WO2006070577A1 - Sinkable float and method of using sinkable float - Google Patents

Sinkable float and method of using sinkable float Download PDF

Info

Publication number
WO2006070577A1
WO2006070577A1 PCT/JP2005/022542 JP2005022542W WO2006070577A1 WO 2006070577 A1 WO2006070577 A1 WO 2006070577A1 JP 2005022542 W JP2005022542 W JP 2005022542W WO 2006070577 A1 WO2006070577 A1 WO 2006070577A1
Authority
WO
WIPO (PCT)
Prior art keywords
float
buoyancy
fluid
bladder
sink
Prior art date
Application number
PCT/JP2005/022542
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yoshida
Kensuke Takeuchi
Yoshifumi Kuroda
Nobuyuki Shikama
Kentaro Ando
Taiyo Kobayashi
Shigeki Hosoda
Original Assignee
Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology
The Tsurumi Seiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology, The Tsurumi Seiki Co., Ltd. filed Critical Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology
Priority to EP05814714A priority Critical patent/EP1832505A4/en
Priority to JP2006550648A priority patent/JPWO2006070577A1/en
Priority to US11/793,973 priority patent/US7699677B2/en
Publication of WO2006070577A1 publication Critical patent/WO2006070577A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • B63B22/20Ballast means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects

Definitions

  • the present invention relates to a floating float and a floating float used in an advanced marine monitoring system, for example.
  • the float / float float 50 includes a float chamber 51 made of, for example, reinforced resin, which forms an airtight internal space, and acts on the float / float float 50 as a whole.
  • the buoyancy adjustment mechanism 52 that adjusts the size of the buoyancy
  • the measurement mechanism 53 that measures various parameters in water
  • the data transmission mechanism 54 that wirelessly transmits the data obtained by the measurement mechanism 53
  • the control mechanism 55 is configured to have a power supply device 56 that supplies power to each mechanism.
  • the buoyancy adjusting mechanism 52 is provided inside the float chamber 51, the fluid containing portion 521 for containing the buoyancy adjusting fluid therein, and the action portion thereof are located outside the float chamber 51.
  • An elastically inflatable / shrinkable bladder (Bladd er) 522 In the buoyancy adjustment mechanism 52, the bladder 522 is connected to the fluid accommodating portion 521 via the main flow path 523A having the one-way transfer type pump device 524 for transferring the buoyancy adjustment fluid, and branches from the main flow path 523A.
  • a return flow path leading to the fluid containing portion 521 is formed by the branch flow path 523B.
  • the branch flow path 523B is provided with a valve mechanism 525 that adjusts the flow rate of the buoyancy adjusting fluid according to the degree of opening of the valve.
  • the one-way transfer type pump device has only a function of transferring the fluid only from one side of the main flow path 523A to the other, and is an irreversible device that cannot transfer the fluid in the reverse direction. When the pump device is stopped, the main flow path 523A is closed.
  • the measuring mechanism 53 includes a sensor 531 such as a Conductivity—Temperature Depth Profiler (CTD Pr ofiler) provided outside the float chamber 51 and the sensor 531. It consists of a sensor board 532 to be controlled.
  • the data transmission mechanism 54 includes a radio antenna 541 and a transmission board 542 that are partly exposed to the outside of the float chamber 51. The sensor board 532 and the transmission board 542 are electrically connected to the control mechanism 55.
  • the mass / volume ratio of the entire float / float 50 is such that the volume of the bladder 522 filled with no or almost no buoyancy adjusting fluid is minimal, and the buoyancy acting on the float / float 50 In the minimum effective buoyancy state where the minimum is, the effective buoyancy value in seawater is set to be negative and sink.
  • the float / float float 50 having the above-described configuration is usually used, for example, by being introduced into the sea from a ship. After the float / float 50 is introduced into the sea, For example, a series of operations that move down to the desired depth, drift at that depth for a certain period, and then gradually move up to the sea level as one cycle is automatically executed in a preset cycle. In this process, various parameters are measured. Then, for example, measurement data obtained during ascending movement in the sea is wirelessly transmitted to the base station when the floating float 50 rises above the sea surface.
  • the floating float 50 put into the sea is closed by the pump device 524 in which the main flow path 523A is stopped with no or almost no buoyancy adjustment fluid inside the bladder 522.
  • the branch flow path 523B is closed by the valve mechanism 525, the minimum effective buoyancy state is established, and the downward movement is started.
  • the floating float 50 is in a neutral buoyancy state in which the effective buoyancy is zero, and as a result, the floating float 50 stops in the vertical direction so as to maintain the depth in the sea.
  • the bladder 522 is continuously filled with the buoyancy adjusting fluid, and the bladder 522 is further expanded, so that the effective buoyancy gradually increases, and the effective buoyancy becomes a positive value. Then, the floating float 50 begins to move up in the sea.
  • the buoyancy adjusting fluid existing in the bladder 522 is transferred to the bladder 522. Due to the inertial restoring force and the external force acting on the bladder 522 from the outside, such as water pressure, the fluid containing portion 521 is passed through the branch channel 523B. Discharged. As a result, the bladder 522 contracts and its volume decreases to reduce the effective buoyancy. As a result, when the value of the effective buoyancy becomes negative, the float / float float 50 moves down in the sea again.
  • the volume of the bladder 522 is adjusted by adjusting the volume of the buoyancy adjusting fluid filled in the bladder 522.
  • the effective buoyancy change accompanying the change in the volume of the 522 makes it possible to move up and down, and to stop in the vertical direction in the sea.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-145177
  • the present invention has been made on the basis of the circumstances as described above, and the object thereof is to provide a float / sink float and an adjustable float capable of adjusting the effective buoyancy acting on itself in detail and with certainty. And providing a method of using the floating float.
  • the float / float float of the present invention includes a float chamber 1 that forms an airtight internal space, a fluid storage section that is provided in the float chamber and that contains a buoyancy adjusting fluid, and an exterior of the float chamber 1.
  • the buoyancy adjusting fluid is filled with the buoyancy adjusting fluid to change the volume and adjust the buoyancy acting on the float and sink float, and the buoyancy between the bladder and the fluid container portion.
  • a float / sink float comprising a pump mechanism for transferring the adjusting fluid and a drive source for driving the pump mechanism;
  • the pump mechanism is constituted by a gear pump.
  • a valve mechanism for controlling the movement of the buoyancy adjusting fluid between the fluid containing portion and the bladder is provided.
  • the gear pump preferably has a performance-guaranteed drive rotation range of 10 to 150 rotations Zmin.
  • the gear pump has a fluid transfer ability of 4.5 to 100 ccZmin.
  • the drive source related to the pump mechanism is a DC motor.
  • the buoyancy adjusting fluid has a viscosity of 3000 cst or more at 2 ° C.
  • the float and sink float includes a measurement unit that measures pressure and at least one water-related information.
  • the measurement unit is preferably capable of measuring weather-related information.
  • a method for using the float / float float according to the present invention is a method for using the float / float float, wherein the amount of the buoyancy adjustment fluid in the bladder is adjusted based on at least pressure information obtained by the measuring means.
  • both the discharge amount and supply amount of the buoyancy adjusting fluid according to the bladder are actively controlled by the gear pump which is a reversible pump.
  • the supply amount and the discharge amount of the buoyancy adjustment fluid according to the above are accurately controlled.
  • the volume of the buoyancy adjusting fluid existing in the bladder is reliably adjusted. Accordingly, the volume of the bladder is finely adjusted, and as a result, the effective buoyancy associated with the floating float is controlled with high accuracy.
  • the gear pump basically exhibits a braking function when used in combination with a buoyancy adjusting fluid having a relatively high viscosity as described above, and a high pressure acts on the buoyancy adjusting fluid. Even in such an environment, unintended operations are reliably prevented, and the rotation angle and rotation speed of the gear are accurately controlled. Accordingly, the amount of fluid transferred is always controlled with high accuracy, and as a result, the volume of the bladder is always adjusted in detail, and eventually the buoyancy associated with the floating float is controlled with high accuracy. .
  • the gear pump is smaller and lighter than the conventional one-way pump, the entire float and sink float can be reduced in size and weight. As a result, high efficiency of power consumption related to the floating float is achieved, a long service life is achieved, and a high degree of freedom in design conditions such as the shape of the float chamber is obtained.
  • the amount of the buoyancy adjusting fluid filled in the bladder is measured by various information such as seawater electrical conductivity (salt concentration), water temperature, and water pressure.
  • various information such as seawater electrical conductivity (salt concentration), water temperature, and water pressure.
  • FIG. 1 is an explanatory cross section showing a configuration of an example of a float / sink float of the present invention by a cross-section along the long axis of a float chamber.
  • FIG. 2 is an explanatory sectional view showing the configuration of the gear pump in a section perpendicular to the rotation axis of the gear.
  • FIG. 3 is an explanatory cross section showing a configuration of an example of a conventional float / sink float in a cross section along the vertical axis.
  • FIG. 1 is a cross-sectional view for explaining the structure of an example of the float / sink float of the present invention in a cross section along the long axis of the float chamber.
  • FIG. 2 is a cross section of the structure of the gear pump perpendicular to the rotation axis of the gear It is sectional drawing for description shown by.
  • the float / float float 10 is provided with a substantially spherical float chamber 11 made of, for example, reinforced resin, which forms an airtight internal space, and acts on the float float / float 10 as a whole.
  • a buoyancy adjustment mechanism 12 that adjusts the size of the buoyancy force, a measurement mechanism 13 that measures various information including water pressure in water, a data transmission mechanism 14 that wirelessly transmits electronic data obtained by the measurement mechanism 13, and each of these
  • the control mechanism 15 that controls the mechanism and the power supply device 16 that supplies power to each of the mechanisms are configured.
  • the measurement mechanism 13 can measure at least one water-related information together with the water pressure. Further, the measurement mechanism 13 can measure at least one weather-related information. It is preferable.
  • the water-related information is various parameters that can be measured in relation to seawater, for example, and specific examples thereof include physical parameters such as seawater electrical conductivity (salt concentration), water temperature, examples thereof include biological parameters such as chlorophyll concentration, dissolved concentration of water-soluble gases such as oxygen and carbon dioxide, and optical parameters such as seawater transparency.
  • physical parameters such as seawater electrical conductivity (salt concentration), water temperature
  • biological parameters such as chlorophyll concentration, dissolved concentration of water-soluble gases such as oxygen and carbon dioxide, and optical parameters such as seawater transparency.
  • the weather-related information is various parameters that can be measured in relation to the atmosphere. Specific examples thereof include physical parameters such as temperature, humidity, and atmospheric pressure, and various composition gas concentrations. Chemical parameters etc. can be mentioned.
  • the shape of the float chamber 11 is not particularly limited.
  • a shape in which a hemispherical dome is integrally synthesized on the upper part of a spherical body. Has been. Due to the shape of the outer casing, it is possible to obtain an excellent pressure resistance as well as to reduce the size of the float / float float 10 as a whole, and also to move water in both the vertical and horizontal directions. Since the resistance due to is substantially uniform, there is an effect that the position control of the floating float is easy.
  • the shape of the float chamber 11 as described above can be reduced by reducing the size and weight of the buoyancy adjusting mechanism 12 related to the float / sink float 10 by adopting a gear pump as a pump device, as will be described later. As a result, it became feasible.
  • the buoyancy adjusting mechanism 12 is provided inside the float chamber 11, and is made up of a fluid containing portion 121 that contains a buoyancy adjusting fluid therein and an elastic member, and the buoyancy adjusting mechanism 12 is filled in the inside.
  • a mechanism 125 and a valve mechanism drive source 126 that drives the valve mechanism 125 are configured.
  • the volume of the bladder 122 is determined according to the mass-volume ratio of the entire float / float 10 and is, for example, 0.3 to 10%, particularly 0.5 to 4% of the occupied volume of the float / float 10. .
  • the buoyancy adjusting fluid it is possible to use fluids having various compositions and physical properties.
  • the viscosity is preferably 3000 cst or more at 2 ° C, more preferably 3 000 ⁇ 20,000 cst, particularly preferably lOOOOcst.
  • the specific gravity of the buoyancy adjusting fluid is preferably, for example, 0.85 to L 0.
  • Specific examples of the buoyancy adjusting fluid include oils that can be used as gear oils, such as silicone oils.
  • silicone oils having a viscosity of lOOOOcst at 2 ° C. can be preferably mentioned. .
  • buoyancy adjusting fluid having specific physical properties, it is possible to obtain suitable lubrication characteristics in the gear pump 20 having a configuration described later, and to improve liquid tightness in the gear pump 20 so that high fluid transfer is possible. Accuracy is guaranteed reliably.
  • the gear pump 20 includes a drive gear 204 disposed in a gear case 201 so as to be rotatable around a drive shaft 203 that is directly connected to a drive source 124.
  • the drive gear 204 is engaged with the engagement portion 205, and is configured to have a driven gear 207 arranged to rotate around the driven shaft 206 following the rotation of the drive gear 204.
  • an inner opening 208 that communicates with the fluid storage portion 121 via the communication passage 123 is provided in the inner staying space 202a formed on the upstream side of the coupling portion 205 in the forward rotation direction indicated by the arrow.
  • the minimum fluid transfer unit defined by the volume of one transfer space 210 defined by one tooth gap and the inner peripheral wall surface of the gear case is 5.8-23. ⁇ ml, especially 10-15 ⁇ ml.
  • the gear pump 20 has, for example, 0 to 70 MPa, high pressure, and pressure resistance. According to such a gear pump 20, for example, even when a large pressure is applied via the outer opening 209, the transfer amount of the buoyancy adjusting fluid is controlled with high V and accuracy regardless of the transfer direction. It is possible.
  • gear pump 20 having the above-described configuration, for example, other design elements such as the gear diameter, the number of gear teeth, the tooth thickness, and the tooth gap depth related to the drive gear 204 and the driven gear 207 are driven. It may be determined according to the physical properties of the buoyancy adjusting fluid and the required flow rate of the buoyancy adjusting fluid. And such a gear pump 20 should just be designed as what has the fluid transfer capability for buoyancy adjustment of 4.5-100ccZmin, for example, Preferably it is 20-50ccZmin.
  • the gear pump 20 preferably has a performance-guaranteed driving rotation range of 10 to 150 rotations Zmin, particularly 10 to 100 rotations Zmin, in which design effects are reliably exhibited.
  • the drive source 124 for driving the gear pump 20 for example, if the torque is 3.5 Nm and the performance-guaranteed drive rotation region is 10 to 150 rotations Zmin, the drive source 124 is particularly suitable.
  • a direct current motor or an alternating current motor provided with a speed change mechanism may be used.
  • a DC motor provided with a speed change mechanism can be preferably cited.
  • a DC motor provided with a speed change mechanism whose drive power is 8 to 20 volts is preferably exemplified. it can.
  • valve mechanism 125 and the valve mechanism drive source 126 appropriate pressure resistance is realized, and the movement of the buoyancy adjusting fluid can be controlled ON-OF F by switching the open / close state in the communication path 123. If so, those configurations are not particularly limited, and various known ones can be used.
  • the measurement mechanism 13 is provided, for example, an electrical conductivity water temperature depth meter (Conductivity-Temperatu) that is provided outside the float chamber 11.
  • CTD re-Depth Profiler
  • the data transmission mechanism 14 includes a radio antenna 141 and a transmission board 142 that are partly exposed to the outside of the float chamber 11.
  • the sensor board 1 32 and the transmission board 142 are connected to the control mechanism 15.
  • the valve mechanism 125 is opened by the valve mechanism drive source 126 by the control signal from the control mechanism 15, and the gear pump 20 is driven by the drive source 124.
  • the driven gear 207 is rotated following the rotation of the drive gear 204.
  • the buoyancy adjusting fluid existing in the inner staying space 202a is formed between the tooth spaces of the drive gear 204 and the driven gear 207 and the inner peripheral wall surface of the gear case 201, and the drive gear 204 and The plurality of transfer spaces 210 that move in the circumferential direction following the rotational movement of the driven gear 207 are transferred to the outer staying space 202b.
  • a new buoyancy adjusting fluid is supplied from the fluid storage part 121 into the inner staying space 202a by the negative pressure in the inner staying space 202a generated as a result.
  • the buoyancy adjusting fluid transferred to the outer staying space 202b is pressurized and supplied to the bladder 122 through the outer opening 209, whereby the supplied buoyancy adjusting fluid is supplied.
  • the bladder 122 expands and its volume is increased, and as a result, the buoyancy acting on the floating float 10 is increased.
  • the buoyancy adjusting fluid is discharged from the bladder 122 to the fluid accommodating portion 121, and thus the discharged fluid is discharged.
  • the bladder 122 contracts in accordance with the volume of the buoyancy adjustment fluid, and the volume is reduced. As a result, the buoyancy acting on the float / sink float 10 is reduced.
  • the bladder 122 changes due to elastic expansion or contraction of its volume in accordance with the amount of the buoyancy adjustment fluid that is forcibly supplied or discharged by the gear pump 20, and thus, The effective buoyancy associated with the float / float float 10 can be adjusted by changing the total volume of the float / float float 10.
  • the float / float float 10 as described above specifically includes, for example, the following series of operations (1) to (4) as one cycle, and this cycle is automatically set as appropriate in advance. It is used for observation in such a way that it is executed many times with a period of. Here, the observation may be continued as long as power can be supplied from the power supply device 16, for example.
  • the effective buoyancy value is set to positive, and the sensor 131 measures one or more parameters and moves upward to the sea level at a predetermined speed.
  • the float / float float 10 is configured such that, for example, the following series of operations (a) to (e) are performed as one cycle, and this cycle is automatically executed a number of times at a preset appropriate cycle. It may be used for observation.
  • thermocline or the density gradient layer (pycnocline) is wide! / Over the depth range. Even if it is formed, it is possible to trace the boundary of the temperature-changing layer or density gradient layer with high accuracy in the plane direction along the sea surface.
  • the sensor 131 when the sensor 131 can measure at least one weather-related information, the sensor 131 floats on the sea surface during the observation cycle, and the at least one weather It is also possible to measure the related information and perform the operation of transmitting it wirelessly using the data transmission mechanism 14.
  • both supply and discharge of the buoyancy adjusting fluid related to the bladder are performed by the gear pump, which is a reversible pump.
  • the control of both the discharge and the discharge is basically carried out without being affected by other external forces such as water pressure, so that the volume of the buoyancy adjustment fluid existing in the bladder is reliably adjusted. It becomes possible to do.
  • the amount of buoyancy adjustment fluid transferred by the gear pump and the transfer speed are determined based on the rotation angle and rotation speed of the gear that is electrically high and can be controlled with high accuracy. It is possible to control the transfer amount in detail, and in the end, it is effective for the floating float It is possible to adjust buoyancy in detail and reliably. Therefore, it is possible to accurately switch the up and down movement of the float and sink float and change the movement speed with an excellent response speed.
  • the gear pump basically exhibits a braking function by being used in combination with a buoyancy adjusting fluid having a relatively high viscosity as described above.
  • the gear pump is operated in a manner in which, for example, the rotation direction and the rotation angle are reliably controlled based on the drive signal. . Therefore, even if there is a large pressure difference between the upstream side and the downstream side across the gear pump in the communication path, the control of the transfer amount of the buoyancy adjusting fluid can be achieved with high accuracy.
  • the float / sink float of the present invention is provided with a valve mechanism, so that the open / close state of the communication path can be switched reliably, and the movement of the buoyancy adjusting fluid can be reliably controlled.
  • the buoyancy adjustment mechanism can be simply configured as a whole because it is not necessary to independently provide a return flow path from the bladder to the fluid storage portion related to the buoyancy adjustment fluid.
  • the gear pump is generally used by being driven at a relatively high rotational speed of, for example, 800 to 4000 rotations Zmin by an AC driving means of 100 to 200 volts, for example.
  • the numerical values are determined on the assumption that they are driven under the generally used usage conditions.Thus, by driving under the usage conditions or conditions according to the usage conditions, For the first time, the operational effects of the design are reliably exhibited and the operation is guaranteed.
  • the float / float float 10 of the present invention has an extremely low rotational speed range by the DC drive means that is driven by a very low drive voltage as compared with the general use conditions.
  • the operating conditions are very different and very special conditions. It can be said that it is used in the matter.
  • the gear pump 20 is used in such a very special manner, whereby the state of transfer of the buoyancy adjusting fluid in the communication path can be controlled in detail and reliably. Therefore, it is easy to control the movement of the float and float, and the power consumption is suppressed, so that the life of the float and float can be extended.
  • the buoyancy adjustment related to the float / sink float can be performed in a wide range by the transfer of the fluid for buoyancy adjustment. It is possible to mount other various sensors.
  • the float / float float can be moved with high accuracy to a desired target depth related to various parameter values obtained by the mounted sensor.
  • valve mechanism may be configured such that the open / close state in the communication path can be switched steplessly or stepwise. According to such a configuration, the volume control of the bladder can be executed with high accuracy.
  • the float / float of the present invention may be used in fresh water such as lake water which is not necessarily used in seawater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A sinkable float enabling the detail and secure adjustment of an effective buoyancy acting thereon and a method of using the sinkable float. The sinkable float comprises a float chamber forming an airtight internal space, a fluid storage part formed in the float chamber and storing a buoyancy adjusting fluid, a bladder disposed on the outside of the float chamber and adjusting a buoyancy acting on the sinkable float by changing the volume of the buoyancy adjusting fluid filled therein, a pump mechanism for feeding the buoyancy adjusting fluid between the bladder and the fluid storage part, and a drive source driving the pump mechanism. The sinkable float is characterized in that the pump mechanism is formed of a gear pump.

Description

明 細 書  Specification
浮沈フロートおよび浮沈フロートの使用方法  Floating float and how to use it
技術分野  Technical field
[0001] 本発明は、例えば高度海洋監視システムに用いられる浮沈フロートおよび浮沈フロ ートの使用方法に関する。  [0001] The present invention relates to a floating float and a floating float used in an advanced marine monitoring system, for example.
背景技術  Background art
[0002] 近年、地球温暖化などの環境問題に対処するため、全地球規模で、例えば海洋に おける熱輸送のメカニズムなどの環境変動メカニズムを解明し、把握することが必要 とされており、そのための高度海洋監視システムが推進されている。このような高度海 洋監視システムにおいては、水深 2000m程度から海洋表面までにおける、例えば、 水温などの物理的パラメーター、塩分濃度などの化学的パラメーターの鉛直構造、 すなわち、水深方向における種々のパラメーターの変化を観測することが必要となる 。そして、このような観測を行う機器としては、予め設定されたプログラムに従って自 己の浮力を自動的に調整することにより水中において上昇移動、下降移動および上 下方向における位置の維持が可能である、自動制御の浮沈フロートが用いられてい る。  [0002] In recent years, in order to cope with environmental problems such as global warming, it is necessary to elucidate and understand environmental fluctuation mechanisms such as the mechanism of heat transport in the ocean on a global scale. Advanced marine monitoring system is being promoted. In such an advanced ocean monitoring system, the vertical structure of physical parameters such as water temperature and chemical parameters such as salinity, for example, changes in various parameters in the depth direction from the depth of about 2000 m to the ocean surface. It is necessary to observe. As a device for such observation, it is possible to move up and down in water and maintain the position in the up and down direction by automatically adjusting its buoyancy according to a preset program. An automatically controlled float / float is used.
[0003] そして、従来の浮沈フロートとしては、例えば図 3に示す構成を有するものが知られ ている。  [0003] As a conventional float / float, for example, one having a configuration shown in FIG. 3 is known.
[0004] 図 3に示す例において、浮沈フロート 50は、気密な内部空間を形成する例えば強 化榭脂製のフロートチャンバ一 51を筐体として備えてなると共に、浮沈フロート 50全 体に作用する浮力の大きさを調整する浮力調整機構 52、水中において種々のパラメ 一ターの計測を行う計測機構 53、この計測機構 53により得られたデータを無線送信 するデータ送信機構 54、これら各機構を制御する制御機構 55、およびこれら各機構 に電源を供給する電源装置 56を有する構成とされて ヽる。  In the example shown in FIG. 3, the float / float float 50 includes a float chamber 51 made of, for example, reinforced resin, which forms an airtight internal space, and acts on the float / float float 50 as a whole. The buoyancy adjustment mechanism 52 that adjusts the size of the buoyancy, the measurement mechanism 53 that measures various parameters in water, the data transmission mechanism 54 that wirelessly transmits the data obtained by the measurement mechanism 53, and controls each of these mechanisms The control mechanism 55 is configured to have a power supply device 56 that supplies power to each mechanism.
[0005] 浮力調整機構 52は、フロートチャンバ一 51の内部に設けられた、その内部に浮力 調整用流体を収容する流体収容部 521と、その作用部がフロートチャンバ一 51の外 部に位置されるよう設けられた、弾性的に膨張収縮可能な袋状のブラッダー (Bladd er) 522とを備えている。浮力調整機構 52において、ブラッダー 522は、浮力調整用 流体を移送する一方向移送型のポンプ装置 524を有する主流路 523Aを介して流 体収容部 521に接続されると共に、主流路 523Aから分岐する分岐流路 523Bにより 流体収容部 521に至る帰還流路が形成されている。この分岐流路 523Bには、弁の 開放度によって浮力調整用流体の流量を調整するバルブ機構 525が設けられてい る。ここで、一方向移送型のポンプ装置とは、流体を主流路 523Aの一方から他方へ のみ移送する機能のみを有し、逆方向への流体の移送ができない非可逆的なもの であって、当該ポンプ装置が停止状態とされることにより当該主流路 523Aが閉止さ れた状態となる。 [0005] The buoyancy adjusting mechanism 52 is provided inside the float chamber 51, the fluid containing portion 521 for containing the buoyancy adjusting fluid therein, and the action portion thereof are located outside the float chamber 51. An elastically inflatable / shrinkable bladder (Bladd er) 522. In the buoyancy adjustment mechanism 52, the bladder 522 is connected to the fluid accommodating portion 521 via the main flow path 523A having the one-way transfer type pump device 524 for transferring the buoyancy adjustment fluid, and branches from the main flow path 523A. A return flow path leading to the fluid containing portion 521 is formed by the branch flow path 523B. The branch flow path 523B is provided with a valve mechanism 525 that adjusts the flow rate of the buoyancy adjusting fluid according to the degree of opening of the valve. Here, the one-way transfer type pump device has only a function of transferring the fluid only from one side of the main flow path 523A to the other, and is an irreversible device that cannot transfer the fluid in the reverse direction. When the pump device is stopped, the main flow path 523A is closed.
[0006] 計測機構 53は、フロートチャンバ一 51の外部に露出して設けられた、例えば電気 伝導度水温水深計(Conductivity— Temperature— Depth Profiler : CTD Pr ofiler)などのセンサー 531およびこのセンサー 531を制御するセンサー基板 532に より構成されている。また、データ送信機構 54は、その一部がフロートチャンバ一 51 の外部に露出して設けられた無線アンテナ 541および送信基板 542により構成され ている。そして、このセンサー基板 532並びに送信基板 542が、制御機構 55に電気 的に接続されている。  [0006] The measuring mechanism 53 includes a sensor 531 such as a Conductivity—Temperature Depth Profiler (CTD Pr ofiler) provided outside the float chamber 51 and the sensor 531. It consists of a sensor board 532 to be controlled. The data transmission mechanism 54 includes a radio antenna 541 and a transmission board 542 that are partly exposed to the outside of the float chamber 51. The sensor board 532 and the transmission board 542 are electrically connected to the control mechanism 55.
[0007] そして、浮沈フロート 50全体の質量体積比は、ブラッダー 522の内部に浮力調整 用流体が全くあるいは殆ど充填されていないその体積が最小の状態であり、当該浮 沈フロート 50に作用する浮力が最小である最小有効浮力状態において、海水中に おける有効浮力の値が負となって沈下するよう、が設計されている。  [0007] The mass / volume ratio of the entire float / float 50 is such that the volume of the bladder 522 filled with no or almost no buoyancy adjusting fluid is minimal, and the buoyancy acting on the float / float 50 In the minimum effective buoyancy state where the minimum is, the effective buoyancy value in seawater is set to be negative and sink.
[0008] 本明細書中の記載において、「有効浮力」とは、  [0008] In the description of the present specification, "effective buoyancy" means
[水中において浮沈フロートに作用する浮力] [浮沈フロートの総質量] により得られる値を意味するものとする。従って、有効浮力が負の値である場合には 浮沈フロートは水中を下降移動し、有効浮力が正の値である場合には浮沈フロート は水中を上昇移動し、また、有効浮力がゼロである場合には浮沈フロートは水中に お!、て一定の深度を維持するよう上下方向にぉ 、て停止する。  It means the value obtained by [buoyancy acting on floating float in water] [total mass of floating float]. Therefore, when the effective buoyancy is negative, the ups and downs float moves down in the water, and when the effective buoyancy is positive, the ups and downs float moves up in the water, and the effective buoyancy is zero. In some cases, the float and float should be submerged in water, and then stopped vertically to maintain a certain depth.
[0009] 以上のような構成を有する浮沈フロート 50は、通常、例えば船舶から海中に投入さ れて観測に供されるものである。当該浮沈フロート 50は、海中に投入された後、例え ば、所期の深度まで下降移動し、当該深度で一定の期間漂流し、その後海面まで徐 々に上昇移動する一連の動作を一サイクルとして当該サイクルを予め設定された周 期で自動的に実行し、この工程において種々のパラメーターの計測を行う。そして、 例えば海中の上昇移動中に得られた計測データが、当該浮沈フロート 50が海面上 に浮上した時に基地局に無線送信される。 [0009] The float / float float 50 having the above-described configuration is usually used, for example, by being introduced into the sea from a ship. After the float / float 50 is introduced into the sea, For example, a series of operations that move down to the desired depth, drift at that depth for a certain period, and then gradually move up to the sea level as one cycle is automatically executed in a preset cycle. In this process, various parameters are measured. Then, for example, measurement data obtained during ascending movement in the sea is wirelessly transmitted to the base station when the floating float 50 rises above the sea surface.
[0010] 具体的には、海中へ投入された浮沈フロート 50は、浮力調整用流体が全くまたは 殆どブラッダー 522の内部に存在しない状態で、主流路 523Aが停止状態のポンプ 装置 524によって閉止されると共に、分岐流路 523Bがバルブ機構 525によって閉 止されることによって前記最小有効浮力状態とされることにより、下降移動を開始する [0010] Specifically, the floating float 50 put into the sea is closed by the pump device 524 in which the main flow path 523A is stopped with no or almost no buoyancy adjustment fluid inside the bladder 522. At the same time, when the branch flow path 523B is closed by the valve mechanism 525, the minimum effective buoyancy state is established, and the downward movement is started.
[0011] この最小有効浮力状態において、制御機構 55において予め設定された適宜のプ ログラムに従った信号によりポンプ装置 524の駆動が開始されると、浮力調整用流体 が流体収容部 521から主流路 523Aを介してブラッダー 522に供給され、これにより 、当該ブラッダー 522が、供給された当該浮力調整用流体の量に応じて弾性的に膨 張して、浮沈フロート 50に係る有効浮力が徐々に増加する。その結果、浮沈フロート 50の下降移動スピードが次第に低下する。 [0011] In this minimum effective buoyancy state, when driving of the pump device 524 is started by a signal according to an appropriate program preset in the control mechanism 55, the buoyancy adjusting fluid flows from the fluid storage portion 521 to the main flow path. 523A is supplied to the bladder 522, and the bladder 522 is elastically expanded according to the supplied amount of the buoyancy adjusting fluid, and the effective buoyancy of the float / float float 50 is gradually increased. To do. As a result, the descending movement speed of the float / float float 50 gradually decreases.
[0012] そして、有効浮力の値がゼロとなった時にポンプ装置 524の駆動が停止されて、ブ ラッダ一 522が、その内部に存在する浮力調整用流体の体積に応じて膨張された状 態に維持されることにより、浮沈フロート 50は、有効浮力がゼロである中性浮力状態 となり、その結果、当該浮沈フロート 50は海中において深度を維持するよう上下方向 において停止する。  Then, when the value of the effective buoyancy becomes zero, the driving of the pump device 524 is stopped, and the bladder 522 is expanded in accordance with the volume of the buoyancy adjusting fluid existing therein. As a result, the floating float 50 is in a neutral buoyancy state in which the effective buoyancy is zero, and as a result, the floating float 50 stops in the vertical direction so as to maintain the depth in the sea.
[0013] また、ブラッダー 522に対して浮力調整用流体が «続して充填されて、当該ブラッ ダー 522が更に膨張されることにより、次第に有効浮力が増加して、当該有効浮力が 正の値となると浮沈フロート 50は海中において上昇移動を開始する。  [0013] Further, the bladder 522 is continuously filled with the buoyancy adjusting fluid, and the bladder 522 is further expanded, so that the effective buoyancy gradually increases, and the effective buoyancy becomes a positive value. Then, the floating float 50 begins to move up in the sea.
[0014] 一方、その後、ポンプ装置 524の駆動が停止された状態でノ レブ機構 525により 分岐流路 523Bが開放されると、ブラッダー 522内に存在する浮力調整用流体は、ブ ラッダ一 522の弹性的な復元力および当該ブラッダー 522に対して外部から作用す る、例えば水圧などの外力により、当該分岐流路 523Bを介して流体収容部 521に 排出される。これによりブラッダー 522が収縮してその体積が減少して有効浮力が低 減し、その結果、有効浮力の値が負となると、浮沈フロート 50は再度、海中を下降移 動する。 On the other hand, when the branch flow path 523B is opened by the nozzle mechanism 525 in a state where the driving of the pump device 524 is stopped, the buoyancy adjusting fluid existing in the bladder 522 is transferred to the bladder 522. Due to the inertial restoring force and the external force acting on the bladder 522 from the outside, such as water pressure, the fluid containing portion 521 is passed through the branch channel 523B. Discharged. As a result, the bladder 522 contracts and its volume decreases to reduce the effective buoyancy. As a result, when the value of the effective buoyancy becomes negative, the float / float float 50 moves down in the sea again.
[0015] すなわち、上記のような浮沈フロート 50によれば、ブラッダー 522の内部に充填さ れた浮力調整用流体の体積が調整されることによって当該ブラッダー 522の体積が 調整されるので、このブラッダー 522の体積の変化に伴う有効浮力の変化により、海 中にお 、て上昇移動、下降移動および上下方向にお!、て停止することが可能である  [0015] That is, according to the float / sink float 50 as described above, the volume of the bladder 522 is adjusted by adjusting the volume of the buoyancy adjusting fluid filled in the bladder 522. The effective buoyancy change accompanying the change in the volume of the 522 makes it possible to move up and down, and to stop in the vertical direction in the sea.
[0016] 以上のような観測用の浮沈フロートにおいては、所期の移動速度および停止深度 を高い精度で制御するために、浮沈フロートに係る有効浮力を微細に調整すること が必要であるが、このような有効浮力の調整は、ブラッダ一の体積、すなわち、ブラッ ダ一の内部に存在する浮力調整用流体の体積を、ポンプ装置 524およびバルブ機 構 525によって詳細に調整することによって達成される。 [0016] In the floating float for observation as described above, it is necessary to finely adjust the effective buoyancy associated with the float float, in order to control the intended moving speed and stop depth with high accuracy. Such adjustment of the effective buoyancy is achieved by finely adjusting the volume of the bladder, that is, the volume of the buoyancy adjusting fluid existing inside the bladder by the pump device 524 and the valve mechanism 525. .
[0017] し力しながら、以上のような構成を有する浮沈フロート 50においては、バルブ機構 5 25に対してブラッダー 522に作用される水圧と同じ大きさの圧力が浮力調整用流体 を介して作用されるが、バルブ機構 525は、その機構上、加圧下においては弁の開 放度を緻密に制御することが困難であり、結局、ブラッダー 522から排出される浮力 調整用流体の流量を詳細に制御することは困難であって、ブラッダー 522内の浮力 調整用流体の量を精細に調整することができない。従って、所期の有効浮力値を高 い精度で実現することができず、結局、当該浮沈フロート 50に係る所期の移動速度 、および所期の深度での上下方向における停止などの水中での動作を高い精度で 実現することが実際上非常に困難である、という問題がある。そして、特に浮沈フロー ト 50が深々度に位置する場合においては、前記バルブ機構 525に作用される圧力 が相当に大きいため、上記の問題が更に顕著となる、という問題がある。  [0017] In the float / float float 50 having the above-described configuration, however, a pressure having the same magnitude as the water pressure acting on the bladder 522 acts on the valve mechanism 525 via the buoyancy adjusting fluid. However, it is difficult for the valve mechanism 525 to precisely control the degree of opening of the valve under pressure due to the mechanism. As a result, the flow rate of the buoyancy adjustment fluid discharged from the bladder 522 is detailed. It is difficult to control, and the amount of the buoyancy adjusting fluid in the bladder 522 cannot be finely adjusted. Therefore, the desired effective buoyancy value cannot be realized with high accuracy. Eventually, the intended movement speed of the float / float float 50 and the stop in the vertical direction at the desired depth are underwater. There is a problem that it is actually very difficult to realize the operation with high accuracy. In particular, when the float / float float 50 is located deeply, the pressure applied to the valve mechanism 525 is considerably large, so that the above problem becomes more significant.
また、バルブ機構 525においては、弁の開放度が一定に維持された場合であって も、当該バルブ機構 525を流過する浮力調整用流体の量が例えば浮力調整用流体 に作用される圧力に応じて変化し、一定に安定せず、結局、浮力調整用流体の流量 を精確に制御することが困難である、という問題がある。 特許文献 1 :特開 2002— 145177号公報 Further, in the valve mechanism 525, even if the degree of opening of the valve is maintained constant, the amount of the buoyancy adjustment fluid flowing through the valve mechanism 525 is, for example, the pressure acting on the buoyancy adjustment fluid. Accordingly, there is a problem that the flow rate of the fluid for adjusting the buoyancy is difficult to control accurately. Patent Document 1: Japanese Patent Laid-Open No. 2002-145177
発明の開示  Disclosure of the invention
[0018] 本発明は、以上のような事情に基いてなされたものであって、その目的は、それ自 体に作用する有効浮力の調整を、詳細かつ確実に行うことができる浮沈フロートおよ び当該浮沈フロートの使用方法を提供することにある。  [0018] The present invention has been made on the basis of the circumstances as described above, and the object thereof is to provide a float / sink float and an adjustable float capable of adjusting the effective buoyancy acting on itself in detail and with certainty. And providing a method of using the floating float.
[0019] 本発明の浮沈フロートは、気密な内部空間を形成するフロートチャンバ一と、このフ ロートチャンバ一内に設けられた、浮力調整用流体を収容する流体収容部と、フロー トチャンバ一の外部に配設され、内部に浮力調整用流体が充填されて体積を変化さ せて浮沈フロートに作用する浮力を調整するためのブラッダ一と、このブラッダ一と流 体収容部との間で当該浮力調整用流体を移送するためのポンプ機構と、ポンプ機構 を駆動する駆動源とを備えてなる浮沈フロートであって、  The float / float float of the present invention includes a float chamber 1 that forms an airtight internal space, a fluid storage section that is provided in the float chamber and that contains a buoyancy adjusting fluid, and an exterior of the float chamber 1. The buoyancy adjusting fluid is filled with the buoyancy adjusting fluid to change the volume and adjust the buoyancy acting on the float and sink float, and the buoyancy between the bladder and the fluid container portion. A float / sink float comprising a pump mechanism for transferring the adjusting fluid and a drive source for driving the pump mechanism;
ポンプ機構がギアポンプにより構成されていることを特徴とする。  The pump mechanism is constituted by a gear pump.
[0020] ここで、本発明の浮沈フロートにおいては、流体収容部とブラッダ一との間における 前記浮力調整用流体の移動を制御する弁機構が設けられていることが好ましい。  [0020] Here, in the float / sink float of the present invention, it is preferable that a valve mechanism for controlling the movement of the buoyancy adjusting fluid between the fluid containing portion and the bladder is provided.
[0021] 上記の浮沈フロートにおいては、ギアポンプは、その性能保証駆動回転域が 10〜 150回転 Zminのものであることが好ましい。  In the above float and sink float, the gear pump preferably has a performance-guaranteed drive rotation range of 10 to 150 rotations Zmin.
[0022] また、上記の浮沈フロートにおいては、ギアポンプが、 4. 5〜100ccZminの流体 移送能を有するものであることが好まし 、。  [0022] In the above float and sink float, it is preferable that the gear pump has a fluid transfer ability of 4.5 to 100 ccZmin.
[0023] 更に、上記の浮沈フロートにおいては、ポンプ機構に係る駆動源が直流モーター であることが好ましい。  [0023] Further, in the above float and sink float, it is preferable that the drive source related to the pump mechanism is a DC motor.
[0024] 上記の浮沈フロートにおいては、浮力調整用流体が、 2°Cにおいて 3000cst以上 の粘度を有するものであることが好まし 、。  [0024] In the above float and sink float, it is preferable that the buoyancy adjusting fluid has a viscosity of 3000 cst or more at 2 ° C.
[0025] 上記の浮沈フロートは、圧力および、少なくとも一つの水関連情報を計測する計測 手段を備えてなることが好ましぐ当該計測手段は、気象関連情報の計測が可能で あることが好ましい。 [0025] It is preferable that the float and sink float includes a measurement unit that measures pressure and at least one water-related information. The measurement unit is preferably capable of measuring weather-related information.
[0026] 本発明の浮沈フロートの使用方法は、上記浮沈フロートの使用方法であって、 前記計測手段により得られた少なくとも圧力情報に基づいてブラッダー内における 浮力調整用流体の量を調整することを特徴とする。 [0027] 本発明の浮沈フロートによれば、ブラッダ一に係る浮力調整用流体の排出量およ び供給量の両方が可逆式ポンプであるギアポンプにより能動的に制御されることによ り、ブラッダ一に係る浮力調整用流体の供給量および排出量が精確に制御される。 その結果、当該ブラッダー内に存在する浮力調整用流体の体積が確実に調整され る。従って、当該ブラッダ一の体積が微細に調整され、その結果、当該浮沈フロート に係る有効浮力が高い精度をもって制御される。 [0026] A method for using the float / float float according to the present invention is a method for using the float / float float, wherein the amount of the buoyancy adjustment fluid in the bladder is adjusted based on at least pressure information obtained by the measuring means. Features. [0027] According to the float / sink float of the present invention, both the discharge amount and supply amount of the buoyancy adjusting fluid according to the bladder are actively controlled by the gear pump which is a reversible pump. The supply amount and the discharge amount of the buoyancy adjustment fluid according to the above are accurately controlled. As a result, the volume of the buoyancy adjusting fluid existing in the bladder is reliably adjusted. Accordingly, the volume of the bladder is finely adjusted, and as a result, the effective buoyancy associated with the floating float is controlled with high accuracy.
[0028] ギアポンプは、上述のように比較的高い粘度を有する浮力調整用流体と組み合わ されて用いられることにより、基本的にブレーキ機能を発揮するものであり、浮力調整 用流体に高い圧力が作用されるような環境下においても、意図しない動作が確実に 防止されて、ギアの回転角度および回転速度が精確に制御される。従って、流体の 移送量が常に高い精度で制御されるものであって、その結果、当該ブラッダ一の体 積が常に詳細に調整され、結局、当該浮沈フロートに係る浮力が高い精度をもって 制御される。  [0028] The gear pump basically exhibits a braking function when used in combination with a buoyancy adjusting fluid having a relatively high viscosity as described above, and a high pressure acts on the buoyancy adjusting fluid. Even in such an environment, unintended operations are reliably prevented, and the rotation angle and rotation speed of the gear are accurately controlled. Accordingly, the amount of fluid transferred is always controlled with high accuracy, and as a result, the volume of the bladder is always adjusted in detail, and eventually the buoyancy associated with the floating float is controlled with high accuracy. .
[0029] また、ギアポンプは、従来の一方向型ポンプと比して小型で、かつ、軽量であるため 、浮沈フロート全体としても小型化および軽量ィ匕が実現される。その結果、浮沈フロ ートに係る消費電力の高効率ィ匕が達成されて長い使用寿命が実現されると共に、フ ロートチャンバ一の形状などの設計上の条件に高い自由度が得られる。  [0029] Further, since the gear pump is smaller and lighter than the conventional one-way pump, the entire float and sink float can be reduced in size and weight. As a result, high efficiency of power consumption related to the floating float is achieved, a long service life is achieved, and a high degree of freedom in design conditions such as the shape of the float chamber is obtained.
[0030] し力も、弁機構が設けられている構成によれば、流体収容部とブラッダ一との間に おける浮力調整用流体の移動が高い精度で制御されるため、当該ブラッダ一の体積 が確実に制御されることとなり、結局、当該浮沈フロートに係る浮力が高い精度をもつ て制御される。  [0030] According to the configuration in which the valve mechanism is provided, since the movement of the buoyancy adjusting fluid between the fluid storage portion and the bladder is controlled with high accuracy, the volume of the bladder is reduced. As a result, the buoyancy of the float / float float is controlled with high accuracy.
[0031] 本発明の浮沈フロートの使用方法によれば、ブラッダー内に充填された浮力調整 用流体の量を、例えば、海水の電気伝導度 (塩分濃度)、水温、水圧などの種々の情 報に基づいて調整することにより、浮沈フロートを当該情報に関連した所期の深度位 置に確実に制御することが可能である。  [0031] According to the method of using the float / float float according to the present invention, the amount of the buoyancy adjusting fluid filled in the bladder is measured by various information such as seawater electrical conductivity (salt concentration), water temperature, and water pressure. By adjusting based on this, it is possible to reliably control the floating float to the intended depth position related to the information.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]本発明の浮沈フロートの一例の構成を、フロートチャンバ一の長軸に沿った断 面で示す説明用断面である。 [図 2]ギアポンプの構成を、ギアの回転軸に垂直な断面で示す説明用断面図である [0032] FIG. 1 is an explanatory cross section showing a configuration of an example of a float / sink float of the present invention by a cross-section along the long axis of a float chamber. FIG. 2 is an explanatory sectional view showing the configuration of the gear pump in a section perpendicular to the rotation axis of the gear.
[図 3]従来の浮沈フロートの一例の構成を、縦軸に沿った断面で示す説明用断面で ある。 FIG. 3 is an explanatory cross section showing a configuration of an example of a conventional float / sink float in a cross section along the vertical axis.
符号の説明 Explanation of symbols
10 浮沈フロート  10 Float float
11 フロートチャンバ一  11 Float chamber
12 浮力調整機構  12 Buoyancy adjustment mechanism
121 流体収容部  121 Fluid container
122 ブラッダー  122 Blooder
123 連通路  123 communication path
124 駆動源  124 Driving source
125 弁機構  125 Valve mechanism
126 弁機構駆動源  126 Valve mechanism drive source
13 計測機構  13 Measuring mechanism
131 センサー  131 sensors
132 センサー基板  132 Sensor board
14 データ送信機構  14 Data transmission mechanism
141 無線アンテナ  141 wireless antenna
142 送信基板  142 Transmitter board
15 制御機構  15 Control mechanism
16 電源装置  16 Power supply
20 ギアポンプ  20 Gear pump
201 ギアケース  201 gear case
202a 内方滞留空間  202a Inner retention space
202b 外方滞留空間  202b Outside retention space
203 駆動軸  203 Drive shaft
204 駆動ギア 205 嚙合部 204 Drive gear 205
206 従動軸  206 Driven shaft
207 従動ギア  207 driven gear
208 内方開口  208 inward opening
209 外方開口  209 outward opening
210 移送空間  210 Transfer space
50 浮沈フロート  50 Floating float
51 フロートチャンバ一  51 Float chamber
52 浮力調整機構  52 Buoyancy adjustment mechanism
521 流体収容部  521 Fluid container
522 ブラッダー  522 Blooder
523A 主流路  523A main channel
523B 分岐流路  523B branch channel
524 ポンプ装置  524 pumping equipment
525 バルブ機構  525 Valve mechanism
53 計測機構  53 Measuring mechanism
531 センサー  531 sensor
532 センサー基板  532 sensor board
54 データ送信機構  54 Data transmission mechanism
541 無線アンテナ  541 Wireless antenna
542 送信基板  542 Transmitter board
55 制御機構  55 Control mechanism
56 電源装置  56 Power supply
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の浮沈フロートについて詳細に説明する。  Hereinafter, the floating float according to the present invention will be described in detail.
図 1は、本発明の浮沈フロートの一例の構成を、フロートチャンバ一の長軸に沿つ た断面で示す説明用断面図、図 2は、ギアポンプの構成を、ギアの回転軸に垂直な 断面で示す説明用断面図である。 [0035] 図示する例において、浮沈フロート 10は、気密な内部空間を形成する例えば強化 榭脂よりなる略球形のフロートチャンバ一 11を筐体として備えてなると共に、浮沈フロ ート 10全体に作用する浮力の大きさを調整する浮力調整機構 12、水中において、 水圧を含む種々の情報の計測を行う計測機構 13、計測機構 13により得られた電子 データを無線送信するデータ送信機構 14、これら各機構を制御する制御機構 15、 およびこれら各機構に電源を供給する電源装置 16を有する構成とされている。 FIG. 1 is a cross-sectional view for explaining the structure of an example of the float / sink float of the present invention in a cross section along the long axis of the float chamber. FIG. 2 is a cross section of the structure of the gear pump perpendicular to the rotation axis of the gear It is sectional drawing for description shown by. In the example shown in the figure, the float / float float 10 is provided with a substantially spherical float chamber 11 made of, for example, reinforced resin, which forms an airtight internal space, and acts on the float float / float 10 as a whole. A buoyancy adjustment mechanism 12 that adjusts the size of the buoyancy force, a measurement mechanism 13 that measures various information including water pressure in water, a data transmission mechanism 14 that wirelessly transmits electronic data obtained by the measurement mechanism 13, and each of these The control mechanism 15 that controls the mechanism and the power supply device 16 that supplies power to each of the mechanisms are configured.
以上において、計測機構 13は、水圧と共に、少なくとも一つの水関連情報の計測 をすることができるものであることが好ましぐ更に、少なくとも一つの気象関連情報の 計測をすることができるものであることが好ましい。  In the above, it is preferable that the measurement mechanism 13 can measure at least one water-related information together with the water pressure. Further, the measurement mechanism 13 can measure at least one weather-related information. It is preferable.
ここで、水関連情報とは、例えば海水に関連して計測可能な種々のパラメーターで あって、その具体例としては、例えば海水の電気伝導度 (塩分濃度)、水温などの物 理的パラメーター、例えばクロロフィル濃度、酸素、二酸化炭素などの可水溶性ガス の溶存濃度などの生物'ィ匕学的パラメーター、例えば海水の透明度などの光学的パ ラメ一ターなどを挙げることができる。  Here, the water-related information is various parameters that can be measured in relation to seawater, for example, and specific examples thereof include physical parameters such as seawater electrical conductivity (salt concentration), water temperature, Examples thereof include biological parameters such as chlorophyll concentration, dissolved concentration of water-soluble gases such as oxygen and carbon dioxide, and optical parameters such as seawater transparency.
また、気象関連情報とは、例えば大気に関連して計測可能な種々のパラメーターで あって、その具体例としては、例えば気温、湿度、大気圧などの物理的パラメーター 、種々の組成ガス濃度などの化学的パラメーターなどを挙げることができる。  The weather-related information is various parameters that can be measured in relation to the atmosphere. Specific examples thereof include physical parameters such as temperature, humidity, and atmospheric pressure, and various composition gas concentrations. Chemical parameters etc. can be mentioned.
[0036] フロートチャンバ一 11は、その形状は特に限定されるものではないが、例えば、図 1 に示す例においては、球形の本体の上部に半球状のドームが一体的に合成された 形状とされている。外匣がこのような形状とされていることにより、浮沈フロート 10全体 として小型化が図られるだけでなぐ優れた耐圧性が得られると共に、上下左右のい ずれの方向に移動する際にも水による抵抗が略均一であるため、浮沈フロートの位 置制御が容易である、という効果が奏される。而して、フロートチャンバ一 11をこのよ うな形状とすることは、後述するように、ポンプ装置としてギアポンプを採用することに よって浮沈フロート 10に係る浮力調整機構 12全体の小型化および軽量ィ匕が達成さ れた結果、実現可能となった。  [0036] The shape of the float chamber 11 is not particularly limited. For example, in the example shown in Fig. 1, a shape in which a hemispherical dome is integrally synthesized on the upper part of a spherical body. Has been. Due to the shape of the outer casing, it is possible to obtain an excellent pressure resistance as well as to reduce the size of the float / float float 10 as a whole, and also to move water in both the vertical and horizontal directions. Since the resistance due to is substantially uniform, there is an effect that the position control of the floating float is easy. Thus, the shape of the float chamber 11 as described above can be reduced by reducing the size and weight of the buoyancy adjusting mechanism 12 related to the float / sink float 10 by adopting a gear pump as a pump device, as will be described later. As a result, it became feasible.
[0037] 浮力調整機構 12は、フロートチャンバ一 11の内部に設けられた、その内部に浮力 調整用流体を収容する流体収容部 121と、弾性部材よりなり、内部に充填される浮 力調整用流体の充填量に応じて弾性的に膨張収縮可能な可変形部よりなる、フロー トチャンバ一 11の外部に設けられたブラッダー 122と、流体収容部 121およびブラッ ダー 122を直接接続する連通路 123に介在して配設されたギアポンプ 20と、このギ ァポンプ 20を駆動させる、当該ギアポンプ 20に直接的に連結するよう設けられた駆 動源 124と、連通路 123の開閉状態を切り換える弁機構 125と、この弁機構 125を駆 動させる弁機構駆動源 126とにより構成されている。 [0037] The buoyancy adjusting mechanism 12 is provided inside the float chamber 11, and is made up of a fluid containing portion 121 that contains a buoyancy adjusting fluid therein and an elastic member, and the buoyancy adjusting mechanism 12 is filled in the inside. A bladder 122 provided outside the float chamber 11, which is made of a deformable portion that can be elastically expanded and contracted in accordance with the filling amount of the force adjusting fluid, is connected to the fluid container 121 and the bladder 122. A gear pump 20 disposed in the passage 123, a drive source 124 provided to directly connect to the gear pump 20 for driving the gear pump 20, and a valve for switching the open / close state of the communication passage 123 A mechanism 125 and a valve mechanism drive source 126 that drives the valve mechanism 125 are configured.
[0038] ここで、ブラッダー 122としては、浮沈フロート 10に係る有効浮力を調整することが できる適宜の形状および構成のものを利用することが可能である。また、ブラッダー 1 22の容積は、浮沈フロート 10全体に係る質量体積比などに応じて決定され、例えば 浮沈フロート 10の占有体積の 0. 3〜10%、特に 0. 5〜4%とされる。  Here, as the bladder 122, it is possible to use one having an appropriate shape and configuration capable of adjusting the effective buoyancy associated with the floating float 10. The volume of the bladder 122 is determined according to the mass-volume ratio of the entire float / float 10 and is, for example, 0.3 to 10%, particularly 0.5 to 4% of the occupied volume of the float / float 10. .
[0039] 浮力調整用流体としては、種々の組成、物性を有するものを用いることが可能であ る力 その粘度は、例えば 2°Cで 3000cst以上であることが好ましぐより好ましくは 3 000〜20000cst、特に好ましくは lOOOOcstである。また、浮力調整用流体の比重 は、例えば 0. 85〜: L 0であることが好ましい。そして当該浮力調整用流体の具体例 としては、ギアオイルとして利用可能なオイル、例えばシリコーンオイルなどを挙げる ことができ、例えば 2°Cにおける粘度が lOOOOcstであるシリコーンオイルを好適に挙 げることができる。このような特定の物性を有する浮力調整用流体を用いることにより 、後述する構成のギアポンプ 20において好適な潤滑特性が得られると共に、当該ギ ァポンプ 20における液密性が向上して、流体の高い移送精度が確実に保障される。  [0039] As the buoyancy adjusting fluid, it is possible to use fluids having various compositions and physical properties. For example, the viscosity is preferably 3000 cst or more at 2 ° C, more preferably 3 000 ˜20,000 cst, particularly preferably lOOOOcst. The specific gravity of the buoyancy adjusting fluid is preferably, for example, 0.85 to L 0. Specific examples of the buoyancy adjusting fluid include oils that can be used as gear oils, such as silicone oils. For example, silicone oils having a viscosity of lOOOOcst at 2 ° C. can be preferably mentioned. . By using such a buoyancy adjusting fluid having specific physical properties, it is possible to obtain suitable lubrication characteristics in the gear pump 20 having a configuration described later, and to improve liquid tightness in the gear pump 20 so that high fluid transfer is possible. Accuracy is guaranteed reliably.
[0040] ギアポンプ 20は、図 2に示すように、ギアケース 201内において、駆動源 124に直 接的に連結された駆動軸 203を中心に回転駆動可能に配設された駆動ギア 204と、 この駆動ギア 204と嚙合部 205において嚙合し、当該駆動ギア 204の回転に追従し て従動軸 206を中心に回転するよう配設された従動ギア 207とを有してなる構成とさ れている。また、矢印で示された順回転方向における嚙合部 205より上流側に形成さ れた内方滞留空間 202aには、連通路 123を介して流体収容部 121に連通する内方 開口 208が設けられていると共に、当該回転方向における嚙合部 205より下流側に 形成された外方滞留空間 202bには、連通路 123を介してブラッダー 122に連通す る外方開口 209が設けられて 、る。 [0041] 以上のギアポンプ 20においては、一つの歯溝と、ギアケースの内周壁面とによって 区画される一つの移送空間 210の容積によって定義される最少の流体移送単位が、 5. 8〜23 μ ml、特に 10〜15 μ mlとされる。このような流体移送単位を有することに より、移送される浮力調整用流体の量を微細に制御することが可能である。 As shown in FIG. 2, the gear pump 20 includes a drive gear 204 disposed in a gear case 201 so as to be rotatable around a drive shaft 203 that is directly connected to a drive source 124. The drive gear 204 is engaged with the engagement portion 205, and is configured to have a driven gear 207 arranged to rotate around the driven shaft 206 following the rotation of the drive gear 204. . Further, an inner opening 208 that communicates with the fluid storage portion 121 via the communication passage 123 is provided in the inner staying space 202a formed on the upstream side of the coupling portion 205 in the forward rotation direction indicated by the arrow. In addition, an outer opening 209 that communicates with the bladder 122 via the communication path 123 is provided in the outer staying space 202b formed on the downstream side of the coupling portion 205 in the rotation direction. [0041] In the gear pump 20 described above, the minimum fluid transfer unit defined by the volume of one transfer space 210 defined by one tooth gap and the inner peripheral wall surface of the gear case is 5.8-23. μml, especially 10-15 μml. By having such a fluid transfer unit, it is possible to finely control the amount of the buoyancy adjustment fluid to be transferred.
[0042] そして、ギアポンプ 20は、例えば 0〜70MPaと!、う高!、耐圧性を有するものである 。このようなギアポンプ 20によれば、例えば外方開口 209を介して大きな圧力が作用 している場合においても、浮力調整用流体の移送量を、その移送方向に関わらず高 V、精度で制御することが可能である。  [0042] The gear pump 20 has, for example, 0 to 70 MPa, high pressure, and pressure resistance. According to such a gear pump 20, for example, even when a large pressure is applied via the outer opening 209, the transfer amount of the buoyancy adjusting fluid is controlled with high V and accuracy regardless of the transfer direction. It is possible.
[0043] 以上の構成のギアポンプ 20において、例えば駆動ギア 204および従動ギア 207に 係るギア径、ギア歯の数、歯厚、歯溝の深さなどのその他の設計要素は、駆動される 回転速度、浮力調整用流体の物性、要求される浮力調整用流体の流量に応じて決 定されればよい。そして、このようなギアポンプ 20は、例えば 4. 5〜100ccZmin、 好ましくは 20〜50ccZminの浮力調整用流体移送能を有するものとして設計されれ ばよい。  [0043] In the gear pump 20 having the above-described configuration, for example, other design elements such as the gear diameter, the number of gear teeth, the tooth thickness, and the tooth gap depth related to the drive gear 204 and the driven gear 207 are driven. It may be determined according to the physical properties of the buoyancy adjusting fluid and the required flow rate of the buoyancy adjusting fluid. And such a gear pump 20 should just be designed as what has the fluid transfer capability for buoyancy adjustment of 4.5-100ccZmin, for example, Preferably it is 20-50ccZmin.
また、ギアポンプ 20は、設計上の作用効果が確実に発揮される性能保証駆動回転 域が 10〜150回転 Zmin、特に 10〜100回転 Zminであることが好ましい。  In addition, the gear pump 20 preferably has a performance-guaranteed driving rotation range of 10 to 150 rotations Zmin, particularly 10 to 100 rotations Zmin, in which design effects are reliably exhibited.
[0044] ここで、ギアポンプ 20を駆動させる駆動源 124としては、例えばトルクが 3. 5Nmで あり、性能保証駆動回転域が 10〜 150回転 Zminであると 、う性能を有するもので あれば特に制限されるものではなぐ例えば変速機構を備えてなる、直流モーター、 交流モーターなどを挙げることができる。駆動源 124の具体例としては、変速機構を 備えた直流モーターを好ましく挙げることができ、特に、例えばその駆動電力が 8〜2 0ボルトである、変速機構を備えた直流モーターを好ましく挙げることができる。  Here, as the drive source 124 for driving the gear pump 20, for example, if the torque is 3.5 Nm and the performance-guaranteed drive rotation region is 10 to 150 rotations Zmin, the drive source 124 is particularly suitable. For example, a direct current motor or an alternating current motor provided with a speed change mechanism may be used. As a specific example of the drive source 124, a DC motor provided with a speed change mechanism can be preferably cited. In particular, for example, a DC motor provided with a speed change mechanism whose drive power is 8 to 20 volts is preferably exemplified. it can.
[0045] 弁機構 125および弁機構駆動源 126としては、適宜の耐圧性が実現され、連通路 123における開閉状態を切り換えることによって浮力調整用流体の移動を ON— OF F制御することができるものであれば、それらの構成は特に制限されるものではなぐ 種々の公知のものを利用することができる。  [0045] As the valve mechanism 125 and the valve mechanism drive source 126, appropriate pressure resistance is realized, and the movement of the buoyancy adjusting fluid can be controlled ON-OF F by switching the open / close state in the communication path 123. If so, those configurations are not particularly limited, and various known ones can be used.
[0046] 以上の浮沈フロート 10において、計測機構 13は、フロートチャンバ一 11の外部に 露出して設けられた、例えば電気伝導度水温水深計(Conductivity— Temperatu re -Depth Profiler : CTD)、大気圧計など、必要に応じて複数種類のセンサー機 器を含むセンサー 131およびこのセンサー 131により得られたデータを保存すると共 に、当該センサーを制御するセンサー基板 132により構成されている。また、データ 送信機構 14は、その一部がフロートチャンバ一 11の外部に露出して設けられた無線 アンテナ 141および送信基板 142により構成されている。そして、このセンサー基板 1 32並びに送信基板 142が、制御機構 15に接続されている。 In the float and sink float 10 described above, the measurement mechanism 13 is provided, for example, an electrical conductivity water temperature depth meter (Conductivity-Temperatu) that is provided outside the float chamber 11. re-Depth Profiler (CTD), barometer, and other sensors 131 that include multiple types of sensor devices, and the sensor board 132 that controls the sensors as well as storing data obtained by these sensors 131 It is configured. Further, the data transmission mechanism 14 includes a radio antenna 141 and a transmission board 142 that are partly exposed to the outside of the float chamber 11. The sensor board 1 32 and the transmission board 142 are connected to the control mechanism 15.
[0047] 以上の構成を有する浮沈フロート 10においては、制御機構 15からの制御信号によ り、弁機構駆動源 126によって弁機構 125が開放状態とされると共に、駆動源 124に よってギアポンプ 20の駆動ギア 204が例えば順方向(図 2において矢印方向)に回 転駆動されると、この駆動ギア 204の回転に追従して従動ギア 207が回転される。そ の結果、内方滞留空間 202aに存在する浮力調整用流体が、駆動ギア 204および従 動ギア 207の歯溝とギアケース 201の内周壁面との間に形成され、当該駆動ギア 20 4および従動ギア 207の回転運動に追従して周方向に移動する複数の移送空間 21 0により、外方滞留空間 202bに移送される。また、この結果生ずる内方滞留空間 20 2aにおける負圧によって、流体収容部 121から新たな浮力調整用流体が当該内方 滞留空間 202a内に供給される。  In the floating float 10 having the above configuration, the valve mechanism 125 is opened by the valve mechanism drive source 126 by the control signal from the control mechanism 15, and the gear pump 20 is driven by the drive source 124. For example, when the drive gear 204 is driven to rotate in the forward direction (the arrow direction in FIG. 2), the driven gear 207 is rotated following the rotation of the drive gear 204. As a result, the buoyancy adjusting fluid existing in the inner staying space 202a is formed between the tooth spaces of the drive gear 204 and the driven gear 207 and the inner peripheral wall surface of the gear case 201, and the drive gear 204 and The plurality of transfer spaces 210 that move in the circumferential direction following the rotational movement of the driven gear 207 are transferred to the outer staying space 202b. Further, a new buoyancy adjusting fluid is supplied from the fluid storage part 121 into the inner staying space 202a by the negative pressure in the inner staying space 202a generated as a result.
[0048] 一方、外方滞留空間 202bに移送された浮力調整用流体は、外方開口 209を介し てブラッダー 122に加圧的に供給されることとなり、これにより、当該供給された浮力 調整用流体の体積に応じてブラッダー 122が膨張してその体積が増加され、その結 果、浮沈浮沈フロート 10に作用する浮力が増加する。  [0048] On the other hand, the buoyancy adjusting fluid transferred to the outer staying space 202b is pressurized and supplied to the bladder 122 through the outer opening 209, whereby the supplied buoyancy adjusting fluid is supplied. Depending on the volume of the fluid, the bladder 122 expands and its volume is increased, and as a result, the buoyancy acting on the floating float 10 is increased.
[0049] また、駆動源 124によってギアポンプ 20の駆動ギア 204が逆方向に回転駆動され ることにより、浮力調整用流体がブラッダー 122から流体収容部 121に排出され、こ れにより、当該排出された浮力調整用流体の体積に応じてブラッダー 122が収縮し てその体積が減少されることとなり、その結果、浮沈フロート 10に作用する浮力が減 少する。  [0049] In addition, when the drive gear 204 of the gear pump 20 is rotationally driven in the reverse direction by the drive source 124, the buoyancy adjusting fluid is discharged from the bladder 122 to the fluid accommodating portion 121, and thus the discharged fluid is discharged. The bladder 122 contracts in accordance with the volume of the buoyancy adjustment fluid, and the volume is reduced. As a result, the buoyancy acting on the float / sink float 10 is reduced.
[0050] そして、浮沈フロート 10に作用する浮力が上述のように増減されることにより、有効 浮力が正の値である時に当該浮沈フロート 10は水中を上昇移動し、また、有効浮力 が負の値である時に当該浮沈フロート 10は水中を下降移動し、更に、有効浮力がゼ 口になつた時に当該浮沈フロート 10は一定の深度を維持するよう上下方向において 停止する。以上において、ギアポンプ 20が停止状態とされると共に弁機構駆動源 12 6によって弁機構 125が閉止状態とされると、これにより、連通路 123が閉止状態とさ れてブラッダー 122内の浮力調整用流体の量が維持される。従って、当該ギアボン プ 20が停止されると共に弁機構 125が閉止された時点における有効浮力がそのまま 維持され、当該有効浮力の値に応じた浮沈フロート 10の動作状態が継続して維持さ れることとなる。 [0050] Then, by increasing or decreasing the buoyancy acting on the float / float float 10 as described above, when the effective buoyancy is a positive value, the float / float float 10 moves upward in the water, and the effective buoyancy is negative. When the value is, the float / float 10 moves down in the water, and the effective buoyancy is When it reaches the mouth, the floating float 10 stops vertically so as to maintain a certain depth. In the above, when the gear pump 20 is stopped and the valve mechanism 125 is closed by the valve mechanism drive source 126, the communication path 123 is closed and the buoyancy adjustment in the bladder 122 is adjusted. The amount of fluid is maintained. Accordingly, the effective buoyancy at the time when the gear pump 20 is stopped and the valve mechanism 125 is closed is maintained as it is, and the operation state of the float / sink float 10 corresponding to the value of the effective buoyancy is continuously maintained. Become.
[0051] 以上のように、ブラッダー 122は、ギアポンプ 20によりいわば強制的に供給または 排出された浮力調整用流体の量に応じてその体積が弾性的に膨張または収縮する ことにより変化し、これにより浮沈フロート 10の総体積を変化させて、当該浮沈フロー ト 10に係る有効浮力を調整することができるものである。  [0051] As described above, the bladder 122 changes due to elastic expansion or contraction of its volume in accordance with the amount of the buoyancy adjustment fluid that is forcibly supplied or discharged by the gear pump 20, and thus, The effective buoyancy associated with the float / float float 10 can be adjusted by changing the total volume of the float / float float 10.
[0052] そして、以上のような浮沈フロート 10は、具体的には、例えば下記(1)から (4)の一 連の動作を 1サイクルとして、このサイクルが自動的に、予め設定された適宜の周期 で多数回実行される態様で観測に供される。ここで、当該観測は、例えば電源装置 1 6による電力の供給が可能である限り継続して続けられてもよ 、。  [0052] Then, the float / float float 10 as described above specifically includes, for example, the following series of operations (1) to (4) as one cycle, and this cycle is automatically set as appropriate in advance. It is used for observation in such a way that it is executed many times with a period of. Here, the observation may be continued as long as power can be supplied from the power supply device 16, for example.
[0053] ( 1 )有効浮力が負とされて海中を下降移動する動作  [0053] (1) The action of moving down in the sea with effective buoyancy being negative
(2)有効浮力がゼロとされて、所期の深度において当該深度を維持するよう上下方 向の移動を停止し、その後、当該深度にて漂流しながら待機する動作  (2) When the effective buoyancy is set to zero, the upward / downward movement is stopped so as to maintain the depth at the desired depth, and then it waits while drifting at the depth.
(3)予め設定された期間が経過した後に有効浮力の値が正とされて、センサー 13 1により 1または 2以上のパラメーターの計測を行 、ながら所定の速度で海面まで上 方移動する動作  (3) After the preset period has elapsed, the effective buoyancy value is set to positive, and the sensor 131 measures one or more parameters and moves upward to the sea level at a predetermined speed.
(4)海面において浮上状態を維持した状態で、データ送信機構 14により、上昇移 動中に得られたデータを無線で送信する動作  (4) Operation to transmit data obtained during ascending movement wirelessly by data transmission mechanism 14 while maintaining a floating state at sea level
[0054] また、浮沈フロート 10は、例えば下記(a)から(e)の一連の動作を 1サイクルとして、 このサイクルが自動的に、予め設定された適宜の周期で多数回実行される態様で観 測に供されてもよい。  [0054] In addition, the float / float float 10 is configured such that, for example, the following series of operations (a) to (e) are performed as one cycle, and this cycle is automatically executed a number of times at a preset appropriate cycle. It may be used for observation.
[0055] (a)有効浮力が負とされて、センサー 131により 1または 2以上のパラメーターの計 測を行いながら所定の速度で海中を下降移動する動作 (b)センサー 131により得られた 1または 2以上のパラメーターの値に基づいて目標 深度を決定し、有効浮力がゼロとされて、当該目標深度を維持するよう上下方向の 移動を停止する動作 [0055] (a) When the effective buoyancy is negative and the sensor 131 measures one or more parameters while moving down the sea at a predetermined speed (b) The target depth is determined based on the value of one or more parameters obtained by the sensor 131, the effective buoyancy is set to zero, and the vertical movement is stopped to maintain the target depth.
(c) 1または 2以上のパラメーターの計測を継続的または断続的に行い、これにより 得られた最新のパラメーター値に基づいて最新の目標深度を決定し、当該最新の目 標深度がパラメーター値計測時の深度と異なる場合に、有効浮力が負または正とさ れて、当該最新の目標深度へ移動し、その後、有効浮力がゼロとされて、当該最新 の深度を維持するよう上下方向の移動を停止する動作  (c) Continuously or intermittently measure one or more parameters, determine the latest target depth based on the latest parameter value obtained, and measure the parameter value based on the latest target depth. If it is different from the depth of time, the effective buoyancy will be negative or positive and move to the latest target depth, and then the effective buoyancy will be zero and move up and down to maintain the latest depth Operation to stop
(d)予め設定された期間上記 (c)の動作を反復して行った後、有効浮力の値が正と されて、海面まで上方移動する動作  (d) After repeating the operation of (c) above for a preset period, the value of effective buoyancy is positive and the operation moves up to the sea level.
(e)海面において浮上状態を維持した状態で、データ送信機構 14により、観測動 作中に得られた所期のデータを無線で送信する動作  (e) Operation to transmit the expected data obtained during observation operation wirelessly by data transmission mechanism 14 while maintaining the floating state at the sea surface
[0056] 上記(a)から(e)に係るサイクルによる浮沈フロート 10の使用方法によれば、例えば 変温層(thermocline)または密度勾配層 (pycnocline)が幅広!/、深度域にわたつ て形成されて ヽる場合にぉ 、ても、海面に沿った面方向に当該変温層または密度勾 配層に係る境界を高 、精度でトレースすることができる。  [0056] According to the method of using the float / float float 10 by the cycle according to (a) to (e) above, for example, the thermocline or the density gradient layer (pycnocline) is wide! / Over the depth range. Even if it is formed, it is possible to trace the boundary of the temperature-changing layer or density gradient layer with high accuracy in the plane direction along the sea surface.
[0057] 以上において、センサー 131が、少なくとも一つの気象関連情報の計測が可能で ある場合には、前記の観測サイクル中にぉ 、て海面に浮上して 、る状態において当 該少なくとも一つの気象関連情報を計測し、これをデータ送信機構 14により無線で 送信する動作を実行してもよ ヽ。  [0057] In the above, when the sensor 131 can measure at least one weather-related information, the sensor 131 floats on the sea surface during the observation cycle, and the at least one weather It is also possible to measure the related information and perform the operation of transmitting it wirelessly using the data transmission mechanism 14.
[0058] 本発明の浮沈フロートによれば、ブラッダ一に係る浮力調整用流体の供給および 排出の両方が可逆ポンプであるギアポンプにより行われるため、当該ブラッダ一に係 る浮力調整用流体の供給量および排出量の両方の制御が、基本的に例えば水圧な どの他の外力に影響されずにいわば強制的に実行され、従って、ブラッダー内に存 在する浮力調整用流体の体積を、確実に調整することが可能となる。し力も、ギアポ ンプによる浮力調整用流体の移送量および移送速度は、電気的に高!、精度で制御 可能なギアの回転角度および回転速度に基づいて決定されるため、前記浮力調整 用流体の移送量を詳細に制御することが可能であり、結局、浮沈フロートに係る有効 浮力を詳細にかつ確実に調整することが可能である。従って、浮沈フロートの上昇移 動および下降移動の切り換え、移動速度の変更を優れた応答速度で、かつ、正確に 実行することが可能である。 [0058] According to the float / sink float of the present invention, both supply and discharge of the buoyancy adjusting fluid related to the bladder are performed by the gear pump, which is a reversible pump. The control of both the discharge and the discharge is basically carried out without being affected by other external forces such as water pressure, so that the volume of the buoyancy adjustment fluid existing in the bladder is reliably adjusted. It becomes possible to do. The amount of buoyancy adjustment fluid transferred by the gear pump and the transfer speed are determined based on the rotation angle and rotation speed of the gear that is electrically high and can be controlled with high accuracy. It is possible to control the transfer amount in detail, and in the end, it is effective for the floating float It is possible to adjust buoyancy in detail and reliably. Therefore, it is possible to accurately switch the up and down movement of the float and sink float and change the movement speed with an excellent response speed.
[0059] 更に、ギアポンプは、既述のような比較的高い粘度を有する浮力調整用流体と組 み合わされて用いられることにより、基本的にブレーキ機能を発揮するものである。こ れにより、当該ギアポンプは、浮力調整用流体に対して高い圧力が作用されている 場合においても、駆動信号に基づいて、例えば回転方向および回転角度などが確 実に制御された態様で動作される。従って、連通路において当該ギアポンプを挟ん だ上流側と下流側との間に大きな圧力差が存在する場合であっても、浮力調整用流 体の移送量の制御が高 、精度で達成される。  [0059] Further, the gear pump basically exhibits a braking function by being used in combination with a buoyancy adjusting fluid having a relatively high viscosity as described above. Thus, even when a high pressure is applied to the buoyancy adjusting fluid, the gear pump is operated in a manner in which, for example, the rotation direction and the rotation angle are reliably controlled based on the drive signal. . Therefore, even if there is a large pressure difference between the upstream side and the downstream side across the gear pump in the communication path, the control of the transfer amount of the buoyancy adjusting fluid can be achieved with high accuracy.
[0060] 本発明の浮沈フロートは、弁機構を備えることにより、連通路における開閉状態を 確実に切り換えることができ、これにより浮力調整用流体の移動を確実に制御するこ とができる。また、当該浮力調整用流体に係る、ブラッダ一から流体収容部に至る帰 還流路を独立して設ける必要がなぐ全体として浮力調整機構を簡潔な構成とするこ とがでさる。  The float / sink float of the present invention is provided with a valve mechanism, so that the open / close state of the communication path can be switched reliably, and the movement of the buoyancy adjusting fluid can be reliably controlled. In addition, the buoyancy adjustment mechanism can be simply configured as a whole because it is not necessary to independently provide a return flow path from the bladder to the fluid storage portion related to the buoyancy adjustment fluid.
[0061] 以上のギアポンプによれば、浮力調整用流体として上述のように高粘度のオイルを 用いることにより、高い潤滑効果が得られると共に、当該ギアポンプ中に存在する微 小な間隙に起因する液漏れなどが抑制されるため、浮力調整用流体の流量制御を 確実に達成することができる。  [0061] According to the gear pump described above, by using the high viscosity oil as the buoyancy adjusting fluid as described above, a high lubrication effect can be obtained, and the liquid caused by the small gap existing in the gear pump can be obtained. Since leakage and the like are suppressed, flow control of the buoyancy adjustment fluid can be reliably achieved.
[0062] ここで、一般的にギアポンプは、例えば 100〜200ボルトの交流駆動手段により、 例えば 800〜4000回転 Zminという比較的高い回転数で駆動されて用いられるも のであり、その構成に係る設計数値は、当該一般的に用いられる使用条件で駆動さ れることを前提として決定されているものであって、従って、当該使用条件、若しくは 当該使用条件に準じた条件で駆動使用されることにより、初めて設計上の作用効果 が確実に発揮され、且つ、その動作が保証される。  [0062] Here, the gear pump is generally used by being driven at a relatively high rotational speed of, for example, 800 to 4000 rotations Zmin by an AC driving means of 100 to 200 volts, for example. The numerical values are determined on the assumption that they are driven under the generally used usage conditions.Thus, by driving under the usage conditions or conditions according to the usage conditions, For the first time, the operational effects of the design are reliably exhibited and the operation is guaranteed.
[0063] し力しながら、本発明の浮沈フロート 10は、既述のように、当該一般的な使用条件 と比して、極めて低い駆動電圧により駆動する直流駆動手段によって、極めて低い 回転速度域で駆動されるものであり、その使用条件が大きく異なり、極めて特殊な条 件で使用されているものであるといえる。そして、本発明の浮沈フロート 10によれば、 ギアポンプ 20が、このような極めて特殊な態様で用いられることにより、連通路におけ る浮力調整用流体の移送状態を詳細にかつ確実に制御することができて、浮沈フロ ートの移動の制御が容易であり、し力も、消費電力が抑制されるために、当該浮沈フ ロートの長寿命化が図られる。 However, as described above, the float / float float 10 of the present invention has an extremely low rotational speed range by the DC drive means that is driven by a very low drive voltage as compared with the general use conditions. The operating conditions are very different and very special conditions. It can be said that it is used in the matter. According to the float / sink float 10 of the present invention, the gear pump 20 is used in such a very special manner, whereby the state of transfer of the buoyancy adjusting fluid in the communication path can be controlled in detail and reliably. Therefore, it is easy to control the movement of the float and float, and the power consumption is suppressed, so that the life of the float and float can be extended.
[0064] また、既述の構成の浮力調整機構によれば、浮力調整用流体の移送により浮沈フ ロートに係る浮力の調整を広い範囲で実行することが可能であり、従って、当該浮沈 フロートには、他の種々のセンサーを搭載することが可能である。  [0064] Further, according to the buoyancy adjustment mechanism having the above-described configuration, the buoyancy adjustment related to the float / sink float can be performed in a wide range by the transfer of the fluid for buoyancy adjustment. It is possible to mount other various sensors.
[0065] 本発明の浮沈フロートの使用方法によれば、搭載されたセンサーによって得られる 種々のパラメーター値に関連した所期の目標深度に、浮沈フロートを高い精度で移 動させることができる。  [0065] According to the method of using the float / float float of the present invention, the float / float float can be moved with high accuracy to a desired target depth related to various parameter values obtained by the mounted sensor.
[0066] 以上、本発明の浮沈フロートについて具体的に説明した力 本発明においては種 々の変更をカ卩えることが可能である。  [0066] As described above, the force specifically described for the float and sink float of the present invention. Various modifications can be made in the present invention.
例えば、弁機構としては、連通路における開閉状態を無段階式にまたは段階式に 切り換えることができる構成であってもよい。このような構成によれば、ブラッダ一の体 積制御を高 、精度で実行することが可能である。  For example, the valve mechanism may be configured such that the open / close state in the communication path can be switched steplessly or stepwise. According to such a configuration, the volume control of the bladder can be executed with high accuracy.
本発明の浮沈フロートは、海水中で用いられることは必須ではなぐ湖水などの淡 水中で用いられてもよい。  The float / float of the present invention may be used in fresh water such as lake water which is not necessarily used in seawater.

Claims

請求の範囲 The scope of the claims
[1] 気密な内部空間を形成するフロートチャンバ一と、このフロートチャンバ一内に設け られた、浮力調整用流体を収容する流体収容部と、フロートチャンバ一の外部に配 設され、内部に浮力調整用流体が充填されて体積を変化させて浮沈フロートに作用 する浮力を調整するためのブラッダ一と、このブラッダ一と流体収容部との間で当該 浮力調整用流体を移送するためのポンプ機構と、ポンプ機構を駆動する駆動源とを 備えてなる浮沈フロートであって、  [1] A float chamber that forms an airtight interior space, a fluid storage part that is provided in the float chamber and that contains a buoyancy adjusting fluid, and is arranged outside the float chamber 1 and has buoyancy inside A bladder for adjusting the buoyancy acting on the floating float by filling the adjustment fluid and changing the volume, and a pump mechanism for transferring the buoyancy adjustment fluid between the bladder and the fluid storage portion And a float / sink float comprising a drive source for driving the pump mechanism,
ポンプ機構がギアポンプにより構成されていることを特徴とする浮沈フロート。  A floating float characterized in that the pump mechanism is constituted by a gear pump.
[2] 流体収容部とブラッダ一との間における前記浮力調整用流体の移動を制御する弁 機構が設けられて 、ることを特徴とする請求項 1に記載の浮沈フロート。  [2] The float / sink float according to claim 1, further comprising a valve mechanism for controlling movement of the buoyancy adjusting fluid between the fluid containing portion and the bladder.
[3] ギアポンプは、その性能保証駆動回転域が 10〜150回転 Zminのものであること を特徴とする請求項 1または請求項 2に記載の浮沈フロート。 [3] The float / sink float according to claim 1 or claim 2, wherein the gear pump has a performance-guaranteed drive rotation range of 10 to 150 rotations Zmin.
[4] ギアポンプが、 4. 5〜: LOOccZminの流体移送能を有するものであることを特徴と する請求項 1乃至請求項 3のいずれかに記載の浮沈フロート。 [4] The float / sink float according to any one of claims 1 to 3, wherein the gear pump has a fluid transfer ability of 4.5 to LOOccZmin.
[5] ポンプ機構に係る駆動源が、直流モーターであることを特徴とする請求項 1乃至請 求項 4の!、ずれかに記載の浮沈フロート。 [5] The float / sink float according to any one of claims 1 to 4, wherein the drive source for the pump mechanism is a DC motor.
[6] 浮力調整用流体が、 2°Cにおいて 3000cst以上の粘度を有するものであることを特 徴とする請求項 1乃至請求項 5のいずれかに記載の浮沈フロート。 6. The float / sink float according to claim 1, wherein the buoyancy adjusting fluid has a viscosity of 3000 cst or more at 2 ° C.
[7] 請求項 1乃至請求項 6のいずれかに記載の浮沈フロートであって、 [7] The float / float float according to any one of claims 1 to 6,
圧力および、少なくとも一つの水関連情報を計測する計測手段を備えてなることを 特徴とする請求項 1乃至請求項 6のいずれかに記載の浮沈フロート。  The float / sink float according to any one of claims 1 to 6, further comprising measuring means for measuring pressure and at least one water-related information.
[8] 請求項 7に記載の浮沈フロートであって、 [8] The floating float according to claim 7,
計測手段は、気象関連情報の計測が可能であることを特徴とする請求項 1乃至請 求項 6の!、ずれかに記載の浮沈フロート。  7. The float according to claim 1, wherein the measurement means is capable of measuring weather-related information.
[9] 請求項 7または請求項 8に記載の浮沈フロートの使用方法であって、 [9] A method of using the float / float float according to claim 7 or claim 8,
前記計測手段により得られた少なくとも圧力情報に基づいてブラッダー内における 浮力調整用流体の量を調整することを特徴とする浮沈フロートの使用方法。  A method for using a float / float float, comprising: adjusting an amount of a buoyancy adjusting fluid in a bladder based on at least pressure information obtained by the measuring means.
PCT/JP2005/022542 2004-12-28 2005-12-08 Sinkable float and method of using sinkable float WO2006070577A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05814714A EP1832505A4 (en) 2004-12-28 2005-12-08 Sinkable float and method of using sinkable float
JP2006550648A JPWO2006070577A1 (en) 2004-12-28 2005-12-08 Floating float and how to use it
US11/793,973 US7699677B2 (en) 2004-12-28 2005-12-08 Profiling float and usage of the profiling float

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004379500 2004-12-28
JP2004-379500 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070577A1 true WO2006070577A1 (en) 2006-07-06

Family

ID=36614698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022542 WO2006070577A1 (en) 2004-12-28 2005-12-08 Sinkable float and method of using sinkable float

Country Status (4)

Country Link
US (1) US7699677B2 (en)
EP (1) EP1832505A4 (en)
JP (1) JPWO2006070577A1 (en)
WO (1) WO2006070577A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052647A1 (en) * 2009-10-27 2011-05-05 株式会社鶴見精機 Float device
CN103935471A (en) * 2014-04-12 2014-07-23 哈尔滨工程大学 Buoyancy adjustor of propeller-propelling-type underwater buoy with telescopic cylinders
JP2015505278A (en) * 2011-12-15 2015-02-19 コリア インスティチュート オブ オーシャン サイエンス アンド テクノロジー An articulated submarine robot having a combined movement function of walking and swimming, and a submarine exploration system using the same
JP2015096418A (en) * 2013-11-13 2015-05-21 テレディン インストゥルメンツ インクTeledyne Instruments Inc. Variable buoyancy profiling float
JP2015232508A (en) * 2014-06-10 2015-12-24 横河電機株式会社 Sensor for measuring in medium for cell culture and measuring method
WO2017126533A1 (en) * 2016-01-21 2017-07-27 千春 青山 Gas collection method
CN108248762A (en) * 2018-01-17 2018-07-06 天津大学 Deep-sea self-sustaining section intelligence buoyage
KR101914937B1 (en) * 2017-07-04 2018-11-08 (주)대양전자 A Danger point sign device for Underwater Worker

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126867A1 (en) * 2010-03-30 2011-10-13 Battelle Memorial Institute Buffy coat separator float systems and methods
US9582987B2 (en) * 2013-06-10 2017-02-28 Honeywell International Inc. Self-contained, buoyant, and water-tight wireless flood detector
CN103994757B (en) * 2014-06-09 2015-04-08 中国海洋大学 Reciprocating type ocean micro-structure section plotter
CN104034317B (en) * 2014-06-09 2015-09-23 中国海洋大学 Reciprocating Oceanic Microstructure section plotter is utilized to detect the method for turbulent flow
FR3026381B1 (en) 2014-09-25 2018-02-02 Hydro Leduc HYDRAULIC DEVICE FOR DEPTH CONTROL
US10603605B1 (en) * 2014-10-30 2020-03-31 Guardian Systems, LLC Float member of variable density for separation of fluid
CN104443278B (en) * 2014-11-13 2016-08-17 天津城建大学 Virtual anchoring profile buoy
GR20160100319A (en) * 2016-06-14 2018-03-09 Εστια Συμβουλοι Και Μηχανικοι Α.Ε. Platform for sea wind mesurements
CN109835437A (en) * 2017-11-29 2019-06-04 上海海洋大学 A kind of deep sea section measurement buoy
DE102018203601A1 (en) * 2018-03-09 2019-03-28 Thyssenkrupp Ag Method and device for levitation control for an underwater vehicle
CN109131803B (en) * 2018-08-31 2022-01-25 中国海洋大学 High-pressure-resistant buoyancy self-calibration device for deep sea operation equipment
WO2020121227A1 (en) * 2018-12-11 2020-06-18 Fugro N.V. Buoyant camera device and method
CN113501091B (en) * 2021-04-22 2022-04-26 浙江大学 Ice-based profiler release device and data acquisition system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572600B2 (en) * 1974-07-08 1982-01-18
JPS59167977U (en) * 1983-04-26 1984-11-10 三菱重工業株式会社 gear pump
JPS6153296U (en) * 1984-09-14 1986-04-10
JPS6271391U (en) * 1985-10-22 1987-05-07
JPS63162699U (en) * 1987-04-14 1988-10-24
JPH05278681A (en) * 1992-04-02 1993-10-26 Japan Marine Sci & Technol Center Automatic submergence/floatation type observation machine
JP2001247086A (en) * 2000-03-06 2001-09-11 Mitsui Eng & Shipbuild Co Ltd Automatic guided submarine and position holding control method thereof
JP2002145177A (en) * 2000-08-09 2002-05-22 Tsurumi Seiki:Kk Float device for measuring ocean data

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191049A (en) * 1978-08-16 1980-03-04 The Charles Stark Draper Laboratory, Inc. System for measuring ocean current
JPS59124496A (en) * 1982-12-29 1984-07-18 Sanshin Ind Co Ltd Tilt device of ship propeller
GB2182892B (en) * 1984-01-12 1988-06-02 Buoyco Divers Ltd Variable buoyancy apparatus
JPH0494481A (en) * 1990-08-08 1992-03-26 Ube Ind Ltd Gear for gear pump and gear pump
US5291847A (en) * 1991-08-01 1994-03-08 Webb Douglas C Autonomous propulsion within a volume of fluid
WO1997009998A2 (en) * 1995-09-14 1997-03-20 Bristol-Myers Squibb Company Insulin-like growth factor binding protein 3 (igf-bp3) in treatment of p53-related tumors
AU2002232521A1 (en) * 2000-11-11 2002-05-21 Oregon Health & Science University Compositions and methods for identifying agents which regulate chromosomal stability, gene activation and aging
US6807856B1 (en) * 2003-05-28 2004-10-26 Douglas C. Webb Variable buoyancy profiling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572600B2 (en) * 1974-07-08 1982-01-18
JPS59167977U (en) * 1983-04-26 1984-11-10 三菱重工業株式会社 gear pump
JPS6153296U (en) * 1984-09-14 1986-04-10
JPS6271391U (en) * 1985-10-22 1987-05-07
JPS63162699U (en) * 1987-04-14 1988-10-24
JPH05278681A (en) * 1992-04-02 1993-10-26 Japan Marine Sci & Technol Center Automatic submergence/floatation type observation machine
JP2001247086A (en) * 2000-03-06 2001-09-11 Mitsui Eng & Shipbuild Co Ltd Automatic guided submarine and position holding control method thereof
JP2002145177A (en) * 2000-08-09 2002-05-22 Tsurumi Seiki:Kk Float device for measuring ocean data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1832505A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601969B2 (en) 2009-10-27 2013-12-10 The Tsurumi Seiki Co., Ltd. Float device
JP5649006B2 (en) * 2009-10-27 2015-01-07 株式会社鶴見精機 Float equipment
WO2011052647A1 (en) * 2009-10-27 2011-05-05 株式会社鶴見精機 Float device
US9498883B2 (en) 2011-12-15 2016-11-22 Korea Institute Of Ocean Science & Technology Multi-joint underwater robot having complex movement functions of walking and swimming and underwater exploration system using same
JP2015505278A (en) * 2011-12-15 2015-02-19 コリア インスティチュート オブ オーシャン サイエンス アンド テクノロジー An articulated submarine robot having a combined movement function of walking and swimming, and a submarine exploration system using the same
JP2015096418A (en) * 2013-11-13 2015-05-21 テレディン インストゥルメンツ インクTeledyne Instruments Inc. Variable buoyancy profiling float
CN103935471A (en) * 2014-04-12 2014-07-23 哈尔滨工程大学 Buoyancy adjustor of propeller-propelling-type underwater buoy with telescopic cylinders
JP2015232508A (en) * 2014-06-10 2015-12-24 横河電機株式会社 Sensor for measuring in medium for cell culture and measuring method
WO2017126533A1 (en) * 2016-01-21 2017-07-27 千春 青山 Gas collection method
RU2698338C1 (en) * 2016-01-21 2019-08-26 Тихару АОЯМА Gas collection method
US11370672B2 (en) 2016-01-21 2022-06-28 Chiharu Aoyama Gas collecting method
KR101914937B1 (en) * 2017-07-04 2018-11-08 (주)대양전자 A Danger point sign device for Underwater Worker
CN108248762A (en) * 2018-01-17 2018-07-06 天津大学 Deep-sea self-sustaining section intelligence buoyage

Also Published As

Publication number Publication date
US7699677B2 (en) 2010-04-20
US20080087209A1 (en) 2008-04-17
EP1832505A1 (en) 2007-09-12
JPWO2006070577A1 (en) 2008-06-12
EP1832505A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2006070577A1 (en) Sinkable float and method of using sinkable float
JP5649006B2 (en) Float equipment
US8726827B1 (en) Systems and methods for compensating for compressibility and thermal expansion coefficient mismatch in buoyancy controlled underwater vehicles
US9718523B2 (en) Gliding robotic fish navigation and propulsion
US20130239870A1 (en) Underwater Vehicle Bouyancy System
US6916219B2 (en) Remote sampling system
KR101175235B1 (en) Buoyancy control apparatus having pressure equalizer and underwater glider using the same and buoyancy control method using the pressure equalizing
WO2014185519A1 (en) Underwater mobile body
JP2015096418A (en) Variable buoyancy profiling float
US20120318188A1 (en) Autonomous Underwater Vehicle
KR101841594B1 (en) The buoyancy device equipped with a waterproof formula ocean observation
CN107544526A (en) Oil sac formula underwater glider floatage accuracy control method
JP3948929B2 (en) Marine data measurement float equipment
US10640188B1 (en) Passive ballast device, system and methods of using same
KR101982927B1 (en) Hydrosphere monitoring system and hydrosphere monitoring device
NO763774L (en) FLOATING AND FLOATING BUY.
US20130283903A1 (en) Device for tracking position of freshwater-saltwater interface of underground water and apparatus for installing the same
JP3532540B2 (en) Float device for ocean data measurement
CN109835437A (en) A kind of deep sea section measurement buoy
KR100640291B1 (en) Device of changing buoyancy and machine of gathering environmental informations under water using the device
Viswanathan et al. Buoyancy driven autonomous profiling float for shallow waters
Asakawa et al. Development of an underwater glider for virtual mooring and its buoyancy engine
KR200379866Y1 (en) Device of changing buoyancy and machine of gathering environmental informations under water using the device
US11001357B2 (en) Tactical maneuvering ocean thermal energy conversion buoy for ocean activity surveillance
US11325685B2 (en) Passive ballast device, system and methods of using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550648

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005814714

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793973

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11793973

Country of ref document: US