WO2006057313A1 - Biosignal detector - Google Patents

Biosignal detector Download PDF

Info

Publication number
WO2006057313A1
WO2006057313A1 PCT/JP2005/021608 JP2005021608W WO2006057313A1 WO 2006057313 A1 WO2006057313 A1 WO 2006057313A1 JP 2005021608 W JP2005021608 W JP 2005021608W WO 2006057313 A1 WO2006057313 A1 WO 2006057313A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric film
cushion material
body surface
detection device
pressure fluctuation
Prior art date
Application number
PCT/JP2005/021608
Other languages
French (fr)
Japanese (ja)
Inventor
Etsunori Fujita
Shinichiro Maeda
Original Assignee
Delta Tooling Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Tooling Co., Ltd. filed Critical Delta Tooling Co., Ltd.
Priority to JP2006547836A priority Critical patent/JPWO2006057313A1/en
Publication of WO2006057313A1 publication Critical patent/WO2006057313A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency

Definitions

  • the present invention is supported by various seats such as a vehicle seat used for transportation equipment such as automobiles, trains, and airplanes, office seats, and seats that are seated by a person at the time of inspection or diagnosis in a hospital.
  • the present invention relates to a biological signal detection device for detecting a biological signal of a human being, for example, a pulse wave, a pulsation, a respiration, etc. of the buttocks and thighs.
  • the present invention relates to a biological signal detection apparatus suitable for performing.
  • Patent Document 1 and Patent Document 2 include a heartbeat or a pulse.
  • a technique for monitoring the biological state by analyzing the chaos has been proposed. According to the techniques disclosed in Patent Documents 1 and 2, it is not necessary to attach a powerful device for brain wave measurement to the head, and the biological state of the driver can be easily evaluated.
  • the devices disclosed in Patent Documents 1 and 2 are both thin-film piezoelectric elements (piezoelectric film sensors) in which vibrations of the body surface accompanying the pulsation of the heart are attached to the seating surface of the cushion material constituting the seat cushion. Sensing with
  • Patent Document 1 Japanese Patent Laid-Open No. 9-308614
  • Patent Document 2 Japanese Patent Laid-Open No. 10-146321
  • the present invention reduces the noise signal included in the electrical signal data of the pressure fluctuation detected by the pressure fluctuation detection sensor force such as a piezoelectric film sensor, and further increases the determination accuracy of the biological state, the degree of fatigue, and the like. It is an object of the present invention to provide a biosignal detection device that can perform the above.
  • the biological signal detection device of the present invention has a gap between a position close to the body surface and a position spaced apart from at least one of the shift on the seat cushion side and the seat back side.
  • Differential output means for outputting the difference between the output values of the pair of pressure fluctuation detection sensors.
  • One of the pair of pressure fluctuation detection sensors is supported by an upper cushion material disposed close to the body surface, and the other is disposed at a lower layer than the upper cushion material. It can be provided in support of the material.
  • the pair of pressure fluctuation detection sensors can be respectively arranged on the front side and the back side of an arbitrary cushion material.
  • the upper-layer cushion material and the lower-layer cushion material are preferably formed from a three-dimensional knitted fabric.
  • the said arbitrary cushioning material is also formed of the solid knitting force.
  • a pair of pressure fluctuation detections disposed at a distance from each other between a position close to the body surface and a position separated from the body surface on at least one of the displacement on the seat cushion side and the seat back side.
  • a sensor is provided, and the difference between the output values of the pair of pressure fluctuation detection sensors is output. For this reason, external vibration noise transmitted from the road surface is detected by each pressure fluctuation detection sensor, but vibrations of the body surface due to pulse waves, pulsations, breathing, etc. are mainly close to the body surface. It is detected by the arranged pressure fluctuation detection sensor. Therefore, by taking the difference between the two, it is possible to more accurately detect pressure fluctuations associated with biological signals such as pulse wave, pulsation, and respiration.
  • the biological signal detection device of the present invention can be used in an environment where external vibration is hardly applied, such as office seats and seats where people are seated during examinations and diagnoses in hospitals.
  • an environment where external vibration is hardly applied such as office seats and seats where people are seated during examinations and diagnoses in hospitals.
  • noise due to external vibrations can be effectively reduced, it is particularly suitable as a device that is provided on a vehicle seat such as an automobile and used to determine the occupant's biological state (such as sleep onset and fatigue).
  • FIG. 1 is a diagram showing a schematic configuration of a seat attached with a biological signal detection device that is helpful in one embodiment of the present invention.
  • FIG. 2 is a diagram showing test results for verifying the appearance of a sleep onset predictive signal in a car running test, (a) is the analysis result of the fingertip volume pulse wave, and (b) is the first result. ( C ) is the analysis result using the difference between the first and second piezoelectric film sensors.
  • FIG. 3 corresponds to FIG. 2 (a), and is the time-series data of the original waveform of the fingertip volume pulse wave obtained by measuring the fingertip volume pulse wave measuring force before detecting the sleep onset signal.
  • FIG. 4 corresponds to FIG. 2 (b), and is the original waveform time-series data of the first piezoelectric film sensor before the detection of the sleep onset signal.
  • FIG. 5 corresponds to FIG. 2 (c), and shows the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10, 11 (difference sensor) before detection of the slumber predictive signal. is there.
  • FIG. 6 corresponds to FIG. 2 (a), and is the original waveform time series data of the finger plethysmogram obtained by detecting the finger plethysmogram at the time of detection of a sleep symptom signal.
  • FIG. 7 corresponds to FIG. 2 (b), and is the original waveform time-series data of the first piezoelectric film sensor at the time of detection of a sleep signal.
  • FIG. 8 corresponds to FIG. 2 (c), and shows the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10, 11 (difference sensor) at the time of detection of a sleep signal. is there.
  • FIG. 9 corresponds to FIG. 2 (a) and shows the original waveform time series data of the finger plethysmogram obtained by detecting the finger plethysmogram after detecting a sleep signal.
  • FIG. 10 corresponds to FIG. 2 (b), and is the original waveform time-series data of the first piezoelectric film sensor after the detection of the sleep onset signal.
  • FIG. 11 corresponds to FIG. 2 (c), and the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10 and 11 (difference sensor) after detection of the onset of sleep signal It is.
  • FIG. 1 is a schematic configuration diagram of a state in which a biological signal detection device 1 according to an embodiment of the present invention is attached to a vehicle seat 100 such as an automobile.
  • the biological signal detection device 1 includes a pair of (first and second) piezoelectric film sensors 10 and 11 as pressure fluctuation detection sensors.
  • the signal data detected by the piezoelectric film sensors 10 and 11 is transmitted to the arithmetic unit 20, and predetermined data processing is performed.
  • Force that can be used with any pressure fluctuation detection sensor other than the piezoelectric film sensors 10 and 11 The vibration absorption characteristics of the seat cushion 110, etc. that does not feel uncomfortable even if it is attached to the seat cushion 110, etc. For this reason, it is preferable to use a piezoelectric film sensor that is formed into a thin film.
  • the first and second piezoelectric film sensors 10 and 11 may be provided on either the seat cushion 110 side or the seat back 120 side (including the headrest), or may be provided on both.
  • the seat cushion 110 is always in contact with the human body when seated, it is provided at least on the seat cushion 110 side, and biological displacement that propagates through the buttocks muscle, such as buttocks pulse wave, breathing, pelvic movement or body movement.
  • a configuration for detecting a signal (fluctuation) is preferable.
  • the seat cushion 110 side when mounted on the seat cushion 110 side, for example, it may be arranged only near the sciatic tuberosity, but the posture (sacral posture) where the buttock is shifted forward by long-term seating is taken. May cause the sensor to fall outside the detection range of the sensor, so in addition to the sensor placed near the sciatic nodule, one or more sensors may be placed at a position shifted before or after the sensor. Is possible. This is the same when the seatback 120 is mounted, and can be placed at multiple locations.
  • the first and second piezoelectric film sensors 10, 11 are provided at a distance from each other at a position close to the body surface and a position spaced apart from the body surface. For this reason, the pressure fluctuation due to the vibration of the body surface accompanying the biological signal is mainly detected by the first piezoelectric film sensor 10.
  • the first piezoelectric film sensor 10 is fixed near the surface of the cushion material 111 on the upper layer side of the seat cushion 110. Although it can be exposed and attached to the surface of the cushion material 111 on the upper layer side, it is preferable that the cushion material 111 is incorporated in a position close to the surface in order to protect the detection surface.
  • the second piezoelectric film sensor 11 is disposed on the back side of the lower cushion material 112 positioned below the upper cushion material 111 and is fixed to the seat surface of the seat cushion 110.
  • the second piezoelectric film sensor 11 is an upper cushion material 1
  • the lower-layer cushion material 112 is used so that the biosignal detection data is not the same as that of the first piezoelectric film sensor 10. It is preferable to provide them. Therefore, “spaced between a position close to the body surface and a position spaced apart from each other” means that at least part of the cushion material 111, 112, which performs the cushion function, includes the first and second piezoelectric films. This means that the sensor is positioned between the sensors so that there is a gap between them.
  • the upper-layer cushion material 111 and the lower-layer cushion material 112 are both arranged on the seating surface of the seat cushion 110 in FIG. That is, the upper-layer cushion material 111 and the lower-layer cushion material 112 are independent cushions that can be disposed on the seat surface of the seat cushion 110 as necessary. In this case, the upper-layer cushion material 111 and the lower-layer cushion material 112 may be integrated, or may be configured separately. Further, for example, the lower cushion material 112 may be incorporated into the seat cushion 110! /, And both the upper cushion material 111 and the lower cushion material 112 are incorporated into the seat cushion 110. It is good also as a cushioning material.
  • lower cushion material means to include all cushion materials located in the lower layer than the upper cushion material 111 close to the body surface. “Supported by a sillon material” may be fixed to any cushion material. In FIG. 1, the force with which the second piezoelectric film sensor 11 is fixed to the surface (seat surface) of the cushion material of the seat cushion 110 itself and the lower cushion material 112 is laminated thereon, for example, It may be fixed to the back surface of the cushion material 112.
  • a solid knitted fabric As the cushion material 111 on the upper layer side and the cushion material 112 on the lower layer side, it is preferable to use a solid knitted fabric.
  • a three-dimensional knitted fabric reciprocates between a pair of ground knitted fabrics spaced apart from each other and the pair of ground knitted fabrics.
  • the knitted fabric has a three-dimensional three-dimensional structure having a large number of connecting yarns to be joined.
  • Such a three-dimensional knitted fabric has moderate elasticity, and exhibits a soft panel characteristic at a single point concentrated load. Obtained when the muscle is pressurized to 30mm or 98mm in diameter Panel characteristics close to load-deflection characteristics (panel characteristics). For this reason, it is suitable for transmitting slight pressure fluctuations of muscles caused by human breathing, heartbeat (pulse wave), body movement, etc.
  • Each output value obtained from the first and second piezoelectric film sensors 10 and 11 is sent to the calculation unit 20, and the difference between both is taken by the difference output means incorporated in the calculation unit 20.
  • Predetermined data processing is performed using the signal data.
  • the differential output means obtains a difference between the output value of the first piezoelectric film sensor 10 and the output value of the second piezoelectric film sensor 11 at every arbitrary sampling period.
  • Examples of data processing performed by the calculation unit 20 include data processing for determining a biological state such as a sleep onset sign disclosed in Japanese Patent Application No. 2003-180294 and Japanese Patent Application No. 2004-89263 proposed by the present applicant. Means or a data processing means for quantitatively determining the degree of fatigue disclosed in Japanese Patent Application No. 2003-363902 can be applied.
  • the former detects the peak value of each period of the original waveform of the signal data obtained by the above-described differential output means force, and from each peak value, the peak value on the upper limit side for each predetermined time range Is calculated as the power value, and the power value is calculated by sliding the slope of the power value with respect to the time axis in the specified time range at the specified slide lap ratio a specified number of times.
  • the signal data is chaotically analyzed to calculate the maximum Lyapunov exponent, the peak value of each period of the time-series change waveform of the maximum Lyapunov exponent is detected, and the predetermined peak value of the maximum Lyapunov exponent is determined.
  • the point is preferably a means for determining, as a sleep predictive signal, a time point when the power value gradient and the maximum Lyapunov exponent gradient stably show a phase difference of about 180 degrees in the time-series signal.
  • the latter is a means for obtaining the integral value by processing the absolute value of the time-series signal when the value slope is obtained as described above, and obtaining the obtained integral value as the degree of fatigue.
  • the signal data obtained from the biological signal detection device of the present embodiment is the difference between the output values of the first and second piezoelectric film sensors 10 and 11, external vibration noise is reduced, and the biological signal is The signal data is more prominently captured, and when used in the data processing means described above, it is possible to more accurately determine the timing of sleep onset and the degree of fatigue. [0020] (Test example)
  • a seat 100 similar to that shown in Fig. 1 was installed in the passenger seat of the car, traveling on the highway, and the time series fluctuations of the power value gradient and the maximum Lyapunov exponent gradient were obtained, and the appearance of the sleep predictive signal was verified.
  • the seat 100 is a seat cushion 110 and a seat back 120.
  • a second piezoelectric film sensor 11 is fixed to the surface, and a lower layer cushioning material 112 is laminated on the second piezoelectric film sensor 11, and an upper layer cushion that incorporates the first piezoelectric film sensor 10 at a position close to the surface. Material 11 1 was laminated.
  • the upper-layer cushion material 111 is a three-dimensional knitted fabric (product number: 49013D) manufactured by Sumie Textile Co., Ltd., knitted using a double raschel knitting machine, and has the following characteristics.
  • Thickness 10. 66mm
  • the cushion material 112 on the lower layer side is a three-dimensional knitted fabric (product name: “Space Fabric”) manufactured by Seiren Co., Ltd., and has the following configuration having the following characteristics.
  • Thickness 2.5mm Knitted fabric density: 25 whale Z inch, 48 course Z inch
  • Residual distortion rate vertical 1%, horizontal 1%
  • the used piezoelectric film sensors 10 and 11 were all Tokyo Sensor Co., Ltd., product name: PIEZ O FILM LDT series, model number: LDT4-028KZL.
  • Fig. 2 shows the analysis result of the fingertip volume pulse wave, (b) shows the analysis result using only the data of the first piezoelectric film sensor 10, and (c) shows the first and second piezoelectric films. It is the analysis result using the difference of film sensors 10 and 11.
  • the power value slope and the maximum Lyapunov exponent slope are approximately 180 degrees between 800 seconds and 1300 seconds. After that, since the fluctuation range of the power value slope becomes smaller, the range from 800 seconds to 1300 seconds can be determined as a sleep onset predictive signal. In addition, it was reported that the subject began to try at this point in the observation by the rear seat observer. Therefore, it is compared with the case where the determination result according to FIG. 2 (a) is assumed to be a correct value and the data obtained only in the first piezoelectric film sensor 10 of FIG. 2 (b) is processed. In Fig.
  • Fig. 3 Fig. 6 and Fig. 9 correspond to Fig. 2 (a), and are the original waveform time series data of the fingertip volume pulse wave obtained from the fingertip volume pulse wave measuring device.
  • Fig. 7 and Fig. 10 correspond to Fig. 2 (b) and are the original waveform time series data of the first piezoelectric film sensor 10 (detection sensor).
  • Fig. 5, Fig. 8 and Fig. 11 show Fig. 2 This corresponds to (c) and is the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10, 11 (difference sensor).
  • Figures 6 to 8 show the data from 900 seconds to 1100 seconds when the sleep onset signal was captured.
  • Figures 3 to 5 show the data before the sleep onset signal was captured
  • Fig. 9 FIG. 11 shows data after the sleep signal is captured.
  • FIG. 9 is compared to FIG. 4 and FIG. 11 is compared to FIG. 9 fingertips It approaches the data of plethysmogram, and it is very powerful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The noise signal included in electric signal data itself representing pressure variation detected by a piezoelectric film sensor is reduced to enhance judgment accuracy of the condition of an organism. A pair of piezoelectric film sensors (10, 11) are so spaced at a position near the body surface and at a position away from the body surface and installed at least at one of the seat cushion (110) and the seat back (120). The difference between the output values of the pair of piezoelectric film sensor (10, 11) is outputted. The piezoelectric film sensors (10, 11) detect external vibration noise transmitted from the road surface. However, the vibration of the body surface duo to the pulse, beat and respiration is largely detected by the first piezoelectric film sensor (10) provided near the body surface. Therefore, by measuring the difference between both, the pressure variation due to the biosignal such as the pulse, beat, and respiration can be more accurately determined.

Description

明 細 書  Specification
生体信号検出装置  Biological signal detection device
技術分野  Technical field
[0001] 本発明は、自動車、列車、航空機などの輸送機器に用いられる乗物用シート、事務 用のシート、病院等において検査や診断等の際に人が着席するシートなどの各種の シートに支持されている人の生体信号、例えば、臀部'大腿部の脈波、拍動、呼吸な どを検出する生体信号検出装置に関し、中でも、乗物用シートに支持されている人 の生体信号を検出するのに適する生体信号検出装置に関する。  [0001] The present invention is supported by various seats such as a vehicle seat used for transportation equipment such as automobiles, trains, and airplanes, office seats, and seats that are seated by a person at the time of inspection or diagnosis in a hospital. The present invention relates to a biological signal detection device for detecting a biological signal of a human being, for example, a pulse wave, a pulsation, a respiration, etc. of the buttocks and thighs. The present invention relates to a biological signal detection apparatus suitable for performing.
背景技術  Background art
[0002] 人の生体の状態、例えば、活性状態 (覚醒状態)である力、睡眠状態であるかを検 出するには、従来、脳波を測定し、その脳波パターンを解析することにより行われて いる。し力しながら、脳波を測定するには、被検者の頭部に脳波電極や眼電位電極 を取り付ける必要があるなど、人の通常動作を制約する環境下で行わなければなら ず、例えば、自動車、電車などの各種輸送機器の運転時における生体状態を運転 者に負担をかけずに評価することは困難である。  [0002] To detect the state of a human living body, for example, whether it is an active state (awake state), a sleep state, or the like, conventionally, it is performed by measuring an electroencephalogram and analyzing the electroencephalogram pattern. ing. However, in order to measure an electroencephalogram, it is necessary to attach an electroencephalogram electrode or an electrooculogram electrode to the subject's head, for example, in an environment that restricts the normal operation of the person. It is difficult to evaluate the biological state of various transportation equipment such as automobiles and trains without burdening the driver.
[0003] 一方、運転中の運転者の生体状態 (心身状態)を監視することは、近年、事故予防 策として注目されており、例えば、特許文献 1、特許文献 2には、心拍又は脈拍を用 い、これをカオス解析して生体状態を監視する技術が提案されている。特許文献 1及 び 2に開示の技術によれば、脳波測定用の大が力りな装置の頭部への装着が不要 で、簡易に運転者の生体状態を評価できる。特許文献 1及び 2に開示された装置は 、いずれも、心臓の拍動に伴う体表面の振動を、シートクッションを構成するクッション 材の座面に装着した薄膜状の圧電素子 (圧電フィルムセンサ)によりセンシングする ものである。  [0003] On the other hand, monitoring the biological state (mental state) of a driver during driving has recently attracted attention as an accident prevention measure. For example, Patent Document 1 and Patent Document 2 include a heartbeat or a pulse. In addition, a technique for monitoring the biological state by analyzing the chaos has been proposed. According to the techniques disclosed in Patent Documents 1 and 2, it is not necessary to attach a powerful device for brain wave measurement to the head, and the biological state of the driver can be easily evaluated. The devices disclosed in Patent Documents 1 and 2 are both thin-film piezoelectric elements (piezoelectric film sensors) in which vibrations of the body surface accompanying the pulsation of the heart are attached to the seating surface of the cushion material constituting the seat cushion. Sensing with
特許文献 1:特開平 9 - 308614号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-308614
特許文献 2 :特開平 10— 146321号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-146321
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] 特許文献 1及び 2に開示された技術では、走行中に路面から入力される外部振動 がノイズとなり、圧電フィルムセンサ力 得られる圧力変動信号にはこれらのノイズが 多く含まれている。従って、脈波等の生体信号に伴う体表面の振動に起因する圧力 変動信号のみを得ることはきわめて困難である。このため、本出願人は、これまでに、 圧電フィルムセンサに代表される圧力変動検知センサを用いて生体信号を検出する 構成とする一方で、得られる圧力変動データ中のノイズ信号によるものをできる限り 低減する演算手段を開発し、着座して!/ヽる人の種々の生体状態 (入眠予兆ゃ疲労度 など)をより正確かつ簡易に判定できる技術を提案してきて 、る(例えば、特願 2003 — 180294号、特願 2003— 180296号、特願 2003— 180297号、特願 2003— 36 3902号、特願 2004— 89263号など)。 Problems to be solved by the invention [0004] In the techniques disclosed in Patent Documents 1 and 2, external vibrations input from the road surface during traveling become noise, and the pressure fluctuation signal obtained by the piezoelectric film sensor force contains a lot of such noise. Therefore, it is extremely difficult to obtain only the pressure fluctuation signal resulting from the vibration of the body surface accompanying the biological signal such as a pulse wave. For this reason, the applicant of the present invention has been able to detect a biological signal using a pressure fluctuation detection sensor typified by a piezoelectric film sensor, while using a noise signal in the obtained pressure fluctuation data. We have developed computing means that reduce as much as possible, and have proposed a technology that makes it possible to more accurately and easily determine various living conditions (such as sleep onset and fatigue) of a person who sits down and sits down (for example, a patent application) 2003-180294, Japanese Patent Application 2003-180296, Japanese Patent Application 2003-180297, Japanese Patent Application 2003-36 3902, Japanese Patent Application 2004-89263).
[0005] し力しながら、演算手段の改良のみでノイズ信号の影響を低減するにも限界がある [0005] However, there is a limit to reducing the influence of noise signals only by improving the calculation means.
[0006] そこで、本発明は、圧電フィルムセンサなどの圧力変動検知センサ力 検出される 圧力変動の電気信号データ自体に含まれるノイズ信号を低減し、生体状態や疲労度 等の判定精度をより高めることができる生体信号検出装置を提供することを課題とす る。 [0006] Therefore, the present invention reduces the noise signal included in the electrical signal data of the pressure fluctuation detected by the pressure fluctuation detection sensor force such as a piezoelectric film sensor, and further increases the determination accuracy of the biological state, the degree of fatigue, and the like. It is an object of the present invention to provide a biosignal detection device that can perform the above.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため、本発明の生体信号検出装置は、シートクッション側及び シートバック側の 、ずれか少なくとも一方に、体表面に近接した位置と離間した位置 とに互いに間隔をおいて配設される一対の圧力変動検知センサと、 [0007] In order to solve the above-described problem, the biological signal detection device of the present invention has a gap between a position close to the body surface and a position spaced apart from at least one of the shift on the seat cushion side and the seat back side. A pair of pressure fluctuation detection sensors disposed,
前記一対の圧力変動検知センサの各出力値の差分を出力する差分出力手段と を具備することを特徴とする。  Differential output means for outputting the difference between the output values of the pair of pressure fluctuation detection sensors.
前記一対の圧力変動検知センサは、一方を、体表面に近接して配置された上層側 のクッション材に支持し、他方を、前記上層側のクッション材よりも下層に配置された 下層側のクッション材に支持して設けることができる。  One of the pair of pressure fluctuation detection sensors is supported by an upper cushion material disposed close to the body surface, and the other is disposed at a lower layer than the upper cushion material. It can be provided in support of the material.
また、前記一対の圧力変動検知センサは、任意のクッション材の表面側と裏面側と にそれぞれ配置することができる。  Further, the pair of pressure fluctuation detection sensors can be respectively arranged on the front side and the back side of an arbitrary cushion material.
また、前記圧力変動検知センサとしては、圧電フィルムセンサを用いることが好まし い。 In addition, it is preferable to use a piezoelectric film sensor as the pressure fluctuation detection sensor. Yes.
また、前記上層側のクッション材及び下層側のクッション材は、立体編物から形成さ れているものが好ましい。  Further, the upper-layer cushion material and the lower-layer cushion material are preferably formed from a three-dimensional knitted fabric.
また、前記任意のクッション材も、立体編物力も形成されていることが好ましい。 発明の効果  Moreover, it is preferable that the said arbitrary cushioning material is also formed of the solid knitting force. The invention's effect
[0008] 本発明によれば、シートクッション側及びシートバック側の 、ずれか少なくとも一方 に、体表面に近接した位置と離間した位置とに互いに間隔をおいて配設される一対 の圧力変動検知センサを備え、この一対の圧力変動検知センサの各出力値の差分 を出力する構成である。このため、各圧力変動検知センサには路面から伝達される 外部振動ノイズが検出されるが、脈波、拍動、呼吸などに伴う体表面の振動は、主と して体表面に近接して配置された圧力変動検知センサで検出される。従って、両者 の差分をとることにより、脈波、拍動、呼吸等の生体信号に伴う圧力変動をより正確に 検出することができる。本発明の生体信号検出装置は、事務用のシート、病院等に おいて検査や診断等の際に人が着席するシートなどのように外部振動が付加される ことがほとんどない環境でももちろん使用可能であるが、外部振動によるノイズを効果 的に低減できるため、自動車などの乗物用シートに設け、乗員の生体状態 (入眠予 兆や疲労度など)を判定するために用いる装置として特に適して 、る。  [0008] According to the present invention, a pair of pressure fluctuation detections disposed at a distance from each other between a position close to the body surface and a position separated from the body surface on at least one of the displacement on the seat cushion side and the seat back side. A sensor is provided, and the difference between the output values of the pair of pressure fluctuation detection sensors is output. For this reason, external vibration noise transmitted from the road surface is detected by each pressure fluctuation detection sensor, but vibrations of the body surface due to pulse waves, pulsations, breathing, etc. are mainly close to the body surface. It is detected by the arranged pressure fluctuation detection sensor. Therefore, by taking the difference between the two, it is possible to more accurately detect pressure fluctuations associated with biological signals such as pulse wave, pulsation, and respiration. The biological signal detection device of the present invention can be used in an environment where external vibration is hardly applied, such as office seats and seats where people are seated during examinations and diagnoses in hospitals. However, since noise due to external vibrations can be effectively reduced, it is particularly suitable as a device that is provided on a vehicle seat such as an automobile and used to determine the occupant's biological state (such as sleep onset and fatigue). The
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明の一の実施形態に力かる生体信号検出装置を取り付けたシート の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a seat attached with a biological signal detection device that is helpful in one embodiment of the present invention.
[図 2]図 2は、自動車の走行試験により入眠予兆信号の現れ方を検証した試験結果 を示す図であり、(a)は指尖容積脈波の分析結果であり、(b)は第 1の圧電フィルムセ ンサのみのデータを用いた分析結果であり、 (c)は第 1及び第 2の圧電フィルムセン サの差分を用いた分析結果である。 [FIG. 2] FIG. 2 is a diagram showing test results for verifying the appearance of a sleep onset predictive signal in a car running test, (a) is the analysis result of the fingertip volume pulse wave, and (b) is the first result. ( C ) is the analysis result using the difference between the first and second piezoelectric film sensors.
[図 3]図 3は、図 2 (a)に対応するもので、入眠予兆信号検出前の指尖容積脈波測定 器力 得られた指尖容積脈波の原波形時系列データである。  [FIG. 3] FIG. 3 corresponds to FIG. 2 (a), and is the time-series data of the original waveform of the fingertip volume pulse wave obtained by measuring the fingertip volume pulse wave measuring force before detecting the sleep onset signal.
[図 4]図 4は、図 2 (b)に対応するもので、入眠予兆信号検出前の第 1の圧電フィルム センサの原波形時系列データである。 [図 5]図 5は、図 2 (c)に対応するもので、入眠予兆信号検出前の第 1及び第 2の圧電 フィルムセンサ 10, 11 (差分センサ)の差分の原波形時系列データである。 [FIG. 4] FIG. 4 corresponds to FIG. 2 (b), and is the original waveform time-series data of the first piezoelectric film sensor before the detection of the sleep onset signal. [FIG. 5] FIG. 5 corresponds to FIG. 2 (c), and shows the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10, 11 (difference sensor) before detection of the slumber predictive signal. is there.
[図 6]図 6は、図 2 (a)に対応するもので、入眠予兆信号検出時の指尖容積脈波測定 器力 得られた指尖容積脈波の原波形時系列データである。  [FIG. 6] FIG. 6 corresponds to FIG. 2 (a), and is the original waveform time series data of the finger plethysmogram obtained by detecting the finger plethysmogram at the time of detection of a sleep symptom signal.
[図 7]図 7は、図 2 (b)に対応するもので、入眠予兆信号検出時の第 1の圧電フィルム センサの原波形時系列データである。  [FIG. 7] FIG. 7 corresponds to FIG. 2 (b), and is the original waveform time-series data of the first piezoelectric film sensor at the time of detection of a sleep signal.
[図 8]図 8は、図 2 (c)に対応するもので、入眠予兆信号検出時の第 1及び第 2の圧電 フィルムセンサ 10, 11 (差分センサ)の差分の原波形時系列データである。  [FIG. 8] FIG. 8 corresponds to FIG. 2 (c), and shows the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10, 11 (difference sensor) at the time of detection of a sleep signal. is there.
[図 9]図 9は、図 2 (a)に対応するもので、入眠予兆信号検出後の指尖容積脈波測定 器力 得られた指尖容積脈波の原波形時系列データである。  [FIG. 9] FIG. 9 corresponds to FIG. 2 (a) and shows the original waveform time series data of the finger plethysmogram obtained by detecting the finger plethysmogram after detecting a sleep signal.
[図 10]図 10は、図 2 (b)に対応するもので、入眠予兆信号検出後の第 1の圧電フィル ムセンサの原波形時系列データである。  [FIG. 10] FIG. 10 corresponds to FIG. 2 (b), and is the original waveform time-series data of the first piezoelectric film sensor after the detection of the sleep onset signal.
[図 11]図 11は、図 2 (c)に対応するもので、入眠予兆信号検出後の第 1及び第 2の圧 電フィルムセンサ 10, 11 (差分センサ)の差分の原波形時系列データである。  [FIG. 11] FIG. 11 corresponds to FIG. 2 (c), and the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10 and 11 (difference sensor) after detection of the onset of sleep signal It is.
符号の説明  Explanation of symbols
[0010] 1 生体信号検出装置 [0010] 1 Biological signal detection device
10 第 1の圧電フィルムセンサ  10 First piezoelectric film sensor
20 第 2の圧電フィルムセンサ  20 Second piezoelectric film sensor
100 シート  100 sheets
110 シートクッション  110 Seat cushion
111 上層側のクッション材  111 Upper cushion material
112 下層側のクッション材  112 Lower side cushioning material
120 シートバック  120 seat back
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、図面に示した実施形態に基づき本発明をさらに詳細に説明する。図 1は、自 動車などの乗物用のシート 100に、本発明の一の実施形態に係る生体信号検出装 置 1を付設した状態の概略構成図である。生体信号検出装置 1は、圧力変動検知セ ンサとして、一対 (第 1及び第 2)の圧電フィルムセンサ 10, 11を備えて構成され、各 圧電フィルムセンサ 10, 11により検出された信号データが演算部 20に送信され、所 定のデータ加工処理がなされる。圧電フィルムセンサ 10, 11以外の任意の圧力変動 検知センサを用いることもできる力 シートクッション 110等に装着しても違和感が少 なぐシートクッション 110等による振動吸収特性等を損なうことがないこと等の理由か ら、薄 、フィルム状に形成されて 、る圧電フィルムセンサを用いることが好まし!/、。 Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram of a state in which a biological signal detection device 1 according to an embodiment of the present invention is attached to a vehicle seat 100 such as an automobile. The biological signal detection device 1 includes a pair of (first and second) piezoelectric film sensors 10 and 11 as pressure fluctuation detection sensors. The signal data detected by the piezoelectric film sensors 10 and 11 is transmitted to the arithmetic unit 20, and predetermined data processing is performed. Force that can be used with any pressure fluctuation detection sensor other than the piezoelectric film sensors 10 and 11 The vibration absorption characteristics of the seat cushion 110, etc. that does not feel uncomfortable even if it is attached to the seat cushion 110, etc. For this reason, it is preferable to use a piezoelectric film sensor that is formed into a thin film.
[0012] 第 1及び第 2の圧電フィルムセンサ 10, 11としては、例えば、(株)東京センサ、製 品名: PIEZO FILM LDTシリーズ、型番: LDT4— 028KZLを用いることができ る。第 1及び第 2の圧電フィルムセンサ 10, 11は、上記のように、シートクッション 110 側又はシートバック 120側(ヘッドレストも含む)のいずれに設けてもよぐまた、両方 に設けることもできる。但し、シートクッション 110は、着座時において人体と常時接触 しているため、少なくともシートクッション 110側に設け、臀部脈波、呼吸、骨盤の動き あるいは体動など、臀部筋肉を介して伝播する生体変位信号 (ゆらぎ)を検知する構 成とすることが好ましい。また、シートクッション 110側に装着する場合、例えば、座骨 結節下付近のみに配設する構成としてもよいが、長時間の着座によって臀部を前方 にずらした姿勢 (仙骨姿勢)をとつたりすることによりセンサの検知範囲から外れる可 能性もあるので、座骨結節下付近に配置するセンサのほかに、その前や後等にずれ た位置に、さらに 1枚若しくは複数枚のセンサを配置することも可能である。この点は 、シートバック 120側に装着する場合も同様であり、複数箇所に配置することができる [0012] As the first and second piezoelectric film sensors 10, 11, for example, Tokyo Sensor Co., Ltd., product name: PIEZO FILM LDT series, model number: LDT4-028KZL can be used. As described above, the first and second piezoelectric film sensors 10 and 11 may be provided on either the seat cushion 110 side or the seat back 120 side (including the headrest), or may be provided on both. However, since the seat cushion 110 is always in contact with the human body when seated, it is provided at least on the seat cushion 110 side, and biological displacement that propagates through the buttocks muscle, such as buttocks pulse wave, breathing, pelvic movement or body movement. A configuration for detecting a signal (fluctuation) is preferable. In addition, when mounted on the seat cushion 110 side, for example, it may be arranged only near the sciatic tuberosity, but the posture (sacral posture) where the buttock is shifted forward by long-term seating is taken. May cause the sensor to fall outside the detection range of the sensor, so in addition to the sensor placed near the sciatic nodule, one or more sensors may be placed at a position shifted before or after the sensor. Is possible. This is the same when the seatback 120 is mounted, and can be placed at multiple locations.
[0013] 第 1及び第 2の圧電フィルムセンサ 10, 11は、体表面に近接した位置と離間した位 置とに互いに間隔をおいて設けられる。このため、生体信号に伴う体表面の振動によ る圧力変動は、主として第 1の圧電フィルムセンサ 10により検出される。図 1では、第 1の圧電フィルムセンサ 10を、シートクッション 110の上層側のクッション材 111の表 面付近に固定して 、る。上層側のクッション材 111の表面に露出させて貼着すること もできるが、検知面の保護のため、表面に近い位置において該クッション材 111に内 蔵させることが好ましい。一方、第 2の圧電フィルムセンサ 11は該上層側のクッション 材 111の下層に位置する下層側のクッション材 112の裏側に配置し、シートクッション 110の座面に固定している。第 2の圧電フィルムセンサ 11は、上層側のクッション材 1 11の裏面に固定することもできる力 第 2の圧電フィルムセンサ 11において、第 1の 圧電フィルムセンサ 10と同様の生体信号検出データとならないよう、上記のように下 層側のクッション材 112を介して設けることが好ましい。従って、「体表面に近接した 位置と離間した位置とに互いに間隔をおいて」とは、クッション材 111, 112といったク ッシヨン機能を果たす部分の少なくとも一部を、第 1及び第 2の圧電フィルムセンサの 間に位置させて両者の間隔を空けることを意味するものである。 [0013] The first and second piezoelectric film sensors 10, 11 are provided at a distance from each other at a position close to the body surface and a position spaced apart from the body surface. For this reason, the pressure fluctuation due to the vibration of the body surface accompanying the biological signal is mainly detected by the first piezoelectric film sensor 10. In FIG. 1, the first piezoelectric film sensor 10 is fixed near the surface of the cushion material 111 on the upper layer side of the seat cushion 110. Although it can be exposed and attached to the surface of the cushion material 111 on the upper layer side, it is preferable that the cushion material 111 is incorporated in a position close to the surface in order to protect the detection surface. On the other hand, the second piezoelectric film sensor 11 is disposed on the back side of the lower cushion material 112 positioned below the upper cushion material 111 and is fixed to the seat surface of the seat cushion 110. The second piezoelectric film sensor 11 is an upper cushion material 1 The force that can be fixed to the back surface of 11 In the second piezoelectric film sensor 11, as described above, the lower-layer cushion material 112 is used so that the biosignal detection data is not the same as that of the first piezoelectric film sensor 10. It is preferable to provide them. Therefore, “spaced between a position close to the body surface and a position spaced apart from each other” means that at least part of the cushion material 111, 112, which performs the cushion function, includes the first and second piezoelectric films. This means that the sensor is positioned between the sensors so that there is a gap between them.
[0014] また、上層側のクッション材 111と下層側のクッション材 112は、図 1では、いずれも 、シートクッション 110の座面上に配置している。すなわち、上層側のクッション材 111 と下層側のクッション材 112は、必要に応じてシートクッション 110の座面上に配置で きる独立したクッションとなっている。この場合、上層側のクッション材 111と下層側の クッション材 112は、一体ィ匕したものであってもよいし、それぞれ別々に構成してもよ い。また、例えば、下層側のクッション材 112は、シートクッション 110に組み込まれる クッション材としてもよ!/、し、上層側のクッション材 111と下層側のクッション材 112の いずれもシートクッション 110に組み込まれるクッション材としてもよい。この点は、シ 一トバック 120側に圧電フィルムセンサ 10, 11を配設する場合も同様である。なお、 請求項で定義する「下層側のクッション材」とは、体表面に近接した上層側のクッショ ン材 111よりも下層に位置するクッション材の全てを含む意味であり、「下層側のタツ シヨン材に支持される」とは、そのいずれのクッション材に固定されていてもよい。図 1 では、シートクッション 110自体のクッション材の表面(座面)に第 2の圧電フィルムセ ンサ 11を固定し、その上に上記下層側のクッション材 112を積層している力 例えば 、下層側のクッション材 112の裏面に固着してもよい。  [0014] In addition, the upper-layer cushion material 111 and the lower-layer cushion material 112 are both arranged on the seating surface of the seat cushion 110 in FIG. That is, the upper-layer cushion material 111 and the lower-layer cushion material 112 are independent cushions that can be disposed on the seat surface of the seat cushion 110 as necessary. In this case, the upper-layer cushion material 111 and the lower-layer cushion material 112 may be integrated, or may be configured separately. Further, for example, the lower cushion material 112 may be incorporated into the seat cushion 110! /, And both the upper cushion material 111 and the lower cushion material 112 are incorporated into the seat cushion 110. It is good also as a cushioning material. This is the same when the piezoelectric film sensors 10 and 11 are arranged on the seat back 120 side. The term “lower cushion material” as defined in the claims means to include all cushion materials located in the lower layer than the upper cushion material 111 close to the body surface. “Supported by a sillon material” may be fixed to any cushion material. In FIG. 1, the force with which the second piezoelectric film sensor 11 is fixed to the surface (seat surface) of the cushion material of the seat cushion 110 itself and the lower cushion material 112 is laminated thereon, for example, It may be fixed to the back surface of the cushion material 112.
[0015] ここで、上層側のクッション材 111と下層側のクッション材 112としては、立体編物を 用いることが好ましい。立体編物とは、例えば、特開 2002— 331603号公報に開示 されているように、互いに離間して配置された一対のグランド編地と、該一対のグラン ド編地間を往復して両者を結合する多数の連結糸とを有する立体的な三次元構造と なった編地である。かかる立体編物は、適度な弾力性を持ち、 1点集中荷重では柔ら 力なパネ特性を発揮するが、所定の大きさの面接触では面剛性が高く硬 、パネ特性 を発揮するという、人体の筋肉を直径 30mmや直径 98mmで加圧した際に得られる 荷重一たわみ特性 (パネ特性)に近いパネ特性を有する。このため、人の呼吸、心拍 (脈波)、体動などによって生じる筋肉の僅かな圧力変動を伝達するのに適する。 [0015] Here, as the cushion material 111 on the upper layer side and the cushion material 112 on the lower layer side, it is preferable to use a solid knitted fabric. For example, as disclosed in JP-A-2002-331603, a three-dimensional knitted fabric reciprocates between a pair of ground knitted fabrics spaced apart from each other and the pair of ground knitted fabrics. The knitted fabric has a three-dimensional three-dimensional structure having a large number of connecting yarns to be joined. Such a three-dimensional knitted fabric has moderate elasticity, and exhibits a soft panel characteristic at a single point concentrated load. Obtained when the muscle is pressurized to 30mm or 98mm in diameter Panel characteristics close to load-deflection characteristics (panel characteristics). For this reason, it is suitable for transmitting slight pressure fluctuations of muscles caused by human breathing, heartbeat (pulse wave), body movement, etc.
[0016] 第 1及び第 2の圧電フィルムセンサ 10, 11から得られる各出力値は、演算部 20に 送られ、該演算部 20に組み込まれた差分出力手段によって両者の差分がとられ、そ の信号データを用いて所定のデータ処理がなされる。なお、差分出力手段は、具体 的には、任意のサンプリング周期毎に、第 1の圧電フィルムセンサ 10の出力値と第 2 の圧電フィルムセンサ 11の出力値との差を求めて 、る。  Each output value obtained from the first and second piezoelectric film sensors 10 and 11 is sent to the calculation unit 20, and the difference between both is taken by the difference output means incorporated in the calculation unit 20. Predetermined data processing is performed using the signal data. Specifically, the differential output means obtains a difference between the output value of the first piezoelectric film sensor 10 and the output value of the second piezoelectric film sensor 11 at every arbitrary sampling period.
[0017] 演算部 20によって行われるデータ処理としては、例えば、本出願人が提案した特 願 2003— 180294号ゃ特願 2004— 89263号に開示した入眠予兆などの生体状 態を判定するデータ処理手段、あるいは、特願 2003— 363902号に開示した疲労 度を定量ィ匕するデータ処理手段などを適用することができる。  [0017] Examples of data processing performed by the calculation unit 20 include data processing for determining a biological state such as a sleep onset sign disclosed in Japanese Patent Application No. 2003-180294 and Japanese Patent Application No. 2004-89263 proposed by the present applicant. Means or a data processing means for quantitatively determining the degree of fatigue disclosed in Japanese Patent Application No. 2003-363902 can be applied.
[0018] 具体的には、前者は、上記した差分出力手段力 得られた信号データの原波形の 各周期のピーク値を検出し、各ピーク値から、所定時間範囲ごとに上限側のピーク値 と下限側のピーク値との差を算出し、この差をパワー値として設定し、さらに、パワー 値の所定時間範囲における時間軸に対する傾きを、所定のスライドラップ率で所定 回数スライド計算してパワー値傾きを求めると共に、前記信号データをカオス解析し て最大リアプノフ指数を算出し、最大リアプノフ指数の時系列変化波形の各周期のピ 一ク値を検出し、最大リアプノフ指数の各ピーク値の所定時間範囲における時間軸 に対する傾きを、所定のスライドラップ率で所定回数スライド計算して求める最大リア プノフ指数傾きを算出し、パワー値傾きの急低下を生じる時点を、好ましくは、パワー 値傾き及び最大リアプノフ指数傾きが、時系列信号の中で略 180度の位相差を安定 して示す時点を入眠予兆信号として判定する手段である。後者は、上記のようにして ノ^ー値傾きを求めたならば、その時系列信号を絶対値処理して、積分値を算出し 、得られた積分値を疲労度として求める手段である。  [0018] Specifically, the former detects the peak value of each period of the original waveform of the signal data obtained by the above-described differential output means force, and from each peak value, the peak value on the upper limit side for each predetermined time range Is calculated as the power value, and the power value is calculated by sliding the slope of the power value with respect to the time axis in the specified time range at the specified slide lap ratio a specified number of times. In addition to obtaining the value slope, the signal data is chaotically analyzed to calculate the maximum Lyapunov exponent, the peak value of each period of the time-series change waveform of the maximum Lyapunov exponent is detected, and the predetermined peak value of the maximum Lyapunov exponent is determined. When the maximum Lyapunov exponent slope is calculated by calculating the slope with respect to the time axis in the time range by a predetermined number of slides at a predetermined slide lap ratio, and when the power value slope suddenly decreases The point is preferably a means for determining, as a sleep predictive signal, a time point when the power value gradient and the maximum Lyapunov exponent gradient stably show a phase difference of about 180 degrees in the time-series signal. The latter is a means for obtaining the integral value by processing the absolute value of the time-series signal when the value slope is obtained as described above, and obtaining the obtained integral value as the degree of fatigue.
[0019] 本実施形態の生体信号検出装置から得られる信号データは、第 1及び第 2の圧電 フィルムセンサ 10, 11の各出力値の差分であるため、外部振動ノイズが低減され、 生体信号をより顕著にとらえた信号データとなっており、上記したデータ処理手段で 用いると、より正確に入眠予兆のタイミングや疲労度などを求めることができる。 [0020] (試験例) Since the signal data obtained from the biological signal detection device of the present embodiment is the difference between the output values of the first and second piezoelectric film sensors 10 and 11, external vibration noise is reduced, and the biological signal is The signal data is more prominently captured, and when used in the data processing means described above, it is possible to more accurately determine the timing of sleep onset and the degree of fatigue. [0020] (Test example)
図 1に示したものと同様のシート 100を自動車の助手席に設置し、高速道路を走行 し、パワー値傾き及び最大リアプノフ指数傾きの時系列変動を求め、入眠予兆信号 の現れ方を検証した。シート 100は、シートクッション 110及びシートバック 120として 、フレームに立体編物を伸び率 5%以下の低い張力で張設して構成される株式会社 デルタツーリング製のネットシートを用い、シートクッション 110の座面に第 2の圧電フ イルムセンサ 11を固着し、その上に、下層側のクッション材 112を積層し、さらに、表 面に近 、位置に第 1の圧電フィルムセンサ 10を組み込んだ上層側のクッション材 11 1を積層した。  A seat 100 similar to that shown in Fig. 1 was installed in the passenger seat of the car, traveling on the highway, and the time series fluctuations of the power value gradient and the maximum Lyapunov exponent gradient were obtained, and the appearance of the sleep predictive signal was verified. . The seat 100 is a seat cushion 110 and a seat back 120. A net seat made by Delta Touring Co., Ltd., which is constructed by stretching a three-dimensional knitted fabric on a frame with a low tension of 5% or less, and seats of the seat cushion 110 are used. A second piezoelectric film sensor 11 is fixed to the surface, and a lower layer cushioning material 112 is laminated on the second piezoelectric film sensor 11, and an upper layer cushion that incorporates the first piezoelectric film sensor 10 at a position close to the surface. Material 11 1 was laminated.
[0021] 上層側のクッション材 111は、ダブルラッセル編機を用いて編成された住江織物( 株)製の立体編物 (製品番号 :49013D)であり、次のような特性を備える。  [0021] The upper-layer cushion material 111 is a three-dimensional knitted fabric (product number: 49013D) manufactured by Sumie Textile Co., Ltd., knitted using a double raschel knitting machine, and has the following characteristics.
材質:  Material:
表側のグランド編地' · 'ポリエチレンテレフタレート繊維仮撚カ卩ェ糸  Front knitted fabric '·' Polyethylene terephthalate fiber false twist yarn
裏側のグランド編地' · 'ポリエチレンテレフタレート繊維仮撚カ卩ェ糸  Back side ground knitted fabric '·' Polyethylene terephthalate fiber false twisted yarn
連結糸 ポリトリメチレンテレフタレートモノフィラメント  Connecting yarn Polytrimethylene terephthalate monofilament
目付: 981gZm2 Weight: 981gZm 2
厚さ: 10. 66mm  Thickness: 10. 66mm
引張強さ:縦' · · 1531NZ50mm、横' · · 1367NZ50mm  Tensile strength: Vertical '· · 1531NZ50mm, Horizontal' · · 1367NZ50mm
伸び:縦' · · 68%、横 · · · 107%  Elongation: Vertical 68%, Horizontal 107%
定荷重伸率 (8cm幅、 10kg, 10分):  Constant load elongation (8cm width, 10kg, 10 minutes):
縦… 15. 5%、横 · ' · 38. 5%  Vertical ... 15. 5%, Horizontal · '· 38. 5%
残留歪み率(8cm幅、 10kg, 10分):  Residual strain rate (8cm width, 10kg, 10 minutes):
縦 · · · (). 9%、横… 1. 1%  Vertical · · · · (). 9%, horizontal… 1. 1%
縫目強さ:縦 · ' · 724Ν、横 · ' · 869Ν  Seam strength: Vertical · '· 724Ν, Horizontal ·' · 869Ν
縫目疲労:縦 · · ·(). 9mm、横 · · ·!_ . lmm  Seam fatigue: Vertical · · · (). 9mm, side · · · ·! _. lmm
[0022] 下層側のクッション材 112は、セーレン (株)製の立体編物(製品名:「スペースファ ブリック」)であり、次のような特性を有する次のような構成を備える。  [0022] The cushion material 112 on the lower layer side is a three-dimensional knitted fabric (product name: “Space Fabric”) manufactured by Seiren Co., Ltd., and has the following configuration having the following characteristics.
厚さ: 2. 5mm 編地密度: 25ゥエール Zインチ、 48コース Zインチ Thickness: 2.5mm Knitted fabric density: 25 whale Z inch, 48 course Z inch
引張強さ:縦 · · · 611¾Ζ50πιπι、横. . · 118kgZ50mm  Tensile strength: longitudinal · · · 611¾Ζ50πιπι, transverse ... 118kgZ50mm
伸び:縦 · ' · 60%、横 · ' · 63%  Elongation: Vertical · '· 60%, Horizontal ·' · 63%
定荷重伸率:縦, . - 25%,横, · · 15%  Constant load elongation: Vertical,.-25%, Horizontal, · · 15%
残留歪み率:縦 · · · 1%、横, · · 1%  Residual distortion rate: vertical 1%, horizontal 1%
引裂き強さ:縦… 37kg、横… 37kg  Tear strength: Vertical ... 37kg, Horizontal ... 37kg
[0023] 使用した圧電フィルムセンサ 10, 11は、いずれも(株)東京センサ、製品名: PIEZ O FILM LDTシリーズ、型番: LDT4— 028KZLであった。  The used piezoelectric film sensors 10 and 11 were all Tokyo Sensor Co., Ltd., product name: PIEZ O FILM LDT series, model number: LDT4-028KZL.
[0024] 図 2にその結果を示すが、被験者は 30代の健康な日本人男性であり、山陽自動車 道の小谷 SA力も三木 SAまで走行した際のデータである。なお、比較のため、外部 振動の影響を受けない指尖容積脈波も同時に採取し、指尖容積脈波による分析結 果と比較した。図 2 (a)は指尖容積脈波の分析結果であり、(b)は第 1の圧電フィルム センサ 10のみのデータを用いた分析結果であり、(c)は第 1及び第 2の圧電フィルム センサ 10, 11の差分を用いた分析結果である。  [0024] The results are shown in Fig. 2. The test subjects are healthy Japanese men in their 30s, and the data obtained when the Kotani SA force on the Sanyo Expressway also traveled to Miki SA. For comparison, finger plethysmograms that were not affected by external vibration were also collected and compared with the results of finger plethysmogram analysis. Fig. 2 (a) shows the analysis result of the fingertip volume pulse wave, (b) shows the analysis result using only the data of the first piezoelectric film sensor 10, and (c) shows the first and second piezoelectric films. It is the analysis result using the difference of film sensors 10 and 11.
[0025] 図 2 (a)に示したように、指尖容積脈波の分析結果によれば、 800秒〜 1300秒の 間でパワー値傾きと最大リアプノフ指数傾きとが略 180度の位相差を示し、その後、 パワー値傾きの変動幅が小さくなつていることから 800秒〜 1300秒の範囲を入眠予 兆信号と判定できる。なお、後部座席の観察者による視察によっても、この時点から 被験者がうとうとし始めたことが報告されている。そこで、この図 2 (a)による判定結果 が正しい値として、図 2 (b)の第 1の圧電フィルムセンサ 10のみ力も得られたデータを 処理した場合と比較してみる。図 2 (b)では、パワー値傾きが 700秒過ぎ力ゝら急低下 し、さらに、 1200秒過ぎでも急低下し、その後、パワー値傾きの変動幅が小さくなつ ている。このことより、パワー値傾きの急低下が訪れた時点を入眠予兆と定義すれば 、図 2 (a)の判定結果と大きな矛盾は生じないが、最大リアプノフ指数傾きとの略 180 度の位相差は明確には現れていない。従って、両者の略 180度の位相差を指標とし てより正確に判定しょうとする場合には、第 1の圧電フィルムセンサ 10のみのデータ を用いただけでは不十分である。  [0025] As shown in Fig. 2 (a), according to the analysis results of the finger plethysmogram, the power value slope and the maximum Lyapunov exponent slope are approximately 180 degrees between 800 seconds and 1300 seconds. After that, since the fluctuation range of the power value slope becomes smaller, the range from 800 seconds to 1300 seconds can be determined as a sleep onset predictive signal. In addition, it was reported that the subject began to try at this point in the observation by the rear seat observer. Therefore, it is compared with the case where the determination result according to FIG. 2 (a) is assumed to be a correct value and the data obtained only in the first piezoelectric film sensor 10 of FIG. 2 (b) is processed. In Fig. 2 (b), the power value slope suddenly drops after 700 seconds, and further drops after 1200 seconds, after which the fluctuation range of the power value slope becomes smaller. Therefore, if the point at which the power value slope suddenly falls is defined as a predictive of sleep onset, there will be no major contradiction with the judgment result in Fig. 2 (a), but the phase difference of about 180 degrees from the maximum Lyapunov exponent slope. Does not appear clearly. Therefore, in order to make a more accurate determination using the phase difference of approximately 180 degrees between the two as an index, it is not sufficient to use only the data of the first piezoelectric film sensor 10.
[0026] これに対し、図 2 (c)の第 1及び第 2の圧電フィルムセンサ 10, 11から得られたデー タの差分を用いたものは、パワー値傾きと最大リアプノフ指数傾きとの略 180度の位 相差が図 2 (a)とほぼ同時期に生じている。また、図 2 (b)と比較した場合、時系列変 化の傾向を把握するために適宜に設定されるパワー値傾き (縦軸)の数値レンジが、 図 2 (b)の場合より、図 2 (c)の方が 1桁少なくなつている。すなわち、パワー値傾きの みを観察した場合には、図 2 (b)によっても、上記のように生体信号の挙動を検出で きる力 図 2 (c)のように数値レンジを小さくしても同様のパワー値の傾きの時系列変 化を見られるということは、路面から入力される高周波振動の基線変動が図 2 (c)に は含まれていないことを意味する。従って、第 1及び第 2の圧電フィルムセンサ 10, 1 1の差分を用いることにより、パワー値の傾き及び最大リアプノフ指数の傾きとも、走 行時の外部振動によるノイズの影響を受けなくなり、入眠予兆などの生体状態の変 化を示す信号をより正確に捉えることができることが裏付けられた。 On the other hand, data obtained from the first and second piezoelectric film sensors 10 and 11 in FIG. The difference between the power value slope and the maximum Lyapunov exponent slope has a phase difference of about 180 degrees almost simultaneously with Fig. 2 (a). In addition, when compared with Fig. 2 (b), the numerical range of the power value slope (vertical axis), which is set appropriately to understand the trend of time series change, is greater than that of Fig. 2 (b). 2 (c) is one digit less. In other words, when only the power value gradient is observed, the force that can detect the behavior of the biological signal as described above can be reduced as shown in Fig. 2 (b). The fact that a similar time-series change in the power value slope can be seen means that the baseline fluctuation of the high-frequency vibration input from the road surface is not included in Fig. 2 (c). Therefore, by using the difference between the first and second piezoelectric film sensors 10 and 11, both the slope of the power value and the slope of the maximum Lyapunov exponent are not affected by the noise caused by external vibration during running, and a sign of sleep onset. It was proved that signals indicating changes in biological conditions such as can be captured more accurately.
[0027] また、上記した図 2の各時系列変化を求めた際に使用した原波形時系列データを 比較した。図 3、図 6及び図 9は、図 2 (a)に対応するもので、指尖容積脈波測定器か ら得られた指尖容積脈波の原波形時系列データであり、図 4、図 7及び図 10は、図 2 (b)に対応するもので、第 1の圧電フィルムセンサ 10 (検知センサ)の原波形時系列 データであり、図 5、図 8及び図 11は、図 2 (c)に対応するもので、第 1及び第 2の圧 電フィルムセンサ 10, 11 (差分センサ)の差分の原波形時系列データである。なお、 図 6〜図 8は、入眠予兆信号がとらえられた 900秒から 1100秒までのデータを抜き 出したもので、図 3〜図 5が該入眠予兆信号がとらえられる前のデータ、図 9〜図 11 が該入眠予兆信号がとらえられた後のデータである。  [0027] In addition, the original waveform time series data used when obtaining each time series change of FIG. 2 was compared. Fig. 3, Fig. 6 and Fig. 9 correspond to Fig. 2 (a), and are the original waveform time series data of the fingertip volume pulse wave obtained from the fingertip volume pulse wave measuring device. Fig. 7 and Fig. 10 correspond to Fig. 2 (b) and are the original waveform time series data of the first piezoelectric film sensor 10 (detection sensor). Fig. 5, Fig. 8 and Fig. 11 show Fig. 2 This corresponds to (c) and is the original waveform time-series data of the difference between the first and second piezoelectric film sensors 10, 11 (difference sensor). Figures 6 to 8 show the data from 900 seconds to 1100 seconds when the sleep onset signal was captured. Figures 3 to 5 show the data before the sleep onset signal was captured, and Fig. 9 FIG. 11 shows data after the sleep signal is captured.
[0028] まず、入眠予兆信号が生じた範囲では、図 7及び図 8を比較すると、差分をとつた図 8のデータは、図 7と比較して、大きくふれるノイズが低減していると共に、全体の振幅 が小さくなつており、路面から入力される高周波振動が大幅に低減され、原波形時系 列データで比較すると、より図 6に示した指尖容積脈波の時系列波形に近づいてい る。特に、図 8の 920秒〜 1000秒付近の波形は、図 6の指尖容積脈波の 900秒〜 9 80秒付近の波形に近似した変化傾向を示しており、第 1及び第 2の圧電フィルムセ ンサ 10, 11の差分を利用することにより、より高い精度で生体信号を検出できること がわかった。図 3〜図 5の入眠予兆信号が検出される前のデータ及び図 9〜図 11の 入眠予兆信号が検出された後のデータでも同様のことが言え、図 5は図 4に比較して 、図 11は図 10に比較して、いずれもノイズ信号が大きく低減し、図 3及び図 9の指尖 容積脈波のデータに近づ 、て 、ることがわ力る。 [0028] First, in the range where the sleep onset symptom signal is generated, comparing FIG. 7 and FIG. 8, the data of FIG. The overall amplitude has decreased, and the high-frequency vibrations input from the road surface have been greatly reduced. When compared with the original waveform time series data, the time series waveform of the fingertip plethysmogram shown in Fig. 6 is closer. The In particular, the waveform in the vicinity of 920 to 1000 seconds in FIG. 8 shows a trend of change similar to the waveform in the vicinity of 900 to 980 seconds of the fingertip volume pulse wave in FIG. It was found that biosignals can be detected with higher accuracy by using the difference between film sensors 10 and 11. Data before detection of sleep onset signal in Fig. 3 to Fig. 5 and Fig. 9 to Fig. 11 The same can be said for the data after the detection of the onset of sleep signal. FIG. 5 is compared to FIG. 4 and FIG. 11 is compared to FIG. 9 fingertips It approaches the data of plethysmogram, and it is very powerful.

Claims

請求の範囲 The scope of the claims
[1] シートクッション側及びシートバック側の 、ずれか少なくとも一方に、体表面に近接 した位置と離間した位置とに互いに間隔をおいて配設される一対の圧力変動検知セ ンサと、  [1] A pair of pressure fluctuation detection sensors disposed at a distance between a position close to the body surface and a position separated from the body surface on at least one of the displacement on the seat cushion side and the seat back side;
前記一対の圧力変動検知センサの各出力値の差分を出力する差分出力手段と を具備することを特徴とする生体信号検出装置。  And a difference output means for outputting a difference between the output values of the pair of pressure fluctuation detection sensors.
[2] 前記一対の圧力変動検知センサは、一方が、体表面に近接して配置された上層側 のクッション材に支持され、他方が、前記上層側のクッション材よりも下層に配置され た下層側のクッション材に支持されていることを特徴とする請求項 1記載の生体信号 検出装置。  [2] One of the pair of pressure fluctuation detection sensors is supported by an upper cushion material disposed close to the body surface, and the other is a lower layer disposed below the upper cushion material. 2. The biological signal detection device according to claim 1, wherein the biological signal detection device is supported by a side cushion material.
[3] 前記一対の圧力変動検知センサが、任意のクッション材の表面側と裏面側とにそ れぞれ配置されていることを特徴とする請求項 1記載の生体信号検出装置。  [3] The biological signal detection device according to claim 1, wherein the pair of pressure fluctuation detection sensors are respectively arranged on a front surface side and a back surface side of an arbitrary cushion material.
[4] 前記圧力変動検知センサが、圧電フィルムセンサであることを特徴とする請求項 14. The pressure fluctuation detection sensor is a piezoelectric film sensor.
〜3の 、ずれか 1に記載の生体信号検出装置。 The biological signal detection device according to claim 1, wherein the deviation is 1.
[5] 前記上層側のクッション材及び下層側のクッション材カ 立体編物から形成されて いることを特徴とする請求項 2記載の生体信号検出装置。 5. The biosignal detection device according to claim 2, wherein the upper layer side cushion material and the lower layer side cushion material are formed from a three-dimensional knitted fabric.
[6] 前記任意のクッション材カ 立体編物から形成されていることを特徴とする請求項 3 記載の生体信号検出装置。 6. The biological signal detection device according to claim 3, wherein the biological signal detection device is formed of the arbitrary cushion material.
PCT/JP2005/021608 2004-11-25 2005-11-24 Biosignal detector WO2006057313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547836A JPWO2006057313A1 (en) 2004-11-25 2005-11-24 Biological signal detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004341070 2004-11-25
JP2004-341070 2004-11-25

Publications (1)

Publication Number Publication Date
WO2006057313A1 true WO2006057313A1 (en) 2006-06-01

Family

ID=36498049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021608 WO2006057313A1 (en) 2004-11-25 2005-11-24 Biosignal detector

Country Status (2)

Country Link
JP (1) JPWO2006057313A1 (en)
WO (1) WO2006057313A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120586A (en) * 2010-12-06 2012-06-28 Nissan Motor Co Ltd Cardiopulmonary function measuring device, and method for the same
CN103300869A (en) * 2013-05-29 2013-09-18 哈尔滨工业大学 Real-time monitoring system for fatigue of automobile driver based on human respiration signal
JP2019201804A (en) * 2018-05-22 2019-11-28 株式会社デンソー Biological information detection device
JP2020092912A (en) * 2018-12-13 2020-06-18 テイ・エス テック株式会社 Biological sensor and vehicle seat
WO2020122135A1 (en) * 2018-12-13 2020-06-18 テイ・エス テック株式会社 Biological sensor and vehicle seat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020154B2 (en) * 2018-02-02 2022-02-16 富士フイルムビジネスイノベーション株式会社 Information processing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023927U (en) * 1988-06-17 1990-01-11
JPH11326084A (en) * 1998-05-12 1999-11-26 Isuzu Motors Ltd Driver condition detecting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098843B2 (en) * 1992-03-19 2000-10-16 松下電器産業株式会社 In-vehicle heart rate detector
JP3011358B2 (en) * 1994-11-16 2000-02-21 パイオニア株式会社 Heart rate measuring device
JP2001279572A (en) * 2000-03-28 2001-10-10 Asahi Kasei Corp Three-dimensional knitted fabric
JP4789342B2 (en) * 2001-05-10 2011-10-12 株式会社デルタツーリング Cushion material, sheet and method of filing pile yarn
JP4120537B2 (en) * 2003-09-02 2008-07-16 松下電器産業株式会社 Biological information detection device
JP2005095408A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Biological condition judgement apparatus and supporting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023927U (en) * 1988-06-17 1990-01-11
JPH11326084A (en) * 1998-05-12 1999-11-26 Isuzu Motors Ltd Driver condition detecting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120586A (en) * 2010-12-06 2012-06-28 Nissan Motor Co Ltd Cardiopulmonary function measuring device, and method for the same
CN103300869A (en) * 2013-05-29 2013-09-18 哈尔滨工业大学 Real-time monitoring system for fatigue of automobile driver based on human respiration signal
JP2019201804A (en) * 2018-05-22 2019-11-28 株式会社デンソー Biological information detection device
JP7093922B2 (en) 2018-05-22 2022-07-01 株式会社デンソー Biometric information detector
JP2020092912A (en) * 2018-12-13 2020-06-18 テイ・エス テック株式会社 Biological sensor and vehicle seat
WO2020122135A1 (en) * 2018-12-13 2020-06-18 テイ・エス テック株式会社 Biological sensor and vehicle seat
US11553864B2 (en) 2018-12-13 2023-01-17 Ts Tech Co., Ltd. Biological sensor and vehicle seat

Also Published As

Publication number Publication date
JPWO2006057313A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4637098B2 (en) Load body state determination device, vehicle seat, and computer program
JP4277073B2 (en) Seat load body determination device
JP5044230B2 (en) Biological signal analyzing apparatus, sheet, and biological signal analyzing method
EP3078948B1 (en) Acoustic and vibration information accumulation mechanism, acoustic and vibration sensing system, and computer program
EP2633812B1 (en) Vital status estimation device and computer program
US9020705B2 (en) Biological signal measuring device and biological state analyzing system
WO2006057313A1 (en) Biosignal detector
JP5022530B2 (en) Fatigue degree calculation device and computer program
JPWO2005039415A1 (en) Fatigue degree measuring device, fatigue detecting device, and computer program
JP2004344613A (en) Seat system for driver's seat and wakefulness-restoring device
JP4593182B2 (en) Biological signal detection device and sheet
KR20120056655A (en) Controlling Apparatus for Comfort Sleeping and Its Method
WO2013032013A1 (en) Biological signal detection mechanism
JP6558328B2 (en) Biological information output device and chair provided with biological information output device
JP5327584B2 (en) Biological condition analyzer, computer program, and recording medium
JP4502712B2 (en) Psychosomatic state judgment system
JP4636861B2 (en) Comfort evaluation device
WO2011096144A1 (en) Biological-information detecting device
JP5679556B2 (en) Drinking state detection device, computer program and recording medium
JP2011156196A (en) Biological information detector
Morita et al. Unconstrained measurement of heartbeat of a vehicle driver by dual pneumatic sensing system
JP2011156197A (en) Biological information detector
Ishikawa et al. Unconstrained and noninvasive measurement of heartbeat by a pneumatic method for drivers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547836

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809761

Country of ref document: EP

Kind code of ref document: A1