WO2008029704A1 - Transmission device, reception device, communication system, and communication method - Google Patents

Transmission device, reception device, communication system, and communication method Download PDF

Info

Publication number
WO2008029704A1
WO2008029704A1 PCT/JP2007/066889 JP2007066889W WO2008029704A1 WO 2008029704 A1 WO2008029704 A1 WO 2008029704A1 JP 2007066889 W JP2007066889 W JP 2007066889W WO 2008029704 A1 WO2008029704 A1 WO 2008029704A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading
unit
code
signal
chips
Prior art date
Application number
PCT/JP2007/066889
Other languages
French (fr)
Japanese (ja)
Inventor
Ryota Yamada
Takashi Yoshimoto
Minoru Kubota
Takashi Onodera
Toshizo Nogami
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008029704A1 publication Critical patent/WO2008029704A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems

Definitions

  • the present invention relates to a transmission device, a reception device, a communication system, and a communication method, and more particularly to a transmission device, a reception device, a communication system, and a communication method that perform communication using a signal that has been spread using a spreading code and then interleaved.
  • MC-CDMA Multi-Carrier Code Division Multiple Access
  • OFCDM Orthogonal Frequency and Code Division Multiplexing
  • information symbols are repeated on continuous subcarriers corresponding to the spreading factor ( Copy) and multiply the repeated subcarriers by the spreading code (hereinafter referred to as frequency axis spreading). Since the subcarrier symbols are frequency-axis spread with separable spreading codes, code multiplexing can be performed.
  • demodulation is performed by extracting the desired information symbol by despreading using a spreading code in which the desired information symbol is spread, and restoring the information transmitted on each subcarrier. .
  • Non-Patent Document 1 The MC-CDMA system and OFCDM system that operate as described above are described in Non-Patent Document 1, for example. MC-CDMA and OFCDM receivers need to maintain good orthogonality between spreading code sequences in order to obtain information symbols accurately from code-multiplexed signals. .
  • interleaving for rearranging signals in the time direction or frequency direction is usually performed on the transmission side, and the original is performed on the reception side. Perform a Dinter Leave to return.
  • This interleaving / dinterleaving includes, for example, chip interleaving that rearranges in the frequency direction in units of chips, and symbol interleaving that rearranges in the frequency direction in units of symbols before spreading. In these interleavings, frequency selective features with large frequency fluctuations are used.
  • Non-Patent Document 1 Maeda, Shin, Abeda, Sawahashi, "VSF using OFD-OFCDM and its characteristics", IEICE Technical Report RCS2002-61, May 2002
  • Non-Patent Document 2 Maeda, H. Atarashi, M. sawahashi, Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forward Link, IEICE trans, commun., Vol. E86-B, No. 1, Jan. 200 3
  • Fig. 7 multiplexes 3 code channels via a propagation path in an ideal frequency-selective fading environment with no frequency fluctuation on the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power.
  • the received power frequency characteristics of the received signal are illustrated.
  • the received signal indicates 8 chips on the frequency axis. These 8 chips are obtained by spreading one symbol.
  • the signals received in the environment shown in the upper part of Fig. 7 are spread codes C and C, respectively.
  • Figure 8 shows the received signal described in Figure 7 multiplied by the spreading code C to perform inverse expansion.
  • represents transposition of a matrix.
  • FIG. 9 shows an example of a received signal when frequency fluctuation occurs in the spreading code.
  • the upper part of Fig. 9 shows the received signal that has passed through the propagation path in a frequency selective fading environment with frequency fluctuations in the spread code on the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power.
  • the received power frequency characteristics are illustrated.
  • the received signal indicates 8 chips on the frequency axis for convenience of explanation. These 8 chips are chips obtained by spreading one symbol.
  • the received signals for four chips with low frequency are hardly affected by the propagation path, as in the case of Fig. 7 above, but the received signals for four chips with high frequency are The received power is extremely reduced due to the strong attenuation caused by. Therefore, as shown in the lower part of Fig. 9, the signal with the symbol "1" spread by spreading codes C, C, C
  • Inter-code interference MCI has occurred.
  • FIG. 10 is a diagram for explaining the symbol interleaver.
  • the upper part of Fig. 10 shows the case where a symbol interleaver is used, and the signal passes through a propagation path in a frequency-selective fading environment with frequency fluctuations in the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power.
  • the received power frequency characteristics of the received signal are shown for the Dinterleave operation on the receiving side.
  • the received signal shows 16 chips equivalent to 2 symbols on the frequency axis. Since the symbol interleaver performs rearrangement for each symbol, the eight received chips that remain adjacent on the frequency axis before and after the rearrangement receive almost the same received power with almost no influence of frequency fluctuations. It becomes.
  • Symbol 1 (8 chips on the lower frequency side in 16 chips) and Symbol 2 (8 chips on the higher frequency side in 16 chips) are placed in different frequency regions due to symbol interleaving. Among these, the received power tends to be different due to the influence of frequency fluctuation.
  • each chip of symbol 1 can obtain sufficient received power, whereas each chip of symbol 2 is sufficiently attenuated to obtain sufficient received power. Not happen.
  • C [1-1-1 1 1-1-1 1]
  • Each of the received signals is the spreading code C C itself. Like this 2
  • the received signals of 8 and 7 are “0 0 0 0 0 0 0 0 0” and “0 0 0 0 0 0 0 0”, respectively.
  • FIG. 11 is a diagram illustrating a chip interleaver.
  • the upper part of Fig. 11 shows the propagation path in a frequency-selective fading environment with frequency fluctuations in the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power when a chip interleaver is used.
  • This figure shows the received power frequency characteristics of the received signal that passed through, for the Dinterleave operation on the receiving side.
  • the received signal shows 16 chips equivalent to 2 symbols on the frequency axis. Since the chip interleaver performs rearrangement for each chip, it is placed in a different frequency region for each chip due to rearrangement. Therefore, the received power varies from chip to chip under the influence of frequency fluctuations. Cheap.
  • the first, second, fourth, fifth and eighth chips of symbol 1, and the second, third and sixth chips of symbol 2 Provides sufficient received power, and the third, sixth, and seventh chips of symbol 1 and the first, fourth, fifth, seventh, and eighth chips of symbol 2 are strongly attenuated.
  • the received signals are “1 1 0 1 1 0 0 1” and “1 1 0 1 1 0 0 1”, respectively. Multiplying the received signal including these two signals by spreading code C
  • the present invention can obtain a symbol with high accuracy on the receiving side from a code-multiplexed signal while obtaining a frequency diversity effect by using code multiplexing by spreading code and interleaving in units of chips. It is an object to provide a transmission device, a reception device, a communication system, and a communication method.
  • the present invention has been made to solve the above-described problem, and the transmission apparatus of the present invention spreads transmission symbols using a spreading code to generate a chip for each code channel.
  • a group consisting of a code multiplexing unit that multiplexes the chips of a plurality of channels and generates a multiplexed signal, and a group of the multiplexed signals adjacent to each other in the spreading direction with a smaller number of chips than the spreading rate of the spreading code.
  • an interleaver for rearranging the order of the spreading direction of the multiplexed signal.
  • the transmitting apparatus of the present invention transmits a signal capable of accurately obtaining a symbol on the receiving side from a code-multiplexed signal while obtaining a frequency diversity effect by using an appropriate spreading code and group. it can.
  • the multiplexed signal can be separated by a spreading code corresponding to the group among the spreading codes.
  • the portion between the spreading codes corresponding to the group is orthogonal or quasi-orthogonal.
  • the transmitting apparatus of the present invention can transmit a signal that can accurately acquire symbols on the receiving side from a code-multiplexed signal while obtaining a frequency diversity effect.
  • the group is preferably within a unit of spreading processing by the spreading unit! /.
  • the number of chips constituting each group is the same.
  • the receiving apparatus of the present invention receives a group of signals composed of signals adjacent to each other in the spreading direction of the spreading process having a smaller number of chips than the spreading rate of the spreading code used for the spreading process at the time of transmission.
  • the spreading code by multiplying the spreading code by the Dinterleaver section that performs Dinterleaving by rearranging the order of the spreading direction of the signal and the received signal that is Dinterleaved by the Dinterleaver section.
  • a despreading unit for separating and extracting symbols.
  • the receiving apparatus of the present invention can obtain a symphony with high accuracy from a code-multiplexed signal while obtaining a frequency diversity effect by using an appropriate spreading code and group.
  • the correlation between the spreading codes of the part corresponding to the group is orthogonal or quasi-orthogonal.
  • the receiving apparatus of the present invention can acquire a symbol with high accuracy from a code-multiplexed signal while obtaining a frequency diversity effect.
  • the group is within the unit of the spreading process.
  • the number of chips constituting each group is the same.
  • the communication system of the present invention is a communication system including a transmission device and a reception device, wherein the transmission device spreads transmission symbols using a spreading code and generates a chip for each code channel.
  • Multiplexer and multiple channels chip are multiplexed and multiplexed
  • the order of the spreading direction of the multiplexed signal is rearranged in units of groups of the code multiplexing unit that generates the multiplexed signal and the multiplexed signal adjacent in the spreading direction with a smaller number of chips than the spreading rate of the spreading code.
  • An interleaver unit, and the reception apparatus rearranges the order of the spreading direction of the received signal in units of the group so that the rearrangement by the interleaver unit is restored.
  • a despreading unit that separates and extracts symbols corresponding to the spreading code by multiplying the received signal that has been deinterleaved by the dingerleaver unit by the spreading code.
  • the communication method of the present invention is a communication method in a communication system composed of a transmission device and a reception device, wherein the transmission device spreads transmission symbols using a spreading code for each channel to generate a chip.
  • the first process the second process in which the transmitter multiplexes the chips of the plurality of channels generated in the first process and generates a multiplexed signal, and the transmitter in the spreading direction.
  • a received signal that has been deinterleaved in the fourth step by the receiver and a fourth step in which the receiver is rearranged so that the rearrangement in the third step is restored.
  • the by multiplying the spreading code comprises a fifth step of extracting separation symbols channel corresponding to the spreading code.
  • FIG. 1 is a schematic block diagram showing a configuration of a transmission device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of interleaving by grouping a plurality of chips by an interleaver unit 7 according to the first embodiment.
  • 3 This is a diagram showing an example of a received signal when there is a frequency variation when the interleaver grouped by the interleaver unit 7 is used.
  • FIG. 5 A schematic block diagram showing the configuration of the receiving device according to the second embodiment.
  • FIG. 6 is a schematic block diagram showing a configuration of an MCI replica generation unit 27 in the same embodiment.
  • FIG. 6 is a diagram showing an example of a received signal when frequency axis spreading and code multiplexing are performed. 8]
  • FIG. 8 is a diagram showing a despreading process for the received signal example shown in FIG.
  • FIG. 9 It is a diagram showing a despreading process for an example of a received signal that has undergone frequency fluctuation.
  • Fig. 10 is a diagram showing an example of the received signal when there is a frequency fluctuation when the symbol interleaver is used.
  • the power to be described in the case of MC-CDMA system using frequency axis spreading for multi-carrier transmission! / Is applied to the present invention is limited to frequency axis spreading. It can be used even in the case of spreading in the time axis, or in the case of spreading in two dimensions, the frequency axis and the time axis. Further, the present invention can be used even in the case of single carrier transmission, which is not limited to application to multicarrier transmission.
  • FIG. 1 is a schematic block diagram showing the configuration of the transmission apparatus according to the first embodiment.
  • the transmitter is a code channel signal generator 1;! ⁇ 1 Cn, code multiplexer 6, interleaver 7, IFFT (Inverse Fast Fourier Transformation) 8, parallel / serial converter 9, pilot It consists of a multiplexing unit 10, a GI (Guard Interval) insertion unit 11, a D / A conversion unit 42, a transmission filter unit 12, a radio unit 43, and a transmission antenna unit 14.
  • GI Guard Interval
  • Cn is the number of multiplexed codes.
  • the code channel signal generation unit 1 1 to 1 Cn includes an error correction coding unit 2 that performs error correction coding such as a turbo code and a convolutional code on information bits, and QPSK ( Quadrature Phase Shift Keying), 16Q AM (Quadrature Amplitude Modulation), etc. It consists of a spreading unit 5 that generates chips by multiplying and spreading spreading code sequences.
  • error correction coding such as a turbo code and a convolutional code on information bits, and QPSK ( Quadrature Phase Shift Keying), 16Q AM (Quadrature Amplitude Modulation), etc.
  • QPSK Quadrature Phase Shift Keying
  • 16Q AM Quadadrature Amplitude Modulation
  • the code multiplexing unit 6 multiplexes signals output from the code channel signal generation units 11 to 1 Cn to generate a multiplexed signal.
  • the interleaver unit 7 rearranges the multiplexed signals in the frequency direction while suppressing inter-code interference (MCI) and performs chip interleaving.
  • the IFFT unit 8 performs frequency time conversion on the chip interleaved signal.
  • the parallel / serial converter 9 performs parallel / serial conversion on the frequency-time converted signal.
  • the pilot multiplexing unit 10 time-multiplexes the pilot signal generated by the pilot signal generation unit 13.
  • the GI insertion unit 11 inputs a guard interval GI.
  • the D / A converter 42 generates a transmission signal by D / A converting the signal inserted with the guard interval GI.
  • the transmission filter unit 12 performs waveform shaping of the transmission signal.
  • the radio unit 43 converts the transmission signal into a radio frequency.
  • the transmission antenna unit 14 transmits a transmission signal converted into a radio frequency.
  • FIG. 1 shows the interleaving performed by the interleaver unit 7 , in which a plurality of chips in a spreading unit are grooved and the interleaving in units of groups is described.
  • Figure 2 shows the As an example of interleaving, an example is shown in which chips that have been spread in the frequency axis with a spreading factor of “8” are grouped every two chips and rearranged in the subcarrier direction.
  • Fig. 1 shows the interleaving in which chips that have been spread in the frequency axis with a spreading factor of “8” are grouped every two chips and rearranged in the subcarrier direction.
  • the number of subcarriers is N, and the darno rape is performed every two chips from the chip assigned to the first subcarrier, one group of chip N-1 and chip N). Interleaving is then performed by rearranging the groups in the frequency direction.
  • the interleaver unit 7 stores a rearrangement destination position for each chip in advance, and arranges each input chip at the stored rearrangement destination position. That is, the interleaver part
  • the spreading direction here, frequency axis direction
  • the number of chips here, 2
  • the spreading factor here, “8”.
  • Interleaving is performed by rearranging the order of the spreading direction (here, the frequency axis direction) in units of units.
  • FIG. 3 shows a frequency-selective fading environment with frequency fluctuations in the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power when a grooving interleaver (interleaver unit 7) is used.
  • the figure shows the received power frequency characteristics of the received signal that has passed through the propagation path below, with the Dinterleave operation performed on the receiving side.
  • the received signal indicates 16 chips corresponding to 2 symbols on the frequency axis. Since the interleaver unit 7 performs rearrangement in units of two adjacent chips, the interleaver unit 7 is arranged in a different frequency region for each group due to rearrangement. Therefore, the interleaver unit 7 is affected by frequency fluctuations. The received power tends to be different for each group.
  • the 1st, 2nd, 5th and 6th chips of symbol 1 and the 3rd, 4th, 5th and 6th chips of symbol 2 are Power that provides enough received power
  • the third, fourth, seventh, and eighth chips of Simponole 1 and the first, second, seventh, and eighth chips of Simponole 2 are strongly attenuated. It may happen that the received power cannot be obtained.
  • the received signals are “1 1 0 0 1 1 0 0” and “1 1 0 0 1 —1 0 0”, respectively. Become. Multiplying the received signal including these two signals by spreading code C
  • the grouped interleaver performed by the interleaver unit 7 varies within the spreading unit as in the case of the chip interleaver, but no inter-code interference MCI occurs even when despreading is performed. This is because C binding force 3 ⁇ 4 orthogonality is maintained for each chip.
  • An interleaver grouped in this way has the effect of eliminating the reception quality difference for each symbol, which is a problem with symbol interleaving, and suppressing the disruption of orthogonality, which is a problem with chip interleaving.
  • the interleaving method performed by the interleaver unit 7 includes, for example, rearrangement at random, ERA, and erformance Comparison of Cnannel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forwar d Link (N Maeda, H. Atarashi, M. Sawahashi, IEICE trans. Commun., Vol. E86-B) may be used, and the interleaving method and block interleaving may be used. Anything can be used if done.
  • the chip grouping method uses, for example, an orthogonal code such as a Hadamard code, so the spreading factor is 2 k (k is an integer of 1 or more). , 2 chips, 4 chips,...
  • the number of chips in each group should be a power of two. For example, if the spreading factor is 8, you may group every 4 chips so that the number of chips is equal! /, And the 8 chips that are the unit of the result of the spreading process will be divided into two 2-chip groups. It may be grouped into a group of 4 chips. That is, when orthogonal codes are used, the chips corresponding to each group in the spread code are The arrangement of the spreading code used in spreading section 5 and the group for interleaving in interleaver section 7 may be selected so as to be orthogonal between the spreading codes in the range.
  • the spreading factor is generally not a power of 2, and therefore it cannot be divided into groups with an equal number of chips.
  • the grouping may be performed with the number of chips having a low correlation.
  • the spreading code used in spreading section 5 and the group arrangement when interleaving in interleaver section 7 are selected so that the correlation between spreading codes in the range of chips corresponding to each group becomes low among the spreading codes. Please! /
  • FIG. 4 is a schematic block diagram illustrating a configuration of the receiving device according to the first embodiment.
  • the receiving apparatus includes a receiving antenna unit 15, a radio unit 52, an A / D conversion unit 53, a GI removal unit 16, a series-parallel conversion unit 17, an FFT (Fast Fourier Transformation) unit 18, a propagation path compensation unit 19, and a dintarreever unit 20. .., 26-Cn, and propagation path estimation unit 25.
  • the despreading unit 21, parallel-serial conversion unit 22, demodulating unit 23, decoding unit 24, and code separation unit 26-;!-26-Cn are also included.
  • the radio unit 52 converts the signal received by the receiving antenna unit 15 from a radio frequency into a baseband signal (hereinafter referred to as a received signal).
  • the A / D conversion unit 53 generates a digital signal obtained by A / D converting the received signal and inputs the digital signal to the GI removal unit 16.
  • the GI removal unit 16 removes the guard interval from the input digital signal, and the serial / parallel conversion unit 17 performs serial / parallel conversion on the signal from which the guard interval has been removed.
  • the FFT unit 18 performs time-frequency conversion on the serial / parallel converted signal and inputs the signal to the propagation path compensation unit 19.
  • the propagation path compensation unit 19 suppresses frequency fluctuations based on the propagation path estimated by the propagation path estimation unit 25.
  • the propagation path estimation performed by the propagation path estimation unit 25 is performed by using, for example, an RLS (Recursive Least Square) algorithm using a pilot signal.
  • H (n) be the transfer function of the nth subcarrier in the propagation path estimated by the propagation path estimator 25.
  • the MMSE weight W (n) used in the propagation path compensation unit 19 is, for example, as shown in the following equation (1). Where * represents the complex conjugate and H * (n) represents the complex conjugate of H (n).
  • the propagation path compensation unit 19 uses W (n) in Equation (1) to Calculate and output S (n) expressed by equation (2).
  • the output S (n) of the propagation path compensator 19 is processed by the Dinterleaver unit 20 by performing a reverse process to that performed by the interleaver unit 7 on the transmission side and performing interleaving. Dinter leave by returning to the order in which it was before.
  • the code separation unit 26— ;! to 26—Cn obtains information bits in each code channel.
  • despreading unit 21— ;! to 21—Cn performs despreading by multiplying the deinterleaved signal by a spreading code corresponding to each code channel.
  • the parallel-to-serial converter 22 performs parallel-to-serial conversion on the despread signal, the demodulator 23 calculates a bit LLR (Log Likelihood Ratio) from the despread signal, and the decoder 24 makes an error with respect to the bit LLR. A correction decoding process is performed, and the obtained information bits are output. The processing of the demodulator 23 is performed later.
  • LLR Log Likelihood Ratio
  • a repetitive parallel MCI canceller is used on the receiving side.
  • the repetitive MCI canceller generates MCI replicas on the receiving side and subtracts it from the received signal to suppress inter-code interference MCI.
  • FIG. 5 shows the configuration of the receiving device in the second embodiment.
  • the receiving device includes a receiving antenna unit 15, a radio unit 52, an A / D conversion unit 53, a GI removal unit 16, a serial-parallel conversion unit 17, an FFT unit 18, a code separation unit 31—l—31-Cn, and a code channel replica signal.
  • Code separation unit 31— ;! to 3 1— Cn is added to addition unit 30— ;! to 30—N, propagation path compensation unit 32, Dinter river unit 20, and despreading unit 21— ;!
  • the code channel replica signal generation unit 28— ;! to 28—Cn includes a symbol replica generation unit 27, a serial-parallel conversion unit 4, and a spreading unit 5, respectively.
  • the radio unit 52 converts the signal received by the receiving antenna unit 15 from a radio frequency into a baseband signal (hereinafter referred to as a received signal).
  • the A / D conversion unit 53 generates a digital signal obtained by A / D converting the received signal and inputs the digital signal to the GI removal unit 16.
  • the GI removal unit 16 removes the guard interval from the input digital signal, and the serial / parallel conversion unit 17 performs serial / parallel conversion on the signal from which the guard interval has been removed.
  • the FFT unit 18 performs time-frequency conversion on the serial / parallel converted signal, and inputs the conversion result to the code separation unit 31— ;! to 31—Cn. Code separation unit 31— ;!
  • Cn subtracts the MCI replica generated by the MCI replica generation unit 29 in the addition units 30-1 to 30-N from the input signal, thereby inter-code interference. Suppress MCI. Thereafter, the channel compensation unit 32 suppresses the frequency fluctuation.
  • the MMSE weight Wc (n) when the MCI canceller is applied uses, for example, the following equation (3) using the estimated transfer function H (n).
  • Equation (1) is used for the initial processing that cannot generate a replica. If the received signal after subtraction of the MCI replica, that is, the output of the adder 30— ⁇ is Rc (n), the propagation path compensator 32 calculates Sc (n) represented by the following equation (4) and outputs it. To do.
  • the Dinterleaver unit 20 performs Dinterleave on the output Sc (n) of the propagation path compensation unit 32. As described in the first embodiment, the processing in the Dinterleaver unit 20 performs reverse processing of interleaving that groups a plurality of chips performed on the transmission side.
  • the despreading unit 21— ;! to 21—Cn performs despreading by multiplying the corresponding spreading code.
  • the despread signal is parallel-serial converted by the parallel-serial converter 22, the bit LLR is obtained by the demodulator 23, and error correction decoding processing is performed by the decoder 33 to obtain information bits and encoded bits LLR . If no error is detected in the information bits, or if the number of repetitions is less than the specified number of repetitions, processing is repeated.
  • a CRC Cyclic Redundancy Check
  • the processing of the demodulation unit 23 will be described.
  • the spreading factor is SF
  • the signal from the first to the SF chips deinterleaved by the Dinterleaver unit 20 is the despreading unit 21 — ;! ⁇ Cn is the despread signal.
  • S ′ can be expressed by the following equation (5).
  • S is a transmission signal corresponding to S '
  • 11 is an equivalent amplitude
  • is an error signal with an average of 0 and variance
  • the equalized amplitude is expressed by the following equation (6) as the variance of the error signal V 2 is the following formula (7).
  • W (n) in equation (1) is used in the initial processing
  • Wc (n) in equation (3) is used in the iterative processing.
  • the case of QPSK modulation is shown as an example where the demodulator 23 obtains the bit log likelihood ratio using the equivalent amplitude from S ′. Bit when S 'is sent B and b (b and b are 1 or 1), the bit sequences b and b are QPSK modulated.
  • the transmission signal S can be expressed as in equation (8).
  • bit LLR of b can be replaced by the real part and the imaginary part of equation (9)! /.
  • Re (x) represents the real part of the complex number X.
  • the coded bit LLR with the updated likelihood is output from the decoding unit 33 and input to the code channel replica signal generation unit 28— ;! to 28—Cn.
  • a symbol replica generator 27 generates a replica signal of a modulation symbol from the coded bit LLR.
  • the serial-parallel converter 4 performs serial-parallel conversion on this replica signal
  • the spreading unit 5 spreads the replica signal subjected to serial-parallel conversion with a spreading code corresponding to each code channel, thereby transmitting the transmission signal in each code channel.
  • a replica is generated and input to the MCI replica generation unit 29.
  • the MCI replica generation unit 29 generates a replica of the inter-code interference MCI using the input transmission signal replica in each code channel and the channel estimation value output from the channel estimation unit 25.
  • the symbol replica generation unit 27 calculates S,
  • FIG. 6 shows details of the MCI replica generation unit 29.
  • FIG. 6 is a schematic block diagram of the MCI replica generation unit 29 in the k-th code channel.
  • the MCI replica generation unit 29 includes a code multiplexing unit 34, an interleaver unit 7, and a transfer function multiplication unit 36.
  • the code multiplexing unit 34 multiplexes replica signals other than the replica signal of the k-th code channel. That is, 1,..., K ⁇ l, k + 1,..., Cn-th code channel replica signal is multiplexed.
  • the multiplexed replica signal is interleaved by the interleaver unit 7 in the same manner as on the transmission side, and the transfer function multiplication unit 36 transmits the transfer function H (n (n) estimated by the propagation path estimation unit 25 in FIG. ) Is multiplied by the interleaved replica signal to generate an MCI replica frequency signal.
  • the transfer function multiplication unit 36 inputs these frequency signals to the code separation unit 31— ;!
  • the code separation unit 31— ;! to 31—Cn addition unit 30— ;! -30-N subtracts MCI replica from received signal in frequency domain to suppress inter-code interference MCI, propagation path compensation unit 32 suppresses frequency fluctuation, decoding unit 33 specifies error correction decoding process Repeat until the number of repeats or no error is detected.
  • the MCI replica is generated by the frequency signal and the inter-code interference MCI removal is performed in the frequency domain.
  • the MCI replica is generated by the time signal and is transmitted to the GI removal unit 16 in the time domain. Inter-code interference MCI cancellation may be performed.
  • the generation unit 29 and the propagation path estimation unit 25 may be realized by dedicated hardware. Each of these units is configured by a memory and a CPU (central processing unit) to realize the function of each unit. This function may be realized by the CPU executing the program for this purpose.
  • CPU central processing unit
  • the present invention is not limited to this force that is suitable for use in a mobile phone and a base station apparatus that communicate in a multi-carrier transmission scheme.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

A transmission device includes: a spread unit for spreading a transmission symbol by using a spread code so as to generate a signal of each chip for each channel; a code multiplexing unit for multiplexing chip signals of a plurality of channels so as to generate a multiplexed signal; and an interleaver unit for rearranging the order of the multiplexed signals in the spread direction by using a group of multiplexed signals adjacent in the spread direction having a smaller number of chips than the spread ratio of the spread code as a unit. It is possible to obtain a frequency diversity effect and accurately obtain a symbol from the code-multiplexed signals at the reception side.

Description

明 細 書  Specification
送信装置、受信装置、通信システムおよび通信方法  Transmitting apparatus, receiving apparatus, communication system, and communication method
技術分野  Technical field
[0001] 本発明は、送信装置、受信装置、通信システムおよび通信方法、特に拡散コードを 用いて拡散した後にインターリーブした信号にて通信を行う送信装置、受信装置、通 信システムおよび通信方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a transmission device, a reception device, a communication system, and a communication method, and more particularly to a transmission device, a reception device, a communication system, and a communication method that perform communication using a signal that has been spread using a spreading code and then interleaved.
本願 (ま、 2006年 9月 6曰 ίこ、 曰本 ίこ出願された特願 2006— 242105号 ίこ基づき 優先権を主張し、その内容をここに援用する。  This application (September, 2006, patent application No. 2006-242105, filed on June 6, 2006, and Takashi Enomoto claimed priority and incorporated herein by reference.
背景技術  Background art
[0002] 従来、例えば、 MC— CDMA (Multi-Carrier Code Division Multiple Access)方式 や OFCDM (Orthogonal Frequency and Code Division Multiplexing)方式の送信側 では、情報シンボルを拡散率分の連続するサブキャリアに繰り返し(コピーし)、繰り 返したサブキャリアにわたって拡散コードを乗算する(以下、これを周波数軸拡散と呼 ぶ)。サブキャリアのシンボルは、分離可能な拡散コードで周波数軸拡散されている ため、コード多重を行うことが可能である。受信側では、所望の情報シンボルが拡散 されている拡散コードを用いて逆拡散することにより、所望の情報シンボルを抽出し、 各サブキャリアで伝送された情報を復元することで復調処理が行われる。以上のよう に動作する MC— CDMA方式、 OFCDM方式については、例えば、非特許文献 1 に記載されている。 MC— CDMA方式、 OFCDM方式の受信側において、コード多 重された信号から精度よく情報シンボルを得るためには、拡散コ一ド系列間の直交 性が良好に維持されていることが必要である。  Conventionally, for example, on the transmission side of MC-CDMA (Multi-Carrier Code Division Multiple Access) or OFCDM (Orthogonal Frequency and Code Division Multiplexing), information symbols are repeated on continuous subcarriers corresponding to the spreading factor ( Copy) and multiply the repeated subcarriers by the spreading code (hereinafter referred to as frequency axis spreading). Since the subcarrier symbols are frequency-axis spread with separable spreading codes, code multiplexing can be performed. On the receiving side, demodulation is performed by extracting the desired information symbol by despreading using a spreading code in which the desired information symbol is spread, and restoring the information transmitted on each subcarrier. . The MC-CDMA system and OFCDM system that operate as described above are described in Non-Patent Document 1, for example. MC-CDMA and OFCDM receivers need to maintain good orthogonality between spreading code sequences in order to obtain information symbols accurately from code-multiplexed signals. .
[0003] また、通信システムでは通常、ダイバーシチ効果を得ることで誤り訂正符号の性能 を向上させるために、送信側で信号を時間方向もしくは周波数方向に並び替えるィ ンターリーブを行い、受信側で元に戻すディンターリーブを行う。このインターリーブ /ディンターリーブには、例えば、チップ単位で周波数方向に並び替えるチップイン ターリーブや拡散前のシンボル単位で周波数方向に並び替えるシンボルインターリ ーブがある。これらのインターリーブでは、周波数変動の大きい周波数選択性フエ一 ジングと同様の変動が並び替えの単位で生じるため、チップインターリーブであれば チップ単位での周波数ダイバーシチ効果を得ることができ、シンボルインターリーブ であればシンボル単位での周波数ダイバーシチ効果を得ることができる。これらのィ ンターリーブについては、非特許文献 2に述べられている。 [0003] In addition, in a communication system, in order to improve the performance of an error correction code by obtaining a diversity effect, interleaving for rearranging signals in the time direction or frequency direction is usually performed on the transmission side, and the original is performed on the reception side. Perform a Dinter Leave to return. This interleaving / dinterleaving includes, for example, chip interleaving that rearranges in the frequency direction in units of chips, and symbol interleaving that rearranges in the frequency direction in units of symbols before spreading. In these interleavings, frequency selective features with large frequency fluctuations are used. Since fluctuation similar to ging occurs in the rearrangement unit, the frequency diversity effect in units of chips can be obtained with chip interleaving, and the frequency diversity effect in units of symbols can be obtained with symbol interleaving. These interleaves are described in Non-Patent Document 2.
非特許文献 1:前田、新、安部田、佐和橋著「2次元拡散を用いる VSF— OFCDMと その特性」、信学技報 RCS2002— 61、 2002年 5月  Non-Patent Document 1: Maeda, Shin, Abeda, Sawahashi, "VSF using OFD-OFCDM and its characteristics", IEICE Technical Report RCS2002-61, May 2002
非特許文献 2: Maeda、 H. Atarashi、 M. sawahashi、 Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband W ireless Access in Forward Link, IEICE trans, commun., Vol. E86-B, No.1, Jan.200 3  Non-Patent Document 2: Maeda, H. Atarashi, M. sawahashi, Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forward Link, IEICE trans, commun., Vol. E86-B, No. 1, Jan. 200 3
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 拡散コードと周波数変動との関係を説明する。図 7の上部は、横軸を周波数にとり、 縦軸を受信電力にとった座標面において、周波数変動のない理想的な周波数選択 性フェージング環境下にある伝搬路を経由した 3コードチャネルが多重された受信信 号の受信電力 周波数特性を図示したものである。受信信号は、説明の便宜上、周 波数軸上で 8チップ分を示す。この 8チップは、 1つのシンボルを拡散して得たチップ である。図 7の下部に示すように、 3つのコードチャネル各々でシンボル「1」を拡散率 SF = 8で直交符号の拡散コード C =[1 1 1 1 1 1 1 1], C =[1 1 1 [0004] The relationship between the spreading code and the frequency variation will be described. The upper part of Fig. 7 multiplexes 3 code channels via a propagation path in an ideal frequency-selective fading environment with no frequency fluctuation on the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power. The received power frequency characteristics of the received signal are illustrated. For the convenience of explanation, the received signal indicates 8 chips on the frequency axis. These 8 chips are obtained by spreading one symbol. As shown in the lower part of FIG. 7, the symbol “1” is spread in each of the three code channels with spreading factor SF = 8 and orthogonal code spreading code C = [1 1 1 1 1 1 1 1], C = [1 1 1
8, 1 8, 2  8, 1 8, 2
1 -1 -1 -1 —i]、c =[1 -1 -1 1 1 -1 -1 1]で周波数軸拡  1 -1 -1 -1 —i], c = [1 -1 -1 1 1 -1 -1 1]
8, 7  8, 7
散した信号を、図 7の上部の環境下で受信した信号は、それぞれ拡散コード C 、 C  The signals received in the environment shown in the upper part of Fig. 7 are spread codes C and C, respectively.
8, 1 8, 1
、 C そのものとなる。 , C itself.
8, 2 8, 7  8, 2 8, 7
図 8は、図 7で説明した受信信号について、拡散コード C を乗算することで逆拡  Figure 8 shows the received signal described in Figure 7 multiplied by the spreading code C to perform inverse expansion.
8, 1  8, 1
散した場合の演算結果を示す。信号 C に対しては値「8」が得られ、信号 C に対  The calculation result when scattered is shown. The value “8” is obtained for signal C, and
8, 1 8, 2 しては値「0」が得られ、信号 C に対しては値「0」が得られる。この操作を式(11)に  The value “0” is obtained for 8, 1 8, 2 and the value “0” is obtained for signal C. This operation is expressed in equation (11)
8, 7  8, 7
再度示す。  Show again.
[0005] [数 1]
Figure imgf000005_0001
[0005] [Equation 1]
Figure imgf000005_0001
r c 1 -- π rc 1
[0006] なお、 Τは行列の転置を表す。このように、式(11)より、直交符号を用いて拡散、コ ード多重した場合、逆拡散した際には自コードチャネル以外との相関は 0となるため 、コード間は直交しており、拡散コード C のコードチャネルのシンボルを取り出すこ [0006] Here , Τ represents transposition of a matrix. Thus, from equation (11), when spreading and code multiplexing using orthogonal codes, the correlation with other than the own code channel is 0 when despreading, so the codes are orthogonal. The symbol of the spreading code C code channel.
8, 1  8, 1
とができる。ここでは、便宜的に各コードチャネルに分離した成分に拡散コードを乗算 するように説明した力 実際には各コードチャネルが多重されている受信信号 (c  You can. Here, for the sake of convenience, the power described to multiply the component separated into each code channel by the spreading code is actually the received signal (c
8, 1 8, 1
+ C +C )に所望のコードチャネルの拡散コードを乗じる。すなわち、拡散コードMultiply + C + C) by the spreading code of the desired code channel. Ie spreading code
8, 2 8, 7 8, 2 8, 7
C に対応するコードチャネルのシンボルを取り出すには、(c +c +c )-c To retrieve the code channel symbol corresponding to C, (c + c + c) -c
8, 1 8, 1 8, 2 8, 7 88, 1 8, 1 8, 2 8, 7 8
T = 8を算出する。この式は、ベクトルの分配則より、(C +C +C )-C T = CCalculate T = 8. This equation is (C + C + C) -C T = C
,1 8, 1 8, 2 8, 7 8, 1 c T+c c T+c c Tであり、式(11)の各式の和と等しい。これは、以下, 1 8, 1 8, 2 8, 7 8, 1 c T + cc T + cc T , which is equal to the sum of the equations (11). This is the following
8, 1 8, 1 8, 2 8, 1 8, 7 8, 1 8, 1 8, 1 8, 2 8, 1 8, 7 8, 1
、図 9、図 10、図 11の説明についても同様である。  The same applies to the descriptions of FIGS. 9, 10, and 11.
[0007] 拡散コード内で周波数変動が生じた場合の受信信号の例を図 9に示す。図 9の上 部は、横軸を周波数にとり、縦軸を受信電力にとった座標面において、拡散コード内 に周波数変動がある周波数選択性フェージング環境下にある伝搬路を経由した受 信信号の受信電力 周波数特性を図示したものである。受信信号は、説明の便宜 上、周波数軸上で 8チップ分を示す。この 8チップは、 1つのシンボルを拡散して得た チップである。図 9の例では、周波数の低い 4チップ分の受信信号は、上述の図 7の 場合と同様に、伝搬路による影響が殆どないが、周波数の高い 4チップ分の受信信 号は、伝搬路による強い減衰を受けて、受信電力が極端に低下している。そのため、 図 9の下部に示すように、シンボル「1」を拡散コード C 、C 、C で拡散した信号 [0007] FIG. 9 shows an example of a received signal when frequency fluctuation occurs in the spreading code. The upper part of Fig. 9 shows the received signal that has passed through the propagation path in a frequency selective fading environment with frequency fluctuations in the spread code on the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power. The received power frequency characteristics are illustrated. The received signal indicates 8 chips on the frequency axis for convenience of explanation. These 8 chips are chips obtained by spreading one symbol. In the example of Fig. 9, the received signals for four chips with low frequency are hardly affected by the propagation path, as in the case of Fig. 7 above, but the received signals for four chips with high frequency are The received power is extremely reduced due to the strong attenuation caused by. Therefore, as shown in the lower part of Fig. 9, the signal with the symbol "1" spread by spreading codes C, C, C
8, 1 8, 2 8, 7  8, 1 8, 2 8, 7
は、それぞれ、信号 C, =[1 1 1 1 0 0 0 0]、C, =[1 1 1 1 0 0  Are signals C, = [1 1 1 1 0 0 0 0], C, = [1 1 1 1 0 0, respectively.
8, 1 8, 2  8, 1 8, 2
0 0]、C, =[1 -1 -1 1 0 0 0 0]となる。このような 3つの信号を含む受  0 0], C, = [1 -1 -1 1 0 0 0 0]. A receiver containing these three signals.
8, 7  8, 7
信信号に対して C =[1 1 1 1 1 1 1 1]を乗算して逆拡散を行なうと、信号  When despreading is performed by multiplying the received signal by C = [1 1 1 1 1 1 1 1]
8, 1  8, 1
C に対しては値「4」が得られ、信号 C' に対しては値「4」が得られ、信号 C' The value "4" is obtained for C, the value "4" is obtained for signal C ', and the signal C'
8, 1 8, 2 8, 7 に対しては値「0」が得られる。この操作を式(12)に再度示す。 [0008] [数 2] For 8, 1 8, 2 8, 7 the value “0” is obtained. This operation is shown again in equation (12). [0008] [Equation 2]
Q.iQ.i 4 Q.iQ.i 4
し。 2 S { 4 .
Figure imgf000006_0001
Yes. 2 S {4.
Figure imgf000006_0001
[0009] 式(12)より、変動を受けたコードチャネルを逆拡散した場合、 C' に対しては 0と [0009] From equation (12), when despreading a code channel that has been subject to fluctuation,
8, 2  8, 2
ならないためコード間干渉 MCIが発生している。  Inter-code interference MCI has occurred.
[0010] 次に、上述の拡散コードと周波数変動との関係を踏まえ、シンボルインターリーバ およびチップインターリーバの欠点を説明する。図 10は、シンボルインターリーバを 説明する図である。図 10の上部は、シンボルインターリーバを用いた場合に、横軸を 周波数にとり、縦軸を受信電力にとった座標面において、周波数変動のある周波数 選択性フェージング環境下にある伝搬路を経由した受信信号の受信電力 周波数 特性を、受信側でディンターリーブ操作をしたものについて図示したものである。受 信信号は、説明の便宜上、周波数軸上で 2シンボル分に相当する 16チップ分を示す 。シンボルインターリーバは、シンボル毎に並び替えを行うものであるため、並び替え の前後でも周波数軸上で隣接したままとなる 8チップの中では、周波数変動の影響を 殆ど受けずにほぼ同じ受信電力となる。 Next, the disadvantages of the symbol interleaver and chip interleaver will be described based on the relationship between the above-described spreading code and frequency fluctuation. FIG. 10 is a diagram for explaining the symbol interleaver. The upper part of Fig. 10 shows the case where a symbol interleaver is used, and the signal passes through a propagation path in a frequency-selective fading environment with frequency fluctuations in the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power. The received power frequency characteristics of the received signal are shown for the Dinterleave operation on the receiving side. For convenience of explanation, the received signal shows 16 chips equivalent to 2 symbols on the frequency axis. Since the symbol interleaver performs rearrangement for each symbol, the eight received chips that remain adjacent on the frequency axis before and after the rearrangement receive almost the same received power with almost no influence of frequency fluctuations. It becomes.
し力、し、シンボル 1 (16チップ中の周波数が低い側の 8チップ)とシンボル 2 (16チップ 中の周波数が高い側の 8チップ)とはシンボルインターリーブにより異なる周波数領域 に配置されるため、これらの間では周波数変動の影響を受けて受信電力は異なる値 となりやすい。  Symbol 1 (8 chips on the lower frequency side in 16 chips) and Symbol 2 (8 chips on the higher frequency side in 16 chips) are placed in different frequency regions due to symbol interleaving. Among these, the received power tends to be different due to the influence of frequency fluctuation.
[0011] このため、図 10の上部のように、シンボル 1の各チップは充分な受信電力が得られ るのに対し、シンボル 2の各チップは強い減衰を受けて充分な受信電力が得られな いといったことが発生する。このとき、シンボル 1において、シンボル「1」を拡散コード C = [1 1 1 1 1 1 1 1] C = [1 - 1 - 1 1 1 - 1 - 1 1]で拡散 For this reason, as shown in the upper part of FIG. 10, each chip of symbol 1 can obtain sufficient received power, whereas each chip of symbol 2 is sufficiently attenuated to obtain sufficient received power. Not happen. At this time, in symbol 1, the symbol “1” is spread with the spreading code C = [1 1 1 1 1 1 1 1] C = [1-1-1 1 1-1-1 1]
8, 1 8, 7 8, 1 8, 7
した信号の受信信号は、それぞれ、拡散コード C C そのものとなる。このような 2  Each of the received signals is the spreading code C C itself. Like this 2
8, 1 8, 7  8, 1 8, 7
つの信号を含む受信信号に拡散コード C を乗算すると、信号 C に対しては「8」  When the received signal containing two signals is multiplied by the spreading code C, "8" for signal C
8, 1 8, 1  8, 1 8, 1
が得られ、信号 C に対しては「0」が得られる。 これに対して、シンボル 2において、シンボル「1」を拡散コード C 散し And “0” is obtained for signal C. On the other hand, in symbol 2, symbol “1” is spread by spreading code C.
8, 1、C で拡  Expanded by 8, 1 and C
8, 7 た信号の受信信号は、それぞれ、「0 0 0 0 0 0 0 0」、「0 0 0 0 0 0 0 The received signals of 8 and 7 are “0 0 0 0 0 0 0 0” and “0 0 0 0 0 0 0”, respectively.
0」となる。このような 2つの信号を含む受信信号に拡散コード C を乗算しても、どち 0 ”. Even if the received signal containing these two signals is multiplied by spreading code C, either
8, 1  8, 1
らも「0」となる。このように、シンボルインターリーバでは、図 10に示すように、シンポ ノレ 1は良い結果が得られる力 シンボル 2は受信レベルが低いために正しく復調でき なレ、と!/、つたことが発生する。これはコード多重しな!/、場合でも同様である。  They will also be “0”. In this way, in the symbol interleaver, as shown in FIG. 10, the power of Symphony 1 can be obtained with good results.Symbol 2 cannot be demodulated correctly because the reception level is low! . This is true even in the case of no code multiplexing! /.
[0012] 図 11は、チップインターリーバを説明する図である。図 11の上部は、チップインタ 一リーバを用いた場合に、横軸を周波数にとり、縦軸を受信電力にとった座標面にお いて、周波数変動のある周波数選択性フェージング環境下にある伝搬路を経由した 受信信号の受信電力 周波数特性を、受信側でディンターリーブ操作をしたものに ついて図示したものである。受信信号は、説明の便宜上、周波数軸上で 2シンボル 分に相当する 16チップ分を示す。チップインターリーバは、チップ毎に並び替えを行 うものであるため、並び替えにより、チップ毎に異なる周波数領域に配置されるため、 周波数変動の影響を受けてチップ毎に受信電力は異なる値となりやすい。  FIG. 11 is a diagram illustrating a chip interleaver. The upper part of Fig. 11 shows the propagation path in a frequency-selective fading environment with frequency fluctuations in the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power when a chip interleaver is used. This figure shows the received power frequency characteristics of the received signal that passed through, for the Dinterleave operation on the receiving side. For convenience of explanation, the received signal shows 16 chips equivalent to 2 symbols on the frequency axis. Since the chip interleaver performs rearrangement for each chip, it is placed in a different frequency region for each chip due to rearrangement. Therefore, the received power varies from chip to chip under the influence of frequency fluctuations. Cheap.
[0013] このため、図 11の上部のように、シンボル 1の 1番目、 2番目、 4番目、 5番目、 8番 目のチップと、シンボル 2の 2番目、 3番目、 6番目のチップとは充分な受信電力が得 られるカ、シンボル 1の 3番目、 6番目、 7番目のチップと、シンボル 2の 1番目、 4番目 、 5番目、 7番目、 8番目のチップとは強い減衰を受けて受信電力が得られないといつ たことが発生する。このとき、シンボル 1において、シンボル「1」を拡散コード C =[  [0013] Therefore, as shown in the upper part of FIG. 11, the first, second, fourth, fifth and eighth chips of symbol 1, and the second, third and sixth chips of symbol 2 Provides sufficient received power, and the third, sixth, and seventh chips of symbol 1 and the first, fourth, fifth, seventh, and eighth chips of symbol 2 are strongly attenuated. When the received power cannot be obtained, there will be times. At this time, in symbol 1, the symbol “1” is spread code C = [
8, 1 8, 1
1 1 1 1 1 1 1 1],C =[1 -1 -1 1 1 -1 -1 1]で拡散した信号 1 1 1 1 1 1 1 1], C = [1 -1 -1 1 1 -1 -1 1] spread signal
8, 7  8, 7
の受信信号は、それぞれ、「1 1 0 1 1 0 0 1」、「1 1 0 1 1 0 0 1」と なる。このような 2つの信号を含む受信信号に拡散コード C を乗算すると、それぞ  The received signals are “1 1 0 1 1 0 0 1” and “1 1 0 1 1 0 0 1”, respectively. Multiplying the received signal including these two signals by spreading code C
8, 1  8, 1
れ「5」、「3」が得られる。  "5" and "3" are obtained.
[0014] また、シンボル 2において、同様にシンボル「1」を拡散コード C =[1 1 1 1 1 [0014] Also, in symbol 2, similarly, the symbol "1" is set to the spread code C = [1 1 1 1 1
8, 1  8, 1
1 1 1]、C =[1 -1 -1 1 1 -1 -1 1]で拡散した信号の受信信号  1 1 1], C = [1 -1 -1 1 1 -1 -1 1] spread signal received signal
8, 7  8, 7
は、それぞれ、「0 1 1 0 0 1 0 0」、「0 —1 1 0 0 —1 0 0」となる。こ のような 2つの信号を含む受信信号に拡散コード C を乗算すると、それぞれ「3」、「  Are “0 1 1 0 0 1 0 0” and “0 — 1 1 0 0 — 1 0 0”, respectively. When the received signal including these two signals is multiplied by the spreading code C, “3” and “
8, 1  8, 1
—3」が得られる。このように、チップインターリーバを用いたときには、コード間干渉 M CIが発生してしまい、半数のチップにぉレ、て充分な受信電力が得られて!/、るにも係 わらずシンボル 1、シンボル 2ともに正しく復調できないといったことが発生する。 —3 ”is obtained. Thus, when using a chip interleaver, inter-code interference M CI occurs, and enough received power is obtained in half of the chips! /, But symbols 1 and 2 cannot be demodulated correctly.
[0015] このように、拡散コードによるコード多重とチップ単位でのインターリーブとを併用す ると、周波数変動の少ない周波数選択性フェージング環境下であっても、周波数変 動の多い周波数選択性フェージングと同様の変動がチップ単位で生じるために、チ ップ単位での周波数ダイバーシチ効果を得ることができる。し力もながら、この変動の ために受信側では拡散コードのコード系列間の相関が崩れてしまい、コード多重した 信号から精度よくシンボルを得ることができなくなる場合があるという問題がある。  [0015] As described above, when code multiplexing using spreading codes and interleaving in units of chips are used in combination, even in a frequency selective fading environment with little frequency variation, frequency selective fading with a large frequency variation can be achieved. Since similar fluctuations occur in units of chips, it is possible to obtain a frequency diversity effect in units of chips. However, due to this fluctuation, there is a problem that the correlation between the code sequences of the spreading codes is broken on the receiving side, and it may not be possible to obtain symbols accurately from the code-multiplexed signal.
[0016] 本発明は、拡散コードによるコード多重とチップ単位でのインターリーブとを併用す ることで周波数ダイバーシチ効果を得つつ、コード多重した信号から受信側にて精 度よくシンボルを得ることができる送信装置、受信装置、通信システム、通信方法を 提供することを目的とする。  [0016] The present invention can obtain a symbol with high accuracy on the receiving side from a code-multiplexed signal while obtaining a frequency diversity effect by using code multiplexing by spreading code and interleaving in units of chips. It is an object to provide a transmission device, a reception device, a communication system, and a communication method.
課題を解決するための手段  Means for solving the problem
[0017] この発明は上述した課題を解決するためになされたもので、本発明の送信装置は、 拡散コードを用いて送信シンボルを拡散し、各コードチャネルのチップを生成するチ ャネル毎の拡散部と、複数チャネルの前記チップを多重化し、多重化信号を生成す るコード多重部と、前記拡散コードの拡散率より少ないチップ数の拡散方向に隣接す る前記多重化信号からなるグループを単位として、前記多重化信号の拡散方向の順 番を並び替えるインターリーバ部とを具備する。  [0017] The present invention has been made to solve the above-described problem, and the transmission apparatus of the present invention spreads transmission symbols using a spreading code to generate a chip for each code channel. A group consisting of a code multiplexing unit that multiplexes the chips of a plurality of channels and generates a multiplexed signal, and a group of the multiplexed signals adjacent to each other in the spreading direction with a smaller number of chips than the spreading rate of the spreading code. And an interleaver for rearranging the order of the spreading direction of the multiplexed signal.
[0018] これにより、本発明の送信装置は、適当な拡散コードおよびグループを用いること により、周波数ダイバーシチ効果を得つつ、コード多重した信号から受信側にて精度 よくシンボルを取得可能な信号を送信できる。 [0018] With this, the transmitting apparatus of the present invention transmits a signal capable of accurately obtaining a symbol on the receiving side from a code-multiplexed signal while obtaining a frequency diversity effect by using an appropriate spreading code and group. it can.
[0019] 本発明の送信装置において、前記拡散コードのうち、前記グループに対応する部 分の拡散コードで前記多重化された信号が分離可能であることが好ましい。 [0019] In the transmission apparatus of the present invention, it is preferable that the multiplexed signal can be separated by a spreading code corresponding to the group among the spreading codes.
また、本発明の送信装置において、前記グループに対応する部分の拡散コード間 は、直交または準直交であることが好ましい。  Moreover, in the transmission apparatus of the present invention, it is preferable that the portion between the spreading codes corresponding to the group is orthogonal or quasi-orthogonal.
[0020] これにより、本発明の送信装置は、周波数ダイバーシチ効果を得つつ、コード多重 した信号から受信側にて精度よくシンボルを取得可能な信号を送信できる。 [0021] また、本発明の送信装置において、前記グループは、前記拡散部による拡散処理 の単位内であることが好まし!/、。 [0020] Thus, the transmitting apparatus of the present invention can transmit a signal that can accurately acquire symbols on the receiving side from a code-multiplexed signal while obtaining a frequency diversity effect. [0021] Further, in the transmitting apparatus of the present invention, the group is preferably within a unit of spreading processing by the spreading unit! /.
[0022] また、本発明の送信装置において、前記各グループを構成するチップ数は、全て 同じであることが好ましい。 [0022] Further, in the transmission device of the present invention, it is preferable that the number of chips constituting each group is the same.
[0023] また、本発明の送信装置において、 MC— CDMA方式にて通信することが好まし い。 [0023] Further, in the transmission apparatus of the present invention, it is preferable to perform communication using the MC-CDMA system.
[0024] 本発明の受信装置は、送信する際の拡散処理に用いた拡散コードの拡散率より少 ないチップ数の前記拡散処理の拡散方向に隣接する信号からなるグループを単位と して、受信信号の拡散方向の順番を並び替えてディンターリーブするディンターリー バ部と、前記ディンターリーバ部がディンターリーブした受信信号に、前記拡散コー ドを乗算することにより、前記拡散コードに対応するシンボルを分離抽出する逆拡散 部とを具備する。  [0024] The receiving apparatus of the present invention receives a group of signals composed of signals adjacent to each other in the spreading direction of the spreading process having a smaller number of chips than the spreading rate of the spreading code used for the spreading process at the time of transmission. Corresponding to the spreading code by multiplying the spreading code by the Dinterleaver section that performs Dinterleaving by rearranging the order of the spreading direction of the signal and the received signal that is Dinterleaved by the Dinterleaver section. A despreading unit for separating and extracting symbols.
[0025] これにより、本発明の受信装置は、適当な拡散コードおよびグループを用いること により、周波数ダイバーシチ効果を得つつ、コード多重した信号から精度よくシンポ ノレを取得することカできる。  [0025] Thus, the receiving apparatus of the present invention can obtain a symphony with high accuracy from a code-multiplexed signal while obtaining a frequency diversity effect by using an appropriate spreading code and group.
[0026] 本発明の受信装置において、前記グループに対応する部分の拡散コード間の相 関は直交または準直交であることが好ましい。 In the receiving apparatus of the present invention, it is preferable that the correlation between the spreading codes of the part corresponding to the group is orthogonal or quasi-orthogonal.
[0027] これにより、本発明の受信装置は、周波数ダイバーシチ効果を得つつ、コード多重 した信号から精度よくシンボルを取得することができる。 [0027] Thereby, the receiving apparatus of the present invention can acquire a symbol with high accuracy from a code-multiplexed signal while obtaining a frequency diversity effect.
[0028] また、本発明の受信装置において、前記グループは、前記拡散処理の単位内であ ることが好ましい。 [0028] In the receiving apparatus of the present invention, it is preferable that the group is within the unit of the spreading process.
[0029] また、本発明の受信装置において、前記各グループを構成するチップ数は、全て 同じであることが好ましい。  [0029] Further, in the receiving apparatus of the present invention, it is preferable that the number of chips constituting each group is the same.
[0030] また、本発明の受信装置において、 MC— CDMA方式にて通信することが好まし い。 [0030] Further, in the receiving apparatus of the present invention, it is preferable to perform communication using the MC-CDMA system.
[0031] 本発明の通信システムは、送信装置と受信装置とからなる通信システムにおいて、 前記送信装置は、拡散コードを用いて送信シンボルを拡散し、各コードチャネルのチ ップを生成するチャネル毎の拡散部と、複数チャネルの前記チップを多重化し、多重 化信号を生成するコード多重部と、前記拡散コードの拡散率より少ないチップ数の拡 散方向に隣接する前記多重化信号からなるグループを単位として、前記多重化信号 の拡散方向の順番を並び替えるインターリーバ部とを具備し、前記受信装置は、前 記グループを単位として、受信信号の拡散方向の順番を前記インターリーバ部によ る並び替えを元に戻すように並び替えることによりディンターリーブするディンターリ ーバ部と、前記ディンターリーバ部がディンターリーブした受信信号に、前記拡散コ ードを乗算することにより、前記拡散コードに対応するシンボルを分離抽出する逆拡 散部とを具備する。 [0031] The communication system of the present invention is a communication system including a transmission device and a reception device, wherein the transmission device spreads transmission symbols using a spreading code and generates a chip for each code channel. Multiplexer and multiple channels chip are multiplexed and multiplexed The order of the spreading direction of the multiplexed signal is rearranged in units of groups of the code multiplexing unit that generates the multiplexed signal and the multiplexed signal adjacent in the spreading direction with a smaller number of chips than the spreading rate of the spreading code. An interleaver unit, and the reception apparatus rearranges the order of the spreading direction of the received signal in units of the group so that the rearrangement by the interleaver unit is restored. And a despreading unit that separates and extracts symbols corresponding to the spreading code by multiplying the received signal that has been deinterleaved by the dingerleaver unit by the spreading code. To do.
[0032] 本発明の通信方法は、送信装置と受信装置とからなる通信システムにおける通信 方法において、前記送信装置が、チャネル毎に、拡散コードを用いて送信シンボル を拡散し、チップを生成する第 1の過程と、前記送信装置が、前記第 1の過程にて生 成された複数チャネルの前記チップを多重化し、多重化信号を生成する第 2の過程 と、前記送信装置が、拡散方向に隣接する前記多重化信号からなるグループを単位 として、前記多重化信号の拡散方向の順番を並び替える第 3の過程と、前記受信装 置が、前記グループを単位として、受信信号の拡散方向の順番を前記第 3の過程に よる並び替えを元に戻すように並び替えることによりディンターリーブする第 4の過程 と、前記受信装置が、前記第 4の過程にてディンターリーブした受信信号に、前記拡 散コードを乗算することにより、前記拡散コードに対応するチャネルのシンボルを分 離抽出する第 5の過程とを具備する。  [0032] The communication method of the present invention is a communication method in a communication system composed of a transmission device and a reception device, wherein the transmission device spreads transmission symbols using a spreading code for each channel to generate a chip. The first process, the second process in which the transmitter multiplexes the chips of the plurality of channels generated in the first process and generates a multiplexed signal, and the transmitter in the spreading direction. A third step of rearranging the order of the spread direction of the multiplexed signal in units of groups of adjacent multiplexed signals; and the order of the spread direction of the received signals by the receiving device in units of the groups. And a received signal that has been deinterleaved in the fourth step by the receiver, and a fourth step in which the receiver is rearranged so that the rearrangement in the third step is restored. In the by multiplying the spreading code comprises a fifth step of extracting separation symbols channel corresponding to the spreading code.
発明の効果  The invention's effect
[0033] 本発明によれば、拡散方向の伝搬路変動の影響はグループ単位で受けるので、適 当な拡散コ一ドおよびグループを用いることにより、周波数ダイバーシチ効果を得つ つ、コード多重した信号から受信側にて精度よくシンボルを取得することができる。 図面の簡単な説明  [0033] According to the present invention, since the influence of propagation path fluctuation in the spreading direction is affected in units of groups, a code-multiplexed signal can be obtained while obtaining a frequency diversity effect by using an appropriate spreading code and group. Therefore, the symbol can be acquired with high accuracy on the receiving side. Brief Description of Drawings
[0034] [図 1]この発明の第 1の実施形態による送信装置の構成を示す概略ブロック図である FIG. 1 is a schematic block diagram showing a configuration of a transmission device according to a first embodiment of the present invention.
Yes
[図 2]第 1の実施形態によるインターリーバ部 7による複数チップをグルーピングしてィ ンターリーブする例を示した図である。 園 3]インターリーバ部 7によるグルーピングしたインターリーバを用いた場合に周波 数変動があつたときの受信信号の例を示した図である。 FIG. 2 is a diagram showing an example of interleaving by grouping a plurality of chips by an interleaver unit 7 according to the first embodiment. 3] This is a diagram showing an example of a received signal when there is a frequency variation when the interleaver grouped by the interleaver unit 7 is used.
園 4]第 1の実施形態による受信装置の構成を示す概略ブロック図である。 4] A schematic block diagram showing the configuration of the receiving apparatus according to the first embodiment.
園 5]第 2の実施形態による受信装置の構成を示す概略ブロック図である 5] A schematic block diagram showing the configuration of the receiving device according to the second embodiment.
[図 6]同実施形態における MCIレプリカ生成部 27の構成を示す概略ブロック図であ 園 7]周波数軸拡散し、コード多重したときの受信信号の例を示した図である。 園 8]図 7に示した受信信号例に対する逆拡散の処理を示した図である。  FIG. 6 is a schematic block diagram showing a configuration of an MCI replica generation unit 27 in the same embodiment. FIG. 6 is a diagram showing an example of a received signal when frequency axis spreading and code multiplexing are performed. 8] FIG. 8 is a diagram showing a despreading process for the received signal example shown in FIG.
園 9]周波数変動を受けた受信信号例に対する逆拡散の処理を示した図である。 園 10]シンボルインターリーバを用いた場合に周波数変動があつたときの受信信号 の例を示した図である。 9] It is a diagram showing a despreading process for an example of a received signal that has undergone frequency fluctuation. Fig. 10 is a diagram showing an example of the received signal when there is a frequency fluctuation when the symbol interleaver is used.
園 11]チップインターリーバを用いた場合に周波数変動があつたときの受信信号の 例を示した図である。 11] It is a figure showing an example of the received signal when there is a frequency fluctuation when using a chip interleaver.
符号の説明 Explanation of symbols
1 1 1 Cn コードチャネル信号生成部  1 1 1 Cn code channel signal generator
2 誤り訂正符号化部  2 Error correction encoder
3 変調部  3 Modulator
4 17 直並列変換部  4 17 Series-parallel converter
5 拡散部  5 Diffusion part
6 コード多重部  6 Code multiplexer
7 インターリーバ部  7 Interleaver section
8 IFFT部  8 IFFT Department
9 22 並直列変換部  9 22 Parallel to serial converter
10 パイロット多重部  10 Pilot multiplexing part
11 GI揷入部  11 GI Club
12 送信フイノレタ部  12 Transmission finalizer
13 パイロット信号生成部  13 Pilot signal generator
14 送信アンテナ部 15 受信アンテナ部 14 Transmitting antenna 15 Receiving antenna
16 GI除去部  16 GI removal unit
18 FFT部  18 FFT section
19、 32 伝搬路補償部  19, 32 Propagation path compensation section
20 ディンターリーバ部  20 Dinterleaver
21 - - 1〜21— Cn 逆拡散部  21--1 to 21— Cn back diffusion
23 復調部  23 Demodulator
24、 33 復号部  24, 33 Decryption unit
25 伝搬路推定部  25 Propagation path estimation unit
26 - - 1~26 -Cn, 31 - l~31 -Cn コ ド分離部  26--1 ~ 26 -Cn, 31-l ~ 31 -Cn
27 シンボルレプリカ生成部  27 Symbol replica generator
28 - - 1~28 -Cn コードチャネルレプリカ '信号生成き 1  28--1 to 28 -Cn Code channel replica 'Signal generator 1
29 MCIレプリカ生成部  29 MCI replica generator
30- -;!〜 30— N 加算部  30--;! ~ 30— N adder
36 伝達関数乗算部  36 Transfer function multiplier
42 D/A変換部  42 D / A converter
43 無線部  43 Radio section
52 無線部  52 Radio section
53 A/D変換部  53 A / D converter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、図面を用いて本発明の実施形態を説明する。以下の実施形態では、マルチ キャリア伝送にお!/、て周波数軸拡散を用いた MC— CDMA方式の場合につ!/、て説 明する力 本発明の適用は周波数軸拡散に限定されるものではなぐ時間軸拡散の 場合や周波数軸および時間軸の 2次元に拡散した場合でも用いることができる。また 、本発明は、マルチキャリア伝送への適用に限定されるものではなぐシングルキヤリ ァ伝送の場合でも用いることができる。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, the power to be described in the case of MC-CDMA system using frequency axis spreading for multi-carrier transmission! / Is applied to the present invention is limited to frequency axis spreading. It can be used even in the case of spreading in the time axis, or in the case of spreading in two dimensions, the frequency axis and the time axis. Further, the present invention can be used even in the case of single carrier transmission, which is not limited to application to multicarrier transmission.
[0037] [第 1の実施形態]  [0037] [First embodiment]
第 1の実施形態では、拡散コードの直交性の周期に着目したインターリーバを用い た無線送受信装置について説明する。図 1は、第 1の実施形態における送信装置の 構成を示す概略ブロック図である。送信装置は、コードチャネル信号生成部 1一;!〜 1 Cn、コード多重部 6、インターリーバ部 7、 IFFT (逆高速フーリエ変換: Inverse Fa st Fourier Transformation)部 8、並直列変換部 9、パイロット多重部 10、 GI (ガードィ ンターバル: Guard Interval)揷入部 11、 D/A変換部 42、送信フィルタ部 12、無線 部 43、送信アンテナ部 14で構成される。 In the first embodiment, an interleaver that focuses on the orthogonality cycle of the spreading code is used. A wireless transceiver is described. FIG. 1 is a schematic block diagram showing the configuration of the transmission apparatus according to the first embodiment. The transmitter is a code channel signal generator 1;! ~ 1 Cn, code multiplexer 6, interleaver 7, IFFT (Inverse Fast Fourier Transformation) 8, parallel / serial converter 9, pilot It consists of a multiplexing unit 10, a GI (Guard Interval) insertion unit 11, a D / A conversion unit 42, a transmission filter unit 12, a radio unit 43, and a transmission antenna unit 14.
ただし Cnはコード多重数である。  Where Cn is the number of multiplexed codes.
[0038] コードチャネル信号生成部 1 1〜1 Cnは、情報ビットをターボ符号や畳み込み 符号等の誤り訂正符号化を行なう誤り訂正符号化部 2と、誤り訂正符号化されたビッ トを QPSK (Quadrature Phase Shift Keying)、 16Q AM (Quadrature Amplitude Mod ulation)等の変調を行うことで送信シンボルにマッピングする変調部 3と、送信シンポ ルの直列並列変換を行なう直並列変換部 4と、送信シンボルに拡散コード系列を乗 算し拡散を行なうことでチップを生成する拡散部 5とで構成される。  [0038] The code channel signal generation unit 1 1 to 1 Cn includes an error correction coding unit 2 that performs error correction coding such as a turbo code and a convolutional code on information bits, and QPSK ( Quadrature Phase Shift Keying), 16Q AM (Quadrature Amplitude Modulation), etc. It consists of a spreading unit 5 that generates chips by multiplying and spreading spreading code sequences.
[0039] コード多重部 6は、コードチャネル信号生成部 1 1〜1 Cn各々が出力した信号 を多重化して、多重化信号を生成する。インターリーバ部 7は、この多重化信号をコ ード間干渉(MCI: Multi-Code Interference)を抑圧しながら周波数方向に並び替え てチップインターリーブを fiなう。 IFFT部 8は、チップインターリーブされた信号に対 して周波数時間変換を行なう。並直列変換部 9は、周波数時間変換された信号に対 して並列直列変換を行なう。パイロット多重部 10は、パイロット信号生成部 13で生成 されたパイロット信号を時間多重する。 GI揷入部 11は、ガードインターバル GIを揷入 する。 D/A変換部 42は、ガードインターバル GIを揷入された信号を D/A変換する ことにより送信信号を生成する。送信フィルタ部 12は、送信信号の波形整形を行う。 無線部 43は、送信信号を無線周波数に変換する。送信アンテナ部 14は、無線周波 数に変換された送信信号を送信する。  [0039] The code multiplexing unit 6 multiplexes signals output from the code channel signal generation units 11 to 1 Cn to generate a multiplexed signal. The interleaver unit 7 rearranges the multiplexed signals in the frequency direction while suppressing inter-code interference (MCI) and performs chip interleaving. The IFFT unit 8 performs frequency time conversion on the chip interleaved signal. The parallel / serial converter 9 performs parallel / serial conversion on the frequency-time converted signal. The pilot multiplexing unit 10 time-multiplexes the pilot signal generated by the pilot signal generation unit 13. The GI insertion unit 11 inputs a guard interval GI. The D / A converter 42 generates a transmission signal by D / A converting the signal inserted with the guard interval GI. The transmission filter unit 12 performs waveform shaping of the transmission signal. The radio unit 43 converts the transmission signal into a radio frequency. The transmission antenna unit 14 transmits a transmission signal converted into a radio frequency.
[0040] 次にインターリーバ部 7が行うインターリーブである、拡散単位内の複数チップをグ ルービングし、前記グループ単位のインターリーブについて説明する。これにより、コ ード間干渉 MCIの発生を抑えることでコード分離を可能にしつつ、インターリーブに よる周波数ダイバーシチ効果を得ることができる。図 2は、インターリーバ部 7が行うィ ンターリーブの例として拡散率「8」にて周波数軸拡散されたチップを 2チップ毎にグ ノレ一ビングし、サブキャリア方向に並べ替えを行なう例を示したものである。図 2では サブキャリア数 Nとし、第 1サブキャリアに割り当てられたチップから 2チップ毎にダル ノレープ、 · · ·チップ N—1とチップ Nとで 1つのグループ)。そして、グループを単位とし て周波数方向に並び替えをすることでインターリーブを行なっている。インターリーバ 部 7では、各チップについて並び替え先の位置を予め記憶しており、入力された各チ ップを前記記憶していた並び替え先の位置に配置する。すなわち、インターリーバ部[0040] Next, the interleaving performed by the interleaver unit 7 will be described, in which a plurality of chips in a spreading unit are grooved and the interleaving in units of groups is described. As a result, it is possible to obtain the frequency diversity effect due to interleaving while enabling code separation by suppressing the occurrence of inter-code interference MCI. Figure 2 shows the As an example of interleaving, an example is shown in which chips that have been spread in the frequency axis with a spreading factor of “8” are grouped every two chips and rearranged in the subcarrier direction. In Fig. 2, the number of subcarriers is N, and the darno rape is performed every two chips from the chip assigned to the first subcarrier, one group of chip N-1 and chip N). Interleaving is then performed by rearranging the groups in the frequency direction. The interleaver unit 7 stores a rearrangement destination position for each chip in advance, and arranges each input chip at the stored rearrangement destination position. That is, the interleaver part
7は、拡散処理の単位内にあり拡散率(ここでは「8」)より少ないチップ数 (ここでは 2) の拡散方向(ここでは周波数軸方向)に隣接する信号同士をグループとし、このグノレ ープを単位として、拡散方向(ここでは周波数軸方向)の順番を並び替えることで、ィ ンターリーブを行っている。 7 is a group of signals adjacent to each other in the spreading direction (here, frequency axis direction) of the number of chips (here, 2) within the spreading unit and less than the spreading factor (here, “8”). Interleaving is performed by rearranging the order of the spreading direction (here, the frequency axis direction) in units of units.
[0041] グルーピングしたインターリーバの効果を図 3を用いて説明する。図 3の上部は、グ ルービングしたインターリーバ (インターリーバ部 7)を用いた場合に、横軸を周波数 にとり、縦軸を受信電力にとった座標面において、周波数変動のある周波数選択性 フェージング環境下にある伝搬路を経由した受信信号の受信電力 周波数特性を、 受信側でディンターリーブ操作をしたものについて図示したものである。受信信号は 、説明の便宜上、周波数軸上で 2シンボル分に相当する 16チップ分を示す。インタ 一リーバ部 7は、隣接する 2チップからなるグループを単位に並び替えを行うものであ るため、並び替えにより、グループ毎に異なる周波数領域に配置されるため、周波数 変動の影響を受けてグループ毎に受信電力は異なる値となりやすい。 [0041] The effect of the grouped interleaver will be described with reference to FIG. The upper part of Fig. 3 shows a frequency-selective fading environment with frequency fluctuations in the coordinate plane with the horizontal axis representing frequency and the vertical axis representing received power when a grooving interleaver (interleaver unit 7) is used. The figure shows the received power frequency characteristics of the received signal that has passed through the propagation path below, with the Dinterleave operation performed on the receiving side. For convenience of explanation, the received signal indicates 16 chips corresponding to 2 symbols on the frequency axis. Since the interleaver unit 7 performs rearrangement in units of two adjacent chips, the interleaver unit 7 is arranged in a different frequency region for each group due to rearrangement. Therefore, the interleaver unit 7 is affected by frequency fluctuations. The received power tends to be different for each group.
[0042] このため、図 3の上部のように、シンボル 1の 1番目、 2番目、 5番目、 6番目のチップ と、シンボル 2の 3番目、 4番目、 5番目、 6番目のチップとは充分な受信電力が得られ る力 シンポノレ 1の 3番目、 4番目、 7番目、 8番目のチップと、シンポノレ 2の 1番目、 2 番目、 7番目、 8番目のチップとは強い減衰を受けて受信電力が得られないといった ことが発生する。このとき、シンボル 1において、シンボル「1」を拡散コード C = [1 [0042] Therefore, as shown in the upper part of Fig. 3, the 1st, 2nd, 5th and 6th chips of symbol 1 and the 3rd, 4th, 5th and 6th chips of symbol 2 are Power that provides enough received power The third, fourth, seventh, and eighth chips of Simponole 1 and the first, second, seventh, and eighth chips of Simponole 2 are strongly attenuated. It may happen that the received power cannot be obtained. At this time, in symbol 1, the symbol “1” is spread code C = [1
8, 1 8, 1
1 1 1 1 1 1 1] , C = [1 - 1 - 1 1 1 - 1 - 1 1]で拡散した信号の 1 1 1 1 1 1 1], C = [1-1-1 1 1-1-1 1]
8, 7  8, 7
受信信号は、それぞれ、「1 1 0 0 1 1 0 0」、「1 1 0 0 1 —1 0 0」と なる。このような 2つの信号を含む受信信号に拡散コード C を乗算すると、それぞ The received signals are “1 1 0 0 1 1 0 0” and “1 1 0 0 1 —1 0 0”, respectively. Become. Multiplying the received signal including these two signals by spreading code C
8, 1  8, 1
れ「4」、「0」が得られる。  “4” and “0” are obtained.
[0043] また、シンボル 2において、同様にシンボル「1」を拡散コード C =[1 1 1 1 1 [0043] Also, in symbol 2, similarly, the symbol "1" is spread code C = [1 1 1 1 1
8, 1  8, 1
1 1 1]、 C =[1 -1 -1 1 1 -1 -1 1]で拡散した信号の受信信号  1 1 1], C = [1 -1 -1 1 1 -1 -1 1]
8, 7  8, 7
は、それぞれ、「0 0 1 1 1 1 0 0」、 「0 0 —1 1 1 1 0 0」となる。この ような 2つの信号を含む受信信号に拡散コード C を乗算すると、それぞれ「4」、「0」  Are “0 0 1 1 1 1 0 0” and “0 0 —1 1 1 1 0 0”, respectively. When the received signal including these two signals is multiplied by the spreading code C, “4” and “0” respectively.
8, 1  8, 1
が得られる。このように、充分な受信電力が得られたチップは全体の半分であるにも 係わらずシンボル 1、シンボル 2ともに正しく復調することができる。  Is obtained. In this way, both symbols 1 and 2 can be correctly demodulated even though the number of chips with sufficient received power is half of the total.
[0044] このように、インターリーバ部 7が行うグルーピングしたインターリーバは、チップイン ターリーバと同様に、拡散単位内で変動が生じるが、逆拡散してもコード間干渉 MCI は生じない。これは C とじ 力 ¾チップ毎に直交性が保たれているためである。この [0044] As described above, the grouped interleaver performed by the interleaver unit 7 varies within the spreading unit as in the case of the chip interleaver, but no inter-code interference MCI occurs even when despreading is performed. This is because C binding force ¾ orthogonality is maintained for each chip. this
8, 1 8, 7  8, 1 8, 7
ようにグルーピングしたインターリーバは、シンボルインターリーブで問題となるシンポ ル毎の受信品質差をなくし、チップインターリーブで問題となる直交性の崩れを抑え る効果がある。  An interleaver grouped in this way has the effect of eliminating the reception quality difference for each symbol, which is a problem with symbol interleaving, and suppressing the disruption of orthogonality, which is a problem with chip interleaving.
[0045] インターリーバ部 7が行うインターリーブ方法には、例えば、ランダムに並べ替えを ίτ,ぶつフンダム ノターリープ、 erformance Comparison of Cnannel Interleaving Me thods in Frequency Domain for VSF- OFCDM Broadband Wireless Access in Forwar d Link (N. Maeda、 H. Atarashi、 M. Sawahashi、 IEICE trans. commun.、 Vol. E86-B )に示されているインターリーブ方法、ブロックインターリーブ等を用いても良いし、グ ルービングされたチップの並べ替えが行なわれれば何でも用いることができる。チッ プのグルーピング方法は、例えば、アダマール符号のような直交符号を用いた場合 は、拡散率が 2k(kは 1以上の整数)となるので、グループに属するチップ数を均等に するならば、 2チップ、 4チップ、 ···、 チップのいずれかでグルーピングすれば良 い。また均等にしない場合は、各グループに含まれるチップ数が 2のべき乗となって いればよい。例えば、拡散率が 8のときには、チップ数が均等となるように 4チップ毎 にグルーピングしてもよ!/、し、拡散処理した結果の単位である 8チップを 2つの 2チッ プのグループと 1つの 4チップのグループにグルーピングしてもよい。すなわち、直交 符号を用いる場合には、このように拡散コードのうち各グループに対応するチップの 範囲の拡散コード間で直交するように、拡散部 5で用いる拡散コードおよびインターリ ーバ部 7にてインターリーブする際のグループの配置を選択しておけばよい。 [0045] The interleaving method performed by the interleaver unit 7 includes, for example, rearrangement at random, ERA, and erformance Comparison of Cnannel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forwar d Link (N Maeda, H. Atarashi, M. Sawahashi, IEICE trans. Commun., Vol. E86-B) may be used, and the interleaving method and block interleaving may be used. Anything can be used if done. The chip grouping method uses, for example, an orthogonal code such as a Hadamard code, so the spreading factor is 2 k (k is an integer of 1 or more). , 2 chips, 4 chips,... If not even, the number of chips in each group should be a power of two. For example, if the spreading factor is 8, you may group every 4 chips so that the number of chips is equal! /, And the 8 chips that are the unit of the result of the spreading process will be divided into two 2-chip groups. It may be grouped into a group of 4 chips. That is, when orthogonal codes are used, the chips corresponding to each group in the spread code are The arrangement of the spreading code used in spreading section 5 and the group for interleaving in interleaver section 7 may be selected so as to be orthogonal between the spreading codes in the range.
[0046] また、拡散コードに直交符号ではない符号、例えば M系列や Gold系列を用いた場 合は、一般には拡散率は 2のべき乗にはならないので均等なチップ数でグループ分 けはできないが、相関の低くなるチップ数でグルーピングすればよい。すなわち、拡 散コードのうち各グループに対応するチップの範囲の拡散コード間で相関が低くなる ように、拡散部 5で用いる拡散コードおよびインターリーバ部 7にてインターリーブする 際のグループの配置を選択してお!/、てもよレ、。 [0046] In addition, when a code other than an orthogonal code, such as an M sequence or a Gold sequence, is used as a spreading code, the spreading factor is generally not a power of 2, and therefore it cannot be divided into groups with an equal number of chips. The grouping may be performed with the number of chips having a low correlation. In other words, the spreading code used in spreading section 5 and the group arrangement when interleaving in interleaver section 7 are selected so that the correlation between spreading codes in the range of chips corresponding to each group becomes low among the spreading codes. Please! /
[0047] 図 4は、第 1の実施形態の受信装置の構成を示す概略ブロック図である。受信装置 は、受信アンテナ部 15、無線部 52、 A/D変換部 53、 GI除去部 16、直並列変換部 17、FFT (Fast Fourier Transformation)部 18、伝搬路補償部 19、ディンター リーバ部 20、それぞれが逆拡散部 21と並直列変換部 22と復調部 23と復号部 24と 力もなるコード分離部 26— ;!〜 26— Cn、伝搬路推定部 25で構成される。  FIG. 4 is a schematic block diagram illustrating a configuration of the receiving device according to the first embodiment. The receiving apparatus includes a receiving antenna unit 15, a radio unit 52, an A / D conversion unit 53, a GI removal unit 16, a series-parallel conversion unit 17, an FFT (Fast Fourier Transformation) unit 18, a propagation path compensation unit 19, and a dintarreever unit 20. .., 26-Cn, and propagation path estimation unit 25. The despreading unit 21, parallel-serial conversion unit 22, demodulating unit 23, decoding unit 24, and code separation unit 26-;!-26-Cn are also included.
[0048] 受信アンテナ部 15にて受信された信号を、無線部 52が無線周波数からベースバ ンド信号 (以下受信信号とする)に変換する。 A/D変換部 53は、前記受信信号を A /D変換したデジタル信号を生成し、 GI除去部 16に入力する。 GI除去部 16は、入 力されたデジタル信号からガードインターバルを除去し、直並列変換部 17はガードィ ンターバルを除去された信号を直列並列変換する。 FFT部 18は、直列並列変換さ れた信号を時間周波数変換し、伝搬路補償部 19に入力する。伝搬路補償部 19は、 伝搬路推定部 25で推定される伝搬路に基づき、周波数変動の抑圧を行なう。伝搬 路推定部 25で行なわれる伝搬路推定はパイロット信号を用いて、例えば、 RLS (Re cursive Least Square)アルゴリズム等で行なわれる。伝搬路推定部 25で推定さ れた伝搬路の第 nサブキャリアにおける伝達関数を H (n)とする。また平均雑音電力 を σ 2とする。このとき伝搬路補償部 19で用いられる MMSE重み W (n)は、例えば、 次の式(1)のようになる。ここで、 *は複素共役を表し、 H* (n)は H (n)の複素共役を 表す。 [0048] The radio unit 52 converts the signal received by the receiving antenna unit 15 from a radio frequency into a baseband signal (hereinafter referred to as a received signal). The A / D conversion unit 53 generates a digital signal obtained by A / D converting the received signal and inputs the digital signal to the GI removal unit 16. The GI removal unit 16 removes the guard interval from the input digital signal, and the serial / parallel conversion unit 17 performs serial / parallel conversion on the signal from which the guard interval has been removed. The FFT unit 18 performs time-frequency conversion on the serial / parallel converted signal and inputs the signal to the propagation path compensation unit 19. The propagation path compensation unit 19 suppresses frequency fluctuations based on the propagation path estimated by the propagation path estimation unit 25. The propagation path estimation performed by the propagation path estimation unit 25 is performed by using, for example, an RLS (Recursive Least Square) algorithm using a pilot signal. Let H (n) be the transfer function of the nth subcarrier in the propagation path estimated by the propagation path estimator 25. The average noise power and sigma 2. At this time, the MMSE weight W (n) used in the propagation path compensation unit 19 is, for example, as shown in the following equation (1). Where * represents the complex conjugate and H * (n) represents the complex conjugate of H (n).
[0049] [数 3] r{n)― '- :". '. ...· γ~ ( 1 )[0049] [Equation 3] r (n) ― '-: ".'. ... · γ ~ (1)
-E X H ( η ) χ Η( n) ^<3„  -E X H (η) χ Η (n) ^ <3 „
[0050] 伝搬路補償部 19に入力される第 nサブキャリアにおける周波数信号を R (n)とする と、伝搬路補償部 19は、式(1)の W (n)を用いて、次の式(2)で表される S (n)を算 出して出力する。 [0050] If the frequency signal in the n-th subcarrier input to the propagation path compensation unit 19 is R (n), the propagation path compensation unit 19 uses W (n) in Equation (1) to Calculate and output S (n) expressed by equation (2).
[0051] [数 4]  [0051] [Equation 4]
S(n) ~ W(n) x Ri'n) ( 2 ) S (n) ~ W (n) x Ri'n) (2)
[0052] 伝搬路補償部 19の出力 S (n)を、ディンターリーバ部 20は、送信側のインターリー バ部 7でインターリーブによる並び替えが行なわれたものと逆の処理を行いインターリ ーブする前の並び順に戻すことによりディンターリーブする。ディンターリーブされた 信号から、コード分離部 26—;!〜 26— Cnは各コードチャネルにおける情報ビットを 求める。コード分離部 26—;!〜 26— Cnでは、逆拡散部 21—;!〜 21—Cnが、ディン ターリーブされた信号に各コードチャネルに対応する拡散コードを乗算し、逆拡散を 行なう。逆拡散された信号を、並直列変換部 22は並列直列変換し、復調部 23は逆 拡散後の信号からビット LLR (Log Likelihood Ratio)を算出し、復号部 24はビッ ト LLRに対して誤り訂正復号処理を行ない、得られた情報ビットを出力する。復調部 23の処理は後で行なう。 [0052] The output S (n) of the propagation path compensator 19 is processed by the Dinterleaver unit 20 by performing a reverse process to that performed by the interleaver unit 7 on the transmission side and performing interleaving. Dinter leave by returning to the order in which it was before. From the Dinterleaved signal, the code separation unit 26— ;! to 26—Cn obtains information bits in each code channel. In code separation unit 26— ;! to 26—Cn, despreading unit 21— ;! to 21—Cn performs despreading by multiplying the deinterleaved signal by a spreading code corresponding to each code channel. The parallel-to-serial converter 22 performs parallel-to-serial conversion on the despread signal, the demodulator 23 calculates a bit LLR (Log Likelihood Ratio) from the despread signal, and the decoder 24 makes an error with respect to the bit LLR. A correction decoding process is performed, and the obtained information bits are output. The processing of the demodulator 23 is performed later.
[0053] [第 2の実施形態]  [Second Embodiment]
第 2の実施形態では受信側で繰り返し並列型 MCIキャンセラを用いる。繰り返し M CIキャンセラは受信側で MCIレプリカを生成し、受信信号から減算することでコード 間干渉 MCIの抑圧を行なうものである力 第 1の実施形態で説明したインターリーブ と組み合わせることで、 MCIキャンセラの MCI抑圧の効果が向上する。このことを以 下で説明する。なお、送信側の処理は第 1の実施形態で図 1を用いて説明したのと 同様であるため説明は省略する。  In the second embodiment, a repetitive parallel MCI canceller is used on the receiving side. The repetitive MCI canceller generates MCI replicas on the receiving side and subtracts it from the received signal to suppress inter-code interference MCI. By combining with the interleave described in the first embodiment, The effect of MCI suppression is improved. This will be explained below. Note that the processing on the transmission side is the same as that described in the first embodiment with reference to FIG.
[0054] 図 5に第 2の実施形態における受信装置構成を示す。受信装置は、受信アンテナ 部 15、無線部 52、 A/D変換部 53、 GI除去部 16、直並列変換部 17、 FFT部 18、 コード分離部 31— l— 31 -Cn,コードチャネルレプリカ信号生成部 28— ;!〜 28— C n、 MCIレプリカ生成部 29、伝搬路推定部 25で構成される。コード分離部 31—;!〜 3 1— Cnは、それぞれ、加算部 30—;!〜 30— Nと、伝搬路補償部 32と、ディンターリ ーバ部 20と、逆拡散部 21—;!〜 21— Cnのうちの符号の後半がコード分離部と一致 するものと、並直列変換部 22と、復調部 23と、復号部 33とで構成される。ただし、 N はサブキャリア数である。また、コードチャネルレプリカ信号生成部 28—;!〜 28— Cn は、それぞれ、シンボルレプリカ生成部 27と、直並列変換部 4と、拡散部 5とで構成さ れる。 FIG. 5 shows the configuration of the receiving device in the second embodiment. The receiving device includes a receiving antenna unit 15, a radio unit 52, an A / D conversion unit 53, a GI removal unit 16, a serial-parallel conversion unit 17, an FFT unit 18, a code separation unit 31—l—31-Cn, and a code channel replica signal. Generator 28—;! ~ 28— C n, MCI replica generation unit 29, and propagation path estimation unit 25. Code separation unit 31— ;! to 3 1— Cn is added to addition unit 30— ;! to 30—N, propagation path compensation unit 32, Dinter river unit 20, and despreading unit 21— ;! 21—Consists of a Cn code whose second half coincides with the code separation unit, a parallel-serial conversion unit 22, a demodulation unit 23, and a decoding unit 33. N is the number of subcarriers. The code channel replica signal generation unit 28— ;! to 28—Cn includes a symbol replica generation unit 27, a serial-parallel conversion unit 4, and a spreading unit 5, respectively.
[0055] 受信アンテナ部 15にて受信された信号を、無線部 52が無線周波数からベースバ ンド信号 (以下受信信号とする)に変換する。 A/D変換部 53は、前記受信信号を A /D変換したデジタル信号を生成し、 GI除去部 16に入力する。 GI除去部 16は、入 力されたデジタル信号からガードインターバルを除去し、直並列変換部 17はガードィ ンターバルを除去された信号を直列並列変換する。 FFT部 18は、直列並列変換さ れた信号を時間周波数変換し、その変換結果をコード分離部 31—;!〜 31— Cnに入 力する。コード分離部 31—;!〜 31— Cnは、入力された信号に対して、加算部 30— 1 〜30— Nにおいて MCIレプリカ生成部 29で生成される MCIレプリカを減算し、コー ド間干渉 MCIの抑圧を行なう。その後、伝搬路補償部 32で周波数変動の抑圧を行 なう。 MCIキャンセラを適用した場合の MMSE重み Wc (n)は推定した伝達関数 H ( n)を用いて、例えば、次の式(3)を用いる。  [0055] The radio unit 52 converts the signal received by the receiving antenna unit 15 from a radio frequency into a baseband signal (hereinafter referred to as a received signal). The A / D conversion unit 53 generates a digital signal obtained by A / D converting the received signal and inputs the digital signal to the GI removal unit 16. The GI removal unit 16 removes the guard interval from the input digital signal, and the serial / parallel conversion unit 17 performs serial / parallel conversion on the signal from which the guard interval has been removed. The FFT unit 18 performs time-frequency conversion on the serial / parallel converted signal, and inputs the conversion result to the code separation unit 31— ;! to 31—Cn. Code separation unit 31— ;! to 31— Cn subtracts the MCI replica generated by the MCI replica generation unit 29 in the addition units 30-1 to 30-N from the input signal, thereby inter-code interference. Suppress MCI. Thereafter, the channel compensation unit 32 suppresses the frequency fluctuation. The MMSE weight Wc (n) when the MCI canceller is applied uses, for example, the following equation (3) using the estimated transfer function H (n).
[0056] [数 5]
Figure imgf000018_0001
[0056] [Equation 5]
Figure imgf000018_0001
[0057] ただし、 σ 2は受信信号と受信信号のレプリカとの平均 2乗誤差である。ただし、レ プリカを生成できない初回処理では式(1)を用いる。 MCIレプリカ減算後の受信信 号すなわち加算部 30— ηの出力を Rc (n)とすると、伝搬路補償部 32は、次の式 (4) で表される Sc (n)を算出し、出力する。 However, σ 2 is the mean square error between the received signal and the replica of the received signal. However, Equation (1) is used for the initial processing that cannot generate a replica. If the received signal after subtraction of the MCI replica, that is, the output of the adder 30—η is Rc (n), the propagation path compensator 32 calculates Sc (n) represented by the following equation (4) and outputs it. To do.
[0058] [数 6] Sc{ n)― Wc(n} x Rc(n) [0058] [Equation 6] Sc {n) ― Wc (n} x Rc (n)
[0059] 伝搬路補償部 32の出力 Sc (n)を、ディンターリーバ部 20は、ディンターリーブする 。ディンターリーバ部 20における処理は、第 1の実施形態で説明したように、送信側 で行なわれた複数チップをグルーピングしたインタ一リーブの逆処理を行なう。 [0059] The Dinterleaver unit 20 performs Dinterleave on the output Sc (n) of the propagation path compensation unit 32. As described in the first embodiment, the processing in the Dinterleaver unit 20 performs reverse processing of interleaving that groups a plurality of chips performed on the transmission side.
[0060] ディンターリーブ後、逆拡散部 21—;!〜 21— Cnは、対応する拡散コードを乗算す ることにより逆拡散を行なう。逆拡散後の信号は並直列変換部 22で並列直列変換さ れ、復調部 23でビット LLRが求められ、復号部 33で誤り訂正復号処理が行なわれ、 情報ビット、符号化ビット LLRが得られる。情報ビットに誤りが検出されなかった場合 もしくは規定の繰り返し回数未満の場合は繰り返し処理に入る。情報ビットの誤り検 出は、例えば、送信側で情報ビットに CRC (Cyclic Redundancy Check)を付加し、受  After deinterleaving, the despreading unit 21— ;! to 21—Cn performs despreading by multiplying the corresponding spreading code. The despread signal is parallel-serial converted by the parallel-serial converter 22, the bit LLR is obtained by the demodulator 23, and error correction decoding processing is performed by the decoder 33 to obtain information bits and encoded bits LLR . If no error is detected in the information bits, or if the number of repetitions is less than the specified number of repetitions, processing is repeated. For error detection of information bits, for example, a CRC (Cyclic Redundancy Check) is added to the information bits on the transmission side and received.
4  Four
信側で誤り検出を行なえばょレ、。  If error detection is performed on the trust side,
[0061] 復調部 23の処理を説明する。拡散率を SFとし、ディンターリーバ部 20がデインタ 一リーブを施した第 1から第 SFチップの信号を逆拡散部 21—;!〜 Cnが逆拡散した 信号を S 'とする。このとき S 'は次の式(5)にて表せる。  [0061] The processing of the demodulation unit 23 will be described. The spreading factor is SF, and the signal from the first to the SF chips deinterleaved by the Dinterleaver unit 20 is the despreading unit 21 — ;! ~ Cn is the despread signal. At this time, S ′ can be expressed by the following equation (5).
[0062] [数 7]  [0062] [Equation 7]
5' = μ5 + ( 5 ) 5 '= μ5 + (5)
[0063] ただし、 Sは S 'に対応する送信信号、 11は等価振幅、 ηは平均 0、分散 の誤差信 号であり、等化振幅 は以下の式(6)に、誤差信号の分散 V2は以下の式(7)である。 [0063] However, S is a transmission signal corresponding to S ', 11 is an equivalent amplitude, η is an error signal with an average of 0 and variance, and the equalized amplitude is expressed by the following equation (6) as the variance of the error signal V 2 is the following formula (7).
[0064] [数 8コ μ =■ ■ w(n )H{n) c β ) [0064] [Equation 8 μ μ = ■ ■ w (n) H (n) c β)
n-i  n-i
v2 - μ ~ 2 ί 7 ) v 2 -μ ~ 2 ί 7)
[0065] ただし、式(6)の w(n)には初回処理では式(1)の W (n)を用い、繰り返し処理では 式(3)の Wc (n)を用いる。ここでは S 'より、復調部 23が等価振幅 を用いてビット対 数尤度比を求める一例として、 QPSK変調の場合を示す。 S 'が送信された際のビッ ト系列を b、 b (b、 bは、 1または 1)とすると、ビット系列 b、 bを QPSK変調したHowever, for w (n) in equation (6), W (n) in equation (1) is used in the initial processing, and Wc (n) in equation (3) is used in the iterative processing. Here, the case of QPSK modulation is shown as an example where the demodulator 23 obtains the bit log likelihood ratio using the equivalent amplitude from S ′. Bit when S 'is sent B and b (b and b are 1 or 1), the bit sequences b and b are QPSK modulated.
0 1 0 1 0 1 送信信号 Sは、式(8)のように表せる。 0 1 0 1 0 1 The transmission signal S can be expressed as in equation (8).
[0066] [数 9]  [0066] [Equation 9]
1  1
!2 , ! 2
[0067] ただし、 jは虚数単位を表す。これより bのビット LLRである λ (b )は、式(9)となる。 [0067] where j represents an imaginary unit. From this, λ (b), which is the bit LLR of b, is given by equation (9).
0 1 0  0 1 0
[0068] [数 10] ( 9) [0068] [Equation 10] (9)
Figure imgf000020_0001
Figure imgf000020_0001
[0069] また bのビット LLRは式(9)の実部と虚数部を入れ替えればよ!/、。ただし、 Re (x)は 複素数 Xの実部を表す。 [0069] Also, the bit LLR of b can be replaced by the real part and the imaginary part of equation (9)! /. Where Re (x) represents the real part of the complex number X.
[0070] 次に繰り返し処理につ!/、て説明する。繰り返し処理では、復号部 33から尤度が更 新された符号化ビット LLRが出力され、コードチャネルレプリカ信号生成部 28—;!〜 28— Cnに入力される。コードチャネルレプリカ信号生成部 28— ;!〜 28— Cnではシ ンボルレプリカ生成部 27で符号化ビット LLRから変調シンボルのレプリカ信号を生成 する。その後、直並列変換部 4がこのレプリカ信号を直列並列変換し、拡散部 5が直 列並列変換されたレプリカ信号を各コードチャネルに対応する拡散コードで拡散する ことで各コードチャネルにおける送信信号のレプリカを生成し、 MCIレプリカ生成部 2 9に入力する。 MCIレプリカ生成部 29は入力された各コードチャネルにおける送信 信号のレプリカと伝搬路推定部 25の出力である伝搬路推定値を用いてコード間干渉 MCIのレプリカを生成する。  [0070] Next, repeated processing will be described. In the iterative process, the coded bit LLR with the updated likelihood is output from the decoding unit 33 and input to the code channel replica signal generation unit 28— ;! to 28—Cn. Code channel replica signal generator 28—;! To 28— In Cn, a symbol replica generator 27 generates a replica signal of a modulation symbol from the coded bit LLR. After that, the serial-parallel converter 4 performs serial-parallel conversion on this replica signal, and the spreading unit 5 spreads the replica signal subjected to serial-parallel conversion with a spreading code corresponding to each code channel, thereby transmitting the transmission signal in each code channel. A replica is generated and input to the MCI replica generation unit 29. The MCI replica generation unit 29 generates a replica of the inter-code interference MCI using the input transmission signal replica in each code channel and the channel estimation value output from the channel estimation unit 25.
[0071] シンボルレプリカ生成部 27の処理を、ここでは QPSKの場合で説明する。今シンポ ルレプリカ S 'を構成するビット LLRがえ (b )、 え (b )であるとする。  The processing of the symbol replica generation unit 27 will be described here in the case of QPSK. It is assumed that the bit LLRs constituting the symbol replica S ′ are (b) and (b).
r 2 0 2 1  r 2 0 2 1
ただしえ 0は復号部 33の出力である。シンボルレプリカ生成部 27は、 S,を式(10  However, 0 is the output of the decoding unit 33. The symbol replica generation unit 27 calculates S,
2 r  2 r
)にて算出する。  ).
[0072] [数 11] Si - ) /2j M O)[0072] [Equation 11] Si-) / 2j MO)
Figure imgf000021_0001
■ '
Figure imgf000021_0001
■ '
[0073] 図 6に MCIレプリカ生成部 29の詳細を示す。図 6は第 kコードチャネルにおける M CIレプリカ生成部 29の概略ブロック図を示したものである。 MCIレプリカ生成部 29は コード多重部 34と、インターリーバ部 7と、伝達関数乗算部 36とで構成される。 FIG. 6 shows details of the MCI replica generation unit 29. FIG. 6 is a schematic block diagram of the MCI replica generation unit 29 in the k-th code channel. The MCI replica generation unit 29 includes a code multiplexing unit 34, an interleaver unit 7, and a transfer function multiplication unit 36.
第 kコードチャネルにおける MCIレプリカを生成するため、コード多重部 34では第 k コードチャネルのレプリカ信号以外のレプリカ信号を多重化する。つまり 1 , · · · , k—l , k+ 1 , · · · , Cn番目のコードチャネルのレプリカ信号を多重化する。その後、この多 重化したレプリカ信号を、インターリーバ部 7は送信側と同じ方法でインターリーブし、 伝達関数乗算部 36が、図 5中の伝搬路推定部 25で推定された伝達関数 H (n)をィ ンターリーブされたレプリカ信号に乗算することで MCIレプリカの周波数信号を生成 する。伝達関数乗算部 36は、これらの周波数信号を、コード分離部 31—;!〜 31— C nに入力し、以降は、コード分離部 31—;!〜 31— Cnの加算部 30—;!〜 30— Nが周 波数領域で受信信号から MCIレプリカを減算しコード間干渉 MCIの抑圧を行い、伝 搬路補償部 32が周波数変動の抑圧を、復号部 33が誤り訂正復号処理を規定の繰り 返し回数または誤りが検出されなくなるまで繰り返す。  In order to generate an MCI replica in the k-th code channel, the code multiplexing unit 34 multiplexes replica signals other than the replica signal of the k-th code channel. That is, 1,..., K−l, k + 1,..., Cn-th code channel replica signal is multiplexed. After that, the multiplexed replica signal is interleaved by the interleaver unit 7 in the same manner as on the transmission side, and the transfer function multiplication unit 36 transmits the transfer function H (n (n) estimated by the propagation path estimation unit 25 in FIG. ) Is multiplied by the interleaved replica signal to generate an MCI replica frequency signal. The transfer function multiplication unit 36 inputs these frequency signals to the code separation unit 31— ;! to 31—C n, and thereafter, the code separation unit 31— ;! to 31—Cn addition unit 30— ;! -30-N subtracts MCI replica from received signal in frequency domain to suppress inter-code interference MCI, propagation path compensation unit 32 suppresses frequency fluctuation, decoding unit 33 specifies error correction decoding process Repeat until the number of repeats or no error is detected.
[0074] 第 2の実施形態では MCIレプリカを周波数信号で生成し、周波数領域でコード間 干渉 MCI除去を行なったが、 MCIレプリカを時間信号で生成し、時間領域で (GI除 去部 16にて処理する前)コード間干渉 MCI除去を行っても良い。  In the second embodiment, the MCI replica is generated by the frequency signal and the inter-code interference MCI removal is performed in the frequency domain. However, the MCI replica is generated by the time signal and is transmitted to the GI removal unit 16 in the time domain. Inter-code interference MCI cancellation may be performed.
[0075] なお、図 1のコードチャネル信号生成部 1 1〜1 Cn、コード多重部 6、インターリ ーバ部 7、 IFFT部 8、並直列変換部 9、パイロット多重部 10、 GI揷入部 11、および、 図 4の GI除去部 16、直並列変換部 17、 FFT部 18、伝搬路補償部 19、ディンターリ ーブ部 20、伝搬路推定部 25、コード分離部 26— ;!〜 26— Cn、および、図 5の GI除 去部 16、直並列変換部 17、 FFT部 18、コード分離部 31—;!〜 31— Cn、コードチヤ ネルレプリカ信号生成部 28—;!〜 28— Cn、 MCIレプリカ生成部 29、伝搬路推定部 25は専用のハードウェアにより実現されるものであってもよぐまた、これらの各部はメ モリおよび CPU (中央演算装置)により構成され、各部の機能を実現するためのプロ グラムを CPUが実行することによりその機能を実現させるものであってもよい。 [0076] 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの 実施形態に限られるものではなぐこの発明の要旨を逸脱しない範囲の設計等も含 よれ 。 [0075] It should be noted that the code channel signal generation unit 1 1 to 1 Cn, the code multiplexing unit 6, the interleaver unit 7, the IFFT unit 8, the parallel-serial conversion unit 9, the pilot multiplexing unit 10, the GI insertion unit 11, FIG. In addition, the GI removal unit 16, the serial-parallel conversion unit 17, the FFT unit 18, the propagation path compensation unit 19, the Dinter Reveal unit 20, the propagation path estimation unit 25, the code separation unit 26—;! To 26—Cn, FIG. In addition, the GI removal unit 16, the serial-parallel conversion unit 17, the FFT unit 18, the code separation unit 31— ;! to 31—Cn, the code channel replica signal generation unit 28— ;! to 28—Cn, and the MCI replica in FIG. The generation unit 29 and the propagation path estimation unit 25 may be realized by dedicated hardware. Each of these units is configured by a memory and a CPU (central processing unit) to realize the function of each unit. This function may be realized by the CPU executing the program for this purpose. As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes a design and the like within a scope not departing from the gist of the present invention. .
産業上の利用可能性  Industrial applicability
[0077] この発明は、マルチキャリア伝送方式にて通信する携帯電話および基地局装置に 用いて好適である力 これに限定されない。 [0077] The present invention is not limited to this force that is suitable for use in a mobile phone and a base station apparatus that communicate in a multi-carrier transmission scheme.

Claims

請求の範囲 The scope of the claims
[1] 拡散コードを用いて送信シンボルを拡散し、各コードチャネルのチップを生成する チャネル毎の拡散部と、  [1] Spreading transmission symbols using spreading codes to generate chips for each code channel;
複数チャネルの前記チップを多重化し、多重化信号を生成するコード多重部と、 前記拡散コードの拡散率より少ないチップ数の拡散方向に隣接する前記多重化信 号からなるグループを単位として、前記多重化信号の拡散方向の順番を並び替える インターリーバ部と  The multiplexing is performed in units of a group consisting of a code multiplexing unit that multiplexes the chips of a plurality of channels and generates a multiplexed signal, and the multiplexed signals that are adjacent in the spreading direction with the number of chips smaller than the spreading rate of the spreading code. Rearrange the order of the spread direction of the signal
を具備する送信装置。  A transmission apparatus comprising:
[2] 前記拡散コードのうち、前記グループに対応する部分の拡散コードで前記多重化 された信号が分離可能である請求項 1に記載の送信装置。  [2] The transmission apparatus according to [1], wherein the multiplexed signal can be separated by a spreading code corresponding to the group among the spreading codes.
[3] 前記拡散コードのうち、前記グループに対応する部分の拡散コード間は直交または 準直交である請求項 1に記載の送信装置。 [3] The transmission apparatus according to [1], wherein among the spreading codes, a portion of the spreading code corresponding to the group is orthogonal or quasi-orthogonal.
[4] 前記グループは、前記拡散部による拡散処理の単位内である請求項 1に記載の送 信装置。 4. The transmission device according to claim 1, wherein the group is within a unit of diffusion processing by the diffusion unit.
[5] 前記各グループを構成するチップ数は、全て同じである請求項 1に記載の送信装 置。  [5] The transmission device according to [1], wherein the number of chips constituting each group is the same.
[6] MC— CDMA方式にて通信する請求項 1に記載の送信装置。  [6] The transmitter according to claim 1, which performs communication using MC—CDMA.
[7] 送信する際の拡散処理に用いた拡散コードの拡散率より少ないチップ数の前記拡 散処理の拡散方向に隣接する信号力もなるグループを単位として、受信信号の拡散 方向の順番を並び替えてディンターリーブするディンターリーバ部と、  [7] The order of the spreading direction of the received signal is rearranged in units of groups that also have signal power adjacent to the spreading direction of the spreading process with the number of chips smaller than the spreading rate of the spreading code used for spreading. The Dinter Leaver part to Dint Reeve,
前記ディンターリーバ部がディンターリーブした受信信号に、前記拡散コードを乗 算することにより、前記拡散コードに対応するチャネルのシンボルを分離抽出する逆 拡散部と  A despreading unit that separates and extracts a symbol of a channel corresponding to the spreading code by multiplying the spread code by the received signal that has been deinterleaved by the Dinterleaver unit;
を具備することを特徴とする受信装置。  A receiving apparatus comprising:
[8] 前記グループに対応する部分の拡散コード間は直交または準直交である請求項 7 に記載の受信装置。 [8] The receiving apparatus according to [7], wherein a part of the spreading code corresponding to the group is orthogonal or quasi-orthogonal.
[9] 前記グループは、前記拡散処理の単位内である請求項 7に記載の受信装置。  9. The receiving device according to claim 7, wherein the group is within a unit of the spreading process.
[10] 前記各グループを構成するチップ数は、全て同じである請求項 7に記載の受信装 置 10. The receiving device according to claim 7, wherein the number of chips constituting each group is the same. Place
[11] MC— CDMA方式にて通信する請求項 7に記載の受信装置。  [11] The receiving device according to claim 7, wherein communication is performed using MC—CDMA.
[12] 送信装置と受信装置とからなる通信システムにおいて、 [12] In a communication system consisting of a transmission device and a reception device,
前記送信装置は、  The transmitter is
拡散コードを用いて送信シンボルを拡散し、各コードチャネルのチップを生成する チャネル毎の拡散部と、  A spreading unit for each channel that spreads transmission symbols using a spreading code and generates chips for each code channel;
複数チャネルの前記チップを多重化し、多重化信号を生成するコード多重部と、 前記拡散コードの拡散率より少ないチップ数の拡散方向に隣接する前記多重化信 号からなるグループを単位として、前記多重化信号の拡散方向の順番を並び替える インターリーバ部と  The multiplexing is performed in units of a group consisting of a code multiplexing unit that multiplexes the chips of a plurality of channels and generates a multiplexed signal, and the multiplexed signals that are adjacent in the spreading direction with the number of chips smaller than the spreading rate of the spreading code. Rearrange the order of the spread direction of the signal
を具備し、  Comprising
前記受信装置は、  The receiving device is:
前記グループを単位として、受信信号の拡散方向の順番を前記インターリーバ部 による並び替えを元に戻すように並び替えることによりディンターリーブするデインタ 一ジーノ ¾5と、  Deinterleaving in which the group is deinterleaved by rearranging the order of the spreading direction of the received signal in such a way that the rearrangement by the interleaver unit is restored.
前記ディンターリーバ部がディンターリーブした受信信号に、前記拡散コードを乗 算することにより、前記拡散コードに対応するシンボルを分離抽出する逆拡散部と を具備すること  A despreading unit that separates and extracts a symbol corresponding to the spreading code by multiplying the spread code by the received signal that has been deinterleaved by the Dinterleaver unit.
を特徴とする通信システム。  A communication system characterized by the above.
[13] 送信装置と受信装置とからなる通信システムにおける通信方法において、 [13] In a communication method in a communication system including a transmission device and a reception device,
前記送信装置が、チャネル毎に、拡散コードを用いて送信シンボルを拡散し、チッ プを生成する第 1の過程と、  A first process in which the transmitting device spreads transmission symbols using a spreading code for each channel to generate a chip; and
前記送信装置が、前記第 1の過程にて生成された複数チャネルの前記チップを多 重化し、多重化信号を生成する第 2の過程と、  A second process in which the transmitting device multiplexes the chips of the plurality of channels generated in the first process and generates a multiplexed signal;
前記送信装置が、拡散方向に隣接する前記多重化信号からなるグループを単位と して、前記多重化信号の拡散方向の順番を並び替える第 3の過程と、  A third process in which the transmitting apparatus rearranges the order of the multiplexed direction of the multiplexed signal in units of groups of the multiplexed signals adjacent in the spreading direction;
前記受信装置が、前記グループを単位として、受信信号の拡散方向の順番を前記 第 3の過程による並び替えを元に戻すように並び替えることによりディンターリーブす る第 4の過程と、 The receiving apparatus performs a Dinterleave by rearranging the order of the spreading direction of the received signals in units of the groups so that the rearrangement by the third process is restored. And the fourth process
前記受信装置が、前記第 4の過程にてディンターリーブした受信信号に、前記拡 散コードを乗算することにより、前記拡散コードに対応するチャネルのシンボルを分 離抽出する第 5の過程と  A fifth process in which the receiving device separates and extracts a symbol of a channel corresponding to the spreading code by multiplying the spread signal by the spreading code to the received signal deinterleaved in the fourth process;
を具備することを特徴とする通信方法。  A communication method comprising:
PCT/JP2007/066889 2006-09-06 2007-08-30 Transmission device, reception device, communication system, and communication method WO2008029704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-242105 2006-09-06
JP2006242105 2006-09-06

Publications (1)

Publication Number Publication Date
WO2008029704A1 true WO2008029704A1 (en) 2008-03-13

Family

ID=39157135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066889 WO2008029704A1 (en) 2006-09-06 2007-08-30 Transmission device, reception device, communication system, and communication method

Country Status (1)

Country Link
WO (1) WO2008029704A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142025A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Wireless communication mobile station device and distribution and placement method for resource elements
JP2009302766A (en) * 2008-06-11 2009-12-24 Sharp Corp Receiver, communication system and communication method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332724A (en) * 1999-05-17 2000-11-30 Mitsubishi Electric Corp Multi-carrier transmission system and multi-carrier modulation method
JP2002190788A (en) * 2000-03-17 2002-07-05 Matsushita Electric Ind Co Ltd Radio communication equipment and method
JP2003032226A (en) * 2001-07-17 2003-01-31 Matsushita Electric Ind Co Ltd Radio communication apparatus and method therefor
JP2003046481A (en) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd Data transmitter and data transmission method
JP2004072772A (en) * 2002-08-07 2004-03-04 Motorola Inc Radio communication system having adaptive interleaver
JP2005210708A (en) * 2003-12-25 2005-08-04 Ntt Docomo Inc Radio communications system, radio transmission device, radio-receiving device, and radio communications method
WO2006001143A1 (en) * 2004-06-24 2006-01-05 Matsushita Electric Industrial Co., Ltd. Wireless transmission device, wireless reception device, and symbol arranging method
JP2006093897A (en) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Communication device, base station device, and transmission method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332724A (en) * 1999-05-17 2000-11-30 Mitsubishi Electric Corp Multi-carrier transmission system and multi-carrier modulation method
JP2002190788A (en) * 2000-03-17 2002-07-05 Matsushita Electric Ind Co Ltd Radio communication equipment and method
JP2003032226A (en) * 2001-07-17 2003-01-31 Matsushita Electric Ind Co Ltd Radio communication apparatus and method therefor
JP2003046481A (en) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd Data transmitter and data transmission method
JP2004072772A (en) * 2002-08-07 2004-03-04 Motorola Inc Radio communication system having adaptive interleaver
JP2005210708A (en) * 2003-12-25 2005-08-04 Ntt Docomo Inc Radio communications system, radio transmission device, radio-receiving device, and radio communications method
WO2006001143A1 (en) * 2004-06-24 2006-01-05 Matsushita Electric Industrial Co., Ltd. Wireless transmission device, wireless reception device, and symbol arranging method
JP2006093897A (en) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Communication device, base station device, and transmission method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANO H. ET AL.: "Jikan. Shuhasu Kakusan o Okonau Multi Carrier CDMA Hoshiki", 2000 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 1, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATIONS ENGINEERS, 7 September 2000 (2000-09-07), pages 378, XP002984764 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142025A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Wireless communication mobile station device and distribution and placement method for resource elements
JP2009302766A (en) * 2008-06-11 2009-12-24 Sharp Corp Receiver, communication system and communication method

Similar Documents

Publication Publication Date Title
JP5084051B2 (en) Transmission / reception device, transmission / reception system, and transmission / reception method
TWI387236B (en) A multicarrier spread spectrum device using cyclic-shift orthogonal keying, transmitter, receiver, and communication system thereof
KR100811907B1 (en) Frequency-hopped ifdma communication system
CN102273114B (en) For the Quick Response Code spread spectrum of interlaced FDMA system
AU2006240057B2 (en) Hybrid orthogonal frequency division multiple access system and method
US20020118765A1 (en) Method and system for multirate multiuser modulation
US20060140294A1 (en) Block modulation
KR100811565B1 (en) Method and apparatus for transmission and reception of data
WO2006102403A2 (en) Orthogonal frequency division multiplexing code division multiple access system
JP4963703B2 (en) Receiver, receiving method and integrated circuit
EP1211836A1 (en) Communication device and communication method
JP5030311B2 (en) Receiver, receiving method and integrated circuit
JP4963723B2 (en) Receiver, receiving method and integrated circuit
JP5108794B2 (en) Radio base station apparatus and radio communication method
JP5030312B2 (en) Receiver, receiving method and integrated circuit
CN101816139A (en) Receiver and reception method
JP4463852B2 (en) Apparatus and method for iteratively estimating channel transfer function
WO2008029704A1 (en) Transmission device, reception device, communication system, and communication method
JP2010178273A (en) Receiving apparatus and receiving method
Blel et al. Real CDMA-OFDM/OQAM transmission system based on Walsh Hadamard spreading code over Rayleigh fading channel
JPWO2009038018A1 (en) Wireless transmission device, wireless communication system, and wireless transmission method
Abdulsattar et al. Performance evaluation of MC-CDMA system over rayleigh fading channel
JP2009267450A (en) Receiving device and receiving method
Madhukumar et al. Residue number system based multicarrier CDMA for broadband mobile communication systems
JP2014022932A (en) Radio communication system, transmission device, and transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP