WO2006082675A1 - Transmission device, transmission aiding device, reception device, reception aiding device, transmission/reception system, and communication method - Google Patents

Transmission device, transmission aiding device, reception device, reception aiding device, transmission/reception system, and communication method Download PDF

Info

Publication number
WO2006082675A1
WO2006082675A1 PCT/JP2005/018837 JP2005018837W WO2006082675A1 WO 2006082675 A1 WO2006082675 A1 WO 2006082675A1 JP 2005018837 W JP2005018837 W JP 2005018837W WO 2006082675 A1 WO2006082675 A1 WO 2006082675A1
Authority
WO
WIPO (PCT)
Prior art keywords
order
power
modulation signal
parallel
multicarrier modulation
Prior art date
Application number
PCT/JP2005/018837
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Okuda
Masato Saito
Heiichi Yamamoto
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2007501506A priority Critical patent/JPWO2006082675A1/en
Publication of WO2006082675A1 publication Critical patent/WO2006082675A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Definitions

  • Transmission device transmission auxiliary device, reception device, reception auxiliary device, transmission / reception system, and communication method
  • the present invention relates to a transmission device, a transmission auxiliary device, a reception device, a reception auxiliary device, a transmission / reception system, and a communication method that are used in a digital communication system and perform communication using a multicarrier modulation method.
  • the multi-carrier modulation method is a method in which a series of data is distributed to a large number of carriers and transmitted in parallel with respect to a single carrier method for carrying carriers.
  • OFDM Orthogonal frequency division multiple access
  • the Frequency Division Multiplexing method is resistant to frequency selective fading, and it is possible to reduce the effects of intersymbol interference in a multipath environment using guard intervals. I'll be.
  • CDMA Code Division
  • PN codes codes
  • MC-CDMA Multi-Carrier Code Division Multiple Access
  • the transmission signal of multicarrier transmission is the sum of modulated subcarriers, and therefore has a peak power much higher than the average power. Peak-to-average This is called the Power Ratio problem.
  • PAPR increases with the number of subcarriers constituting a signal. Therefore, in the OFD M and MC-CDMA systems, which are multicarrier modulation systems, the number of subcarriers is as large as several thousand, so having a very large PAPR is a problem.
  • FIG. 32 shows a functional block diagram showing the configuration of a conventional OFDMZxDSL transmitter using a phase rotation sequence.
  • the phase rotation sequence selection unit 820 reads the phase rotation amount (in this example, “0” or “ ⁇ ”) stored in the phase rotation sequence 810, and codes for specifying the phase rotation amount (Referred to as phase rotation sequence information) is sent to the S / P conversion unit 830 and the amount of phase rotation is sent to the phase rotation unit 840.
  • the S / P converter 830 converts the input data and phase rotation sequence information from a serial format to a parallel format (serial / parallel conversion). ) And put it on a predetermined number of subcarriers.
  • the parallelized data sequence is ⁇ d
  • the signal point of the data string is indicated by a black circle on the coordinate axis with the I channel component as the horizontal axis and the Q channel component as the vertical axis.
  • phase rotation unit 840 If the amount of phase rotation is ⁇ , 0, ⁇ , ⁇ as shown in the figure, the signal points after phase rotation are as shown. In other words, d rotates ⁇ (180 degrees) counterclockwise on the coordinate axis, and d
  • phase-rotated data sequence is subjected to Inverse Fast Fourier Transformation in IFFT section 850, and the frequency domain (amplitude vs. frequency) data is converted into a time domain (amplitude vs. time) signal. Converted to.
  • peak power measurement section 860 measures the peak power of the signal over one symbol of the OFDM signal, and notifies phase rotation sequence selection section 820 when the peak power is greater than a predetermined threshold.
  • the phase rotation sequence selection unit 820 is different from the previous time. Thereafter, the same processing as described above is repeated, and the data is sent to the S / P converter 830.
  • the peak power measurement unit 860 has measured the peak power to be equal to or less than a predetermined threshold
  • the signal received from the peak power measurement unit 860 is transmitted from the wireless transmission unit 870 via the antenna 880.
  • FIG. 33 is a functional block diagram showing a configuration of a conventional MC_CDMA transmission apparatus.
  • spreading section 915 — :! ⁇ M receives the channelization code from channelization code generation section 910 and spreads the data.
  • the channelization code is ⁇ 1,-1, 1, —1 ⁇ for the I channel and ⁇ 1, 1, —1, — 1 ⁇ for the Q channel. .
  • scramble information selection section 990 sends the scramble code multiplied by the data to S / P conversion section 940, and S / P conversion section 940 receives the multiplication received from scramble code multiplication section 930.
  • the subsequent data and the scrambling code received from scrambling information selection section 990 are placed on different subcarriers.
  • IFFT section 950 sends the signal after IFFT is applied to the received data to peak power measurement section 960. This signal is, for example, as shown in (e).
  • Peak power measurement section 960 measures the peak power of the signal received from IFFT section 950, and if the peak power is greater than a predetermined threshold, scramble code generation section 925 To generate a scramble code different from the previous one. Thereafter, the scramble code multiplication unit 930 and the scramble information selection unit 990 repeat the same processing as described above, and send data to the S / P conversion unit 940. On the other hand, if the peak power measurement unit 960 has measured the peak power below a predetermined threshold, the signal received from the peak power measurement unit 960 is transmitted from the wireless transmission unit 970 via the antenna 980.
  • the FDM / xDSL transmission device described above has a phase rotation sequence 810 that stores the amount of phase rotation, and stores the amount of phase rotation as the number of subcarriers increases.
  • the amount of memory for doing so will also be enormous.
  • the transmitter using this phase rotation amount has a problem that there is a lot of redundancy.
  • the MC_CDMA transmission apparatus described above is configured to cyclically shift the scramble code, and therefore cannot be applied to other multicarrier systems such as the OFDM system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-32220
  • the present invention has been made in view of the above problems, and can be applied to all multi-carrier modulation schemes including OFDM, xDSL and MC-CD MA schemes, and has a lot of redundancy. It is an object of the present invention to provide a transmission device, a reception device, a transmission / reception system, and a communication method that can reduce power during transmission without requiring a phase rotation sequence that requires a large amount of memory.
  • a transmission apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the order changing unit.
  • a conversion means for converting a data sequence including parallel symbols whose order is rearranged and generating a multicarrier modulation signal; and measuring a power of a predetermined format of the multicarrier modulation signal generated by the conversion means;
  • a power measuring means for determining whether or not the power is greater than a preset threshold; and when the power measuring means determines that the power is greater than the threshold, the order changing means is controlled to control the order Reordering the order of the parallel symbols, controlling the converting means to generate a multicarrier modulation signal from the parallel symbols, and the power measuring means
  • control means for controlling to measure the power of the predetermined format of the multicarrier modulation signal, Transmitting means for transmitting the multicarrier modulation signal when the power measuring means determines that the power is equal to or less than the threshold before the
  • a transmission apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the order changing unit.
  • the conversion means for converting the data sequence including the parallel symbols in which the order is rearranged to generate a multicarrier modulation signal, and the power of a predetermined format of the multicarrier modulation signal generated by the conversion means are measured, and the minimum Power measuring means for sequentially storing multi-carrier modulation signals having different powers, and controlling the order changing means to rearrange the order of the parallel symbols, and controlling the converting means to control multi-carriers from the parallel symbols.
  • Control means for generating a modulation signal and controlling the power measurement means to measure the power of the predetermined format of the multicarrier modulation signal When the series of processing by the control means reaches a predetermined number, characterized in that it comprises a transmitting means for transmitting the multicarrier modulated signal being remembers to the power measuring means.
  • a transmission apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the order changing unit.
  • Measure power of a predetermined format of the multicarrier modulation signal generated by the conversion means and select a set having a multicarrier modulation signal that minimizes the power measurement.
  • transmission means for transmitting a set of multicarrier modulation signals selected by the power measurement means.
  • a transmission apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and an order by the order changing unit.
  • An inner product calculation means for calculating a numerical value corresponding to a predetermined form of power by taking an inner product of the parallel symbols in which the symbols are rearranged and a predetermined vector;
  • a power measuring means for determining whether or not the numerical value calculated by the calculating means is greater than a preset threshold; and when the calculated numerical value is determined to be greater than the threshold by the power measuring means,
  • the order changing means is controlled to rearrange the order of the parallel symbols again, and the inner product calculating means is controlled to take the inner product of the parallel symbols and the predetermined vector, corresponding to the power of the predetermined format.
  • the power measuring unit includes at least a symbol including a parallel symbol whose order is rearranged by the order changing unit. Converts the data ⁇ IJ, converting means for generating a multicarrier modulated signal, characterized in that it comprises a transmitting means for transmitting the multicarrier modulated signal made viable by the conversion means.
  • a transmission apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and an order by the order changing unit.
  • the inner product calculating means for calculating a numerical value corresponding to power in a predetermined format by taking the inner product of the rearranged parallel symbol and a predetermined vector, and the numerical value calculated by the inner product calculating means is minimized.
  • Power measuring means for sequentially storing parallel symbols; and reordering the parallel symbols by controlling the order changing means; and controlling the inner product calculating means to control the inner of the parallel symbols and the predetermined vector.
  • Control to take a product, calculate a numerical value corresponding to the power of the predetermined format, and control the power measuring means to store the parallel symbol that minimizes the calculated numerical value And when a series of processing by the control means reaches a predetermined number of times, a data string including at least the parallel symbols stored by the power measuring means is converted, and a multicarrier modulation signal is converted. It is characterized by comprising conversion means for generating and transmission means for transmitting the multi-carrier modulation signal generated by the conversion means.
  • a transmission apparatus includes a plurality of sets of parallelizing means for converting input data into parallel symbols and order changing means for rearranging the order of the parallel symbols. And each of the order changing means performs rearrangement in a different order. At least one order changing means is provided, and the order is changed by the order changing means.
  • An inner product calculating means for calculating a numerical value corresponding to power in a predetermined format by taking an inner product of the parallel symbol replaced with a predetermined vector, and the smallest numerical value calculated by the inner product calculating means.
  • a power measuring means for determining the data a conversion means for converting the data string including the parallel symbol having at least the numerical value determined by the power measuring means to generate a multicarrier modulation signal, and the converting means Transmitting means for transmitting the multi-carrier modulated signal generated by the above.
  • the transmission auxiliary device can be connected to a transmission device including at least a network interface card, and can transmit a digital signal to the transmission device.
  • An order change means for rearranging the order of input data as serial symbol power, serial symbols whose order is rearranged by the order change means, and information on the rearrangement of the order performed by the order change means;
  • a synthesizing unit that generates a single data string, and a data sequence that is output when the data string synthesized by the synthesizing unit is received and input to the transmitting device including the network interface card.
  • Reproduction means for reproducing and outputting the carrier modulation signal; and a predetermined form of the multicarrier modulation signal output by the reproduction means.
  • Power measuring means for determining whether or not the power is greater than a preset threshold, and when the power measuring means determines that the power is greater than the threshold, the order The changing means is controlled to rearrange the order of the serial symbols, the converting means is controlled to generate a multicarrier modulation signal from the serial symbols, and the power measuring means is controlled to control the multicarrier modulation signal.
  • Control means for measuring the predetermined type of power, and when the power measurement means determines that the power is equal to or less than the threshold before the series of processing by the control means reaches a predetermined number of times.
  • Transmitting means for transmitting the data string generated by the synthesizing means as the digital signal to a transmitting device including the network interface card. And wherein the Rukoto.
  • a transmission auxiliary apparatus is a transmission auxiliary apparatus that can be connected to a transmission apparatus including at least a network interface card and can transmit a digital signal to the transmission apparatus.
  • Order changing means for rearranging the order of input data composed of serial symbols, and the serial symbols whose order has been rearranged by the order changing means And the information on the rearrangement of the order performed by the order changing means to generate one data string, the data string synthesized by the synthesizing means is received, and the data string is received by the network interface.
  • Reproducing means for reproducing and outputting a multicarrier modulation signal output when input to a transmitting device including a card, and measuring the power of a predetermined format of the multicarrier modulation signal output by the reproducing means,
  • the serial symbol is controlled by controlling the power measurement means for storing the data sequence that is the source of the multicarrier modulation signal in the combining means and the order changing means.
  • Reordering, and controlling the reproduction means to generate a multicarrier modulation signal from the serial symbol Control means for controlling the measurement means to measure the power of the predetermined format of the multi-carrier modulation signal, and stored in the synthesis means when a series of processing by the control means reaches a predetermined number of times.
  • a communication method includes a communication method in a transmission / reception system configured to receive at least one receiving apparatus that receives a multicarrier modulation signal transmitted from at least one transmitting apparatus.
  • the transmitting apparatus includes: a parallelizing step of converting input data into parallel symbols; an order changing step of rearranging the order of the parallel symbols; and a parallel whose order is rearranged by at least the order changing step.
  • the order of the parallel symbols is rearranged again, a multicarrier modulation signal is generated from the parallel symbols by the conversion step, and the power of the predetermined format of the multicarrier modulation signal is measured by the power measurement step.
  • the receiving device has the transmitting device power as well as the multicarrier.
  • Receiving the modulation signal, converting the multi-carrier modulation signal to generate a parallel 1J symbol, and rearranging the order performed by the order changing step from the parallel symbols generated by the inverse conversion step Based on the extraction process for extracting the information of the above and the rearrangement of the order extracted by the extraction process, the parallel symbol is subjected to the reverse process of the rearrangement performed by the order change process.
  • An order recovery step for generating the same parallel symbols as those converted by the parallelization step, and serialization for reconverting the parallel symbols generated by the order recovery step into data before conversion in the parallelization step And a process.
  • a communication method is a communication method in a transmission / reception system configured to receive at least one receiving device capable of receiving a multicarrier modulation signal transmitted from at least one transmitting device. Then, the transmitting apparatus includes a parallelizing step for converting input data into parallel symbols, an order changing step for rearranging the order of the parallel symbols, and information on the order rearrangement performed by the order changing step.
  • the order of the parallel symbols is rearranged again by the order changing step, a multi-carrier modulation signal is generated from the parallel symbols by the converting step, and the power measuring step
  • the inverse transform step of generating a parallel symbol converts the multi-carrier modulated signal, for each symbol of parallel symbols generated by the inverse conversion means
  • the symbol in which the information for identifying the rearrangement in the pilot insertion step is inserted is specified, and the symbol is determined from the position of the symbol.
  • the extraction step for extracting the information on the rearrangement of the order performed by the order changing step and the information on the rearrangement of the order extracted by the extraction step Based on the extraction step for extracting the information on the rearrangement of the order performed by the order changing step and the information on the rearrangement of the order extracted by the extraction step, the arrangement performed by the order changing step on the parallel symbols is performed.
  • An order recovery process that performs the reverse process and generates the same parallel symbols as those converted by the parallelization process, and the parallel symbols generated by the order recovery process before the conversion in the parallelization process.
  • a serialization process for re-converting the data is performed.
  • FIG. 1 is a schematic configuration diagram showing a multicarrier modulation signal transmission / reception system according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram showing a configuration of a transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram for explaining a function of a shift register used as a mapper in the embodiment of the present invention.
  • FIG. 4 is a flowchart showing the flow of processing performed by the OFDMZxDSL transmission apparatus shown in FIG.
  • FIG. 5 is a flowchart showing in detail the flow of processing in step S102 of FIG.
  • FIG. 6 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart showing the flow of processing performed by the OFDM / xDSL receiver shown in FIG.
  • FIG. 8 is a functional block diagram showing a configuration of a transmission apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart showing a flow of processing performed by the OFDM / xDSL transmission apparatus shown in FIG.
  • FIG. 10 is a functional block diagram showing the configuration of the transmitting apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 is a flowchart showing a flow of processing performed by the OFDM / xDSL transmission apparatus shown in FIG.
  • FIG. 13 is a flowchart showing the flow of processing performed by the OFDM / xDSL receiver shown in FIG.
  • FIG. 14 is a schematic diagram showing pilot insertion performed by the pilot insertion unit 135.
  • FIG. 14 is a schematic diagram showing pilot insertion performed by the pilot insertion unit 135.
  • FIG. 15 is a functional block diagram showing the configuration of the transmitting apparatus according to Embodiment 4 of the present invention.
  • FIG. 16 is a flowchart showing the flow of processing performed by the MC-CDMA transmission apparatus shown in FIG.
  • FIG. 17 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 18 is a flowchart showing a flow of processing performed by the receiving apparatus shown in FIG. 17.
  • FIG. 19 shows a case where the number of subcarriers is changed in the transmitting apparatus according to Embodiment 4 of the present invention. It is a figure which shows a PAPR characteristic.
  • FIG. 20 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 4 of the present invention.
  • FIG. 21 is a functional block diagram showing the configuration of the transmitting apparatus according to Embodiment 4 of the present invention.
  • FIG. 22 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of a normal wireless LAN.
  • FIG. 23 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of a wireless LAN according to Embodiment 5 of the present invention.
  • FIG. 24 is a diagram showing PAPR characteristics when the transmitter according to Embodiment 5 of the present invention is used, the number of interleavers provided in the mapper unit, and the number of conventional phase rotation sequences are changed.
  • FIG. 25 is a diagram showing out-of-band radiation characteristics when the transmitting unit according to Embodiment 5 of the present invention is used.
  • FIG. 26 is a schematic diagram for explaining the function of an interleaver used as a mapper.
  • FIG. 27 is a schematic diagram showing one embodiment of a pseudorandom number generating means provided in the interleaver.
  • FIG. 28 is a schematic diagram for explaining the function of a block interleaver used as a mapper.
  • FIG. 29 is a schematic diagram for explaining excess power.
  • FIG. 30 is a schematic diagram showing a configuration of a mapper section provided with a plurality of mappers.
  • FIG. 31 is a functional block diagram showing a configuration of a transmission apparatus according to a modification of the present invention.
  • FIG. 32 is a functional block diagram showing the configuration of a conventional OFDM / xDSL transmission apparatus using a phase rotation sequence.
  • FIG. 33 is a functional block diagram showing a configuration of a conventional MC-CDMA transmission device.
  • OFDM / xDSL and downlink MC-CDMA will be described with reference to the drawings as an example of a multicarrier modulation signal transmission / reception system.
  • FIG. 1 is a schematic configuration diagram showing a multicarrier modulation signal transmission / reception system (hereinafter also referred to as a transmission / reception system as appropriate) according to an embodiment of the present invention.
  • the transmission / reception system includes at least one base station (transmitting device) 10 and at least one mobile phone (receiving device) 20.
  • Radio waves transmitted from the base station 10 are encoded so that the peak power value is low, and the mobile phone 20 that has received the radio waves decodes and displays the data transmitted from the base station 10 as character data. Or send as audio data Is possible.
  • Fig. 1 the mode in which the mobile phone 20 receives the signal transmitted from the base station 10 has been described, but the embodiment according to the present invention is not limited thereto, and for example, by wireless LAN,
  • a plurality of user terminals may be configured to transmit and receive signals to each other, or may be configured to transmit and receive signals between at least one user terminal and an access point.
  • wireless communication methods such as FWA (Fixed Wireless Access) and UWB (Ultra Wide Band)
  • signals are transmitted and received between the base station and at least one user terminal.
  • ADSL Asymmetric Digital
  • a signal may be transmitted and received between the telephone station and the user terminal.
  • FIG. 2 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 1 of the present invention.
  • the transmitter 10 includes a mapper selection unit 110, an S / P conversion unit (parallelization unit) 120, a mapa unit (order change unit) 130, an IFFT unit (conversion unit) 140, a peak power measurement unit (power measurement unit) 15 0, a radio transmission unit (transmission means) 160, and an antenna 170.
  • the transmission device and the reception device are provided with a control unit (control means) (not shown), and the control unit controls each functional unit. Perform the desired function.
  • the control unit controls the mapper unit 130 to generate parallel symbols. The order is rearranged, IFFT section 140 is controlled to generate a multicarrier modulation signal from the parallel symbol, and peak power measurement section 150 is controlled to measure the power of the predetermined format of the multicarrier modulation signal. Make it.
  • the mapper selection unit 110 selects which mapper among the mappers provided in the mapper unit 130. Whether the input data is to be processed, and the mapper information ⁇ i ⁇ representing the selected mapper is transmitted to the IFFT section 140 as side information. Further, the mapper selection unit 110, when the value of ⁇ i ⁇ exceeds the maximum number of mappers prepared in the mapper unit 130 (hereinafter referred to as “i” max ⁇ ), the peak power measurement unit 150 And send the signal with the lowest peak power in the process up to that point.
  • SZP conversion section 120 converts input data from a serial (serial) format to a parallel (parallel) format, and places the data (parallel symbol) on a predetermined subcarrier.
  • the mapper unit 130 includes a plurality of mappers, and performs mapping using the mapper selected by the mapper selection unit 110 on the parallel symbols received by the S / P conversion unit 120. Sort by.
  • the mapper is, for example, a shift register.
  • FIG. 3 is a schematic diagram for explaining the function of the shift register used as a mapper in the embodiment of the present invention.
  • parallel data is input in S / P converter 120.
  • Input data parallel symbols
  • ⁇ d, d, d, ..., d ⁇ for one symbol of the parallelized OFDM signal is
  • ⁇ m ⁇ is shifted. That is, when m is smaller than N, as shown in Fig. 3, the position of input data d is replaced with data d, and the position of input data d is replaced with data d.
  • IFFT section 140 combines the parallel symbol received from mapper section 130 and the mapper information received by mapper selection section 110 into one data string, performs IFFT on the data string, and performs frequency domain (amplitude vs frequency). Data is converted to a multi-carrier modulation signal in the time domain (amplitude vs. time). In this way, since data is spread in the frequency direction, the OFDM and MC-CDMA systems are frequency spread, and a frequency diversity effect can be obtained.
  • the mapper information is inserted into a predetermined subcarrier.
  • This mapper information is information indicating the selected mapper. For example, when the tenth matuba is used, data corresponding to “10” is inserted into a predetermined subcarrier.
  • the peak power measurement unit 150 stores a predetermined threshold, and the peak power, which is an instantaneous value (square of amplitude) of power at each time, of the time domain signal received from the IFFT unit 140 is stored. When the measured peak power is larger than the stored threshold value, the fact is notified to the mapper selection unit 110.
  • the peak power measurement unit 150 stores the signal in the peak power measurement unit 150.
  • the signal is transmitted to the wireless transmission unit 160.
  • Radio transmission section 160 transmits the signal received from peak power measurement section 150 via antenna 170.
  • FIG. 4 is a flowchart showing the flow of processing performed by the O FDM / xDSL transmission apparatus shown in FIG.
  • the QPSK method is a method of transmitting by changing the phases of two carriers that are 90 degrees out of phase according to the input data and combining them.
  • QAM Quadrature Amplitude Modulation
  • This QAM includes, for example, 16QAM that transmits signals by changing the carrier to 16 different states with different amplitudes and phases, and 64QAM that transmits signals by changing to 64 different states.
  • the QPSK system is equivalent to 4QAM.
  • input data is separated into an I channel (in-phase component) and a Q channel (quadrature component) by an IQ separator (splitter) (not shown).
  • I channel in-phase component
  • Q channel quadrature component
  • the carrier phase is shifted by 90 degrees.
  • the S / P converter 120 converts the data into a parallel format (step S101).
  • Figure 2 shows.
  • the signal point of the data is indicated by a black circle on the coordinate axis with the I channel component as the horizontal axis and the Q channel component as the vertical axis.
  • the transmitting apparatus maps the parallel symbols by a mapper, captures the mapper information, converts it to a multicarrier modulation signal, and a signal having a low peak power among the signals.
  • the mapper information is information such as the number of shifts when a shift register is used as the mapper, for example.
  • FIG. 5 is a flowchart showing in detail the process flow in step S102.
  • the mapping performed by the mapper unit may be the same or different between the I channel and the Q channel.
  • the mapping is different between the I channel and the Q channel, it is preferable because the effect of reducing the peak power described later becomes larger.
  • mapa ⁇ 1 ⁇ means that when the mapper unit 130 uses a shift register, for example, the shift number is “1”.
  • the signal points after the shift when this shift number is “1” are shown in FIG.
  • the input data ⁇ d, d, d, ..., d ⁇ is
  • IFFT section 140 receives the data subjected to the mapping of the mapper section 130, combines it with the mapper information received from mapper selection section 110, and performs IFFT on the data string. (Step S203). As a result, I-channel and Q-channel signal waveforms as shown in FIG. 2 are obtained. Then, the peak power measurement unit 150 measures the peak power at each time of the signal (step S204). As a result, if the peak power of the signal is equal to or lower than the predetermined threshold (No in step S205), the signal is transmitted via the antenna 170 (step S206). If there is next data to be transmitted (Yes in step S212), the process returns to step S201 and the subsequent processing is continued.
  • step S207 determines that the peak power is the smallest measured up to now for the signal. Is determined (step S207). In this case, the peak power is determined to be minimum (step S207) because it is still the first time that step S207 has been reached. In step S207, Yes), it is overwritten and stored in a predetermined area in the peak power measurement unit 150 (step S208).
  • the peak power measurement unit 150 notifies the mapper selection unit 110 to select the next mapper.
  • step S210 if it is determined in step S210 that the value of ⁇ i ⁇ exceeds Umax ⁇ (Yes in step S210), the peak power measurement unit 150 stores the stored signal, that is, up to this point. Then, the signal having the minimum peak power is transmitted to the wireless transmission unit 160, and the wireless transmission unit 160 transmits the signal via the antenna 170 (step S211). If there is next data to be transmitted (Yes in step S212), the process returns to step S201, and the subsequent processing is continued.
  • FIG. 6 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 1 of the present invention
  • FIG. 7 is a flowchart showing the flow of processing performed by the OFDM / xDSL receiving apparatus shown in FIG. .
  • the receiving device 20 includes an antenna 210, a radio receiving unit 220, an FFT unit (inverse conversion unit) 230, a mapper information extraction unit (extraction unit) 240, a demapper unit (order recovery unit) 250, and a P / S conversion unit (serialization).
  • Means) 260 is configured.
  • the antenna 210 receives a signal transmitted from the transmission device 10 (step S301)
  • the signal is transmitted to the FFT unit 230 via the wireless reception unit 220.
  • the FFT unit 230 performs fast Fourier transformation on the signal received from the radio reception unit 220, and converts the time domain (amplitude vs. time) signal into frequency domain (amplitude vs. frequency) data (Ste S302).
  • the mapper information extraction unit 240 extracts the mapper information from the data decomposed into each subcarrier by the FFT unit 240 (step S303), and sends it to the demapper unit 250.
  • the demapper unit 250 includes a plurality of mappers that are the same as those provided in the transmission device 10, and is used in the mapper unit 130 based on the mapper information received from the mapper information extraction unit 240.
  • the mapper is identified and the process (demapping) reverse to the mapper is performed (step S304). This is because, for example, when the mapper provided in the mapper unit 130 is a shift register, and the number of shifts is “1” as shown in FIG. Corresponds to shifting by “1”.
  • the PZS conversion unit 260 converts the parallel format data received from the demapper unit 250 into the serial format (step S305). If there is next data to be continuously received (Yes in step S 306), the process returns to step S 301 and the subsequent processing is continued.
  • the present invention is applicable to all multicarrier modulation schemes, and it is not necessary to use a phase rotation sequence that requires a large amount of memory. Since parallel symbols are rearranged before conversion by, power can be effectively reduced.
  • a multicarrier modulation signal is transmitted as soon as the power falls below the threshold, processing can be performed at high speed.
  • the power can be reduced more reliably.
  • the input data is mapped in the mapper unit 130, and the mapper selection process is continuously performed so that the peak power of the mapped data is reduced.
  • the peak power measurement unit 150a, and the wireless transmission unit 160 have functions as a parallelization unit, a sequence change unit, a conversion unit, a power measurement unit, and a transmission unit, respectively.
  • FIG. 8 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 2 of the present invention.
  • the number of mappers included in the mapper unit 130 (hereinafter, the number is referred to as M) is parallel. There is only one Matsupa in each of the Matsupa parts 130-1 to M. Suppose that For example, when a shift register is used as the mapper, the mapper unit 1301 has a shift number “1”, and the mapper unit 130-M has a shift number “M”.
  • the S / P converters 120_1 to M and the IFFT units 140_1 to M perform the same functions as the SZP converter 120 and the IFFT unit 140 of the first embodiment.
  • the mapper numbers (“1” to “! L”) are input to the IFFT units 140_1 to M as mapper information.
  • the peak power measurement unit 150a measures the peak power of the signals input in parallel from the IFFT units 140-1 to M, and transmits only the signal having the lowest peak power through the wireless transmission unit 160.
  • FIG. 9 is a flowchart showing the flow of processing performed by the O FDM / xDSL transmission apparatus shown in FIG.
  • the S / P converters 120_1 to M convert serial data into parallel symbols (step S351).
  • the mapper units 130_1 to M perform mapping to the parallel symbols (step S352), and send the IFFT units 140-1 to 140-M.
  • the IFFT unit 140-:!-M that has received the parallel symbol for the parallel symbol 130—:! To M applies IFFT to the data string in which the parallel symbol and the mapper information are combined into one (SFP Step S353), and M signals are sent to the peak power measurement unit 150a.
  • the peak power measurement unit 150a receives signals mapped using the mappers ⁇ 1 ⁇ to ⁇ M ⁇ from the IFFT units 140-1 to M, the peak power measurement unit 150a measures the peak power of these signals (steps). S354). At this time, the peak power of M signals may be measured in parallel by providing a plurality of CPUs, or may be sequentially performed by one CPU.
  • the peak power measurement unit 150a As a result of the measurement by the peak power measurement unit 150a, when a signal that minimizes the peak power (in the example shown in Fig. 8, a signal using the mapa ⁇ 2 ⁇ ) is obtained, the signal is measured by measuring the peak power. After being transmitted from unit 150 a to radio transmission unit 160, it is transmitted through antenna 170.
  • the receiving apparatus As a receiving apparatus corresponding to the case where the transmitting apparatus according to the present embodiment is used, the receiving apparatus (see FIG. 6) according to the first embodiment described above can be used. Omitted.
  • the present invention can be applied to all multicarrier modulation schemes, and it is not necessary to use a phase rotation sequence that requires a large amount of memory. Since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. In addition, processing from parallelization of input data to power measurement can be performed in parallel, enabling high-speed processing.
  • FIG. 10 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is a functional block diagram showing the configuration of the reception apparatus according to Embodiment 3 of the present invention.
  • FIGS. 10 and 11 show a mode in which the mapper selection process is continuously performed so that the peak power of the mapped data becomes small as shown in FIG. Then, in the transmitting apparatus according to the present embodiment, in addition to the transmitting apparatus in the first embodiment (see FIG. 2), instead of inserting the mapper information into the S / P conversion unit 121, the mapper information is newly transmitted.
  • the pilot insertion unit (pilot insertion means) 135 is provided, and the mapper selection unit 111 is configured to send mapper information to the pilot insertion unit 135.
  • the subcarrier for specifying the subcarrier in which the pilot is inserted in pilot insertion section 135 is provided.
  • the power measuring unit (individual power measuring means) 235 is further provided. This subcarrier power measurement unit 235 is configured to obtain the power of each subcarrier over one symbol of the OFDM signal.
  • the mapper information extraction unit 241 is configured to receive the mapper information from the subcarrier power measurement unit 235 that is not from the P / S conversion unit 260 and to notify the dematsuba unit 250.
  • FIG. 12 and FIG. 13 show the OFDMZxDSL transmission apparatus and diagram shown in FIG. 2, respectively.
  • FIG. 7 is a flowchart showing the flow of processing performed by the FDM / xDSL receiver shown in FIG. Since the flow of transmission and reception processing in this embodiment is almost the same as in the first embodiment, detailed description thereof is omitted. The difference is that pilot insertion performed by pilot insertion unit 135 during transmission (step S251 in FIG. 12) and subcarrier during reception. A process (step S311 in FIG. 13) for identifying the subcarrier in which the pilot is inserted and extracting the mapper information performed by the power measurement unit 235 is newly added.
  • FIG. 14 is a schematic diagram showing pilot insertion performed by the pilot insertion unit 135.
  • Figure 14 (a) shows one subcarrier before pilot insertion, (b) shows one subcarrier after pilot insertion, and C, C, etc. represent one data.
  • the pilot insertion part 135 has the force of the Matsupa part 130 as shown in Fig. 14 (a).
  • the subcarriers inserted by the pilot insertion unit 135 indicate the number of the mapper used in the mapper unit 130, that is, the mapper information. For example, when a shift register is used in the mapper unit 130 and the shift number is “2”, the pilot insertion unit 135 inserts a pilot into the second subcarrier. Thereafter, IFFT section 140 transmits the signal from multicarrier modulation signal power antenna 170 to which IFFT has been applied.
  • the receiving device that has received the signal measures the power of each subcarrier in subcarrier power measurement section 235 and identifies the subcarrier in which the pilot (“0”) is embedded. This can be determined, for example, because the power of a subcarrier to which “0” is input is smaller than the power of other subcarriers.
  • the mapper information extraction unit 241 notifies the demapper unit 250 of the number of the subcarrier received from the subcarrier power measurement unit 235, and causes the demapper corresponding to the number to be executed. As a result, the data input to the transmission device 10 is reproduced.
  • pilot insertion unit 135 inserts “0”, the power of the subcarrier in which “0” is inserted is smaller than the power of other subcarriers. Therefore, it is possible to specify the rearrangement by measuring the power of the subcarrier, and to do so. It is easy to identify when hitting.
  • Embodiments 1 to 3 described above the case where a functional unit for reducing peak power is provided in OFDM / xDSL has been described. However, in the present embodiment and the following embodiments, the present invention is applied to MC-CDMA. A form is demonstrated.
  • the spreading units 315_1 to M, the data multiplexing unit 320, the scramble code generation unit 325, the scramble code multiplication unit 330, and the SZP conversion unit 340 have a function as parallelization means. .
  • FIG. 15 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 4 of the present invention.
  • the transmission apparatus according to the present embodiment does not include the scramble information selection unit 990.
  • the pilot insertion unit (pilot insertion means) 365 is used to insert the mapper information used in the mapper unit 360 into the data. That is, in the conventional transmission apparatus, the power that was configured to reduce the peak power by cyclically shifting the scramble code, for example, in this embodiment, the scramble code is normally multiplied, and the mapper unit 360 performs data mapping. To do is different.
  • FIG. 16 is a flowchart showing the flow of processing performed by the MC-CDMA transmission apparatus shown in FIG.
  • channelization code generation section 310 generates a channelization code (step S401).
  • This channelization code may be generated whenever data is input, or stored in a ROM (Read Only Memory) or the like and read from the ROM or the like as required when data is input. Also good.
  • spreading sections 315_1 to M receive channelization codes from channelization code generation section 310 and perform data spreading (step S402). ).
  • the data spread in spreading sections 315-1 to M is subsequently multiplexed in data multiplexing section 320 (step S403).
  • the scramble code generation unit 325 multiplies the scramble code generated by the data multiplexing unit 320 by the scramble code multiplication unit 330 (step S404).
  • the S / P converter 340 receives from the scramble code multiplier 330.
  • the data after multiplication is converted from serial format to parallel format and output to the mapper unit 360 (step S405).
  • step S406 The flow of processing (step S406) for mapping the subsequent data, inserting the used mapper information as a pilot, and transmitting a signal with low peak power (step S406) is the same as that in FIG. Is omitted.
  • FIG. 17 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 18 is a flowchart showing the flow of processing performed by the receiving apparatus shown in FIG.
  • the receiving apparatus according to the present embodiment is configured to include a despreading section 270 in addition to the OFDMZxDSL receiving apparatus shown in FIG. Therefore, in step S312 in FIG. 18, the only difference is that a process for despreading the demapped data is newly added, and the description thereof will be omitted.
  • FIG. 19 is a diagram showing PAPR characteristics when the number of subcarriers is changed in the transmission apparatus according to Embodiment 4 of the present invention.
  • the horizontal axis of this figure is the PAPR value, which is the peak power divided by the average power. In other words, for example, 10 [dB] on the horizontal axis indicates that the peak power is 10 times the average power.
  • the vertical axis in this figure represents the probability that the peak power exceeds the corresponding PAPR value on the horizontal axis.
  • the number of users is “16”
  • the spreading factor is “32”
  • the number of subcarriers is “3/4” of the number of FFT points.
  • Nc represents the number of subcarriers. That is, in the present embodiment, the results are shown when 384, 192, and 96 subcarriers are used. Also, the dotted line is the result when using a conventional method that does not include a phase rotation sequence or the like, and the solid line is the result according to the embodiment of the present invention. As can be seen from this figure, in both the conventional case and the present embodiment, when the number of subcarriers increases, the shift to the right side of the figure, that is, the peak power increases. As mentioned earlier, this is a common issue for PAPR.
  • the transmission device in the present embodiment described above is configured such that the S / P conversion unit 340 is disposed immediately before the mapper unit 360, but the embodiment of the present invention is not limited thereto, and the S / P conversion unit 340
  • a configuration may be employed in which the spreading sections 315-1 to M are provided, and the outputs from the spreading sections 315_1 to M are already parallelized to a number corresponding to the number of subcarriers. ,. In that case, it is not necessary to provide the SZP converter 340 at the position shown in FIG.
  • the transmission apparatus performs mapping in the mapper unit 360 after being multiplied by the scramble code multiplication unit 330 and before being input to the IFFT unit 370 as shown in FIG.
  • the embodiment of the present invention is not limited thereto.
  • spreading is performed immediately before the scramble code multiplier 330 multiplies the scramble code as shown in FIG. 20 or after the channelization code generator 310 sends the channelization code as shown in FIG. It may be configured to have a mapa unit 360 immediately before being diffused in the unit.
  • the mapper is configured to map from the serial format to the serial format, rather than mapping from the parallel format to the parallel format, it should be configured.
  • the transmission device includes a mapper unit
  • the reception device includes a demapper unit
  • a signal with low peak power is transmitted and received by changing the mapping in the mapper unit. It was.
  • a mapper unit into hardware such as a wireless LAN card. Therefore, in this embodiment, by providing a functional unit having a mapping or demapping function outside the hardware of a wireless LAN card, which is an example of a network interface card (NIC), the peak power can be reduced.
  • NIC network interface card
  • FIG. 22 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of a normal wireless LAN.
  • input data is subjected to error correction, packet and data consistency check, etc. in the transport layer.
  • destination address and own information header information such as an address
  • IFFT is applied to the data in the wireless LAN card and sent as a transmission signal.
  • the receiving unit in FIG. 22 (b) that has received the transmission signal, the data is subjected to FFT or the like in the wireless LAN card and then decoded as input data.
  • FIG. 23 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of the wireless LAN according to the embodiment of the present invention.
  • the transmission side mapper unit 400 transmission unit
  • the transmission side mapper unit 400 is externally connected to a wireless LAN mode or the like and enables transmission / reception of signals with low peak power.
  • Auxiliary device and a receiving-side dematsuba unit (reception auxiliary device) 500 are provided.
  • the transmission-side mapper unit 400 includes a mapper selection unit 410, a mapper unit (order changing unit) 420, a lower layer emulation unit (reproduction unit) 430, a peak power measurement unit (power measurement unit) 440, and a data synthesis unit (synthesis) Means and transmission means) 450.
  • the data input to the transmission side mapper unit 400 is sent to the mapper unit 420, where mapping by the mapper selected by the mapper selection unit 410 is performed. This mapping rearranges the order of input data, which is a serial symbol.
  • the data mapped in the mapper unit 420 and the mapper information indicating the mapper used in the mapper unit 420 are sent to the data combining unit 450 and combined into one data string.
  • the data sequence synthesized in data synthesis unit 450 is sent to lower layer emulation unit 430, where the same processing as that performed in the transport layer, the Internet layer, and the wireless LAN card is performed.
  • the processed signal is sent to the peak power measurement unit 440.
  • lower layer emulation unit 430 adds header information added in the Internet layer to the data string received from data synthesizer 450, or IFFT performed in the wireless LAN card as a data string. It is a functional part to give. That is, the lower layer emulation unit 430 is a functional unit that faithfully reproduces a signal waveform when the data string transmitted from the data synthesis unit 450 is input to the transport layer and transmitted from the wireless LAN card. Therefore, reducing the peak power of the signal transmitted from the lower layer emulation unit 430 is equivalent to actually reducing the peak power of the signal transmitted from the transmission unit in FIG.
  • the peak power measurement unit 440 is provided, and the peak power is minimized as in the above embodiments:! To 4.
  • the mapa selection process is performed.
  • the data string (data and mapper information) determined to have the minimum peak power is input from the data synthesis unit 450 to the transport layer and transmitted from the wireless LAN card.
  • the peak power measurement unit 440 stores a predetermined threshold value and the peak power of the multicarrier modulation signal transmitted from the lower layer emulation unit 430 is equal to or lower than the threshold value
  • the data string that is the source of the carrier modulation signal is transmitted to the data synthesizing unit 450 and the transmission device including the wireless LAN card.
  • the peak power measurement unit 440 receives the multicarrier modulation signal, measures the power, compares the power with the minimum power so far, and compares the multicarrier modulation signal having the minimum power.
  • the original data string may be overwritten and stored in the data composition unit 450 sequentially. In this case, when a predetermined number of times (for example, Umax ⁇ in the first embodiment) is reached, the data string stored in the data composition unit 450 is transmitted to the transmission device including the wireless LAN card.
  • the receiving-side demapper unit 500 shown in FIG. 23 (b) includes a demapper selection unit 510, a demapper unit (order recovery unit) 520, and a data separation unit (separation unit) 530.
  • the receiving unit in Fig. 23 (b) receives the signal transmitted from the transmitting unit shown in Fig. 23 (a), the signal is subjected to FFT in the wireless LAN card, and then the Internet layer and the transport layer. And is input to the receiving side demapper unit 500 as a data string (data and mapper information).
  • the data string input to receiving side dematsuba section 500 is first separated into data output from mapper section 420 and mapper information in data separation section 530. Then, the data is sent to the demapper unit 520, and the mapper information is sent to the demapper selection unit 510. Upon receiving the mapper information from the data separation unit 530, the demapper selection unit 510 selects a demapper for returning (demapping) the mapper used in the mapper unit 420, and the demapper unit 520 selects the demapper. Demapping is performed using the dematsuba. The data decrypted by the above processing is sent out from the receiving dematsuba unit 500 and the processing ends. To do.
  • FIG. 24 shows a case where the transmission unit according to this embodiment is used and the number of interleavers as one form of the mapper included in the mapper unit is changed, and a conventional phase rotation sequence is used as the mapper included in the mapper unit.
  • FIG. 6 is a diagram showing PAPR characteristics when the number of phase rotation series used is changed.
  • the horizontal axis of this figure is the PAPR value, which is the peak power divided by the average power.
  • the vertical axis in this figure represents the probability that the peak power exceeds the corresponding PAPR value on the horizontal axis.
  • the parameters used are in accordance with the standard of the wireless LAN standard IEEE802.1 la and assume the OFDM method.
  • N is the number of interleavers provided in the mapper unit 420
  • M is the phase rotation sequence.
  • results are shown when 1, 2, 4, 8, or 16 interleavers or phase rotation sequences are used.
  • a line to which a symbol such as “ki” (black circle) is added is the result according to the embodiment of the present invention, and the symbol is added to the line and the line uses the conventional phase rotation sequence. It is a result.
  • the predetermined threshold stored in the peak power measurement unit 440 is 7 [dB]. That is, in the present embodiment, when the peak power of the multicarrier modulation signal transmitted from the lower layer emulation unit 430 becomes 7 [dB] or less, the data string that is the source of the multicarrier modulation signal is Data is sent from the data synthesizer 450 to the transmitter including the wireless LAN card.
  • the transmission unit according to the present embodiment shows PAPR characteristics equivalent to those of the conventional method.
  • the conventional method using a phase rotation sequence requires complex multiplication, but according to the present invention, complex multiplication is not required. Therefore, according to the present invention, it is possible to further reduce the complexity of calculation while keeping the PAPR value suppressed as in the conventional method.
  • FIG. 25 is a diagram showing out-of-band radiation characteristics when the transmission unit according to this embodiment is used.
  • the horizontal axis of this figure is the frequency of input data (in [MHz] units), and the vertical axis is the relative spectral power density (in [dB] units).
  • the parameters used are in accordance with the standard of the wireless LAN standard IEEE802.1 la and assume the OFDM method.
  • N represents the number of interleavers provided in the mapper unit 420
  • IBO non-interval. Input backoff to the linear amplifier.
  • the curve indicated as the spectrum mask represents the upper limit of the relative spectral power density defined in the IEEE 802.1 la standard. In other words, products that comply with the IEEE802.11a standard must have the relative spectral power density below the spectral mask (the smaller value) in all frequency regions.
  • the curve labeled linear amplifier shows the result when the power input to the amplifier is input without being cut.
  • the number of interleavers (N) is two or four.
  • the present invention is applicable to all multicarrier modulation schemes, and it is not necessary to use a phase rotation sequence that requires a large amount of memory. Since parallel symbols are rearranged before conversion to a modulated signal, power can be effectively reduced. In addition, when a multi-carrier modulation signal is transmitted immediately when the power falls below a threshold, processing can be performed at high speed. In contrast, when transmitting a multi-carrier modulation signal having the minimum power until the predetermined number of times is reached, the power can be more reliably reduced. In addition, since the waveform output from the wireless LAN card is faithfully reproduced, the power of the transmission signal can be reliably reduced.
  • the shift register is mainly used as the mapper included in the mapper unit 130.
  • the embodiment of the present invention is not limited to this, and for example, the following interleaver and block interface are used. It is possible to use a Lever or the like.
  • FIG. 26 is a schematic diagram for explaining the function of an interleaver used as a mapper. Input data parallelized in S / P converter (d
  • the pseudo-random numbers generated by the pseudo-random number generator provided in the tareeber are output in the order of the pseudo-random numbers generated.
  • FIG. 27 is a schematic diagram showing an embodiment of the pseudorandom number generating means provided in the interleaver.
  • a primitive polynomial h (x) is prepared, and a shift register that performs processing according to the polynomial is configured.
  • N the number to be input
  • the degree D of the primitive polynomial is determined as satisfying N ⁇ 2 D — 1.
  • N 6
  • D should be an integer greater than 3.
  • the advantage of using the interleaver as described above when rearranging data and subcarriers is that, for example, less storage capacity is required compared to a method such as the linear congruence method.
  • the linear congruence method needs to use 32-bit integers and add or multiply the integers.
  • an interleaver if the state is expressed by 5 bits and the number of connections is 5, the storage capacity of about log31 can be obtained using a logarithmic function (log) with 2 as the base. I just need it.
  • FIG. 28 is a schematic diagram for explaining the function of a block interleaver used as a mapper.
  • the input data for one symbol of the OFDM signal is written to the memory in the direction depicted by the dotted arrow in the figure (the direction that is directed downward from the top of the figure).
  • data is output, it is read out from the memory in the direction drawn by the solid arrows in the figure (the direction from the left to the right in the figure).
  • the output data ⁇ d, d, d, ..., d, d ⁇
  • the shift register shown in FIG. 3, the interleaver shown in FIG. 26, the block interleaver shown in FIG. 28, etc. eventually obtain and output various permutations of the input number sequence. It is common in that it has a function. Therefore, it is possible to configure a general-purpose mapper that has all the functions of the above mapper. Further, the mapper according to the embodiment of the present invention may be configured by hardware, for example, by software having a function of obtaining a permutation of input data by a CPU or the like and outputting the result. May be.
  • the peak power measurement unit obtains the instantaneous value of the peak power and transmits the signal having the minimum value.
  • the embodiment of the present invention is not limited thereto.
  • the peak power measuring unit 150 may be configured to calculate excess power.
  • FIG. 29 is a schematic diagram for explaining excess power.
  • the vertical axis in the figure is instantaneous power, and the horizontal axis is time.
  • the figure also shows a waveform for one symbol.
  • excess power is the sum of power of signal components that are equal to or greater than average power x [dB].
  • This X may be selected so as to correctly reflect the sum of the power of the excess power symbol. For example, a value of about 3 [dB] is selected. In this way, excess power is targeted for the sum of power, which is effective in reducing transmission power.
  • FIG. 30 is a schematic diagram showing a configuration of a mapper section provided with a plurality of mappers.
  • the mapper unit includes, for example, a shift register 362, an interleaver 364, a block interleaver 366, and the like.
  • the mapper unit switches the two-contact switch to the mapper selected by the mapper selection unit, and maps the data using the selected mapper. Therefore, the Matsupa selection unit sends As the mapper information to be performed, in addition to which mapper is selected, for example, when a shift register is selected, the number of shifts may be included.
  • the peak power of the signal subjected to IFFT is measured by the IFFT unit and, for example, the mapper having the smallest peak power is selected.
  • Embodiments of the invention are not limited thereto.
  • a predetermined vector is used before IFFT is performed in the I FFT unit 142, and the inner product of the vector and the parallel symbol input to the IFFT unit is calculated.
  • An inner product operation unit (inner product operation means) 180 for obtaining a numerical value may be provided.
  • the power measuring unit (power measuring means) 152 selects a mapper having the smallest value corresponding to the peak power.
  • the predetermined vector uses a learning algorithm such as SVM (Support Vector Machine) or a genetic algorithm to perform pre-learning on almost random data, etc., and the peak power after inner product calculation is small. You can gain the power S by doing so.
  • SVM Serial Vector Machine
  • the mapper unit 132 performs mapping using different mappers on the data, and calculates the inner product of the data subjected to the mapping and the vector May be configured to select the mapper whose numerical value corresponding to the peak power as a result is the smallest, or when the numerical value corresponding to the peak power falls below a predetermined threshold,
  • the structure which selects the said mapper may be sufficient.
  • the process of taking the inner product of the mapped data and a predetermined vector is performed in parallel, and the numerical value corresponding to the peak power as a result is the smallest. It may be configured to select a mapper. However, in this case, unlike the one shown in Fig.
  • the inner product calculation unit may have a plurality of predetermined vectors.
  • an inner product of data on which a plurality of different mappings are performed and the first vector is taken, and a numerical value corresponding to the peak power as a result is stored for each data.
  • the inner product of the plurality of differently mapped data and the second vector is taken, and a numerical value corresponding to the peak power as a result is stored for each data.
  • the numerical value obtained as a result of the inner product with the first and second vectors may be averaged, and the mapper used for the data having the smallest value may be selected.
  • the transmitting apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the above
  • a power measuring unit that determines whether or not the power is greater than a preset threshold value, and when the power measuring unit determines that the power is greater than the threshold value, the order changing unit is controlled.
  • the converting means is controlled to generate a multicarrier modulation signal from the parallel symbols, and the power measuring means is controlled. Then, the control means for measuring the power of the predetermined format of the multicarrier modulation signal, and before the series of processing by the control means reaches a predetermined number of times, the power measurement means reduces the power to the threshold value or less. It is preferable to include a transmission unit that transmits the multi-carrier modulation signal when it is determined that the multi-carrier modulation signal is present.
  • the order is rearranged by the order changing means.
  • the number of parallel symbols equal to the number of subcarriers (subcarriers) is put on each subcarrier.
  • the rearrangement of the order is, for example, when the parallel symbol is ⁇ d, d, d ⁇ , ⁇ d, d
  • examples of the predetermined type of power include peak power, average power, and excess power.
  • the power measuring means determines that the power measured by the power measuring means is larger than a preset threshold value, if the transmission is performed as it is, there is a problem such as a shortened communication distance, so that the power becomes smaller.
  • the order of the parallel symbols is rearranged again by the order changing means to generate a multicarrier modulation signal and measure the power. This series of processing continues until the power falls below the threshold. However, an upper limit is set so that processing will not continue beyond that number.
  • the power measuring means determines that the power is below the threshold value
  • the multicarrier modulation signal is transmitted from the transmitting device by the transmitting means. Is done.
  • the present invention is applicable to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. Further, since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. Furthermore, since the multicarrier modulation signal is transmitted as soon as the power falls below the threshold, processing can be performed at high speed.
  • the transmitting apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the above A conversion means for converting a data string including parallel symbols whose order has been rearranged by the order change means to generate a multicarrier modulation signal, and measuring the power of a predetermined format of the multicarrier modulation signal generated by the conversion means Then, a power measuring unit that sequentially stores a multicarrier modulation signal having a minimum power, and the order changing unit are controlled to rearrange the order of the parallel symbols, and the conversion unit is controlled to control the conversion from the parallel symbols.
  • Control that generates a multicarrier modulation signal and controls the power measurement means to measure the power of the predetermined format of the multicarrier modulation signal
  • the step when the series of processing by the control means reaches a predetermined number, and transmitting means for transmitting record, the multicarrier modulated signal Ru stored in the power measuring means, it is good preferable comprise.
  • the order is rearranged by the order changing means.
  • the parallel symbol equal to the number of subcarriers is put on each subcarrier.
  • the rearrangement of the order is, for example, when the parallel symbol is ⁇ d, d, d ⁇ , ⁇ d, d, d ⁇ , ⁇ d
  • examples of the predetermined type of power include peak power, average power, and excess power.
  • the control means rearranges the order of the parallel symbols again by the order changing means so as to obtain smaller power, generates a multicarrier modulation signal, and measures the power. This series of processing is continued until a predetermined number of times. When the predetermined number of times is reached, the multicarrier modulation signal having the minimum power stored in the power measurement means is transmitted from the transmission device by the transmission means.
  • the present invention is applicable to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. Further, since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. Furthermore, since the multicarrier modulation signal having the minimum power until the predetermined number of times is reached is transmitted, the power can be more reliably reduced.
  • the transmitting apparatus includes a parallelizing means for converting input data into parallel symbols, an order changing means for rearranging the order of the parallel symbols, and at least the above-mentioned A plurality of sets of conversion means for converting a data string including parallel symbols whose order is rearranged by the order change means and generating a multicarrier modulation signal, and each of the order change means Each of them is rearranged in a different order.
  • the power of a predetermined format of the multicarrier modulation signal generated by the conversion means is measured, and one set having a multicarrier modulation signal that minimizes the power is obtained. It is preferable to include a power measurement unit to be selected and a transmission unit to transmit a set of multicarrier modulation signals selected by the power measurement unit.
  • the order is rearranged by the order changing means.
  • the parallel symbol equal to the number of subcarriers is put on each subcarrier.
  • the rearrangement of the order is, for example, when the parallel symbol is ⁇ d, d, d ⁇ , ⁇ d, d, d ⁇ , ⁇ d
  • each order changing means has a different arrangement.
  • the rearrangement is performed in order to reduce the power of a predetermined format when converted into a multicarrier modulation signal by the conversion means, and the power is increased by the rearrangement. Change.
  • the predetermined form of power for example, peak power, There are average power and excess power.
  • the power measuring means measures the power of the multicarrier modulation signal received from the plurality of conversion means, and transmits the multicarrier modulation signal having the minimum power among them from the transmission device by the transmission means.
  • the present invention can be applied to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. Further, since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. Furthermore, processing from parallelization of input data to power measurement can be performed in parallel, enabling high-speed processing.
  • the transmitting apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and the order changing unit.
  • the inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking the inner product of the parallel symbols rearranged in order by the predetermined betatonole, and the numerical value calculated by the inner product calculating means is preset.
  • Power measuring means for determining whether or not the calculated threshold value is greater than the threshold value, and when the numerical value calculated by the power measuring means is determined to be greater than the threshold value, the order changing means is controlled to control the parallel processing.
  • the symbols are rearranged again, and the inner product calculation means is controlled to calculate the inner product of the parallel symbols and the predetermined vector to calculate a numerical value corresponding to the predetermined form of power.
  • Control means for controlling the power measuring means to determine whether or not the calculated numerical value is greater than the threshold value, and the power measurement before the series of processing by the control means reaches a predetermined number of times.
  • a data string including at least the parallel symbols whose order is rearranged by the order changing unit is converted, and a multicarrier modulation signal is generated. It is preferable to include conversion means and transmission means for transmitting the multicarrier modulation signal generated by the conversion means.
  • the inner product of the parallel symbols whose order has been rearranged by the order changing means and the predetermined vector is taken by the inner product calculating means, and for example, a numerical value corresponding to the peak power is calculated. For this reason, it is possible to select a rearrangement that reduces the peak power by means of power measurement without performing IFFT with a large amount of calculation multiple times, so that the calculation time can be reduced.
  • this vector is, for example, SVM (Support Vector Machine) or It can be obtained by using a learning algorithm such as a genetic algorithm and performing prior learning on almost random data so that the numerical value calculated by the inner product calculation reflects the peak power.
  • the peak power is reduced without performing IFFT with a large amount of calculation multiple times. Since sorting can be selected, calculation time can be reduced. In addition, since the multicarrier modulation signal is transmitted immediately when the numerical value corresponding to the power falls below the threshold, processing can be performed at high speed.
  • the transmission apparatus includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and the order changing unit.
  • the inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking the inner product of the parallel symbols rearranged in order by the predetermined betatonole, and the numerical value calculated by the inner product calculating means is minimized.
  • Power measuring means for sequentially storing the parallel symbols, and reordering the parallel symbols by controlling the order changing means, and controlling the inner product calculating means to control the parallel symbols and the predetermined vector.
  • control means To calculate a numerical value corresponding to the predetermined form of power, and to control the power measuring means to store the parallel symbol that minimizes the calculated numerical value.
  • control means a series of processing by the control means reaches a predetermined number of times, it converts the data string containing said parallel symbol stored by at least before Symbol power measuring means, It is preferable to include conversion means for generating a multicarrier modulation signal and transmission means for transmitting the multicarrier modulation signal generated by the conversion means.
  • the inner product of the parallel symbols whose order has been rearranged by the order changing means and the predetermined vector is taken by the inner product calculating means, and for example, a numerical value corresponding to the peak power is calculated. For this reason, it is possible to select a rearrangement that reduces the peak power by means of power measurement without performing IFFT with a large amount of calculation multiple times, so that the calculation time can be reduced. Then, the power measuring means compares the numerical value corresponding to the peak power with the numerical value corresponding to the minimum peak power so far, and sequentially stores the parallel symbols having the minimum numerical value.
  • control means rearranges the order of the parallel symbols again by the order changing means so as to obtain smaller power, and calculates the numerical value corresponding to the peak power, and compares it with the previous minimum value. This series of processing is continued until the predetermined number of times. When the predetermined number of times is reached, at least the parallel symbol having the numerical value is converted into a multicarrier modulation signal by the converting means and transmitted from the transmitting device by the transmitting means.
  • the peak power is reduced without performing IFFT with a large amount of calculation multiple times. Since sorting can be selected, calculation time can be reduced. In addition, since the multicarrier modulation signal having the minimum power until the predetermined number of times is reached is transmitted, the power can be more reliably reduced.
  • the transmitting apparatus includes a plurality of sets of parallelizing means for converting input data into parallel symbols and order changing means for rearranging the order of the parallel symbols. And each of the order changing means performs rearrangement in a different order, and is provided with at least one parallel symbol whose order is rearranged by the order changing means and a predetermined vector.
  • An inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking an inner product with the power, a power measuring means for determining the smallest numerical value among the numerical values calculated by the inner product calculating means, and at least the power
  • a conversion means for converting the data string including the parallel symbol having the numerical value determined to be the minimum by the measurement means and generating a multi-carrier modulation signal; and the conversion means. Made a circle And a transmission means for transmitting a multi-carrier modulation signal.
  • the inner product between the parallel symbols whose order has been rearranged by the order changing means and the predetermined vector is taken by the inner product calculating means, and for example, a numerical value corresponding to the peak power is calculated.
  • at least one inner product calculation means is provided, and the inner product with the parallel symbols from the sequential order changing means may be taken, or the same number as the parallelizing means and the order changing means. It is also possible to have a configuration in which inner products with parallel symbols from the order changing means are taken in parallel. As a result, it is possible to select a rearrangement in which the peak power is reduced by the power measurement means that performs IFFT with a large amount of calculation multiple times, so that the calculation time can be reduced.
  • the power measuring means compares numerical values corresponding to the peak power received from the plurality of inner product calculation means, and determines which of the parallel symbols has the minimum value. Then, at least the parallel symbol is converted into a multicarrier modulation signal by the conversion means, and transmitted from the transmission device by the transmission means.
  • the peak power is reduced without performing IFFT with a large amount of calculation multiple times. Since sorting can be selected, calculation time can be reduced. If the same number of inner product calculation means as parallel means and order change means are provided, the processing from parallelization of input data to calculation of a numerical value corresponding to power can be performed in parallel. Processing can be performed at high speed.
  • the transmission device is any one of the transmission devices (1) to (6), and the predetermined type of power is preferably peak power.
  • the power measuring means measures the peak power that is the power at the position where the amplitude is the largest (peak) out of the power that is the square of the amplitude of the multicarrier modulation signal.
  • the peak power which is the largest power among the instantaneous power, is measured. Therefore, it is efficient to transmit a low-power signal that makes it easy to detect the power difference between the multicarrier modulation signals. Yes.
  • the transmission device is any one of the transmission devices (1) to (6), and the power of the predetermined format is equal to or higher than a power value obtained by adding a predetermined value to the average power. It is preferable that the excess power is the sum.
  • the power measuring means has power greater than or equal to a predetermined power value. Therefore, the magnitude of the power can be effectively evaluated without being influenced by the instantaneous fluctuation of the multicarrier modulation signal.
  • by changing the predetermined value it is possible to effectively eliminate the influence of environmental noises, etc., so that accurate power evaluation under various environments becomes possible.
  • the transmitting device is any one of the transmitting devices (1) to (8), and the order changing means preferably uses a shift register.
  • the shift register that is a simple configuration and is generally used for rearranging the order of the parallel symbols is used, so that the power can be effectively reduced and the manufacturing cost can be suppressed. Is possible.
  • the transmission device is any one of the transmission devices (1) to (9), and the conversion means preferably generates a multicarrier modulation signal by using fast Fourier inverse transform. Masle.
  • a general-purpose fast Fourier inverse transform is used when a parallel symbol in the frequency domain (amplitude vs. frequency) is converted into a multi-carrier modulation signal in the time domain (amplitude vs. time).
  • the system configuration is simplified and the manufacturing cost can be reduced.
  • the transmitting device is any one of the transmitting devices (1) to (10), wherein the parallel symphonor is obtained by modulating two orthogonal components obtained by modulating carriers whose phases are different from each other by 90 degrees.
  • the I channel and the Q channel are expressed, and it is preferable that the order changing means performs different sorting on the I channel and the Q channel.
  • the reordering means performs different reordering for the I channel and Q channel, which are two orthogonal components, rather than performing one reordering for the parallel symbols. Therefore, the degree of freedom in generating a multicarrier modulation signal from these two channels is increased, and the power S can be effectively reduced.
  • the transmitting device is any one of the transmitting devices (1) to (11), wherein the order of the parallel symbols is rearranged or rearranged by the order changing unit. It is preferable to apply a cyclic shift to the parallel symbols.
  • the power of rearranging the order of the parallel symbols by the order changing means after the cyclic shift is performed on the parallel symbols, or the rearrangement of the order of the parallel symbols by the order changing means.
  • a cyclic shift on the parallel symbols after The Normally, the shift register provided for performing cyclic shift is simple in configuration and is widely used, so it is inexpensive. Therefore, with the above configuration, a function equivalent to a plurality of order changing means without providing a plurality of order changing means can be realized, so that the power of the multicarrier modulation signal can be effectively reduced and the cost can be reduced. It is possible to keep S low.
  • the transmission device is any one of the transmission devices (1) to (12), and the order of the data string to be converted by the conversion means is rearranged by the order change means. It is preferable to include parallel symbols and information on the rearrangement of the order performed by the order changing means. According to this configuration, the information on the rearrangement of the order is also collected into the data string together with the parallel symbols. Therefore, in the receiving apparatus that has received the multicarrier modulation signal obtained by converting the data string, re-conversion to the data string The information on the rearrangement of the order can be easily extracted. Therefore, it is possible to restore the input data to the transmission apparatus from the data string using the information on the rearrangement of the order.
  • the transmission device is any one of the transmission devices (1) to (12), and the order change information is rearranged by the order change means by the order change means.
  • Pilot insertion means for inserting into one of the symbols included in the parallel symbol after being set and located at a position corresponding to the rearrangement information of the order, and the conversion means includes the pilot insertion means It is preferable to convert a parallel symbol into which the information on the rearrangement is inserted to generate a multicarrier modulation signal.
  • the no-lot insertion unit inserts the information on the rearrangement of the order performed by the order changing unit into the parallel symbol after the order is rearranged by the order changing unit.
  • the original parallel symbol is ⁇ d, d, d ⁇ , for example, ⁇ 1 ⁇ after reordering
  • This information is ⁇ 1 ⁇ when the rearranged parallel symbol sequence is ⁇ d, d, d ⁇
  • the transmitting apparatus is the transmitting apparatus (14), and the information that can specify the rearrangement inserted by the pilot inserting means is preferably a zero value.
  • the pilot insertion means inserts a zero value (a number “0”) into the second symbol which is the position corresponding to the information of the rearrangement.
  • the power of the symbol is determined by other power. It becomes smaller than the power of the symbol. For this reason, it is possible to specify the rearrangement by measuring the power of the symbol, and it is easy to identify the rearrangement.
  • the transmission auxiliary device can be connected to a transmission device including at least a network interface card, and can transmit a digital signal to the transmission device.
  • the order changing means for rearranging the order of the input data composed of serial symbols, the serial symbols whose order has been rearranged by the order changing means, and information on the rearrangement of the order performed by the order changing means, And a multi-carrier output when the data string synthesized by the synthesizing means is received and the data string is input to the transmitter including the network interface card.
  • Reproduction means for reproducing and outputting the modulation signal, and power of a predetermined format of the multicarrier modulation signal output by the reproduction means
  • Power measuring means for measuring and determining whether or not the power is greater than a preset threshold; and when the power measuring means determines that the power is greater than the threshold, the order changing means is controlled.
  • the serial symbols are rearranged again, the conversion means is controlled to generate a multicarrier modulation signal from the serial symbols, and the power measurement unit is controlled to control the predetermined number of the multicarrier modulation signal.
  • Control means for measuring the power of the form, and the combining means when the power measurement means determines that the power is less than or equal to the threshold before the series of processing by the control means reaches a predetermined number of times.
  • transmitting means for transmitting the data string generated by the above as a digital signal to a transmitting apparatus including the network interface card.
  • the order is rearranged by the order changing means before being converted into the input data force multi-carrier modulation signal composed of serial symbols. This is the case, for example, if the serial symbol is ⁇ d
  • ⁇ 1 ⁇ and ⁇ 2 ⁇ are examples of information on order rearrangement performed by the order changing means, and the information and serial symbols are combined into one data string by the combining means.
  • the reproducing means reproduces and outputs the multicarrier modulation signal output when the data string is input to the transmission device including the network interface card.
  • the power measuring means receives the multicarrier modulation signal, measures the power, and determines that the measured power is larger than a preset threshold value. Therefore, the order of the serial symbols is rearranged by the reordering means again so that the power can be reduced, and a multicarrier modulation signal is generated and the power is measured. This series of processing is continued until the electric power falls below the threshold value. However, an upper limit is set so that processing will not continue beyond that limit.
  • the power measuring means determines that the power is equal to or lower than the threshold value
  • the data string that is the source of the multi-carrier modulation signal is converted into a digital signal by the synthesizing means and includes a network interface card. Sent to.
  • the present invention can be applied to all multicarrier modulation schemes, and there is no need for a phase rotation sequence that requires a large amount of memory. Since the rearrangement of the serial symbols is performed before this conversion, the power can be reduced effectively. In addition, since the multicarrier modulation signal is transmitted immediately when the power falls below the threshold, processing can be performed at high speed. In addition, since the waveform output from the network interface card is reproduced, the power of the transmitted signal can be reduced with high accuracy.
  • the transmission auxiliary device can be connected to a transmission device including at least a network interface card, and a digital signal is transmitted to the transmission device.
  • a transmission auxiliary device capable of transmitting a signal, the order changing means for rearranging the order of input data composed of serial symbols, the serial symbol whose order is rearranged by the order changing means, and the order changing means Combining the information of the rearranged order and generating one data string, and receiving the data string synthesized by the synthesizing means, and inputting the data string to the transmitting device including the network interface card
  • a reproduction means for reproducing and outputting the multicarrier modulation signal output at the time, and a power of a predetermined format of the multicarrier modulation signal output by the reproduction means, and a multicarrier modulation signal having a minimum power Power measurement means for storing the data sequence that is the source of the multi-carrier modulation signal in the combining means.
  • the order changing means is controlled to rearrange the order of the serial symbols
  • the reproduction means is controlled to generate a multicarrier modulation signal from the serial symbols
  • the power measuring means is controlled to A control means for measuring the power of the predetermined format of the multicarrier modulation signal, and when a series of processing by the control means reaches a predetermined number of times, a data sequence stored in the combining means is used as the digital signal.
  • Transmitting means for transmitting to a transmitting device including the network interface card.
  • the order is rearranged by the order changing means before being converted into the input data force S composed of serial symbols and the multicarrier modulation signal.
  • ⁇ 1 ⁇ and ⁇ 2 ⁇ are examples of information on order rearrangement performed by the order changing means, and the information and serial symbols are combined into one data string by the combining means.
  • the reproduction means reproduces and outputs a multicarrier modulation signal output when the data string is input to a transmission device including a network interface card.
  • the power measurement means receives the multicarrier modulation signal, measures the power, compares the power with the minimum power so far, and generates the data that is the source of the multicarrier modulation signal having the minimum power.
  • the sequence is sequentially overwritten and stored in the synthesis means.
  • the control means again uses the order changing means to change the order of the serial symbols so as to obtain smaller power. Rearrange the order to generate a multi-carrier modulation signal and measure the power. This series of processing is continued until the predetermined number of times. When the predetermined number of times is reached, the data string that is the source of the multicarrier modulation signal having the minimum power stored in the combining means is transmitted as a digital signal to a transmission apparatus including a network interface card. .
  • the present invention can be applied to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory.
  • the serial symbols are rearranged before conversion to a multicarrier modulation signal, the power can be reduced effectively.
  • the multicarrier modulation signal having the minimum power until the predetermined number of times is reached is transmitted, the power can be more reliably reduced.
  • the waveform output from the network interface card is faithfully reproduced, the power of the transmission signal can be reliably reduced.
  • the transmission auxiliary device is a transmission auxiliary device (16) or (17), and the power of the predetermined format is preferably the peak power of the multicarrier modulation signal.
  • the power measuring means measures the peak power that is the power at the position where the amplitude is the largest (peak) out of the power that is the square of the amplitude of the multicarrier modulation signal.
  • the peak power which is the largest of the instantaneous power, is measured, it is efficient to transmit a signal with low power that is easy to detect the power difference between the multicarrier modulation signals. Yes.
  • the transmission auxiliary device is a transmission auxiliary device (16) or (17), and the power of the predetermined format is a power value obtained by adding a predetermined value to the average power of the multicarrier modulation signal. It is preferable that the excess power is the sum of the above power.
  • the power measuring means measures the total sum of the power exceeding the predetermined power value, so that it is possible to effectively evaluate the magnitude of the power without being influenced by the instantaneous fluctuation of the multicarrier modulation signal. .
  • by changing the predetermined value it is possible to effectively remove the influence of environmental noise and the like, so that it is possible to accurately evaluate the power under various environments.
  • the transmission auxiliary device is any one of the transmission auxiliary devices (16) to (19), and the order changing means uses a shift register.
  • the shift register is simple and is generally used for rearranging the order of serial symbols. Since the power supply is used, it is possible to reduce the manufacturing cost in addition to effectively reducing the power.
  • the transmission auxiliary device is any one of the transmission auxiliary devices (16) to (20), and the input data includes an I channel obtained by modulating a carrier wave having a phase difference of 90 degrees from each other. It is expressed by a Q channel, and it is preferable that the order changing means performs different sorting on the I channel and the Q channel. According to this configuration, the order changing means performs different permutations for the I channel and the Q channel, which are two orthogonal components, rather than performing one permutation on the input data. Therefore, the degree of freedom in generating a multicarrier modulation signal from these two channels is increased, and the power of the signal can be effectively reduced.
  • the transmission auxiliary device is any one of the transmission auxiliary devices (16) to (21), and the rearrangement unit rearranges the order of the serial symbols before or after the rearrangement. It is preferable to apply a cyclic shift to the serial symbol.
  • the power of rearranging the order of the serial symbols by the order changing means after the cyclic shift is performed on the serial symbols, or the order of the serial symbols by the order changing means is changed. It is assumed that a cyclic shift is applied to the serial symbol after it is done.
  • the shift register provided for performing cyclic shift is simple in configuration and is widely used, so it is inexpensive. Therefore, with the above configuration, a function equivalent to a plurality of order changing means without providing a plurality of order changing means can be realized, so that the power of the multicarrier modulation signal can be effectively reduced and the cost can be reduced. It is possible to keep S low.
  • the receiving apparatus is configured to be able to receive a multicarrier modulation signal transmitted from the transmitting apparatus described in any one of (1) to (13).
  • the same parallel series converted by It is preferable to include order recovery means for generating symbols, and serialization means for reconverting the parallel symbols generated by the order recovery means into data before conversion in the parallelization means.
  • the inverse conversion means converts the multicarrier modulation signal and generates parallel symbols.
  • This parallel symbol reproduces the parallel symbol after the order is rearranged by the order changing means of the transmitter.
  • the extracting means extracts information on the rearrangement of the order performed by the parallel symbol force order changing means. This is, for example, a number such as ⁇ 1 ⁇ , so that if the original parallel symbol ⁇ d is ⁇ d, d, d ⁇
  • the order recovery means rearranges the parallel symbols so that the order of the parallel symbols is restored based on the information.
  • the same parallel symbol converted by the parallelization means is reproduced.
  • the input data to the transmitter is reproduced by converting the parallel symbols into the series symbols by the serializing means.
  • the multicarrier modulation signal generated from the parallel symbols transmitted from the transmission apparatus and rearranged in order to reduce power is received, and the data input to the transmission apparatus is received. It can be restored reliably.
  • the receiving device is a receiving device configured to be able to receive the multicarrier modulation signal transmitted from the transmitting device according to (14) or (15). Then, an inverse conversion unit that converts the multicarrier modulation signal to generate parallel symbols, an individual power measurement unit that measures the power of each symbol of the parallel symbols generated by the inverse conversion unit, and the individual power measurement unit Based on the measured power, the symbol insertion means identifies a symbol inserted with information that can identify the rearrangement, and information on the rearrangement in the order performed by the order changing means from the position of the symbol.
  • the parallel symbol is subjected to the reverse process of the rearrangement performed by the order changing means, Order recovery means for generating the same parallel symbols as those converted by the parallelization means, and serialization for reconverting the parallel symbols generated by the order recovery means into the data before conversion in the parallelization means. And means. [0168]
  • the inverse conversion means converts the multicarrier modulation signal and generates parallel symbols. This parallel symbol reproduces the parallel symbol after the order is rearranged by the order changing means of the transmitter.
  • the individual power measuring means measures the power of each symbol constituting the parallel symbol, and extracts information on the rearrangement of the order performed by the order changing means, for example, from the position of the symbol having the smallest power among them. .
  • the original parallel symbol, d, d ⁇ is ⁇ d, d, d
  • the order recovery means rearranges so as to restore the parallel symbol sequence based on the information.
  • the same parallel symbol converted by the parallelization means is reproduced.
  • the input data to the transmitter is reproduced by converting the parallel symbols into serial symbols by the serialization means.
  • the present invention it is possible to receive information other than data by measuring the power for each received symbol.
  • the transmission device side for example, it is possible to transmit as side information rather than directly inserting into the data what sort has been performed on the parallel symbols. Then, based on the side information, the data input to the transmission device can be reliably restored from the received multicarrier modulation signal.
  • the reception auxiliary device provides a multicarrier modulation signal transmitted from a transmission device connected to the transmission auxiliary device according to any one of (16) to (22).
  • a reception auxiliary device configured to be capable of receiving a digital signal output by a receiving device including at least a network interface card, wherein the digital signal is processed in the order of serial symbols and the order changing unit.
  • Separation means for separating the information into the rearrangement information, and the processing reverse to the rearrangement performed by the order changing means on the serial symbols based on the information on the rearrangement in the order separated by the separation means.
  • order recovery means for generating serial symbols before conversion in the order changing means.
  • the separating means includes a network interface card.
  • the digital signal output from is separated, and the serial symbol and the information on the rearrangement of the order performed by the order changing means are extracted therefrom. Since this digital signal is obtained by performing FFT conversion on the multicarrier modulation signal transmitted from the transmitting device, for example, in the network interface card of the receiving device, it reproduces the data string collected in the combining means.
  • the information that can specify the rearrangement is a number such as ⁇ 2 ⁇ , for example. In this case, the rearranged serial symbol ⁇ d, d, d ⁇ is the original serial symbol.
  • the sequence recovery means can reproduce the input data based on this information.
  • a multicarrier modulation signal generated from a serial symbol transmitted from a transmission device including a network interface card or the like and rearranged to reduce power is received and input.
  • the recovered data can be restored reliably.
  • the transmission / reception system according to the present invention has at least one (1) to (1)
  • the transmission apparatus according to any one of (13) and at least one reception apparatus according to (23) are provided.
  • a transmission / reception system including a transmission device capable of reducing power during transmission and a reception device capable of accurately decoding a multicarrier modulation signal transmitted from the transmission device is realized. be able to.
  • the transmission / reception system according to the present invention includes at least one transmission device according to (14) or (15) and at least one reception device according to (24). It is preferable to be configured with According to this configuration, a transmission / reception system including a transmission device capable of reducing power during transmission and a reception device capable of accurately decoding a multicarrier modulation signal transmitted from the transmission device is realized. can do.
  • the transmission / reception system is described in any one of (16) to (22) connected to at least one transmission device including a network interface card. It is preferable that the transmission auxiliary device is configured to include at least one reception auxiliary device described in (25) connected to a reception device including at least a network interface card. According to this configuration, even when a standard is established by a wireless LAN or the like, for example, the power at the time of transmission can be reduced without newly incorporating order change means in hardware such as a network interface card. Transmission / reception system Stem can be realized.
  • the communication method according to the present invention is a transmission / reception system configured by at least one receiving device that receives a multicarrier modulation signal transmitted from at least one transmitting device.
  • the transmission device includes a parallelization step of converting input data into parallel symbols, an order change step of rearranging the order of the parallel symbols, and a parallel in which the order is rearranged by at least the order change step
  • a conversion step of converting a symbol to generate a multicarrier modulation signal, and a power of a predetermined format of the multicarrier modulation signal generated by the conversion step is measured, and whether or not the power is greater than a preset threshold value And when the power measurement step determines that the power is greater than the threshold, the order change is performed.
  • Reordering the parallel symbols in a step generating a multicarrier modulation signal from the parallel symbol in the conversion step, and measuring the power of the predetermined format of the multicarrier modulation signal in the power measurement step
  • the receiving device receives the multicarrier modulation signal from the transmitting device, converts the multicarrier modulation signal to generate parallel symbols, and the parallel generated by the inverse conversion step.
  • the communication method according to the present invention is a transmission / reception system configured of at least one receiving device that receives a multicarrier modulation signal transmitted from at least one transmitting device.
  • the transmission device includes a parallelization step of converting input data into parallel symbols, and an order of rearranging the order of the parallel symbols.
  • the change process and the information on the rearrangement of the order performed by the order change process are one symbol included in the parallel symbol after the order is rearranged by the order change process, and the rearrangement of the order
  • a pilot insertion process to be inserted into a symbol at a position corresponding to the information of the information and a parallel symbol into which the information on the rearrangement is inserted by the pilot insertion process is converted to generate a multicarrier modulation signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a transmission device, a transmission aiding device, a reception device, a reception aiding device, a transmission/reception system, and a transmission method, which can be applied entirely to a multi-carrier modulation system including the OFDM, xDSL, and MC-CDMA systems and which can reduce an electric power at a transmission time. Input data is converted by an S/P conversion unit (120) into parallel symbols, the sequence of which is then rearranged by a mapper unit (130). These rearranged symbols are then converted into multi-carrier modulation signals in an IFFT unit (140), and an electric power is measured by a peak power measurement unit (150). These series operations are continued within a predetermined number of times till the power becomes a threshold value or less. When it is decided by the peak power measurement unit (150) that the power becomes the threshold value or less, the multi-carrier modulation signal is transmitted from the transmission device by a radio transmission unit (160).

Description

明 細 書  Specification
送信装置、送信補助装置、受信装置、受信補助装置及び送受信システ ム並びに通信方法  Transmission device, transmission auxiliary device, reception device, reception auxiliary device, transmission / reception system, and communication method
技術分野  Technical field
[0001] 本発明は、デジタル通信システムに用いられ、マルチキャリア変調方式により通信 を行う送信装置、送信補助装置、受信装置、受信補助装置及び送受信システム並び に通信方法に関するものである。  The present invention relates to a transmission device, a transmission auxiliary device, a reception device, a reception auxiliary device, a transmission / reception system, and a communication method that are used in a digital communication system and perform communication using a multicarrier modulation method.
背景技術  Background art
[0002] 近年、デジタル通信、特に移動体通信においては、限られた周波数資源を有効に 利用して高速伝送を実現するために、マルチキャリア変調方式が注目されている。マ ルチキャリア変調方式は、信号を運ぶための搬送波(キャリア)カ^つのシングルキヤ リア方式に対して、一連のデータを多数のキャリアに振り分け、並列に伝送する方式 である。そのマルチキャリア変調方式の中でも、隣り合うキャリアを直交させる OFDM (Orthogonal  [0002] In recent years, in digital communication, particularly mobile communication, a multicarrier modulation scheme has attracted attention in order to realize high-speed transmission by effectively using limited frequency resources. The multi-carrier modulation method is a method in which a series of data is distributed to a large number of carriers and transmitted in parallel with respect to a single carrier method for carrying carriers. Among the multi-carrier modulation schemes, OFDM (Orthogonal
Frequency Division Multiplexing)方式は、周波数選択性フェージングに対して耐性 力あること、ガードインターバルを用いてマルチパス環境における符号間干渉の影響 を軽減することが可能であることなどから、様々な検討が行われてレ、る。  The Frequency Division Multiplexing method is resistant to frequency selective fading, and it is possible to reduce the effects of intersymbol interference in a multipath environment using guard intervals. I'll be.
[0003] また、周波数選択性フエージングを抑える別の技術として、それぞれの回線に違う 複数の符号 (PN符号)を付け、それぞれが違う回線であることをその符号力 判別す る CDMA (Code Division [0003] As another technique for suppressing frequency selective fading, CDMA (Code Division) is used to add different codes (PN codes) to each channel and determine the code strength of each channel.
Multiple Access)方式が知られている。そして、より最近は、 CDMA方式によって周 波数を有効に利用し、かつ OFDM方式によってマルチパスによる影響を軽減する融 合方式である、 MC - CDMA (Multi-Carrier Code Division Multiple Access)方式が 注目されている。  Multiple Access) method is known. More recently, the MC-CDMA (Multi-Carrier Code Division Multiple Access) method, which is a fusion method that effectively uses the frequency by the CDMA method and reduces the influence of multipath by the OFDM method, has attracted attention. ing.
[0004] し力しながらマルチキャリア伝送の送信信号は、変調された各サブキャリアの足し合 わせであるため、平均電力に比べ極めて高いピーク電力を持つことが知られており、 これは PAPR (Peak-to-Average Power Ratio)問題と呼ばれている。一般に、 PAPRは信号を構成するサブキャリア数 と共に増大することが知られている。したがって、マルチキャリア変調方式である OFD M方式及び MC— CDMA方式においては、サブキャリア数が数千程度と多いため、 極めて大きい PAPRを持つことが問題となっている。 [0004] However, it is known that the transmission signal of multicarrier transmission is the sum of modulated subcarriers, and therefore has a peak power much higher than the average power. Peak-to-average This is called the Power Ratio problem. In general, it is known that PAPR increases with the number of subcarriers constituting a signal. Therefore, in the OFD M and MC-CDMA systems, which are multicarrier modulation systems, the number of subcarriers is as large as several thousand, so having a very large PAPR is a problem.
[0005] そのため、マルチキャリア伝送における PAPR問題は以前から議論されており、一 例として、図 32に、従来の位相回転系列を用いた OFDMZxDSL方式の送信装置 の構成を示す機能ブロック図を示す。まず、位相回転系列選択部 820は、位相回転 系列 810に記憶されている位相回転量 (この例では、「0」又は「π」からなるとする。 ) を読み込み、当該位相回転量を指定する符号 (位相回転系列情報という)を S/P変 換部 830に送出すると共に、当該位相回転量を位相回転部 840に送出する。  [0005] Therefore, the PAPR problem in multicarrier transmission has been discussed for a long time. As an example, FIG. 32 shows a functional block diagram showing the configuration of a conventional OFDMZxDSL transmitter using a phase rotation sequence. First, the phase rotation sequence selection unit 820 reads the phase rotation amount (in this example, “0” or “π”) stored in the phase rotation sequence 810, and codes for specifying the phase rotation amount (Referred to as phase rotation sequence information) is sent to the S / P conversion unit 830 and the amount of phase rotation is sent to the phase rotation unit 840.
[0006] ユーザからのデータが入力されると、 S/P変換部 830は当該入力データと、位相 回転系列情報とを直列(シリアル)形式から並列 (パラレル)形式へと変換(直列 ·並列 変換)し、所定の Ν本のサブキャリアに乗せる。ここで、並列化されたデータ列を {d ,  [0006] When data from a user is input, the S / P converter 830 converts the input data and phase rotation sequence information from a serial format to a parallel format (serial / parallel conversion). ) And put it on a predetermined number of subcarriers. Where the parallelized data sequence is {d,
1 d, d, · · ·,(! }とし、それらを QPSK (Quadrature Phase Shift Keying)形式で表現 1 d, d, ···, (!}, Expressed in QPSK (Quadrature Phase Shift Keying) format
2 3 N 2 3 N
した一例を図 32に信号点として示す。ここで、 d等の表記の右側に当該データ列の 信号点が、 Iチャネル成分を横軸にし、 Qチャネル成分を縦軸とする座標軸上に黒丸 で示されている。例えば、 dの信号点は、 Iチャネル成分が「1」、 Qチャネル成分も「1 」であり、(I, Q) = (l , 1)となる点であり、 dの信号点は、(I, Q) = (— 1 , — 1)となる  An example of this is shown in Fig. 32 as signal points. Here, on the right side of the notation such as d, the signal point of the data string is indicated by a black circle on the coordinate axis with the I channel component as the horizontal axis and the Q channel component as the vertical axis. For example, the signal point of d is the point where the I channel component is “1”, the Q channel component is also “1”, and (I, Q) = (l, 1), and the signal point of d is ( I, Q) = (— 1, — 1)
2  2
点である。  Is a point.
[0007] 続いて、当該データ列は、位相回転部 840において位相回転を施される。位相回 転量を図に示したように { π , 0, · · · , π }とすると、位相回転後の信号点は図示した ようになる。つまり、 dは座標軸上で反時計回りに π (180度)回転し、 dは回転量が「  Subsequently, the data sequence is subjected to phase rotation in the phase rotation unit 840. If the amount of phase rotation is {π, 0, ···, π} as shown in the figure, the signal points after phase rotation are as shown. In other words, d rotates π (180 degrees) counterclockwise on the coordinate axis, and d
1 2  1 2
0」なので回転しない。次に、位相回転が施されたデータ列は、 IFFT部 850において 高速フーリエ逆変換(Inverse Fast Fourier Transformation)が施され、周波数領域( 振幅対周波数)のデータが時間領域 (振幅対時間)の信号へと変換される。  Since it is “0”, it does not rotate. Next, the phase-rotated data sequence is subjected to Inverse Fast Fourier Transformation in IFFT section 850, and the frequency domain (amplitude vs. frequency) data is converted into a time domain (amplitude vs. time) signal. Converted to.
[0008] 次に、ピーク電力測定部 860において、当該信号のピーク電力が OFDM信号の 1 シンボルに亘つて測定され、ピーク電力が所定の閾値より大きい場合には位相回転 系列選択部 820に通知される。そして、位相回転系列選択部 820は、前回とは異な つた位相回転量を読み込み、以降、前述と同様の処理を繰り返し、 S/P変換部 830 にデータを送出する。それと異なり、ピーク電力測定部 860における測定の結果、当 該ピーク電力が所定の閾値以下の場合には、ピーク電力測定部 860から受け取った 信号が無線送信部 870からアンテナ 880を介して送信される。 Next, peak power measurement section 860 measures the peak power of the signal over one symbol of the OFDM signal, and notifies phase rotation sequence selection section 820 when the peak power is greater than a predetermined threshold. The The phase rotation sequence selection unit 820 is different from the previous time. Thereafter, the same processing as described above is repeated, and the data is sent to the S / P converter 830. On the other hand, when the peak power measurement unit 860 has measured the peak power to be equal to or less than a predetermined threshold, the signal received from the peak power measurement unit 860 is transmitted from the wireless transmission unit 870 via the antenna 880. .
[0009] また、以上の OFDM/xDSL方式以外にも、例えば、特許文献 1には、 MC— CD MA方式において送信時のピーク電力を低減する技術が開示されている。図 33は、 従来の MC_ CDMA方式の送信装置の構成を示す機能ブロック図である。複数の ユーザからのデータが入力されると、拡散部 915— :!〜 Mは、チヤネライゼーシヨン符 号生成部 910からチヤネライゼーシヨン符号を受け取り、データの拡散を行う。この拡 散の一例として、 QPSK形式で表示した入力データが図 33の下部の(a)に示したも のであるとすると、拡散が行われた後のデータは (b)に示したものとなる。この場合、 チヤネライゼーシヨン符号は、 Iチャネルに対しては { 1, - 1, 1 , —1 }であり、 Qチヤネ ルに対しては { 1, 1 , —1 , — 1 }である。  In addition to the above OFDM / xDSL system, for example, Patent Document 1 discloses a technique for reducing peak power during transmission in the MC-CD MA system. FIG. 33 is a functional block diagram showing a configuration of a conventional MC_CDMA transmission apparatus. When data from a plurality of users are input, spreading section 915 — :! ˜M receives the channelization code from channelization code generation section 910 and spreads the data. As an example of this spreading, if the input data displayed in QPSK format is as shown in (a) at the bottom of Fig. 33, the data after spreading is as shown in (b). . In this case, the channelization code is {1,-1, 1, —1} for the I channel and {1, 1, —1, — 1} for the Q channel. .
[0010] 拡散部 915— :!〜 Mにおいて拡散されたデータは、続いてデータ多重化部 920に おいて多重化される。その結果は、例えば (c)に示したものとなる。次にスクランブル 符号生成部 925において生成されたスクランブル符号と、データ多重化部 920にお いて多重化されたデータとがスクランブル符号乗算部 930において乗算される。ここ で、スクランブル符号力 チャネルに対しては { 1 , —1 , 1, 1 }であり、 Qチャネルに対 しては {ー1 , 1, 1 , 1 }であるとすると、スクランブル符号乗算部 930において乗算さ れた後のデータは(d)に示したものとなる。  [0010] Data spread in spreading section 915 — :! ˜M is then multiplexed in data multiplexing section 920. The result is, for example, as shown in (c). Next, the scramble code multiplier 930 multiplies the scramble code generated by the scramble code generator 925 and the data multiplexed by the data multiplexer 920. Here, if the scramble code power channel is {1, -1, 1, 1, 1} and the Q channel is {-1, 1, 1, 1}, the scramble code multiplier The data after multiplication at 930 is shown in (d).
[0011] 続いて、スクランブル情報選択部 990は、データに乗算されたスクランブル符号を S /P変換部 940に送出し、 S/P変換部 940は、スクランブル符号乗算部 930から受 け取った乗算後のデータと、スクランブル情報選択部 990から受け取ったスクランプ ル符号とをそれぞれ異なるサブキャリアに乗せる。 IFFT部 950は、 SZP変換部 940 力 受け取ったデータに IFFTを施した後の信号を、ピーク電力測定部 960に送出 する。この信号は、例えば、(e)に示したものとなる。  Subsequently, scramble information selection section 990 sends the scramble code multiplied by the data to S / P conversion section 940, and S / P conversion section 940 receives the multiplication received from scramble code multiplication section 930. The subsequent data and the scrambling code received from scrambling information selection section 990 are placed on different subcarriers. IFFT section 950 sends the signal after IFFT is applied to the received data to peak power measurement section 960. This signal is, for example, as shown in (e).
[0012] ピーク電力測定部 960は、 IFFT部 950から受け取った信号のピーク電力を測定し 、当該ピーク電力が所定の閾値よりも大きい場合には、スクランブル符号生成部 925 に通知し、再度前回とは異なったスクランブル符号を生成させる。以降、スクランブル 符号乗算部 930及びスクランブル情報選択部 990は、前述と同様の処理を繰り返し 、 S/P変換部 940にデータを送出する。それと異なり、ピーク電力測定部 960にお ける測定の結果、当該ピーク電力が所定の閾値以下の場合には、ピーク電力測定部 960から受け取った信号が無線送信部 970からアンテナ 980を介して送信される。 [0012] Peak power measurement section 960 measures the peak power of the signal received from IFFT section 950, and if the peak power is greater than a predetermined threshold, scramble code generation section 925 To generate a scramble code different from the previous one. Thereafter, the scramble code multiplication unit 930 and the scramble information selection unit 990 repeat the same processing as described above, and send data to the S / P conversion unit 940. On the other hand, if the peak power measurement unit 960 has measured the peak power below a predetermined threshold, the signal received from the peak power measurement unit 960 is transmitted from the wireless transmission unit 970 via the antenna 980. The
[0013] し力、しながら、上記の〇FDM/xDSL方式の送信装置は、位相回転量を記憶する 位相回転系列 810を備えており、サブキャリア数の増大に伴ってこの位相回転量を 記憶するためのメモリ量も膨大なものとなる。さらに、この位相回転量を用いた送信装 置では、冗長性が多いという問題がある。また、上記の MC_ CDMA方式の送信装 置は、スクランブル符号を巡回シフトする形態であるために、 OFDM方式等の他の マルチキャリア方式には適用できない。 [0013] However, the FDM / xDSL transmission device described above has a phase rotation sequence 810 that stores the amount of phase rotation, and stores the amount of phase rotation as the number of subcarriers increases. The amount of memory for doing so will also be enormous. Furthermore, the transmitter using this phase rotation amount has a problem that there is a lot of redundancy. In addition, the MC_CDMA transmission apparatus described above is configured to cyclically shift the scramble code, and therefore cannot be applied to other multicarrier systems such as the OFDM system.
特許文献 1 :特開 2003— 32220号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-32220
発明の開示  Disclosure of the invention
[0014] 本発明は、上記課題に鑑みてなされたものであり、 OFDM, xDSL及び MC— CD MA方式を含めたマルチキャリア変調方式全般に適用可能であり、冗長性が多いこ とに加え、多くのメモリ量を必要とする位相回転系列等を必要とせず、送信時の電力 を低減することが可能な送信装置、受信装置及び送受信システム並びに通信方法を 提供することを目的とする。  [0014] The present invention has been made in view of the above problems, and can be applied to all multi-carrier modulation schemes including OFDM, xDSL and MC-CD MA schemes, and has a lot of redundancy. It is an object of the present invention to provide a transmission device, a reception device, a transmission / reception system, and a communication method that can reduce power during transmission without requiring a phase rotation sequence that requires a large amount of memory.
[0015] この目的のために本発明の一態様に係る送信装置は、入力データを並列シンボル に変換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、 少なくとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデー タ列を変換し、マルチキャリア変調信号を生成する変換手段と、前記変換手段により 生成されたマルチキャリア変調信号の所定の形式の電力を測定し、当該電力が予め 設定された閾値より大きいか否かを判定する電力測定手段と、前記電力測定手段に より前記電力が前記閾値より大きいと判定された場合に、前記順序変更手段を制御 して前記並列シンボルの順序を再度並べ替えさせ、前記変換手段を制御して当該 並列シンボルからマルチキャリア変調信号を生成させ、前記電力測定手段を制御し て当該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御手段と、 前記制御手段による一連の処理が所定の回数に達する前に、前記電力測定手段に より前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調信 号を送信する送信手段と、を備えることを特徴とする。 [0015] For this purpose, a transmission apparatus according to an aspect of the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the order changing unit. A conversion means for converting a data sequence including parallel symbols whose order is rearranged and generating a multicarrier modulation signal; and measuring a power of a predetermined format of the multicarrier modulation signal generated by the conversion means; A power measuring means for determining whether or not the power is greater than a preset threshold; and when the power measuring means determines that the power is greater than the threshold, the order changing means is controlled to control the order Reordering the order of the parallel symbols, controlling the converting means to generate a multicarrier modulation signal from the parallel symbols, and the power measuring means And control means for controlling to measure the power of the predetermined format of the multicarrier modulation signal, Transmitting means for transmitting the multicarrier modulation signal when the power measuring means determines that the power is equal to or less than the threshold before the series of processing by the control means reaches a predetermined number of times; It is characterized by providing.
[0016] また、本発明の他の態様に係る送信装置は、入力データを並列シンボルに変換す る並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、少なくとも 前記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ列を変 換し、マルチキャリア変調信号を生成する変換手段と、前記変換手段により生成され たマルチキャリア変調信号の所定の形式の電力を測定し、最小の電力を有するマル チキャリア変調信号を順次記憶する電力測定手段と、前記順序変更手段を制御して 前記並列シンボルの順序を再度並べ替えさせ、前記変換手段を制御して当該並列 シンボルからマルチキャリア変調信号を生成させ、前記電力測定手段を制御して当 該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御手段と、前記 制御手段による一連の処理が所定の回数に達したときに、前記電力測定手段に記 憶されているマルチキャリア変調信号を送信する送信手段と、を備えることを特徴と する。  [0016] In addition, a transmission apparatus according to another aspect of the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the order changing unit. The conversion means for converting the data sequence including the parallel symbols in which the order is rearranged to generate a multicarrier modulation signal, and the power of a predetermined format of the multicarrier modulation signal generated by the conversion means are measured, and the minimum Power measuring means for sequentially storing multi-carrier modulation signals having different powers, and controlling the order changing means to rearrange the order of the parallel symbols, and controlling the converting means to control multi-carriers from the parallel symbols. Control means for generating a modulation signal and controlling the power measurement means to measure the power of the predetermined format of the multicarrier modulation signal When the series of processing by the control means reaches a predetermined number, characterized in that it comprises a transmitting means for transmitting the multicarrier modulated signal being remembers to the power measuring means.
[0017] また、本発明の他の態様に係る送信装置は、入力データを並列シンボルに変換す る並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、少なくとも 前記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ列を変 換し、マルチキャリア変調信号を生成する変換手段と、の組を複数備えて構成されて おり、かつ前記各順序変更手段はそれぞれ異なった順序の並べ替えを行うものであ り、前記変換手段により生成されたマルチキャリア変調信号の所定の形式の電力を 測定し、当該電力が最小となるマルチキャリア変調信号を有する 1組を選択する電力 測定手段と、前記電力測定手段により選択された組のマルチキャリア変調信号を送 信する送信手段と、を備えることを特徴とする。  [0017] Further, a transmission apparatus according to another aspect of the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the order changing unit. A plurality of sets of conversion means for converting a data string including parallel symbols in which the order is rearranged to generate a multicarrier modulation signal, and each of the order change means has a different order. Measure power of a predetermined format of the multicarrier modulation signal generated by the conversion means, and select a set having a multicarrier modulation signal that minimizes the power measurement. And transmission means for transmitting a set of multicarrier modulation signals selected by the power measurement means.
[0018] また、本発明の他の態様に係る送信装置は、入力データを並列シンボルに変換す る並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、前記順序 変更手段により順序が並べ替えられた並列シンボルと所定のベクトルとの内積を取る ことで所定の形式の電力に相当する数値を算出する内積演算手段と、前記内積演 算手段により算出された数値が予め設定された閾値より大きいか否かを判定する電 力測定手段と、前記電力測定手段により前記算出された数値が前記閾値より大きい と判定された場合に、前記順序変更手段を制御して前記並列シンボルの順序を再 度並べ替えさせ、前記内積演算手段を制御して当該並列シンボルと前記所定のベタ トルとの内積を取り前記所定の形式の電力に相当する数値を算出させ、前記電力測 定手段を制御して当該算出された数値が前記閾値より大きいか否力、を判定させる制 御手段と、前記制御手段による一連の処理が所定の回数に達する前に、前記電力 測定手段により前記算出された数値が前記閾値以下であると判定された場合に、少 なくとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ 歹 IJを変換し、マルチキャリア変調信号を生成する変換手段と、前記変換手段により生 成されたマルチキャリア変調信号を送信する送信手段と、を備えることを特徴とする。 [0018] Further, a transmission apparatus according to another aspect of the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and an order by the order changing unit. An inner product calculation means for calculating a numerical value corresponding to a predetermined form of power by taking an inner product of the parallel symbols in which the symbols are rearranged and a predetermined vector; A power measuring means for determining whether or not the numerical value calculated by the calculating means is greater than a preset threshold; and when the calculated numerical value is determined to be greater than the threshold by the power measuring means, The order changing means is controlled to rearrange the order of the parallel symbols again, and the inner product calculating means is controlled to take the inner product of the parallel symbols and the predetermined vector, corresponding to the power of the predetermined format. A control means for calculating a numerical value and controlling the power measuring means to determine whether the calculated numerical value is greater than the threshold; and a series of processes by the control means before the predetermined number of times is reached. In addition, when it is determined that the calculated numerical value is less than or equal to the threshold value, the power measuring unit includes at least a symbol including a parallel symbol whose order is rearranged by the order changing unit. Converts the data 歹 IJ, converting means for generating a multicarrier modulated signal, characterized in that it comprises a transmitting means for transmitting the multicarrier modulated signal made viable by the conversion means.
[0019] また、本発明の他の態様に係る送信装置は、入力データを並列シンボルに変換す る並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、前記順序 変更手段により順序が並べ替えられた並列シンボルと所定のベクトルとの内積を取る ことで所定の形式の電力に相当する数値を算出する内積演算手段と、前記内積演 算手段により算出された数値が最小となる前記並列シンボルを順次記憶する電力測 定手段と、前記順序変更手段を制御して前記並列シンボルの順序を再度並べ替え させ、前記内積演算手段を制御して当該並列シンボルと前記所定のベクトルとの内 積を取り前記所定の形式の電力に相当する数値を算出させ、前記電力測定手段を 制御して当該算出された数値が最小となる前記並列シンボルを記憶させる制御手段 と、前記制御手段による一連の処理が所定の回数に達したときに、少なくとも前記電 力測定手段により記憶されてレ、る前記並列シンボルを含むデータ列を変換し、マル チキャリア変調信号を生成する変換手段と、前記変換手段により生成されたマルチキ ャリア変調信号を送信する送信手段と、を備えることを特徴とする。  [0019] In addition, a transmission apparatus according to another aspect of the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and an order by the order changing unit. The inner product calculating means for calculating a numerical value corresponding to power in a predetermined format by taking the inner product of the rearranged parallel symbol and a predetermined vector, and the numerical value calculated by the inner product calculating means is minimized. Power measuring means for sequentially storing parallel symbols; and reordering the parallel symbols by controlling the order changing means; and controlling the inner product calculating means to control the inner of the parallel symbols and the predetermined vector. Control to take a product, calculate a numerical value corresponding to the power of the predetermined format, and control the power measuring means to store the parallel symbol that minimizes the calculated numerical value And when a series of processing by the control means reaches a predetermined number of times, a data string including at least the parallel symbols stored by the power measuring means is converted, and a multicarrier modulation signal is converted. It is characterized by comprising conversion means for generating and transmission means for transmitting the multi-carrier modulation signal generated by the conversion means.
[0020] また、本発明の他の態様に係る送信装置は、入力データを並列シンボルに変換す る並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、の組を複 数備えて構成されており、かつ前記各順序変更手段はそれぞれ異なった順序の並 ベ替えを行うものであり、少なくとも 1つ備えられ、前記順序変更手段により順序が並 ベ替えられた並列シンボルと所定のベクトルとの内積を取ることで所定の形式の電力 に相当する数値を算出する内積演算手段と、前記内積演算手段により算出された数 値の中で最小の数値を判定する電力測定手段と、少なくとも前記電力測定手段によ り最小と判定された数値を有する前記並列シンボルを含むデータ列を変換し、マル チキャリア変調信号を生成する変換手段と、前記変換手段により生成されたマルチキ ャリア変調信号を送信する送信手段と、を備えることを特徴とする。 [0020] Further, a transmission apparatus according to another aspect of the present invention includes a plurality of sets of parallelizing means for converting input data into parallel symbols and order changing means for rearranging the order of the parallel symbols. And each of the order changing means performs rearrangement in a different order. At least one order changing means is provided, and the order is changed by the order changing means. An inner product calculating means for calculating a numerical value corresponding to power in a predetermined format by taking an inner product of the parallel symbol replaced with a predetermined vector, and the smallest numerical value calculated by the inner product calculating means. A power measuring means for determining the data, a conversion means for converting the data string including the parallel symbol having at least the numerical value determined by the power measuring means to generate a multicarrier modulation signal, and the converting means Transmitting means for transmitting the multi-carrier modulated signal generated by the above.
[0021] また、上記目的のために本発明の一態様に係る送信補助装置は、少なくともネット ワークインターフェイスカードを含む送信装置に接続可能であり、当該送信装置にデ ジタル信号を送出可能な送信補助装置であって、直列シンボル力 なる入力データ の順序を並べ替える順序変更手段と、前記順序変更手段により順序が並べ替えられ た直列シンボルと、前記順序変更手段が行った順序の並べ替えの情報とを合成し 1 つのデータ列を生成する合成手段と、前記合成手段により合成されたデータ列を受 け取って、当該データ列が前記ネットワークインターフェイスカードを含む送信装置に 入力した際に出力されるマルチキャリア変調信号を再現して出力する再現手段と、前 記再現手段により出力されたマルチキャリア変調信号の所定の形式の電力を測定し 、当該電力が予め設定された閾値より大きいか否力を判定する電力測定手段と、前 記電力測定手段により前記電力が前記閾値より大きいと判定された場合に、前記順 序変更手段を制御して前記直列シンボルの順序を再度並べ替えさせ、前記変換手 段を制御して当該直列シンボルからマルチキャリア変調信号を生成させ、前記電力 測定手段を制御して当該マルチキャリア変調信号の前記所定の形式の電力を測定 させる制御手段と、前記制御手段による一連の処理が所定の回数に達する前に、前 記電力測定手段により前記電力が前記閾値以下であると判定された場合に前記合 成手段により生成されたデータ列を前記デジタル信号として前記ネットワークインター フェイスカードを含む送信装置に送信する送信手段と、を備えることを特徴とする。  [0021] For the above purpose, the transmission auxiliary device according to one aspect of the present invention can be connected to a transmission device including at least a network interface card, and can transmit a digital signal to the transmission device. An order change means for rearranging the order of input data as serial symbol power, serial symbols whose order is rearranged by the order change means, and information on the rearrangement of the order performed by the order change means; And a synthesizing unit that generates a single data string, and a data sequence that is output when the data string synthesized by the synthesizing unit is received and input to the transmitting device including the network interface card. Reproduction means for reproducing and outputting the carrier modulation signal; and a predetermined form of the multicarrier modulation signal output by the reproduction means. Power measuring means for determining whether or not the power is greater than a preset threshold, and when the power measuring means determines that the power is greater than the threshold, the order The changing means is controlled to rearrange the order of the serial symbols, the converting means is controlled to generate a multicarrier modulation signal from the serial symbols, and the power measuring means is controlled to control the multicarrier modulation signal. Control means for measuring the predetermined type of power, and when the power measurement means determines that the power is equal to or less than the threshold before the series of processing by the control means reaches a predetermined number of times. Transmitting means for transmitting the data string generated by the synthesizing means as the digital signal to a transmitting device including the network interface card. And wherein the Rukoto.
[0022] また、本発明の他の態様に係る送信補助装置は、少なくともネットワークインターフ ェイスカードを含む送信装置に接続可能であり、当該送信装置にデジタル信号を送 出可能な送信補助装置であって、直列シンボルからなる入力データの順序を並べ替 える順序変更手段と、前記順序変更手段により順序が並べ替えられた直列シンボル と、前記順序変更手段が行った順序の並べ替えの情報とを合成し 1つのデータ列を 生成する合成手段と、前記合成手段により合成されたデータ列を受け取って、当該 データ列が前記ネットワークインターフェイスカードを含む送信装置に入力した際に 出力されるマルチキャリア変調信号を再現して出力する再現手段と、前記再現手段 により出力されたマルチキャリア変調信号の所定の形式の電力を測定し、最小の電 力を有するマルチキャリア変調信号が検知された場合、前記合成手段に当該マルチ キャリア変調信号の元となったデータ列を記憶させる電力測定手段と、前記順序変 更手段を制御して前記直列シンボルの順序を再度並べ替えさせ、前記再現手段を 制御して当該直列シンボルからマルチキャリア変調信号を生成させ、前記電力測定 手段を制御して当該マルチキャリア変調信号の前記所定の形式の電力を測定させる 制御手段と、前記制御手段による一連の処理が所定の回数に達したときに、前記合 成手段に記憶されているデータ列を前記デジタル信号として前記ネットワークインタ 一フェイスカードを含む送信装置に送信する送信手段と、を備えることを特徴とする。 また、上記目的のために本発明の一態様に係る通信方法は、少なくとも 1台の送信 装置から送信されたマルチキャリア変調信号を受信する、少なくとも 1台の受信装置 力 構成される送受信システムにおける通信方法であって、前記送信装置は、入力 データを並列シンボルに変換する並列化工程と、前記並列シンボルの順序を並べ替 える順序変更工程と、少なくとも前記順序変更工程により順序が並べ替えられた並列 シンボルを変換し、マルチキャリア変調信号を生成する変換工程と、前記変換工程 により生成されたマルチキャリア変調信号の所定の形式の電力を測定し、当該電力 が予め設定された閾値より大きいか否力を判定する電力測定工程と、前記電力測定 工程により前記電力が前記閾値より大きいと判定された場合に、前記順序変更工程 により前記並列シンボルの順序を再度並べ替えさせ、前記変換工程により当該並列 シンボルからマルチキャリア変調信号を生成させ、前記電力測定工程により当該マ ルチキャリア変調信号の前記所定の形式の電力を測定させる制御工程と、前記制御 工程による一連の処理が所定の回数に達する前に、前記電力測定工程により前記 電力が前記閾値以下であると判定された場合に当該マルチキャリア変調信号を送信 する送信工程と、を備え、前記受信装置は、前記送信装置力も前記マルチキャリア 変調信号を受信し、当該マルチキャリア変調信号を変換し並歹 1Jシンボルを生成する 逆変換工程と、前記逆変換工程により生成された並列シンボルから前記順序変更ェ 程により行われた順序の並べ替えの情報を抽出する抽出工程と、前記抽出工程によ り抽出された前記順序の並べ替えの情報を元に、前記並列シンボルに前記順序変 更工程が行った並べ替えと逆の処理を行レ、、前記並列化工程により変換されたもの と同じ並列シンボルを生成する順序回復工程と、前記順序回復工程により生成され た並列シンボルを、前記並列化工程における変換前のデータに再変換する直列化 工程と、を備えることを特徴とする。 [0022] Further, a transmission auxiliary apparatus according to another aspect of the present invention is a transmission auxiliary apparatus that can be connected to a transmission apparatus including at least a network interface card and can transmit a digital signal to the transmission apparatus. Order changing means for rearranging the order of input data composed of serial symbols, and the serial symbols whose order has been rearranged by the order changing means And the information on the rearrangement of the order performed by the order changing means to generate one data string, the data string synthesized by the synthesizing means is received, and the data string is received by the network interface. Reproducing means for reproducing and outputting a multicarrier modulation signal output when input to a transmitting device including a card, and measuring the power of a predetermined format of the multicarrier modulation signal output by the reproducing means, When a multicarrier modulation signal having electric power is detected, the serial symbol is controlled by controlling the power measurement means for storing the data sequence that is the source of the multicarrier modulation signal in the combining means and the order changing means. Reordering, and controlling the reproduction means to generate a multicarrier modulation signal from the serial symbol, Control means for controlling the measurement means to measure the power of the predetermined format of the multi-carrier modulation signal, and stored in the synthesis means when a series of processing by the control means reaches a predetermined number of times. Transmitting means for transmitting the data string as a digital signal to a transmitting device including the network interface card. For the above purpose, a communication method according to an aspect of the present invention includes a communication method in a transmission / reception system configured to receive at least one receiving apparatus that receives a multicarrier modulation signal transmitted from at least one transmitting apparatus. The transmitting apparatus includes: a parallelizing step of converting input data into parallel symbols; an order changing step of rearranging the order of the parallel symbols; and a parallel whose order is rearranged by at least the order changing step. A conversion step of converting a symbol to generate a multicarrier modulation signal, and a power of a predetermined format of the multicarrier modulation signal generated by the conversion step is measured, and whether or not the power is greater than a preset threshold value A power measurement step for determining whether the power is greater than the threshold value by the power measurement step. In a further step, the order of the parallel symbols is rearranged again, a multicarrier modulation signal is generated from the parallel symbols by the conversion step, and the power of the predetermined format of the multicarrier modulation signal is measured by the power measurement step. And a transmission step of transmitting the multicarrier modulation signal when the power measurement step determines that the power is equal to or lower than the threshold before the series of processing by the control step reaches a predetermined number of times. And the receiving device has the transmitting device power as well as the multicarrier. Receiving the modulation signal, converting the multi-carrier modulation signal to generate a parallel 1J symbol, and rearranging the order performed by the order changing step from the parallel symbols generated by the inverse conversion step Based on the extraction process for extracting the information of the above and the rearrangement of the order extracted by the extraction process, the parallel symbol is subjected to the reverse process of the rearrangement performed by the order change process. An order recovery step for generating the same parallel symbols as those converted by the parallelization step, and serialization for reconverting the parallel symbols generated by the order recovery step into data before conversion in the parallelization step And a process.
また、本発明の他の態様に係る通信方法は、少なくとも 1台の送信装置から送信さ れたマルチキャリア変調信号を受信する、少なくとも 1台の受信装置力 構成される 送受信システムにおける通信方法であって、前記送信装置は、入力データを並列シ ンボルに変換する並列化工程と、前記並列シンボルの順序を並べ替える順序変更 工程と、前記順序変更工程により行われた順序の並べ替えの情報を、前記順序変更 工程により順序が並べ替えられた後の並列シンボルに含まれる 1つのシンボルであつ て、当該順序の並べ替えの情報に対応する位置にあるシンボルに挿入するパイロッ ト挿入工程と、前記パイロット挿入工程により前記順序の並べ替えの情報が挿入され た並列シンボルを変換し、マルチキャリア変調信号を生成する変換工程と、前記変換 工程により生成されたマルチキャリア変調信号の所定の形式の電力を測定し、当該 電力が予め設定された閾値より大きいか否力を判定する電力測定工程と、前記電力 測定工程により前記電力が前記閾値より大きいと判定された場合に、前記順序変更 工程により前記並列シンボルの順序を再度並べ替えさせ、前記変換工程により当該 並列シンボルからマルチキャリア変調信号を生成させ、前記電力測定工程により当 該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御工程と、前記 制御工程による一連の処理が所定の回数に達する前に、前記電力測定工程により 前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調信号を 送信する送信工程と、を備え、前記受信装置は、前記送信装置から前記マルチキヤ リア変調信号を受信し、当該マルチキャリア変調信号を変換し並列シンボルを生成 する逆変換工程と、前記逆変換手段により生成された並列シンボルのシンボル毎の 電力を測定する個別電力測定工程と、前記個別電力測定工程により測定された電 力に基づいて、前記パイロット挿入工程により並べ替えを特定できる情報を挿入した シンボルを特定し、当該シンボルの位置から前記順序変更工程により行われた順序 の並べ替えの情報を抽出する抽出工程と、前記抽出工程により抽出された前記順序 の並べ替えの情報を元に、前記並列シンボルに前記順序変更工程が行った並べ替 えと逆の処理を行い、前記並列化工程により変換されたものと同じ並列シンボルを生 成する順序回復工程と、前記順序回復工程により生成された並列シンボルを、前記 並列化工程における変換前のデータに再変換する直列化工程と、を備えることを特 徴とする。 A communication method according to another aspect of the present invention is a communication method in a transmission / reception system configured to receive at least one receiving device capable of receiving a multicarrier modulation signal transmitted from at least one transmitting device. Then, the transmitting apparatus includes a parallelizing step for converting input data into parallel symbols, an order changing step for rearranging the order of the parallel symbols, and information on the order rearrangement performed by the order changing step. A pilot insertion step of inserting into one of the symbols included in the parallel symbols whose order has been rearranged by the order changing step, at a position corresponding to the rearrangement information of the order; and the pilot A conversion step of converting the parallel symbol into which the information of the rearrangement is inserted by the insertion step and generating a multicarrier modulation signal; A power measurement step of measuring power in a predetermined format of the multicarrier modulation signal generated by the conversion step and determining whether or not the power is greater than a preset threshold; and the power measurement step When it is determined that the threshold value is larger than the threshold, the order of the parallel symbols is rearranged again by the order changing step, a multi-carrier modulation signal is generated from the parallel symbols by the converting step, and the power measuring step A control step for measuring the power of the predetermined format of the multicarrier modulation signal, and before the series of processing by the control step reaches a predetermined number of times, the power measurement step determines that the power is less than or equal to the threshold value. Transmitting the multi-carrier modulation signal in a case where the multi-carrier modulation signal is transmitted. Receive Maruchikiya rear modulation signal, the inverse transform step of generating a parallel symbol converts the multi-carrier modulated signal, for each symbol of parallel symbols generated by the inverse conversion means Based on the individual power measurement step for measuring power and the power measured in the individual power measurement step, the symbol in which the information for identifying the rearrangement in the pilot insertion step is inserted is specified, and the symbol is determined from the position of the symbol. Based on the extraction step for extracting the information on the rearrangement of the order performed by the order changing step and the information on the rearrangement of the order extracted by the extraction step, the arrangement performed by the order changing step on the parallel symbols is performed. An order recovery process that performs the reverse process and generates the same parallel symbols as those converted by the parallelization process, and the parallel symbols generated by the order recovery process before the conversion in the parallelization process. And a serialization process for re-converting the data.
[0025] 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによつ て、より明白となる。  [0025] The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]図 1は本発明の一実施形態に係るマルチキャリア変調信号送受信システムを示 す概略構成図である。  FIG. 1 is a schematic configuration diagram showing a multicarrier modulation signal transmission / reception system according to an embodiment of the present invention.
[図 2]図 2は本発明の実施形態 1に係る送信装置の構成を示す機能ブロック図である  FIG. 2 is a functional block diagram showing a configuration of a transmission apparatus according to Embodiment 1 of the present invention.
[図 3]図 3は本発明の実施形態においてマツパとして用いられるシフトレジスタの機能 を説明するための模式図である。 FIG. 3 is a schematic diagram for explaining a function of a shift register used as a mapper in the embodiment of the present invention.
[図 4]図 4は図 2に示した OFDMZxDSL方式の送信装置の行う処理の流れを示す フローチャートである。  [FIG. 4] FIG. 4 is a flowchart showing the flow of processing performed by the OFDMZxDSL transmission apparatus shown in FIG.
[図 5]図 5は図 4のステップ S102における処理の流れを詳細に示すフローチャートで ある。  FIG. 5 is a flowchart showing in detail the flow of processing in step S102 of FIG.
[図 6]図 6は本発明の実施形態 1に係る受信装置の構成を示す機能ブロック図である  FIG. 6 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 1 of the present invention.
[図 7]図 7は図 6に示した OFDM/xDSL方式の受信装置の行う処理の流れを示す フローチャートである。 FIG. 7 is a flowchart showing the flow of processing performed by the OFDM / xDSL receiver shown in FIG.
[図 8]図 8は本発明の実施形態 2に係る送信装置の構成を示す機能ブロック図である [図 9]図 9は図 8に示した OFDM/xDSL方式の送信装置の行う処理の流れを示す フローチャートである。 FIG. 8 is a functional block diagram showing a configuration of a transmission apparatus according to Embodiment 2 of the present invention. FIG. 9 is a flowchart showing a flow of processing performed by the OFDM / xDSL transmission apparatus shown in FIG.
園 10]図 10は本発明の実施形態 3に係る送信装置の構成を示す機能ブロック図で ある。 10] FIG. 10 is a functional block diagram showing the configuration of the transmitting apparatus according to Embodiment 3 of the present invention.
園 11]図 11は本発明の実施形態 3に係る受信装置の構成を示す機能ブロック図で ある。 11] FIG. 11 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 3 of the present invention.
[図 12]図 12は図 2に示した OFDM/xDSL方式の送信装置の行う処理の流れを示 すフローチャートである。  [FIG. 12] FIG. 12 is a flowchart showing a flow of processing performed by the OFDM / xDSL transmission apparatus shown in FIG.
[図 13]図 13は図 6に示した OFDM/xDSL方式の受信装置の行う処理の流れを示 すフローチャートである。  FIG. 13 is a flowchart showing the flow of processing performed by the OFDM / xDSL receiver shown in FIG.
園 14]図 14はパイロット揷入部 135が行うパイロット揷入を示す模式図である。 14] FIG. 14 is a schematic diagram showing pilot insertion performed by the pilot insertion unit 135. FIG.
園 15]図 15は本発明の実施形態 4に係る送信装置の構成を示す機能ブロック図で ある。 15] FIG. 15 is a functional block diagram showing the configuration of the transmitting apparatus according to Embodiment 4 of the present invention.
[図 16]図 16は図 15に示した MC— CDMA方式の送信装置の行う処理の流れを示 すフローチャートである。  FIG. 16 is a flowchart showing the flow of processing performed by the MC-CDMA transmission apparatus shown in FIG.
園 17]図 17は本発明の実施形態 4に係る受信装置の構成を示す機能ブロック図で ある。 17] FIG. 17 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 4 of the present invention.
[図 18]図 18は図 17に示した受信装置の行う処理の流れを示すフローチャートである 園 19]図 19は本発明の実施形態 4に係る送信装置において、サブキャリア数を変え た場合の PAPR特性を示す図である。  [FIG. 18] FIG. 18 is a flowchart showing a flow of processing performed by the receiving apparatus shown in FIG. 17. [FIG. 19] FIG. 19 shows a case where the number of subcarriers is changed in the transmitting apparatus according to Embodiment 4 of the present invention. It is a figure which shows a PAPR characteristic.
園 20]図 20は本発明の実施形態 4に係る送信装置の構成を示す機能ブロック図で ある。 FIG. 20 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 4 of the present invention.
園 21]図 21は本発明の実施形態 4に係る送信装置の構成を示す機能ブロック図で ある。 FIG. 21 is a functional block diagram showing the configuration of the transmitting apparatus according to Embodiment 4 of the present invention.
園 22]図 22は通常の無線 LANの(a)送信部及び (b)受信部を示す模式図である。 園 23]図 23は本発明の実施形態 5に係る無線 LANの(a)送信部及び (b)受信部を 示す模式図である。 [図 24]図 24は本発明の実施形態 5に係る送信部を用レ、、マツパ部が備えるインター リーバの数及び従来の位相回転系列の数を変えた場合の PAPR特性を示す図であ る。 22] FIG. 22 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of a normal wireless LAN. FIG. 23 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of a wireless LAN according to Embodiment 5 of the present invention. FIG. 24 is a diagram showing PAPR characteristics when the transmitter according to Embodiment 5 of the present invention is used, the number of interleavers provided in the mapper unit, and the number of conventional phase rotation sequences are changed. The
[図 25]図 25は本発明の実施形態 5に係る送信部を用いた場合の帯域外輻射特性を 示す図である。  FIG. 25 is a diagram showing out-of-band radiation characteristics when the transmitting unit according to Embodiment 5 of the present invention is used.
[図 26]図 26はマツパとして用いられるインターリーバの機能を説明するための模式図 である。  FIG. 26 is a schematic diagram for explaining the function of an interleaver used as a mapper.
[図 27]図 27はインターリーバ内に備えられた擬似乱数発生手段の一実施形態を示 す模式図である。  FIG. 27 is a schematic diagram showing one embodiment of a pseudorandom number generating means provided in the interleaver.
[図 28]図 28はマツパとして用いられるブロックインターリーバの機能を説明するため の模式図である。  FIG. 28 is a schematic diagram for explaining the function of a block interleaver used as a mapper.
[図 29]図 29は超過電力を説明するための模式図である。  FIG. 29 is a schematic diagram for explaining excess power.
[図 30]図 30は複数のマツパが備えられたマツパ部の構成を示す模式図である。  FIG. 30 is a schematic diagram showing a configuration of a mapper section provided with a plurality of mappers.
[図 31]図 31は本発明の一変形例に係る送信装置の構成を示す機能ブロック図であ る。  FIG. 31 is a functional block diagram showing a configuration of a transmission apparatus according to a modification of the present invention.
[図 32]図 32は従来の位相回転系列を用いた OFDM/xDSL方式の送信装置の構 成を示す機能ブロック図である。  FIG. 32 is a functional block diagram showing the configuration of a conventional OFDM / xDSL transmission apparatus using a phase rotation sequence.
[図 33]図 33は従来の MC— CDMA方式の送信装置の構成を示す機能ブロック図で ある。  FIG. 33 is a functional block diagram showing a configuration of a conventional MC-CDMA transmission device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、マルチキャリア変調信号送受信システムの一例として、 OFDM/xDSL及び 下りリンクの MC— CDMAについて図面を参照して説明する。  [0027] Hereinafter, OFDM / xDSL and downlink MC-CDMA will be described with reference to the drawings as an example of a multicarrier modulation signal transmission / reception system.
[0028] 図 1は、本発明の一実施形態に係るマルチキャリア変調信号送受信システム(以下 、適宜、送受信システムともいう。)を示す概略構成図である。本送受信システムは、 少なくとも 1台の基地局 (送信装置) 10及び少なくとも 1台の携帯電話機 (受信装置) 20から構成される。基地局 10から送出される電波は、ピーク電力値が低くなるように 符号化されており、当該電波を受信した携帯電話機 20が復号化して基地局 10から 送出されたデータを文字データとして表示、あるいは音声データとして送出すること が可能となっている。 FIG. 1 is a schematic configuration diagram showing a multicarrier modulation signal transmission / reception system (hereinafter also referred to as a transmission / reception system as appropriate) according to an embodiment of the present invention. The transmission / reception system includes at least one base station (transmitting device) 10 and at least one mobile phone (receiving device) 20. Radio waves transmitted from the base station 10 are encoded so that the peak power value is low, and the mobile phone 20 that has received the radio waves decodes and displays the data transmitted from the base station 10 as character data. Or send as audio data Is possible.
[0029] この図 1においては、基地局 10から送信された信号を携帯電話機 20が受信する形 態を記載したが、本発明に係る実施形態はそれに限定されず、例えば、無線 LANに より、複数台のユーザ端末 (コンピュータ)がお互いに信号の送受信を行う形態であ つてもよいし、少なくとも 1台のユーザ端末とアクセスポイントとの間で信号の送受信を 行う形態であってもよレ、。また、 FWA (Fixed Wireless Access:固定無線アクセス)や UWB (Ultra Wide Band :超広域帯無線)といった無線通信方式において、基地局と 少なくとも 1台のユーザ端末との間で信号の送受信を行う形態であってもよい。さらに は、有線通信方式である ADSL (Asymmetric Digital  [0029] In Fig. 1, the mode in which the mobile phone 20 receives the signal transmitted from the base station 10 has been described, but the embodiment according to the present invention is not limited thereto, and for example, by wireless LAN, A plurality of user terminals (computers) may be configured to transmit and receive signals to each other, or may be configured to transmit and receive signals between at least one user terminal and an access point. . In wireless communication methods such as FWA (Fixed Wireless Access) and UWB (Ultra Wide Band), signals are transmitted and received between the base station and at least one user terminal. There may be. Furthermore, ADSL (Asymmetric Digital
Subscriber Line)において、電話局とユーザ端末との間で信号の送受信を行う形態で あってもよレヽ。  (Subscriber Line), a signal may be transmitted and received between the telephone station and the user terminal.
[0030] 以下、〇FDM/xDSL及び下りリンクの MC— CDMAに分けて、本発明に係るピ ーク電力を低減可能な通信方法、並びに送信装置及び受信装置の構成について説 明していく。  [0030] The communication method capable of reducing the peak power according to the present invention, and the configurations of the transmission device and the reception device will be described below, divided into FDM / xDSL and downlink MC-CDMA.
[0031] [実施形態 1]  [Embodiment 1]
図 2は、本発明の実施形態 1に係る送信装置の構成を示す機能ブロック図である。 送信装置 10は、マツパ選択部 110、 S/P変換部(並列化手段) 120、マツパ部 (順 序変更手段) 130、 IFFT部(変換手段) 140、ピーク電力測定部(電力測定手段) 15 0、無線送信部(送信手段) 160、及びアンテナ 170を備えて構成される。  FIG. 2 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 1 of the present invention. The transmitter 10 includes a mapper selection unit 110, an S / P conversion unit (parallelization unit) 120, a mapa unit (order change unit) 130, an IFFT unit (conversion unit) 140, a peak power measurement unit (power measurement unit) 15 0, a radio transmission unit (transmission means) 160, and an antenna 170.
[0032] また、本実施形態及び以下の実施形態も含めて、送信装置及び受信装置には図 略の制御部(制御手段)が備えられており、当該制御部は各機能部を制御して所望 の機能を果たさせる。例えば、本実施形態の送信装置においては、制御部は、ピー ク電力測定部 150によりピーク電力が予め設定された閾値より大きいと判定された場 合に、マツパ部 130を制御して並列シンボルの順序を並べ替えさせ、 IFFT部 140を 制御して当該並列シンボルからマルチキャリア変調信号を生成させ、ピーク電力測 定部 150を制御して当該マルチキャリア変調信号の前記所定の形式の電力を測定さ せる。  [0032] In addition, the transmission device and the reception device, including the present embodiment and the following embodiments, are provided with a control unit (control means) (not shown), and the control unit controls each functional unit. Perform the desired function. For example, in the transmission apparatus of the present embodiment, when the peak power measurement unit 150 determines that the peak power is greater than a preset threshold value, the control unit controls the mapper unit 130 to generate parallel symbols. The order is rearranged, IFFT section 140 is controlled to generate a multicarrier modulation signal from the parallel symbol, and peak power measurement section 150 is controlled to measure the power of the predetermined format of the multicarrier modulation signal. Make it.
[0033] マツパ選択部 110は、マツパ部 130に備えられているマツパのうち、どのマツパによ る処理を入力データに施すかを選択し、選択されたマツパを表す情報であるマツパ 情報 {i}をサイドインフォメーションとして IFFT部 140に送出する。また、マツパ選択 部 110は、 {i}の値がマツパ部 130に用意されているマツパの数の最大値(以下、 i」m ax}とする)を超える場合には、ピーク電力測定部 150に通知し、そこまでの処理で最 もピーク電力の小さかった信号を送信させる。 [0033] The mapper selection unit 110 selects which mapper among the mappers provided in the mapper unit 130. Whether the input data is to be processed, and the mapper information {i} representing the selected mapper is transmitted to the IFFT section 140 as side information. Further, the mapper selection unit 110, when the value of {i} exceeds the maximum number of mappers prepared in the mapper unit 130 (hereinafter referred to as “i” max}), the peak power measurement unit 150 And send the signal with the lowest peak power in the process up to that point.
[0034] SZP変換部 120は、入力データを直列(シリアル)形式から並列 (パラレル)形式に 変換し、所定のサブキャリアに当該データ(並列シンボル)を乗せる。マツパ部 130は 、複数のマツパを備えており、 S/P変換部 120力 受け取った並列シンボルに、マツ パ選択部 110により選択されたマツパを用いたマッピングを行レ、、並列シンボルの順 序を並べ替える。ここで、マツパとしては、例えばシフトレジスタがある。  [0034] SZP conversion section 120 converts input data from a serial (serial) format to a parallel (parallel) format, and places the data (parallel symbol) on a predetermined subcarrier. The mapper unit 130 includes a plurality of mappers, and performs mapping using the mapper selected by the mapper selection unit 110 on the parallel symbols received by the S / P conversion unit 120. Sort by. Here, the mapper is, for example, a shift register.
[0035] 図 3は、本発明の実施形態においてマツパとして用いられるシフトレジスタの機能を 説明するための模式図である。ここでは、 S/P変換部 120において並列化されたデ ータが入力されるものとして説明する。並列化された OFDM信号の 1シンボル分の 入力データ(並列シンボル) {d , d , d , · · · , d }は、当該シフトレジスタにおいて、  FIG. 3 is a schematic diagram for explaining the function of the shift register used as a mapper in the embodiment of the present invention. Here, description will be made assuming that parallel data is input in S / P converter 120. Input data (parallel symbols) {d, d, d, ..., d} for one symbol of the parallelized OFDM signal is
1 2 3 N  1 2 3 N
例えば {m}だけシフトされる。つまり、 mが Nより小さいときは、図 3に示したように、入 力データ dの位置はデータ d で、入力データ d の位置はデータ d で置き換  For example, {m} is shifted. That is, when m is smaller than N, as shown in Fig. 3, the position of input data d is replaced with data d, and the position of input data d is replaced with data d.
1 N-m+ 1 N N-m  1 N-m + 1 N N-m
えられ、 {d , · · · , d , d , d , · · · , d , d }という出力データが得られる  Output data of {d, ..., d, d, d, ..., d, d} is obtained
N-m+ l N 1 2 N-m- 1 N-m  N-m + l N 1 2 N-m- 1 N-m
[0036] IFFT部 140は、マツパ部 130から受け取った並列シンボル及びマツパ選択部 110 力 受け取ったマツパ情報を 1つのデータ列にまとめ、当該データ列に IFFTを施し、 周波数領域 (振幅対周波数)のデータを時間領域 (振幅対時間)のマルチキャリア変 調信号へと変換する。このように、データを周波数方向に拡散するため、 OFDM及 び MC— CDMA方式は周波数拡散であり周波数ダイバーシチ効果を得ることができ る。 [0036] IFFT section 140 combines the parallel symbol received from mapper section 130 and the mapper information received by mapper selection section 110 into one data string, performs IFFT on the data string, and performs frequency domain (amplitude vs frequency). Data is converted to a multi-carrier modulation signal in the time domain (amplitude vs. time). In this way, since data is spread in the frequency direction, the OFDM and MC-CDMA systems are frequency spread, and a frequency diversity effect can be obtained.
[0037] また、 IFFT部 140が並列シンボル及びマツパ選択部 110から受け取ったマツパ情 報を 1つのデータ列にまとめる際には、所定のサブキャリアにマツパ情報を揷入する。 このマツパ情報は選択されたマツパを表す情報であり、例えば、 10番目のマツバが用 レ、られた場合には、「10」に相当するデータが所定のサブキャリアに揷入される。 [0038] ピーク電力測定部 150は、所定の閾値を記憶しており、 IFFT部 140から受け取つ た時間領域の信号の、各時刻における電力の瞬時値 (振幅の 2乗)であるピーク電力 を測定し、そのピーク電力が記憶されている閾値より大きい場合にはその旨をマツパ 選択部 110に通知する。そして、ピーク電力測定部 150は、当該信号をピーク電力 測定部 150内に保存する。それと異なり、測定されたピーク電力が記憶されている閾 値以下である場合には、当該信号を無線送信部 160に送出する。無線送信部 160 は、ピーク電力測定部 150から受け取った信号をアンテナ 170を介して送信させる。 [0037] Further, when the IFFT unit 140 collects the mapper information received from the parallel symbol and mapper selection unit 110 into one data string, the mapper information is inserted into a predetermined subcarrier. This mapper information is information indicating the selected mapper. For example, when the tenth matuba is used, data corresponding to “10” is inserted into a predetermined subcarrier. [0038] The peak power measurement unit 150 stores a predetermined threshold, and the peak power, which is an instantaneous value (square of amplitude) of power at each time, of the time domain signal received from the IFFT unit 140 is stored. When the measured peak power is larger than the stored threshold value, the fact is notified to the mapper selection unit 110. Then, the peak power measurement unit 150 stores the signal in the peak power measurement unit 150. In contrast, when the measured peak power is equal to or less than the stored threshold value, the signal is transmitted to the wireless transmission unit 160. Radio transmission section 160 transmits the signal received from peak power measurement section 150 via antenna 170.
[0039] 図 4は、図 2に示した〇FDM/xDSL方式の送信装置の行う処理の流れを示すフ ローチャートである。ここでは、多値変調方式の一例である QPSK方式でデータが入 力されるとする。 QPSK方式とは、入力データに応じて、 90度位相が異なる 2つのキ ャリアの位相を変化させ、それらを合成することにより伝送する方式である。それと異 なり、入力データに応じて、 90度位相が異なる 2つのキャリアの位相だけではなく振 幅をも変化させ、それらを合成することにより伝送する方式である QAM (Quadrature Amplitude Modulation)という方式もある。この QAMには、例えば、キャリアを振幅と 位相が異なる 16種類の状態に変化させて信号を伝送する 16QAMや、 64種類の状 態に変化させて信号を伝送する 64QAMなどがある。また、 QPSK方式は、 4QAM と同等である。  FIG. 4 is a flowchart showing the flow of processing performed by the O FDM / xDSL transmission apparatus shown in FIG. Here, it is assumed that data is input in the QPSK system, which is an example of a multi-level modulation system. The QPSK method is a method of transmitting by changing the phases of two carriers that are 90 degrees out of phase according to the input data and combining them. In contrast, QAM (Quadrature Amplitude Modulation) is a method that changes the amplitude as well as the amplitude of two carriers that differ in phase by 90 degrees according to the input data, and transmits them by combining them. is there. This QAM includes, for example, 16QAM that transmits signals by changing the carrier to 16 different states with different amplitudes and phases, and 64QAM that transmits signals by changing to 64 different states. The QPSK system is equivalent to 4QAM.
[0040] QPSK方式の場合、入力データは図略の IQ分離器 (スプリッタ)により Iチャネル(同 相成分)と Qチャネル (直交成分)とに分離される。この Iチャネルと Qチャネルでは、キ ャリアの位相が 90度ずらされている。この直列形式のデータが入力すると、 S/P変 換部 120は当該データを並列形式へと変換する (ステップ S 101)。  [0040] In the case of the QPSK system, input data is separated into an I channel (in-phase component) and a Q channel (quadrature component) by an IQ separator (splitter) (not shown). In this I channel and Q channel, the carrier phase is shifted by 90 degrees. When this serial format data is input, the S / P converter 120 converts the data into a parallel format (step S101).
[0041] 並列化されたデータである並列シンボルを {d , d , d , · · · , d }とし、その一例を  [0041] Let the parallel symbols, which are parallelized data, be {d, d, d,.
1 2 3 N  1 2 3 N
図 2に示す。ここで、 d等の表記の右側に当該データの信号点が、 Iチャネル成分を 横軸にし、 Qチャネル成分を縦軸とする座標軸上に黒丸で示されている。例えば、 d の信号点は、 Iチャネル成分が「1」、 Qチャネル成分も「1」であり、 (1, Q) = (l, 1)と なる点であり、 dの信号点は、 (1, Q) = (- l, _ 1)となる点である。  Figure 2 shows. Here, on the right side of the notation such as d, the signal point of the data is indicated by a black circle on the coordinate axis with the I channel component as the horizontal axis and the Q channel component as the vertical axis. For example, the signal point of d is the point where the I channel component is “1” and the Q channel component is also “1”, and (1, Q) = (l, 1), and the signal point of d is ( 1, Q) = (-l, _ 1).
2  2
[0042] 続いて、当該送信装置は、この並列シンボルをマツパによりマッピングし、マツパ情 報をカ卩えた後マルチキャリア変調信号へ変換し、その中でピーク電力の小さい信号 を送信する(ステップ S102)。ここで、マツパ情報とは、例えばマツパとしてシフトレジ スタを用いる場合にはシフト数等の情報である。 [0042] Subsequently, the transmitting apparatus maps the parallel symbols by a mapper, captures the mapper information, converts it to a multicarrier modulation signal, and a signal having a low peak power among the signals. Is transmitted (step S102). Here, the mapper information is information such as the number of shifts when a shift register is used as the mapper, for example.
[0043] 図 5は、このステップ S102における処理の流れを詳細に示すフローチャートである 。まず、 S/P変換部 120から送出されたデータがマツパ部 130に入力すると、マツパ 選択部 110はどのマツパを用いるかというマツパ情報を初期化し、 i= lとする(ステツ プ S201)。したがって、マツパ選択部 110は最初のマツパとしてマツパ { 1 }を選択し、 マツパ部 130は当該マツパ { 1 }を用レ、てマッピングを行う(ステップ S202)。  FIG. 5 is a flowchart showing in detail the process flow in step S102. First, when the data sent from the S / P conversion unit 120 is input to the mapper unit 130, the mapper selection unit 110 initializes mapper information indicating which mapper is used and sets i = l (step S201). Therefore, the mapper selection unit 110 selects the mapper {1} as the first mapper, and the mapper unit 130 maps using the mapper {1} (step S202).
[0044] ここで、本実施形態及び以下の実施形態において、マツパ部が行うマッピングは、 I チャネルと Qチャネルとで同じであってもよいし、異なっていてもよレ、。特に、 Iチヤネ ルと Qチャネルとでマッピングが異なっている場合には、後述するピーク電力を低減 する効果がより大きくなるので好ましい。  [0044] Here, in this embodiment and the following embodiments, the mapping performed by the mapper unit may be the same or different between the I channel and the Q channel. In particular, when the mapping is different between the I channel and the Q channel, it is preferable because the effect of reducing the peak power described later becomes larger.
[0045] また、マツパ { 1 }とは、マツパ部 130においてシフトレジスタを用いる場合には、例え ばシフト数が「1」であることを意味する。このシフト数が「1」の場合のシフト後の信号 点は、図 2に示されている。この図に示すように、入力データ {d , d , d , · · · , d }は Further, the mapa {1} means that when the mapper unit 130 uses a shift register, for example, the shift number is “1”. The signal points after the shift when this shift number is “1” are shown in FIG. As shown in this figure, the input data {d, d, d, ..., d} is
1 2 3 N マツパ部 130におけるマッピング後に、 {d, d, d, d, · · ·, d }と並べ替えられ  1 2 3 N After mapping in the Matsupa part 130, it is rearranged as {d, d, d, d, ..., d}.
N 1 2 3 N- 1  N 1 2 3 N- 1
て IFFT部 140に送出される。  And sent to IFFT section 140.
[0046] 次に、 IFFT部 140は、マツパ部 130力 マッピングが施されたデータを受け取り、 マツパ選択部 110から受け取ったマツパ情報と共に 1つのデータ列にまとめ、当該デ ータ列に IFFTを施す(ステップ S203)。これにより、図 2に示すような Iチャネル及び Qチャネルの信号波形が得られる。そして、ピーク電力測定部 150は、当該信号の各 時刻におけるピーク電力を測定する(ステップ S204)。その結果、信号のピーク電力 が所定の閾値以下である場合 (ステップ S205で No)には、アンテナ 170を介して当 該信号を送信する (ステップ S206)。引き続き送信すべき次のデータがある場合 (ス テツプ S212で Yes)には、ステップ S201に戻り、以降の処理を継続する。  [0046] Next, IFFT section 140 receives the data subjected to the mapping of the mapper section 130, combines it with the mapper information received from mapper selection section 110, and performs IFFT on the data string. (Step S203). As a result, I-channel and Q-channel signal waveforms as shown in FIG. 2 are obtained. Then, the peak power measurement unit 150 measures the peak power at each time of the signal (step S204). As a result, if the peak power of the signal is equal to or lower than the predetermined threshold (No in step S205), the signal is transmitted via the antenna 170 (step S206). If there is next data to be transmitted (Yes in step S212), the process returns to step S201 and the subsequent processing is continued.
[0047] それと異なり、ステップ S205において、信号のピーク電力が所定の閾値より大きい 場合 (ステップ S205で Yes)には、ピーク電力測定部 150は、ピーク電力が当該信号 に関して今まで測定した中で最小か否力、を判定する(ステップ S207)。今の場合は、 まだステップ S207に至ったのが最初であるために、ピーク電力は最小と判定され (ス テツプ S207で Yes)、ピーク電力測定部 150内の所定領域に上書き保存される(ステ ップ S208)。 [0047] On the other hand, if the peak power of the signal is larger than the predetermined threshold value in step S205 (Yes in step S205), the peak power measurement unit 150 determines that the peak power is the smallest measured up to now for the signal. Is determined (step S207). In this case, the peak power is determined to be minimum (step S207) because it is still the first time that step S207 has been reached. In step S207, Yes), it is overwritten and stored in a predetermined area in the peak power measurement unit 150 (step S208).
[0048] 上記の保存が終了すると、ピーク電力測定部 150はマツパ選択部 110に通知し、 次のマツパを選択させる。マツパ選択部 110は、マツパ情報である {i}の値を 1だけ増 やす (ステップ S209)と、引き続きその値がマツパ部 130に用意されているマツパの 数 {max}を超えていないか否かを判定する (ステップ S210)。その結果、マツパ情報 {i}の値が i_{max}を超えていないと判定すると(ステップ S210で No)、マツパ選択部 1 10はステップ S202においてマツパ {i}を選択し (今の場合は i = 2)、マッピングを行 わせる。  [0048] When the above storage is completed, the peak power measurement unit 150 notifies the mapper selection unit 110 to select the next mapper. The mapper selection unit 110 increases the value of {i}, which is the mapper information, by 1 (step S209), and whether or not the value continues to exceed the number of mappers {max} prepared in the mapper unit 130. Is determined (step S210). As a result, if it is determined that the value of the mapper information {i} does not exceed i_ {max} (No in step S210), the mapper selection unit 110 selects the mapper {i} in step S202 (in this case, i = 2), mapping is performed.
[0049] それと異なり、ステップ S210において、 {i}の値が Umax}を超えたと判定された場合 には(ステップ S210で Yes)、ピーク電力測定部 150は保存されている信号、つまりこ れまででピーク電力が最小の信号を無線送信部 160に送出し、無線送信部 160は アンテナ 170を介して当該信号を送信する(ステップ S211)。そして、引き続き送信 すべき次のデータがある場合(ステップ S212で Yes)には、ステップ S201に戻り、以 降の処理を継続する。  [0049] In contrast, if it is determined in step S210 that the value of {i} exceeds Umax} (Yes in step S210), the peak power measurement unit 150 stores the stored signal, that is, up to this point. Then, the signal having the minimum peak power is transmitted to the wireless transmission unit 160, and the wireless transmission unit 160 transmits the signal via the antenna 170 (step S211). If there is next data to be transmitted (Yes in step S212), the process returns to step S201, and the subsequent processing is continued.
[0050] 以下、上記の送信装置から送信された信号を受信する受信装置の構成及び処理 の流れを説明する。図 6は、本発明の実施形態 1に係る受信装置の構成を示す機能 ブロック図であり、図 7は、図 6に示した OFDM/xDSL方式の受信装置の行う処理 の流れを示すフローチャートである。受信装置 20は、アンテナ 210、無線受信部 220 、 FFT部(逆変換手段) 230、マツパ情報抽出部 (抽出手段) 240、デマッパ部 (順序 回復手段) 250、及び P/S変換部(直列化手段) 260を備えて構成される。  [0050] The configuration and processing flow of the receiving apparatus that receives the signal transmitted from the transmitting apparatus will be described below. FIG. 6 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 1 of the present invention, and FIG. 7 is a flowchart showing the flow of processing performed by the OFDM / xDSL receiving apparatus shown in FIG. . The receiving device 20 includes an antenna 210, a radio receiving unit 220, an FFT unit (inverse conversion unit) 230, a mapper information extraction unit (extraction unit) 240, a demapper unit (order recovery unit) 250, and a P / S conversion unit (serialization). Means) 260 is configured.
[0051] まず、アンテナ 210が送信装置 10から送信された信号を受信する(ステップ S301) と、当該信号は無線受信部 220を介して FFT部 230に送出される。 FFT部 230は、 無線受信部 220から受け取った信号に高速フーリエ変換(Fast Fourier Transformati on)を施し、時間領域 (振幅対時間)の信号を周波数領域 (振幅対周波数)のデータ へと変換する(ステップ S302)。続いて、マツパ情報抽出部 240は、 FFT部 240にお レ、て各サブキャリアに分解されたデータからマツパ情報を抽出し (ステップ S303)、デ マツパ部 250に送出する。 [0052] デマッパ部 250は、送信装置 10に備えられているものと同じ複数のマツパを備えて おり、マツパ情報抽出部 240から受け取ったマツパ情報に基づいて、マツパ部 130に おいて用いられたマツパを特定し、当該マツパと逆の処理(デマッピング)を行う(ステ ップ S304)。これは、例えば、マツパ部 130に備えられたマツパがシフトレジスタであ り、図 2に示したようにシフト数が「1」である場合には、マツパ部 130でのシフトの向き と逆方向に「1」だけシフトすることに対応する。 [0051] First, when the antenna 210 receives a signal transmitted from the transmission device 10 (step S301), the signal is transmitted to the FFT unit 230 via the wireless reception unit 220. The FFT unit 230 performs fast Fourier transformation on the signal received from the radio reception unit 220, and converts the time domain (amplitude vs. time) signal into frequency domain (amplitude vs. frequency) data ( Step S302). Subsequently, the mapper information extraction unit 240 extracts the mapper information from the data decomposed into each subcarrier by the FFT unit 240 (step S303), and sends it to the demapper unit 250. [0052] The demapper unit 250 includes a plurality of mappers that are the same as those provided in the transmission device 10, and is used in the mapper unit 130 based on the mapper information received from the mapper information extraction unit 240. The mapper is identified and the process (demapping) reverse to the mapper is performed (step S304). This is because, for example, when the mapper provided in the mapper unit 130 is a shift register, and the number of shifts is “1” as shown in FIG. Corresponds to shifting by “1”.
[0053] 最後に、 PZS変換部 260は、デマッパ部 250から受け取った並列形式のデータを 直列形式に変換する (ステップ S305)。そして、引き続き受信すべき次のデータがあ る場合(ステップ S 306で Yes)には、ステップ S 301に戻り、以降の処理を継続する。  [0053] Finally, the PZS conversion unit 260 converts the parallel format data received from the demapper unit 250 into the serial format (step S305). If there is next data to be continuously received (Yes in step S 306), the process returns to step S 301 and the subsequent processing is continued.
[0054] 以上説明した本実施形態によれば、マルチキャリア変調方式全般に適用可能であ り、多くのメモリ量を必要とする位相回転系列等を必要としなくて済むことに加え、変 換手段による変換の前に並列シンボルの並べ替えを行っているので、有効に電力を 低減すること力 Sできる。また、電力が閾値以下になると直ちにマルチキャリア変調信 号を送信する場合は、高速に処理を行うことができる。それと異なり、所定の回数に 達するまでの最小の電力を有するマルチキャリア変調信号を送信する場合は、より確 実に電力を低減することができる。  [0054] According to the present embodiment described above, the present invention is applicable to all multicarrier modulation schemes, and it is not necessary to use a phase rotation sequence that requires a large amount of memory. Since parallel symbols are rearranged before conversion by, power can be effectively reduced. In addition, when a multicarrier modulation signal is transmitted as soon as the power falls below the threshold, processing can be performed at high speed. In contrast, when transmitting a multicarrier modulation signal having the minimum power until the predetermined number of times is reached, the power can be reduced more reliably.
[0055] [実施形態 2]  [0055] [Embodiment 2]
前述の実施形態 1においては、入力データをマツパ部 130においてマッピングし、 当該マッピングされたデータのピーク電力が小さくなるようにマツパを選択する処理を 続けて行う構成とした。本実施形態においては、データのマッピングからピーク電力 の測定までを複数の回路において並行に行う形態について説明する。本実施形態 においては、 S/P変換部 120_ 1〜M、マツパ部 130_ 1〜M、 IFFT部 140—:!〜 M、ピーク電力測定部 150a、及び無線送信部 160が、それぞれ並列化手段、順序 変更手段、変換手段、電力測定手段、及び送信手段としての機能を有する。  In the first embodiment, the input data is mapped in the mapper unit 130, and the mapper selection process is continuously performed so that the peak power of the mapped data is reduced. In the present embodiment, a description will be given of a mode in which data mapping to peak power measurement are performed in parallel in a plurality of circuits. In the present embodiment, the S / P converters 120_1 to M, the mapper units 130_1 to M, and the IFFT unit 140—! To M, the peak power measurement unit 150a, and the wireless transmission unit 160 have functions as a parallelization unit, a sequence change unit, a conversion unit, a power measurement unit, and a transmission unit, respectively.
[0056] 図 8は、本発明の実施形態 2に係る送信装置の構成を示す機能ブロック図である。  FIG. 8 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 2 of the present invention.
本実施形態においては、実施形態 1のマツパ選択部 110に相当する機能部を備える 代わりに、マツパ部 130が備えていたマツパの数(以下、その数を Mとする)分の回路 を並行に設け、マツパ部 130— 1〜Mにはそれぞれ一つずつのマツパのみが備えら れているとする。例えば、マツパとしてシフトレジスタを用いる場合には、マツパ部 130 1はシフト数が「1」であり、マツパ部 130— Mはシフト数が「M」であるような構成と する。 In the present embodiment, instead of including the functional unit corresponding to the mapper selection unit 110 of the first embodiment, the number of mappers included in the mapper unit 130 (hereinafter, the number is referred to as M) is parallel. There is only one Matsupa in each of the Matsupa parts 130-1 to M. Suppose that For example, when a shift register is used as the mapper, the mapper unit 1301 has a shift number “1”, and the mapper unit 130-M has a shift number “M”.
[0057] また、 S/P変換部 120_ 1〜M及び IFFT部 140_ 1〜Mは、実施形態 1の SZP 変換部 120及び IFFT部 140と同様の機能を果たす。ただし、 IFFT部 140_ 1〜M には、マツパの番号(「1」〜「!l」)がマツパ情報として入力される。そして、ピーク電力 測定部 150aは、 IFFT部 140— 1〜Mから並行に入力された信号のピーク電力を測 定し、その中で最もピーク電力が小さい信号のみを無線送信部 160を介して送信す る。  [0057] In addition, the S / P converters 120_1 to M and the IFFT units 140_1 to M perform the same functions as the SZP converter 120 and the IFFT unit 140 of the first embodiment. However, the mapper numbers (“1” to “! L”) are input to the IFFT units 140_1 to M as mapper information. The peak power measurement unit 150a measures the peak power of the signals input in parallel from the IFFT units 140-1 to M, and transmits only the signal having the lowest peak power through the wireless transmission unit 160. The
[0058] 図 9は、図 8に示した〇FDM/xDSL方式の送信装置の行う処理の流れを示すフ ローチャートである。まず、 S/P変換部 120_ 1〜Mは直列形式のデータを並列シ ンボルへと変換する(ステップ S351)。続いて、マツパ部 130_ 1〜Mは、当該並列 シンボルにマッピングを行レ、(ステップ S352)、 IFFT部 140— 1〜Mへ送出する。そ して、当該並列シンボルをマツパ部 130— :!〜 M力 受け取った IFFT部 140— :!〜 Mは、当該並列シンボルとマツパ情報とを 1つにまとめたデータ列に IFFTを施し(ス テツプ S353)、合わせて M本の信号としてピーク電力測定部 150aに送出する。  FIG. 9 is a flowchart showing the flow of processing performed by the O FDM / xDSL transmission apparatus shown in FIG. First, the S / P converters 120_1 to M convert serial data into parallel symbols (step S351). Subsequently, the mapper units 130_1 to M perform mapping to the parallel symbols (step S352), and send the IFFT units 140-1 to 140-M. The IFFT unit 140-:!-M that has received the parallel symbol for the parallel symbol 130—:! To M applies IFFT to the data string in which the parallel symbol and the mapper information are combined into one (SFP Step S353), and M signals are sent to the peak power measurement unit 150a.
[0059] ピーク電力測定部 150aは、マツパ { 1 }〜{M}を用いてマッピングが行われた信号 を IFFT部 140— 1〜Mから受け取ると、それら信号のピーク電力を測定する(ステツ プ S354)。このとき、複数の CPUを設けることで M本の信号のピーク電力の測定を 並行して行ってもよいし、 1つの CPUで順次行うようにしてもよい。  [0059] When the peak power measurement unit 150a receives signals mapped using the mappers {1} to {M} from the IFFT units 140-1 to M, the peak power measurement unit 150a measures the peak power of these signals (steps). S354). At this time, the peak power of M signals may be measured in parallel by providing a plurality of CPUs, or may be sequentially performed by one CPU.
[0060] ピーク電力測定部 150aにおける測定の結果、ピーク電力が最小となる信号(図 8に 示した例では、マツパ { 2}を用レ、た信号)が求まると、当該信号はピーク電力測定部 1 50aから無線送信部 160に送出された後、アンテナ 170を介して送信される。また、 本実施形態に係る送信装置を用いた場合に対応する受信装置としては,前述の実 施形態 1における受信装置(図 6参照)を用レ、ることが可能であるため、その説明を省 略する。  [0060] As a result of the measurement by the peak power measurement unit 150a, when a signal that minimizes the peak power (in the example shown in Fig. 8, a signal using the mapa {2}) is obtained, the signal is measured by measuring the peak power. After being transmitted from unit 150 a to radio transmission unit 160, it is transmitted through antenna 170. In addition, as a receiving apparatus corresponding to the case where the transmitting apparatus according to the present embodiment is used, the receiving apparatus (see FIG. 6) according to the first embodiment described above can be used. Omitted.
[0061] 以上説明した本実施形態によれば、マルチキャリア変調方式全般に適用可能であ り、多くのメモリ量を必要とする位相回転系列等を必要としなくて済むことに加え、変 換手段による変換の前に並列シンボルの並べ替えを行っているので、有効に電力を 低減すること力できる。また、入力データの並列化から電力の測定までの処理を並列 に行うことができるので、高速に処理を行うことが可能となる。 [0061] According to the present embodiment described above, the present invention can be applied to all multicarrier modulation schemes, and it is not necessary to use a phase rotation sequence that requires a large amount of memory. Since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. In addition, processing from parallelization of input data to power measurement can be performed in parallel, enabling high-speed processing.
[0062] [実施形態 3]  [0062] [Embodiment 3]
前述の実施形態 1及び 2においては、 IFFT部にマツパ情報を入力し、当該データ をマッピングが行われたデータの所定の位置に揷入して送信する形態について説明 した。本実施形態においては、マツパ情報をデータの決まった位置に揷入せず、用 レ、られたマツパに応じた位置に揷入する形態について説明する。  In the first and second embodiments described above, a description has been given of a mode in which mapper information is input to the IFFT unit, and the data is inserted into a predetermined position of the mapped data and transmitted. In the present embodiment, a description will be given of a mode in which the mapper information is not inserted at a predetermined position in the data, but is inserted at a position corresponding to the mapper that has been used.
[0063] 図 10は、本発明の実施形態 3に係る送信装置の構成を示す機能ブロック図であり 、図 11は、本発明の実施形態 3に係る受信装置の構成を示す機能ブロック図である 。この図 10及び図 11は、図 2に示したようにマッピングされたデータのピーク電力が 小さくなるようにマツパを選択する処理を続けて行う形態について示してある。そして 、本実施形態に係る送信装置においては、前述の実施形態 1における送信装置(図 2参照)に加え、 S/P変換部 121にマツパ情報を挿入する代わりに、新たにマツパ情 報を伝達するためのパイロット挿入部(パイロット挿入手段) 135を備え、マツパ選択 部 111はマツパ情報をパイロット挿入部 135に送出する構成である。  FIG. 10 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 3 of the present invention. FIG. 11 is a functional block diagram showing the configuration of the reception apparatus according to Embodiment 3 of the present invention. . FIGS. 10 and 11 show a mode in which the mapper selection process is continuously performed so that the peak power of the mapped data becomes small as shown in FIG. Then, in the transmitting apparatus according to the present embodiment, in addition to the transmitting apparatus in the first embodiment (see FIG. 2), instead of inserting the mapper information into the S / P conversion unit 121, the mapper information is newly transmitted. The pilot insertion unit (pilot insertion means) 135 is provided, and the mapper selection unit 111 is configured to send mapper information to the pilot insertion unit 135.
[0064] そして、本実施形態に係る受信装置においては、前述の実施形態 1における受信 装置(図 6参照)に加え、パイロット挿入部 135においてパイロットが挿入されたサブキ ャリアを特定するためのサブキャリア電力測定部(個別電力測定手段) 235をさらに 備える構成である。このサブキャリア電力測定部 235は、 OFDM信号の 1シンボルに 亘つて各サブキャリアの電力を求める構成である。さらに、マツパ情報抽出部 241は、 前述の実施形態 1と異なり、 P/S変換部 260からではなぐサブキャリア電力測定部 235からマツパ情報を受け取り、デマツバ部 250に通知する構成である。  [0064] Then, in the receiving apparatus according to the present embodiment, in addition to the receiving apparatus in the first embodiment (see Fig. 6), the subcarrier for specifying the subcarrier in which the pilot is inserted in pilot insertion section 135 is provided. The power measuring unit (individual power measuring means) 235 is further provided. This subcarrier power measurement unit 235 is configured to obtain the power of each subcarrier over one symbol of the OFDM signal. Further, unlike the first embodiment described above, the mapper information extraction unit 241 is configured to receive the mapper information from the subcarrier power measurement unit 235 that is not from the P / S conversion unit 260 and to notify the dematsuba unit 250.
[0065] 図 12及び図 13は、それぞれ図 2に示した OFDMZxDSL方式の送信装置及び図  FIG. 12 and FIG. 13 show the OFDMZxDSL transmission apparatus and diagram shown in FIG. 2, respectively.
6に示した〇FDM/xDSL方式の受信装置の行う処理の流れを示すフローチャート である。本実施形態の送信及び受信の処理の流れは、前述の実施形態 1とほとんど 同じであるので詳しい説明を省略する。異なっているのは、送信時にパイロット揷入 部 135が行うパイロット揷入(図 12におけるステップ S251)と、受信時にサブキャリア 電力測定部 235が行うパイロットが挿入されたサブキャリアを特定し、マツパ情報を抽 出する処理(図 13におけるステップ S311)が新たに加わることである。 7 is a flowchart showing the flow of processing performed by the FDM / xDSL receiver shown in FIG. Since the flow of transmission and reception processing in this embodiment is almost the same as in the first embodiment, detailed description thereof is omitted. The difference is that pilot insertion performed by pilot insertion unit 135 during transmission (step S251 in FIG. 12) and subcarrier during reception. A process (step S311 in FIG. 13) for identifying the subcarrier in which the pilot is inserted and extracting the mapper information performed by the power measurement unit 235 is newly added.
[0066] 図 14は、パイロット挿入部 135が行うパイロット挿入を示す模式図である。図 14 (a) はパイロット揷入前、(b)はパイロット揷入後の 1つのサブキャリアを示しており、 C , C 等は 1つのデータを表している。パイロット揷入部 135は、マツパ部 130力も図 14 (aFIG. 14 is a schematic diagram showing pilot insertion performed by the pilot insertion unit 135. Figure 14 (a) shows one subcarrier before pilot insertion, (b) shows one subcarrier after pilot insertion, and C, C, etc. represent one data. The pilot insertion part 135 has the force of the Matsupa part 130 as shown in Fig. 14 (a
2 2
)に示したサブキャリアを受け取ると、例えば、図 14 (b)に示したように C と Cとの間  ) Is received, for example, between C and C as shown in Fig. 14 (b).
N 1 にパイロットとして例えば「0」を揷入する。このパイロット揷入部 135が揷入を行うサブ キャリアは、マツパ部 130において用いられたマツパの番号、つまりマツパ情報を示し ている。例えば、マツパ部 130においてシフトレジスタが用いられており、シフト数が「 2」であった場合には、パイロット揷入部 135は 2番目のサブキャリアにパイロットを揷 入する。その後、 IFFT部 140において IFFTが施されたマルチキャリア変調信号力 アンテナ 170から送信される。  For example, “0” is inserted into N 1 as a pilot. The subcarriers inserted by the pilot insertion unit 135 indicate the number of the mapper used in the mapper unit 130, that is, the mapper information. For example, when a shift register is used in the mapper unit 130 and the shift number is “2”, the pilot insertion unit 135 inserts a pilot into the second subcarrier. Thereafter, IFFT section 140 transmits the signal from multicarrier modulation signal power antenna 170 to which IFFT has been applied.
[0067] 当該信号を受け取った受信装置は、サブキャリア電力測定部 235において、各サ ブキャリアの電力を測定し、パイロット(「0」 )が埋め込まれたサブキャリアを特定する。 これは、例えば、「0」が入力されたサブキャリアの電力は、それ以外のサブキャリアの 電力に比べて小さいことから判別できる。マツパ情報抽出部 241は、サブキャリア電 力測定部 235から受け取った当該サブキャリアの番号をデマッパ部 250に通知し、そ の番号に対応するデマッパを行わせる。これにより、送信装置 10へ入力されたデー タが再現される。 The receiving device that has received the signal measures the power of each subcarrier in subcarrier power measurement section 235 and identifies the subcarrier in which the pilot (“0”) is embedded. This can be determined, for example, because the power of a subcarrier to which “0” is input is smaller than the power of other subcarriers. The mapper information extraction unit 241 notifies the demapper unit 250 of the number of the subcarrier received from the subcarrier power measurement unit 235, and causes the demapper corresponding to the number to be executed. As a result, the data input to the transmission device 10 is reproduced.
[0068] 以上の本実施形態においては、図 2に示したようにマツパを選択する処理を逐次続 ける構成であるとして説明したが、本発明の実施形態はそれに限られず、図 8に示し たようにマッピングを並行して行う構成についても適用可能である。  [0068] In the above embodiment, the description has been made assuming that the mapper selection process is sequentially continued as shown in Fig. 2, but the embodiment of the present invention is not limited to this and is shown in Fig. 8. Thus, the present invention can be applied to a configuration in which mapping is performed in parallel.
[0069] 以上説明した本実施形態によれば、並列シンボルに対してどのような並べ替えが 行われたかをデータに直接挿入するのではなぐサイドインフォメーションとして送信 することが可能となるので、送信信号にデータ以外の情報を付加することができる。 特に、パイロット揷入部 135が「0」を揷入する場合には、当該「0」が揷入されたサブ キャリアの電力は他のサブキャリアの電力に比べて小さくなる。そのため、サブキヤリ ァの電力を測定することで並べ替えを特定することが可能となり、かつその特定を行 う際の識別が容易になる。 [0069] According to the present embodiment described above, it is possible to transmit what sort of parallel symbols has been performed as side information rather than directly inserting it into the data. Information other than data can be added to the. In particular, when pilot insertion unit 135 inserts “0”, the power of the subcarrier in which “0” is inserted is smaller than the power of other subcarriers. Therefore, it is possible to specify the rearrangement by measuring the power of the subcarrier, and to do so. It is easy to identify when hitting.
[0070] [実施形態 4]  [0070] [Embodiment 4]
前述の実施形態 1乃至 3においては、 OFDM/xDSLにピーク電力の低減を行う 機能部を設けた場合について説明したが、本実施形態及び以降の実施形態では、 本発明を MC— CDMAに適用した形態について説明する。また、本実施形態にお いては、拡散部 315 _ 1〜M、データ多重化部 320、スクランブル符号生成部 325、 スクランブル符号乗算部 330及び SZP変換部 340が、並列化手段としての機能を 有する。  In Embodiments 1 to 3 described above, the case where a functional unit for reducing peak power is provided in OFDM / xDSL has been described. However, in the present embodiment and the following embodiments, the present invention is applied to MC-CDMA. A form is demonstrated. In the present embodiment, the spreading units 315_1 to M, the data multiplexing unit 320, the scramble code generation unit 325, the scramble code multiplication unit 330, and the SZP conversion unit 340 have a function as parallelization means. .
[0071] 図 15は、本発明の実施形態 4に係る送信装置の構成を示す機能ブロック図である 。本実施形態に係る送信装置は、図 31に示した従来の送信装置と比べて、スクラン ブル情報選択部 990を備えず、代わりにマツパ選択部 350と、マツパ部(順序変更手 段) 360と、当該マツパ部 360において用いられたマツパの情報をデータに揷入する ためのパイロット挿入部(パイロット挿入手段) 365とを備える構成である。つまり、従 来の送信装置においては、スクランブル符号を例えば巡回シフトすることによりピーク 電力を低減する構成であった力 本実施形態においてはスクランブル符号は普通に 乗算し、マツパ部 360においてデータのマッピングを行うことが相違している。  FIG. 15 is a functional block diagram showing the configuration of the transmission apparatus according to Embodiment 4 of the present invention. Compared with the conventional transmission apparatus shown in FIG. 31, the transmission apparatus according to the present embodiment does not include the scramble information selection unit 990. Instead, the mapper selection unit 350, the mapper unit (order change unit) 360, The pilot insertion unit (pilot insertion means) 365 is used to insert the mapper information used in the mapper unit 360 into the data. That is, in the conventional transmission apparatus, the power that was configured to reduce the peak power by cyclically shifting the scramble code, for example, in this embodiment, the scramble code is normally multiplied, and the mapper unit 360 performs data mapping. To do is different.
[0072] 図 16は、図 15に示した MC— CDMA方式の送信装置の行う処理の流れを示すフ ローチャートである。まず、チヤネライゼーシヨン符号生成部 310は、チヤネライゼ一 シヨン符号の生成を行う(ステップ S401)。このチヤネライゼーシヨン符号は、データ が入力される際に随時生成してもよいし、 ROM (Read Only Memory)等に記憶して おき、データが入力される際に随時当該 ROM等から読み出してもよい。  FIG. 16 is a flowchart showing the flow of processing performed by the MC-CDMA transmission apparatus shown in FIG. First, channelization code generation section 310 generates a channelization code (step S401). This channelization code may be generated whenever data is input, or stored in a ROM (Read Only Memory) or the like and read from the ROM or the like as required when data is input. Also good.
[0073] そして、複数のユーザからのデータが入力されると、拡散部 315 _ 1〜Mは、チヤネ ライゼーシヨン符号生成部 310からチヤネライゼーシヨン符号を受け取り、データの拡 散を行う(ステップ S402)。拡散部 315— 1〜Mにおいて拡散されたデータは、続い てデータ多重化部 320において多重化される(ステップ S403)。次にスクランブル符 号生成部 325において生成されたスクランブル符号と、データ多重化部 320におい て多重化されたデータとがスクランブル符号乗算部 330において乗算される(ステツ プ S404)。続いて、 S/P変換部 340は、スクランブル符号乗算部 330から受け取つ た乗算後のデータを直列形式から並列形式へと変換し、マツパ部 360に出力する(ス テツプ S405)。 [0073] When data from a plurality of users are input, spreading sections 315_1 to M receive channelization codes from channelization code generation section 310 and perform data spreading (step S402). ). The data spread in spreading sections 315-1 to M is subsequently multiplexed in data multiplexing section 320 (step S403). Next, the scramble code generation unit 325 multiplies the scramble code generated by the data multiplexing unit 320 by the scramble code multiplication unit 330 (step S404). Subsequently, the S / P converter 340 receives from the scramble code multiplier 330. The data after multiplication is converted from serial format to parallel format and output to the mapper unit 360 (step S405).
[0074] 以降のデータをマッピングし、用いたマツパの情報をパイロットとして挿入し、ピーク 電力の小さい信号を送信するという処理の流れ (ステップ S406)は、前述の図 12と 同じであるので、説明を省略する。  [0074] The flow of processing (step S406) for mapping the subsequent data, inserting the used mapper information as a pilot, and transmitting a signal with low peak power (step S406) is the same as that in FIG. Is omitted.
[0075] 図 17は、本発明の実施形態 4に係る受信装置の構成を示す機能ブロック図であり 、図 18は、図 17に示した受信装置の行う処理の流れを示すフローチャートである。 本実施形態に係る受信装置は、図 11に示した OFDMZxDSL方式の受信装置に 加えて、逆拡散部 270を備える構成である。そのため、図 18のステップ S312におい て、デマッピングされたデータを逆拡散する処理が新たに加わっていることが異なる だけなので、説明は省略する。  FIG. 17 is a functional block diagram showing the configuration of the receiving apparatus according to Embodiment 4 of the present invention. FIG. 18 is a flowchart showing the flow of processing performed by the receiving apparatus shown in FIG. The receiving apparatus according to the present embodiment is configured to include a despreading section 270 in addition to the OFDMZxDSL receiving apparatus shown in FIG. Therefore, in step S312 in FIG. 18, the only difference is that a process for despreading the demapped data is newly added, and the description thereof will be omitted.
[0076] 図 19は、本発明の実施形態 4に係る送信装置において、サブキャリア数を変えた 場合の PAPR特性を示す図である。この図の横軸は PAPR値であり、ピーク電力を 平均電力で割った値である。つまり、例えば、横軸で 10 [dB]というのは、ピーク電力 が平均電力の 10倍の大きさであることを示す。また、この図の縦軸は、ピーク電力が 対応する横軸の PAPR値を越える確率を表している。また、ユーザ数は「16」、拡散 率は「32」、そしてサブキャリア数は FFTポイント数の「3/4」である。  FIG. 19 is a diagram showing PAPR characteristics when the number of subcarriers is changed in the transmission apparatus according to Embodiment 4 of the present invention. The horizontal axis of this figure is the PAPR value, which is the peak power divided by the average power. In other words, for example, 10 [dB] on the horizontal axis indicates that the peak power is 10 times the average power. The vertical axis in this figure represents the probability that the peak power exceeds the corresponding PAPR value on the horizontal axis. The number of users is “16”, the spreading factor is “32”, and the number of subcarriers is “3/4” of the number of FFT points.
[0077] この図中、 Ncはサブキャリア数を表している。つまり、本実施形態においては、 384 , 192及び 96本のサブキャリアを用いた場合の結果を示している。また、点線は位相 回転系列等も含まない従来の方法を用いた場合の結果であり、実線が本発明の実 施形態に係る結果である。この図からわかるように、従来の場合も、本実施形態の場 合も共にサブキャリア数が増加すると図の右側にシフトしていぐつまりピーク電力が 大きくなつていく。これは、前述したように、 PAPRに共通の課題である。  In this figure, Nc represents the number of subcarriers. That is, in the present embodiment, the results are shown when 384, 192, and 96 subcarriers are used. Also, the dotted line is the result when using a conventional method that does not include a phase rotation sequence or the like, and the solid line is the result according to the embodiment of the present invention. As can be seen from this figure, in both the conventional case and the present embodiment, when the number of subcarriers increases, the shift to the right side of the figure, that is, the peak power increases. As mentioned earlier, this is a common issue for PAPR.
[0078] ここで、例えば、 Nc = 96で従来と本実施形態とを比較すると、従来の場合は、 PA PRが 10 [dB]を越える確率はほぼ 10— 2程度である。つまり、 100回に 1回程度はピ ーク電力が平均電力の 10倍になるということである。それに対して、本実施形態にお いては、同じ 10_2の確率になるのは PAPRが 8 [dB]程度とかなり低減されている。ま た、これ以外のサブキャリア数においても、本実施形態によれば大きなピーク電力低 減効果が得られることがわかる。 [0078] Here, for example, when comparing the prior art and the present embodiment in Nc = 96, in the case of conventional, probability PA PR exceeds 10 [dB] is approximately 10- 2. In other words, once every 100 times, the peak power is 10 times the average power. In contrast, in the present embodiment Contact information, it becomes a probability of the same 10_ 2 is significantly reduced and PAPR is 8 [dB] degree. In addition, according to the present embodiment, a large peak power is reduced in other numbers of subcarriers. It can be seen that a reduction effect is obtained.
[0079] 以上説明した本実施形態における送信装置は、 S/P変換部 340をマツパ部 360 の直前に配置する構成としたが、本発明の実施形態はそれに限られず、 S/P変換 部 340は、例えば、拡散部 315— 1〜M内に備えられており、拡散部 315_ 1〜Mか らの出力からすでにサブキャリア数に相当する数に並列化されている構成であっても よレ、。その場合は、図 15の位置の SZP変換部 340は設ける必要がない。  [0079] The transmission device in the present embodiment described above is configured such that the S / P conversion unit 340 is disposed immediately before the mapper unit 360, but the embodiment of the present invention is not limited thereto, and the S / P conversion unit 340 For example, a configuration may be employed in which the spreading sections 315-1 to M are provided, and the outputs from the spreading sections 315_1 to M are already parallelized to a number corresponding to the number of subcarriers. ,. In that case, it is not necessary to provide the SZP converter 340 at the position shown in FIG.
[0080] 以上説明した本実施形態における送信装置は、図 15に示すようにスクランブル符 号乗算部 330においてスクランブル符号が乗算された後、 IFFT部 370に入力する 前にマツパ部 360においてマッピングが行われるとして説明したが、本発明の実施形 態はそれに限られない。例えば、図 20に示すようにスクランブル符号乗算部 330に おいてスクランブル符号が乗算される直前、又は図 21に示すようにチヤネライゼーシ ヨン符号生成部 310からチヤネライゼーシヨン符号が送出された後、拡散部において 拡散される直前にマツパ部 360を備える構成であってもよレ、。このときは、図 3のシフ トレジスタで説明したように、並列形式から並列形式へマッピングするのではなぐ直 列形式から直列形式へマッピングするようにマツパを構成すればょレ、。  The transmission apparatus according to the present embodiment described above performs mapping in the mapper unit 360 after being multiplied by the scramble code multiplication unit 330 and before being input to the IFFT unit 370 as shown in FIG. However, the embodiment of the present invention is not limited thereto. For example, spreading is performed immediately before the scramble code multiplier 330 multiplies the scramble code as shown in FIG. 20 or after the channelization code generator 310 sends the channelization code as shown in FIG. It may be configured to have a mapa unit 360 immediately before being diffused in the unit. At this time, as explained in the shift register in Fig. 3, if the mapper is configured to map from the serial format to the serial format, rather than mapping from the parallel format to the parallel format, it should be configured.
[0081] [実施形態 5]  [0081] [Embodiment 5]
前述の実施形態 1乃至 4においては、送信装置にマツパ部を備え、受信装置には デマッパ部を備える構成とし、当該マツパ部におけるマッピングを変えることにより、ピ ーク電力の小さい信号を送受信するものとした。し力 ながら、例えば、無線 LANな どで標準が定まっている場合には、無線 LANカード等のハードウェアに新たにマツ パ部等を組み込むことは現実的ではなレ、。そこで、本実施形態においては、ネットヮ 一クインターフェイスカード(NIC)の一例である無線 LANカードのハードウェアの外 部にマッピングあるいはデマッピングの機能を有する機能部を備えることで、ピーク電 力の小さい信号の送受信を可能とする構成について説明する。  In the first to fourth embodiments described above, the transmission device includes a mapper unit, and the reception device includes a demapper unit, and a signal with low peak power is transmitted and received by changing the mapping in the mapper unit. It was. However, for example, when a standard is established for a wireless LAN, it is not practical to newly incorporate a mapper unit into hardware such as a wireless LAN card. Therefore, in this embodiment, by providing a functional unit having a mapping or demapping function outside the hardware of a wireless LAN card, which is an example of a network interface card (NIC), the peak power can be reduced. A configuration that enables transmission and reception of signals will be described.
[0082] 図 22は、通常の無線 LANの(a)送信部及び (b)受信部を示す模式図である。まず 、図 22 (a)の送信部においては、入力されたデータは、トランスポート層において誤り 訂正やパケットやデータの整合性のチェックなどが行われる。続いて、インターネット 層において宛先のアドレス及び自分の情報(アドレスなどヘッダ情報)が付加される。 そして、無線 LANカードにおいてデータに IFFT等が施され、送信信号として送出さ れる。当該送信信号を受け取った図 22 (b)の受信部においては、無線 LANカード においてデータに FFT等が施されるなどした後、入力データとして復号される。 FIG. 22 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of a normal wireless LAN. First, in the transmission unit in FIG. 22 (a), input data is subjected to error correction, packet and data consistency check, etc. in the transport layer. Subsequently, the destination address and own information (header information such as an address) are added in the Internet layer. Then, IFFT is applied to the data in the wireless LAN card and sent as a transmission signal. In the receiving unit in FIG. 22 (b) that has received the transmission signal, the data is subjected to FFT or the like in the wireless LAN card and then decoded as input data.
[0083] 図 23は、本発明の実施形態に係る無線 LANの(a)送信部及び (b)受信部を示す 模式図である。図 23 (a)の送信部及び図 23 (b)の受信部においては、無線 LAN力 ード等に外部接続され、ピーク電力の小さい信号の送受信を可能とする送信側マツ パ部 400 (送信補助装置)及び受信側デマツバ部 (受信補助装置) 500とをそれぞれ 備えている。 FIG. 23 is a schematic diagram showing (a) a transmission unit and (b) a reception unit of the wireless LAN according to the embodiment of the present invention. In the transmission unit in FIG. 23 (a) and the reception unit in FIG. 23 (b), the transmission side mapper unit 400 (transmission unit) is externally connected to a wireless LAN mode or the like and enables transmission / reception of signals with low peak power. Auxiliary device) and a receiving-side dematsuba unit (reception auxiliary device) 500 are provided.
[0084] 送信側マツパ部 400は、マツパ選択部 410、マツパ部(順序変更手段) 420、下位 層エミユレーシヨン部(再現手段) 430、ピーク電力測定部(電力測定手段) 440及び データ合成部 (合成手段及び送信手段) 450を備えて構成される。まず、送信側マツ パ部 400に入力されたデータはマツパ部 420に送られ、そこでマツパ選択部 410によ つて選択されたマツパによるマッピングが行われる。このマッピングは、直列シンボル 力 なる入力データの順序を並び替えるものである。そして、マツパ部 420において マッピングが行われたデータと、マツパ部 420において用いられたマツパを表すマツ パ情報とがデータ合成部 450に送られ、 1つのデータ列に合成される。  [0084] The transmission-side mapper unit 400 includes a mapper selection unit 410, a mapper unit (order changing unit) 420, a lower layer emulation unit (reproduction unit) 430, a peak power measurement unit (power measurement unit) 440, and a data synthesis unit (synthesis) Means and transmission means) 450. First, the data input to the transmission side mapper unit 400 is sent to the mapper unit 420, where mapping by the mapper selected by the mapper selection unit 410 is performed. This mapping rearranges the order of input data, which is a serial symbol. Then, the data mapped in the mapper unit 420 and the mapper information indicating the mapper used in the mapper unit 420 are sent to the data combining unit 450 and combined into one data string.
[0085] 次に、データ合成部 450において合成されたデータ列は、下位層エミユレーシヨン 部 430に送出され、そこでトランスポート層、インターネット層及び無線 LANカードに おいて行われるものと同じ処理が行われ、当該処理後の信号はピーク電力測定部 4 40に送出される。  [0085] Next, the data sequence synthesized in data synthesis unit 450 is sent to lower layer emulation unit 430, where the same processing as that performed in the transport layer, the Internet layer, and the wireless LAN card is performed. The processed signal is sent to the peak power measurement unit 440.
[0086] ここで、下位層エミユレーシヨン部 430は、インターネット層において付加されるへッ ダ情報をデータ合成部 450から受け取ったデータ列に付加したり、無線 LANカード において行われる IFFTなどをデータ列に施したりする機能部である。つまり、下位層 エミユレーシヨン部 430は、データ合成部 450から送出されたデータ列がトランスポー ト層に入力し無線 LANカードから送出される際の信号波形を忠実に再現する機能 部である。したがって、下位層エミユレーシヨン部 430から送出される信号のピーク電 力を低減することは、実際に図 23 (a)の送信部から送信される信号のピーク電力を 低減することと等価である。 [0087] このため、下位層エミユレーシヨン部 430から送出される信号のピーク電力を低減す るためにピーク電力測定部 440を設け、前述の実施形態:!〜 4と同様に、ピーク電力 が最小となるようなマツパの選択処理を行っていく。そして、ピーク電力が最小になる と判定されたデータ列(データ及びマツパ情報)は、データ合成部 450からトランスポ ート層に入力し無線 LANカードから送出される。 [0086] Here, lower layer emulation unit 430 adds header information added in the Internet layer to the data string received from data synthesizer 450, or IFFT performed in the wireless LAN card as a data string. It is a functional part to give. That is, the lower layer emulation unit 430 is a functional unit that faithfully reproduces a signal waveform when the data string transmitted from the data synthesis unit 450 is input to the transport layer and transmitted from the wireless LAN card. Therefore, reducing the peak power of the signal transmitted from the lower layer emulation unit 430 is equivalent to actually reducing the peak power of the signal transmitted from the transmission unit in FIG. [0087] Therefore, in order to reduce the peak power of the signal transmitted from the lower layer emulation unit 430, the peak power measurement unit 440 is provided, and the peak power is minimized as in the above embodiments:! To 4. The mapa selection process is performed. The data string (data and mapper information) determined to have the minimum peak power is input from the data synthesis unit 450 to the transport layer and transmitted from the wireless LAN card.
[0088] このとき、ピーク電力測定部 440が所定の閾値を記憶しており、下位層エミユレーシ ヨン部 430から送出されるマルチキャリア変調信号のピーク電力が当該閾値以下であ る場合に、当該マルチキャリア変調信号の元となったデータ列がデータ合成部 450 力、ら無線 LANカードを含む送信装置へ送信される形態がある。また、それとは異なり 、ピーク電力測定部 440は、マルチキャリア変調信号を受け取って電力を測定し、当 該電力とこれまでの最小の電力とを比較し、最小の電力を有するマルチキャリア変調 信号の元となったデータ列をデータ合成部 450に順次上書きし記憶させる形態であ つてもよレ、。この場合は、所定の回数 (例えば、実施形態 1における Umax})に達する と、データ合成部 450に記憶されているデータ列が無線 LANカードを含む送信装置 へ送信される。  At this time, when the peak power measurement unit 440 stores a predetermined threshold value and the peak power of the multicarrier modulation signal transmitted from the lower layer emulation unit 430 is equal to or lower than the threshold value, There is a form in which the data string that is the source of the carrier modulation signal is transmitted to the data synthesizing unit 450 and the transmission device including the wireless LAN card. In contrast, the peak power measurement unit 440 receives the multicarrier modulation signal, measures the power, compares the power with the minimum power so far, and compares the multicarrier modulation signal having the minimum power. The original data string may be overwritten and stored in the data composition unit 450 sequentially. In this case, when a predetermined number of times (for example, Umax} in the first embodiment) is reached, the data string stored in the data composition unit 450 is transmitted to the transmission device including the wireless LAN card.
[0089] 続いて、図 23 (b)に示した受信側デマッパ部 500は、デマッパ選択部 510、デマツ パ部 (順序回復手段) 520及びデータ分離部 (分離手段) 530を備えて構成される。 図 23 (b)の受信部が図 23 (a)に示した送信部から送信された信号を受信すると、当 該信号は無線 LANカードにおいて、 FFTが施された後、インターネット層及びトラン スポート層を通過し、データ列(データ及びマツパ情報)として受信側デマッパ部 500 に入力される。  Subsequently, the receiving-side demapper unit 500 shown in FIG. 23 (b) includes a demapper selection unit 510, a demapper unit (order recovery unit) 520, and a data separation unit (separation unit) 530. . When the receiving unit in Fig. 23 (b) receives the signal transmitted from the transmitting unit shown in Fig. 23 (a), the signal is subjected to FFT in the wireless LAN card, and then the Internet layer and the transport layer. And is input to the receiving side demapper unit 500 as a data string (data and mapper information).
[0090] 受信側デマツバ部 500に入力したデータ列は、まず、データ分離部 530において、 マツパ部 420から出力されたデータとマツパ情報とに分離される。そして、当該データ はデマッパ部 520に送出され、マツパ情報はデマッパ選択部 510に送出される。デ ータ分離部 530からマツパ情報を受け取ったデマッパ選択部 510は、マツパ部 420 において用いられたマツパを元に戻す(デマッピング)ためのデマッパを選択し、デマ ッパ部 520において、当該選択されたデマツバによるデマッピングを行わせる。以上 の処理により復号されたデータは、受信側デマツバ部 500から送出され処理を終了 する。 [0090] The data string input to receiving side dematsuba section 500 is first separated into data output from mapper section 420 and mapper information in data separation section 530. Then, the data is sent to the demapper unit 520, and the mapper information is sent to the demapper selection unit 510. Upon receiving the mapper information from the data separation unit 530, the demapper selection unit 510 selects a demapper for returning (demapping) the mapper used in the mapper unit 420, and the demapper unit 520 selects the demapper. Demapping is performed using the dematsuba. The data decrypted by the above processing is sent out from the receiving dematsuba unit 500 and the processing ends. To do.
[0091] 図 24は、本実施形態に係る送信部を用い、マツパ部が備えるマツパの一形態とし てのインターリーバの数を変えた場合と、マツパ部が備えるマツパとして従来の位相 回転系列を用い、当該位相回転系列の数を変えた場合の PAPR特性を示す図であ る。この図の横軸は PAPR値であり、ピーク電力を平均電力で割った値である。また、 この図の縦軸は、ピーク電力が対応する横軸の PAPR値を越える確率を表している。 使用したパラメータは無線 LAN規格 IEEE802. 1 laの標準規格に沿ったものであり 、 OFDM方式を想定している。  FIG. 24 shows a case where the transmission unit according to this embodiment is used and the number of interleavers as one form of the mapper included in the mapper unit is changed, and a conventional phase rotation sequence is used as the mapper included in the mapper unit. FIG. 6 is a diagram showing PAPR characteristics when the number of phase rotation series used is changed. The horizontal axis of this figure is the PAPR value, which is the peak power divided by the average power. The vertical axis in this figure represents the probability that the peak power exceeds the corresponding PAPR value on the horizontal axis. The parameters used are in accordance with the standard of the wireless LAN standard IEEE802.1 la and assume the OFDM method.
[0092] この図中、 Nはマツパ部 420が備えるインターリーバの数を、 Mは位相回転系列の  [0092] In this figure, N is the number of interleavers provided in the mapper unit 420, and M is the phase rotation sequence.
it  it
数をそれぞれ表している。つまり、本実施形態においては、 1, 2, 4, 8又は 16個のィ ンターリーバ又は位相回転系列を用いた場合の結果を示している。また、き(黒丸) 等の記号が付加されている線が本発明の実施形態に係る結果であり、記号が付加さ れてレ、なレ、線が従来の位相回転系列を用レ、た結果である。  Each represents a number. In other words, in the present embodiment, results are shown when 1, 2, 4, 8, or 16 interleavers or phase rotation sequences are used. In addition, a line to which a symbol such as “ki” (black circle) is added is the result according to the embodiment of the present invention, and the symbol is added to the line and the line uses the conventional phase rotation sequence. It is a result.
[0093] また、ピーク電力測定部 440が記憶している所定の閾値は 7 [dB]である。つまり、 本実施形態においては、下位層エミユレーシヨン部 430から送出されるマルチキヤリ ァ変調信号のピーク電力が 7 [dB]以下になった時点で、当該マルチキャリア変調信 号の元となったデータ列がデータ合成部 450から無線 LANカードを含む送信装置 へ送信される。 In addition, the predetermined threshold stored in the peak power measurement unit 440 is 7 [dB]. That is, in the present embodiment, when the peak power of the multicarrier modulation signal transmitted from the lower layer emulation unit 430 becomes 7 [dB] or less, the data string that is the source of the multicarrier modulation signal is Data is sent from the data synthesizer 450 to the transmitter including the wireless LAN card.
[0094] この図 24からわかるように、本実施形態に係る送信部は、従来の方式と同等の PA PR特性を示している。従来の位相回転系列を用いる方式は複素数の乗算を必要と したが、本発明によれば複素数の乗算は不要となる。そのため、本発明によれば、従 来方式と同等に PAPR値を抑えたままで、さらに計算の煩雑さを軽減することができ る。  As can be seen from FIG. 24, the transmission unit according to the present embodiment shows PAPR characteristics equivalent to those of the conventional method. The conventional method using a phase rotation sequence requires complex multiplication, but according to the present invention, complex multiplication is not required. Therefore, according to the present invention, it is possible to further reduce the complexity of calculation while keeping the PAPR value suppressed as in the conventional method.
[0095] 図 25は、本実施形態に係る送信部を用いた場合の帯域外輻射特性を示す図であ る。この図の横軸は入力データの周波数([MHz]単位)であり、縦軸は相対スぺタト ル電力密度([dB]単位)である。使用したパラメータは無線 LAN規格 IEEE802. 1 laの標準規格に沿ったものであり、 OFDM方式を想定している。  FIG. 25 is a diagram showing out-of-band radiation characteristics when the transmission unit according to this embodiment is used. The horizontal axis of this figure is the frequency of input data (in [MHz] units), and the vertical axis is the relative spectral power density (in [dB] units). The parameters used are in accordance with the standard of the wireless LAN standard IEEE802.1 la and assume the OFDM method.
[0096] この図中、 Nはマツパ部 420が備えるインターリーバの数を表しており、 IBOは非 線形増幅器への入力バックオフである。例えば、 IBO = 3 [dB]とは、非線形増幅器 へ入力する電力のうち、平均電力より 3 [dB]以上大きレヽ電力部分はカットされてしま うことを意味する。また、この図中、スペクトルマスクと記された曲線は、 IEEE802. 1 la規格で定められた相対スペクトル電力密度の上限を表す。つまり、 IEEE802. 11 a規格に準拠する製品は、全ての周波数領域において、このスペクトルマスクよりも下 方 (値の小さい方)に相対スペクトル電力密度が納まっていなければならない。さらに 、線形増幅器と記された曲線は、増幅器に入力する電力をカットせず、そのまま入力 した場合の結果を示す。 [0096] In this figure, N represents the number of interleavers provided in the mapper unit 420, and IBO represents non-interval. Input backoff to the linear amplifier. For example, IBO = 3 [dB] means that the portion of the power input to the nonlinear amplifier that is 3 dB or more larger than the average power is cut. Further, in this figure, the curve indicated as the spectrum mask represents the upper limit of the relative spectral power density defined in the IEEE 802.1 la standard. In other words, products that comply with the IEEE802.11a standard must have the relative spectral power density below the spectral mask (the smaller value) in all frequency regions. Furthermore, the curve labeled linear amplifier shows the result when the power input to the amplifier is input without being cut.
[0097] この図からわかるように、本発明によれば、インターリーバ数(N )が 2個あるいは 4 [0097] As can be seen from this figure, according to the present invention, the number of interleavers (N) is two or four.
it  it
個と少なくても、通常の OFDM方式の結果に比べて、帯域外輻射を 2〜3 [dB]程度 抑制することができる。  Even if the number is small, out-of-band radiation can be suppressed by about 2 to 3 [dB] compared to the normal OFDM method.
[0098] 以上説明した本実施形態によれば、マルチキャリア変調方式全般に適用可能であ り、多くのメモリ量を必要とする位相回転系列等を必要としなくて済むことに加え、マ ルチキャリア変調信号への変換の前に並列シンボルの並べ替えを行っているので、 有効に電力を低減することができる。また、電力が閾値以下になると直ちにマルチキ ャリア変調信号を送信する場合は、高速に処理を行うことができる。それと異なり、所 定の回数に達するまでの最小の電力を有するマルチキャリア変調信号を送信する場 合は、より確実に電力を低減することができる。さらに、無線 LANカードから出力され る波形を忠実に再現しているので、送信信号の電力を確実に低減することができる。  [0098] According to the present embodiment described above, the present invention is applicable to all multicarrier modulation schemes, and it is not necessary to use a phase rotation sequence that requires a large amount of memory. Since parallel symbols are rearranged before conversion to a modulated signal, power can be effectively reduced. In addition, when a multi-carrier modulation signal is transmitted immediately when the power falls below a threshold, processing can be performed at high speed. In contrast, when transmitting a multi-carrier modulation signal having the minimum power until the predetermined number of times is reached, the power can be more reliably reduced. In addition, since the waveform output from the wireless LAN card is faithfully reproduced, the power of the transmission signal can be reliably reduced.
[0099] [他の好ましい実施形態]  [0099] [Other Preferred Embodiments]
(A)以上説明した実施形態においては、マツパ部 130が備えるマツパとして主にシ フトレジスタを用いるとして説明したが、本発明の実施形態はそれに限られず、例え ば、以下のインターリーバ及びブロックインターリーバ等を用いることが可能である。  (A) In the embodiment described above, the shift register is mainly used as the mapper included in the mapper unit 130. However, the embodiment of the present invention is not limited to this, and for example, the following interleaver and block interface are used. It is possible to use a Lever or the like.
[0100] 図 26は、マツパとして用いられるインターリーバの機能を説明するための模式図で ある。 S/P変換部において並列化された入力データ {d  [0100] FIG. 26 is a schematic diagram for explaining the function of an interleaver used as a mapper. Input data parallelized in S / P converter (d
1, d 1, d
2, d  2, d
3, · · · , d }は、イン  3, ..., d}
N  N
ターリーバ内に備えられた擬似乱数発生手段により発生させられた擬似乱数の順序 に並べ替えられて出力される。  The pseudo-random numbers generated by the pseudo-random number generator provided in the tareeber are output in the order of the pseudo-random numbers generated.
[0101] 図 27は、インターリーバ内に備えられた擬似乱数発生手段の一実施形態を示す模 式図である。擬似乱数を発生させるために、原始多項式 h (x)を用意し、当該多項式 に従った処理を行うシフトレジスタを構成する。ここで、入力する数を Nとすると、原始 多項式の次数 Dは、 N≤2D— 1を満たすものとして決められる。今、数字の「1」から「 6」を並び替えるものとすると、 N = 6なので、 Dは 3以上の整数であればよレ、。ここで は、 D = 3とし、原始多項式を h (x) = l +x + x3とした場合のシフトレジスタを示してあ る。そして、当該シフトレジスタを 2D_ 1回動作させることで、入力した数字を並び替 えた擬似乱数の列が得られる。 [0101] FIG. 27 is a schematic diagram showing an embodiment of the pseudorandom number generating means provided in the interleaver. FIG. In order to generate pseudo-random numbers, a primitive polynomial h (x) is prepared, and a shift register that performs processing according to the polynomial is configured. Here, if the number to be input is N, the degree D of the primitive polynomial is determined as satisfying N≤2 D — 1. Now, if you want to rearrange the numbers "1" to "6", N = 6, so D should be an integer greater than 3. Here, the shift register when D = 3 and the primitive polynomial is h (x) = l + x + x 3 is shown. Then, by operating the shift register 2 D _ 1 times, the column of the pseudo-random number E replacement sequence numbers entered are obtained.
[0102] まず、 N以下の初期値を選び、当該初期値を 2進数表示したものをシフトレジスタに 入力する。ここでは、初期値を「1」としたので、当該初期値を 2進数表示した「1」を 3 ビットで表した「0」_「0」_「1」が 1回目の値として、 Rl, R2, R3の位置に入力され る。続いて、 2回目の処理において、 R1の「0」は R2へ、 R2の「0」は R3へ、それぞれ シフトされる。また、 R1の「0」は R3の「1」と mod2での加算(2を法とする加算)が行わ れ、その結果が R1に入力される。ここで、 mod2での加算では、 1 + 1 = 0、 1 +0 = 1 、 0 + 0 = 0となるので、 R1の「0」と R3の「1」との加算の結果である「1」が R1に入力さ れる。これが、 2回目の処理である。  [0102] First, select an initial value less than or equal to N, and input the initial value in binary notation to the shift register. Here, since the initial value is “1”, “0” _ “0” _ “1” in which the initial value is represented in binary notation and represented by 3 bits is set as the first value Rl, Input to the R2 and R3 positions. Subsequently, in the second processing, “0” of R1 is shifted to R2, and “0” of R2 is shifted to R3. “0” in R1 is added with “1” in R3 and mod2 (addition modulo 2), and the result is input to R1. Here, in addition with mod2, 1 + 1 = 0, 1 +0 = 1, and 0 + 0 = 0. Therefore, the result of addition of "0" in R1 and "1" in R3 is "1" "Is input to R1. This is the second process.
[0103] 以上の処理を 7 ( = 23—1)回目まで繰り返していき、ここまでに得られた数字を 10 進数表示する。 1回目から 7回目までに得られた数字を 10進数表示したものを、図 2 7の { }内に示してある。この数字を 1回目力 順に並べ、 N ( = 6)より大きい数字 7を 取り除くと、擬似乱数の列「1 , 4, 6, 3, 5, 2」が得られる。以上の形態において、原 始多項式や初期値は任意に選択することが可能であり、その場合には、以上の擬似 乱数の列とは異なった数列が得られることとなる。 [0103] The above processing is repeated up to the 7th (= 2 3 —1) th time, and the numbers obtained so far are displayed in decimal. The numbers obtained from the 1st to the 7th time are shown in decimal notation in Fig. 27. Arranging these numbers in order of the first power and removing the number 7 greater than N (= 6) yields the pseudorandom sequence “1, 4, 6, 3, 5, 2”. In the above embodiment, the primitive polynomial and the initial value can be arbitrarily selected, and in this case, a sequence different from the above sequence of pseudo-random numbers is obtained.
[0104] データやサブキャリアの並び替えを行う際に、上記したようなインターリーバを用い る手法は、例えば線形合同法等の手法に比べて、必要な記憶容量等が少なくて済 むという利点がある。例えば、 31個のサブキャリアの並び替えを行う場合、線形合同 法では 32ビットの整数を用レ、、当該整数の加算や乗算を行う必要がある。それに対 して、インターリーバを用いる場合には、状態を 5ビットで表し、結線が 5本であるとす ると、 2を底とした対数関数 (log)を用いて log31程度の記憶容量があればよい。  [0104] The advantage of using the interleaver as described above when rearranging data and subcarriers is that, for example, less storage capacity is required compared to a method such as the linear congruence method. There is. For example, when rearranging 31 subcarriers, the linear congruence method needs to use 32-bit integers and add or multiply the integers. On the other hand, when an interleaver is used, if the state is expressed by 5 bits and the number of connections is 5, the storage capacity of about log31 can be obtained using a logarithmic function (log) with 2 as the base. I just need it.
[0105] 図 28は、マツパとして用いられるブロックインターリーバの機能を説明するための模 式図である。 OFDM信号の 1シンボル分の入力データは、例えば、図に点線の矢印 で描かれた向き(図の上から下に向力う向き)にメモリに書き込まれていく。そして、デ ータを出力する際は、図に実線の矢印で描かれた向き(図の左から右に向力う向き) にメモリから読み出される。その結果、 {d , d , d , · · · , d , d }という出力デ FIG. 28 is a schematic diagram for explaining the function of a block interleaver used as a mapper. FIG. For example, the input data for one symbol of the OFDM signal is written to the memory in the direction depicted by the dotted arrow in the figure (the direction that is directed downward from the top of the figure). When data is output, it is read out from the memory in the direction drawn by the solid arrows in the figure (the direction from the left to the right in the figure). As a result, the output data {d, d, d, ..., d, d}
1 r+ 1 2r+ l N-r N  1 r + 1 2r + l N-r N
ータが得られる。  Data is obtained.
[0106] 図 3に示したシフトレジスタ、図 26に示したインターリーバ、及び図 28に示したブロ ックインターリーバ等は、結局、入力された数字の列のいろいろな順列を求めて出力 する機能を有する点においては共通である。したがって、上記のマツパの機能をすベ て有するような汎用的なマツパを構成することも可能である。また、本発明の実施形 態に係るマツパは、ハードウェアで構成されていてもよいし、例えば CPU等で、入力 されたデータの順列を求めて、その結果を出力する機能を有するソフトウェアで構成 されていてもよい。  [0106] The shift register shown in FIG. 3, the interleaver shown in FIG. 26, the block interleaver shown in FIG. 28, etc. eventually obtain and output various permutations of the input number sequence. It is common in that it has a function. Therefore, it is possible to configure a general-purpose mapper that has all the functions of the above mapper. Further, the mapper according to the embodiment of the present invention may be configured by hardware, for example, by software having a function of obtaining a permutation of input data by a CPU or the like and outputting the result. May be.
[0107] (B)以上説明した実施形態においては、ピーク電力測定部においてピーク電力の 瞬時値を求め、その値が最小の信号を送信するとして説明したが、本発明の実施形 態はそれに限られず、ピーク電力測定部 150において超過電力を求める構成として もよレ、。図 29は、超過電力を説明するための模式図である。図の縦軸は瞬時電力で あり、横軸は時間である。また、図には 1シンボル分の波形が描かれている。この図に 示すように超過電力とは、平均電力力 x[dB]以上となる信号成分の電力和である。 この Xは、超過電力力 シンボルの電力の総和を正しく反映するように選ばれればよく 、例えば 3 [dB]程度の値が選ばれる。このように、超過電力は電力の総和を対象とし ているために、送信電力の低減に効果的である。  [0107] (B) In the embodiment described above, the peak power measurement unit obtains the instantaneous value of the peak power and transmits the signal having the minimum value. However, the embodiment of the present invention is not limited thereto. However, the peak power measuring unit 150 may be configured to calculate excess power. FIG. 29 is a schematic diagram for explaining excess power. The vertical axis in the figure is instantaneous power, and the horizontal axis is time. The figure also shows a waveform for one symbol. As shown in this figure, excess power is the sum of power of signal components that are equal to or greater than average power x [dB]. This X may be selected so as to correctly reflect the sum of the power of the excess power symbol. For example, a value of about 3 [dB] is selected. In this way, excess power is targeted for the sum of power, which is effective in reducing transmission power.
[0108] (C)以上説明した実施形態においては、マツパ部に備えられているマツパは、例え ばシフトレジスタのみであるとして説明した力 本発明の実施形態はそれに限られず 、複数の異なるマツパが備えられていてもよレ、。図 30は、複数のマツパが備えられた マツパ部の構成を示す模式図である。この形態の場合、マツパ部は、例えば、シフト レジスタ 362、インターリーバ 364、ブロックインターリーバ 366等を備えて構成されて いる。マツパ部は、マツパ選択部が選択したマツパに 2接点スィッチを切替え、当該選 択されたマツパを用いてデータにマッピングを行う。したがって、マツパ選択部が送出 するマツパ情報としては、どのマツパを選択したかということ以外に、例えば、シフトレ ジスタが選択された場合には、そのシフト数等も含めればよい。 (C) In the embodiment described above, the force described as the mapper provided in the mapper unit is, for example, only a shift register. The embodiment of the present invention is not limited to this, and a plurality of different mappers are included. You can be prepared. FIG. 30 is a schematic diagram showing a configuration of a mapper section provided with a plurality of mappers. In this embodiment, the mapper unit includes, for example, a shift register 362, an interleaver 364, a block interleaver 366, and the like. The mapper unit switches the two-contact switch to the mapper selected by the mapper selection unit, and maps the data using the selected mapper. Therefore, the Matsupa selection unit sends As the mapper information to be performed, in addition to which mapper is selected, for example, when a shift register is selected, the number of shifts may be included.
[0109] (D)以上説明した実施形態においては、マツパ部を 1つだけ設け、データのマツピ ングを行うとして説明したが、本発明の実施形態はそれに限られず、マツパ部の上流 又は下流にシフトレジスタ等のハードウェアをさらに備え、巡回シフト等を施すことも 可能である。このとき、当該シフトレジスタ等のハードウェアは、マツパ部の直前又は 直後に配置されていてもよいし、マツパ部の前後いずれかの離れた位置に配置され ていてもよい。これにより、マツパ部に備えられたマツパ単独の場合に比べて、複数の マツパを備えた場合と等価な機能を実現することができ、有効にピーク電力を低減で きる。  (D) In the embodiment described above, it has been described that only one mapper unit is provided and data mapping is performed. However, the embodiment of the present invention is not limited to this, and is provided upstream or downstream of the mapper unit. It is possible to further provide hardware such as a shift register and perform cyclic shifts and the like. At this time, the hardware such as the shift register may be arranged immediately before or after the mapper unit, or may be arranged at any position before or after the mapper unit. As a result, a function equivalent to the case of having a plurality of mappers can be realized and the peak power can be effectively reduced as compared with the case of a single mapper provided in the mapper unit.
[0110] (E)以上説明した実施形態においては、 IFFT部で IFFTを施した信号のピーク電 力を測定し、例えばその中で最も小さなピーク電力を有するマツパを選択するとして 説明したが、本発明の実施形態はそれに限られない。例えば、図 31に示すように、 I FFT部 142において IFFTを施す前に所定のベクトルを用い、当該ベクトルと IFFT 部に入力する並列シンボルとの内積を計算すること等で例えばピーク電力に相当す る数値を求める内積演算部(内積演算手段) 180をさらに備える構成であってもよレ、 。そして、電力測定部(電力測定手段) 152において、当該ピーク電力に相当する数 値が最も小さくなるマツパを選択する。また、所定のベクトルは、例えば、 SVM (Supp ort Vector Machine)や遺伝的アルゴリズム等の学習アルゴリズムを用い、ほぼランダ ムなデータ等に対して事前の学習を行い、内積計算後のピーク電力が小さくなるよう にすることで得ること力 Sできる。  [0110] (E) In the embodiment described above, the peak power of the signal subjected to IFFT is measured by the IFFT unit and, for example, the mapper having the smallest peak power is selected. Embodiments of the invention are not limited thereto. For example, as shown in FIG. 31, a predetermined vector is used before IFFT is performed in the I FFT unit 142, and the inner product of the vector and the parallel symbol input to the IFFT unit is calculated. An inner product operation unit (inner product operation means) 180 for obtaining a numerical value may be provided. Then, the power measuring unit (power measuring means) 152 selects a mapper having the smallest value corresponding to the peak power. In addition, the predetermined vector uses a learning algorithm such as SVM (Support Vector Machine) or a genetic algorithm to perform pre-learning on almost random data, etc., and the peak power after inner product calculation is small. You can gain the power S by doing so.
[0111] この所定のベクトルが得られた後は、マツパ部 132において、データに対して異なる マツパを用いたマッピングを行レ、、当該マッピングが行われたデータと当該ベクトルと の内積を取る処理を順次行レ、、その結果であるピーク電力に相当する数値が最も小 さくなるマツパを選択する構成であってもよいし、ピーク電力に相当する数値が所定 の閾値以下となった場合に、当該マツパを選択する構成であってもよい。さらには、 例えば図 8に示したように、マッピングが行われたデータと所定のベクトルとの内積を 取る処理を並行に行レ、、その結果であるピーク電力に相当する数値が最も小さくなる マツパを選択する構成であってもよい。ただし、この場合、図 8に示したものと異なり、 複数の IFFT部を備える必要はない。いずれの場合においても、ピーク電力が最も小 さくなるとされるマツパカ S選択されると、当該マツパを用いたマッピングが行われたデ ータが IFFT部に送出される。そして、マルチキャリア変調信号へと変換され、無線送 信部から送信される。 [0111] After this predetermined vector is obtained, the mapper unit 132 performs mapping using different mappers on the data, and calculates the inner product of the data subjected to the mapping and the vector May be configured to select the mapper whose numerical value corresponding to the peak power as a result is the smallest, or when the numerical value corresponding to the peak power falls below a predetermined threshold, The structure which selects the said mapper may be sufficient. Furthermore, for example, as shown in FIG. 8, the process of taking the inner product of the mapped data and a predetermined vector is performed in parallel, and the numerical value corresponding to the peak power as a result is the smallest. It may be configured to select a mapper. However, in this case, unlike the one shown in Fig. 8, it is not necessary to have multiple IFFT sections. In any case, when the Matsupaka S, which is considered to have the lowest peak power, is selected, the data mapped using the mapper is sent to the IFFT unit. Then, it is converted into a multicarrier modulation signal and transmitted from the wireless transmission unit.
[0112] また、上記とは異なり、内積演算部は所定のベクトルを複数有する構成であってもよ レ、。この場合、例えば、複数の異なるマッピングが行われたデータと第 1のベクトルと の内積を取り、その結果であるピーク電力に相当する数値をデータ毎に記憶する。 引き続き、前記複数の異なるマッピングが行われたデータと第 2のベクトルとの内積を 取り、その結果であるピーク電力に相当する数値をデータ毎に記憶する。そして、例 えば、データ毎に、第 1及び第 2のベクトルとの内積の結果得られた数値の平均を取 り、それが最も小さくなるデータに用いられたマツパを選択すればよい。あるいは、 3 つ以上のベクトルを用意し、当該ベクトルとの内積の結果得られたピーク電力に相当 する数値が最も小さくなつた数が最も多いデータに用いられたマツパを選択すること も可能である。  [0112] Also, unlike the above, the inner product calculation unit may have a plurality of predetermined vectors. In this case, for example, an inner product of data on which a plurality of different mappings are performed and the first vector is taken, and a numerical value corresponding to the peak power as a result is stored for each data. Subsequently, the inner product of the plurality of differently mapped data and the second vector is taken, and a numerical value corresponding to the peak power as a result is stored for each data. For example, for each data, the numerical value obtained as a result of the inner product with the first and second vectors may be averaged, and the mapper used for the data having the smallest value may be selected. Alternatively, it is possible to prepare three or more vectors and select the mapper used for the data with the largest number corresponding to the peak power obtained as a result of the inner product with the vector. .
[0113] したがって、本実施形態によれば、計算量が膨大である IFFTを複数回行うことなく 、ピーク電力が小さくなるマツパを選択することができるので、計算時間を削減するこ とが可能となる。  [0113] Therefore, according to the present embodiment, it is possible to select a mapper with a small peak power without performing IFFT with a large amount of calculation a plurality of times, so that the calculation time can be reduced. Become.
[0114] (F)以上説明した実施形態 3及び 4においては、マツパ情報をサイドインフォメーシ ヨンとして持たせる場合に、サブキャリアの 1箇所に「0」を挿入するとして説明したが、 本発明の実施形態はそれに限られず、同一サブキャリア内の 2箇所以上の任意の位 置に「0」を揷入する形態であってもよい。この場合、 1箇所に揷入する場合に比べて 識別率が高まるために、受信信号を復元する確実性をより高めることができる。また、 揷入する値は「0」ではなぐそれ以外の値であっても構わない。特に、その場合、比 較的大きな値を揷入すれば、サブキャリア電力測定部におけるサブキャリアの識別の 際の識別率が高まるために好ましレ、。  (F) In Embodiments 3 and 4 described above, when the mapper information is provided as side information, it has been described that “0” is inserted at one location of the subcarrier. The form is not limited to this, and “0” may be inserted at any two or more positions in the same subcarrier. In this case, since the identification rate is increased as compared with the case of insertion in one place, the certainty of restoring the received signal can be further increased. The value to be inserted may be other values than “0”. In particular, in that case, if a relatively large value is inserted, the identification rate at the time of identification of subcarriers in the subcarrier power measurement unit is increased.
[0115] [実施の形態の概要]  [Outline of Embodiment]
本発明に係る実施の形態の概要を以下に記載する。 [0116] (1)上記したように、本願発明に係る送信装置は、入力データを並列シンボルに変 換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、少な くとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ列 を変換し、マルチキャリア変調信号を生成する変換手段と、前記変換手段により生成 されたマルチキャリア変調信号の所定の形式の電力を測定し、当該電力が予め設定 された閾値より大きいか否かを判定する電力測定手段と、前記電力測定手段により 前記電力が前記閾値より大きいと判定された場合に、前記順序変更手段を制御して 前記並列シンボルの順序を再度並べ替えさせ、前記変換手段を制御して当該並列 シンボルからマルチキャリア変調信号を生成させ、前記電力測定手段を制御して当 該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御手段と、前記 制御手段による一連の処理が所定の回数に達する前に、前記電力測定手段により 前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調信号を 送信する送信手段と、を備えることが好ましい。 An outline of the embodiment according to the present invention will be described below. (1) As described above, the transmitting apparatus according to the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the above A conversion means for converting a data string including parallel symbols whose order has been rearranged by the order change means to generate a multicarrier modulation signal, and measuring the power of a predetermined format of the multicarrier modulation signal generated by the conversion means A power measuring unit that determines whether or not the power is greater than a preset threshold value, and when the power measuring unit determines that the power is greater than the threshold value, the order changing unit is controlled. The order of the parallel symbols is rearranged again, the converting means is controlled to generate a multicarrier modulation signal from the parallel symbols, and the power measuring means is controlled. Then, the control means for measuring the power of the predetermined format of the multicarrier modulation signal, and before the series of processing by the control means reaches a predetermined number of times, the power measurement means reduces the power to the threshold value or less. It is preferable to include a transmission unit that transmits the multi-carrier modulation signal when it is determined that the multi-carrier modulation signal is present.
[0117] この構成によれば、並列化手段により、入力データが並列シンボルに変換された後 、順序変更手段により順序を並べ替えられる。ここで、並列化される数は、副搬送波( サブキャリア)の数と等しぐ当該並列シンボルはそれぞれサブキャリアに乗せられる 。また、順序の並べ替えは、例えば、並列シンボルが {d , d , d }である場合、 {d , d  According to this configuration, after the input data is converted into parallel symbols by the parallelizing means, the order is rearranged by the order changing means. Here, the number of parallel symbols equal to the number of subcarriers (subcarriers) is put on each subcarrier. Also, the rearrangement of the order is, for example, when the parallel symbol is {d, d, d}, {d, d
1 2 3 1 1 2 3 1
, d }、 {d , d , d }など任意で構わなレ、。このような順序の並べ替えを行うのは、こ, d}, {d, d, d}, etc. This sort of ordering is the reason for this.
3 2 2 1 3 3 2 2 1 3
の後変換手段によりマルチキャリア変調信号に変換された際の所定の形式の電力を 小さくするためであり、並べ替えにより当該電力は大きく変化する。また、所定の形式 の電力としては、例えば、ピーク電力、平均電力、超過電力等がある。  This is to reduce the power in a predetermined format when converted into a multicarrier modulation signal by the post-conversion means, and the power greatly changes by rearrangement. In addition, examples of the predetermined type of power include peak power, average power, and excess power.
[0118] そして、電力測定手段により測定された電力が予め設定された閾値より大きいと判 定された場合は、そのまま送信すると通信距離が短くなるなどの不具合があるために 、より小さな電力になるように、再度順序変更手段により並列シンボルの順序を並べ 替えて、マルチキャリア変調信号を生成し電力を測定する。この一連の処理を電力が 閾値以下になるまで続ける。ただし、回数の上限を設け、その回数以上には処理を 続けないように設定しておく。そして、電力測定手段により、電力が閾値以下になつ たと判定されると、当該マルチキャリア変調信号は送信手段により送信装置から送信 される。 [0118] If it is determined that the power measured by the power measuring means is larger than a preset threshold value, if the transmission is performed as it is, there is a problem such as a shortened communication distance, so that the power becomes smaller. As described above, the order of the parallel symbols is rearranged again by the order changing means to generate a multicarrier modulation signal and measure the power. This series of processing continues until the power falls below the threshold. However, an upper limit is set so that processing will not continue beyond that number. When the power measuring means determines that the power is below the threshold value, the multicarrier modulation signal is transmitted from the transmitting device by the transmitting means. Is done.
[0119] 本願発明は、マルチキャリア変調方式全般に適用可能であり、多くのメモリ量を必 要とする位相回転系列等を必要としなくて済む。また、変換手段による変換の前に並 列シンボルの並べ替えを行っているので、有効に電力を低減することができる。さら に、電力が閾値以下になると直ちにマルチキャリア変調信号を送信するので、高速に 処理を行うことができる。  [0119] The present invention is applicable to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. Further, since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. Furthermore, since the multicarrier modulation signal is transmitted as soon as the power falls below the threshold, processing can be performed at high speed.
[0120] (2)上記したように、本願発明に係る送信装置は、入力データを並列シンボルに変 換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、少な くとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ列 を変換し、マルチキャリア変調信号を生成する変換手段と、前記変換手段により生成 されたマルチキャリア変調信号の所定の形式の電力を測定し、最小の電力を有する マルチキャリア変調信号を順次記憶する電力測定手段と、前記順序変更手段を制御 して前記並列シンボルの順序を再度並べ替えさせ、前記変換手段を制御して当該 並列シンボルからマルチキャリア変調信号を生成させ、前記電力測定手段を制御し て当該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御手段と、 前記制御手段による一連の処理が所定の回数に達したときに、前記電力測定手段 に記憶されてレ、るマルチキャリア変調信号を送信する送信手段と、を備えることが好 ましい。  (2) As described above, the transmitting apparatus according to the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and at least the above A conversion means for converting a data string including parallel symbols whose order has been rearranged by the order change means to generate a multicarrier modulation signal, and measuring the power of a predetermined format of the multicarrier modulation signal generated by the conversion means Then, a power measuring unit that sequentially stores a multicarrier modulation signal having a minimum power, and the order changing unit are controlled to rearrange the order of the parallel symbols, and the conversion unit is controlled to control the conversion from the parallel symbols. Control that generates a multicarrier modulation signal and controls the power measurement means to measure the power of the predetermined format of the multicarrier modulation signal And the step, when the series of processing by the control means reaches a predetermined number, and transmitting means for transmitting record, the multicarrier modulated signal Ru stored in the power measuring means, it is good preferable comprise.
[0121] この構成によれば、並列化手段により、入力データが並列シンボルに変換された後 、順序変更手段により順序を並べ替えられる。ここで、並列化される数は、サブキヤリ ァの数と等しぐ当該並列シンボルはそれぞれサブキャリアに乗せられる。また、順序 の並べ替えは、例えば、並列シンボルが {d, d, d }である場合、 {d , d , d }、 {d  According to this configuration, after the input data is converted into parallel symbols by the parallelizing means, the order is rearranged by the order changing means. Here, the parallel symbol equal to the number of subcarriers is put on each subcarrier. Also, the rearrangement of the order is, for example, when the parallel symbol is {d, d, d}, {d, d, d}, {d
1 2 3 1 3 2 2 1 2 3 1 3 2 2
, d , d }など任意で構わなレ、。このような順序の並べ替えを行うのは、この後変換手, d, d}. This sort of order is performed after this step.
1 3 13
段によりマルチキャリア変調信号に変換された際の所定の形式の電力を小さくするた めであり、並べ替えにより当該電力は大きく変化する。また、所定の形式の電力として は、例えば、ピーク電力、平均電力、超過電力等がある。  This is to reduce the power of a predetermined format when converted into a multicarrier modulation signal by the stage, and the power greatly changes by rearrangement. In addition, examples of the predetermined type of power include peak power, average power, and excess power.
[0122] そして、電力測定手段は電力を測定すると、当該電力とこれまでの最小の電力とを 比較し、最小の電力を有するマルチキャリア変調信号を順次記憶していく。その後も 、制御手段は、より小さな電力が得られるように、再度順序変更手段により並列シンポ ルの順序を並べ替えて、マルチキャリア変調信号を生成し電力を測定する。この一連 の処理を所定の回数になるまで続ける。そして、所定の回数に達すると、電力測定手 段に記憶されている最小の電力を有するマルチキャリア変調信号が、送信手段によ り送信装置から送信される。 [0122] Then, when the power measurement means measures the power, the power is compared with the minimum power so far, and the multicarrier modulation signal having the minimum power is sequentially stored. Since then Then, the control means rearranges the order of the parallel symbols again by the order changing means so as to obtain smaller power, generates a multicarrier modulation signal, and measures the power. This series of processing is continued until a predetermined number of times. When the predetermined number of times is reached, the multicarrier modulation signal having the minimum power stored in the power measurement means is transmitted from the transmission device by the transmission means.
[0123] 本願発明は、マルチキャリア変調方式全般に適用可能であり、多くのメモリ量を必 要とする位相回転系列等を必要としなくて済む。また、変換手段による変換の前に並 列シンボルの並べ替えを行っているので、有効に電力を低減することができる。さら に、所定の回数に達するまでの最小の電力を有するマルチキャリア変調信号を送信 するので、より確実に電力を低減することができる。  [0123] The present invention is applicable to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. Further, since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. Furthermore, since the multicarrier modulation signal having the minimum power until the predetermined number of times is reached is transmitted, the power can be more reliably reduced.
[0124] (3)上記したように、本願発明に係る送信装置は、入力データを並列シンボルに変 換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、少な くとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ列 を変換し、マルチキャリア変調信号を生成する変換手段と、の組を複数備えて構成さ れており、かつ前記各順序変更手段はそれぞれ異なった順序の並べ替えを行うもの であり、前記変換手段により生成されたマルチキャリア変調信号の所定の形式の電 力を測定し、当該電力が最小となるマルチキャリア変調信号を有する 1組を選択する 電力測定手段と、前記電力測定手段により選択された組のマルチキャリア変調信号 を送信する送信手段と、を備えることが好ましい。  [0124] (3) As described above, the transmitting apparatus according to the present invention includes a parallelizing means for converting input data into parallel symbols, an order changing means for rearranging the order of the parallel symbols, and at least the above-mentioned A plurality of sets of conversion means for converting a data string including parallel symbols whose order is rearranged by the order change means and generating a multicarrier modulation signal, and each of the order change means Each of them is rearranged in a different order. The power of a predetermined format of the multicarrier modulation signal generated by the conversion means is measured, and one set having a multicarrier modulation signal that minimizes the power is obtained. It is preferable to include a power measurement unit to be selected and a transmission unit to transmit a set of multicarrier modulation signals selected by the power measurement unit.
[0125] この構成によれば、並列化手段により、入力データが並列シンボルに変換された後 、順序変更手段により順序を並べ替えられる。ここで、並列化される数は、サブキヤリ ァの数と等しぐ当該並列シンボルはそれぞれサブキャリアに乗せられる。また、順序 の並べ替えは、例えば、並列シンボルが {d, d, d }である場合、 {d , d , d }、 {d  According to this configuration, after the input data is converted into parallel symbols by the parallelizing means, the order is rearranged by the order changing means. Here, the parallel symbol equal to the number of subcarriers is put on each subcarrier. Also, the rearrangement of the order is, for example, when the parallel symbol is {d, d, d}, {d, d, d}, {d
1 2 3 1 3 2 2 1 2 3 1 3 2 2
, d , d }など任意で構わない。ただし、各順序変更手段は、それぞれ異なった並べ, d, d} etc. are optional. However, each order changing means has a different arrangement.
1 3 13
替えを行う構成である。  It is the structure which replaces.
[0126] このような順序の並べ替えを行うのは、この後変換手段によりマルチキャリア変調信 号に変換された際の所定の形式の電力を小さくするためであり、並べ替えにより当該 電力は大きく変化する。また、所定の形式の電力としては、例えば、ピーク電力、平 均電力、超過電力等がある。そして、電力測定手段は複数の変換手段から受け取つ たマルチキャリア変調信号の電力を測定し、その中で最小の電力を有するマルチキ ャリア変調信号を、送信手段により送信装置から送信する。 [0126] The rearrangement is performed in order to reduce the power of a predetermined format when converted into a multicarrier modulation signal by the conversion means, and the power is increased by the rearrangement. Change. In addition, as the predetermined form of power, for example, peak power, There are average power and excess power. Then, the power measuring means measures the power of the multicarrier modulation signal received from the plurality of conversion means, and transmits the multicarrier modulation signal having the minimum power among them from the transmission device by the transmission means.
[0127] 本願発明は、マルチキャリア変調方式全般に適用可能であり、多くのメモリ量を必 要とする位相回転系列等を必要としなくて済む。また、変換手段による変換の前に並 列シンボルの並べ替えを行っているので、有効に電力を低減することができる。さら に、入力データの並列化から電力の測定までの処理を並列に行うことができるので、 高速に処理を行うことが可能となる。  The present invention can be applied to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. Further, since the parallel symbols are rearranged before the conversion by the conversion means, the power can be effectively reduced. Furthermore, processing from parallelization of input data to power measurement can be performed in parallel, enabling high-speed processing.
[0128] (4)上記したように、本願発明に係る送信装置は、入力データを並列シンボルに変 換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、前記 順序変更手段により順序が並べ替えられた並列シンボルと所定のベタトノレとの内積 を取ることで所定の形式の電力に相当する数値を算出する内積演算手段と、前記内 積演算手段により算出された数値が予め設定された閾値より大きいか否かを判定す る電力測定手段と、前記電力測定手段により前記算出された数値が前記閾値より大 きいと判定された場合に、前記順序変更手段を制御して前記並列シンボルの順序を 再度並べ替えさせ、前記内積演算手段を制御して当該並列シンボルと前記所定の ベクトルとの内積を取り前記所定の形式の電力に相当する数値を算出させ、前記電 力測定手段を制御して当該算出された数値が前記閾値より大きいか否力を判定させ る制御手段と、前記制御手段による一連の処理が所定の回数に達する前に、前記電 力測定手段により前記算出された数値が前記閾値以下であると判定された場合に、 少なくとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデー タ列を変換し、マルチキャリア変調信号を生成する変換手段と、前記変換手段により 生成されたマルチキャリア変調信号を送信する送信手段と、を備えることが好ましレ、。  (4) As described above, the transmitting apparatus according to the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and the order changing unit. The inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking the inner product of the parallel symbols rearranged in order by the predetermined betatonole, and the numerical value calculated by the inner product calculating means is preset. Power measuring means for determining whether or not the calculated threshold value is greater than the threshold value, and when the numerical value calculated by the power measuring means is determined to be greater than the threshold value, the order changing means is controlled to control the parallel processing. The symbols are rearranged again, and the inner product calculation means is controlled to calculate the inner product of the parallel symbols and the predetermined vector to calculate a numerical value corresponding to the predetermined form of power. Control means for controlling the power measuring means to determine whether or not the calculated numerical value is greater than the threshold value, and the power measurement before the series of processing by the control means reaches a predetermined number of times. When it is determined that the calculated numerical value is equal to or less than the threshold value, a data string including at least the parallel symbols whose order is rearranged by the order changing unit is converted, and a multicarrier modulation signal is generated. It is preferable to include conversion means and transmission means for transmitting the multicarrier modulation signal generated by the conversion means.
[0129] この構成によれば、内積演算手段により、順序変更手段により順序が並べ替えられ た並列シンボルと所定のベクトルとの内積が取られ、例えばピーク電力に相当する数 値が算出される。そのため、計算量が膨大である IFFTを複数回行うことなぐ電力測 定手段によりピーク電力が小さくなる並べ替えを選択することができるので、計算時 間を削減し得る。また、このベクトルは、例えば、 SVM (Support Vector Machine)や 遺伝的アルゴリズム等の学習アルゴリズムを用い、ほぼランダムなデータ等に対して 事前の学習を行い、内積計算により算出される数値がピーク電力を反映するようにす ることで得ることができる。 [0129] According to this configuration, the inner product of the parallel symbols whose order has been rearranged by the order changing means and the predetermined vector is taken by the inner product calculating means, and for example, a numerical value corresponding to the peak power is calculated. For this reason, it is possible to select a rearrangement that reduces the peak power by means of power measurement without performing IFFT with a large amount of calculation multiple times, so that the calculation time can be reduced. In addition, this vector is, for example, SVM (Support Vector Machine) or It can be obtained by using a learning algorithm such as a genetic algorithm and performing prior learning on almost random data so that the numerical value calculated by the inner product calculation reflects the peak power.
[0130] そして、電力測定手段によりピーク電力に相当する数値が予め設定された閾値より 大きいと判定された場合は、そのまま送信すると通信距離が短くなるなどの不具合が あるために、より小さな電力になるように、再度順序変更手段により並列シンボルの順 序を並べ替えて、ピーク電力に相当する数値を算出させる。この一連の処理をピーク 電力に相当する数値が閾値以下になるまで続ける。ただし、回数の上限を設け、そ の回数以上には処理を続けないように設定しておく。そして、電力測定手段により、 ピーク電力に相当する数値が閾値以下になったと判定されると、少なくとも当該数値 を有する並列シンボルが変換手段によりマルチキャリア変調信号に変換され、送信 手段により送信装置から送信される。  [0130] If it is determined by the power measurement means that the numerical value corresponding to the peak power is larger than a preset threshold value, there is a problem such that the communication distance is shortened if it is transmitted as it is. Thus, the order of the parallel symbols is rearranged again by the order changing means, and a numerical value corresponding to the peak power is calculated. This series of processing is continued until the numerical value corresponding to peak power falls below the threshold. However, an upper limit is set so that processing will not continue beyond that number. When the power measurement means determines that the numerical value corresponding to the peak power is equal to or lower than the threshold value, at least parallel symbols having the numerical value are converted into multicarrier modulation signals by the conversion means, and transmitted from the transmission device by the transmission means. Is done.
[0131] 本願発明によれば、並列シンボルとの内積を取ることで例えばピーク電力に相当す る数値を算出させるため、計算量が膨大である IFFTを複数回行うことなぐピーク電 力が小さくなる並べ替えを選択することができるので、計算時間を削減することができ る。また、電力に相当する数値が閾値以下になると直ちにマルチキャリア変調信号を 送信するので、高速に処理を行うことができる。  [0131] According to the present invention, since a numerical value corresponding to, for example, peak power is calculated by taking an inner product with parallel symbols, the peak power is reduced without performing IFFT with a large amount of calculation multiple times. Since sorting can be selected, calculation time can be reduced. In addition, since the multicarrier modulation signal is transmitted immediately when the numerical value corresponding to the power falls below the threshold, processing can be performed at high speed.
[0132] (5)上記したように、本願発明に係る送信装置は、入力データを並列シンボルに変 換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、前記 順序変更手段により順序が並べ替えられた並列シンボルと所定のベタトノレとの内積 を取ることで所定の形式の電力に相当する数値を算出する内積演算手段と、前記内 積演算手段により算出された数値が最小となる前記並列シンボルを順次記憶する電 力測定手段と、前記順序変更手段を制御して前記並列シンボルの順序を再度並べ 替えさせ、前記内積演算手段を制御して当該並列シンボルと前記所定のベクトルと の内積を取り前記所定の形式の電力に相当する数値を算出させ、前記電力測定手 段を制御して当該算出された数値が最小となる前記並列シンボルを記憶させる制御 手段と、前記制御手段による一連の処理が所定の回数に達したときに、少なくとも前 記電力測定手段により記憶されている前記並列シンボルを含むデータ列を変換し、 マルチキャリア変調信号を生成する変換手段と、前記変換手段により生成されたマ ルチキャリア変調信号を送信する送信手段と、を備えることが好ましい。 (5) As described above, the transmission apparatus according to the present invention includes a parallelizing unit that converts input data into parallel symbols, an order changing unit that rearranges the order of the parallel symbols, and the order changing unit. The inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking the inner product of the parallel symbols rearranged in order by the predetermined betatonole, and the numerical value calculated by the inner product calculating means is minimized. Power measuring means for sequentially storing the parallel symbols, and reordering the parallel symbols by controlling the order changing means, and controlling the inner product calculating means to control the parallel symbols and the predetermined vector. To calculate a numerical value corresponding to the predetermined form of power, and to control the power measuring means to store the parallel symbol that minimizes the calculated numerical value. When the control means, a series of processing by the control means reaches a predetermined number of times, it converts the data string containing said parallel symbol stored by at least before Symbol power measuring means, It is preferable to include conversion means for generating a multicarrier modulation signal and transmission means for transmitting the multicarrier modulation signal generated by the conversion means.
[0133] この構成によれば、内積演算手段により、順序変更手段により順序が並べ替えられ た並列シンボルと所定のベクトルとの内積が取られ、例えばピーク電力に相当する数 値が算出される。そのため、計算量が膨大である IFFTを複数回行うことなぐ電力測 定手段によりピーク電力が小さくなる並べ替えを選択することができるので、計算時 間を削減し得る。そして、電力測定手段はピーク電力に相当する数値とこれまでの最 小のピーク電力に相当する数値とを比較し、最小の数値を有する並列シンボルを順 次記憶していく。その後も、制御手段は、より小さな電力が得られるように、再度順序 変更手段により並列シンボルの順序を並べ替えて、ピーク電力に相当する数値を算 出させ、これまでの最小値と比較させる。この一連の処理を所定の回数になるまで続 ける。そして、所定の回数に達すると、少なくとも当該数値を有する並列シンボルが変 換手段によりマルチキャリア変調信号に変換され、送信手段により送信装置から送信 される。  [0133] According to this configuration, the inner product of the parallel symbols whose order has been rearranged by the order changing means and the predetermined vector is taken by the inner product calculating means, and for example, a numerical value corresponding to the peak power is calculated. For this reason, it is possible to select a rearrangement that reduces the peak power by means of power measurement without performing IFFT with a large amount of calculation multiple times, so that the calculation time can be reduced. Then, the power measuring means compares the numerical value corresponding to the peak power with the numerical value corresponding to the minimum peak power so far, and sequentially stores the parallel symbols having the minimum numerical value. After that, the control means rearranges the order of the parallel symbols again by the order changing means so as to obtain smaller power, and calculates the numerical value corresponding to the peak power, and compares it with the previous minimum value. This series of processing is continued until the predetermined number of times. When the predetermined number of times is reached, at least the parallel symbol having the numerical value is converted into a multicarrier modulation signal by the converting means and transmitted from the transmitting device by the transmitting means.
[0134] 本願発明によれば、並列シンボルとの内積を取ることで例えばピーク電力に相当す る数値を算出させるため、計算量が膨大である IFFTを複数回行うことなぐピーク電 力が小さくなる並べ替えを選択することができるので、計算時間を削減することができ る。また、所定の回数に達するまでの最小の電力を有するマルチキャリア変調信号を 送信するので、より確実に電力を低減することができる。  [0134] According to the present invention, since a numerical value corresponding to, for example, peak power is calculated by taking an inner product with parallel symbols, the peak power is reduced without performing IFFT with a large amount of calculation multiple times. Since sorting can be selected, calculation time can be reduced. In addition, since the multicarrier modulation signal having the minimum power until the predetermined number of times is reached is transmitted, the power can be more reliably reduced.
[0135] (6)上記したように、本願発明に係る送信装置は、入力データを並列シンボルに変 換する並列化手段と、前記並列シンボルの順序を並べ替える順序変更手段と、の組 を複数備えて構成されており、かつ前記各順序変更手段はそれぞれ異なった順序 の並べ替えを行うものであり、少なくとも 1つ備えられ、前記順序変更手段により順序 が並べ替えられた並列シンボルと所定のベクトルとの内積を取ることで所定の形式の 電力に相当する数値を算出する内積演算手段と、前記内積演算手段により算出され た数値の中で最小の数値を判定する電力測定手段と、少なくとも前記電力測定手段 により最小と判定された数値を有する前記並列シンボルを含むデータ列を変換し、マ ルチキャリア変調信号を生成する変換手段と、前記変換手段により生成されたマル チキャリア変調信号を送信する送信手段と、を備えることが好ましい。 (6) As described above, the transmitting apparatus according to the present invention includes a plurality of sets of parallelizing means for converting input data into parallel symbols and order changing means for rearranging the order of the parallel symbols. And each of the order changing means performs rearrangement in a different order, and is provided with at least one parallel symbol whose order is rearranged by the order changing means and a predetermined vector. An inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking an inner product with the power, a power measuring means for determining the smallest numerical value among the numerical values calculated by the inner product calculating means, and at least the power A conversion means for converting the data string including the parallel symbol having the numerical value determined to be the minimum by the measurement means and generating a multi-carrier modulation signal; and the conversion means. Made a circle And a transmission means for transmitting a multi-carrier modulation signal.
[0136] この構成によれば、内積演算手段により、順序変更手段により順序が並べ替えられ た並列シンボルと所定のベクトルとの内積が取られ、例えばピーク電力に相当する数 値が算出される。このとき、内積演算手段は少なくとも 1つ備えられ、順次順序変更手 段からの並列シンボルとの内積を取ってレ、く構成であってもよいし、並列化手段及び 順序変更手段と同じ数だけ備えられ、順序変更手段からの並列シンボルとの内積を 並列に取ってレ、く構成であってもよい。これにより、計算量が膨大である IFFTを複数 回行うことなぐ電力測定手段によりピーク電力が小さくなる並べ替えを選択すること ができるので、計算時間を削減し得る。そして、電力測定手段は複数の内積演算手 段から受け取ったピーク電力に相当する数値を比較し、その中で最小の値を有する 並列シンボルがどれかを判定する。そして、少なくとも当該並列シンボルが変換手段 によりマルチキャリア変調信号に変換され、送信手段により送信装置から送信される  [0136] According to this configuration, the inner product between the parallel symbols whose order has been rearranged by the order changing means and the predetermined vector is taken by the inner product calculating means, and for example, a numerical value corresponding to the peak power is calculated. At this time, at least one inner product calculation means is provided, and the inner product with the parallel symbols from the sequential order changing means may be taken, or the same number as the parallelizing means and the order changing means. It is also possible to have a configuration in which inner products with parallel symbols from the order changing means are taken in parallel. As a result, it is possible to select a rearrangement in which the peak power is reduced by the power measurement means that performs IFFT with a large amount of calculation multiple times, so that the calculation time can be reduced. Then, the power measuring means compares numerical values corresponding to the peak power received from the plurality of inner product calculation means, and determines which of the parallel symbols has the minimum value. Then, at least the parallel symbol is converted into a multicarrier modulation signal by the conversion means, and transmitted from the transmission device by the transmission means.
[0137] 本願発明によれば、並列シンボルとの内積を取ることで例えばピーク電力に相当す る数値を算出させるため、計算量が膨大である IFFTを複数回行うことなぐピーク電 力が小さくなる並べ替えを選択することができるので、計算時間を削減することができ る。また、内積演算手段が並列化手段及び順序変更手段と同じ数だけ備えられた場 合は、入力データの並列化から電力に相当する数値の算出までの処理を並列に行う ことができるので、より高速に処理を行うことが可能となる。 [0137] According to the present invention, since a numerical value corresponding to, for example, peak power is calculated by taking an inner product with parallel symbols, the peak power is reduced without performing IFFT with a large amount of calculation multiple times. Since sorting can be selected, calculation time can be reduced. If the same number of inner product calculation means as parallel means and order change means are provided, the processing from parallelization of input data to calculation of a numerical value corresponding to power can be performed in parallel. Processing can be performed at high speed.
[0138] (7)送信装置は、送信装置(1)乃至(6)のいずれかであって、前記所定の形式の 電力は、ピーク電力であることが好ましい。この構成によれば、電力測定手段はマル チキャリア変調信号の振幅の 2乗である電力のうち、最も振幅が大きい(ピーク)位置 の電力であるピーク電力を測定する。本願発明によれば、瞬時電力のうちで最も大き な電力であるピーク電力を測定するので、マルチキャリア変調信号毎の電力の差を 検出し易ぐ電力の小さい信号を送信することが効率的に行える。  [0138] (7) The transmission device is any one of the transmission devices (1) to (6), and the predetermined type of power is preferably peak power. According to this configuration, the power measuring means measures the peak power that is the power at the position where the amplitude is the largest (peak) out of the power that is the square of the amplitude of the multicarrier modulation signal. According to the present invention, the peak power, which is the largest power among the instantaneous power, is measured. Therefore, it is efficient to transmit a low-power signal that makes it easy to detect the power difference between the multicarrier modulation signals. Yes.
[0139] (8)送信装置は、送信装置(1)乃至(6)のいずれかであって、前記所定の形式の 電力は、平均電力に所定の値をカ卩えた電力値以上の電力の総和である超過電力で あることが好ましい。この構成によれば、電力測定手段は所定の電力値以上の電力 の総和を評価するので、マルチキャリア変調信号の瞬間的な変動に左右されることな ぐ電力の大小を有効に評価することができる。また、所定の値を変えることで環境雑 音等の影響を有効に除去することができるので、様々な環境のもとでの正確な電力 の評価が可能となる。 [0139] (8) The transmission device is any one of the transmission devices (1) to (6), and the power of the predetermined format is equal to or higher than a power value obtained by adding a predetermined value to the average power. It is preferable that the excess power is the sum. According to this configuration, the power measuring means has power greater than or equal to a predetermined power value. Therefore, the magnitude of the power can be effectively evaluated without being influenced by the instantaneous fluctuation of the multicarrier modulation signal. In addition, by changing the predetermined value, it is possible to effectively eliminate the influence of environmental noises, etc., so that accurate power evaluation under various environments becomes possible.
[0140] (9)送信装置は、送信装置(1)乃至 (8)のいずれかであって、前記順序変更手段 は、シフトレジスタを用いることが好ましい。この構成によれば、簡易な構成であり、並 列シンボルの順序の並べ替えに汎用的に用いられているシフトレジスタを用いるので 、電力を有効に低減することができることに加え製造コストを抑えることが可能となる。  [0140] (9) The transmitting device is any one of the transmitting devices (1) to (8), and the order changing means preferably uses a shift register. According to this configuration, the shift register that is a simple configuration and is generally used for rearranging the order of the parallel symbols is used, so that the power can be effectively reduced and the manufacturing cost can be suppressed. Is possible.
[0141] (10)送信装置は、送信装置(1)乃至(9)のいずれかであって、前記変換手段は、 高速フーリエ逆変換を用いることにより、マルチキャリア変調信号を生成することが好 ましレ、。この構成によれば、周波数領域 (振幅対周波数)の並列シンボルを時間領域 (振幅対時間)のマルチキャリア変調信号へと変換する際に汎用的な高速フーリエ逆 変換を用いている。そのため、システムの構成が簡易になり、製造コストを抑えること ができる。  [0141] (10) The transmission device is any one of the transmission devices (1) to (9), and the conversion means preferably generates a multicarrier modulation signal by using fast Fourier inverse transform. Masle. According to this configuration, a general-purpose fast Fourier inverse transform is used when a parallel symbol in the frequency domain (amplitude vs. frequency) is converted into a multi-carrier modulation signal in the time domain (amplitude vs. time). As a result, the system configuration is simplified and the manufacturing cost can be reduced.
[0142] (11)送信装置は、送信装置(1)乃至(10)のいずれかであって、前記並列シンポ ノレは、互いに位相が 90度異なる搬送波を変調して得られた直交した 2成分である Iチ ャネルと Qチャネルとで表現されており、前記順序変更手段は Iチャネルと Qチャネル とで異なった並べ替えを行うことが好ましい。この構成によれば、順序変更手段は並 列シンボルに対して 1つの並べ替えを行うのではなぐ直交した 2成分である Iチヤネ ノレと Qチャネルとで異なった並べ替えを行う。そのため、これら 2つのチャネルからマ ルチキャリア変調信号を生成する際の自由度が高まり、当該信号の電力を有効に低 減すること力 Sできる。  [0142] (11) The transmitting device is any one of the transmitting devices (1) to (10), wherein the parallel symphonor is obtained by modulating two orthogonal components obtained by modulating carriers whose phases are different from each other by 90 degrees. The I channel and the Q channel are expressed, and it is preferable that the order changing means performs different sorting on the I channel and the Q channel. According to this configuration, the reordering means performs different reordering for the I channel and Q channel, which are two orthogonal components, rather than performing one reordering for the parallel symbols. Therefore, the degree of freedom in generating a multicarrier modulation signal from these two channels is increased, and the power S can be effectively reduced.
[0143] (12)送信装置は、送信装置(1)乃至(11)のいずれかであって、前記順序変更手 段により前記並列シンボルの順序が並べ替えられる前あるいは並べ替えられた後に 、当該並列シンボルに巡回シフトを施すことが好ましい。  [0143] (12) The transmitting device is any one of the transmitting devices (1) to (11), wherein the order of the parallel symbols is rearranged or rearranged by the order changing unit. It is preferable to apply a cyclic shift to the parallel symbols.
[0144] この構成によれば、並列シンボルに巡回シフトが施された後で順序変更手段による 並列シンボルの順序の並べ替えが行われる力、、あるいは順序変更手段による並列シ ンボルの順序の並べ替えが行われた後で並列シンボルに巡回シフトが施されるかす る。通常、巡回シフトを行うために設けるシフトレジスタは、構成が簡易であり汎用的 に用いられているために価格も安レ、。したがって、上記構成とすることにより、順序変 更手段を複数設けることなぐ複数の順序変更手段と等価な機能を実現できるので、 マルチキャリア変調信号の電力を有効に低減することができる上に、コストを低く抑え ること力 Sできる。 [0144] According to this configuration, the power of rearranging the order of the parallel symbols by the order changing means after the cyclic shift is performed on the parallel symbols, or the rearrangement of the order of the parallel symbols by the order changing means. A cyclic shift on the parallel symbols after The Normally, the shift register provided for performing cyclic shift is simple in configuration and is widely used, so it is inexpensive. Therefore, with the above configuration, a function equivalent to a plurality of order changing means without providing a plurality of order changing means can be realized, so that the power of the multicarrier modulation signal can be effectively reduced and the cost can be reduced. It is possible to keep S low.
[0145] (13)送信装置は、送信装置(1)乃至(12)のいずれかであって、前記変換手段が 変換の対象とする前記データ列は、前記順序変更手段により順序が並べ替えられた 並列シンボルと、前記順序変更手段が行う順序の並べ替えの情報とを含むことが好 ましレ、。この構成によれば、順序の並べ替えの情報も並列シンボルと共にデータ列に まとめられるので、当該データ列を変換したマルチキャリア変調信号を受信した受信 装置において、当該データ列への再変換を行えば、容易に順序の並べ替えの情報 を取り出すことができる。したがって、当該順序の並べ替えの情報を用いて、当該デ ータ列から送信装置への入力データも復元することができる。  (13) The transmission device is any one of the transmission devices (1) to (12), and the order of the data string to be converted by the conversion means is rearranged by the order change means. It is preferable to include parallel symbols and information on the rearrangement of the order performed by the order changing means. According to this configuration, the information on the rearrangement of the order is also collected into the data string together with the parallel symbols. Therefore, in the receiving apparatus that has received the multicarrier modulation signal obtained by converting the data string, re-conversion to the data string The information on the rearrangement of the order can be easily extracted. Therefore, it is possible to restore the input data to the transmission apparatus from the data string using the information on the rearrangement of the order.
[0146] (14)送信装置は、送信装置(1)乃至(12)のいずれかであって、前記順序変更手 段が行う順序の並べ替えの情報を、前記順序変更手段により順序が並べ替えられた 後の並列シンボルに含まれる 1つのシンボルであって、当該順序の並べ替えの情報 に対応する位置にあるシンボルに挿入するパイロット挿入手段をさらに備え、前記変 換手段は、前記パイロット挿入手段により前記順序の並べ替えの情報が挿入された 並列シンボルを変換し、マルチキャリア変調信号を生成することが好ましい。  [0146] (14) The transmission device is any one of the transmission devices (1) to (12), and the order change information is rearranged by the order change means by the order change means. Pilot insertion means for inserting into one of the symbols included in the parallel symbol after being set and located at a position corresponding to the rearrangement information of the order, and the conversion means includes the pilot insertion means It is preferable to convert a parallel symbol into which the information on the rearrangement is inserted to generate a multicarrier modulation signal.
[0147] この構成によれば、ノ ィロット挿入手段は、順序変更手段が行う順序の並べ替えの 情報を、順序変更手段により順序が並べ替えられた後の並列シンボルに挿入する。 ここで、元の並列シンボルが {d, d, d }であり、例えば、並べ替えられた後は、 { 1 }  [0147] According to this configuration, the no-lot insertion unit inserts the information on the rearrangement of the order performed by the order changing unit into the parallel symbol after the order is rearranged by the order changing unit. Where the original parallel symbol is {d, d, d}, for example, {1} after reordering
1 2 3  one two Three
= {d , d , d } , { 2} = {d , d , d }等となっているとする。この場合、順序の並べ替 = {d, d, d}, {2} = {d, d, d} etc. In this case, rearrange the order
1 3 2 2 1 3 1 3 2 2 1 3
えの情報とは、並べ替え後の並列シンボルの並びが {d, d, d }の場合は { 1 }という  This information is {1} when the rearranged parallel symbol sequence is {d, d, d}
1 3 2  1 3 2
数字であり、 {d , d , d }の場合は { 2}という数字である。本願発明によれば、並列シ  It is a number, and in the case of {d, d, d}, it is the number {2}. According to the present invention, the parallel system
2 1 3  2 1 3
ンボルに対してどのような並べ替えが行われたかをデータに直接挿入するのではなく 、データ以外のサイドインフォメーションとして送信することが可能となるので、送信信 号にデータ以外の情報を付加することができる。 [0148] (15)送信装置は、送信装置(14)であって、前記パイロット挿入手段が挿入する前 記並べ替えを特定できる情報は、ゼロ値であることが好ましい。この構成によれば、 例えば元の並列シンボルが {d , d , d }であり、並べ替えられた後は { 2} = {d , d , Since it is possible to transmit as side information other than data instead of directly inserting into the data what sort has been performed on the symbol, information other than data should be added to the transmission signal. Can do. (15) The transmitting apparatus is the transmitting apparatus (14), and the information that can specify the rearrangement inserted by the pilot inserting means is preferably a zero value. According to this configuration, for example, the original parallel symbol is {d, d, d}, and after rearrangement, {2} = {d, d,
1 2 3 2 1 d }となっているとする。ここで、 { 2}は順序変更手段において行われた並べ替えの番 1 2 3 2 1 d}. Where {2} is the number of the sort performed in the order change means.
3 Three
号、つまり 2番目の種類の並べ替えが行われたことを示す。この場合、パイロット揷入 手段はゼロ値(「0」という数字)を、順序の並べ替えの情報に対応する位置である 2番 目のシンボルに揷入する。  Indicates that a second sort of issue has occurred. In this case, the pilot insertion means inserts a zero value (a number “0”) into the second symbol which is the position corresponding to the information of the rearrangement.
[0149] 本願発明によれば、並列シンボルに対してどのような並べ替えが行われたかを特定 できる情報に対応する位置にあるシンボルにゼロ値が挿入されるため、当該シンボル の電力は他のシンボルの電力に比べて小さくなる。そのため、シンボルの電力を測定 することで並べ替えを特定することが可能となり、かつその特定を行う際の識別が容 易になる。 [0149] According to the present invention, since a zero value is inserted into a symbol at a position corresponding to information that can specify what sort has been performed on the parallel symbol, the power of the symbol is determined by other power. It becomes smaller than the power of the symbol. For this reason, it is possible to specify the rearrangement by measuring the power of the symbol, and it is easy to identify the rearrangement.
[0150] (16)上記したように、本願発明に係る送信補助装置は、少なくともネットワークイン ターフェイスカードを含む送信装置に接続可能であり、当該送信装置にデジタル信 号を送出可能な送信補助装置であって、直列シンボルからなる入力データの順序を 並べ替える順序変更手段と、前記順序変更手段により順序が並べ替えられた直列シ ンボルと、前記順序変更手段が行った順序の並べ替えの情報とを合成し 1つのデー タ列を生成する合成手段と、前記合成手段により合成されたデータ列を受け取って、 当該データ列が前記ネットワークインターフェイスカードを含む送信装置に入力した 際に出力されるマルチキャリア変調信号を再現して出力する再現手段と、前記再現 手段により出力されたマルチキャリア変調信号の所定の形式の電力を測定し、当該 電力が予め設定された閾値より大きいか否かを判定する電力測定手段と、前記電力 測定手段により前記電力が前記閾値より大きいと判定された場合に、前記順序変更 手段を制御して前記直列シンボルの順序を再度並べ替えさせ、前記変換手段を制 御して当該直列シンボルからマルチキャリア変調信号を生成させ、前記電力測定手 段を制御して当該マルチキャリア変調信号の前記所定の形式の電力を測定させる制 御手段と、前記制御手段による一連の処理が所定の回数に達する前に、前記電力 測定手段により前記電力が前記閾値以下であると判定された場合に前記合成手段 により生成されたデータ列を前記デジタル信号として前記ネットワークインターフェイ スカードを含む送信装置に送信する送信手段と、を備えることが好ましい。 (16) As described above, the transmission auxiliary device according to the present invention can be connected to a transmission device including at least a network interface card, and can transmit a digital signal to the transmission device. The order changing means for rearranging the order of the input data composed of serial symbols, the serial symbols whose order has been rearranged by the order changing means, and information on the rearrangement of the order performed by the order changing means, And a multi-carrier output when the data string synthesized by the synthesizing means is received and the data string is input to the transmitter including the network interface card. Reproduction means for reproducing and outputting the modulation signal, and power of a predetermined format of the multicarrier modulation signal output by the reproduction means Power measuring means for measuring and determining whether or not the power is greater than a preset threshold; and when the power measuring means determines that the power is greater than the threshold, the order changing means is controlled. The serial symbols are rearranged again, the conversion means is controlled to generate a multicarrier modulation signal from the serial symbols, and the power measurement unit is controlled to control the predetermined number of the multicarrier modulation signal. Control means for measuring the power of the form, and the combining means when the power measurement means determines that the power is less than or equal to the threshold before the series of processing by the control means reaches a predetermined number of times. And transmitting means for transmitting the data string generated by the above as a digital signal to a transmitting apparatus including the network interface card.
[0151] この構成によれば、直列シンボルからなる入力データ力 マルチキャリア変調信号 に変換される前に、順序変更手段により順序を並べ替えられる。これは、例えば、直 列シンボルが { d  [0151] According to this configuration, the order is rearranged by the order changing means before being converted into the input data force multi-carrier modulation signal composed of serial symbols. This is the case, for example, if the serial symbol is {d
1, d 1, d
2, d }である場合、 { l } = { d , d , d }  {L} = {d, d, d} if 2, d}
3 1 3 2、 { 2} = { d  3 1 3 2, {2} = {d
2, d 2, d
1, d }など任 3 意の並び替えで構わない。ここで、 { 1 }や { 2}は、順序変更手段が行った順序の並べ 替えの情報の一例であり、当該情報と直列シンボルが合成手段により 1つのデータ 列にまとめられる。  Any order such as 1, d} can be used. Here, {1} and {2} are examples of information on order rearrangement performed by the order changing means, and the information and serial symbols are combined into one data string by the combining means.
[0152] 続いて再現手段は、当該データ列がネットワークインターフェイスカードを含む送信 装置に入力した際に出力されるマルチキャリア変調信号を再現して出力する。そして 、電力測定手段は、当該マルチキャリア変調信号を受け取って電力を測定し、当該 測定された電力が予め設定された閾値より大きいと判定した場合は、そのまま送信す ると通信距離が短くなるなどの不具合があるために、より小さな電力になるように、再 度順序変更手段により直列シンボルの順序を並べ替えて、マルチキャリア変調信号 を生成し電力を測定する。この一連の処理を電力が閾値以下になるまで続ける。た だし、回数の上限を設け、その回数以上には処理を続けないように設定しておく。そ して、電力測定手段により、電力が閾値以下になったと判定されると、当該マルチキ ャリア変調信号の元となったデータ列がデジタル信号として、合成手段によりネットヮ 一クインターフェイスカードを含む送信装置へ送信される。  Subsequently, the reproducing means reproduces and outputs the multicarrier modulation signal output when the data string is input to the transmission device including the network interface card. Then, the power measuring means receives the multicarrier modulation signal, measures the power, and determines that the measured power is larger than a preset threshold value. Therefore, the order of the serial symbols is rearranged by the reordering means again so that the power can be reduced, and a multicarrier modulation signal is generated and the power is measured. This series of processing is continued until the electric power falls below the threshold value. However, an upper limit is set so that processing will not continue beyond that limit. When the power measuring means determines that the power is equal to or lower than the threshold value, the data string that is the source of the multi-carrier modulation signal is converted into a digital signal by the synthesizing means and includes a network interface card. Sent to.
[0153] 本願発明によれば、マルチキャリア変調方式全般に適用可能であり、多くのメモリ 量を必要とする位相回転系列等を必要としなくて済むことにカ卩え、マルチキャリア変 調信号への変換の前に直列シンボルの並べ替えを行っているので、有効に電力を 低減すること力 Sできる。また、電力が閾値以下になると直ちにマルチキャリア変調信 号を送信するので、高速に処理を行うことができる。さらに、ネットワークインターフエ イスカードから出力される波形を再現しているので、送信信号の電力を高い精度で低 減すること力 Sできる。  [0153] According to the present invention, it can be applied to all multicarrier modulation schemes, and there is no need for a phase rotation sequence that requires a large amount of memory. Since the rearrangement of the serial symbols is performed before this conversion, the power can be reduced effectively. In addition, since the multicarrier modulation signal is transmitted immediately when the power falls below the threshold, processing can be performed at high speed. In addition, since the waveform output from the network interface card is reproduced, the power of the transmitted signal can be reduced with high accuracy.
[0154] (17)上記したように、本願発明に係る送信補助装置は、少なくともネットワークイン ターフェイスカードを含む送信装置に接続可能であり、当該送信装置にデジタル信 号を送出可能な送信補助装置であって、直列シンボルからなる入力データの順序を 並べ替える順序変更手段と、前記順序変更手段により順序が並べ替えられた直列シ ンボルと、前記順序変更手段が行った順序の並べ替えの情報とを合成し 1つのデー タ列を生成する合成手段と、前記合成手段により合成されたデータ列を受け取って、 当該データ列が前記ネットワークインターフェイスカードを含む送信装置に入力した 際に出力されるマルチキャリア変調信号を再現して出力する再現手段と、前記再現 手段により出力されたマルチキャリア変調信号の所定の形式の電力を測定し、最小 の電力を有するマルチキャリア変調信号が検知された場合、前記合成手段に当該マ ルチキャリア変調信号の元となったデータ列を記憶させる電力測定手段と、前記順 序変更手段を制御して前記直列シンボルの順序を再度並べ替えさせ、前記再現手 段を制御して当該直列シンボルからマルチキャリア変調信号を生成させ、前記電力 測定手段を制御して当該マルチキャリア変調信号の前記所定の形式の電力を測定 させる制御手段と、前記制御手段による一連の処理が所定の回数に達したときに、 前記合成手段に記憶されているデータ列を前記デジタル信号として前記ネットワーク インターフェイスカードを含む送信装置に送信する送信手段と、を備えることが好まし レ、。 (17) As described above, the transmission auxiliary device according to the present invention can be connected to a transmission device including at least a network interface card, and a digital signal is transmitted to the transmission device. A transmission auxiliary device capable of transmitting a signal, the order changing means for rearranging the order of input data composed of serial symbols, the serial symbol whose order is rearranged by the order changing means, and the order changing means Combining the information of the rearranged order and generating one data string, and receiving the data string synthesized by the synthesizing means, and inputting the data string to the transmitting device including the network interface card A reproduction means for reproducing and outputting the multicarrier modulation signal output at the time, and a power of a predetermined format of the multicarrier modulation signal output by the reproduction means, and a multicarrier modulation signal having a minimum power Power measurement means for storing the data sequence that is the source of the multi-carrier modulation signal in the combining means. Then, the order changing means is controlled to rearrange the order of the serial symbols, the reproduction means is controlled to generate a multicarrier modulation signal from the serial symbols, and the power measuring means is controlled to A control means for measuring the power of the predetermined format of the multicarrier modulation signal, and when a series of processing by the control means reaches a predetermined number of times, a data sequence stored in the combining means is used as the digital signal. Transmitting means for transmitting to a transmitting device including the network interface card.
[0155] この構成によれば、直列シンボルからなる入力データ力 S、マルチキャリア変調信号 に変換される前に、順序変更手段により順序を並べ替えられる。これは、例えば、直 列シンボルが {d , d , d }である場合、 { l } = {d , d , d }、 { 2} = {d , d , d }など任  [0155] According to this configuration, the order is rearranged by the order changing means before being converted into the input data force S composed of serial symbols and the multicarrier modulation signal. For example, if the serial symbol is {d, d, d}, {l} = {d, d, d}, {2} = {d, d, d}
1 2 3 1 3 2 2 1 3 意の並び替えで構わない。ここで、 { 1 }や { 2}は、順序変更手段が行った順序の並べ 替えの情報の一例であり、当該情報と直列シンボルが合成手段により 1つのデータ 列にまとめられる。  1 2 3 1 3 2 2 1 3 You can change the order. Here, {1} and {2} are examples of information on order rearrangement performed by the order changing means, and the information and serial symbols are combined into one data string by the combining means.
[0156] 続いて再現手段は、当該データ列がネットワークインターフェイスカードを含む送信 装置に入力した際に出力されるマルチキャリア変調信号を再現して出力する。そして 、電力測定手段は、当該マルチキャリア変調信号を受け取って電力を測定し、当該 電力とこれまでの最小の電力とを比較し、最小の電力を有するマルチキャリア変調信 号の元となったデータ列を合成手段に順次上書きし記憶させる。その後も、制御手 段は、より小さな電力が得られるように、再度順序変更手段により直列シンボルの順 序を並べ替えて、マルチキャリア変調信号を生成し電力を測定する。この一連の処理 を所定の回数になるまで続ける。そして、所定の回数に達すると、合成手段に記憶さ れている最小の電力を有するマルチキャリア変調信号の元となったデータ列がデジ タル信号として、ネットワークインターフェイスカードを含む送信装置へ送信される。 Subsequently, the reproduction means reproduces and outputs a multicarrier modulation signal output when the data string is input to a transmission device including a network interface card. Then, the power measurement means receives the multicarrier modulation signal, measures the power, compares the power with the minimum power so far, and generates the data that is the source of the multicarrier modulation signal having the minimum power. The sequence is sequentially overwritten and stored in the synthesis means. Thereafter, the control means again uses the order changing means to change the order of the serial symbols so as to obtain smaller power. Rearrange the order to generate a multi-carrier modulation signal and measure the power. This series of processing is continued until the predetermined number of times. When the predetermined number of times is reached, the data string that is the source of the multicarrier modulation signal having the minimum power stored in the combining means is transmitted as a digital signal to a transmission apparatus including a network interface card. .
[0157] 本願発明は、マルチキャリア変調方式全般に適用可能であり、多くのメモリ量を必 要とする位相回転系列等を必要としなくて済む。また、マルチキャリア変調信号への 変換の前に直列シンボルの並べ替えを行っているので、有効に電力を低減すること 力 Sできる。さらに、所定の回数に達するまでの最小の電力を有するマルチキャリア変 調信号を送信するので、より確実に電力を低減することができる。また、ネットワークィ ンターフェイスカードから出力される波形を忠実に再現しているので、送信信号の電 力を確実に低減することができる。  The present invention can be applied to all multicarrier modulation schemes, and does not require a phase rotation sequence that requires a large amount of memory. In addition, since the serial symbols are rearranged before conversion to a multicarrier modulation signal, the power can be reduced effectively. Furthermore, since the multicarrier modulation signal having the minimum power until the predetermined number of times is reached is transmitted, the power can be more reliably reduced. In addition, since the waveform output from the network interface card is faithfully reproduced, the power of the transmission signal can be reliably reduced.
[0158] (18)送信補助装置は、送信補助装置(16)又は(17)であって、前記所定の形式 の電力は、前記マルチキャリア変調信号のピーク電力であることが好ましい。この構 成によれば、電力測定手段はマルチキャリア変調信号の振幅の 2乗である電力のう ち、最も振幅が大きい(ピーク)位置の電力であるピーク電力を測定する。本願発明 によれば、瞬時電力のうちで最も大きな電力であるピーク電力を測定するので、マル チキャリア変調信号毎の電力の差を検出し易ぐ電力の小さい信号を送信することが 効率的に行える。 (18) The transmission auxiliary device is a transmission auxiliary device (16) or (17), and the power of the predetermined format is preferably the peak power of the multicarrier modulation signal. According to this configuration, the power measuring means measures the peak power that is the power at the position where the amplitude is the largest (peak) out of the power that is the square of the amplitude of the multicarrier modulation signal. According to the present invention, since the peak power, which is the largest of the instantaneous power, is measured, it is efficient to transmit a signal with low power that is easy to detect the power difference between the multicarrier modulation signals. Yes.
[0159] (19)送信補助装置は、送信補助装置(16)又は(17)であって、前記所定の形式 の電力は、前記マルチキャリア変調信号の平均電力に所定の値を加えた電力値以 上の電力の総和である超過電力であることが好ましい。この構成によれば、電力測定 手段は所定の電力値以上の電力の総和を測定するので、マルチキャリア変調信号 の瞬間的な変動に左右されることなぐ電力の大小を有効に評価することができる。ま た、所定の値を変えることで、環境雑音等の影響を有効に除去することができるので 、様々な環境のもとでの正確な電力の評価が可能となる。  (19) The transmission auxiliary device is a transmission auxiliary device (16) or (17), and the power of the predetermined format is a power value obtained by adding a predetermined value to the average power of the multicarrier modulation signal. It is preferable that the excess power is the sum of the above power. According to this configuration, the power measuring means measures the total sum of the power exceeding the predetermined power value, so that it is possible to effectively evaluate the magnitude of the power without being influenced by the instantaneous fluctuation of the multicarrier modulation signal. . In addition, by changing the predetermined value, it is possible to effectively remove the influence of environmental noise and the like, so that it is possible to accurately evaluate the power under various environments.
[0160] (20)送信補助装置は、送信補助装置(16)乃至(19)のいずれかであって、前記 順序変更手段は、シフトレジスタを用いることを特徴とする。この構成によれば、簡易 な構成であり、直列シンボルの順序の並べ替えに汎用的に用いられているシフトレジ スタを用いるので、電力を有効に低減することができることに加え製造コストを抑える ことが可能となる。 (20) The transmission auxiliary device is any one of the transmission auxiliary devices (16) to (19), and the order changing means uses a shift register. According to this configuration, the shift register is simple and is generally used for rearranging the order of serial symbols. Since the power supply is used, it is possible to reduce the manufacturing cost in addition to effectively reducing the power.
[0161] (21)送信補助装置は、送信補助装置(16)乃至(20)のいずれかであって、前記 入力データは、互いに位相が 90度異なる搬送波を変調して得られた Iチャネルと Qチ ャネルとで表現されており、前記順序変更手段は Iチャネルと Qチャネルとで異なった 並べ替えを行うことが好ましい。この構成によれば、順序変更手段は入力データに対 して 1つの並べ替えを行うのではなぐ直交した 2成分である Iチャネルと Qチャネルと で異なった並べ替えを行う。そのため、これら 2つのチャネルからマルチキャリア変調 信号を生成する際の自由度が高まり、当該信号の電力を有効に低減することができ る。  [0161] (21) The transmission auxiliary device is any one of the transmission auxiliary devices (16) to (20), and the input data includes an I channel obtained by modulating a carrier wave having a phase difference of 90 degrees from each other. It is expressed by a Q channel, and it is preferable that the order changing means performs different sorting on the I channel and the Q channel. According to this configuration, the order changing means performs different permutations for the I channel and the Q channel, which are two orthogonal components, rather than performing one permutation on the input data. Therefore, the degree of freedom in generating a multicarrier modulation signal from these two channels is increased, and the power of the signal can be effectively reduced.
[0162] (22)送信補助装置は、送信補助装置(16)乃至(21)のいずれかであって、前記 順序変更手段により前記直列シンボルの順序が並べ替えられる前あるいは並べ替え られた後に、当該直列シンボルに巡回シフトを施すことが好ましい。  [0162] (22) The transmission auxiliary device is any one of the transmission auxiliary devices (16) to (21), and the rearrangement unit rearranges the order of the serial symbols before or after the rearrangement. It is preferable to apply a cyclic shift to the serial symbol.
[0163] この構成によれば、直列シンボルに巡回シフトが施された後で順序変更手段による 直列シンボルの順序の並べ替えが行われる力、あるいは順序変更手段による直列シ ンボルの順序の並べ替えが行われた後で直列シンボルに巡回シフトが施されるかす る。通常、巡回シフトを行うために設けるシフトレジスタは、構成が簡易であり汎用的 に用いられているために価格も安レ、。したがって、上記構成とすることにより、順序変 更手段を複数設けることなぐ複数の順序変更手段と等価な機能を実現できるので、 マルチキャリア変調信号の電力を有効に低減することができる上に、コストを低く抑え ること力 Sできる。  [0163] According to this configuration, the power of rearranging the order of the serial symbols by the order changing means after the cyclic shift is performed on the serial symbols, or the order of the serial symbols by the order changing means is changed. It is assumed that a cyclic shift is applied to the serial symbol after it is done. Normally, the shift register provided for performing cyclic shift is simple in configuration and is widely used, so it is inexpensive. Therefore, with the above configuration, a function equivalent to a plurality of order changing means without providing a plurality of order changing means can be realized, so that the power of the multicarrier modulation signal can be effectively reduced and the cost can be reduced. It is possible to keep S low.
[0164] (23)上記したように、本願発明に係る受信装置は、(1)乃至(13)のいずれかに記 載の送信装置から送信されたマルチキャリア変調信号を受信可能に構成された受信 装置であって、前記マルチキャリア変調信号を変換し並列シンボルを生成する逆変 換手段と、前記逆変換手段により生成された並列シンボル力 前記順序変更手段が 行った順序の並べ替えの情報を抽出する抽出手段と、前記抽出手段により抽出され た前記順序の並べ替えの情報を元に、前記並列シンボルに前記順序変更手段が行 つた並べ替えと逆の処理を行レ、、前記並列化手段により変換されたものと同じ並列シ ンボルを生成する順序回復手段と、前記順序回復手段により生成された並列シンポ ルを、前記並列化手段における変換前のデータに再変換する直列化手段と、を備え ることが好ましい。 (23) As described above, the receiving apparatus according to the present invention is configured to be able to receive a multicarrier modulation signal transmitted from the transmitting apparatus described in any one of (1) to (13). Receiving apparatus for converting the multi-carrier modulation signal to generate parallel symbols, and the parallel symbol power generated by the inverse converting means and the information on the rearrangement of the order performed by the order changing means. Extracting means for extracting, based on the information on the rearrangement of the order extracted by the extracting means, performing a process reverse to the rearrangement performed by the order changing means on the parallel symbols; The same parallel series converted by It is preferable to include order recovery means for generating symbols, and serialization means for reconverting the parallel symbols generated by the order recovery means into data before conversion in the parallelization means.
[0165] この構成によれば、送信装置からのマルチキャリア変調信号を受信すると、逆変換 手段は当該マルチキャリア変調信号を変換し並列シンボルを生成する。この並列シ ンボルは、送信装置の順序変更手段により順序の並べ替えが行われた後の並列シ ンボルを再現している。そして、抽出手段は当該並列シンボル力 順序変更手段が 行った順序の並べ替えの情報を抽出する。これは、例えば、 { 1 }等の数字であり、こ れにより元の並列シンボル {d ば {d , d , d }のように並べ替えられ  [0165] According to this configuration, when receiving the multicarrier modulation signal from the transmission apparatus, the inverse conversion means converts the multicarrier modulation signal and generates parallel symbols. This parallel symbol reproduces the parallel symbol after the order is rearranged by the order changing means of the transmitter. Then, the extracting means extracts information on the rearrangement of the order performed by the parallel symbol force order changing means. This is, for example, a number such as {1}, so that if the original parallel symbol {d is {d, d, d}
1, d 1, d
2, d }力 S、例え  2, d} force S, for example
3 1 3 2  3 1 3 2
たことがわかる。したがって、順序回復手段は、その情報に基づいて、並列シンボル の並びを元に戻すように並べ替えを行う。これにより、並列化手段により変換されたも のと同じ並列シンボルが再現される。最後に、直列化手段により並列シンボルから直 列シンボルへ変換されることで、送信装置への入力データが再現される。  I understand that. Therefore, the order recovery means rearranges the parallel symbols so that the order of the parallel symbols is restored based on the information. As a result, the same parallel symbol converted by the parallelization means is reproduced. Finally, the input data to the transmitter is reproduced by converting the parallel symbols into the series symbols by the serializing means.
[0166] 本願発明によれば、送信装置から送信され、電力を低減するために並べ替えが行 われた並列シンボルから生成されたマルチキャリア変調信号を受信して、送信装置 に入力されたデータを確実に復元することができる。  [0166] According to the present invention, the multicarrier modulation signal generated from the parallel symbols transmitted from the transmission apparatus and rearranged in order to reduce power is received, and the data input to the transmission apparatus is received. It can be restored reliably.
[0167] (24)上記したように、本願発明に係る受信装置は、(14)又は(15)に記載の送信 装置から送信されたマルチキャリア変調信号を受信可能に構成された受信装置であ つて、前記マルチキャリア変調信号を変換し並列シンボルを生成する逆変換手段と、 前記逆変換手段により生成された並列シンボルのシンボル毎の電力を測定する個別 電力測定手段と、前記個別電力測定手段により測定された電力に基づいて、前記パ ィロット揷入手段が並べ替えを特定できる情報を揷入したシンボルを特定し、当該シ ンボルの位置から前記順序変更手段が行った順序の並べ替えの情報を抽出する抽 出手段と、前記抽出手段により抽出された前記順序の並べ替えの情報を元に、前記 並列シンボルに前記順序変更手段が行った並べ替えと逆の処理を行い、前記並列 化手段により変換されたものと同じ並列シンボルを生成する順序回復手段と、前記順 序回復手段により生成された並列シンボルを、前記並列化手段における変換前のデ 一タに再変換する直列化手段と、を備えることが好ましい。 [0168] この構成によれば、送信装置からのマルチキャリア変調信号を受信すると、逆変換 手段は当該マルチキャリア変調信号を変換し並列シンボルを生成する。この並列シ ンボルは、送信装置の順序変更手段により順序の並べ替えが行われた後の並列シ ンボルを再現している。そして、個別電力測定手段は当該並列シンボルを構成する 各シンボルの電力を測定し、例えばその中で電力が最小のシンボルの位置から、順 序変更手段が行った順序の並べ替えの情報を抽出する。これは、例えば、元の並列 シンボル , d , d }が、順序変更手段における 2番目の並べ替えにより {d, d, d (24) As described above, the receiving device according to the present invention is a receiving device configured to be able to receive the multicarrier modulation signal transmitted from the transmitting device according to (14) or (15). Then, an inverse conversion unit that converts the multicarrier modulation signal to generate parallel symbols, an individual power measurement unit that measures the power of each symbol of the parallel symbols generated by the inverse conversion unit, and the individual power measurement unit Based on the measured power, the symbol insertion means identifies a symbol inserted with information that can identify the rearrangement, and information on the rearrangement in the order performed by the order changing means from the position of the symbol. Based on the extraction means to be extracted and the information on the rearrangement in the order extracted by the extraction means, the parallel symbol is subjected to the reverse process of the rearrangement performed by the order changing means, Order recovery means for generating the same parallel symbols as those converted by the parallelization means, and serialization for reconverting the parallel symbols generated by the order recovery means into the data before conversion in the parallelization means. And means. [0168] According to this configuration, when receiving the multicarrier modulation signal from the transmission apparatus, the inverse conversion means converts the multicarrier modulation signal and generates parallel symbols. This parallel symbol reproduces the parallel symbol after the order is rearranged by the order changing means of the transmitter. Then, the individual power measuring means measures the power of each symbol constituting the parallel symbol, and extracts information on the rearrangement of the order performed by the order changing means, for example, from the position of the symbol having the smallest power among them. . This is because, for example, the original parallel symbol, d, d} is {d, d, d
1 2 3 1 3 2 1 2 3 1 3 2
}となっている場合には、 2番目のシンボルの電力が最小となるということである。した がって、順序回復手段は、その情報に基づいて、並列シンボルの並びを元に戻すよ うに並べ替えを行う。これにより、並列化手段により変換されたものと同じ並列シンポ ルが再現される。最後に、直列化手段により並列シンボルから直列シンボルへ変換さ れることで、送信装置への入力データが再現される。 } Means that the power of the second symbol is minimized. Therefore, the order recovery means rearranges so as to restore the parallel symbol sequence based on the information. As a result, the same parallel symbol converted by the parallelization means is reproduced. Finally, the input data to the transmitter is reproduced by converting the parallel symbols into serial symbols by the serialization means.
[0169] 本願発明によれば、受信されたシンボル毎の電力を測定することで、データ以外の 情報を受け取ることが可能となる。これにより、送信装置側では、例えば、並列シンポ ルに対してどのような並べ替えが行われたかをデータに直接挿入するのではなぐサ イドインフォメーションとして送信することが可能となる。そして、当該サイドインフォメ ーシヨンに基づき、受信されたマルチキャリア変調信号から、送信装置に入力された データを確実に復元することができる。  According to the present invention, it is possible to receive information other than data by measuring the power for each received symbol. As a result, on the transmission device side, for example, it is possible to transmit as side information rather than directly inserting into the data what sort has been performed on the parallel symbols. Then, based on the side information, the data input to the transmission device can be reliably restored from the received multicarrier modulation signal.
[0170] (25)上記したように、本願発明に係る受信補助装置は、(16)乃至(22)のいずれ かに記載の送信補助装置と接続された送信装置から送信されたマルチキャリア変調 信号を受信可能に構成され、少なくともネットワークインターフェイスカードを含む受 信装置が出力するデジタル信号を受信可能に構成された受信補助装置であって、 前記デジタル信号を直列シンボルと前記順序変更手段が行った順序の並べ替えの 情報とに分離する分離手段と、前記分離手段により分離された前記順序の並べ替え の情報を元に、前記直列シンボルに前記順序変更手段が行った並べ替えと逆の処 理を行い、前記順序変更手段における変換前の直列シンボルを生成する順序回復 手段と、を備えることを特徴とする。  (25) As described above, the reception auxiliary device according to the present invention provides a multicarrier modulation signal transmitted from a transmission device connected to the transmission auxiliary device according to any one of (16) to (22). A reception auxiliary device configured to be capable of receiving a digital signal output by a receiving device including at least a network interface card, wherein the digital signal is processed in the order of serial symbols and the order changing unit. Separation means for separating the information into the rearrangement information, and the processing reverse to the rearrangement performed by the order changing means on the serial symbols based on the information on the rearrangement in the order separated by the separation means. And order recovery means for generating serial symbols before conversion in the order changing means.
[0171] この構成によれば、分離手段はネットワークインターフェイスカードを含む受信装置 が出力するデジタル信号を分離し、そこから直列シンボルと、順序変更手段が行った 順序の並べ替えの情報とを取り出す。このデジタル信号は、送信装置から送信され たマルチキャリア変調信号を、受信装置の、例えばネットワークインターフェイスカー ドにおいて FFT変換したものなので、合成手段においてまとめられたデータ列を再 現している。また、ここで、並べ替えを特定できる情報とは、例えば { 2}等の数字であ り、この場合は、並べ替えられた後の直列シンボル {d , d , d }は、元の直列シンポ [0171] According to this configuration, the separating means includes a network interface card. The digital signal output from is separated, and the serial symbol and the information on the rearrangement of the order performed by the order changing means are extracted therefrom. Since this digital signal is obtained by performing FFT conversion on the multicarrier modulation signal transmitted from the transmitting device, for example, in the network interface card of the receiving device, it reproduces the data string collected in the combining means. Also, here, the information that can specify the rearrangement is a number such as {2}, for example. In this case, the rearranged serial symbol {d, d, d} is the original serial symbol.
1 3 2  1 3 2
ノレ {d , d , d }に対して 2番目の並べ替えを行ったものであることを示す。したがって Indicates that the second permutation has been performed on Nore {d, d, d}. Therefore
1 2 3 one two Three
、順序回復手段はこの情報に基づいて、入力データを再現することができる。  The sequence recovery means can reproduce the input data based on this information.
[0172] 本願発明によれば、ネットワークインターフェイスカード等を含む送信装置から送信 され、電力を低減するために並べ替えが行われた直列シンボルから生成されたマル チキャリア変調信号を受信して、入力されたデータを確実に復元することができる。  [0172] According to the present invention, a multicarrier modulation signal generated from a serial symbol transmitted from a transmission device including a network interface card or the like and rearranged to reduce power is received and input. The recovered data can be restored reliably.
[0173] (26)上記したように、本願発明に係る送受信システムは、少なくとも 1台の(1)乃至  (26) As described above, the transmission / reception system according to the present invention has at least one (1) to (1)
(13)のいずれかに記載の送信装置と、少なくとも 1台の(23)記載の受信装置と、を 備えて構成されることが好ましい。この構成によれば、送信時の電力を低減すること ができる送信装置と、当該送信装置から送信されたマルチキャリア変調信号を的確 に復号することが可能な受信装置とからなる送受信システムを実現することができる。  It is preferable that the transmission apparatus according to any one of (13) and at least one reception apparatus according to (23) are provided. According to this configuration, a transmission / reception system including a transmission device capable of reducing power during transmission and a reception device capable of accurately decoding a multicarrier modulation signal transmitted from the transmission device is realized. be able to.
[0174] (27)上記したように、本願発明に係る送受信システムは、少なくとも 1台の(14)又 は(15)に記載の送信装置と、少なくとも 1台の(24)記載の受信装置と、を備えて構 成されることが好ましい。この構成によれば、送信時の電力を低減することができる送 信装置と、当該送信装置から送信されたマルチキャリア変調信号を的確に復号する ことが可能な受信装置とからなる送受信システムを実現することができる。  (27) As described above, the transmission / reception system according to the present invention includes at least one transmission device according to (14) or (15) and at least one reception device according to (24). It is preferable to be configured with According to this configuration, a transmission / reception system including a transmission device capable of reducing power during transmission and a reception device capable of accurately decoding a multicarrier modulation signal transmitted from the transmission device is realized. can do.
[0175] (28)上記したように、本願発明に係る送受信システムは、少なくともネットワークイン ターフェイスカードを含む送信装置と接続された少なくとも 1台の(16)乃至(22)のい ずれかに記載の送信補助装置と、少なくともネットワークインターフェイスカードを含 む受信装置と接続された少なくとも 1台の(25)記載の受信補助装置と、を備えて構 成されることが好ましい。この構成によれば、例えば無線 LANなどで標準が定まって レ、る場合であっても、ネットワークインターフェイスカード等のハードウェアに新たに順 序変更手段等を組み込むことなぐ送信時の電力を低減することが可能な送受信シ ステムを実現することができる。 [0175] (28) As described above, the transmission / reception system according to the present invention is described in any one of (16) to (22) connected to at least one transmission device including a network interface card. It is preferable that the transmission auxiliary device is configured to include at least one reception auxiliary device described in (25) connected to a reception device including at least a network interface card. According to this configuration, even when a standard is established by a wireless LAN or the like, for example, the power at the time of transmission can be reduced without newly incorporating order change means in hardware such as a network interface card. Transmission / reception system Stem can be realized.
[0176] (29)上記したように、本願発明に係る通信方法は、少なくとも 1台の送信装置から 送信されたマルチキャリア変調信号を受信する、少なくとも 1台の受信装置から構成 される送受信システムにおける通信方法であって、前記送信装置は、入力データを 並列シンボルに変換する並列化工程と、前記並列シンボルの順序を並べ替える順序 変更工程と、少なくとも前記順序変更工程により順序が並べ替えられた並列シンボル を変換し、マルチキャリア変調信号を生成する変換工程と、前記変換工程により生成 されたマルチキャリア変調信号の所定の形式の電力を測定し、当該電力が予め設定 された閾値より大きいか否力、を判定する電力測定工程と、前記電力測定工程により 前記電力が前記閾値より大きいと判定された場合に、前記順序変更工程により前記 並列シンボルの順序を再度並べ替えさせ、前記変換工程により当該並列シンボルか らマルチキャリア変調信号を生成させ、前記電力測定工程により当該マルチキャリア 変調信号の前記所定の形式の電力を測定させる制御工程と、前記制御工程による 一連の処理が所定の回数に達する前に、前記電力測定工程により前記電力が前記 閾値以下であると判定された場合に当該マルチキャリア変調信号を送信する送信ェ 程と、を備え、前記受信装置は、前記送信装置から前記マルチキャリア変調信号を 受信し、当該マルチキャリア変調信号を変換し並列シンボルを生成する逆変換工程 と、前記逆変換工程により生成された並列シンボルから前記順序変更工程により行 われた順序の並べ替えの情報を抽出する抽出工程と、前記抽出工程により抽出され た前記順序の並べ替えの情報を元に、前記並列シンボルに前記順序変更工程が行 つた並べ替えと逆の処理を行い、前記並列化工程により変換されたものと同じ並列シ ンボルを生成する順序回復工程と、前記順序回復工程により生成された並列シンポ ルを、前記並列化工程における変換前のデータに再変換する直列化工程と、を備え ることが好ましい。  (29) As described above, the communication method according to the present invention is a transmission / reception system configured by at least one receiving device that receives a multicarrier modulation signal transmitted from at least one transmitting device. In the communication method, the transmission device includes a parallelization step of converting input data into parallel symbols, an order change step of rearranging the order of the parallel symbols, and a parallel in which the order is rearranged by at least the order change step A conversion step of converting a symbol to generate a multicarrier modulation signal, and a power of a predetermined format of the multicarrier modulation signal generated by the conversion step is measured, and whether or not the power is greater than a preset threshold value And when the power measurement step determines that the power is greater than the threshold, the order change is performed. Reordering the parallel symbols in a step, generating a multicarrier modulation signal from the parallel symbol in the conversion step, and measuring the power of the predetermined format of the multicarrier modulation signal in the power measurement step A transmission step of transmitting the multicarrier modulation signal when the power measurement step determines that the power is equal to or less than the threshold before the control step and a series of processes by the control step reach a predetermined number of times. The receiving device receives the multicarrier modulation signal from the transmitting device, converts the multicarrier modulation signal to generate parallel symbols, and the parallel generated by the inverse conversion step. An extraction step for extracting information on the rearrangement of the order performed by the order change step from the symbol, and the extraction Based on the information on the rearrangement of the order extracted in the process, the parallel symbol is the same as that converted by the parallelization process by performing the reverse process of the rearrangement performed on the parallel symbol by the order change process. It is preferable to include an order recovery step for generating the data and a serialization step for reconverting the parallel symbol generated by the order recovery step into data before conversion in the parallelization step.
[0177] (30)上記したように、本願発明に係る通信方法は、少なくとも 1台の送信装置から 送信されたマルチキャリア変調信号を受信する、少なくとも 1台の受信装置から構成 される送受信システムにおける通信方法であって、前記送信装置は、入力データを 並列シンボルに変換する並列化工程と、前記並列シンボルの順序を並べ替える順序 変更工程と、前記順序変更工程により行われた順序の並べ替えの情報を、前記順序 変更工程により順序が並べ替えられた後の並列シンボルに含まれる 1つのシンボル であって、当該順序の並べ替えの情報に対応する位置にあるシンボルに挿入するパ ィロット揷入工程と、前記パイロット揷入工程により前記順序の並べ替えの情報が揷 入された並列シンボルを変換し、マルチキャリア変調信号を生成する変換工程と、前 記変換工程により生成されたマルチキャリア変調信号の所定の形式の電力を測定し 、当該電力が予め設定された閾値より大きいか否力、を判定する電力測定工程と、前 記電力測定工程により前記電力が前記閾値より大きいと判定された場合に、前記順 序変更工程により前記並列シンボルの順序を再度並べ替えさせ、前記変換工程によ り当該並列シンボルからマルチキャリア変調信号を生成させ、前記電力測定工程に より当該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御工程と 、前記制御工程による一連の処理が所定の回数に達する前に、前記電力測定工程 により前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調 信号を送信する送信工程と、を備え、前記受信装置は、前記送信装置から前記マル チキャリア変調信号を受信し、当該マルチキャリア変調信号を変換し並列シンボルを 生成する逆変換工程と、前記逆変換手段により生成された並列シンボルのシンボル 毎の電力を測定する個別電力測定工程と、前記個別電力測定工程により測定され た電力に基づいて、前記パイロット挿入工程により並べ替えを特定できる情報を挿入 したシンボルを特定し、当該シンボルの位置から前記順序変更工程により行われた 順序の並べ替えの情報を抽出する抽出工程と、前記抽出工程により抽出された前記 順序の並べ替えの情報を元に、前記並列シンボルに前記順序変更工程が行った並 ベ替えと逆の処理を行い、前記並列化工程により変換されたものと同じ並列シンボル を生成する順序回復工程と、前記順序回復工程により生成された並列シンボルを、 前記並列化工程における変換前のデータに再変換する直列化工程と、を備えること が好ましい。 (30) As described above, the communication method according to the present invention is a transmission / reception system configured of at least one receiving device that receives a multicarrier modulation signal transmitted from at least one transmitting device. In the communication method, the transmission device includes a parallelization step of converting input data into parallel symbols, and an order of rearranging the order of the parallel symbols. The change process and the information on the rearrangement of the order performed by the order change process are one symbol included in the parallel symbol after the order is rearranged by the order change process, and the rearrangement of the order A pilot insertion process to be inserted into a symbol at a position corresponding to the information of the information and a parallel symbol into which the information on the rearrangement is inserted by the pilot insertion process is converted to generate a multicarrier modulation signal. A conversion step; a power measurement step of measuring power in a predetermined format of the multicarrier modulation signal generated by the conversion step and determining whether the power is greater than a preset threshold; and When the power measurement step determines that the power is greater than the threshold value, the order change step rearranges the order of the parallel symbols to change the change. A control step of generating a multicarrier modulation signal from the parallel symbol by the conversion step, and measuring the power of the predetermined format of the multicarrier modulation signal by the power measurement step, and a series of processes by the control step. A transmission step of transmitting the multicarrier modulation signal when the power measurement step determines that the power is equal to or lower than the threshold before the predetermined number of times is reached, and the reception device includes the transmission device Receiving the multi-carrier modulation signal from the signal, converting the multi-carrier modulation signal to generate parallel symbols, and measuring individual power of each symbol of the parallel symbols generated by the inverse conversion means Reordering by the pilot insertion step based on the process and the power measured by the individual power measurement step An extraction step for identifying a symbol with inserted information and extracting information on the rearrangement of the order performed by the order changing step from the position of the symbol, and information on the rearrangement of the order extracted by the extraction step Based on the above, an order recovery step for performing the reverse process of the rearrangement performed by the order change step on the parallel symbols and generating the same parallel symbols as converted by the parallelization step, and the order recovery step It is preferable that the method further comprises a serialization step of reconverting the parallel symbol generated by the above process into data before conversion in the parallelization step.
本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であ つて、本発明がそれに限定されるものではなレ、。例示されていない無数の変形例が、 この発明の範囲から外れることなく想定され得るものと解される。  Although the present invention has been described in detail, the above description is illustrative in all aspects and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 入力データを並列シンボルに変換する並列化手段と、  [1] parallelization means for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更手段と、  Order changing means for rearranging the order of the parallel symbols;
少なくとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデ 一タ列を変換し、マルチキャリア変調信号を生成する変換手段と、  Conversion means for converting a data sequence including parallel symbols at least rearranged by the order changing means to generate a multicarrier modulation signal;
前記変換手段により生成されたマルチキャリア変調信号の所定の形式の電力を測 定し、当該電力が予め設定された閾値より大きいか否力を判定する電力測定手段と 前記電力測定手段により前記電力が前記閾値より大きいと判定された場合に、前 記順序変更手段を制御して前記並列シンボルの順序を再度並べ替えさせ、前記変 換手段を制御して当該並列シンボルからマルチキャリア変調信号を生成させ、前記 電力測定手段を制御して当該マルチキャリア変調信号の前記所定の形式の電力を 測定させる制御手段と、  A power measurement unit that measures power in a predetermined format of the multicarrier modulation signal generated by the conversion unit and determines whether or not the power is greater than a preset threshold value. When it is determined that the value is larger than the threshold, the order changing unit is controlled to rearrange the order of the parallel symbols, and the converting unit is controlled to generate a multicarrier modulation signal from the parallel symbols. Control means for controlling the power measuring means to measure the power of the predetermined format of the multi-carrier modulation signal;
前記制御手段による一連の処理が所定の回数に達する前に、前記電力測定手段 により前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調 信号を送信する送信手段と、  Transmitting means for transmitting the multi-carrier modulation signal when the power measuring means determines that the power is equal to or lower than the threshold before the series of processing by the control means reaches a predetermined number of times;
を備えることを特徴とする送信装置。  A transmission device comprising:
[2] 入力データを並列シンボルに変換する並列化手段と、  [2] parallelization means for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更手段と、  Order changing means for rearranging the order of the parallel symbols;
少なくとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデ 一タ列を変換し、マルチキャリア変調信号を生成する変換手段と、  Conversion means for converting a data sequence including parallel symbols at least rearranged by the order changing means to generate a multicarrier modulation signal;
前記変換手段により生成されたマルチキャリア変調信号の所定の形式の電力を測 定し、最小の電力を有するマルチキャリア変調信号を順次記憶する電力測定手段と 前記順序変更手段を制御して前記並列シンボルの順序を再度並べ替えさせ、前 記変換手段を制御して当該並列シンボルからマルチキャリア変調信号を生成させ、 前記電力測定手段を制御して当該マルチキャリア変調信号の前記所定の形式の電 力を測定させる制御手段と、 前記制御手段による一連の処理が所定の回数に達したときに、前記電力測定手段 に記憶されているマルチキャリア変調信号を送信する送信手段と、 The parallel symbol is measured by measuring the power of a predetermined format of the multicarrier modulation signal generated by the conversion means, and sequentially storing the multicarrier modulation signal having the minimum power, and controlling the order changing means. The control unit is controlled to generate a multicarrier modulation signal from the parallel symbol, and the power measurement unit is controlled to change the power of the predetermined format of the multicarrier modulation signal. Control means for measuring; Transmitting means for transmitting a multicarrier modulation signal stored in the power measuring means when a series of processing by the control means reaches a predetermined number of times;
を備えることを特徴とする送信装置。  A transmission device comprising:
[3] 入力データを並列シンボルに変換する並列化手段と、  [3] parallelization means for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更手段と、  Order changing means for rearranging the order of the parallel symbols;
少なくとも前記順序変更手段により順序が並べ替えられた並列シンボルを含むデ 一タ列を変換し、マルチキャリア変調信号を生成する変換手段と、  Conversion means for converting a data sequence including parallel symbols at least rearranged by the order changing means to generate a multicarrier modulation signal;
の組を複数備えて構成されており、かつ前記各順序変更手段はそれぞれ異なった 順序の並べ替えを行うものであり、  And each of the order changing means performs a rearrangement in a different order,
前記変換手段により生成されたマルチキャリア変調信号の所定の形式の電力を測 定し、当該電力が最小となるマルチキャリア変調信号を有する 1組を選択する電力測 定手段と、  Power measurement means for measuring power of a predetermined format of the multicarrier modulation signal generated by the conversion means and selecting one set having a multicarrier modulation signal that minimizes the power;
前記電力測定手段により選択された組のマルチキャリア変調信号を送信する送信 手段と、  Transmitting means for transmitting a set of multicarrier modulation signals selected by the power measuring means;
を備えることを特徴とする送信装置。  A transmission device comprising:
[4] 入力データを並列シンボルに変換する並列化手段と、 [4] parallel means for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更手段と、  Order changing means for rearranging the order of the parallel symbols;
前記順序変更手段により順序が並べ替えられた並列シンボルと所定のベクトルとの 内積を取ることで所定の形式の電力に相当する数値を算出する内積演算手段と、 前記内積演算手段により算出された数値が予め設定された閾値より大きいか否か を判定する電力測定手段と、  An inner product calculating means for calculating a numerical value corresponding to power in a predetermined format by taking an inner product of the parallel symbols whose order has been rearranged by the order changing means and a predetermined vector; and a numerical value calculated by the inner product calculating means Power measuring means for determining whether or not is greater than a preset threshold;
前記電力測定手段により前記算出された数値が前記閾値より大きいと判定された 場合に、前記順序変更手段を制御して前記並列シンボルの順序を再度並べ替えさ せ、前記内積演算手段を制御して当該並列シンボルと前記所定のベクトルとの内積 を取り前記所定の形式の電力に相当する数値を算出させ、前記電力測定手段を制 御して当該算出された数値が前記閾値より大きいか否力、を判定させる制御手段と、 前記制御手段による一連の処理が所定の回数に達する前に、前記電力測定手段 により前記算出された数値が前記閾値以下であると判定された場合に、少なくとも前 記順序変更手段により順序が並べ替えられた並列シンボルを含むデータ列を変換し 、マルチキャリア変調信号を生成する変換手段と、 When it is determined that the numerical value calculated by the power measuring unit is larger than the threshold value, the order changing unit is controlled to rearrange the order of the parallel symbols, and the inner product calculating unit is controlled. Taking the inner product of the parallel symbol and the predetermined vector, calculating a numerical value corresponding to the power of the predetermined format, and controlling the power measuring means to determine whether the calculated numerical value is greater than the threshold value; Control means for determining whether the calculated numerical value is less than or equal to the threshold before the series of processing by the control means reaches a predetermined number of times. Conversion means for converting a data sequence including parallel symbols whose order is rearranged by the order changing means, and generating a multicarrier modulation signal;
前記変換手段により生成されたマルチキャリア変調信号を送信する送信手段と、 を備えることを特徴とする送信装置。  Transmitting means for transmitting the multicarrier modulation signal generated by the converting means, The transmitting apparatus comprising:
[5] 入力データを並列シンボルに変換する並列化手段と、  [5] parallelization means for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更手段と、  Order changing means for rearranging the order of the parallel symbols;
前記順序変更手段により順序が並べ替えられた並列シンボルと所定のベクトルとの 内積を取ることで所定の形式の電力に相当する数値を算出する内積演算手段と、 前記内積演算手段により算出された数値が最小となる前記並列シンボルを順次記 憶する電力測定手段と、  An inner product calculating means for calculating a numerical value corresponding to power in a predetermined format by taking an inner product of the parallel symbols whose order has been rearranged by the order changing means and a predetermined vector; and a numerical value calculated by the inner product calculating means Power measurement means for sequentially storing the parallel symbols that minimizes
前記順序変更手段を制御して前記並列シンボルの順序を再度並べ替えさせ、前 記内積演算手段を制御して当該並列シンボルと前記所定のベクトルとの内積を取り 前記所定の形式の電力に相当する数値を算出させ、前記電力測定手段を制御して 当該算出された数値が最小となる前記並列シンボルを記憶させる制御手段と、 前記制御手段による一連の処理が所定の回数に達したときに、少なくとも前記電力 測定手段により記憶されてレ、る前記並列シンボルを含むデータ列を変換し、マルチ キャリア変調信号を生成する変換手段と、  The order changing means is controlled to rearrange the order of the parallel symbols again, and the inner product calculating means is controlled to take the inner product of the parallel symbols and the predetermined vector, which corresponds to the power of the predetermined format. A control means for calculating a numerical value and controlling the power measuring means to store the parallel symbol that minimizes the calculated numerical value; and when a series of processing by the control means reaches a predetermined number of times, at least Conversion means for converting a data sequence including the parallel symbols stored by the power measurement means and generating a multi-carrier modulation signal;
前記変換手段により生成されたマルチキャリア変調信号を送信する送信手段と、 を備えることを特徴とする送信装置。  Transmitting means for transmitting the multicarrier modulation signal generated by the converting means, The transmitting apparatus comprising:
[6] 入力データを並列シンボルに変換する並列化手段と、 [6] parallelization means for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更手段と、  Order changing means for rearranging the order of the parallel symbols;
の組を複数備えて構成されており、かつ前記各順序変更手段はそれぞれ異なった 順序の並べ替えを行うものであり、  And each of the order changing means performs a rearrangement in a different order,
少なくとも 1つ備えられ、前記順序変更手段により順序が並べ替えられた並列シン ボルと所定のベクトルとの内積を取ることで所定の形式の電力に相当する数値を算 出する内積演算手段と、  At least one inner product calculating means for calculating a numerical value corresponding to a predetermined form of power by taking an inner product of a parallel symbol whose order is rearranged by the order changing means and a predetermined vector;
前記内積演算手段により算出された数値の中で最小の数値を判定する電力測定 手段と、 少なくとも前記電力測定手段により最小と判定された数値を有する前記並列シンポ ルを含むデータ列を変換し、マルチキャリア変調信号を生成する変換手段と、 前記変換手段により生成されたマルチキャリア変調信号を送信する送信手段と、 を備えることを特徴とする送信装置。 Power measuring means for determining the smallest numerical value among the numerical values calculated by the inner product calculating means; Converting at least a data string including the parallel symbol having a numerical value determined to be the minimum by the power measurement unit, and generating a multicarrier modulation signal; and transmitting the multicarrier modulation signal generated by the conversion unit Transmitting means comprising: a transmission device comprising:
[7] 前記所定の形式の電力は、ピーク電力であることを特徴とする請求項 1乃至 6のい ずれかに記載の送信装置。 7. The transmitter according to claim 1, wherein the predetermined type of power is peak power.
[8] 前記所定の形式の電力は、平均電力に所定の値を加えた電力値以上の電力の総 和である超過電力であることを特徴とする請求項 1乃至 6のいずれかに記載の送信 装置。 [8] The power of the predetermined form is an excess power that is a sum of powers equal to or higher than a power value obtained by adding a predetermined value to the average power. Transmitter device.
[9] 前記順序変更手段は、シフトレジスタを用いることを特徴とする請求項 1乃至 8のい ずれかに記載の送信装置。  9. The transmitting apparatus according to claim 1, wherein the order changing unit uses a shift register.
[10] 前記変換手段は、高速フーリエ逆変換を用いることにより、マルチキャリア変調信号 を生成することを特徴とする請求項 1乃至 9のいずれかに記載の送信装置。 [10] The transmission device according to any one of [1] to [9], wherein the conversion unit generates a multicarrier modulation signal by using fast Fourier inverse transform.
[11] 前記並列シンボルは、互いに位相が 90度異なる搬送波を変調して得られた Iチヤ ネルと Qチャネルとで表現されており、前記順序変更手段は Iチャネルと Qチャネルと で異なった並べ替えを行うことを特徴とする請求項 1乃至 10のいずれかに記載の送 信装置。 [11] The parallel symbols are represented by I channels and Q channels obtained by modulating carriers whose phases are different from each other by 90 degrees, and the reordering means is arranged differently for the I channel and the Q channel. 11. The transmission device according to claim 1, wherein the transmission device is replaced.
[12] 前記順序変更手段により前記並列シンボルの順序が並べ替えられる前あるいは並 ベ替えられた後に、当該並列シンボルに巡回シフトを施すことを特徴とする請求項 1 乃至:[:[のレ、ずれかに記載の送信装置。  [12] The cyclic symbol may be cyclically shifted before or after the order of the parallel symbols is rearranged by the order changing means. The transmission device according to any one of the above.
[13] 前記変換手段が変換の対象とする前記データ列は、前記順序変更手段により順序 が並べ替えられた並列シンボルと、前記順序変更手段が行う順序の並べ替えの情報 とを含むことを特徴とする請求項 1乃至 12のいずれかに記載の送信装置。  [13] The data string to be converted by the conversion means includes parallel symbols whose order has been rearranged by the order change means, and information on order rearrangement performed by the order change means. The transmitter according to any one of claims 1 to 12.
[14] 前記順序変更手段が行う順序の並べ替えの情報を、前記順序変更手段により順序 が並べ替えられた後の並列シンボルに含まれる 1つのシンボルであって、当該順序 の並べ替えの情報に対応する位置にあるシンボルに揷入するパイロット揷入手段を さらに備え、  [14] The information on the rearrangement of the order performed by the order changing unit is one symbol included in the parallel symbols after the order is rearranged by the order changing unit, and is included in the information on the rearrangement of the order. A pilot insertion means for inserting symbols in corresponding positions;
前記変換手段は、前記パイロット揷入手段により前記順序の並べ替えの情報が揷 入された並列シンボルを変換し、マルチキャリア変調信号を生成することを特徴とす る請求項 1乃至 12のいずれかに記載の送信装置。 In the conversion means, the information on the rearrangement of the order is obtained by the pilot insertion means. 13. The transmission apparatus according to claim 1, wherein the input parallel symbol is converted to generate a multicarrier modulation signal.
[15] 前記パイロット挿入手段が挿入する前記並べ替えを特定できる情報は、ゼロ値であ ることを特徴とする請求項 14記載の送信装置。 15. The transmission apparatus according to claim 14, wherein the information that can specify the rearrangement inserted by the pilot insertion means is a zero value.
[16] 少なくともネットワークインターフェイスカードを含む送信装置に接続可能であり、当 該送信装置にデジタル信号を送出可能な送信補助装置であって、 [16] A transmission auxiliary device that can be connected to a transmission device including at least a network interface card and can send a digital signal to the transmission device,
直列シンボルからなる入力データの順序を並べ替える順序変更手段と、 前記順序変更手段により順序が並べ替えられた直列シンボルと、前記順序変更手 段が行った順序の並べ替えの情報とを合成し 1つのデータ列を生成する合成手段と 前記合成手段により合成されたデータ列を受け取って、当該データ列が前記ネット ワークインターフェイスカードを含む送信装置に入力した際に出力されるマルチキヤリ ァ変調信号を再現して出力する再現手段と、  The order changing means for rearranging the order of the input data composed of serial symbols, the serial symbol whose order is rearranged by the order changing means, and the information on the rearrangement of the order performed by the order changing means are combined. A combining means for generating two data strings and a data string synthesized by the synthesizing means, and reproducing a multi-carrier modulation signal that is output when the data string is input to a transmitting device including the network interface card. Reproduction means to output
前記再現手段により出力されたマルチキャリア変調信号の所定の形式の電力を測 定し、当該電力が予め設定された閾値より大きいか否力を判定する電力測定手段と 前記電力測定手段により前記電力が前記閾値より大きいと判定された場合に、前 記順序変更手段を制御して前記直列シンボルの順序を再度並べ替えさせ、前記変 換手段を制御して当該直列シンボルからマルチキャリア変調信号を生成させ、前記 電力測定手段を制御して当該マルチキャリア変調信号の前記所定の形式の電力を 測定させる制御手段と、  A power measurement unit that measures power in a predetermined format of the multicarrier modulation signal output by the reproduction unit and determines whether or not the power is greater than a preset threshold value. When it is determined that the value is larger than the threshold, the order changing unit is controlled to rearrange the order of the serial symbols, and the converting unit is controlled to generate a multicarrier modulation signal from the serial symbol. Control means for controlling the power measuring means to measure the power of the predetermined format of the multi-carrier modulation signal;
前記制御手段による一連の処理が所定の回数に達する前に、前記電力測定手段 により前記電力が前記閾値以下であると判定された場合に前記合成手段により生成 されたデータ列を前記デジタル信号として前記ネットワークインターフェイスカードを 含む送信装置に送信する送信手段と、  The data string generated by the combining means when the power measuring means determines that the power is below the threshold before the series of processing by the control means reaches a predetermined number of times as the digital signal. A transmission means for transmitting to a transmission device including a network interface card;
を備えることを特徴とする送信補助装置。  A transmission auxiliary device comprising:
[17] 少なくともネットワークインターフェイスカードを含む送信装置に接続可能であり、当 該送信装置にデジタル信号を送出可能な送信補助装置であって、 直列シンボルからなる入力データの順序を並べ替える順序変更手段と、 前記順序変更手段により順序が並べ替えられた直列シンボルと、前記順序変更手 段が行った順序の並べ替えの情報とを合成し 1つのデータ列を生成する合成手段と 前記合成手段により合成されたデータ列を受け取って、当該データ列が前記ネット ワークインターフェイスカードを含む送信装置に入力した際に出力されるマルチキヤリ ァ変調信号を再現して出力する再現手段と、 [17] A transmission auxiliary device that can be connected to a transmission device including at least a network interface card and can send a digital signal to the transmission device, The order changing means for rearranging the order of the input data composed of serial symbols, the serial symbol whose order is rearranged by the order changing means, and the information on the rearrangement of the order performed by the order changing means are combined. A combining means for generating two data strings and a data string synthesized by the synthesizing means, and reproducing a multi-carrier modulation signal that is output when the data string is input to a transmitting device including the network interface card. Reproduction means to output
前記再現手段により出力されたマルチキャリア変調信号の所定の形式の電力を測 定し、最小の電力を有するマルチキャリア変調信号が検知された場合、前記合成手 段に当該マルチキャリア変調信号の元となったデータ列を記憶させる電力測定手段 と、  The power of a predetermined format of the multicarrier modulation signal output by the reproduction means is measured, and when a multicarrier modulation signal having the minimum power is detected, the combination means and the source of the multicarrier modulation signal are detected. A power measuring means for storing the data string,
前記順序変更手段を制御して前記直列シンボルの順序を再度並べ替えさせ、前 記再現手段を制御して当該直列シンボルからマルチキャリア変調信号を生成させ、 前記電力測定手段を制御して当該マルチキャリア変調信号の前記所定の形式の電 力を測定させる制御手段と、  The sequence changing means is controlled to rearrange the order of the serial symbols, the reproduction means is controlled to generate a multicarrier modulation signal from the serial symbols, and the power measuring means is controlled to control the multicarrier. Control means for measuring the power of the predetermined form of the modulation signal;
前記制御手段による一連の処理が所定の回数に達したときに、前記合成手段に記 憶されているデータ列を前記デジタル信号として前記ネットワークインターフェイス力 ードを含む送信装置に送信する送信手段と、  Transmitting means for transmitting a data string stored in the combining means to the transmitting apparatus including the network interface mode as the digital signal when a series of processing by the control means reaches a predetermined number of times;
を備えることを特徴とする送信補助装置。  A transmission auxiliary device comprising:
[18] 前記所定の形式の電力は、前記マルチキャリア変調信号のピーク電力であることを 特徴とする請求項 16又は 17に記載の送信補助装置。  18. The transmission auxiliary device according to claim 16, wherein the predetermined type of power is a peak power of the multicarrier modulation signal.
[19] 前記所定の形式の電力は、前記マルチキャリア変調信号の平均電力に所定の値を 加えた電力値以上の電力の総和である超過電力であることを特徴とする請求項 16 又は 17に記載の送信補助装置。 [19] The power of the predetermined form is an excess power that is a sum of powers equal to or higher than a power value obtained by adding a predetermined value to the average power of the multicarrier modulation signal. The transmission auxiliary device described.
[20] 前記順序変更手段は、シフトレジスタを用いることを特徴とする請求項 16乃至 19の いずれかに記載の送信補助装置。 [20] The transmission auxiliary apparatus according to any one of claims 16 to 19, wherein the order changing means uses a shift register.
[21] 前記入力データは、互いに位相が 90度異なる搬送波を変調して得られた Iチヤネ ルと Qチャネルとで表現されており、前記順序変更手段は Iチャネルと Qチャネルとで 異なった並べ替えを行うことを特徴とする請求項 16乃至 20のいずれかに記載の送 信補助装置。 [21] The input data is expressed by an I channel and a Q channel obtained by modulating a carrier wave whose phase is 90 degrees different from each other, and the order changing means is an I channel and a Q channel. 21. The transmission assisting device according to claim 16, wherein rearrangement is performed differently.
[22] 前記順序変更手段により前記直列シンボルの順序が並べ替えられる前あるいは並 ベ替えられた後に、当該直列シンボルに巡回シフトを施すことを特徴とする請求項 1 22. The serial symbol is subjected to a cyclic shift before or after the order of the serial symbols is rearranged by the order changing means.
6乃至 21のいずれかに記載の送信補助装置。 The transmission auxiliary device according to any one of 6 to 21.
[23] 請求項 1乃至 13のいずれかに記載の送信装置から送信されたマルチキャリア変調 信号を受信可能に構成された受信装置であって、 [23] A receiving device configured to receive a multicarrier modulation signal transmitted from the transmitting device according to any one of claims 1 to 13,
前記マルチキャリア変調信号を変換し並列シンボルを生成する逆変換手段と、 前記逆変換手段により生成された並列シンボルから前記順序変更手段が行った順 序の並べ替えの情報を抽出する抽出手段と、  Inverse conversion means for converting the multi-carrier modulation signal to generate parallel symbols; and extraction means for extracting information on the rearrangement of the order performed by the order change means from the parallel symbols generated by the inverse conversion means;
前記抽出手段により抽出された前記順序の並べ替えの情報を元に、前記並列シン ボルに前記順序変更手段が行った並べ替えと逆の処理を行い、前記並列化手段に より変換されたものと同じ並列シンボルを生成する順序回復手段と、  Based on the information on the rearrangement of the order extracted by the extraction means, the parallel symbol is subjected to the reverse process of the rearrangement performed by the order change means, and converted by the parallelization means. Order recovery means for generating the same parallel symbols;
前記順序回復手段により生成された並列シンボルを、前記並列化手段における変 換前のデータに再変換する直列化手段と、  Serializing means for reconverting the parallel symbols generated by the order recovery means into data before conversion in the parallelizing means;
を備えることを特徴とする受信装置。  A receiving apparatus comprising:
[24] 請求項 14又は 15に記載の送信装置から送信されたマルチキャリア変調信号を受 信可能に構成された受信装置であって、 [24] A receiving device configured to be capable of receiving a multicarrier modulation signal transmitted from the transmitting device according to claim 14 or 15,
前記マルチキャリア変調信号を変換し並列シンボルを生成する逆変換手段と、 前記逆変換手段により生成された並列シンボルのシンボル毎の電力を測定する個 別電力測定手段と、  Inverse conversion means for converting the multicarrier modulation signal to generate parallel symbols; individual power measurement means for measuring the power of each symbol of the parallel symbols generated by the inverse conversion means;
前記個別電力測定手段により測定された電力に基づいて、前記パイロット揷入手 段が並べ替えを特定できる情報を揷入したシンボルを特定し、当該シンボルの位置 から前記順序変更手段が行った順序の並べ替えの情報を抽出する抽出手段と、 前記抽出手段により抽出された前記順序の並べ替えの情報を元に、前記並列シン ボルに前記順序変更手段が行った並べ替えと逆の処理を行い、前記並列化手段に より変換されたものと同じ並列シンボルを生成する順序回復手段と、  Based on the power measured by the individual power measuring means, the pilot 揷 obtaining stage identifies a symbol inserted with information that can specify the rearrangement, and the order is changed by the order changing means from the position of the symbol. Extracting means for extracting replacement information; based on the information on rearrangement of the order extracted by the extraction means; performing reverse processing to the rearrangement performed by the order changing means on the parallel symbols; An order recovery means for generating the same parallel symbols converted by the parallel means;
前記順序回復手段により生成された並列シンボルを、前記並列化手段における変 換前のデータに再変換する直列化手段と、 The parallel symbol generated by the order recovery means is converted into the change in the parallelization means. Serialization means for reconverting the data before conversion;
を備えることを特徴とする受信装置。  A receiving apparatus comprising:
[25] 請求項 16乃至 22のいずれかに記載の送信補助装置と接続された送信装置から送 信されたマルチキャリア変調信号を受信可能に構成され、少なくともネットワークイン ターフェイスカードを含む受信装置が出力するデジタル信号を受信可能に構成され た受信補助装置であって、  [25] A receiving device configured to receive a multicarrier modulation signal transmitted from a transmitting device connected to the transmitting auxiliary device according to any one of claims 16 to 22, and including at least a network interface card. A reception auxiliary device configured to receive a digital signal to be output,
前記デジタル信号を直列シンボルと前記順序変更手段が行った順序の並べ替え の情報とに分離する分離手段と、  Separating means for separating the digital signal into serial symbols and rearranged information performed by the order changing means;
前記分離手段により分離された前記順序の並べ替えの情報を元に、前記直列シン ボルに前記順序変更手段が行った並べ替えと逆の処理を行レ、、前記順序変更手段 における変換前の直列シンボルを生成する順序回復手段と、  Based on the information on the rearrangement of the order separated by the separation means, the serial symbol is subjected to a process reverse to the rearrangement performed by the order change means, and the serial change before the conversion in the order change means Order recovery means for generating symbols;
を備えることを特徴とする受信補助装置。  A reception auxiliary device comprising:
[26] 少なくとも 1台の請求項 1乃至 13のいずれかに記載の送信装置と、 [26] At least one transmitter according to any one of claims 1 to 13,
少なくとも 1台の請求項 23記載の受信装置と、  At least one receiving device according to claim 23;
を備えて構成される送受信システム。  A transmission / reception system configured with.
[27] 少なくとも 1台の請求項 14又は 15に記載の送信装置と、  [27] At least one transmitter according to claim 14 or 15, and
少なくとも 1台の請求項 24記載の受信装置と、  At least one receiving device according to claim 24;
を備えて構成される送受信システム。  A transmission / reception system configured with.
[28] 少なくともネットワークインターフェイスカードを含む送信装置と接続された少なくとも 1台の請求項項 16乃至 22のいずれかに記載の送信補助装置と、  [28] At least one transmission auxiliary device according to any one of claims 16 to 22 connected to a transmission device including at least a network interface card;
少なくともネットワークインターフェイスカードを含む受信装置と接続された少なくとも 1台の請求項 25記載の受信補助装置と、  The reception auxiliary device according to claim 25 connected to at least one reception device including a network interface card,
を備えて構成される送受信システム。  A transmission / reception system configured with.
[29] 少なくとも 1台の送信装置から送信されたマルチキャリア変調信号を受信する、少な くとも 1台の受信装置から構成される送受信システムにおける通信方法であって、 前記送信装置は、 [29] A communication method in a transmission / reception system configured by at least one receiving device that receives a multicarrier modulation signal transmitted from at least one transmitting device, the transmitting device comprising:
入力データを並列シンボルに変換する並列化工程と、  A parallelization process for converting input data into parallel symbols;
前記並列シンボルの順序を並べ替える順序変更工程と、 少なくとも前記順序変更工程により順序が並べ替えられた並列シンボルを変換し、 マルチキャリア変調信号を生成する変換工程と、 An order changing step for rearranging the order of the parallel symbols; A conversion step of converting at least the parallel symbols whose order has been rearranged by the order changing step and generating a multicarrier modulation signal;
前記変換工程により生成されたマルチキャリア変調信号の所定の形式の電力を測 定し、当該電力が予め設定された閾値より大きいか否かを判定する電力測定工程と 前記電力測定工程により前記電力が前記閾値より大きいと判定された場合に、前 記順序変更工程により前記並列シンボルの順序を再度並べ替えさせ、前記変換ェ 程により当該並列シンボルからマルチキャリア変調信号を生成させ、前記電力測定 工程により当該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御 工程と、  A power measurement step of measuring a predetermined form of power of the multicarrier modulation signal generated by the conversion step and determining whether or not the power is greater than a preset threshold value. If it is determined that the value is larger than the threshold, the order of the parallel symbols is rearranged again by the order changing step, a multicarrier modulation signal is generated from the parallel symbols by the conversion step, and the power measuring step A control step of measuring the power of the predetermined format of the multicarrier modulation signal;
前記制御工程による一連の処理が所定の回数に達する前に、前記電力測定工程 により前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調 信号を送信する送信工程と、を備え、  A transmission step of transmitting the multicarrier modulation signal when the power measurement step determines that the power is equal to or lower than the threshold before the series of processes by the control step reaches a predetermined number of times,
前記受信装置は、  The receiving device is:
前記送信装置から前記マルチキャリア変調信号を受信し、当該マルチキャリア変調 信号を変換し並列シンボルを生成する逆変換工程と、  Receiving the multicarrier modulation signal from the transmitter, converting the multicarrier modulation signal, and generating a parallel symbol;
前記逆変換工程により生成された並列シンボルから前記順序変更工程により行わ れた順序の並べ替えの情報を抽出する抽出工程と、  An extraction step of extracting information on the rearrangement of the order performed by the order change step from the parallel symbols generated by the reverse conversion step;
前記抽出工程により抽出された前記順序の並べ替えの情報を元に、前記並列シン ボルに前記順序変更工程が行った並べ替えと逆の処理を行い、前記並列化工程に より変換されたものと同じ並列シンボルを生成する順序回復工程と、  Based on the information on the rearrangement in the order extracted in the extraction step, the parallel symbol is subjected to the reverse process of the rearrangement performed in the order change step, and is converted by the parallelization step. An order recovery process to generate the same parallel symbols;
前記順序回復工程により生成された並列シンボルを、前記並列化工程における変 換前のデータに再変換する直列化工程と、  A serialization step of reconverting the parallel symbols generated by the sequence recovery step into data before conversion in the parallelization step;
を備えることを特徴とする送受信システムにおける通信方法。 A communication method in a transmission / reception system comprising:
少なくとも 1台の送信装置から送信されたマルチキャリア変調信号を受信する、少な くとも 1台の受信装置から構成される送受信システムにおける通信方法であって、 前記送信装置は、  A communication method in a transmission / reception system configured to include at least one receiving device that receives a multicarrier modulation signal transmitted from at least one transmitting device, the transmitting device comprising:
入力データを並列シンボルに変換する並列化工程と、 前記並列シンボルの順序を並べ替える順序変更工程と、 A parallelization process for converting input data into parallel symbols; An order changing step for rearranging the order of the parallel symbols;
前記順序変更工程により行われた順序の並べ替えの情報を、前記順序変更工程 により順序が並べ替えられた後の並列シンボルに含まれる 1つのシンボルであって、 当該順序の並べ替えの情報に対応する位置にあるシンボルに揷入するパイロット揷 入工程と、  The information on the rearrangement of the order performed by the order change process is one symbol included in the parallel symbols after the order is rearranged by the order change process, and corresponds to the information on the rearrangement of the order. A pilot insertion process to enter the symbol at the position
前記パイロット揷入工程により前記順序の並べ替えの情報が揷入された並列シン ボルを変換し、マルチキャリア変調信号を生成する変換工程と、  A conversion step of converting a parallel symbol into which the information on the rearrangement is inserted in the pilot insertion step and generating a multicarrier modulation signal;
前記変換工程により生成されたマルチキャリア変調信号の所定の形式の電力を測 定し、当該電力が予め設定された閾値より大きいか否かを判定する電力測定工程と 前記電力測定工程により前記電力が前記閾値より大きいと判定された場合に、前 記順序変更工程により前記並列シンボルの順序を再度並べ替えさせ、前記変換ェ 程により当該並列シンボルからマルチキャリア変調信号を生成させ、前記電力測定 工程により当該マルチキャリア変調信号の前記所定の形式の電力を測定させる制御 工程と、  A power measurement step of measuring a predetermined form of power of the multicarrier modulation signal generated by the conversion step and determining whether or not the power is greater than a preset threshold value. If it is determined that the value is larger than the threshold, the order of the parallel symbols is rearranged again by the order changing step, a multicarrier modulation signal is generated from the parallel symbols by the conversion step, and the power measuring step A control step of measuring the power of the predetermined format of the multicarrier modulation signal;
前記制御工程による一連の処理が所定の回数に達する前に、前記電力測定工程 により前記電力が前記閾値以下であると判定された場合に当該マルチキャリア変調 信号を送信する送信工程と、を備え、  A transmission step of transmitting the multicarrier modulation signal when the power measurement step determines that the power is equal to or lower than the threshold before the series of processes by the control step reaches a predetermined number of times,
前記受信装置は、  The receiving device is:
前記送信装置から前記マルチキャリア変調信号を受信し、当該マルチキャリア変調 信号を変換し並列シンボルを生成する逆変換工程と、  Receiving the multicarrier modulation signal from the transmitter, converting the multicarrier modulation signal, and generating a parallel symbol;
前記逆変換手段により生成された並列シンボルのシンボル毎の電力を測定する個 別電力測定工程と、  An individual power measurement step of measuring the power of each of the parallel symbols generated by the inverse conversion means;
前記個別電力測定工程により測定された電力に基づいて、前記パイロット揷入ェ 程により並べ替えを特定できる情報を揷入したシンボルを特定し、当該シンボルの位 置から前記順序変更工程により行われた順序の並べ替えの情報を抽出する抽出ェ 程と、  Based on the power measured in the individual power measurement step, a symbol having information that can specify rearrangement in the pilot insertion step is identified, and the order change step is performed from the position of the symbol. An extraction process for extracting the information of the rearrangement of the order;
前記抽出工程により抽出された前記順序の並べ替えの情報を元に、前記並列シン ボルに前記順序変更工程が行った並べ替えと逆の処理を行い、前記並列化工程に より変換されたものと同じ並列シンボルを生成する順序回復工程と、 Based on the information on the rearrangement of the order extracted by the extraction step, the parallel thin An order recovery step for performing the reverse processing of the rearrangement performed by the order changing step on the Bol and generating the same parallel symbol as that converted by the parallelizing step;
前記順序回復工程により生成された並列シンボルを、前記並列化工程における変 換前のデータに再変換する直列化工程と、  A serialization step of reconverting the parallel symbols generated by the sequence recovery step into data before conversion in the parallelization step;
を備えることを特徴とする送受信システムにおける通信方法。 A communication method in a transmission / reception system comprising:
PCT/JP2005/018837 2005-02-03 2005-10-13 Transmission device, transmission aiding device, reception device, reception aiding device, transmission/reception system, and communication method WO2006082675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007501506A JPWO2006082675A1 (en) 2005-02-03 2005-10-13 Transmission device, transmission auxiliary device, reception device, reception auxiliary device, transmission/reception system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005028130 2005-02-03
JP2005-028130 2005-02-03

Publications (1)

Publication Number Publication Date
WO2006082675A1 true WO2006082675A1 (en) 2006-08-10

Family

ID=36777067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018837 WO2006082675A1 (en) 2005-02-03 2005-10-13 Transmission device, transmission aiding device, reception device, reception aiding device, transmission/reception system, and communication method

Country Status (2)

Country Link
JP (1) JPWO2006082675A1 (en)
WO (1) WO2006082675A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259445A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Transmitters and methods in ofdm communication systems
JP2008236053A (en) * 2007-03-16 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Adaptive antenna system and transmission method
JP2009055395A (en) * 2007-08-28 2009-03-12 Softbank Mobile Corp Peak electric power reducing device in communication device
WO2009054052A1 (en) * 2007-10-24 2009-04-30 Fujitsu Limited Ofdm communication device and method for ofdm communication
JP2010505314A (en) * 2006-09-27 2010-02-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method for reducing peak-to-average power ratio in a communication system
JP2010537469A (en) * 2007-08-14 2010-12-02 エルジー エレクトロニクス インコーポレイティド How to reduce peak-to-average power ratio
JP2014007445A (en) * 2012-06-21 2014-01-16 Icom Inc Communication instrument and communication method
JP2014120798A (en) * 2012-12-13 2014-06-30 Icom Inc Communication apparatus and communication method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228186A (en) * 1995-02-21 1996-09-03 Fujitsu Ltd Multiple carrier transmission device
JPH08274748A (en) * 1995-03-31 1996-10-18 Victor Co Of Japan Ltd Frequency-division multiplex signal generating device
JPH0918444A (en) * 1995-06-30 1997-01-17 Victor Co Of Japan Ltd Modulator and demodulator for ofdm wave
JPH0998146A (en) * 1995-09-29 1997-04-08 Victor Co Of Japan Ltd Frequency divided multiplex signal generator and decoder
JPH0998147A (en) * 1995-09-29 1997-04-08 Victor Co Of Japan Ltd Frequency divided multiplex signal generator
JPH09107345A (en) * 1995-10-12 1997-04-22 Victor Co Of Japan Ltd Frequency division multiplex signal generator and decoder
JPH11145929A (en) * 1997-11-12 1999-05-28 Jisedai Digital Television Hoso System Kenkyusho Transmission control signal transmitting system and transmission/reception equipment
JPH11215091A (en) * 1998-01-22 1999-08-06 Toshiba Corp Ofdm signal transmission method and ofdm signal transmitter thereof
JPH11215092A (en) * 1998-01-22 1999-08-06 Toshiba Corp Ofdm signal transmission method and ofdm signal transmitter thereof
JP2001148678A (en) * 1999-11-19 2001-05-29 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd Multi-carrier communication equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228186A (en) * 1995-02-21 1996-09-03 Fujitsu Ltd Multiple carrier transmission device
JPH08274748A (en) * 1995-03-31 1996-10-18 Victor Co Of Japan Ltd Frequency-division multiplex signal generating device
JPH0918444A (en) * 1995-06-30 1997-01-17 Victor Co Of Japan Ltd Modulator and demodulator for ofdm wave
JPH0998146A (en) * 1995-09-29 1997-04-08 Victor Co Of Japan Ltd Frequency divided multiplex signal generator and decoder
JPH0998147A (en) * 1995-09-29 1997-04-08 Victor Co Of Japan Ltd Frequency divided multiplex signal generator
JPH09107345A (en) * 1995-10-12 1997-04-22 Victor Co Of Japan Ltd Frequency division multiplex signal generator and decoder
JPH11145929A (en) * 1997-11-12 1999-05-28 Jisedai Digital Television Hoso System Kenkyusho Transmission control signal transmitting system and transmission/reception equipment
JPH11215091A (en) * 1998-01-22 1999-08-06 Toshiba Corp Ofdm signal transmission method and ofdm signal transmitter thereof
JPH11215092A (en) * 1998-01-22 1999-08-06 Toshiba Corp Ofdm signal transmission method and ofdm signal transmitter thereof
JP2001148678A (en) * 1999-11-19 2001-05-29 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd Multi-carrier communication equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259445A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Transmitters and methods in ofdm communication systems
JP2010505314A (en) * 2006-09-27 2010-02-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method for reducing peak-to-average power ratio in a communication system
JP2008236053A (en) * 2007-03-16 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Adaptive antenna system and transmission method
JP2010537469A (en) * 2007-08-14 2010-12-02 エルジー エレクトロニクス インコーポレイティド How to reduce peak-to-average power ratio
JP2009055395A (en) * 2007-08-28 2009-03-12 Softbank Mobile Corp Peak electric power reducing device in communication device
WO2009054052A1 (en) * 2007-10-24 2009-04-30 Fujitsu Limited Ofdm communication device and method for ofdm communication
JPWO2009054052A1 (en) * 2007-10-24 2011-03-03 富士通株式会社 OFDM communication apparatus and OFDM communication method
JP2014007445A (en) * 2012-06-21 2014-01-16 Icom Inc Communication instrument and communication method
JP2014120798A (en) * 2012-12-13 2014-06-30 Icom Inc Communication apparatus and communication method

Also Published As

Publication number Publication date
JPWO2006082675A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US10616025B2 (en) System and method for controlling combined radio signals
US10103921B2 (en) Method and apparatus for transmitting a signal
KR100688118B1 (en) Apparatus and method for reducing peak to average power ratio in orthogonal frequency division multiplexing communication system
RU2313910C2 (en) Device and method for reducing papr in ofdm communication system
KR100854830B1 (en) Communications systems and methods using phase vectors
Ohkubo et al. A peak to average power ratio reduction of multicarrier CDMA using selected mapping
EP1357718A2 (en) Multicarrier transmission with measures to reduce the ratio of peak to average power
CN101218845B (en) Wireless communication base station apparatus, wireless communication mobile station apparatus and pilot signal sequence allocating method in multicarrier communication
US6912241B2 (en) Chip-interleaved, block-spread multi-user communication
WO2006082675A1 (en) Transmission device, transmission aiding device, reception device, reception aiding device, transmission/reception system, and communication method
JP2005534268A (en) Transmitter / receiver apparatus and method for reducing ratio of peak power to average power in orthogonal frequency division multiplexing mobile communication system
JP4932641B2 (en) Peak power reduction device in communication device
JP4863262B2 (en) Transmitter, communication system, and transmission method
KR100548319B1 (en) A method of searching minimum papr sequence for ofdm communication system
Agwah et al. MIMO-OFDM system in wireless communication: a survey of peak to average power ratio minimization and research direction
WO2004109953A1 (en) A method and apparatus for a multicarrier code division multiple access system
KR100637710B1 (en) Method for reducing peak to average power ratio and calculating complexity in orthogonal frequency division multiplexing system
KR101747455B1 (en) System and method for controlling combined radio signals
WO2008029704A1 (en) Transmission device, reception device, communication system, and communication method
Fujii et al. Peak power reduction for MC-CDMA using cluster assigned code selection
Liang et al. A modified partial transmit sequence with PAPR reduction and error correction in 16-QAM OFDM systems
Ren An Improved Selected Mapping Scheme for PAPR Reduction in OFDM Systems
Hunziker et al. Evaluation of Coding and Modulation Schemes based on Golay Complementary Sequences for E cient OFDM Transmission
Sayana et al. Design and analysis of coded multiplexing for the multiuser OFDM downlink
Madhukumar et al. A Simplified Approach for Peak-to-Average Power Reduction for Multicarrier Code Division Multiple Access Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007501506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793174

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5793174

Country of ref document: EP