebetween. .
[0141] 各光ファイバ 115〜119における受発光点 (端面における光線を受光 ·発光する点 )を連結した線は、フィルタアレイ面および光線分岐素子 111〜114の反射面と平行 である一方、光ファイバ 115〜119の受発光面 (端面)とは平行ではない。すなわち、 光ファイバ 115〜119は、その受発光面がフィルタアレイ面に対して斜めとなるように 配置されて 、る。光線分岐素子 111〜114がレンズアレイ面またはフィルタアレイ面 と平行である (傾斜して 、な 、)ため、反射面 128として単一の平板を用いることが可 能となる。  [0141] The line connecting the light receiving and emitting points (light receiving and emitting points on the end faces) in each of the optical fibers 115 to 119 is parallel to the filter array surface and the reflecting surfaces of the beam branching elements 111 to 114. It is not parallel to the light receiving and emitting surfaces (end surfaces) of the fibers 115 to 119. That is, the optical fibers 115 to 119 are arranged such that their light receiving and emitting surfaces are inclined with respect to the filter array surface. Since the beam splitters 111 to 114 are parallel to the lens array surface or the filter array surface (inclined or not), it is possible to use a single flat plate as the reflecting surface 128.
[0142] 本実施例に係る光合分波器を分波器として利用する場合、当該分波器の動作原 理は、以下のとおりである。光合分波器の外部から光ファイバ 115を伝播してきた波 長多重光線は、光合分波器の内部に導かれ、やや拡散した波長多重光線としてレン ズ 120に入射する。当該波長多重光線は、レンズ 120においてコリメ一トイ匕された後 、反射面 128に伝播する。反射面 128に伝播した波長多重光線は、反射面 128にお いて反射され、光線分岐素子 111に入射する。  [0142] When the optical multiplexer / demultiplexer according to the present embodiment is used as a demultiplexer, the operation principle of the demultiplexer is as follows. The wavelength multiplexed light that has propagated through the optical fiber 115 from the outside of the optical multiplexer / demultiplexer is guided to the inside of the optical multiplexer / demultiplexer and enters the lens 120 as a slightly diffused wavelength multiplexed light. The wavelength multiplexed light is collimated by the lens 120 and then propagates to the reflecting surface 128. The wavelength multiplexed light propagated to the reflecting surface 128 is reflected by the reflecting surface 128 and enters the light beam splitting element 111.
[0143] 光線分岐素子 111に入射した波長多重光線は、光線分岐素子 111にお!、て特定 の波長域を含む光線が透過し、単色光線となりレンズ 101に入射する。そして、レン ズ 101において集光され、光ファイバ 116に結合して、光合分波器の外部へ出力さ れる。  The wavelength multiplexed light that has entered the light beam splitting element 111 passes through the light beam splitting element 111 and passes through a light beam having a specific wavelength range, and enters the lens 101 as a monochromatic light beam. Then, the light is condensed in the lens 101, coupled to the optical fiber 116, and output to the outside of the optical multiplexer / demultiplexer.
[0144] 特定の波長域以外の光線からなる波長多重光線は、光線分岐素子 111を透過せ ずに反射され、反射面 128に伝播する。反射面 128に伝播した波長多重光線は、反 射面 128において反射され、光線分岐素子 112に入射する。  [0144] A wavelength-multiplexed light beam composed of light beams outside a specific wavelength band is reflected without passing through the light beam splitting element 111 and propagates to the reflecting surface 128. The wavelength multiplexed light propagated to the reflecting surface 128 is reflected by the reflecting surface 128 and enters the beam splitter 112.
[0145] 光線分岐素子 112に入射した波長多重光線は、光線分岐素子 112において特定 の波長域を含む光線が透過し、単色光線となりレンズ 102に入射する。そして、レン ズ 102において集光され、光ファイバ 117に結合して、光合分波器の外部へ出力さ れる。 The wavelength multiplexed light that has entered the light beam splitting element 112 is transmitted through the light beam splitting element 112 and includes a specific wavelength range, and becomes a monochromatic light beam and enters the lens 102. Then, the light is condensed in the lens 102, coupled to the optical fiber 117, and output to the outside of the optical multiplexer / demultiplexer. It is.
[0146] 以上の過程を繰り返すことで、光ファイバ 115から入射した波長多重光線を、分波 された複数の単色光線として、光ファイバ 116〜119から取り出すことができる。  [0146] By repeating the above process, the wavelength multiplexed light incident from the optical fiber 115 can be extracted from the optical fibers 116 to 119 as a plurality of demultiplexed monochromatic light beams.
[0147] また、本実施例に係る光合分波器を合波器として利用する場合は、上述する分波 動作における波長多重光線および単色光線の進行方向を逆向きにした場合に相当 する。すなわち、光合分波器の外部から、光ファイバ 116〜119にそれぞれ単色光 線を入力することで、当該複数の単色光線を、合波された波長多重光線として光ファ ィバ 115から取り出すことができる。  Further, when the optical multiplexer / demultiplexer according to the present embodiment is used as a multiplexer, this corresponds to a case where the traveling directions of the wavelength multiplexed light and the monochromatic light in the demultiplexing operation described above are reversed. That is, by inputting monochromatic light beams to the optical fibers 116 to 119 from the outside of the optical multiplexer / demultiplexer, the plurality of monochromatic light beams can be extracted from the optical fiber 115 as multiplexed wavelength multiplexed light beams. it can.
[0148] 光ファイバ 116〜119の端面とレンズ 101〜104との間は、収束光(分波器の場合) あるいは拡散光 (合波器の場合)が伝播することになる。このため、設計どおりのビー ムを伝播させるためには、光ファイバとレンズとの相対的な位置と角度を精密に決定 する必要がある。したがって、光ファイバ 116〜119を簡易かつ正確に固定するため の構造をレンズアレイブロック 110に一体形成することが望まし 、。  [0148] Convergent light (in the case of a demultiplexer) or diffused light (in the case of a multiplexer) propagates between the end faces of the optical fibers 116 to 119 and the lenses 101 to 104. For this reason, in order to propagate the beam as designed, it is necessary to precisely determine the relative position and angle between the optical fiber and the lens. Therefore, it is desirable to integrally form a structure for fixing the optical fibers 116 to 119 in the lens array block 110 in a simple and accurate manner.
[0149] 本実施例では、単色光線を入出力するための光ファイバ 116〜119と、レンズ 101 〜 104と、光線分岐素子 111〜 114とがそれぞれ 1つの直線上に配置されて ヽるた め、それぞれの光学素子をアレイ状に一括配置することができ、各光学素子を容易 に配置'形成'固定することができる。また、本実施例では、すべての光ファイバ 115 〜119を光合分波器の一方の面に配置しているので、光合分波器をパッケージの隅 などに実装する場合に適している。  In this embodiment, the optical fibers 116 to 119 for inputting / outputting monochromatic light, the lenses 101 to 104, and the light branching elements 111 to 114 are arranged on one straight line. The optical elements can be collectively arranged in an array, and the optical elements can be easily arranged and formed. Further, in this embodiment, since all the optical fibers 115 to 119 are arranged on one surface of the optical multiplexer / demultiplexer, it is suitable for mounting the optical multiplexer / demultiplexer on the corner of the package.
[0150] なお、本実施例では、光線分岐素子の数を 4枚、レンズの数を 5個、反射面の数を 3枚、光ファイバの数を 5本として説明したが、本発明はこれらの数に限定されない。 また、波長多重光線および単色光線の受発光点としては、光ファイバに限定されず、 一部または全部の受発光点がレーザダイオードやフォトダイオードなどの受発光素 子であってもよい。さらに、 1つの光合分波器に、発光点と受光点とがそれぞれ複数 個存在する構成としてもよい。  [0150] In the present embodiment, the number of beam branching elements is four, the number of lenses is five, the number of reflecting surfaces is three, and the number of optical fibers is five. The number is not limited. Further, the light receiving and emitting points for wavelength multiplexed light and monochromatic light are not limited to optical fibers, and some or all of the light receiving and emitting points may be light receiving and emitting elements such as laser diodes and photodiodes. Furthermore, a configuration may be adopted in which a plurality of light emitting points and light receiving points exist in one optical multiplexer / demultiplexer.
[0151] <第 6の実施例 >  [0151] <Sixth embodiment>
図 15は、本発明の第 6の実施例に係る光合分波器の概念図である。本実施例に 係る光合分波器は、隣り合う光線分岐素子の間を伝播する光線の光路上に配置され た導波素子が凹面ミラー 215〜218であることと、全ての凹面ミラー 215〜218がミラ 一アレイブロックとは別個の導波素子ブロック 220に一体形成されていることに特徴 がある。 FIG. 15 is a conceptual diagram of an optical multiplexer / demultiplexer according to the sixth embodiment of the present invention. The optical multiplexer / demultiplexer according to the present embodiment is disposed on the optical path of the light beam propagating between the adjacent light beam branching elements. The waveguide elements are concave mirrors 215 to 218, and all the concave mirrors 215 to 218 are integrally formed in a waveguide element block 220 that is separate from the mirror array block.
[0152] このような構成にすることにより、導波素子ブロック 220の位置を調整するだけで、 凹面ミラー 215〜218からの反射光線の角度を変化させ、すべてのチャネルの過剰 損失を低くするようなァライメントが可能である。この場合、凹面ミラー 215〜218に対 する入射光線の位置ずれ許容量が重要となる。凹面ミラー 215〜218はコリメート光 同士の相互変換 (すなわち、ビーム径をほぼ維持したまま波面の位相を反転させるこ と)が目的なので、結合素子 206〜210よりも集光パワーが小さい。したがって、凹面 ミラー 215〜218に対する入射光線の位置ずれが反射光線の角度ずれに及ぼす影 響、すなわち光軸ずれにともなう過剰損失を抑制できる。  [0152] With such a configuration, only by adjusting the position of the waveguide block 220, the angle of the reflected light from the concave mirrors 215 to 218 is changed, and the excess loss of all channels is reduced. Alignment is possible. In this case, the positional deviation tolerance of the incident light with respect to the concave mirrors 215 to 218 is important. The concave mirrors 215 to 218 have a light condensing power smaller than that of the coupling elements 206 to 210 because the purpose is to mutually convert collimated light (that is, to invert the phase of the wavefront while maintaining the beam diameter substantially). Therefore, it is possible to suppress the influence of the positional deviation of the incident light beam with respect to the concave mirrors 215 to 218 on the angular deviation of the reflected light beam, that is, the excessive loss due to the optical axis deviation.
[0153] 図 16は、この光合分波器における結合効率の導波素子ブロックシフト量依存性の 一例を示している。このグラフから分力るように、例えば導波素子ブロック 220の位置 が 10 m前後ずれても、過剰損失を ldB以内に抑制できる光学設計も可能となる。 このように、この光合分波器は、許容される過剰損失に対して、導波素子ブロック 220 のァライメント許容誤差がゆるぐ組み立てを容易化できるので、製造コストを低減で きる。  FIG. 16 shows an example of the dependence of the coupling efficiency on the waveguide element block shift amount in this optical multiplexer / demultiplexer. As shown in the graph, for example, even if the position of the waveguide block 220 is shifted by about 10 m, an optical design that can suppress excess loss within ldB is possible. As described above, this optical multiplexer / demultiplexer can facilitate the assembly in which the alignment tolerance of the waveguide element block 220 is loose with respect to the allowable excess loss, so that the manufacturing cost can be reduced.
[0154] 次に、この光合分波器を組み立てた後に、環境温度の変化などにより導波素子ブ ロック 220の角度が設計値力もずれた場合、凹面ミラー 215〜218と光線分岐素子 2 11〜214との間を多重反射する伝播光線の光軸に注目すると、凹面ミラー 215〜21 8は集光パワーをもっているため、図 17に示すように、伝播光線が凹面ミラー 215〜 218に入反射するたびに、伝播光軸の位置ずれおよび角度ずれが周期的に補正さ れる。したがって、光路長が伸びても伝播光軸の位置ずれや角度ずれが累積しない 。したがって、環境温度の変化に対する損失変動を抑制できる。  [0154] Next, after the optical multiplexer / demultiplexer is assembled, when the angle of the waveguide element block 220 also deviates from the design value due to a change in environmental temperature or the like, the concave mirrors 215 to 218 and the beam splitter elements 211 to Paying attention to the optical axis of the propagating light beam that is reflected multiple times with the 214, the concave mirrors 215 to 218 have a condensing power, so that the propagating light beam enters and reflects the concave mirrors 215 to 218 as shown in FIG. Every time, the positional deviation and angular deviation of the propagation optical axis are periodically corrected. Therefore, even if the optical path length is extended, the positional deviation or angular deviation of the propagation optical axis does not accumulate. Therefore, it is possible to suppress loss fluctuations with respect to changes in environmental temperature.
[0155] <第 7の実施例 >  [0155] <Seventh embodiment>
次に、本発明の第 7の実施例について説明する。本実施例に係る光合分波器は、 内部を光線が伝播する光学ブロックを不要とすることで、材料選択の自由度を高める と共に光損失を削減し、更に、ファイバ位置あわせ部材 (後述するフランジ固定面 31 6等)と光の集光を行う光学系(後述する結合素子ブロック 305)を一体化することで、 ファイバ位置あわせを容易化し、フィルタ (後述する光線分岐素子ブロック 303)と光 学系(後述する光導波ミラーブロック 304等)のァライメントにより低損失を実現でき、 その結果、小型化、低コストィ匕を図るものである。以下、図面に基づいて本実施例に ついて説明するが、この実施例は本発明を限定するものではない。なお、本実施例 における全ての図面において共通する部材、部分は同一の符号で示し、重複する説 明は省略する。 Next, a seventh embodiment of the present invention will be described. The optical multiplexer / demultiplexer according to the present embodiment eliminates the need for an optical block through which light propagates, thereby increasing the degree of freedom in material selection and reducing optical loss. Further, a fiber alignment member (a flange described later) Fixed surface 31 6) and an optical system that collects light (a coupling element block 305, which will be described later) are integrated to facilitate fiber alignment, and a filter (a beam splitter block 303, which will be described later) and an optical system (which will be described later). The low-loss can be realized by the alignment of the optical waveguide mirror block 304 and the like. As a result, the size and the cost can be reduced. Hereinafter, although a present Example is described based on drawing, this Example does not limit this invention. Note that members and portions that are common to all the drawings in the present embodiment are denoted by the same reference numerals, and redundant descriptions are omitted.
[0156] 図 18および図 19は、本発明の第 7の実施例に係る光合分波器の斜視外観図であ る。なお、図 18は、光合分波器の前方側力もの斜視図であり、図 19は、光合分波器 の後方側力もの斜視図である。  18 and 19 are perspective external views of the optical multiplexer / demultiplexer according to the seventh embodiment of the present invention. FIG. 18 is a perspective view of the front side force of the optical multiplexer / demultiplexer, and FIG. 19 is a perspective view of the rear side force of the optical multiplexer / demultiplexer.
本実施例に係る光合分波器は、 8つの波長の信号光を合波して波長多重光とした り、波長多重光を分波して 8つの波長の信号光としたりすることができる、 8チャネル 光合分波器の例である。  The optical multiplexer / demultiplexer according to the present embodiment can multiplex signal light of eight wavelengths into wavelength multiplexed light, or can demultiplex wavelength multiplexed light into signal light of eight wavelengths. This is an example of an 8-channel optical multiplexer / demultiplexer.
[0157] これらの図に示すように、本実施例に係る光合分波器は、光メインブロック 301と、 複数の光ファイバが固定されたファイバ固定ブロック 302と、複数の誘電体多層膜フ ィルタが固定された光線分岐素子ブロック 303と、光導波ミラーブロック 304とからな る。光導波ミラーブロック 304は導波素子ブロックに相当する。ここで、結合素子プロ ック 305と光メインブロック 301は一体に構成されている。  As shown in these drawings, the optical multiplexer / demultiplexer according to the present embodiment includes an optical main block 301, a fiber fixing block 302 to which a plurality of optical fibers are fixed, and a plurality of dielectric multilayer filters. Is composed of a light beam splitter block 303 and an optical waveguide mirror block 304. The optical waveguide mirror block 304 corresponds to a waveguide element block. Here, the coupling element block 305 and the optical main block 301 are integrally formed.
[0158] 図 20は光メインブロックの斜視概略図である。  FIG. 20 is a schematic perspective view of the optical main block.
光メインブロック 301は、平板状の底面 313と、底面 313の三方を囲うように、底面 3 13上に立設された結合素子ブロック 305および壁面 312とを有する。結合素子プロ ック 305の内側には、凹面ミラーや平面ミラー等力もなる複数の結合素子 317が形成 されたミラー面 311が形成され、ミラー面 311の両端にミラー面 311とほぼ垂直になる ように、二つの壁面 312が形成された構成となっている。二つの壁面 312には、それ ぞれの壁面 312の内側にミラー面 311と平行なフィルタブロック固定面 314を持つ段 差が形成されており、この段差に光線分岐素子ブロック 303が固定できるようになつ ている。  The optical main block 301 includes a flat bottom surface 313, and a coupling element block 305 and a wall surface 312 that are erected on the bottom surface 313 so as to surround three sides of the bottom surface 313. Inside the coupling element block 305, a mirror surface 311 is formed in which a plurality of coupling elements 317 having a concave mirror, a plane mirror and the like are formed, and both ends of the mirror surface 311 are almost perpendicular to the mirror surface 311. In addition, two wall surfaces 312 are formed. On the two wall surfaces 312, a step having a filter block fixing surface 314 parallel to the mirror surface 311 is formed inside each wall surface 312, and the beam splitter block 303 can be fixed to the step. It has been.
[0159] また、壁面 312において、ミラー面 311 (結合素子ブロック 305)とは反対側の終端 部付近には、壁面 312の上部にミラー面 311と平行な光導波ミラーブロック固定面 3 15を持つ切り欠きが形成されており、この切り欠きに光導波ミラーブロック 304が固定 できるようになって 、る。更に、底面 313と二つの壁面 312にお!/、て、ミラー面 311 ( 結合素子ブロック 305)と反対側の終端部には、光ファイバ固定ブロック 302を固定 するためのフランジ固定面 316が形成されている。 [0159] In addition, the end of the wall surface 312 opposite to the mirror surface 311 (coupling element block 305). A notch having an optical waveguide mirror block fixing surface 315 parallel to the mirror surface 311 is formed in the upper part of the wall surface 312 near the portion, and the optical waveguide mirror block 304 can be fixed to the notch. RU Furthermore, a flange fixing surface 316 for fixing the optical fiber fixing block 302 is formed on the end portion opposite to the mirror surface 311 (coupling element block 305) on the bottom surface 313 and the two wall surfaces 312! Has been.
[0160] ここで、壁面 312は、図 20中奥側(結合素子ブロック 305側)の高さが低ぐ手前側 [0160] Here, the wall surface 312 is on the near side (the coupling element block 305 side) in FIG.
(フランジ固定面 316側)の高さが高ぐ壁面 312を側面視した場合、略台形状の形 状となっており、光ファイバ固定ブロック 302に対して、光線分岐素子ブロック 303、 光導波ミラーブロック 304の配置位置を高くしている。また、結合素子 317は、後述す る光ファイバ固定ブロック 302のファイバ固定溝 321と同じ間隔、つまり、光ファイバ 3 23と同一間隔で 13個の結合素子 317がー列に並ぶように、ミラー面 311上に形成さ れたものである。  When the wall surface 312 having a high height (flange fixing surface 316 side) is viewed from the side, it has a substantially trapezoidal shape. The arrangement position of the block 304 is increased. In addition, the coupling element 317 has a mirror surface so that 13 coupling elements 317 are arranged in a row at the same interval as the fiber fixing groove 321 of the optical fiber fixing block 302 described later, that is, at the same interval as the optical fiber 323. It is formed on 311.
[0161] なお、光メインブロック 301上のフィルタブロック固定面 314および光導波ミラーブ口 ック固定面 315は、完全な平面である必要はなぐ図 21に示すような突起 318が形 成されていても良い。これら突起 318の頂点を結んだ面力 ミラー面 311に平行にな るように作られて 、れば、これら突起 318の頂点に光線分岐素子ブロック 303および 光導波ミラーブロック 304を押し当てることで、ミラー面 311と平行に位置合わせされ る。このような突起 318を用いれば、面全体の平面度を高精度にコントロールすること なぐそれぞれの突起 318の高さをコントロールするだけでよくなるため、光メインブロ ック 301の成型が容易になる。  [0161] Note that the filter block fixing surface 314 and the optical waveguide mirror block fixing surface 315 on the optical main block 301 do not need to be completely flat, and a projection 318 as shown in FIG. 21 is formed. Also good. If the surface force connecting the vertices of these projections 318 is made parallel to the mirror surface 311, the beam splitter block 303 and the optical waveguide mirror block 304 are pressed against the vertices of these projections 318, Aligned parallel to the mirror surface 311. If such a projection 318 is used, it is only necessary to control the height of each projection 318 without controlling the flatness of the entire surface with high accuracy, and thus the optical main block 301 can be easily molded.
[0162] 図 22は光ファイバ固定ブロック 302の概略図である。  FIG. 22 is a schematic view of the optical fiber fixing block 302.
光ファイバ固定ブロック 302は、直方体状のブロック 320の上面に複数のファイバ固 定溝 321が平行に形成されており、このファイバ固定溝 321と垂直な平面を持つフラ ンジ 322が形成されている。光ファイバ 323は、光ファイバ固定ブロック 302上面のフ アイバ固定溝 321にはめ込まれ、複数の光ファイバ 323が平行になるように固定され る。ファイバ固定溝 321の断面形状としては、 V字、 U字、台形等が挙げられる。この 光ファイバ固定ブロック 302のフランジ 322を、光メインブロック 301のフランジ固定面 316に接触させるように固定することで、光ファイバ 323の先端が光メインブロック 30 1に形成された結合素子 317と向き合う位置に固定され、光ファイバ 323の端面から 入出射する光力 光メインブロック 301に形成された結合素子 317と結合させられる。 In the optical fiber fixing block 302, a plurality of fiber fixing grooves 321 are formed in parallel on the upper surface of a rectangular parallelepiped block 320, and a flange 322 having a plane perpendicular to the fiber fixing groove 321 is formed. The optical fiber 323 is fitted into the fiber fixing groove 321 on the upper surface of the optical fiber fixing block 302, and is fixed so that the plurality of optical fibers 323 are parallel to each other. Examples of the cross-sectional shape of the fiber fixing groove 321 include a V shape, a U shape, and a trapezoid. By fixing the flange 322 of the optical fiber fixing block 302 so as to come into contact with the flange fixing surface 316 of the optical main block 301, the tip of the optical fiber 323 is fixed to the optical main block 30. It is fixed at a position facing the coupling element 317 formed in 1, and is coupled to the coupling element 317 formed in the optical main block 301 that enters and exits from the end face of the optical fiber 323.
[0163] 図 23は光線分岐素子ブロック 303の断面図である。  FIG. 23 is a cross-sectional view of the beam splitter block 303.
光線分岐素子ブロック 303は、光ファイバ固定ブロック 302のファイバ固定溝 321と 同じ間隔、つまり、光ファイバ 323と同一間隔で 9個の貫通孔 332がー列に並ぶよう に開けられた板状の基板 331のフィルタ搭載面 334に、これらの貫通孔 332のうち一 番端の 1つを除いた 8個の貫通孔 332を塞ぐように 8枚の誘電体多層膜フィルタ 333 が貼り付けられたものである。  The beam splitter block 303 is a plate-like substrate that has nine through holes 332 arranged in a row at the same interval as the fiber fixing groove 321 of the optical fiber fixing block 302, that is, at the same interval as the optical fiber 323. Eight dielectric multilayer filters 333 are affixed to the filter mounting surface 334 of 331 so as to block the eight through holes 332 except for one of the through holes 332. is there.
[0164] この光線分岐素子ブロック 303は、図 18 (図 20)の例では、フィルタ搭載面 334と反 対側の面 336が、光メインブロック 301の壁面 312の内側のフィルタブロック固定面 3 14に接触するようにして接着されている。そのため、光線分岐素子ブロック 303のフ ィルタ搭載面 334の反対面 336と誘電体多層膜フィルタ 333の表面とが平行になる ように誘電体多層膜フィルタ 333を貼り付けておけば、光メインブロック 301のフィル タブロック固定面 314とミラー面 311は平行に作られているため、光メインブロック 30 1のフィルタブロック固定面 314に波長選択ブロック 3を押し付けて固定するだけで、 複雑な角度調整をすることなく誘電体多層膜フィルタ 333の表面とミラー面 311が平 行になるように取り付けられ、組み立て手順が簡略ィ匕できる。  In the example of FIG. 18 (FIG. 20), this beam splitter block 303 has a filter mounting surface 334 opposite to the filter mounting surface 334 and the filter block fixing surface 3 14 inside the wall surface 312 of the optical main block 301. It is adhered so as to come into contact with. Therefore, if the dielectric multilayer filter 333 is pasted so that the surface 336 opposite to the filter mounting surface 334 of the beam splitter block 303 and the surface of the dielectric multilayer filter 333 are parallel, the optical main block 301 Since the filter block fixing surface 314 and the mirror surface 311 are made parallel to each other, simply adjusting the wavelength selection block 3 to the filter block fixing surface 314 of the optical main block 30 1 and fixing it makes a complicated angle adjustment. Therefore, the surface of the dielectric multilayer filter 333 and the mirror surface 311 can be mounted in parallel to simplify the assembly procedure.
[0165] なお、光線分岐素子ブロック 303は、図 24に示すように、貫通孔の開いていない板 状の透明基板 335に、一列に 8枚の誘電体多層膜フィルタ 333が貼り付けられてい る構成でも良い。この場合、透明基板 335のフィルタ搭載面 334と反対の面 336に、 無反射コート層を形成して、反射防止加工を行い、反射損失や迷光の発生を防ぐこ とが望ましい。貫通孔の開いていない基板を用いることで、誘電体多層膜フィルタ 33 3の接着面積を大きくすることができ、接着強度を上げられると共に、透明基板 335と 誘電体多層膜フィルタ 333間の間隙によって生じる干渉縞を観察しながら接着するこ とで、透明基板 335と誘電体多層膜フィルタ 333との平行度を高 、精度で確保しな 力 接着することが可能である。  In addition, as shown in FIG. 24, in the beam branching element block 303, eight dielectric multilayer filters 333 are attached in a row to a plate-like transparent substrate 335 having no through-holes. It may be configured. In this case, it is desirable to form a non-reflective coating layer on the surface 336 opposite to the filter mounting surface 334 of the transparent substrate 335 to prevent reflection and to prevent the generation of reflection loss and stray light. By using a substrate with no through-holes, the adhesion area of the dielectric multilayer filter 333 can be increased, the adhesion strength can be increased, and the gap between the transparent substrate 335 and the dielectric multilayer filter 333 can be increased. By adhering while observing the generated interference fringes, it is possible to bond the transparent substrate 335 and the dielectric multilayer filter 333 with a high degree of accuracy and a high degree of parallelism.
[0166] 図 25は光導波ミラーブロック 304の概略図である。  FIG. 25 is a schematic diagram of the optical waveguide mirror block 304.
光導波ミラーブロック 304は、板状の部材 341の導波ミラー形成面 342に、光フアイ バ固定ブロックのファイバ固定溝 321と同じ間隔、つまり、光ファイバ 323と同一間隔 で 8個の凹面ミラー 343が形成されたものである。この光導波ミラーブロック 304は、 光メインブロック 301の切り欠き部に形成された導波ミラーブロック固定面 315と導波 ミラー形成面 342が接触するように取り付けられる。即ち、光導波ブロック固定面 315 と導波ミラー形成面 342は平行になるよう搭載される。更に、光メインブロック 301の 光導波ブロック固定面 315は、光メインブロック 301のミラー面 311と平行になるよう に作られているため、光導波ミラーブロック 304を光メインブロック 301の導波ミラーブ ロック固定面 315に押し付けて固定するだけで、複雑な角度調整をすること無しに導 波ミラー形成面 342が光メインブロック 301のミラー面 311と平行になるように取り付 けられ、組み立て手順が簡略ィ匕できる。 The optical waveguide mirror block 304 has an optical fiber on the waveguide mirror forming surface 342 of the plate-like member 341. The eight concave mirrors 343 are formed at the same interval as the fiber fixing groove 321 of the bar fixing block, that is, at the same interval as the optical fiber 323. The optical waveguide mirror block 304 is attached such that the waveguide mirror block fixing surface 315 and the waveguide mirror forming surface 342 formed in the cutout portion of the optical main block 301 are in contact with each other. That is, the optical waveguide block fixing surface 315 and the waveguide mirror forming surface 342 are mounted in parallel. Further, since the optical waveguide block fixing surface 315 of the optical main block 301 is formed to be parallel to the mirror surface 311 of the optical main block 301, the optical waveguide mirror block 304 is connected to the waveguide mirror block of the optical main block 301. By simply pressing and fixing to the fixed surface 315, the waveguide mirror forming surface 342 can be mounted so as to be parallel to the mirror surface 311 of the optical main block 301 without complicated angle adjustment, simplifying the assembly procedure. I can do it.
[0167] 次に、本実施例に力かる光合分波器を光分波器として用いる場合の動作について 説明する。 [0167] Next, the operation when the optical multiplexer / demultiplexer that is helpful in the present embodiment is used as an optical demultiplexer will be described.
[0168] 図 26は、本実施例に力かる光合分波器の概略内部構造図であり、内部における光 路を図示してある。なお、結合素子 317— 1〜317— 9は凹面ミラーにより形成するこ とがでさる。  [0168] FIG. 26 is a schematic internal structural diagram of an optical multiplexer / demultiplexer that is useful in the present embodiment, and illustrates an optical path inside. The coupling elements 317-1 to 317-9 can be formed by concave mirrors.
同図に示すように、入力光ファイバ 323— 1端面から出射された拡散光は、光メイン ブロック 301に形成されたコモン結合素子 317 - 1で反射されることによって平行光 線または平行に近い光線に変換され、光導波ミラーブロック 304の方向へ折り返され る。折り返された光線は、光線分岐素子ブロック 303の貫通孔 332を通り、光導波ミラ 一ブロック 304の第 1の凹面ミラー 343— 1によって反射され、第 1の誘電体多層膜フ ィルタ 333— 1に入射する。  As shown in the figure, the diffused light emitted from the end face of the input optical fiber 323-1 is reflected by the common coupling element 317-1 formed in the optical main block 301, thereby being a parallel light beam or a light beam that is nearly parallel. And is folded back in the direction of the optical waveguide mirror block 304. The folded light beam passes through the through-hole 332 of the beam splitter block 303, is reflected by the first concave mirror 343-1 of the optical waveguide mirror block 304, and is reflected on the first dielectric multilayer filter 333-1. Incident.
[0169] 第 1の誘電体多層膜フィルタ 333— 1を透過した光は、チャネル 1結合素子 317— 2 により第 1の出力ファイバ 23— 2に集光され、出力される。第 1の誘電体多層膜フィル タ 333— 1により反射された光は、再び光導波ミラーブロック 304の第 2の凹面ミラー 3 43— 2によって反射され、第 2の誘電体多層膜フィルタ 333— 2に入射される。第 2の 誘電体多層膜フィルタ 333— 2を透過した光は、チャネル 2結合素子 317— 3により 第 2の出力ファイバ 23— 3に集光され出力される。第 2の誘電体多層膜フィルタ 333 2により反射された光は、再び光導波ミラーブロックの凹面ミラー 343— 3によって 反射され、第 3の誘電体多層膜フィルタ 333— 3に入射される。以降同様に、第 3、第 4· · ·の誘電体多層膜フィルタ 333— 3、 333-4· · 'へ順次入射を繰り返すことにより 、波長多重光の分波が行われる。 The light transmitted through the first dielectric multilayer filter 333-1 is collected by the channel 1 coupling element 317-2 onto the first output fiber 23-2 and output. The light reflected by the first dielectric multilayer filter 333-1 is again reflected by the second concave mirror 3 43-2 of the optical waveguide mirror block 304, and the second dielectric multilayer filter 333-2 Is incident on. The light transmitted through the second dielectric multilayer filter 333-2 is condensed and output to the second output fiber 23-3 by the channel 2 coupling element 317-3. The light reflected by the second dielectric multilayer filter 333 2 is again reflected by the concave mirror 343-3 of the optical waveguide mirror block. The light is reflected and incident on the third dielectric multilayer filter 333-3. In the same manner, wavelength division multiplexed light is demultiplexed by sequentially repeating the incidence on the third, fourth,... Dielectric multilayer filters 333-3, 333-4,.
[0170] 光メインブロック 301の結合素子 317を、光ファイバ 323から結合素子 317までの距 離のおおむね 2倍の曲率半径を有する曲面とした場合、光ファイバ 323から出射し、 結合素子 317によって反射された光は、ほぼ平行な光線となり空間を伝播する。この 場合、光メインブロック 301の結合素子 317と光導波ミラーブロック 304の凹面ミラー 3 43とが共焦点系を形成するように、それぞれの曲率を調整し、ビームウェストの位置 に誘電体多層膜フィルタ 333のフィルタ面が来るようにしておけば、全ての誘電体多 層膜フィルタ 333上での光線のビームスポット径が揃うと同時に、すべての出射光フ アイバ 323— 2〜323— 9端面でのビームスポット径が揃うため、全ての出力光フアイ バ323— 2〜323— 9に最適に結合する光学系が実現でき、光損失を削減できる。  [0170] When the coupling element 317 of the optical main block 301 is a curved surface having a radius of curvature approximately twice as long as the distance from the optical fiber 323 to the coupling element 317, it is emitted from the optical fiber 323 and reflected by the coupling element 317. The emitted light becomes a substantially parallel light beam and propagates in space. In this case, the respective curvatures are adjusted so that the coupling element 317 of the optical main block 301 and the concave mirror 343 of the optical waveguide mirror block 304 form a confocal system, and the dielectric multilayer film filter is positioned at the beam waist. If the 333 filter faces are provided, the beam spot diameters of the light beams on all the dielectric multilayer filter 333 are aligned, and at the same time, all of the outgoing light fibers 323-2 to 323-9 are end faces. Since the beam spot diameters are uniform, an optical system optimally coupled to all the output optical fibers 322-2 to 323-9 can be realized, and light loss can be reduced.
[0171] なお、上記光合分波器内部の光路を側面視した場合(図 26中、壁面 312側から光 合分波器内部を見た場合)、例えば、分波器として機能させるときには、出射光フアイ バ 323— 1から出射した光は、コモン結合素子 317— 1によって、所定角度で上方側 へ反射されて、光ファイバ固定ブロック 302の上方側に配置された光線分岐素子ブ ロック 303の貫通孔 332を通過して、光ファイバ固定ブロック 302の上方側に配置さ れた光導波ミラーブロック 304の凹面ミラー 343— 1に入射される。そして、結合素子 343— 1に入射した光は、凹面ミラー 343— 1によって、所定角度で下方側へ反射さ れて、光線分岐素子ブロック 303の第 1の誘電体多層膜フィルタ 333— 1へ入射され 、更に、第 1の誘電体多層膜フィルタ 333— 1を透過した光力 光メインブロック 301 のチャネル 1結合素子 317— 2に入射された後、結合素子 317— 2によって、反射集 光されて、出力光ファイバ 323— 2から出力される。第 1の誘電体多層膜フィルタ 333 —1により反射された光は、再び光導波ミラーブロック 304の第 2の凹面ミラー 343— 2によって反射され、第 2の誘電体多層膜フィルタ 333— 2に入射される。第 2の誘電 体多層膜フィルタ 333— 2を透過した光は、チャネル 2結合素子 317— 3により第 2の 出力ファイバ 23— 3に集光され出力される。以降同様な入射、反射等を順次繰り返 すことにより、波長多重光の分波が行われる。 [0172] 本実施例による光合分波器の組み立て手順を以下詳細に説明する。 まず、光ファイバ固定ブロック 302の複数のファイバ固定溝 321に、光ファイバ 323 を接着固定する。接着固定を行う際には、光ファイバ 323の先端を壁面に突き当てる 等の手法により、全ての光ファイバ 323の先端が同じだけ光ファイバ固定ブロック 30 2の先端力も突き出すように揃えて力も接着を行い、光ファイバ 323を光ファイバ固定 ブロック 302に接着固定後、光ファイバ固定ブロック 302の先端を研磨することで、全 ての光ファイバ 323の先端位置が揃うようにしても良い。つまり、光ファイバ 323の端 面力 光ファイバ 323の光軸に垂直、かつ、同一平面上に配置されることになる。な お、光ファイバ 323の先端は、反射損失を減らすために無反射コートをしておくことが 望ましい。 [0171] When the optical path inside the optical multiplexer / demultiplexer is viewed from the side (in FIG. 26, when the inside of the optical multiplexer / demultiplexer is viewed from the wall surface 312 side), for example, when functioning as a demultiplexer, The light emitted from the emission fiber 323-1 is reflected upward at a predetermined angle by the common coupling element 317-1 and passes through the beam branching element block 303 disposed above the optical fiber fixing block 302. The light passes through the hole 332 and is incident on the concave mirror 343-1 of the optical waveguide mirror block 304 disposed above the optical fiber fixing block 302. Then, the light incident on the coupling element 343-1 is reflected downward at a predetermined angle by the concave mirror 343-1 and incident on the first dielectric multilayer filter 333-1 of the beam splitter block 303. Further, the optical power transmitted through the first dielectric multilayer filter 333-1 is incident on the channel 1 coupling element 317-2 of the optical main block 301, and then reflected and collected by the coupling element 317-2. , Output from optical fiber 323-2. The light reflected by the first dielectric multilayer filter 333-1 is reflected again by the second concave mirror 343-2 of the optical waveguide mirror block 304 and is incident on the second dielectric multilayer filter 333-2. Is done. The light transmitted through the second dielectric multilayer filter 333-2 is condensed and output to the second output fiber 23-3 by the channel 2 coupling element 317-3. Thereafter, wavelength multiplexing light is demultiplexed by sequentially repeating the same incident and reflection. [0172] The procedure for assembling the optical multiplexer / demultiplexer according to the present embodiment will be described in detail below. First, the optical fiber 323 is bonded and fixed to the plurality of fiber fixing grooves 321 of the optical fiber fixing block 302. When bonding and fixing, use a technique such as abutting the tip of the optical fiber 323 against the wall surface. After the optical fiber 323 is bonded and fixed to the optical fiber fixing block 302, the tips of the optical fiber fixing blocks 302 may be polished so that the tip positions of all the optical fibers 323 are aligned. That is, the end surface force of the optical fiber 323 is arranged perpendicular to the optical axis of the optical fiber 323 and on the same plane. In addition, it is desirable that the tip of the optical fiber 323 has an anti-reflection coating to reduce reflection loss.
[0173] 次に、光ファイバ 323が固定された光ファイバ固定ブロック 302のフランジ 322を、 光メインブロック 301のフランジ固定面 316上でずらすように調芯を行い、光ファイバ 固定ブロック 302と光メインブロック 301の位置あわせを行った後、接着固定を行う。 位置あわせは、まず、光メインブロック 301の平面ミラーからなる平面ミラー 317— 10 と平面ミラー用ファイバ 323— 10を用いて、光メインブロック 301と光ファイバ固定ブ ロック 302の角度を調整すること力も始める。平面ミラー 317— 10は、光ファイバ 323 の光軸の設計値と垂直になるように作られているため、平面ミラー用ファイバ 323— 1 0から出射された光が平面ミラー 317— 10によって反射され、再び平面ミラー用ファ ィバ 323— 10に戻ってくる光量は、光ファイバ固定ブロック 302が設計どおりの角度 になるよう角度が調整された場合に最も多くなる。このため、平面ミラー用ファイバ 32 3— 10から光を入射し戻ってくる光をモニタすることで、光ファイバ固定ブロック 302 が所定の角度に取り付けられているかどうか確認できる。  Next, alignment is performed so that the flange 322 of the optical fiber fixing block 302 to which the optical fiber 323 is fixed is shifted on the flange fixing surface 316 of the optical main block 301, and the optical fiber fixing block 302 and the optical main After the alignment of the block 301, the adhesive fixing is performed. For alignment, the force to adjust the angle between the optical main block 301 and the optical fiber fixing block 302 using the plane mirror 317-10 consisting of the plane mirror of the optical main block 301 and the plane mirror fiber 323-10 is also included. start. Since the plane mirror 317-10 is made perpendicular to the optical axis design value of the optical fiber 323, the light emitted from the plane mirror fiber 323-10 is reflected by the plane mirror 317-10. The amount of light returning to the plane mirror fiber 323-10 again becomes the largest when the angle is adjusted so that the optical fiber fixing block 302 has an angle as designed. For this reason, it is possible to check whether the optical fiber fixing block 302 is attached at a predetermined angle by monitoring the light incident and returning from the plane mirror fiber 32 3-10.
[0174] 光ファイバ固定ブロック 302の角度の調整の後は、位置の調整を行う。光メインブロ ック 301の両端の位置合わせミラー 317— 11、317— 12は、位置あわせ用光フアイ バ 323— 11、 323— 12の端面となる位置に中心を持つ球面(光ファイバから凹面ミラ 一までの距離とほぼ等しい半径を有する球面)からなる凹面ミラーとなっている。その ため、位置あわせ用光ファイバ 323— 11、 323— 12から出射された光が位置あわせ 用ミラー 317— 11、 317— 12によって反射され、再び同じファイバ端面に戻ってくる 光量は、位置あわせ用光ファイバ 323— 11、 323— 12の端面が位置あわせ用ミラー 317- 11、 317— 12の中心にあった場合に最も多くなる。この位置あわせミラー 317 — 11、 317— 12がミラー面 311の両端に設けられているので、二つの位置あわせ用 光ファイバ 323— 11、 323— 12から光を入射し、戻ってくる光をモニタすることで光フ アイバ固定ブロック 302を設計どおりの位置に調整することができる。 [0174] After adjusting the angle of the optical fiber fixing block 302, the position is adjusted. The alignment mirrors 317-11 and 317-12 at both ends of the optical main block 301 are spherical surfaces (from the optical fiber to the concave mirror) that are centered at the positions to be the end surfaces of the alignment optical fibers 323-11 and 323-12. A concave mirror composed of a spherical surface having a radius substantially equal to the distance up to. Therefore, the light emitted from the alignment optical fibers 323-11 and 323-12 is reflected by the alignment mirrors 317-11 and 317-12 and returns to the same fiber end face again. The amount of light is greatest when the end faces of the alignment optical fibers 323-11 and 323-12 are in the center of the alignment mirrors 317-11 and 317-12. Since these alignment mirrors 317-11 and 317-12 are provided at both ends of the mirror surface 311, light is incident from the two alignment optical fibers 323-11 and 323-12 and the returned light is monitored. By doing so, the optical fiber fixing block 302 can be adjusted to the position as designed.
[0175] このように、角度と位置が調整された光メインブロック 301と光ファイバ固定ブロック 3 02を接着固定する。 In this way, the optical main block 301 and the optical fiber fixing block 302 having the adjusted angle and position are bonded and fixed.
[0176] 次に、光線分岐素子ブロック 303を光メインブロック 301に固定する。前述のように 、光メインブロック 301にはミラー面 311と平行なフィルタブロック固定面 314が形成さ れており、光線分岐素子ブロック 303をフィルタブロック固定面 314に押し付けながら 固定することで、誘電体多層膜フィルタ 333は機械的に所定の角度に固定されるよう になって!/、る。光線のビーム径に比べ誘電体多層膜フィルタ 333の面積が十分に大 きければ、光線分岐素子ブロック 303の位置あわせの精度が要求されないため、光 線分岐素子ブロック 303の位置あわせは、光メインブロック 301のフィルタブロック固 定面 314の段差の角に機械的に突き当てる等の手法で十分な位置あわせが可能で ある。  Next, the beam splitter block 303 is fixed to the optical main block 301. As described above, the optical main block 301 is formed with the filter block fixing surface 314 parallel to the mirror surface 311, and the light branching element block 303 is pressed against the filter block fixing surface 314 to fix it. The multilayer filter 333 is mechanically fixed at a predetermined angle! /. If the area of the dielectric multilayer filter 333 is sufficiently large compared to the beam diameter of the beam, the alignment accuracy of the beam splitter block 303 is not required. Therefore, the alignment of the beam splitter block 303 is adjusted to the optical main block. Adequate alignment is possible by using a method such as mechanical contact with the corner of the step of the filter block fixing surface 314 of 301.
[0177] 光線分岐素子ブロック 303の固定後に、光導波ミラーブロック 304を光メインブロッ ク 301に固定する。ここでも前述のように、光メインブロック 301に導波ミラーブロック 固定面 315が形成されているため、この面に光導波ミラーブロック 304を押し付けるこ とで光メインブロック 301と光導波ミラーブロック 304が所定の角度になるよう調整され る。  After fixing the beam splitter block 303, the optical waveguide mirror block 304 is fixed to the optical main block 301. Also here, as described above, since the waveguide mirror block fixing surface 315 is formed on the optical main block 301, the optical main block 301 and the optical waveguide mirror block 304 are formed by pressing the optical waveguide mirror block 304 against this surface. It is adjusted to a predetermined angle.
[0178] 本実施例では、光メインブロック 301と光導波ミラーブロック 304が正しく所定の角 度で取り付けられている力確認するため、光メインブロック 301の結合素子 317のうち のひとつとして、光導波ブロック角度調整ミラー 317— 13が形成されている。光導波 ミラーブロック角度調整用ファイバ 323— 13から出射した光は、光導波ミラーブロック 角度調整ミラー 317— 13によって反射され、光導波ミラーブロック 304の導波ミラー 形成面 342に垂直な平行光線に変換される。この平行光線は光導波ミラーブロック 3 04の導波ミラー形成面 342に形成された平面ミラー 344によって反射され、再び光 導波ミラーブロック角度調整ミラー 317 13で反射、集光され光導波ミラーブロック 角度調整用ファイバ 323— 13に戻る。この光導波ミラーブロック角度調整用ファイバ 323— 13に戻ってくる戻り光は、光導波ミラーブロック 304が所定の角度に取り付け られていた場合に最も多くなるため、この戻り光の強度をモニタすることで、光導波ミ ラーブロック 304が所定の角度に取り付けられているかどうか確認することができる。 In this embodiment, in order to confirm the force with which the optical main block 301 and the optical waveguide mirror block 304 are correctly attached at a predetermined angle, as one of the coupling elements 317 of the optical main block 301, the optical waveguide Block angle adjusting mirrors 317-13 are formed. Light emitted from the optical waveguide mirror block angle adjusting fiber 323-13 is reflected by the optical waveguide mirror block angle adjusting mirror 317-13 and converted into parallel rays perpendicular to the waveguide mirror forming surface 342 of the optical waveguide mirror block 304. Is done. This parallel light beam is reflected by the plane mirror 344 formed on the waveguide mirror forming surface 342 of the optical waveguide mirror block 304, and light is again emitted. The light is reflected and collected by the waveguide mirror block angle adjusting mirror 317 13 and returned to the optical waveguide mirror block angle adjusting fiber 323-13. The return light returning to the optical waveguide mirror block angle adjusting fiber 323-13 is the largest when the optical waveguide mirror block 304 is mounted at a predetermined angle, so monitor the intensity of this return light. Thus, it is possible to confirm whether or not the optical waveguide mirror block 304 is attached at a predetermined angle.
[0179] 光導波ミラーブロック 304の角度調整後、入力光ファイバ 323— 1より光を入射し、 それぞれの出力光ファイバ 323— 2〜323— 9からの出力光が最も大きくなるよう光 導波ミラーブロック 304の位置を調整し、固定する。光メインブロック 301に平面ミラー 317—10、位置あわせミラー 317— 11、317— 12、光導波ミラーブロック角度調整 用ミラー 317— 13を設けることで、以上の手順により、光メインブロック 301、光フアイ バ固定ブロック 302、光線分岐素子ブロック 303および光導波ミラーブロック 304が、 正し ヽ角度と位置で固定することができるようになる。  [0179] After adjusting the angle of the optical waveguide mirror block 304, the light is incident from the input optical fiber 323-1, so that the output light from each of the output optical fibers 323-2 to 323-9 is maximized. Adjust and fix the position of block 304. By providing the optical main block 301 with the plane mirror 317-10, the alignment mirrors 317-11 and 317-12, and the optical waveguide mirror block angle adjusting mirror 317-13, the optical main block 301 and the optical fiber The bar fixing block 302, the beam splitter block 303, and the optical waveguide mirror block 304 can be fixed at the correct angle and position.
[0180] なお、本実施例に力かる光合分波器は、光の入出力を上述する説明とは逆方向と して、各出力光ファイノからそれぞれの誘電体多層膜の透過スペクトルに対応する 波長の信号を入力することにより、入力光ファイバから波長多重光として出射すること ができ、光合波器としての利用も可能である。  Note that the optical multiplexer / demultiplexer according to the present embodiment corresponds to the transmission spectrum of each dielectric multilayer film from each output optical fino, with the input / output of light being in the direction opposite to that described above. By inputting a wavelength signal, it can be emitted from the input optical fiber as wavelength multiplexed light, and can also be used as an optical multiplexer.
[0181] 本実施例では、受発光素子として光ファイバ 323を例示したが、受発光素子として は、その他に、レーザダイオード、フォトダイオード、また、光ファイノく、レーザダイォ ード、フォトダイオード等と光学レンズ系とが組み合わされた部品、即ち、先球フアイ ノ 、ファイバコリメータ、送信系光サブアセンブリ(TOSA)、受信系光サブアセンブリ (ROSA)等の光パッケージ部品等が挙げられる。  [0181] In this embodiment, the optical fiber 323 is exemplified as the light emitting / receiving element. However, as the light emitting / receiving element, a laser diode, a photodiode, an optical fiber, a laser diode, a photodiode, and the like can be used. Examples include parts combined with a lens system, that is, optical package parts such as a tip spherical fiber, a fiber collimator, a transmission system optical subassembly (TOSA), and a reception system optical subassembly (ROSA).
[0182] また、これらを位置決めするための受発光素子固定構造についても、 V溝、 U溝や 凹溝をはじめ、これ以外の構造でも構わない。そして、例えば、受発光素子として光 ファイバ 323を用いる場合には、光ファイバ 323の端面が同一平面上に配置されるよ うに、また、受発光素子としてフォトダイオードを用いる場合には、フォトダイオードの 受発光点が同一平面上に配置されるように、 V溝等を用いて位置決めする。  [0182] Also, the light receiving and emitting element fixing structure for positioning them may be other structures such as a V-groove, U-groove and concave groove. For example, when the optical fiber 323 is used as the light emitting / receiving element, the end face of the optical fiber 323 is arranged on the same plane, and when the photodiode is used as the light emitting / receiving element, Use a V-groove to position the light emitting and receiving points on the same plane.
[0183] また、結合素子 317とは、入射光線を反射させると共に平行光にする、または、集 光させる素子のことをいう。 [0184] また、光線分岐素子として誘電体多層膜フィルタ 333を例示した力 この光線分岐 素子とは、入射光線のうち、特定の波長域の光線を透過させ、それ以外の波長域の 光線を反射させる素子である。特定の波長域を固定して利用する場合の光線分岐素 子の具体例としては、誘電体多層膜を利用したバンドパスフィルタ、エッジフィルタ、 また、波長オーダーの微細格子構造が表面に形成された共振モードフィルタ等が考 えられる。また、透過させる波長域は、外部からの制御により、各光線分岐素子につ いて独立に変化させることも可能であり、その場合は電気光学効果または熱光学効 果を利用した波長可変フィルタ、 MEMS技術を利用したエタロンフィルタ等が考えら れる。当然、光線を透過する波長域が、入射光線全ての波長域を含んでいる場合も 考えられる。その場合は、光線分岐素子は光学的な透過窓に相当する。逆に、入射 光線の全ての波長域を透過させな!/、光線分岐素子は、平面状の反射面と同等の機 能を有する。 [0183] The coupling element 317 refers to an element that reflects incident light and collimates or collects light. [0184] Moreover, the force that exemplifies the dielectric multilayer filter 333 as a light beam splitting element. This light beam splitting element transmits a light beam in a specific wavelength region among incident light beams, and reflects a light beam in other wavelength regions. It is an element to be made. Specific examples of the light branching element when using a specific wavelength range fixedly include a bandpass filter using a dielectric multilayer film, an edge filter, and a wavelength-order fine lattice structure formed on the surface. A resonance mode filter is considered. In addition, the wavelength range to be transmitted can be changed independently for each beam splitter by external control. In that case, a wavelength tunable filter using the electro-optic effect or the thermo-optic effect, MEMS An etalon filter using technology can be considered. Of course, it is also conceivable that the wavelength range that transmits the light beam includes the entire wavelength range of the incident light beam. In that case, the beam splitter corresponds to an optical transmission window. Conversely, the entire wavelength range of the incident light beam is not transmitted! /, And the light beam splitting element has the same function as a flat reflecting surface.
[0185] 本実施例では、光ファイバ 323等の受発光素子力も入射された光は空間を伝播し 、光メインブロック 301に形成された結合素子 317— 1〜317— 9により反射され、再 び空間を伝播した後、光導波ミラーブロック 304上に形成された凹面ミラー 343等の 導波素子により反射される。この反射光は、光導波ミラーブロック 304上に形成された 導波素子と、誘電体多層膜フィルタ 333等の光線分岐素子との間で反射を繰り返す ことにより、分波あるいは合波が行われる。  In this embodiment, the light that has also received the light receiving and emitting element force such as the optical fiber 323 propagates through the space, is reflected by the coupling elements 317-1 to 317-9 formed in the optical main block 301, and again. After propagating through the space, the light is reflected by a waveguide element such as a concave mirror 343 formed on the optical waveguide mirror block 304. The reflected light is demultiplexed or multiplexed by being repeatedly reflected between the waveguide element formed on the optical waveguide mirror block 304 and the beam branching element such as the dielectric multilayer filter 333.
[0186] このように、受発光素子から入射された光はすべて空間中を伝播する構成となって いるため、結合素子ブロック 305と光導波ミラーブロック 304を形成する材料として、 光学透明な材質を利用する必要はなぐ光学的に不透明でも、安価で機械的強度 や熱特性に優れる材料を利用できる。また、受発光素子から出射される拡散光は、レ ンズではなく結合素子 317— 1〜317— 9により集光され、空間を導波するのに適し た光ビームに変換される。また、光導波ミラーブロック 304上に形成された導波素子と 、誘電体多層膜フィルタ 333等の光線分岐素子との間で反射を繰り返すことにより合 波'分波が行われた光ビームは、光メインブロック 301上に形成された結合素子 317 —1〜317— 9により受発光素子に集光されるため、効率よく受発光素子に結合させ て、光合分波器力 出力することができる。 [0187] 更に、光ファイバ固定ブロック 302等の受発光素子固定ブロックには複数の受発光 素子が固定されており、光合分波器の組み立てを行う際には受発光素子固定ブロッ クの位置を調整し、光メインブロック 301に固定するだけで、個々の受発光素子を個 別に調整することなぐ複数の受発光素子の結合素子に対する位置合わせを行うこと ができるため、両者の位置合わせ作業が容易になる。また、光メインブロック 301と光 導波ミラーブロック 304が独立したブロックとなっているため、組み立ての際に結合素 子ブロック上に形成されている結合素子と光導波ミラーブロック 304上に搭載されて いる導波素子の角度や位置を損失の少ない最適な位置に調整することが可能であり 、光損失の低減を図れる。 As described above, since all the light incident from the light receiving and emitting elements propagates in the space, an optically transparent material is used as a material for forming the coupling element block 305 and the optical waveguide mirror block 304. Even if it is optically opaque, it is possible to use inexpensive materials with excellent mechanical strength and thermal properties. Further, the diffused light emitted from the light emitting / receiving element is collected by the coupling elements 317-1 to 317-9, not the lens, and converted into a light beam suitable for wave guiding. In addition, a light beam that has been multiplexed and demultiplexed by repeating reflection between a waveguide element formed on the optical waveguide mirror block 304 and a beam branching element such as a dielectric multilayer filter 333 is Since the light is collected on the light receiving / emitting element by the coupling elements 317-1 to 317-9 formed on the optical main block 301, it can be efficiently coupled to the light receiving / emitting element to output the optical multiplexer / demultiplexer force. [0187] Further, a plurality of light emitting / receiving elements are fixed to the light receiving / emitting element fixing block such as the optical fiber fixing block 302, and the position of the light receiving / emitting element fixing block is determined when the optical multiplexer / demultiplexer is assembled. By simply adjusting and fixing to the light main block 301, it is possible to align multiple light emitting / receiving elements to the coupling element without adjusting each light emitting / receiving element individually, making it easy to align both become. In addition, since the optical main block 301 and the optical waveguide mirror block 304 are independent blocks, they are mounted on the coupling element formed on the coupling element block and the optical waveguide mirror block 304 during assembly. It is possible to adjust the angle and position of the waveguide element to an optimum position with little loss, and light loss can be reduced.
[0188] また、本実施例では、結合素子 317— 1〜317— 9として、受発光素子から結合素 子までの距離の約 2倍の半径を有する球面力もなる凹面ミラーを用いることができる。 この場合、光入出力用の受発光素子から出射された光は、凹面ミラーによって、多少 の球面収差は発生するものの、平行光線に近 、光線に変換されて光線分岐素子に 入射する。光線分岐素子によって合波ある 、は分波された平行光線に近 、光線は、 他の凹面ミラーにより集光されて、光出力用の受発光素子力 出力される。凹面ミラ 一の曲率半径は、受発光素子の光入出射点力 結合素子までの距離の約 2倍が良 ぐ理想的には受発光素子力 の光を反射した光ビームのビームウェストが光線分岐 素子上に形成されるような半径にすることが望ま 、。  In this embodiment, as the coupling elements 317-1 to 317-9, concave mirrors having a spherical force having a radius of about twice the distance from the light emitting / receiving element to the coupling element can be used. In this case, the light emitted from the light emitting / receiving element for light input / output is converted into a light beam by the concave mirror, but is converted into a light beam and enters the light beam branching element, although some spherical aberration occurs. When the light beam is combined by the light beam splitting element, it is close to the parallel light beam that has been split, and the light beam is collected by another concave mirror and output to the light emitting / receiving element force for light output. The radius of curvature of the concave mirror should be approximately twice the distance to the light incident / exit point force coupling element of the light receiving / emitting element. Ideally, the beam waist of the light beam reflecting the light of the light receiving / emitting element force splits the beam. It is desirable to make the radius as formed on the element.
[0189] また、本実施例では、結合素子 317— 1〜317— 9として、受発光素子の付近に焦 点を有するパラボリック曲面力もなる凹面ミラーを用いることができる。この場合、光入 出力用の受発光素子力 出射された光は、凹面ミラーにより平行光線に変換されて、 光線分岐素子に入射する。この平行光線は、光線分岐素子が最も良好に波長選択 することができる光線である。光線分岐素子により合波あるいは分波された平行光線 は、他の凹面ミラーにより集光されて、光出力用の受発光素子力も出力される。また、 受発光素子から出射され結合素子により変換された平行光線は、光導波ミラーブロッ ク 304上に形成された平面ミラー 344に反射された後、当該結合素子により再び当 該受発光素子に集光され出力されるようにしても良い。このような構成とすれば、光 導波ミラーブロック 304が所定の取り付け角度と異なって取り付けられていた場合、 光導波ミラーブロック 304の平面ミラー 344によって反射された光は、結合素子によ つて受発光素子の受光点と異なる点に集光される。このため、受発光素子からの出 力光を観察することにより、光導波ミラーブロック 304が所定の取り付け角度に取り付 けられているかを確認できるため、高い角度精度で光導波ミラーブロック 304が光メイ ンブロック 301に固定できる。 In this embodiment, as the coupling elements 317-1 to 317-9, concave mirrors having a parabolic curved surface force having a focal point near the light emitting / receiving element can be used. In this case, the light emitted from the light receiving and emitting element force for light input / output is converted into a parallel light beam by the concave mirror and enters the light beam splitting element. This parallel light beam is a light beam that can be best selected by the beam splitter. The parallel light beam combined or demultiplexed by the light beam branching element is condensed by another concave mirror, and the light emitting / receiving element force for light output is also output. The parallel light beam emitted from the light emitting / receiving element and converted by the coupling element is reflected by the plane mirror 344 formed on the optical waveguide mirror block 304 and then collected again by the coupling element on the light emitting / receiving element. The light may be output. With this configuration, when the optical waveguide mirror block 304 is mounted differently from the predetermined mounting angle, The light reflected by the plane mirror 344 of the optical waveguide mirror block 304 is condensed by the coupling element at a point different from the light receiving point of the light receiving / emitting element. Therefore, by observing the output light from the light emitting / receiving element, it is possible to confirm whether the optical waveguide mirror block 304 is attached at a predetermined mounting angle. Can be fixed to the main block 301.
[0190] また、本実施例では、結合素子 317— 1〜317— 9として、受発光素子から結合素 子までの距離とほぼ等しい半径を有する球面力もなる凹面ミラーを用いることができ る。この場合、光入出力用の受発光素子力 出射された光は、凹面ミラーにより反射 され、再び当該受発光素子の受発光点に集光され、出力される。このような構成とす れば、受発光素子固定ブロックと光メインブロック 301が所定の取り付け位置と異なつ て取り付けられていた場合、受発光素子から出射され、光メインブロック 301の凹面ミ ラーにより反射された光は、当該受発光素子の受発光点と異なる点に集光される。こ のため、受発光素子からの出力光の強度を観察することにより、受発光素子固定プロ ックが所定の位置に取り付けられて 、るかを確認できるため、高 、位置精度で受発 光素子固定ブロックが光メインブロック 301に固定できる。  In this embodiment, as the coupling elements 317-1 to 317-9, a concave mirror having a spherical force having a radius substantially equal to the distance from the light emitting / receiving element to the coupling element can be used. In this case, the light emitted from the light receiving and emitting element force for light input / output is reflected by the concave mirror, and is again condensed and output to the light receiving and emitting point of the light receiving and emitting element. With such a configuration, when the light receiving / emitting element fixing block and the optical main block 301 are attached at different positions from the predetermined mounting position, the light receiving / emitting element is emitted from the light receiving / emitting element, and the concave mirror of the optical main block 301 is used. The reflected light is collected at a point different from the light emitting / receiving point of the light emitting / receiving element. For this reason, by observing the intensity of the output light from the light emitting / receiving element, it is possible to confirm whether the light receiving / emitting element fixing block is attached at a predetermined position. The fixed block can be fixed to the optical main block 301.
[0191] また、本実施例では、位置決め用ミラーとして、受発光素子の光軸に垂直な面を持 つ平面ミラー 317— 10を用いることができる。この場合、平面ミラー 317— 10は受発 光素子の光軸に垂直になるよう設計されているため、受発光素子から出射された光 は平面ミラー 317— 10によって反射され、受発光素子の方向へ反射される。この反 射光を受発光素子で受光した出力は、受発光素子が設計通りの角度に取り付けられ ていた場合に最高となり、受発光素子が設計の角度よりずれて取り付けられていた場 合は平面ミラー 317— 10と受発行手段は垂直とならず、受発光素子で受光できる反 射面からの反射光は、設計どおりに取り付けられていた場合に比べ減少する。このた め、受発光素子からの出力光の強度を観察することにより、受発光素子固定ブロック が所定の角度に取り付けられて 、るかを確認できるため、高 、位置精度で受発光素 子固定ブロックが光メインブロック 301に固定できる。  [0191] Also, in this embodiment, the plane mirror 317-10 having a surface perpendicular to the optical axis of the light emitting / receiving element can be used as the positioning mirror. In this case, since the plane mirror 317-10 is designed to be perpendicular to the optical axis of the light receiving / emitting element, the light emitted from the light receiving / emitting element is reflected by the plane mirror 317-10 toward the light receiving / emitting element. Reflected. The output when the reflected light is received by the light emitting / receiving element is maximum when the light receiving / emitting element is mounted at the designed angle, and when the light receiving / emitting element is mounted at a deviation from the designed angle, the flat mirror is used. The light receiving and emitting means are not perpendicular to each other, and the reflected light from the reflecting surface that can be received by the light emitting / receiving element is reduced compared to the case where it is installed as designed. For this reason, by observing the intensity of the output light from the light emitting / receiving element, it is possible to confirm whether the light receiving / emitting element fixing block is attached at a predetermined angle, so that the light receiving / emitting element is fixed with high positional accuracy. The block can be fixed to the optical main block 301.
[0192] また、本実施例では、光導波ミラーブロック 304の導波素子として、凹面ミラー 343 を用いることができる。この場合、光導波ミラーブロック 304の反射面を反射すること で伝播する光合波器内の光ビーム力 ビームを集光しながら伝播させるレンズ列導 波路と同様になるため、平面ミラーを用いた場合に比べて光の損失を低減することが できる。特に、合分波する波長数が多くなり、光導波ミラーブロック 304における反射 回数が多くなつた場合に、平面ミラーを用いた場合に比べて損失を大きく減らすこと ができる。 In this embodiment, a concave mirror 343 can be used as the waveguide element of the optical waveguide mirror block 304. In this case, reflect the reflection surface of the optical waveguide mirror block 304 The optical beam force in the optical multiplexer is similar to that of a lens array waveguide that propagates the beam while condensing it, so light loss can be reduced compared to the case of using a plane mirror. In particular, when the number of wavelengths to be multiplexed / demultiplexed increases and the number of reflections in the optical waveguide mirror block 304 increases, the loss can be greatly reduced as compared with the case of using a plane mirror.
[0193] また、本実施例のように、複数本の光ファイバ 323をファイバ固定用溝に固定した 受発光素子固定ブロックを予め準備しておけば、受発光素子固定ブロックを光メイン ブロック 301に位置あわせして固定するだけで、複数のファイバ一本一本を個別に位 置あわせすることなく光メインブロック 301に固定できるため、組み立て手順の削減が 可能となる。また、複数本の光ファイバ 323を受発光素子固定ブロックに固定する際 にも、受発光素子固定ブロックには光ファイバ 323を固定するための V字断面、 U字 断面あるいは四角断面の溝が複数本形成されて 、るため、光ファイバ 323をこの溝 にはめ込むだけで受発光素子固定ブロックと光ファイバ 323の位置合わせがなされ、 組み立て手順の削減が可能となる。  [0193] Further, as in this embodiment, if a light receiving / emitting element fixing block in which a plurality of optical fibers 323 are fixed in a fiber fixing groove is prepared in advance, the light emitting / receiving element fixing block is used as the optical main block 301. By simply aligning and fixing, each of the plurality of fibers can be fixed to the optical main block 301 without individually aligning, so the assembly procedure can be reduced. Also, when a plurality of optical fibers 323 are fixed to the light receiving / emitting element fixing block, the light receiving / emitting element fixing block has a plurality of V-shaped, U-shaped or square-shaped grooves for fixing the optical fiber 323. Since the optical fiber 323 is formed in this groove, the light receiving / emitting element fixing block and the optical fiber 323 are aligned with each other, and the assembly procedure can be reduced.
[0194] 光線分岐素子ブロックとして、ガラス等の透明部材を基板 335とし、基板 335の上 に光線分岐素子を貼り付けて構成した場合、平面度の高い基板 335を用いれば、こ の平面に複数の光線分岐素子を押さえつけて固定することで、複数の光線分岐素 子が少ない角度ばらつきで搭載されるため、精度の高い光線分岐素子ブロックを製 造することができる。しかし、この場合、基板 335の表面で反射損失が発生しないよう 無反射コートが必要になり、また、高価な光学透明度の高い部材を利用する必要が あるため、コスト増の要因となる。また、透明部材の吸収による光の損失の発生が避 けられない。  [0194] When the light beam branching element block is configured by using a transparent member such as glass as the substrate 335 and pasting the light beam branching element on the substrate 335, if a substrate 335 with high flatness is used, a plurality of light beam branching element blocks are formed on this plane. By pressing and fixing the light beam branching element, a plurality of light beam branching elements are mounted with a small angle variation, so that a highly accurate light beam branching element block can be manufactured. However, in this case, a non-reflective coating is necessary so that reflection loss does not occur on the surface of the substrate 335, and it is necessary to use an expensive member with high optical transparency, which causes an increase in cost. In addition, light loss due to absorption of the transparent member cannot be avoided.
[0195] これに対し、光線分岐素子ブロックとして、貫通孔 332を開けておいた基板 331を 用いれば、高価な光学透明の部材を用いることなぐまた、無反射コートも不要となり 、コスト削減が図れる。また、基板 331の光吸収による光の損失も避けることができる  [0195] On the other hand, if the substrate 331 having the through-hole 332 is used as the beam branching element block, an expensive optically transparent member is not used, and a non-reflective coating is not required, thereby reducing costs. . Also, light loss due to light absorption of the substrate 331 can be avoided.
[0196] <第 8の実施例 > [0196] <Eighth embodiment>
次に、図面に基づいて本発明の第 8の実施例について説明する。本実施例は、 8 波の波長多重光をそれぞれの波長の光線に分波する光分波器に本発明の光合分 波器およびその組み立て装置を適用した例である。この実施例は本発明を限定する ものではない。なお、全ての図面において共通する部材、部分は同一の符号で示し 、重複する説明は省略する。 Next, an eighth embodiment of the present invention will be described with reference to the drawings. In this example, 8 This is an example in which the optical multiplexer / demultiplexer and its assembling apparatus of the present invention are applied to an optical demultiplexer that demultiplexes wavelength-multiplexed light of waves into light beams of respective wavelengths. This example does not limit the invention. In addition, the member and part which are common in all drawings are shown with the same code | symbol, and the overlapping description is abbreviate | omitted.
[0197] 図 27は、本発明の第 8の実施例に係る光素子アレイを一方向(突起部側)から見た 斜視図である。図 28は、この光素子アレイを他方向(光素子側)から見た斜視図であ る。  FIG. 27 is a perspective view of the optical element array in accordance with the eighth embodiment of the present invention viewed from one direction (projection portion side). FIG. 28 is a perspective view of this optical element array as viewed from the other direction (optical element side).
[0198] 光素子アレイ 410は、図 27および図 28に示すように、一方の面(ドーム形成面) 40 2に、曲面力もなる突起部である半球状 (ドーム状)のチャック用ドーム 403が形成さ れ、他方の面(ミラー形成面) 404に、第 1〜第 8の凹面ミラー 405a〜405hがー列に 配列して形成された板状の基板 401からなる凹面ミラーアレイであり、光線を第 1〜 第 8の凹面ミラー 405a〜405hにより反射するものである。ただし、チャック用ドーム 4 03は、その中心が基板 401のほぼ中央、すなわち基板 401の重心位置と一致して 成型される。このような位置にチャック用ドーム 403を成型したことにより、光素子ァレ ィ 410を後述する組み立て装置で把持したときに、把持した位置と光素子アレイ 410 の重心位置がと一致するので、光素子アレイ 410を安定して把持することができる。  As shown in FIG. 27 and FIG. 28, the optical element array 410 has a hemispherical (dome-shaped) chuck dome 403 that is a protrusion having a curved surface force on one surface (dome forming surface) 402. A concave mirror array composed of a plate-like substrate 401 formed by arranging the first to eighth concave mirrors 405a to 405h in a row on the other surface (mirror formation surface) 404 formed on Are reflected by the first to eighth concave mirrors 405a to 405h. However, the chuck dome 4003 is molded such that its center coincides with the substantially center of the substrate 401, that is, the position of the center of gravity of the substrate 401. By molding the chuck dome 403 at such a position, when the optical element array 410 is gripped by an assembly device described later, the gripped position and the center of gravity of the optical element array 410 coincide with each other. The element array 410 can be stably held.
[0199] 図 29および図 30は、光素子アレイ 410を用いた 8波の光合分波器の斜視図である 。これらの図に示すように、光合分波器 420は、光メインブロック 421と、入力用フアイ ノ 22と、出力用ファイバ 423a〜423hと、それぞれ透過波長が異なる第 1〜第 8の 誘電体多層膜フィルタ 424a〜424hがー列に配列して貼り付けられたフィルタアレイ 平板 425と、光素子 レイ 410とを有する。  29 and 30 are perspective views of an 8-wave optical multiplexer / demultiplexer using the optical element array 410. FIG. As shown in these figures, the optical multiplexer / demultiplexer 420 includes an optical main block 421, an input fiber 22, and output fibers 423a to 423h, which are first to eighth dielectric multilayers having different transmission wavelengths. It has a filter array flat plate 425 on which membrane filters 424a to 424h are arranged and attached in a row, and an optical element ray 410.
[0200] すなわち、光メインブロック 421の板状基板の表面において、 3つの基板端部に側 壁部 421a, 421b, 421c力 ^それぞれ形成されており、佃 J壁部 421b, 421cには、フィ ルタアレイ平板 425を保持するフィルタアレイ保持部 426a, 426b,および光素子ァ レイ 410を保持する反射面保持部 427a, 427bがそれぞれ形成される。ただし、光素 子アレイ 410のミラー形成面 404は、後述する光メインブロック 421の結合素子 429 に対向して配置される。  That is, on the surface of the plate-like substrate of the optical main block 421, side wall portions 421a, 421b, 421c forces ^ are respectively formed on the three substrate end portions, and the 佃 J wall portions 421b, 421c Filter array holding portions 426a and 426b for holding the filter array flat plate 425 and reflecting surface holding portions 427a and 427b for holding the optical element array 410 are formed. However, the mirror forming surface 404 of the photonic element array 410 is disposed to face a coupling element 429 of the optical main block 421 described later.
[0201] また、光メインブロック 421の板状基板の表面において、側壁部 421aに沿って直線 状に V溝 428が形成されており、 V溝 428を構成する一方の傾斜面 428aにおいて V 溝 428の直線軸方向に沿って第 1〜第 9の結合素子 429a〜429iが配列して形成さ れる。入力用ファイバ 422、および出力用ファイバ 423a〜423hは、光メインブロック 421の板状基板の表面に所定の間隔にて形成された V溝にそれぞれ設置しており、 それらのポートが第 1〜第 9の結合素子 429a〜429iにそれぞれ対向して配置される 。フィルタアレイ保持部 426a, 426bは、フィルタアレイ平板 425を所定の角度に保持 するよう〖こ作られる。反射面保持部 427a, 427bは、光素子アレイ 410を所定の角度 に保持するように作られる。また、これら保持部 427a, 427bに光素子アレイ 410の側 面が押付けられたとき、ミラー形成面 404と垂直な軸回りの角度が、所定の角度とな るように調整される。 [0201] Further, on the surface of the plate-like substrate of the optical main block 421, a straight line is formed along the side wall 421a. The first to ninth coupling elements 429a to 429i are arranged along the linear axis direction of the V groove 428 on one inclined surface 428a constituting the V groove 428. It is. The input fiber 422 and the output fibers 423a to 423h are respectively installed in V grooves formed on the surface of the plate-like substrate of the optical main block 421 at predetermined intervals. The nine coupling elements 429a to 429i are arranged to face each other. The filter array holding portions 426a and 426b are made so as to hold the filter array flat plate 425 at a predetermined angle. The reflection surface holding portions 427a and 427b are formed so as to hold the optical element array 410 at a predetermined angle. Further, when the side surface of the optical element array 410 is pressed against the holding portions 427a and 427b, the angle around the axis perpendicular to the mirror forming surface 404 is adjusted to be a predetermined angle.
[0202] このような光合分波器 420の動作原理を、図 31を用いて説明する。この動作原理 を分力り易くするため、この図中に光線を描きこんである。以下、この光合分波器 420 による分波動作を説明する。この図に示すように、入力用ファイバ 422から入力され た拡散光は、光メインブロック 421の第 1の結合素子 429aによってほぼ平行な光線と なって光素子アレイ 410の方向に反射され、光素子アレイ 410の第 1の凹面ミラー 40 5aにて反射されて、第 1の誘電体多層膜フィルタ 424aに入射する。第 1の誘電体多 層膜フィルタ 424aを透過した特定波長域の光線は、第 2の結合素子 429bにより集 光され第 1の出力用ファイバ 423aから出力される。第 1の誘電体多層膜フィルタ 424 aにより反射された光線は、光素子アレイ 410の第 2の凹面ミラー 405bにより再び反 射され、第 2の誘電体多層膜フィルタ 424bに入射される。  [0202] The operation principle of such an optical multiplexer / demultiplexer 420 will be described with reference to FIG. In order to make this operation principle easy to divide, rays are drawn in this figure. Hereinafter, a demultiplexing operation by the optical multiplexer / demultiplexer 420 will be described. As shown in this figure, the diffused light input from the input fiber 422 is reflected by the first coupling element 429a of the optical main block 421 as a substantially parallel light beam toward the optical element array 410, and the optical element The light is reflected by the first concave mirror 405a of the array 410 and is incident on the first dielectric multilayer filter 424a. The light in the specific wavelength range that has passed through the first dielectric multilayer filter 424a is collected by the second coupling element 429b and output from the first output fiber 423a. The light beam reflected by the first dielectric multilayer filter 424a is reflected again by the second concave mirror 405b of the optical element array 410 and is incident on the second dielectric multilayer filter 424b.
[0203] 第 2の誘電体多層膜フィルタ 424bを透過した光線は、第 3の結合素子 429cにより 集光され第 2の出力用ファイバ 423bから出力される。第 2の誘電体多層膜フィルタ 4 24bにより反射された特定波長域の光線は、光素子アレイ 410の第 3の凹面ミラー 40 5cにより再び反射され、第 3の誘電体多層膜フィルタ 424cに入射される。以下、同 様の動作を繰り返すことで波長多重光の分波が行われる。入出力を逆転して用いれ ば、波長多重光の合波が行われ、合波器として機能する。  [0203] The light beam transmitted through the second dielectric multilayer filter 424b is collected by the third coupling element 429c and output from the second output fiber 423b. The light in the specific wavelength range reflected by the second dielectric multilayer filter 4 24b is reflected again by the third concave mirror 40 5c of the optical element array 410 and is incident on the third dielectric multilayer filter 424c. The Thereafter, the same operation is repeated to demultiplex the wavelength multiplexed light. If the input and output are reversed, wavelength multiplexed light is multiplexed and functions as a multiplexer.
[0204] 図 32は、本実施例に係る光合分波器の組み立て装置の概略図である。この組み 立て装置 450は、光素子アレイ 410のチャック用ドーム 403を把持可能な把持機構( 把持手段) 441と、把持機構 441を垂直方向および水平方向へ移動自在な位置調 整機構 (位置調整手段) 442と、位置調整機構 442の移動に伴って反力を発生させ る反力発生手段である伸縮部材 443と、把持機構 441を保持部材 459を介して支持 するアーム 452とを有する。アーム 452は、 X方向、 Y方向、および Z方向の 3方向に 移動可能な XYZステージ 458に設置される。 FIG. 32 is a schematic diagram of an optical multiplexer / demultiplexer assembling device according to the present embodiment. This assembling device 450 has a gripping mechanism (which can grip the chuck dome 403 of the optical element array 410). (Gripping means) 441 and position adjusting mechanism (position adjusting means) 442 capable of moving the holding mechanism 441 in the vertical and horizontal directions, and reaction force generating means for generating reaction force as the position adjusting mechanism 442 moves. And an arm 452 that supports the gripping mechanism 441 via a holding member 459. The arm 452 is installed on an XYZ stage 458 that can move in three directions: X, Y, and Z.
[0205] 位置調整機構 442は、 Z方向(垂直方向)と Y方向(水平方向)にそれぞれスライド( 移動)する二つのスライドレール 453, 454からなる。把持機構 441は、先端にパイプ を有する真空チャック 451であり、そのパイプの内径が光素子アレイ 410のチャック用 ドーム 403の直径より小さく形成される。前記ノイブをこのような形状にしたことにより 、真空チャック 451のパイプを光素子アレイ 410のチャック用ドーム 403に密着させる ことができ、光素子アレイ 410の把持(吸着)が容易になる。  [0205] The position adjusting mechanism 442 includes two slide rails 453 and 454 that slide (move) in the Z direction (vertical direction) and the Y direction (horizontal direction), respectively. The gripping mechanism 441 is a vacuum chuck 451 having a pipe at the tip, and the inner diameter of the pipe is formed smaller than the diameter of the chuck dome 403 of the optical element array 410. By forming the nove in such a shape, the pipe of the vacuum chuck 451 can be brought into close contact with the chuck dome 403 of the optical element array 410, and the optical element array 410 can be easily held (adsorbed).
[0206] 伸縮部材 443は、真空チャック 451と保持部材 459の間に取り付けられ、 Z方向の 下向きに押圧力を発生させる板ばね 455と、保持部材 459とアーム 452の先端との 間に取り付けられ、 Y方向におけるアーム 452から離れる向きに押圧力を発生するコ ィルバネ 456とを有する。真空チャック 451の上端には真空ポンプ(図示せず)へ連 結するゴムホース 457が接続されており、真空チャック 451の下端に上述した光素子 アレイ 410のチャック用ドーム 403が吸着(把持)される。また、アーム 452は上方に 延在しその上方先端が横方向にさらに延在する形状であり、真空チャック 451の先 端が下方に向けてアーム 452の先端に取り付けられるため、真空チャック 451に吸着 した光素子アレイ 410を X方向、 Y方向、および Z方向に任意に動かすことができる。  [0206] The elastic member 443 is attached between the vacuum chuck 451 and the holding member 459, and is attached between the leaf spring 455 that generates a pressing force in the downward direction in the Z direction, and between the holding member 459 and the tip of the arm 452. And a coil spring 456 for generating a pressing force in a direction away from the arm 452 in the Y direction. A rubber hose 457 connected to a vacuum pump (not shown) is connected to the upper end of the vacuum chuck 451, and the chuck dome 403 of the optical element array 410 described above is adsorbed (gripped) to the lower end of the vacuum chuck 451. . In addition, the arm 452 has a shape that extends upward and the top end of the arm 452 extends further in the lateral direction, and the tip of the vacuum chuck 451 is attached to the tip of the arm 452 facing downward, so that it is attracted to the vacuum chuck 451. The optical element array 410 can be arbitrarily moved in the X, Y, and Z directions.
[0207] この組み立て装置 450を用いて、光メインブロック 421に光素子アレイ 410を位置 合わせして、取り付ける(組み付ける)手順を図 33、図 34、および図 35を用いて説明 する。  A procedure for aligning and attaching (assembling) the optical element array 410 to the optical main block 421 using the assembling apparatus 450 will be described with reference to FIGS. 33, 34, and 35. FIG.
最初に、光メインブロック 421の反射面保持部 427が上方に向くように固定し、ミラ 一形成面 404が下方に向くように光素子アレイ 410を反射面保持部 427に搭載させ る。  First, the reflecting surface holding portion 427 of the optical main block 421 is fixed so as to face upward, and the optical element array 410 is mounted on the reflecting surface holding portion 427 so that the mirror forming surface 404 faces downward.
[0208] 組み立て装置 450の XYZステージ 458の X, Y方向を移動させ、光メインブロック 4 21に搭載された光素子アレイ 410のチャック用ドーム 403の上部に真空チャック 451 が配置されるように調整する。その後、ステージ 458の Z方向を調整し、真空チャック 451を下降させて、図 33に示すように、真空チャック 451の先端をチャック用ドーム 4 03に接触させる。 [0208] The X and Y directions of the XYZ stage 458 of the assembly device 450 are moved, and the vacuum chuck 451 is placed on the chuck dome 403 of the optical element array 410 mounted on the optical main block 421. Adjust so that is placed. Thereafter, the Z direction of the stage 458 is adjusted, the vacuum chuck 451 is lowered, and the tip of the vacuum chuck 451 is brought into contact with the chuck dome 4003 as shown in FIG.
[0209] 真空チャック 451はアーム 452の下降に伴い、チャック用ドーム 403と接触した後、 板ばね 455の押圧力によってチャック用ドーム 403に押し付けられる。真空チャック 4 51がチャック用ドーム 403に押し付けられた状態で、真空チャック 451につながった 真空ポンプを動作させれば、真空チャック 451により吸引する部分がドーム状に形成 されており、また真空チャック 451もパイプ状の形状であるため、光メインブロック 421 の反射面保持部 427が正確に真上を向いていなくても、真空チャック 451の角度調 整を行うことなぐ光メインブロック 421の反射面保持部 427と光素子アレイ 410のミラ 一形成面 404の平行が保たれたまま光素子アレイ 410が真空チャック 451に固定さ れる。  [0209] The vacuum chuck 451 is pressed against the chuck dome 403 by the pressing force of the leaf spring 455 after contacting the chuck dome 403 as the arm 452 is lowered. When the vacuum pump 4 51 is pressed against the chuck dome 403 and the vacuum pump connected to the vacuum chuck 451 is operated, the vacuum chuck 451 forms a portion to be sucked, and the vacuum chuck 451 The reflective surface holding part 427 of the optical main block 421 has a reflective surface holding without adjusting the angle of the vacuum chuck 451 even if the reflective surface holding part 427 of the optical main block 421 is not pointing directly upward. The optical element array 410 is fixed to the vacuum chuck 451 while the parallelism of the part 427 and the mirror forming surface 404 of the optical element array 410 is maintained.
[0210] 真空チャック 451に固定された光素子アレイ 410を XYZステージ 458の Z方向にわ ずかに動かすことで、図 34に示すように、光メインブロック 421と光素子アレイ 410に わずかな間隙を生じさせて、両者に摩擦力が働かな 、ようにする。  [0210] By moving the optical element array 410 fixed to the vacuum chuck 451 slightly in the Z direction of the XYZ stage 458, a slight gap is formed between the optical main block 421 and the optical element array 410 as shown in FIG. So that frictional force does not work on both.
[0211] この状態にて、 XYZステージ 458の Y方向に動かすことで、真空チャック 451が Y 軸方向に動き、図 35に示すように、光素子アレイ 410を光メインブロック 421の突き当 て面 431に突き当てることができる。真空チャック 451はパイプ状であるため、光メイ ンブロック 421の突き当て面 431に押し当てられた光素子アレイ 410は、側面 406が 突き当て面 431に沿う角度になるように、真空チャック 451を軸として回転し、 Z軸回り の角度が所定の角度に調整される。  [0211] In this state, by moving the XYZ stage 458 in the Y direction, the vacuum chuck 451 moves in the Y axis direction, and the optical element array 410 is brought into contact with the optical main block 421 as shown in FIG. You can hit 431. Since the vacuum chuck 451 has a pipe shape, the optical element array 410 pressed against the abutting surface 431 of the optical main block 421 has the vacuum chuck 451 so that the side surface 406 is at an angle along the abutting surface 431. It rotates as an axis, and the angle around the Z axis is adjusted to a predetermined angle.
[0212] このように、光素子アレイ 410にチャック用ドーム 403を形成し、パイプ状の真空チ ャック 451をもつ組み立て装置 450を用いることで、組み立て装置 450に 0 χ、 θ γ、 および θ ζの回転機構をもたせることなぐ光素子アレイ 410の全ての角度調整が行 える。  [0212] In this way, by forming the chuck dome 403 in the optical element array 410 and using the assembly device 450 having the pipe-shaped vacuum chuck 451, the assembly device 450 has 0χ, θγ, and θζ. All the angle adjustments of the optical element array 410 can be performed without providing any rotation mechanism.
[0213] 以上のような作業で角度調整がなされた光素子アレイ 410は、 ΧΥΖステージ 458の X, Υ方向を動かすことで最適な光結合が得られるように X位置と Υ位置が調整される 。その後、 ΧΥΖステージ 458の Ζ方向を下方へ動かし、光素子アレイ 410と反射面保 持部 427を接触させる。光素子アレイ 410と反射面保持部 427を接触させた後、最 適な光結合が得られているかを再度確認後、必要に応じて X, Y方向の微調整を行 い、光素子アレイ 410と光メインブロック 421を接着などの手法により固定することで 合分波器が完成する。 [0213] The optical element array 410, which has been angle-adjusted by the above-described operations, is adjusted in the X position and the heel position so as to obtain the optimum optical coupling by moving the ΧΥΖ stage 458 in the X and Υ directions. . After that, move the ΧΥΖ stage 458 Ζ direction downward to maintain the optical element array 410 and the reflective surface. The holding part 427 is brought into contact. After making contact between the optical element array 410 and the reflecting surface holding portion 427, it is confirmed again whether optimal optical coupling is obtained, and then fine adjustment in the X and Y directions is performed as necessary. The optical multiplexer / demultiplexer is completed by fixing the optical main block 421 using a method such as bonding.
[0214] このような組み立て装置 450と組み立て手法により、組み立て装置 450に 3軸回転 ステージなどの複雑な回転機構が不要となり、組み立て装置自体が簡易な構造にな るので、その製造コストを低減することができる。全ての回転軸を所定の角度になるよ うに調整する必要なしに組み立てられるため、組み立て手順が簡単になり、組み立て 時間および組み立て作業を低減することができる。  [0214] By such an assembly device 450 and an assembly method, the assembly device 450 does not require a complicated rotation mechanism such as a three-axis rotation stage, and the assembly device itself has a simple structure, thereby reducing its manufacturing cost. be able to. Since it can be assembled without having to adjust all the rotating shafts to a predetermined angle, the assembling procedure is simplified, and the assembling time and the assembling work can be reduced.
[0215] 光素子アレイ 410の光素子は、上述したような光線を反射する凹面ミラー 405に限 定されるものではなぐ例えば、平面ミラー、誘電体多層膜フィルタ、回折格子、レン ズなどでも良ぐ光素子アレイ 410と同様な作用効果を奏する。  [0215] The optical element of the optical element array 410 is not limited to the concave mirror 405 that reflects the light beam as described above. For example, a flat mirror, a dielectric multilayer filter, a diffraction grating, or a lens may be used. The same effect as the optical element array 410 is obtained.
[0216] また、上記では、ミラー形成面 404に対向する面 402にチャック用ドーム 403を形成 した光素子アレイ 410を用いて説明した力 チャック用ドームは、光素子と重ならない ように形成すれば良ぐ光素子アレイ 410と同様な作用効果を奏する。  [0216] In the above, the force chuck dome described using the optical element array 410 in which the chuck dome 403 is formed on the surface 402 facing the mirror forming surface 404 is formed so as not to overlap the optical element. The same effect as the good optical element array 410 is obtained.
[0217] <第 9の実施例 >  [0217] <Ninth embodiment>
図 36は、本発明の第 9の実施例に係る光合分波器を説明する図であり、光合分波 器の導波素子ブロックが傾斜したときの状態を示している。  FIG. 36 is a diagram for explaining an optical multiplexer / demultiplexer according to the ninth embodiment of the present invention, and shows a state when the waveguide element block of the optical multiplexer / demultiplexer is tilted.
[0218] 本実施例に係る光合分波器は、凹面ミラー力もなる導波素子 502〜505が形成さ れた導波素子ブロック 501と、光線分岐素子 507〜510が形成された光線分岐素子 ブロック 506とを有している。光線分岐素子ブロック 506は、結合素子ブロックに形成 されたブロック保持構造 511, 512により保持され、導波素子ブロック 501に対向配 置されている。結合素子ブロックと導波素子ブロック 501とは分離している。このため 、図 44に示した従来の光合分波器とは異なり、ブロック保持構造 511, 512は導波素 子ブロック 501から分離した構成となっている。  [0218] The optical multiplexer / demultiplexer according to the present embodiment includes a waveguide element block 501 in which waveguide elements 502 to 505 also having concave mirror force are formed, and a beam branch element block in which beam branch elements 507 to 510 are formed. 506. The beam branching element block 506 is held by block holding structures 511 and 512 formed in the coupling element block, and is arranged opposite to the waveguide element block 501. The coupling element block and the waveguide element block 501 are separated. Therefore, unlike the conventional optical multiplexer / demultiplexer shown in FIG. 44, the block holding structures 511 and 512 are separated from the waveguide element block 501.
[0219] ブロック保持構造 511, 512を導波素子ブロック 501から分離した構成とすることに より、導波素子ブロック 501の角度がずれても、光線分岐素子ブロック 506の角度は 変わらず、光線分岐素子 507〜510に角度ずれは影響しない。よって、伝播光線が 光線分岐素子 507〜510に入反射しても、伝播光軸の角度ずれは増幅されず、導 波素子 502〜505への伝播光線の入射位置に極端に大きなずれは生じない。 [0219] The block holding structure 511, 512 is separated from the waveguide element block 501, so that even if the angle of the waveguide element block 501 is deviated, the angle of the beam splitter block 506 does not change, and the beam splits. The angle deviation does not affect the elements 507 to 510. Therefore, the propagating ray is Even if the light beams enter and reflect the light beam splitting elements 507 to 510, the angular deviation of the propagating optical axis is not amplified, and an extremely large shift does not occur in the incident position of the propagating light beam to the light guiding elements 502 to 505.
[0220] 一方、導波素子 502〜505は集光パワーをもって 、るため、伝播光線が導波素子 502〜505に入反射するたびに角度ずれを補正することができる。したがって、図 44 に示した従来の光合分波器のように、保持構造が導波素子ブロックに一体形成され ている場合よりも、伝播光線の角度ずれを抑制することができる。  On the other hand, since the waveguide elements 502 to 505 have a condensing power, the angular deviation can be corrected each time the propagating light beam is reflected on the waveguide elements 502 to 505. Therefore, as in the conventional optical multiplexer / demultiplexer shown in FIG. 44, the angle deviation of the propagating light beam can be suppressed as compared with the case where the holding structure is integrally formed with the waveguide element block.
[0221] 例えば、導波素子 502〜505のミラー曲率半径が 5mm程度、導波素子 502〜50 5と光線分岐素子 507〜510との距離も 5mm程度、導波素子 502〜505への伝播 光線の入反射角の設計値が 11. 31°の場合を考える。導波素子ブロック 501が 5°傾 斜した場合、導波素子 502〜505への伝播光線の入反射角が、従来は 2°〜17°程 度であるのに対して、本実施例では 10°〜 14°程度であり、入反射角の設計値から の誤差が小さい。したがって、本実施例によれば、導波素子ブロック 501の角度ずれ が光軸ずれ、すなわち過剰損失増大に及ぼす影響を抑制することができる。  [0221] For example, the radius of curvature of the waveguide elements 502 to 505 is about 5 mm, the distance between the waveguide elements 502 to 505 and the beam branching elements 507 to 510 is also about 5 mm, and the light beam propagates to the waveguide elements 502 to 505. Let us consider the case where the design value of the incident / reflection angle is 11.31 °. When the waveguide element block 501 is inclined by 5 °, the incident / reflection angle of the propagating light beam to the waveguide elements 502 to 505 is conventionally about 2 ° to 17 °, whereas in this embodiment, it is 10 It is about 14 °, and the error from the design value of the incident / reflection angle is small. Therefore, according to the present embodiment, it is possible to suppress the influence of the angle shift of the waveguide element block 501 on the optical axis shift, that is, the increase in excess loss.
[0222] 本発明は、上述したように光合分波器に適用した場合を説明したが、入射光線のう ち特定の光量の光線を透過させ、残りの光量の光線を反射させる機能を有する光線 分岐素子を利用したデバイス、すなわち、光力ブラまたは光分配器等に本発明を適 用した場合にも、光合分波器における効果とほぼ同様の効果を提供することができる  [0222] The present invention has been described with reference to the case where the present invention is applied to an optical multiplexer / demultiplexer. However, a light ray having a function of transmitting a specific light amount of incident light and reflecting the remaining light amount. Even when the present invention is applied to a device using a branch element, that is, an optical power bra or an optical distributor, it is possible to provide substantially the same effect as that in an optical multiplexer / demultiplexer.

Claims

請求の範囲 The scope of the claims
[1] 光線の受光および発光の少なくとも一方を行う複数の受発光素子と、  [1] a plurality of light emitting and receiving elements that perform at least one of receiving and emitting light;
入射された光線の一部を透過させ残りを反射させる複数の光線分岐素子と、 対応する受発光素子と光線分岐素子とを結ぶ光路上に配置された複数の結合素 子と、  A plurality of beam branching elements that transmit part of the incident light beam and reflect the rest, a plurality of coupling elements disposed on the optical path connecting the corresponding light emitting / receiving element and the beam branching element,
ある光線分岐素子からの反射光線が他の光線分岐素子に入射するまでの光路上 に配置された導波素子とを備え、  A waveguide element disposed on an optical path until a reflected light beam from one light beam branching element enters another light beam branching element;
前記結合素子の全てが単一の結合素子ブロックに一体形成されていることを特徴 とする光合分波器。  An optical multiplexer / demultiplexer characterized in that all of the coupling elements are integrally formed in a single coupling element block.
[2] 請求項 1に記載の光合分波器において、  [2] In the optical multiplexer / demultiplexer according to claim 1,
前記結合素子は、球面力 なる凹面ミラーであることを特徴とする光合分波器。  The optical multiplexer / demultiplexer, wherein the coupling element is a concave mirror having a spherical force.
[3] 請求項 1に記載の光合分波器において、 [3] In the optical multiplexer / demultiplexer according to claim 1,
前記導波素子は、凹面ミラーであることを特徴とする光合分波器。  The optical multiplexer / demultiplexer, wherein the waveguide element is a concave mirror.
[4] 請求項 2に記載の光合分波器において、 [4] In the optical multiplexer / demultiplexer according to claim 2,
前記結合素子に入射する光線の入射角が 45°よりも小さいことを特徴とする光合分 波器。  An optical multiplexer / demultiplexer characterized in that an incident angle of light incident on the coupling element is smaller than 45 °.
[5] 請求項 1に記載の光合分波器において、  [5] In the optical multiplexer / demultiplexer according to claim 1,
前記受発光素子のそれぞれによって受光および発光される光線の光軸は、全て単 一平面上に配置されて!ヽることを特徴とする光合分波器。  The optical axes of the light beams received and emitted by each of the light emitting / receiving elements are all arranged on a single plane! An optical multiplexer / demultiplexer characterized by squeezing.
[6] 請求項 1に記載の光合分波器において、 [6] In the optical multiplexer / demultiplexer according to claim 1,
前記結合素子ブロックは、前記受発光素子を保持する固定構造を備えることを特 徴とする光合分波器。  An optical multiplexer / demultiplexer characterized in that the coupling element block has a fixed structure for holding the light emitting / receiving element.
[7] 請求項 6に記載の光合分波器において、 [7] In the optical multiplexer / demultiplexer according to claim 6,
前記固定構造は、 V溝および U溝の 、ずれかであることを特徴とする光合分波器。  The optical multiplexer / demultiplexer according to claim 1, wherein the fixing structure is a shift between a V groove and a U groove.
[8] 請求項 1に記載の光合分波器において、 [8] In the optical multiplexer / demultiplexer according to claim 1,
前記結合素子ブロックは、前記光線分岐素子および前記導波素子の少なくとも一 方を保持する保持構造を備えることを特徴とする光合分波器。  The coupling element block includes a holding structure that holds at least one of the light beam branching element and the waveguide element.
[9] 請求項 1に記載の光合分波器において、 前記導波素子の全てが単一の導波素子ブロックに配列されることを特徴とする光合 分波器。 [9] In the optical multiplexer / demultiplexer according to claim 1, An optical multiplexer / demultiplexer, wherein all of the waveguide elements are arranged in a single waveguide element block.
[10] 請求項 1に記載の光合分波器において、  [10] In the optical multiplexer / demultiplexer according to claim 1,
前記導波素子と前記光線分岐素子とは、空間を介して配置されて!ヽることを特徴と する光合分波器。  An optical multiplexer / demultiplexer characterized in that the waveguide element and the beam branching element are arranged through a space.
[11] 請求項 9に記載の光合分波器において、  [11] The optical multiplexer / demultiplexer according to claim 9,
前記結合素子ブロックは、前記光線分岐素子を保持する保持構造を備え、 前記結合素子ブロックと前記導波素子ブロックとは分離していることを特徴とする光 合分波器。  The coupling element block includes a holding structure that holds the light beam branching element, and the coupling element block and the waveguide element block are separated from each other.
[12] 請求項 6に記載の光合分波器において、  [12] The optical multiplexer / demultiplexer according to claim 6,
前記受発光素子は、隣接する受発光素子のそれぞれの受発光点を連結してなる 直線と、前記受発光素子が受発光する光線の光軸とが直交して 、ることを特徴とする 光合分波器。  The light emitting / receiving element is characterized in that a straight line formed by connecting light receiving / emitting points of adjacent light emitting / receiving elements and an optical axis of a light beam received / emitted by the light emitting / receiving element are orthogonal to each other. Duplexer.
[13] 請求項 6に記載の光合分波器において、 [13] The optical multiplexer / demultiplexer according to claim 6,
前記結合素子ブロックは、  The coupling element block is:
一端部と他端部とが平行な板状の基板と、  A plate-like substrate in which one end and the other end are parallel;
前記基板の表面において、前記基板の一端部に直線状に形成された第 1の V溝と を更に備え、  A first V-groove formed linearly at one end of the substrate on the surface of the substrate;
前記結合素子のそれぞれは、前記第 1の V溝を構成する一方の傾斜面に配列され 前記固定構造は、前記基板の表面において、前記第 1の V溝と垂直かつ、前記結 合素子のそれぞれと対向して、前記基板の他端部から前記第 1の V溝に繋がるように 直線状に形成された複数の V溝であることを特徴とする光合分波器。  Each of the coupling elements is arranged on one inclined surface constituting the first V-groove, and the fixing structure is perpendicular to the first V-groove on the surface of the substrate, and each of the coupling elements. An optical multiplexer / demultiplexer comprising a plurality of V grooves formed in a straight line so as to be connected to the first V groove from the other end of the substrate.
[14] 請求項 13に記載の光合分波器において、 [14] The optical multiplexer / demultiplexer according to claim 13,
三方を壁面で構成された平面コ字状をし、壁面が形成されて ヽな ヽ側を前記複数 の V溝に面するようにして前記第 1の V溝の上方に配置された構造体を更に備え、 前記構造体は、  A structure which is formed in a U-shape with a wall surface on three sides, and is disposed above the first V-groove so that the wall surface is formed and the heel side faces the plurality of V-grooves. The structure further comprises:
前記第 1の V溝に配列された前記結合素子に対応する位置がそれぞれ切り欠かれ た棚からなる光線分岐素子保持構造と、 The positions corresponding to the coupling elements arranged in the first V-groove are notched. A beam branching element holding structure comprising a shelf,
前記光線分岐素子保持構造の上方に形成された突起からなる導波素子保持構造 とを備え、  A waveguide element holding structure comprising a protrusion formed above the beam branching element holding structure,
前記光線分岐素子は、前記光線分岐素子保持構造を構成する棚の切り欠かれた 部分にそれぞれ配置され、  The light beam branching elements are respectively arranged in the notched portions of the shelves constituting the light beam branching element holding structure,
前記導波素子の両端は、前記導波素子保持構造を構成する突起に保持されること を特徴とする光合分波器。  An optical multiplexer / demultiplexer characterized in that both ends of the waveguide element are held by protrusions constituting the waveguide element holding structure.
[15] 請求項 13に記載の光合分波器において、  [15] The optical multiplexer / demultiplexer according to claim 13,
前記基板の一端部および前記第 1の V溝の傾斜面に形成され、前記結合素子のそ れぞれを仕切る平面櫛歯状の複数の壁部からなる光線分岐素子保持構造を更に備 え、  A light-branching element holding structure comprising a plurality of planar comb-like walls formed on one end of the substrate and the inclined surface of the first V-groove and partitioning each of the coupling elements;
前記光線分岐素子は、前記光線分岐素子保持構造を構成する壁部の上面にそれ ぞれ配置されることを特徴とする光合分波器。  The optical multiplexer / demultiplexer, wherein each of the beam splitters is disposed on an upper surface of a wall portion constituting the beam splitter holding structure.
[16] 請求項 15に記載の光合分波器において、 [16] The optical multiplexer / demultiplexer according to claim 15,
前記第 1の V溝の長手方向の両端を跨ぐように形成された、側面コ字形状の構造体 を更に備え、  A lateral U-shaped structure formed so as to straddle both longitudinal ends of the first V-groove;
前記導波素子は、前記構造体の天井部の下面に配置されることを特徴とする光合 分波器。  The optical multiplexer / demultiplexer, wherein the waveguide element is disposed on a lower surface of a ceiling portion of the structure.
[17] 請求項 13に記載の光合分波器において、  [17] The optical multiplexer / demultiplexer according to claim 13,
前記光線分岐素子が整列配置される枠体を更に備え、  Further comprising a frame in which the beam branching elements are arranged and arranged;
前記結合素子ブロックは、  The coupling element block is:
前記基板の一端部および他端部を挟む 2つの側端部にそれぞれ形成され、前記 結合素子に背向する面が平坦な傾斜面となった一対の突起部力 なる光線分岐素 子保持構造と、  A light-branching element holding structure having a pair of projecting portion forces formed on two side end portions sandwiching one end portion and the other end portion of the substrate and having a flat inclined surface on the surface facing the coupling element; ,
前記基板の 2つの側端部における、前記光線分岐素子保持構造よりも前記基板の 他端部に近い位置にそれぞれ形成され、前記結合素子に背向する面が平坦な傾斜 面となった一対の突起部からなる導波素子保持構造とを更に備え、  A pair of two side end portions of the substrate which are formed at positions closer to the other end portion of the substrate than the beam branching element holding structure, respectively, and whose surfaces facing the coupling element are flat inclined surfaces. And further comprising a waveguide element holding structure consisting of protrusions,
前記光線分岐素子が配置された前記枠体の両端は、前記光線分岐素子保持構造 を構成する突起部の傾斜面に当接して保持され、 Both ends of the frame where the light beam branching element is arranged are the light beam branching element holding structure. Is held in contact with the inclined surface of the protruding portion constituting the
前記導波素子の両端は、前記導波素子保持構造を構成する突起部の傾斜面に当 接して保持されることを特徴とする光合分波器。  An optical multiplexer / demultiplexer characterized in that both ends of the waveguide element are held in contact with the inclined surfaces of the protrusions constituting the waveguide element holding structure.
[18] 請求項 13に記載の光合分波器において、  [18] The optical multiplexer / demultiplexer according to claim 13,
前記光線分岐素子が整列配置される枠体を更に備え、  Further comprising a frame in which the beam branching elements are arranged and arranged;
前記導波素子は、長手方向の長さが前記枠体よりも長ぐ  The waveguide element is longer in the longitudinal direction than the frame body
前記結合素子ブロックは、  The coupling element block is:
前記基板の一端部と、一端部および他端部を挟む 2つの側端部とに形成された側 壁と、  A side wall formed on one end of the substrate and two side ends sandwiching the one end and the other end;
前記基板の 2つの側壁部に形成された側壁を、前記基板の一端部と他端部との中 央近傍から他端部まで切り欠いて形成され、前記結合素子に背向する面が平坦な 一対の傾斜面からなる光線分岐素子保持構造と、  The side walls formed on the two side wall portions of the substrate are formed by cutting out from the central vicinity of the one end portion and the other end portion of the substrate to the other end portion, and the surface facing the coupling element is flat. A beam splitter holding structure comprising a pair of inclined surfaces;
前記基板の 2つの側壁部に形成された側壁を、前記光線分岐素子保持構造の傾 斜面よりも前記基板の他端部に近い部分力 他端部まで更に切り欠いて形成され、 前記結合素子に背向する面が平坦な一対の傾斜面力 なる導波素子保持構造とを 更に備え、  The side walls formed on the two side wall portions of the substrate are further cut out to the other end portion of the light beam branching element holding structure closer to the other end portion than the inclined surface of the beam branching element holding structure. And a waveguide element holding structure having a pair of inclined surface forces with flat back surfaces,
前記光線分岐素子が配置された前記枠体の両端は、前記光線分岐素子保持構造 の傾斜面に当接して保持され、  Both ends of the frame on which the beam branching element is arranged are held in contact with the inclined surfaces of the beam branching element holding structure,
前記導波素子の両端は、前記導波素子保持構造の傾斜面に当接して保持される ことを特徴とする光合分波器。  Both ends of the waveguide element are held in contact with the inclined surfaces of the waveguide element holding structure.
[19] 請求項 1に記載の光合分波器において、 [19] In the optical multiplexer / demultiplexer according to claim 1,
前記受発光素子のそれぞれを一定間隔かつ平行に配置すると共に、前記受発光 素子のそれぞれの端面を同一平面上に位置決めする受発光素子固定構造を有する 受発光素子固定ブロックと、  A light receiving / emitting element fixing block having a light receiving / emitting element fixing structure that positions each of the light receiving / emitting elements in parallel at a constant interval and positions each end face of the light receiving / emitting element on the same plane;
前記光線分岐素子のそれぞれを同一平面上に前記受発光素子と同じ一定間隔で 配置する光線分岐素子ブロックと、  A beam splitter block that arranges each of the beam splitters on the same plane at the same regular intervals as the light receiving and emitting elements;
前記導波素子のそれぞれを同一平面上に前記受発光素子と同じ一定間隔で配置 する導波素子ブロックと、 前記受発光素子固定ブロック、前記結合素子ブロック、前記光線分岐素子ブロック 、前記導波素子ブロックを、空間を介して配置すると共に、前記結合素子ブロックと前 記導波素子ブロックとを対向して平行に配置し、前記光線分岐素子ブロックを前記結 合素子ブロックと前記導波素子ブロックとの間に平行に配置する光メインブロックと更 にを備え、 A waveguide element block in which each of the waveguide elements is arranged on the same plane at the same regular intervals as the light emitting and receiving elements; The light receiving / emitting element fixing block, the coupling element block, the light beam branching element block, and the waveguide element block are arranged through a space, and the coupling element block and the waveguide element block are opposed to each other in parallel. And an optical main block arranged in parallel between the coupling element block and the waveguide element block.
前記結合素子ブロックは、前記結合素子のそれぞれを同一平面上に前記受発光 素子と同じ一定間隔で配置し、  The coupling element block arranges the coupling elements on the same plane at the same regular intervals as the light emitting / receiving elements,
前記結合素子は、前記受発光素子からの光線を反射して平行光にすると共に、前 記受発光素子への光線を反射して集光し、  The coupling element reflects a light beam from the light emitting / receiving element into a parallel light, and reflects and collects the light beam to the light receiving / emitting element.
前記導波素子ブロックは、前記結合素子からの光線が前記結合素子に隣接する結 合素子に反射されるように位置決めされ、  The waveguide block is positioned such that light from the coupling element is reflected by a coupling element adjacent to the coupling element;
前記光線分岐素子ブロックは、前記結合素子と前記導波素子の光路上に前記光 線分岐素子が配置されるように位置決めされていることを特徴とする光合分波器。  The optical multiplexer / demultiplexer, wherein the beam splitter block is positioned so that the beam splitter is disposed on an optical path between the coupling device and the waveguide device.
[20] 請求項 19に記載の光合分波器において、  [20] The optical multiplexer / demultiplexer according to claim 19,
前記結合素子のうち少なくとも一つは、前記受発光素子から前記結合素子までの 距離の約 2倍の半径を有する球面力 なる凹面ミラーであることを特徴とする光合分 波器。  At least one of the coupling elements is a concave mirror having a spherical force having a radius of about twice the distance from the light emitting / receiving element to the coupling element.
[21] 請求項 19に記載の光合分波器において、  [21] The optical multiplexer / demultiplexer according to claim 19,
前記結合素子のうち少なくとも一つは、前記受発光素子から前記結合素子までの 距離とほぼ等しい半径を有する球面力 なる凹面ミラーであることを特徴とする光合 分波器。  At least one of the coupling elements is a concave mirror having a spherical force having a radius substantially equal to a distance from the light emitting / receiving element to the coupling element.
[22] 請求項 19に記載の光合分波器において、  [22] The optical multiplexer / demultiplexer according to claim 19,
前記結合素子のうち少なくとも一つは、前記受発光素子の光軸に垂直な面をもつ 平面ミラーであることを特徴とする光合分波器。  At least one of the coupling elements is a plane mirror having a plane perpendicular to the optical axis of the light emitting / receiving element.
[23] 請求項 19に記載の光合分波器において、 [23] The optical multiplexer / demultiplexer according to claim 19,
前記導波素子は、凹面ミラーであることを特徴とする光合分波器。  The optical multiplexer / demultiplexer, wherein the waveguide element is a concave mirror.
[24] 請求項 19に記載の光合分波器において、 [24] The optical multiplexer / demultiplexer according to claim 19,
前記受発光素子固定ブロックは、前記受発光素子の光軸と垂直な面を持つフラン ジを備え、 The light receiving / emitting element fixing block is a flange having a surface perpendicular to the optical axis of the light receiving / emitting element. Equipped with
前記光メインブロックは、前記フランジの面と接触し、前記受発光素子固定ブロック を固定する受発光素子固定面を備えることを特徴とする光合分波器。  The optical main / demultiplexer includes a light receiving / emitting element fixing surface that contacts the surface of the flange and fixes the light receiving / emitting element fixing block.
[25] 請求項 19に記載の光合分波器において、  [25] The optical multiplexer / demultiplexer according to claim 19,
前記受発光素子は、光ファイバであり、  The light emitting / receiving element is an optical fiber,
前記受発光素子固定ブロックは、前記受発光素子固定構造として、前記光ファイバ を固定する V溝、 U溝および四角断面の溝のいずれかを複数本備えることを特徴と する光合分波器。  The light receiving and emitting element fixing block includes, as the light receiving and emitting element fixing structure, a plurality of any one of a V groove, a U groove, and a square cross section groove for fixing the optical fiber.
[26] 請求項 19に記載の光合分波器において、 [26] The optical multiplexer / demultiplexer according to claim 19,
前記光線分岐素子ブロックは、  The beam splitter block is:
板状部材と、  A plate-like member;
前記板状部材に一定間隔で設けられた複数の貫通孔を備え、  Provided with a plurality of through holes provided in the plate member at regular intervals,
前記光線分岐素子は、前記貫通孔を塞ぐように配置されることを特徴とする光合分 波器。  The optical beam splitter is disposed so as to close the through hole.
[27] 請求項 19に記載の光合分波器において、  [27] The optical multiplexer / demultiplexer according to claim 19,
前記光線分岐素子ブロックは、  The beam splitter block is:
光学透明な板状部材と、  An optically transparent plate-like member;
前記板状部材の一方側の面に形成された無反射コート層とを備え、  An anti-reflective coating layer formed on one surface of the plate-like member,
光線分岐素子は、前記板状部材の他方側の面に一定間隔で配置されて 、ることを 特徴とする光合分波器。  An optical multiplexer / demultiplexer, wherein the beam splitters are arranged at regular intervals on the other surface of the plate-like member.
[28] 請求項 9に記載の光合分波器において、 [28] In the optical multiplexer / demultiplexer according to claim 9,
前記導波素子ブロックは、前記導波素子が配列された面の反対側の面に、曲面か らなる突起部を更に備えることを特徴とする光合分波器。  The optical multiplexer / demultiplexer, wherein the waveguide element block further includes a protrusion having a curved surface on a surface opposite to a surface on which the waveguide elements are arranged.
[29] 請求項 28に記載の光合分波器において、 [29] The optical multiplexer / demultiplexer according to claim 28,
前記突起部は、前記導波素子ブロックの中央に形成されていることを特徴とする光 合分波器。  The optical multiplexer / demultiplexer, wherein the protrusion is formed at the center of the waveguide element block.
[30] 導波素子が配列された導波素子ブロックに形成された曲面力 なる突起部を把持 可能な把持手段と、 前記把持手段を垂直方向および水平方向へ移動自在な位置調整手段と、 前記把持手段の移動に伴って反力を発生させる反力発生手段と [30] A gripping means capable of gripping a protrusion having a curved surface force formed on the waveguide element block in which the waveguide elements are arranged; A position adjusting means capable of moving the gripping means in a vertical direction and a horizontal direction; a reaction force generating means for generating a reaction force in accordance with the movement of the gripping means;
を備えることを特徴とする光合分波器の組み立て装置。  An optical multiplexer / demultiplexer assembling apparatus comprising:
請求項 30に記載の光合分波器の組み立て装置において、  The assembly device for an optical multiplexer / demultiplexer according to claim 30,
前記把持手段は、内径が前記導波素子ブロックの突起部の直径より小さ!、パイプ を先端に備える真空チャックであることを特徴とする光合分波器の組み立て装置。  An assembly apparatus for an optical multiplexer / demultiplexer, wherein the gripping means is a vacuum chuck having an inner diameter smaller than the diameter of the projection of the waveguide element block and having a pipe at the tip.
PCT/JP2005/016858 2005-06-14 2005-09-13 Optical multiplexer/demultiplexer and assembling device thereof WO2006134675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007521066A JPWO2006134675A1 (en) 2005-06-14 2005-09-13 Optical multiplexer / demultiplexer and assembly apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005173221 2005-06-14
JP2005-173221 2005-06-14
JP2005178762 2005-06-20
JP2005-178762 2005-06-20

Publications (1)

Publication Number Publication Date
WO2006134675A1 true WO2006134675A1 (en) 2006-12-21

Family

ID=37532046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016858 WO2006134675A1 (en) 2005-06-14 2005-09-13 Optical multiplexer/demultiplexer and assembling device thereof

Country Status (2)

Country Link
JP (1) JPWO2006134675A1 (en)
WO (1) WO2006134675A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274702A (en) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2012517028A (en) * 2009-01-30 2012-07-26 ケイアム・コーポレーション Optical assembly aligned by micromechanism
JP2012519283A (en) * 2009-02-27 2012-08-23 ベックマン コールター, インコーポレイテッド Fluorescence detection device with orthogonal laser inputs
JP2013171161A (en) * 2012-02-21 2013-09-02 Sumitomo Electric Ind Ltd Optical receiving module
JP2014500977A (en) * 2010-10-29 2014-01-16 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical interconnect fabric implemented using star couplers
US8989530B2 (en) 2010-07-22 2015-03-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Optoelectronic modules and submount for same and a method for manufacturing an array of optical devices
US9363021B2 (en) 2012-02-21 2016-06-07 Sumitomo Electric Industries, Ltd. Receiver optical module including optical de-multiplexer, lenses, and photodiodes vertically arranged to each other within housing
WO2017027864A1 (en) * 2015-08-12 2017-02-16 Nanoprecision Products, Inc. Multiplexer/demultiplexer using stamped optical bench with micro mirrors
EP3036571A4 (en) * 2013-08-21 2017-03-22 Hewlett-Packard Enterprise Development LP Device including mirrors and filters to operate as a multiplexer or de-multiplexer
US9880366B2 (en) 2015-10-23 2018-01-30 Nanoprecision Products, Inc. Hermetic optical subassembly
CN109633825A (en) * 2017-10-06 2019-04-16 住友电气工业株式会社 Wavelength-division demultiplexer systems and light receiver module
WO2019075377A1 (en) 2017-10-12 2019-04-18 Luxtera, Inc. Method and system for near normal incidence mux/demux designs
US10732353B2 (en) 2018-08-03 2020-08-04 Fujitsu Limited Wavelength multiplexing optical module, wavelength demultiplexing optical module, and optical module
JP7473546B2 (en) 2019-06-27 2024-04-23 株式会社堀場製作所 Analysis equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181357A (en) * 1991-08-29 1995-07-21 At & T Corp Method and device for bonding curved-surface body to substrate
JP2002243994A (en) * 2001-02-21 2002-08-28 Minolta Co Ltd Light source device
JP2003149490A (en) * 2001-11-14 2003-05-21 Sumitomo Electric Ind Ltd Optical multiplexer and demultiplexer
JP2003167175A (en) * 2001-12-04 2003-06-13 Matsushita Electric Ind Co Ltd Optical mounted substrate and optical device
JP2004117450A (en) * 2002-09-24 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> Tunable multiplexing/demultiplexing element
JP2004361904A (en) * 2003-04-11 2004-12-24 Yamaha Corp Optical component, its manufacturing method, processing tool for optical component and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4181519B2 (en) * 2004-03-23 2008-11-19 日本電信電話株式会社 Optical multiplexer / demultiplexer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181357A (en) * 1991-08-29 1995-07-21 At & T Corp Method and device for bonding curved-surface body to substrate
JP2002243994A (en) * 2001-02-21 2002-08-28 Minolta Co Ltd Light source device
JP2003149490A (en) * 2001-11-14 2003-05-21 Sumitomo Electric Ind Ltd Optical multiplexer and demultiplexer
JP2003167175A (en) * 2001-12-04 2003-06-13 Matsushita Electric Ind Co Ltd Optical mounted substrate and optical device
JP2004117450A (en) * 2002-09-24 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> Tunable multiplexing/demultiplexing element
JP2004361904A (en) * 2003-04-11 2004-12-24 Yamaha Corp Optical component, its manufacturing method, processing tool for optical component and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274702A (en) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2012517028A (en) * 2009-01-30 2012-07-26 ケイアム・コーポレーション Optical assembly aligned by micromechanism
JP2012519283A (en) * 2009-02-27 2012-08-23 ベックマン コールター, インコーポレイテッド Fluorescence detection device with orthogonal laser inputs
US8989530B2 (en) 2010-07-22 2015-03-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Optoelectronic modules and submount for same and a method for manufacturing an array of optical devices
JP2014500977A (en) * 2010-10-29 2014-01-16 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical interconnect fabric implemented using star couplers
JP2013171161A (en) * 2012-02-21 2013-09-02 Sumitomo Electric Ind Ltd Optical receiving module
US9363021B2 (en) 2012-02-21 2016-06-07 Sumitomo Electric Industries, Ltd. Receiver optical module including optical de-multiplexer, lenses, and photodiodes vertically arranged to each other within housing
EP3036571A4 (en) * 2013-08-21 2017-03-22 Hewlett-Packard Enterprise Development LP Device including mirrors and filters to operate as a multiplexer or de-multiplexer
WO2017027864A1 (en) * 2015-08-12 2017-02-16 Nanoprecision Products, Inc. Multiplexer/demultiplexer using stamped optical bench with micro mirrors
US10222553B2 (en) 2015-08-12 2019-03-05 Nanoprecision Products, Inc. Multiplexer/demultiplexer using stamped optical bench with micro mirrors
US9880366B2 (en) 2015-10-23 2018-01-30 Nanoprecision Products, Inc. Hermetic optical subassembly
US10761280B2 (en) 2015-10-23 2020-09-01 Cudoquanta Florida, Inc Hermetic optical subassembly
CN109633825A (en) * 2017-10-06 2019-04-16 住友电气工业株式会社 Wavelength-division demultiplexer systems and light receiver module
CN109633825B (en) * 2017-10-06 2023-02-21 住友电气工业株式会社 Wavelength division demultiplexing system and optical receiver module
WO2019075377A1 (en) 2017-10-12 2019-04-18 Luxtera, Inc. Method and system for near normal incidence mux/demux designs
EP3695256A4 (en) * 2017-10-12 2021-07-07 Luxtera LLC Method and system for near normal incidence mux/demux designs
US10732353B2 (en) 2018-08-03 2020-08-04 Fujitsu Limited Wavelength multiplexing optical module, wavelength demultiplexing optical module, and optical module
JP7473546B2 (en) 2019-06-27 2024-04-23 株式会社堀場製作所 Analysis equipment

Also Published As

Publication number Publication date
JPWO2006134675A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2006134675A1 (en) Optical multiplexer/demultiplexer and assembling device thereof
US9864145B2 (en) Multiplexer/demultiplexer using stamped optical bench with micro mirrors
KR100790675B1 (en) Optical multiplexer/demultiplexer
US8380075B2 (en) Optical transceiver module
JP5439191B2 (en) Optical transceiver module
CN209858779U (en) Miniaturized wavelength-division multiplexing light receiving assembly
KR101001277B1 (en) Wavelength division multiplexing optical module
JP2009093101A (en) Optical module
WO2001086329A2 (en) Cost-effective wavelength division multiplexer and demultiplexer
US10852482B1 (en) Precision TFF POSA and WDM systems using parallel fiber interface devices
JP2002261300A (en) Light receiver
US20080013955A1 (en) Optical Module and Optical Wavelength Multiplexing and Demultiplexing Device
US11474299B2 (en) Wavelength-division multiplexing devices with modified angles of incidence
US7215853B2 (en) Optical module formed on common substrate for branching an optical signal
US10182275B1 (en) Passive optical subassembly with a signal pitch router
CN113917625A (en) Optical module and method for manufacturing optical module
US7412148B2 (en) Optical module including an optical component and an optical device
US11057145B2 (en) Wavelength-division multiplexing device with a unified passband
JP4181519B2 (en) Optical multiplexer / demultiplexer
CN112114401A (en) Miniaturized wavelength division multiplexing light receiving assembly and assembling method thereof
US20090032984A1 (en) Method for manufacturing an optical fiber with filter and method for batch manufacturing optical fibers with filter
US9671576B1 (en) CWDM transceiver module
JP2008020720A (en) Optical waveguide and parallel optical transmitter-receiver
JP2003107276A (en) Optical fiber collimator, lens for optical fiber collimator and optical coupling parts
JP2005274700A (en) Optical multiplexer/demultiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521066

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05783454

Country of ref document: EP

Kind code of ref document: A1