WO2006001264A1 - Occupant detection apparatus for vehicle - Google Patents

Occupant detection apparatus for vehicle Download PDF

Info

Publication number
WO2006001264A1
WO2006001264A1 PCT/JP2005/011316 JP2005011316W WO2006001264A1 WO 2006001264 A1 WO2006001264 A1 WO 2006001264A1 JP 2005011316 W JP2005011316 W JP 2005011316W WO 2006001264 A1 WO2006001264 A1 WO 2006001264A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
load
vehicle
control device
vehicle occupant
Prior art date
Application number
PCT/JP2005/011316
Other languages
French (fr)
Japanese (ja)
Inventor
Morio Sakai
Masaki Mori
Chiaki Sumi
Original Assignee
Aisin Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Kabushiki Kaisha filed Critical Aisin Seiki Kabushiki Kaisha
Publication of WO2006001264A1 publication Critical patent/WO2006001264A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • B60R21/0152Passenger detection systems using force or pressure sensing means using strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/40Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight
    • G01G19/413Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means
    • G01G19/414Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only
    • G01G19/4142Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only for controlling activation of safety devices, e.g. airbag systems

Definitions

  • Vehicle occupant detection device
  • the present invention relates to a vehicle occupant detection device that detects a load on a vehicle seat and discriminates an occupant on the vehicle seat based on the detected load data.
  • a vehicle occupant detection apparatus that can determine and adjust a value after a load sensor is assembled to a vehicle seat.
  • This load detection device includes at least one threshold value storage means for storing a determination threshold value for determining the state of a vehicle occupant based on a load measurement result from a load sensor that detects a load on a vehicle seat.
  • a threshold value storage means for storing a determination threshold value for determining the state of a vehicle occupant based on a load measurement result from a load sensor that detects a load on a vehicle seat.
  • the threshold value storage means is constituted by a rewritable nonvolatile memory. Then, the determination threshold value can be easily and reliably adjusted by rewriting the contents of the nonvolatile memory by communication with external force using a calibration inspection tool or the like.
  • this determination threshold value is an occupant determination threshold value for determining the type of a vehicle occupant or a zero point load threshold value indicating a load when a vehicle seat is empty.
  • Patent Documents 2 and 3 shown below a technique for measuring a signal output from a load sensor and calibrating (calibrating) the signal output in a situation in which a passenger can be determined to be sitting and sitting as zero value. Is disclosed.
  • Patent Document 1 JP 2004-125595 A (Page 3-4)
  • Patent Document 2 JP 2000-283834 A (paragraphs 0019 to 0020)
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-21411 (paragraphs 0072-0073)
  • the output value of the load sensor The controller applies the correction. Specifically, for example, it is assumed that the output range force of the load sensor is 0 to LOO, and the value of the load sensor is 20 in a vacant seat state after the vehicle seat with the load sensor is attached to the vehicle. If so, the technique described in Patent Document 1 corrects the threshold value so that it is regarded as a zero point. As a result, the output range from 0 to 100 becomes 20: LOO, and the measurement range becomes narrow.
  • the output voltage of 6mV is more tolerant when noise or other contamination is assumed.
  • noise sources such as navigation systems, ETC (automatic toll collection system) cabin units, and audio equipment. Therefore, improving noise resistance from various viewpoints is indispensable for building a stable vehicle system, and the techniques described in Patent Documents 1 to 3 are not sufficient.
  • an object of the present invention is to provide a vehicle occupant detection device capable of detecting a load on a vehicle seat with high accuracy without impairing noise resistance and detecting an occupant on the vehicle seat.
  • a characteristic configuration of a vehicle occupant detection device for achieving this object is based on a load detection device that detects a load on a vehicle seat and load data input from the load detection device.
  • the load detection device includes a measurement unit that measures the load and a storage unit that stores a measurement reference value that determines a measurement reference by the measurement unit.
  • the storage unit includes a rewritable and nonvolatile storage unit.
  • the control device is used to determine an occupant.
  • the storage unit provided in the load detection device that detects the load of the vehicle seat that does not store the value and inputs the load data to the control device has a rewritable and non-volatile storage means. Configured.
  • the storage unit stores a measurement reference value that defines a measurement reference by a measurement unit included in the load detection device, for example, a strain gauge that measures a load. Therefore, when the load data input to the control device deviates from the design value or when assembling the product, so-called deviation occurs, the load data is used to determine the occupant in the control device, and the value is corrected. I need to do it.
  • This deviation can be improved by correcting the measurement reference value inside the load detector that generates load data.
  • all the input load data can be used as valid data on the control device side. Therefore, the effective data range is not unintentionally narrowed on the control device side.
  • the load detection device can output the load data in the range of the effective data, maintain the accuracy of the load data, and enhance the noise resistance.
  • the measurement reference value is a value that determines an output of the load detection device in a no-load state in which no occupant is present on the vehicle seat.
  • the value that determines the output of the load detection device in a no-load state in which no occupant is present on the vehicle seat that is, the output at the so-called zero point
  • the measurement reference value is used as the measurement reference value. Therefore, it is possible to check the deviation of the load data without going through a special adjustment process, such as placing an adjustment weight on the vehicle seat.
  • the measurement reference value may be configured to be a value that defines a range that needs to be transmitted to the control device among loads measurable by the measurement unit.
  • a value that determines a range that needs to be transmitted as load data from the load detection device to the control device among the loads that can be measured by a measurement unit including a strain gauge or the like is measured It is said. Therefore, even when the deviation of the load data is confirmed, the measurement reference value can be updated while maintaining the range, that is, the effective data width. wear. As a result, it is not necessary to output load data from the load detection device side including the unnecessary portion in anticipation of correction of deviation in the control device. Therefore, the load detection device can output the load data in the range of the valid data, and can maintain the accuracy of the load data.
  • the load detection device executes a measurement reference value update process and updates the measurement reference value according to an instruction from the control device.
  • the load detection device executes a measurement reference value update process and updates the measurement reference value. Therefore, for example, deviation can be corrected without connecting an inspection machine or the like. Even when an inspection machine is connected to perform adjustment and inspection, execution programs such as measurement reference value update instructions and measurement reference value update processing are stored in the control device and load detection device in the vehicle. Yes. Therefore, the inspection machine only needs to give a trigger for starting the execution program, and it is not necessary to prepare an inspection machine corresponding to each vehicle type.
  • the load detection device and the control device can perform bidirectional communication. If bidirectional communication is possible, the control unit can perform control such as setting and correction of the signal processing circuit included in the load detection device that only receives load data from the load detection device.
  • the communication speed of the bidirectional communication is variable. If the communication speed is variable, flexible communication control is possible, such as selecting the optimal communication speed according to the urgency of communication and the amount of environmental noise. As an example, when there is a lot of environmental noise, it is possible to reduce the communication speed and ensure reliability.
  • occupant determination information by the control device is transmitted to another control device of the vehicle.
  • a vehicle is provided with many control devices for controlling various devices and actuators, and distributed processing is performed. Therefore, the occupant detection device of the present invention is often a control device that takes on one of many distributed processes. Therefore, if the occupant discrimination information by the control device provided in the occupant detection device of the present invention is transmitted to another control device, this information can be effectively utilized in the transmitted other control device.
  • the other control device is an airbag control device. According to the occupant detection device of the present invention, the occupant is determined based on the load applied to the vehicle seat.
  • the inflation rate of the airbag is controlled according to the physique of the occupant. Therefore, if the occupant discrimination information by the control device of the occupant detection device of the present invention is transmitted to the airbag control device, the inflation degree V and the inflation speed of the airbag can be controlled well.
  • the control device is connectable to an inspection machine via an interface.
  • the inspection machine itself does not need to have an execution program such as a measurement reference value update instruction or measurement reference value update processing.
  • An execution program such as a measurement reference value update command and a measurement reference value update process may be stored in a control device or a load detection device in the vehicle. Then, the load detection device may execute the measurement reference value update process and update the measurement reference value according to an instruction from the controller.
  • the inspection machine performs one or both of inspection and calibration of the load detection device. That is, if the inspection machine gives the above-mentioned crack to the control device, the control device can activate one or both of inspection and calibration of the load detection device. As a result, the ability to cope with secular changes is improved, and a highly accurate occupant detection device can be configured.
  • the load detecting device is interposed between the vehicle seat and a seat rail installed on the vehicle side. That is, since the load applied to the vehicle seat can be detected well, a highly accurate occupant detection device can be configured.
  • the load detection device has a strain sensor.
  • the strain sensor is a load detection sensor that can detect a load with a simple structure and good response. Therefore, if a load detection device is configured with this strain sensor, an accurate occupant detection device can be configured.
  • FIG. 1 is a schematic diagram showing the arrangement of each part of a vehicle occupant detection device according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the system configuration of the vehicle occupant detection device according to an embodiment of the present invention. is there.
  • a sensor 2 as a load detection device is assembled to the lower part of the vehicle seat 20 so as to measure a load by an occupant seated on the vehicle seat 20. It is configured.
  • the sensors 2 are provided on the seat rail 26 of the vehicle seat 20 as sensors 21 to 24 at four locations, a right front part, a right rear part, a left front part, and a left rear part, respectively.
  • the sensors 21 to 24 are connected to an ECU (Electronic Control Unit) 1 as a control device via a transmission line 25.
  • ECU Electronic Control Unit
  • the senor 2 is configured using a strain gauge. As shown in FIG. 2, the sensor 2 includes a gauge 3 as a measuring unit and a signal processing unit 4.
  • the signal processing unit 4 includes an analog signal processing unit 12, an analog Z digital conversion unit (hereinafter referred to as AZD conversion unit) 13, a digital signal processing unit 14, and a communication interface unit (hereinafter referred to as communication IZF unit).
  • a signal processing control unit 6 that controls these, and a storage unit 5 that stores information and data necessary for processing in the signal processing unit 4.
  • the gauge 3 outputs a gauge voltage proportional to the magnitude of strain caused by the weight applied to the vehicle seat 20 (gauge output voltage).
  • the analog signal processing unit 12 includes an amplifier and the like, and the input gage output voltage is amplified here.
  • the amplified signal is then converted into a digital signal by the AZD converter 13.
  • the signal converted into a digital signal is subjected to digital signal processing by the digital signal processing unit 14 such as correcting the signal as necessary or adjusting the format so as to match the communication specifications.
  • the communication IZF unit 15 performs signal processing such as adding a code for determining a communication error, and outputs the signal to the ECU 1.
  • the communication IZF unit 15 also plays a role of receiving a communication signal input from the ECU 1 and transmitting it to the signal processing control unit 6.
  • the bidirectional communication between ECU1 and sensor2 can be configured to change the communication speed. wear.
  • the signal processing control section 6 controls each section of the signal processing section 4. For example, setting or changing the amplification factor of the amplifier included in the analog signal processing unit 12, setting or changing the upper and lower reference voltages of the AZD conversion unit 13, correction or format specification to the digital signal processing unit 14, communication IZF unit Sending instructions to 15 etc.
  • the storage unit 5 is configured to include a nonvolatile memory and the like, and stores values such as an execution program of the signal processing control unit 6 and amplification factors used in the signal processing and upper and lower reference voltages. And These amplification factors, upper and lower reference voltages, etc. function as measurement reference values as described later.
  • the storage unit 5 does not need to be configured using a single nonvolatile memory, for example, an execution program is stored in a ROM that cannot be rewritten, a work area used for digital signal processing is provided in a volatile RAM, and an amplification factor or Values such as the upper and lower limit voltage may be stored in a rewritable flash memory.
  • the ECU 1 receives the load data output from the sensor 2 via the communication iZF unit 7. As described above, the communication IZF unit 7 also plays a role of transmitting a control command or the like to the signal processing control unit 6 via the communication I ZF unit 15 of the sensor 2. In the present embodiment, since the sensor 2 includes four sensors 21 to 24, the ECU 1 receives four load data. The ECU 1 calculates the total load data by performing calculations such as addition and bias correction on the received load data by the calculation unit 10. The determination unit 11 detects the occupant state on the vehicle seat 20 from the total load data. Here, the detection of the occupant state includes, for example, a vacant seat state, a state where an adult is seated, a state where a child is seated, and the like.
  • the detection result in the determination unit 11 is transmitted to other control devices in the vehicle via the communication IZF unit 7.
  • Other control devices in the vehicle are, for example, a seat belt retractor, an ECU that controls an air nog, and the like.
  • the occupant state on the vehicle seat 20 detected by the airbag EC U30 is transmitted.
  • the airbag ECU 30 does not inflate the airbag if it is empty, for example, if it is an adult, it will inflate the airbag to the maximum, and if it is a child, the airbag will inflate Controls such as suppressing or stopping.
  • the ECU 1 is configured to be connectable to the inspection machine 40 via the communication I / F unit 7.
  • the inspection machine 40 is a device for inspecting and calibrating (adjusting) the sensor 2 connected to the ECU 1 in, for example, a store or a repair shop.
  • the program for executing this inspection or calibration need not be installed in the inspection machine 40, but may be stored in the memory means possessed by the ECU 1 or the sensor 2 itself.
  • the inspection machine 40 may be configured to give a start instruction so as to execute a program included in the ECU 1 or the sensor 2, or to display or record an inspection result.
  • the vehicle occupant detection device is based on the sensor 2 as a load detection device that detects the load on the vehicle seat 20 and the load data input from the sensor 2. It is equipped with ECU1 as a control device for discriminating passengers.
  • the sensor 2 includes a gauge 3 as a measurement unit that measures a load, and a storage unit 5 that stores a measurement reference value that defines a measurement standard by the gauge 3.
  • the storage unit 5 includes rewritable and nonvolatile storage means.
  • FIG. 3 is a flowchart for explaining the standard operation of the ECU of FIG. ECU1 requests sensor 2 to acquire load information (load data) at regular intervals (process # 10) (process # 20).
  • the sensor 2 each sensor 21 to 24
  • the calculation unit 10 calculates the load (process # 70) and determines the occupant on the vehicle seat 20 (process # 60) # 80).
  • FIG. 4 is a flowchart illustrating the standard operation of the sensor of FIG.
  • sensor 2 determines whether there is a force with the sensor load information request (process # 30). If the request is helpless, terminate the process and repeat this process # 30 until requested. Of course, control may be performed so that the sensor load information request from the ECU 1 is received as an interrupt.
  • signal processing such as amplification of the output of gauge 3 is activated for signal processor 4 (process # 40), and communication IZ F part 15 of sensor 2 is activated.
  • Sensor load information is output via (Process # 50).
  • FIG. 5 is a flowchart for explaining the measurement reference changing operation by the ECU of FIG. 2
  • FIG. 6 is a flowchart for explaining the measurement reference changing operation of the sensor of FIG.
  • the measurement reference value is a value that determines the output of the sensor 2 as a load detection device in a no-load state where no occupant is present on the vehicle seat 20.
  • an example of changing the measurement reference value an example will be described in which an occupant is seated on the vehicle seat 20 and the V (zero) zero point reference when the seat is empty is adjusted.
  • ECU1 confirms the request for adjusting the zero point reference, that is, the presence or absence of the zero point reset request (process # 1).
  • This 0-point reset request is input from the inspection machine 40 connected to the ECU 1 at the time of vehicle inspection, for example.
  • ECU 1 may execute a self-diagnosis program or the like, and issue a 0-point reset request according to the result.
  • This self-diagnosis program has no load on the target vehicle seat 20 due to cooperation with other systems in the vehicle, such as when the vehicle stops and the passenger gets off and is locked. It can be done by recognizing that.
  • a zero-point reset request is input from the detector 40, and based on this request, the EC Ul as the control device and the sensor 2 as the load detection device are measured reference values. The operation will be described below as executing the update process.
  • ECU1 performs normal operation as usual. That is, processing # 20, # 60, # 70, and # 80 are sequentially executed in the same manner as the operation described in FIG. 3, and the passengers on the vehicle seat 20 are determined. When this operation is performed only for inspection, as shown in FIG. 5, the occupant on the vehicle seat 20 is determined without confirming the passage of a fixed time (by omitting the processing # 10). You may do it.
  • Process # 1 resets 0 points If the request is confirmed, a command is issued to adjust the deviation from the zero point for each sensor 21-25 (Process # 5).
  • the sensor load information request is checked (process # 30).
  • sensor 2 performs standard operation as usual. That is, the processes # 40 and # 50 described with reference to FIG. 4 are sequentially executed. If there is no request for sensor load information, check whether there is a displacement adjustment command from ECU1 (Process # 35). If there is a misalignment command, the current output position of gauge 3 is set to the output reference position of sensor 2 (process # 36). This operation is performed to adjust the zero point. At this time, the vehicle seat 20 is in an empty seat state. Therefore, the zero point adjustment can be realized by setting the output of the gauge 3 at this point to the zero point output reference position of the sensor 2. In this way, according to an instruction from the ECU 1 as the control device, the sensor 2 as the load detection device executes the measurement reference value update process and updates the measurement reference value.
  • FIG. 7 is a block diagram illustrating signal processing from the gauge of FIG. 2 to the AZD conversion unit
  • FIG. 8 is a diagram illustrating AZD conversion by the AZD conversion unit of FIG.
  • the output of the gauge 3 is not large enough to be input to the AZD conversion unit 13 or the like as it is.
  • the output of the gauge 3 is amplified using an amplifier (amplifying circuit) 12a provided in the analog signal processing unit 12. Then, the output is input to the AZD converter 13 and subjected to analog Z-digital conversion (hereinafter referred to as AZD conversion) by the AZD converter 13a and the like.
  • the AZD converter 13a digitally converts the voltage between the upper limit reference voltage (refH) and the lower limit reference voltage (refL) of the input analog voltage that is the target of AZD conversion with a predetermined resolution.
  • the upper limit reference voltage and the lower limit reference voltage are set to IV and 3 V, respectively, and the AZD converter 13a has 6-bit resolution.
  • the digital value when the output voltage of the amplified gauge 3 that changes linearly is IV, the digital value is 0 (zero), and when it is 3 V, the digital value is 63.
  • the resolution per bit is 31.25mV It is. If the digital value is 16 when the above measurement reference value change command is issued (Process # 35 in Fig. 6), the gauge 3 after amplification when the vehicle seat 20 is empty is displayed.
  • the output voltage is 1.5V. Therefore, since the voltage width of the AZD converter 13a up to the upper reference voltage of 3V is 1.5V, only a digital value of up to 48 can be obtained with a resolution of 31.25mV.
  • the lower limit reference voltage of the AZD converter 13a is changed to 1.5V, which is the output voltage of the gauge 3 after amplification when the seat 20 is vacant, and the upper limit reference voltage is changed to the lower limit reference voltage. Change to 5V by adding 2V to the input width. Then, the upper and lower reference voltages of the AZD converter 13a stored in the storage unit 5 are changed to the new upper and lower reference voltages and stored. The upper and lower reference voltages of the AZD converter 13a are generated by a voltage generation circuit (not shown) based on the values stored in the storage unit 5 and input to the AZD converter 13a. As a result, it is possible to adjust the state when the vehicle seat 20 is empty while maintaining the resolution, that is, while maintaining the load measuring system using the gauge 3.
  • the measurement reference value is a value that determines the output of the sensor 2 as a load detection device in a no-load state where no occupant is present on the vehicle seat 20. Therefore, in the embodiment described above, the lower limit reference voltage (refL) corresponds to this. In addition, since the upper limit reference voltage (refH) is changed with the change of the lower limit reference voltage, both of these reference voltages correspond to the measurement reference value.
  • the measurement reference value may be a value that defines a range that needs to be transmitted to the ECU 1 as the control device, among the loads that can be measured by the gauge 3 as the measurement unit.
  • the range that needs to be transmitted to the ECU 1 is determined by the upper limit reference voltage and the lower limit reference voltage, and therefore both these reference voltages correspond to measurement reference values. That is, as shown in FIG. 8, the effective data width of the load data to be transmitted to the ECU 1 is set to be W before and after the adjustment!
  • the effective data width of the load data to be transmitted to the ECU 1 is increased. Can be spread. Since the maximum value of the digitally converted value remains 63, the resolution is degraded. A wide range of loads (1.5 times in this example) Can be included in the effective load data. Conversely, if the input voltage range converted by the AZD converter 13a is narrowed, such as setting the lower limit reference voltage to IV and the upper limit reference voltage to 2V, the effective data width of the load data to be transmitted to ECU1 can be reduced. it can.
  • the resolution increases. Only a narrow range of loads (in this case 1Z2 times) can be used as effective load data, but the accuracy is improved. As described above, the range that needs to be transmitted to the ECU 1 as the control device among the loads measurable by the gauge 3 as the measurement unit can be determined by the measurement reference value.
  • FIG. 9 is a diagram for explaining the signal processing of the gauge output in the analog signal processing unit of FIG.
  • FIG. 10 is a diagram for explaining another example of the signal processing shown in FIG.
  • the output of the gauge 3 is a low voltage to be used as it is.
  • initial value it is as follows.
  • the output of the gauge 3 is 0. IV.
  • the maximum load W1 of the valid data of the load data to be transmitted to ECU1 the output of gauge 3 is 0.3V.
  • the width force of this load WO and W1 The effective data width of the load data to be transmitted to ECU1.
  • the output of the gauge 3 is amplified by the amplifier 12a of the analog signal processing unit 12 shown in FIG. 9 (a).
  • the gain is amplified about 10 times based on the gain (gain) determined by the gain resistors 12b and 12c.
  • the gauge output voltage after amplification is AZD converted and transmitted to the ECU 1 as digital data.
  • the effective data width W of the amplified gauge output voltage is 1.5 V force, etc. Between 5V.
  • the upper and lower reference voltages of the AZD comparator 13a and the effective data width W of the amplified gauge output voltage become mismatched. Therefore, in the present embodiment, the value of the virtual ground VG of the amplifier 12a of the analog signal processing unit 12 shown in FIG. 9A can be set as the measurement reference value.
  • the virtual ground VG that is the reference for amplification is in the initial state!
  • the output voltage of the gauge 3 at the load WO and the gauge 3 at the current load WO Change to a value based on the difference from the output voltage.
  • the difference is 0.05V. Therefore, the value of virtual ground VG of amplifier 12a is set to 0.05V.
  • the measurement reference value is a value that determines the output of the sensor 2 as the load detection device in a no-load state where no occupant is present on the vehicle seat 20. Therefore, in this specific example, the value of the virtual ground VG of the amplifier 12a corresponds to this.
  • the gain resistors 12b and 12c can be made variable, and the amplification factor determined by the gain resistors 12b and 12c can be used as the measurement reference value.
  • the waveform A shown in FIG. 10 (b) is the same as the waveform example having no deviation from the waveform example shown in FIG. 9 (c).
  • the output voltage of gauge 3 which is not displaced is amplified about 10 times with the value of virtual ground VG of amplifier 12a set to 0 V. Therefore, the gauge output voltage after amplification is obtained so that the effective data width W is between the output loads WO and W1.
  • Waveform B is obtained by amplifying the output voltage of gauge 3, which is also not displaced, with an amplification factor of about 20 times, and waveform C is amplified with an amplification factor of about 5 times. All of the waveforms A to C are set to have a load WO which is an unloaded state when the amplified voltage is IV.
  • Waveform B reaches 3V, which is the upper limit reference voltage of AZ D converter 13a, at the time of load W2 located approximately at the center of effective data width W of waveform A.
  • waveform C has not yet reached 3V, which is the upper limit reference voltage of AZD converter 13a, at the time of maximum load W1 of effective data width W of waveform A.
  • Waveform C reaches the upper reference voltage of 3V at a load W3 that is twice the load W1.
  • the amplification factor of the analog signal processing unit 12 is determined by the gauge 3 as the measurement unit.
  • the measurement reference value which is a value that defines the range that needs to be transmitted to the ECU 1 as the control device among the measurable loads.
  • the value of the virtual ground VG also corresponds to the measurement reference value.
  • Values such as the amplification factor and virtual ground VG used in the analog signal processing unit 12 are stored in the storage unit 5 and appropriately updated as described above.
  • the value of the virtual ground VG for obtaining the waveform B is 0.05 V
  • the value of the virtual ground VG for obtaining the waveform C is minus 0.1 V. That is, it can be considered complicated, for example, a negative power source is required.
  • this is only an example used for ease of explanation and there is no problem.
  • a clamp circuit that uniformly applies a constant voltage to the output voltage of the gauge 3 is provided in the analog signal processing unit 12. Then, a constant voltage (clamp voltage) applied uniformly is set as the initial value of the virtual ground VG. Then, there is a section with a positive potential between the clamp voltage and ground, so a negative power supply is not necessary.
  • the sensor 2 as the load detection device has the AZD conversion unit 13 and the digital data is used when the load data is output to the ECU 1 as the control device.
  • the load data may be output to ECU1.
  • the load data is output to the ECU 1 as analog data. Also, the present invention is applicable.
  • a vehicle occupant detection device capable of detecting a load on a vehicle seat and detecting an occupant on the vehicle seat with high accuracy without impairing noise resistance. it can.
  • the present invention detects an occupant detection device for a vehicle that detects a load on a vehicle seat installed in an automobile, a railway vehicle, or the like, and determines an occupant on the vehicle seat based on the detected load data.
  • a vehicle seat installed in an automobile, a railway vehicle, or the like
  • FIG. 1 is a schematic diagram showing an arrangement of each part of a vehicle occupant detection device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a system configuration of a vehicle occupant detection device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining the standard operation of the ECU in FIG.
  • FIG. 4 is a flowchart for explaining the standard operation of the sensor of FIG.
  • FIG. 5 is a flowchart for explaining the measurement standard changing operation by the ECU of FIG.
  • FIG. 6 is a flowchart for explaining the measurement standard changing operation of the sensor in FIG.
  • FIG. 7 Block diagram explaining the signal processing up to the gauge force AZD converter in Fig. 2
  • FIG. 9 is a diagram for explaining signal processing of gauge output in the analog signal processing unit of FIG.
  • FIG. 10 is a diagram for explaining another example of the signal processing shown in FIG.

Abstract

An occupant detection apparatus for a vehicle, capable of accurately detecting load on a vehicle seat to detect an occupant on the seat without impairing anti-noise capability. An occupant detection apparatus for a vehicle, having a load detection device (2) for detecting load on a vehicle seat and a control device (1) for recognizing an occupant based on load data inputted from the load detection device (2). The load detection device (2) has a measurement section (3) for measuring load and a storage section (5) for storing a measurement standard value defining the standard of measurement by the measurement section (3). The storage section (5) has storage means which is rewritable and non-volatile.

Description

明 細 書  Specification
車両の乗員検出装置  Vehicle occupant detection device
技術分野  Technical field
[0001] 本発明は、車両用シートの荷重を検出し、検出された荷重データに基づいて前記車 両用シート上の乗員の判別を行う車両の乗員検出装置に関する。  The present invention relates to a vehicle occupant detection device that detects a load on a vehicle seat and discriminates an occupant on the vehicle seat based on the detected load data.
背景技術  Background art
[0002] 上記のような装置として、例えば、下記に示す特許文献 1には、荷重センサを車両 シートへの組み付けた後に判別しき 、値の調整を行うことが可能な車両用乗員検知 装置の技術が開示されている。この荷重検出装置は、車両シート上の荷重を検出す る荷重センサからの荷重計測結果に基づいて車両乗員の状態を判別するための判 別しきい値を記憶するしきい値記憶手段を少なくとも一つ備えている。そして、しきい 値記憶手段の少なくとも一部は、書き換え可能な不揮発性メモリによって構成されて いる。そして、較正検査ツール等を用いて外部力も通信によって不揮発性メモリの内 容を書き換えることにより、容易且つ確実に判別しきい値の調整を行うというものであ る。その結果、荷重センサを車両シートへ取り付けた後や、荷重センサを組み付けた 車両シートを車両へ組み付けた後等に判別しき 、値の調整ができるようになって!/、る 。また、この判別しきい値が、車両乗員の種類を判別するための乗員判別しきい値や 、車両シートの空席時荷重を示すゼロ点荷重しきい値であることが、開示されている。 また、下記に示す特許文献 2及び 3には、荷重センサの出力した信号を測定し、乗 員が座って 、な 、と判断できる状況での信号出力をゼロ値として校正 (較正)する技 術が開示されている。  [0002] As an apparatus as described above, for example, in Patent Document 1 shown below, a vehicle occupant detection apparatus that can determine and adjust a value after a load sensor is assembled to a vehicle seat is disclosed. Is disclosed. This load detection device includes at least one threshold value storage means for storing a determination threshold value for determining the state of a vehicle occupant based on a load measurement result from a load sensor that detects a load on a vehicle seat. Have one. At least a part of the threshold value storage means is constituted by a rewritable nonvolatile memory. Then, the determination threshold value can be easily and reliably adjusted by rewriting the contents of the nonvolatile memory by communication with external force using a calibration inspection tool or the like. As a result, the value can be adjusted after the load sensor is attached to the vehicle seat or after the vehicle seat with the load sensor is attached to the vehicle. Further, it is disclosed that this determination threshold value is an occupant determination threshold value for determining the type of a vehicle occupant or a zero point load threshold value indicating a load when a vehicle seat is empty. In Patent Documents 2 and 3 shown below, a technique for measuring a signal output from a load sensor and calibrating (calibrating) the signal output in a situation in which a passenger can be determined to be sitting and sitting as zero value. Is disclosed.
特許文献 1 :特開 2004— 125595号公報 (第 3— 4頁)  Patent Document 1: JP 2004-125595 A (Page 3-4)
特許文献 2 :特開 2000— 283834号公報(第 0019〜0020段落)  Patent Document 2: JP 2000-283834 A (paragraphs 0019 to 0020)
特許文献 3:特開 2001— 21411号公報 (第 0072〜0073段落)  Patent Document 3: Japanese Patent Laid-Open No. 2001-21411 (paragraphs 0072-0073)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、特許文献 1〜3に示された技術においては、荷重センサの出力値に対して コントローラが補正をかけるものである。具体的には、例えば、荷重センサの出力変 域力 0〜: LOOであったとし、荷重センサを取り付けた車両シートを車両に取り付けた 後の空席状態で、荷重センサの値が 20であったとすれば、特許文献 1に記載の技術 ではこれをゼロ点とみなすように、しきい値を補正する。そうすると、結果として、 0〜1 00の出力変域は、 20〜: LOOとなり、計測範囲が狭くなつてしまう。 [0003] However, in the techniques disclosed in Patent Documents 1 to 3, the output value of the load sensor The controller applies the correction. Specifically, for example, it is assumed that the output range force of the load sensor is 0 to LOO, and the value of the load sensor is 20 in a vacant seat state after the vehicle seat with the load sensor is attached to the vehicle. If so, the technique described in Patent Document 1 corrects the threshold value so that it is regarded as a zero point. As a result, the output range from 0 to 100 becomes 20: LOO, and the measurement range becomes narrow.
[0004] この問題に対応するため、例えば、補正後でも 100の出力変域を確保できるように することはできる。つまり、荷重センサ自身の出力を 0〜120にするなどの方法を採れ ば、上記のように補正した後でも 100の出力変域を確保することができる。しかし、補 正によつて捨てられる部分にまで荷重センサの検出範囲を広げると、荷重センサの 計測制度、つまり分解能が悪くなる。即ち、例えば 6V (ボルト)の出力電圧範囲を 0〜 100の出力変域とした場合には、出力電圧 6mVに対して出力が 1の変化となる。出 力変域が 0〜120の場合は、 5mVに対して出力が 1の変化となる。ノイズ等の混入を 想定した場合などでは、出力電圧 6mVの方が耐性が高くなる。近年の車両にはナビ ゲーシヨンシステム、 ETC (自動料金収受システム)の車室機、オーディオ機器など のノイズ発生源が多く存在している。従って、耐ノイズ性を多角的な観点より向上させ ることは、安定した車両システムを構築する上で不可欠なことであり、特許文献 1〜3 に記載の技術では、充分とはいえない。  [0004] To cope with this problem, for example, it is possible to secure 100 output domains even after correction. In other words, if a method such as setting the output of the load sensor itself to 0 to 120 is adopted, 100 output ranges can be secured even after correction as described above. However, if the detection range of the load sensor is expanded to a part that can be discarded due to correction, the measurement system of the load sensor, that is, the resolution, deteriorates. That is, for example, when the output voltage range of 6 V (volts) is set to an output range of 0 to 100, the output changes by 1 with respect to the output voltage of 6 mV. When the output range is 0 to 120, the output changes 1 for 5mV. The output voltage of 6mV is more tolerant when noise or other contamination is assumed. In recent years, there are many noise sources such as navigation systems, ETC (automatic toll collection system) cabin units, and audio equipment. Therefore, improving noise resistance from various viewpoints is indispensable for building a stable vehicle system, and the techniques described in Patent Documents 1 to 3 are not sufficient.
[0005] 本発明は上記課題に鑑みて、耐ノイズ性を損なうことなぐ精度良く車両用シートの 荷重を検出して車両用シート上の乗員を検出できる車両の乗員検出装置を提供する ことを目的とする。  [0005] In view of the above problems, an object of the present invention is to provide a vehicle occupant detection device capable of detecting a load on a vehicle seat with high accuracy without impairing noise resistance and detecting an occupant on the vehicle seat. And
課題を解決するための手段  Means for solving the problem
[0006] この目的を達成するための本発明に係る車両の乗員検出装置の特徴構成は、車 両用シートの荷重を検出する荷重検出装置と、この荷重検出装置から入力される荷 重データに基づいて乗員の判別を行う制御装置とを備えたものであって、前記荷重 検出装置は、荷重を計測する計測部と、この計測部による計測の基準を定める計測 基準値を記憶する記憶部とを備え、前記記憶部は、書き換え可能且つ不揮発性の 記憶手段を有して構成される点にある。  [0006] A characteristic configuration of a vehicle occupant detection device according to the present invention for achieving this object is based on a load detection device that detects a load on a vehicle seat and load data input from the load detection device. The load detection device includes a measurement unit that measures the load and a storage unit that stores a measurement reference value that determines a measurement reference by the measurement unit. And the storage unit includes a rewritable and nonvolatile storage unit.
[0007] この特徴構成によれば、例えば、制御装置で乗員の判別を行うために使用される 判別しき 、値を記憶する部分ではなぐ車両用シートの荷重を検出して荷重データを 制御装置へ入力する荷重検出装置に備えられた記憶部が、書き換え可能且つ不揮 発性の記憶手段を有して構成されている。この記憶部には、荷重検出装置の有する 計測部、例えば荷重を測定する歪ゲージによる計測の基準を定める計測基準値が 記憶されている。従って、制御装置に入力される荷重データが設計値、あるいは製品 組み立て時など力 乖離し、いわゆるズレが生じた場合、制御装置の中で荷重デー タゃ乗員の判別を行うしき 、値などを補正する必要がな 、。荷重データを生成する 荷重検出装置の内部にある計測基準値を補正することで、このズレを改善することが できる。また、荷重検出装置側でズレを改善するために、制御装置側では入力された 荷重データの全てを有効なデータとして用いることができる。従って、制御装置側で 不本意に有効データ範囲を狭められてしまうことがない。また、荷重検出装置側から は、有効データ範囲が狭まることを見越して、本来は不要な部分も含めて荷重データ を出力する必要がなくなる。従って、荷重検出装置は有効データの範囲に絞って荷 重データを出力することができ、荷重データの精度を保つこともでき、ノイズ耐性も強 ィ匕することがでさる。 [0007] According to this characteristic configuration, for example, the control device is used to determine an occupant. The storage unit provided in the load detection device that detects the load of the vehicle seat that does not store the value and inputs the load data to the control device has a rewritable and non-volatile storage means. Configured. The storage unit stores a measurement reference value that defines a measurement reference by a measurement unit included in the load detection device, for example, a strain gauge that measures a load. Therefore, when the load data input to the control device deviates from the design value or when assembling the product, so-called deviation occurs, the load data is used to determine the occupant in the control device, and the value is corrected. I need to do it. This deviation can be improved by correcting the measurement reference value inside the load detector that generates load data. In addition, in order to improve the deviation on the load detection device side, all the input load data can be used as valid data on the control device side. Therefore, the effective data range is not unintentionally narrowed on the control device side. In addition, in view of the narrowing of the effective data range from the load detection device side, it is no longer necessary to output load data including unnecessary portions. Therefore, the load detection device can output the load data in the range of the effective data, maintain the accuracy of the load data, and enhance the noise resistance.
[0008] さらに上記構成において、前記計測基準値が、前記車両用シート上に乗員が存在 しない無荷重状態における前記荷重検出装置の出力を定める値である点を特徴と する。  [0008] Further, in the above configuration, the measurement reference value is a value that determines an output of the load detection device in a no-load state in which no occupant is present on the vehicle seat.
[0009] この特徴構成によれば、車両用シート上に乗員が存在しない無荷重状態での荷重 検出装置の出力、いわゆるゼロ点での出力を定める値を計測基準値としている。従 つて、特に調整用の錘等を車両用シートに載せるなど、特別な調整工程を経ることな ぐ荷重データのズレを確認することができる。  [0009] According to this characteristic configuration, the value that determines the output of the load detection device in a no-load state in which no occupant is present on the vehicle seat, that is, the output at the so-called zero point, is used as the measurement reference value. Therefore, it is possible to check the deviation of the load data without going through a special adjustment process, such as placing an adjustment weight on the vehicle seat.
[0010] また、前記計測基準値が、前記計測部によって計測可能な荷重の内、前記制御装 置へ伝達する必要のある範囲を定める値であるように構成しても良い。  [0010] Further, the measurement reference value may be configured to be a value that defines a range that needs to be transmitted to the control device among loads measurable by the measurement unit.
[0011] この構成によれば、例えば歪ゲージなどで構成される計測部によって計測可能な 荷重の内、荷重検出装置から制御装置へ荷重データとして伝達する必要のある範囲 を定める値を計測基準値としている。従って、荷重データのズレが確認された場合で も、その範囲、即ち、有効データ幅を維持した状態で計測基準値を更新することがで きる。その結果、制御装置でのズレの補正を見越して、本来は不要な部分も含めて 荷重検出装置側から荷重データを出力する必要がなくなる。従って、荷重検出装置 は有効データの範囲に絞って荷重データを出力することができ、荷重データの精度 を保つことちできる。 [0011] According to this configuration, for example, a value that determines a range that needs to be transmitted as load data from the load detection device to the control device among the loads that can be measured by a measurement unit including a strain gauge or the like is measured It is said. Therefore, even when the deviation of the load data is confirmed, the measurement reference value can be updated while maintaining the range, that is, the effective data width. wear. As a result, it is not necessary to output load data from the load detection device side including the unnecessary portion in anticipation of correction of deviation in the control device. Therefore, the load detection device can output the load data in the range of the valid data, and can maintain the accuracy of the load data.
[0012] さらに上記構成において、前記制御装置からの指示によって、前記荷重検出装置 が計測基準値更新処理を実行し、前記計測基準値を更新すると好ま U、。  [0012] Further, in the above configuration, it is preferable that the load detection device executes a measurement reference value update process and updates the measurement reference value according to an instruction from the control device.
[0013] これによれば、前記制御装置からの指示によって、前記荷重検出装置が計測基準 値更新処理を実行し、前記計測基準値を更新する。従って、例えば、検査機等を接 続しなくても、ズレの補正を行うことができる。また、検査機を接続して、調整及び検 查を行う場合においても、計測基準値更新命令や、計測基準値更新処理等の実行 プログラムは、車両内の制御装置や荷重検出装置に記憶されている。従って、検査 機は、その実行プログラムを起動するきつかけを与えればよいだけとなり、個別の車 種に対応した検査機を用意する必要もなくなる。  [0013] According to this, in accordance with an instruction from the control device, the load detection device executes a measurement reference value update process and updates the measurement reference value. Therefore, for example, deviation can be corrected without connecting an inspection machine or the like. Even when an inspection machine is connected to perform adjustment and inspection, execution programs such as measurement reference value update instructions and measurement reference value update processing are stored in the control device and load detection device in the vehicle. Yes. Therefore, the inspection machine only needs to give a trigger for starting the execution program, and it is not necessary to prepare an inspection machine corresponding to each vehicle type.
[0014] また、前記荷重検出装置と前記制御装置とは双方向通信を行うことが可能であると 好適である。双方向通信が可能であれば、制御部は、荷重検出装置から荷重データ を受け取るだけでなぐ荷重検出装置が有する信号処理回路の設定や補正などの制 御を行うこともできる。 [0014] Further, it is preferable that the load detection device and the control device can perform bidirectional communication. If bidirectional communication is possible, the control unit can perform control such as setting and correction of the signal processing circuit included in the load detection device that only receives load data from the load detection device.
[0015] また、前記双方向通信の通信速度が可変であると好適である。通信速度が可変で あれば、通信の緊急度や、環境ノイズの多少に応じて最適な通信速度を選択するな ど、柔軟な通信制御が可能となる。一例としては、環境ノイズが多い場合には、通信 速度を下げて信頼性を確保するなどの対応が可能となる。  [0015] Further, it is preferable that the communication speed of the bidirectional communication is variable. If the communication speed is variable, flexible communication control is possible, such as selecting the optimal communication speed according to the urgency of communication and the amount of environmental noise. As an example, when there is a lot of environmental noise, it is possible to reduce the communication speed and ensure reliability.
[0016] また、前記制御装置による乗員判別情報が、前記車両の他の制御装置に伝達され ると好適である。車両には、種々の装置ゃァクチユエータを制御するために多くの制 御装置が備えられ、分散処理が行われている。従って、本発明の乗員検出装置も、 多くの分散処理の内の一つを担う制御装置である場合が多い。そこで、本発明の乗 員検出装置が備える制御装置による乗員判別情報が、他の制御装置に伝達されれ ば、伝達された他の制御装置においてこの情報を有効に活用することができる。つま り、分散処理による処理結果を連携させて、好適な車両の制御が実現できる。 [0017] ここで、前記他の制御装置が、エアバッグ制御装置であると好適である。本発明の 乗員検出装置によれば、車両用シートに掛カる荷重に基づいて乗員を判別する。つ まり、荷重に応じて例えば、乗員が大人である力、子供である力、大柄であるか、小柄 であるか、などを判別する。エアバッグは、乗員の体格に応じてその膨張度合いゃ膨 張速度が制御されることが望ましい。従って、本発明の乗員検出装置の制御装置に よる乗員判別情報が、エアバッグ制御装置に伝達されれば、エアバッグの膨張度合 V、や膨張速度を良好に制御することができる。 [0016] In addition, it is preferable that occupant determination information by the control device is transmitted to another control device of the vehicle. A vehicle is provided with many control devices for controlling various devices and actuators, and distributed processing is performed. Therefore, the occupant detection device of the present invention is often a control device that takes on one of many distributed processes. Therefore, if the occupant discrimination information by the control device provided in the occupant detection device of the present invention is transmitted to another control device, this information can be effectively utilized in the transmitted other control device. In other words, suitable vehicle control can be realized by linking the processing results of the distributed processing. Here, it is preferable that the other control device is an airbag control device. According to the occupant detection device of the present invention, the occupant is determined based on the load applied to the vehicle seat. In other words, for example, it is determined whether the occupant is an adult, a child, or a large or small handle depending on the load. It is desirable that the inflation rate of the airbag is controlled according to the physique of the occupant. Therefore, if the occupant discrimination information by the control device of the occupant detection device of the present invention is transmitted to the airbag control device, the inflation degree V and the inflation speed of the airbag can be controlled well.
[0018] また、前記制御装置が、インターフェイスを介して検査機に接続可能であると好適 である。上述したように検査機自身は計測基準値更新命令や、計測基準値更新処理 等の実行プログラムを有する必要はない。計測基準値更新命令や、計測基準値更 新処理等の実行プログラムは、車両内の制御装置や荷重検出装置に記憶されてい ればよい。そして、制御装置力もの指示によって、荷重検出装置が計測基準値更新 処理を実行し、計測基準値を更新すればよい。しかし、何らかの方法によって、これ ら実行プログラムを起動するきつかけを与える必要がある。このきつかけを、インター フェイスを介して制御装置に接続可能な検査機が行うと好適である。その結果、経年 変化への対応力が向上し、精度のよい乗員検出装置を構成することができる。  [0018] Further, it is preferable that the control device is connectable to an inspection machine via an interface. As described above, the inspection machine itself does not need to have an execution program such as a measurement reference value update instruction or measurement reference value update processing. An execution program such as a measurement reference value update command and a measurement reference value update process may be stored in a control device or a load detection device in the vehicle. Then, the load detection device may execute the measurement reference value update process and update the measurement reference value according to an instruction from the controller. However, it is necessary to give a trigger to start these executable programs in some way. It is preferable that this check is performed by an inspection machine that can be connected to the control device via the interface. As a result, the ability to cope with aging changes is improved, and an accurate occupant detection device can be configured.
[0019] ここで、前記検査機が、前記荷重検出装置の検査及び校正の一方又は双方を行う と好適である。つまり、検査機が上記きつかけを制御装置に与えれば、制御装置は、 荷重検出装置の検査及び校正の一方又は双方を起動することができる。その結果、 経年変化への対応力が向上し、精度のよい乗員検出装置を構成することができる。  Here, it is preferable that the inspection machine performs one or both of inspection and calibration of the load detection device. That is, if the inspection machine gives the above-mentioned crack to the control device, the control device can activate one or both of inspection and calibration of the load detection device. As a result, the ability to cope with secular changes is improved, and a highly accurate occupant detection device can be configured.
[0020] また、前記荷重検出装置が、前記車両用シートと前記車両側に設置されたシートレ ールとの間に介装されたものであると好適である。即ち、車両用シートに掛カる荷重 を良好に検出することができるので、精度のよい乗員検出装置を構成することができ る。  [0020] Further, it is preferable that the load detecting device is interposed between the vehicle seat and a seat rail installed on the vehicle side. That is, since the load applied to the vehicle seat can be detected well, a highly accurate occupant detection device can be configured.
[0021] また、前記荷重検出装置が、歪センサを有するものであると好適である。歪センサ は、簡単な構造で応答性良く荷重を検出可能な荷重検出用センサである。従って、 この歪センサを有して荷重検出装置を構成すれば、精度の良い乗員検出装置を構 成することができる。 発明を実施するための最良の形態 In addition, it is preferable that the load detection device has a strain sensor. The strain sensor is a load detection sensor that can detect a load with a simple structure and good response. Therefore, if a load detection device is configured with this strain sensor, an accurate occupant detection device can be configured. BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 〔システムの概要〕  [0022] [System overview]
以下、本発明の実施形態を図面に基づいて説明する。図 1は、本発明の実施形態 に係る車両の乗員検出装置の各部の配置を示す模式図、図 2は、本発明の実施形 態に係る車両の乗員検出装置のシステム構成を示すブロック図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the arrangement of each part of a vehicle occupant detection device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the system configuration of the vehicle occupant detection device according to an embodiment of the present invention. is there.
[0023] 図 1に示すように本実施形態では、車両用シート 20の下部に荷重検出装置として のセンサ 2が組み付けられており、車両用シート 20に着座する乗員による荷重を計 測するように構成されている。センサ 2は車両用シート 20のシートレール 26上に、右 側前方部と右側後方部と左側前方部と左側後方部との四箇所にそれぞれ、センサ 2 1〜24として設けられている。センサ 21〜24は、伝送線 25を介して、制御装置として の ECU (Electronic Control Unit) 1に接続されている。  As shown in FIG. 1, in the present embodiment, a sensor 2 as a load detection device is assembled to the lower part of the vehicle seat 20 so as to measure a load by an occupant seated on the vehicle seat 20. It is configured. The sensors 2 are provided on the seat rail 26 of the vehicle seat 20 as sensors 21 to 24 at four locations, a right front part, a right rear part, a left front part, and a left rear part, respectively. The sensors 21 to 24 are connected to an ECU (Electronic Control Unit) 1 as a control device via a transmission line 25.
[0024] 本実施形態において、センサ 2は歪ゲージを用いて構成されている。図 2に示すよ うに、センサ 2は計測部としてのゲージ 3と、信号処理部 4とから構成されている。信号 処理部 4は、アナログ信号処理部 12と、アナログ Zデジタル変換部(以下、 AZD変 換部) 13と、デジタル信号処理部 14と、通信インターフェイス部(以下、通信 IZF部) In the present embodiment, the sensor 2 is configured using a strain gauge. As shown in FIG. 2, the sensor 2 includes a gauge 3 as a measuring unit and a signal processing unit 4. The signal processing unit 4 includes an analog signal processing unit 12, an analog Z digital conversion unit (hereinafter referred to as AZD conversion unit) 13, a digital signal processing unit 14, and a communication interface unit (hereinafter referred to as communication IZF unit).
15と、これらを制御する信号処理制御部 6と、信号処理部 4内での処理に必要な情 報やデータを記憶する記憶部 5とを有して 、る。 15, a signal processing control unit 6 that controls these, and a storage unit 5 that stores information and data necessary for processing in the signal processing unit 4.
[0025] 次に、センサ 2の信号の流れについて説明する。ゲージ 3は車両用シート 20に掛か る重さによって生じる歪の大きさに比例したゲージ電圧を出力する(ゲージ出力電圧 )。アナログ信号処理部 12は、アンプなどを有して構成されており、入力されたゲー ジ出力電圧はここで増幅される。増幅された信号は、次に AZD変換部 13でデジタ ル信号に変換される。デジタル信号に変換された信号は、デジタル信号処理部 14で 、必要に応じて信号を補正したり、通信仕様に整合するようにフォーマット (書式)を 整えたりするなどのデジタル信号処理を施される。次に通信 IZF部 15で、通信誤り を判別するための符号を付加するなどの信号処理を施されて、 ECU1へと出力され る。尚、センサ 2と ECU1とは、双方向通信を行うため、通信 IZF部 15は ECU1から 入力される通信信号を受信して信号処理制御部 6へ伝達する役割も担って 、る。尚 、 ECU1とセンサ 2との間の双方向通信は、通信速度を変更可能に構成することもで きる。 Next, the signal flow of the sensor 2 will be described. The gauge 3 outputs a gauge voltage proportional to the magnitude of strain caused by the weight applied to the vehicle seat 20 (gauge output voltage). The analog signal processing unit 12 includes an amplifier and the like, and the input gage output voltage is amplified here. The amplified signal is then converted into a digital signal by the AZD converter 13. The signal converted into a digital signal is subjected to digital signal processing by the digital signal processing unit 14 such as correcting the signal as necessary or adjusting the format so as to match the communication specifications. . Next, the communication IZF unit 15 performs signal processing such as adding a code for determining a communication error, and outputs the signal to the ECU 1. Since the sensor 2 and the ECU 1 perform bidirectional communication, the communication IZF unit 15 also plays a role of receiving a communication signal input from the ECU 1 and transmitting it to the signal processing control unit 6. The bidirectional communication between ECU1 and sensor2 can be configured to change the communication speed. wear.
[0026] 信号処理制御部 6は、上記信号処理部 4の各部を制御して 、る。例えば、アナログ 信号処理部 12が有するアンプの増幅率の設定や変更、 AZD変換部 13の上限及 び下限基準電圧の設定や変更、デジタル信号処理部 14への補正やフォーマット指 定、通信 IZF部 15への発信指示等である。記憶部 5は、不揮発性メモリなどを有して 構成されており、信号処理制御部 6の実行プログラムや、上記各信号処理で使用す る増幅率や上限及び下限基準電圧などの値を記憶して 、る。これら増幅率や上限及 び下限基準電圧などは後述するように計測基準値として機能する。記憶部 5は、単一 の不揮発性メモリを用いて構成する必要はなぐ例えば実行プログラムは書換えので きない ROMに記憶し、デジタル信号処理に用いるワークエリアは揮発性の RAMに 設け、増幅率や上限下限電圧などの値は書換え可能なフラッシュメモリに記憶するな どとしても良い。  [0026] The signal processing control section 6 controls each section of the signal processing section 4. For example, setting or changing the amplification factor of the amplifier included in the analog signal processing unit 12, setting or changing the upper and lower reference voltages of the AZD conversion unit 13, correction or format specification to the digital signal processing unit 14, communication IZF unit Sending instructions to 15 etc. The storage unit 5 is configured to include a nonvolatile memory and the like, and stores values such as an execution program of the signal processing control unit 6 and amplification factors used in the signal processing and upper and lower reference voltages. And These amplification factors, upper and lower reference voltages, etc. function as measurement reference values as described later. The storage unit 5 does not need to be configured using a single nonvolatile memory, for example, an execution program is stored in a ROM that cannot be rewritten, a work area used for digital signal processing is provided in a volatile RAM, and an amplification factor or Values such as the upper and lower limit voltage may be stored in a rewritable flash memory.
[0027] 続!、て、 ECU1につ!/、て説明する。 ECU1は通信 iZF部 7を介して、センサ 2から 出力される荷重データを受け取る。上述したように通信 IZF部 7は、センサ 2の通信 I ZF部 15を介して信号処理制御部 6へ制御指令などを発信する役割も担っている。 本実施形態では、センサ 2としてセンサ 21〜24の四つのセンサを有しているので、 E CU1は、四つの荷重データを受け取る。 ECU1は、受け取った荷重データに対して 演算部 10で、加算や偏り補正などの演算を施して総荷重データを算出する。判断部 11では、この総荷重データより、車両用シート 20上の乗員状態を検出する。ここで、 乗員状態の検出とは、例えば空席状態であることや、大人が着座している状態である ことや、子供が着座している状態であること等である。  [0027] Next, ECU1! The ECU 1 receives the load data output from the sensor 2 via the communication iZF unit 7. As described above, the communication IZF unit 7 also plays a role of transmitting a control command or the like to the signal processing control unit 6 via the communication I ZF unit 15 of the sensor 2. In the present embodiment, since the sensor 2 includes four sensors 21 to 24, the ECU 1 receives four load data. The ECU 1 calculates the total load data by performing calculations such as addition and bias correction on the received load data by the calculation unit 10. The determination unit 11 detects the occupant state on the vehicle seat 20 from the total load data. Here, the detection of the occupant state includes, for example, a vacant seat state, a state where an adult is seated, a state where a child is seated, and the like.
[0028] 判断部 11での検出結果は、通信 IZF部 7を介して、車両内の他の制御装置へと伝 達される。車両内の他の制御装置とは、例えば、シートベルトの巻き取り装置や、エア ノッグを制御する ECU等である。本実施形態では図 2に示すように、エアバッグ EC U30に検出された車両用シート 20上の乗員状態を伝達している。エアバッグ ECU3 0では、衝突時にこの検出結果に基づいて、例えば空席状態であればエアバッグを 膨張させない、大人であれば最大限にエアバッグを膨張させる、子供であればエア ノ ッグの膨張を抑制あるいは停止する等の制御を行う。 [0029] 尚、 ECU1は、通信 I/F部 7を介して、検査機 40にも接続可能なように構成されて いる。検査機 40は、例えば販売店や修理工場等において、 ECU1に接続され、セン サ 2の検査や校正 (調整)を行うための装置である。この検査や校正を実行するプロ グラムは検査機 40に搭載している必要はなぐ ECU1やセンサ 2自身の持つ記憶手 段に格納されていればよい。検査機 40は、 ECU1やセンサ 2が有するプログラムを実 行するように起動指示を与えたり、検査結果の表示や記録をしたりする等を行うように していてもよい。 [0028] The detection result in the determination unit 11 is transmitted to other control devices in the vehicle via the communication IZF unit 7. Other control devices in the vehicle are, for example, a seat belt retractor, an ECU that controls an air nog, and the like. In the present embodiment, as shown in FIG. 2, the occupant state on the vehicle seat 20 detected by the airbag EC U30 is transmitted. Based on the detection result at the time of collision, the airbag ECU 30 does not inflate the airbag if it is empty, for example, if it is an adult, it will inflate the airbag to the maximum, and if it is a child, the airbag will inflate Controls such as suppressing or stopping. Note that the ECU 1 is configured to be connectable to the inspection machine 40 via the communication I / F unit 7. The inspection machine 40 is a device for inspecting and calibrating (adjusting) the sensor 2 connected to the ECU 1 in, for example, a store or a repair shop. The program for executing this inspection or calibration need not be installed in the inspection machine 40, but may be stored in the memory means possessed by the ECU 1 or the sensor 2 itself. The inspection machine 40 may be configured to give a start instruction so as to execute a program included in the ECU 1 or the sensor 2, or to display or record an inspection result.
[0030] 以上説明したように本実施形態に係る車両の乗員検出装置は、車両用シート 20の 荷重を検出する荷重検出装置としてのセンサ 2と、このセンサ 2から入力される荷重 データに基づいて乗員の判別を行う制御装置としての ECU1とを備えたものである。 センサ 2は、荷重を計測する計測部としてのゲージ 3と、このゲージ 3による計測の基 準を定める計測基準値を記憶する記憶部 5とを備えている。そして、この記憶部 5は、 書き換え可能且つ不揮発性の記憶手段を有して構成されている。  As described above, the vehicle occupant detection device according to the present embodiment is based on the sensor 2 as a load detection device that detects the load on the vehicle seat 20 and the load data input from the sensor 2. It is equipped with ECU1 as a control device for discriminating passengers. The sensor 2 includes a gauge 3 as a measurement unit that measures a load, and a storage unit 5 that stores a measurement reference value that defines a measurement standard by the gauge 3. The storage unit 5 includes rewritable and nonvolatile storage means.
[0031] 〔システムの標準動作〕  [0031] [Standard operation of system]
続いて上記のように構成された車両の乗員検出装置の動作概要について説明する 。まず、 ECU1の標準動作について説明する。図 3は、図 2の ECUの標準動作を説 明するフローチャートである。 ECU1は、一定時間ごと(処理 # 10)にセンサ 2に対し て、荷重情報 (荷重データ)の取得を要求する(処理 # 20)。センサ 2 (各センサ 21〜 24)力も荷重情報を取得すると (処理 # 60)、演算部 10で荷重演算を行 、 (処理 # 7 0)、車両用シート 20上の乗員の判定を行う(処理 # 80)。  Next, an outline of the operation of the vehicle occupant detection apparatus configured as described above will be described. First, the standard operation of ECU1 will be described. FIG. 3 is a flowchart for explaining the standard operation of the ECU of FIG. ECU1 requests sensor 2 to acquire load information (load data) at regular intervals (process # 10) (process # 20). When the sensor 2 (each sensor 21 to 24) also obtains load information (process # 60), the calculation unit 10 calculates the load (process # 70) and determines the occupant on the vehicle seat 20 (process # 60) # 80).
[0032] 次にセンサ 2の標準動作について説明する。図 4は、図 2のセンサの標準動作を説 明するフローチャートである。センサ 2は、 ECU1のセンサ荷重情報要求(図 3の処理 # 20参照)を受けて、センサ荷重情報要求がある力否かを判断する(処理 # 30)。要 求が無力つた場合は、処理を終了し、要求があるまでこの処理 # 30を繰り返す。尚、 勿論、 ECU1からのセンサ荷重情報要求を割り込みとして受け取るような制御を行つ ていても良い。処理 # 30でセンサ荷重情報要求があった場合は、信号処理部 4に対 してゲージ 3の出力の増幅などの信号処理を起動し (処理 #40)、センサ 2の通信 IZ F部 15を介してセンサ荷重情報を出力する (処理 # 50)。尚、ここでは都度、信号処 理部 4による信号処理を駆動するとして説明したが、これは説明を容易にするための ものである。勿論、定常的に電子回路を動作させておき、処理 # 40では、その時点 での最新の信号を取り出すように構成していても良い。このようにして、センサ 2から 出力されたセンサ荷重情報力 ECU1に取得される(図 3の処理 # 60参照)。 Next, the standard operation of the sensor 2 will be described. FIG. 4 is a flowchart illustrating the standard operation of the sensor of FIG. In response to the sensor load information request from ECU 1 (see process # 20 in FIG. 3), sensor 2 determines whether there is a force with the sensor load information request (process # 30). If the request is helpless, terminate the process and repeat this process # 30 until requested. Of course, control may be performed so that the sensor load information request from the ECU 1 is received as an interrupt. When sensor load information is requested in process # 30, signal processing such as amplification of the output of gauge 3 is activated for signal processor 4 (process # 40), and communication IZ F part 15 of sensor 2 is activated. Sensor load information is output via (Process # 50). In this case, the signal processing Although it has been described that the signal processing by the processing unit 4 is driven, this is for ease of explanation. Of course, the electronic circuit may be steadily operated, and in the process # 40, the latest signal at that time may be extracted. In this way, the sensor load information force ECU1 output from the sensor 2 is acquired (see process # 60 in FIG. 3).
[0033] 〔計測基準値の変更〕 [Change of measurement reference value]
以上、本実施形態の概要、及び標準的な動作について説明したが、以下に、計測 基準値を変更する構成、及び動作について図面に基づいて説明する。図 5は、図 2 の ECUによる計測基準変更動作を説明するフローチャート、図 6は、図 2のセンサの 計測基準変更動作を説明するフローチャートである。ここでは、計測基準値を、車両 用シート 20の上に乗員が存在しない無荷重状態における荷重検出装置としてのセ ンサ 2の出力を定める値とする。そして、計測基準値の変更として、車両用シート 20 の上に乗員が着座して 、な 、、 V、わゆる空席時の 0 (ゼロ)点基準を調整する例を用 いて説明する。  The outline of the present embodiment and the standard operation have been described above. The configuration and operation for changing the measurement reference value will be described below with reference to the drawings. FIG. 5 is a flowchart for explaining the measurement reference changing operation by the ECU of FIG. 2, and FIG. 6 is a flowchart for explaining the measurement reference changing operation of the sensor of FIG. Here, the measurement reference value is a value that determines the output of the sensor 2 as a load detection device in a no-load state where no occupant is present on the vehicle seat 20. Then, as an example of changing the measurement reference value, an example will be described in which an occupant is seated on the vehicle seat 20 and the V (zero) zero point reference when the seat is empty is adjusted.
[0034] 図 5に示すように、 ECU1は 0点基準を調整する要求、つまり、 0点リセット要求の有 無を確認する(処理 # 1)。この 0点リセット要求は、例えば、車両の検査時などに、 E CU1に接続された検査機 40から入力される。または、 ECU1が自己診断プログラム 等を実行し、その結果によって 0点リセット要求を発動するようにしていてもよい。この 自己診断プログラムは、例えば、車両が停車し、乗員が下車して施錠されたこと等、 車両内の他のシステムとの協働により、対象とする車両用シート 20の上が無荷重で あることを認識して行うことができる。本実施形態では、説明を容易にするために、検 查機 40から 0点リセット要求が入力され、この要求に基づいて、制御装置としての EC Ulや荷重検出装置としてのセンサ 2が計測基準値の更新処理を実行するものとして 、以下に動作を説明する。  [0034] As shown in FIG. 5, ECU1 confirms the request for adjusting the zero point reference, that is, the presence or absence of the zero point reset request (process # 1). This 0-point reset request is input from the inspection machine 40 connected to the ECU 1 at the time of vehicle inspection, for example. Alternatively, ECU 1 may execute a self-diagnosis program or the like, and issue a 0-point reset request according to the result. This self-diagnosis program has no load on the target vehicle seat 20 due to cooperation with other systems in the vehicle, such as when the vehicle stops and the passenger gets off and is locked. It can be done by recognizing that. In the present embodiment, for ease of explanation, a zero-point reset request is input from the detector 40, and based on this request, the EC Ul as the control device and the sensor 2 as the load detection device are measured reference values. The operation will be described below as executing the update process.
[0035] 処理 # 1において 0点リセット要求が無力つた場合、 ECU1は通常どおりの標準動 作を行う。即ち、図 3で説明した動作と同様に処理 # 20、 # 60、 # 70、 # 80を順次 実行し、車両用シート 20上の乗員の判定を行う。尚、本動作を検査用としてのみ行う 場合には、図 5に示すように、一定時間の経過を確認することなく(処理 # 10を省略 して)車両用シート 20上の乗員の判定を行うようにしても良い。処理 # 1で 0点リセット 要求が確認された場合には、各センサ 21〜25に対して、 0点とのズレを調整するよう に命令を発する(処理 # 5)。 [0035] If the zero point reset request is disabled in process # 1, ECU1 performs normal operation as usual. That is, processing # 20, # 60, # 70, and # 80 are sequentially executed in the same manner as the operation described in FIG. 3, and the passengers on the vehicle seat 20 are determined. When this operation is performed only for inspection, as shown in FIG. 5, the occupant on the vehicle seat 20 is determined without confirming the passage of a fixed time (by omitting the processing # 10). You may do it. Process # 1 resets 0 points If the request is confirmed, a command is issued to adjust the deviation from the zero point for each sensor 21-25 (Process # 5).
[0036] 続いて、各センサ 21〜25 (以下、センサ 2で代表する)の動作について説明する。  [0036] Next, the operation of each of the sensors 21 to 25 (hereinafter represented by the sensor 2) will be described.
図 6に示すように、初めにセンサ荷重情報要求の有無を確認する(処理 # 30)。セン サ荷重情報要求があった場合、センサ 2は通常どおり標準動作を行う。即ち、図 4に 基づいて説明した処理 #40、 # 50を順次実行する。センサ荷重情報要求が無かつ た場合は、 ECU1からのズレ調整命令の有無を確認する(処理 # 35)。ズレ調整命 令があった場合には、現状のゲージ 3の出力位置をセンサ 2の出力基準位置に設定 する(処理 # 36)。本動作は、 0点調整のために行われるものであり、このとき、車両 用シート 20は空席状態である。従って、この時点でのゲージ 3の出力をセンサ 2の 0 点の出力基準位置に設定することによって、 0点調整が実現できるのである。このよう に、制御装置としての ECU1からの指示によって、荷重検出装置としてのセンサ 2が 計測基準値更新処理を実行し、計測基準値を更新する。  As shown in Fig. 6, first, the sensor load information request is checked (process # 30). When sensor load information is requested, sensor 2 performs standard operation as usual. That is, the processes # 40 and # 50 described with reference to FIG. 4 are sequentially executed. If there is no request for sensor load information, check whether there is a displacement adjustment command from ECU1 (Process # 35). If there is a misalignment command, the current output position of gauge 3 is set to the output reference position of sensor 2 (process # 36). This operation is performed to adjust the zero point. At this time, the vehicle seat 20 is in an empty seat state. Therefore, the zero point adjustment can be realized by setting the output of the gauge 3 at this point to the zero point output reference position of the sensor 2. In this way, according to an instruction from the ECU 1 as the control device, the sensor 2 as the load detection device executes the measurement reference value update process and updates the measurement reference value.
[0037] 〔計測基準値変更の例 1〕  [0037] [Measurement reference value change example 1]
上記、計測基準値の変更を行う具体的な例を下記に説明する。図 7は、図 2のゲー ジから AZD変換部までの信号処理を説明するブロック図であり、図 8は、図 7の AZ D変換部による AZD変換を説明する図である。  A specific example in which the measurement reference value is changed will be described below. FIG. 7 is a block diagram illustrating signal processing from the gauge of FIG. 2 to the AZD conversion unit, and FIG. 8 is a diagram illustrating AZD conversion by the AZD conversion unit of FIG.
[0038] ゲージ 3の出力は、そのままの状態で AZD変換部 13などに入力するには充分で はない大きさである。本実施形態においては、図 7に示すように、ゲージ 3の出力は、 アナログ信号処理部 12に設けられたアンプ (増幅回路) 12aを用いて増幅される。そ して、その出力が AZD変換部 13へ入力されて、 AZDコンバータ 13aなどによって アナログ Zデジタル変換(以下、 AZD変換)されている。 AZDコンバータ 13aは、 A ZD変換の対象である入力アナログ電圧の上限基準電圧 (refH)と、下限基準電圧 ( refL)との間の電圧を所定の分解能によって、デジタル変換している。  [0038] The output of the gauge 3 is not large enough to be input to the AZD conversion unit 13 or the like as it is. In the present embodiment, as shown in FIG. 7, the output of the gauge 3 is amplified using an amplifier (amplifying circuit) 12a provided in the analog signal processing unit 12. Then, the output is input to the AZD converter 13 and subjected to analog Z-digital conversion (hereinafter referred to as AZD conversion) by the AZD converter 13a and the like. The AZD converter 13a digitally converts the voltage between the upper limit reference voltage (refH) and the lower limit reference voltage (refL) of the input analog voltage that is the target of AZD conversion with a predetermined resolution.
[0039] 図 8に示すように、上限基準電圧及び下限基準電圧が、それぞれ IV及び 3Vに設 定されていて、 AZDコンバータ 13aが 6ビットの分解能を有していたとする。この場合 、リニアに変化する増幅後のゲージ 3の出力電圧が IVの時、デジタル値として 0 (ゼ 口)となり、 3Vの時、デジタル値として 63となる。 1ビット当たりの分解能は 31. 25mV である。ここで、上記計測基準値の変更命令があった時(図 6の処理 # 35)の、デジ タル値が、 16であったとすると、車両用シート 20が空席状態の時の増幅後のゲージ 3の出力電圧は 1. 5Vである。従って、 AZDコンバータ 13aの上限基準電圧 3Vまで の電圧幅は 1. 5Vとなるので、分解能 31. 25mVでは、 48までのデジタル値しか得 られないこととなる。 As shown in FIG. 8, it is assumed that the upper limit reference voltage and the lower limit reference voltage are set to IV and 3 V, respectively, and the AZD converter 13a has 6-bit resolution. In this case, when the output voltage of the amplified gauge 3 that changes linearly is IV, the digital value is 0 (zero), and when it is 3 V, the digital value is 63. The resolution per bit is 31.25mV It is. If the digital value is 16 when the above measurement reference value change command is issued (Process # 35 in Fig. 6), the gauge 3 after amplification when the vehicle seat 20 is empty is displayed. The output voltage is 1.5V. Therefore, since the voltage width of the AZD converter 13a up to the upper reference voltage of 3V is 1.5V, only a digital value of up to 48 can be obtained with a resolution of 31.25mV.
[0040] そこで、 AZDコンバータ 13aの下限基準電圧を、シート 20が空席状態の時の増幅 後のゲージ 3の出力電圧である 1. 5Vに変更すると共に、上限基準電圧を変更後の 下限基準電圧に入力幅 2Vを加えた 3. 5Vに変更する。そして、記憶部 5に格納され ていた AZDコンバータ 13aの上限及び下限基準電圧を、新しい上限及び下限基準 電圧に変更して記憶する。 AZDコンバータ 13aの上限及び下限基準電圧は、記憶 部 5に記憶された値に基づいて不図示の電圧発生回路等によって生成され、 AZD コンバータ 13aに入力される。その結果、分解能を維持したまま、即ちゲージ 3による 荷重の計測制度を保ったままで車両用シート 20が空席時の状態を調整できる。  [0040] Therefore, the lower limit reference voltage of the AZD converter 13a is changed to 1.5V, which is the output voltage of the gauge 3 after amplification when the seat 20 is vacant, and the upper limit reference voltage is changed to the lower limit reference voltage. Change to 5V by adding 2V to the input width. Then, the upper and lower reference voltages of the AZD converter 13a stored in the storage unit 5 are changed to the new upper and lower reference voltages and stored. The upper and lower reference voltages of the AZD converter 13a are generated by a voltage generation circuit (not shown) based on the values stored in the storage unit 5 and input to the AZD converter 13a. As a result, it is possible to adjust the state when the vehicle seat 20 is empty while maintaining the resolution, that is, while maintaining the load measuring system using the gauge 3.
[0041] 計測基準値は、車両用シート 20の上に乗員が存在しない無荷重状態における荷 重検出装置としてのセンサ 2の出力を定める値である。従って、上記説明した実施形 態では、下限基準電圧 (refL)がこれに相当する。また、下限基準電圧の変更に伴つ て、上限基準電圧 (refH)も変更しているので、これら両基準電圧は共に計測基準値 に相当する。  The measurement reference value is a value that determines the output of the sensor 2 as a load detection device in a no-load state where no occupant is present on the vehicle seat 20. Therefore, in the embodiment described above, the lower limit reference voltage (refL) corresponds to this. In addition, since the upper limit reference voltage (refH) is changed with the change of the lower limit reference voltage, both of these reference voltages correspond to the measurement reference value.
[0042] また、計測基準値は、計測部としてのゲージ 3によって計測可能な荷重の内、制御 装置としての ECU1へ伝達する必要のある範囲を定める値としてもよい。上記説明し た実施形態においては、上限基準電圧及び下限基準電圧によって、 ECU1へ伝達 する必要のある範囲を定めているので、これら両基準電圧は計測基準値に相当する ものである。即ち、図 8に示すように、 ECU1へ伝達すべき荷重データの有効データ 幅は、調整の前後で共に Wであるように設定されて!、る。  [0042] Further, the measurement reference value may be a value that defines a range that needs to be transmitted to the ECU 1 as the control device, among the loads that can be measured by the gauge 3 as the measurement unit. In the embodiment described above, the range that needs to be transmitted to the ECU 1 is determined by the upper limit reference voltage and the lower limit reference voltage, and therefore both these reference voltages correspond to measurement reference values. That is, as shown in FIG. 8, the effective data width of the load data to be transmitted to the ECU 1 is set to be W before and after the adjustment!
[0043] また、例えば下限基準電圧を IVとし、上限基準電圧を 4Vにする等、 AZDコンパ ータ 13aによって変換される入力電圧範囲を広くすれば、 ECU1へ伝達すべき荷重 データの有効データ幅を広げることができる。デジタル変換された値の最大値は 63 のままであるので、分解能は悪くなる力 広い範囲の荷重 (この例の場合は、 1. 5倍) を有効荷重データの中に入れることができる。逆に下限基準電圧を IVとし、上限基 準電圧を 2Vにする等、 AZDコンバータ 13aによって変換される入力電圧範囲を狭 くすれば、 ECU1へ伝達すべき荷重データの有効データ幅を狭めることができる。デ ジタル変換された値の最大値は 63のままであるので、分解能は上がる。狭い範囲の 荷重 (この例の場合は、 1Z2倍)しか有効荷重データとできなくなるが、精度は良くな る。このように、計測基準値によって、計測部としてのゲージ 3によって計測可能な荷 重の内、制御装置としての ECU1へ伝達する必要のある範囲を定めることができる。 [0043] Further, if the input voltage range converted by the AZD converter 13a is widened, for example, the lower limit reference voltage is IV and the upper limit reference voltage is 4V, the effective data width of the load data to be transmitted to the ECU 1 is increased. Can be spread. Since the maximum value of the digitally converted value remains 63, the resolution is degraded. A wide range of loads (1.5 times in this example) Can be included in the effective load data. Conversely, if the input voltage range converted by the AZD converter 13a is narrowed, such as setting the lower limit reference voltage to IV and the upper limit reference voltage to 2V, the effective data width of the load data to be transmitted to ECU1 can be reduced. it can. Since the maximum value of the digitally converted value remains 63, the resolution increases. Only a narrow range of loads (in this case 1Z2 times) can be used as effective load data, but the accuracy is improved. As described above, the range that needs to be transmitted to the ECU 1 as the control device among the loads measurable by the gauge 3 as the measurement unit can be determined by the measurement reference value.
[0044] 〔計測基準値変更の例 2〕  [Measurement reference value change example 2]
計測基準値の変更を行う別の具体例を下記に説明する。図 9は、図 7のアナログ信 号処理部でのゲージ出力の信号処理を説明する図である。図 10は、図 9に示す信 号処理の他の例を説明する図である。  Another specific example for changing the measurement reference value will be described below. FIG. 9 is a diagram for explaining the signal processing of the gauge output in the analog signal processing unit of FIG. FIG. 10 is a diagram for explaining another example of the signal processing shown in FIG.
[0045] 図 9 (b)に示すようにゲージ 3の出力は、そのままの状態で使用するには低い電圧 である。例えば最初の調整直後や設計上の値 (以下、初期値)としては、以下である 。車両用シート 20が空席である無荷重状態である荷重 WOの時、ゲージ 3の出力は 0 . IVである。 ECU1へ伝達すべき荷重データの有効データの最大の荷重 W1の時、 ゲージ 3の出力は 0. 3Vである。この荷重 WOと W1との幅力 ECU1へ伝達すべき荷 重データの有効データ幅である。ゲージ 3の出力は、図 9 (a)に示すアナログ信号処 理部 12のアンプ 12aによって、増幅される。本例の場合、ゲイン抵抗 12b、 12cで決 定される増幅率 (ゲイン)に基づいて、約 10倍に増幅される。この増幅の基準となる 仮想グラウンド VGの初期値は、グラウンド( = OV)であり、 AZD変換部 13への入力 は、有効データ幅 Wにおいて、 IVから 3Vとなる。そして、この増幅後のゲージ出力 電圧が AZD変換され、デジタルデータとして ECU1へ伝達される。  [0045] As shown in Fig. 9 (b), the output of the gauge 3 is a low voltage to be used as it is. For example, immediately after the first adjustment or as a design value (hereinafter, initial value), it is as follows. When the vehicle seat 20 is empty and the load WO is in an unloaded state, the output of the gauge 3 is 0. IV. When the maximum load W1 of the valid data of the load data to be transmitted to ECU1, the output of gauge 3 is 0.3V. The width force of this load WO and W1 The effective data width of the load data to be transmitted to ECU1. The output of the gauge 3 is amplified by the amplifier 12a of the analog signal processing unit 12 shown in FIG. 9 (a). In this example, the gain is amplified about 10 times based on the gain (gain) determined by the gain resistors 12b and 12c. The initial value of the virtual ground VG that serves as a reference for this amplification is ground (= OV), and the input to the AZD conversion unit 13 is from IV to 3V in the effective data width W. The gauge output voltage after amplification is AZD converted and transmitted to the ECU 1 as digital data.
[0046] ここで、ゲージ 3の出力電圧にズレが生じて、無荷重状態である荷重 WOの時に 0.  [0046] Here, when the output voltage of the gauge 3 is deviated and the load WO is in a no-load state, it is 0.
15Vになったとする。上記と同様に仮想グラウンド VGの初期値である OVを基準とし て、 10倍のゲインで増幅された場合には、増幅後のゲージ出力電圧の有効データ 幅 Wは、 1. 5V力ら 3. 5Vの間となる。その結果、図 9 (c)に示すように、 AZDコンパ ータ 13aの上限基準電圧及び下限基準電圧と、増幅後のゲージ出力電圧の有効デ ータ幅 Wとが不整合となる。 [0047] そこで、本実施形態においては、図 9 (a)に示すアナログ信号処理部 12のアンプ 1 2aの仮想グラウンド VGの値を、計測基準値として設定可能に構成している。増幅の 基準となる仮想グラウンド VGを、初期状態ある!/、は直近の調整時の無荷重状態であ る荷重 WOの時のゲージ 3の出力電圧と、現在の荷重 WOの時のゲージ 3の出力電圧 との差分に基づく値に変更する。本例においては、上述したように、 0. IVと 0. 15V とであるので、その差分は 0. 05Vである。そこで、アンプ 12aの仮想グラウンド VGの 値を 0. 05Vと設定する。このようにすることで、増幅後のゲージ出力電圧の有効デー タ幅 Wは、 IVから 3Vとなり、 AZDコンバータ 13aの上限基準電圧及び下限基準電 圧と、増幅後のゲージ出力電圧の有効データ幅 Wとが整合される。 Suppose that it becomes 15V. In the same way as above, when amplified with a gain of 10 times with reference to OV, which is the initial value of virtual ground VG, the effective data width W of the amplified gauge output voltage is 1.5 V force, etc. Between 5V. As a result, as shown in FIG. 9 (c), the upper and lower reference voltages of the AZD comparator 13a and the effective data width W of the amplified gauge output voltage become mismatched. Therefore, in the present embodiment, the value of the virtual ground VG of the amplifier 12a of the analog signal processing unit 12 shown in FIG. 9A can be set as the measurement reference value. The virtual ground VG that is the reference for amplification is in the initial state! /, Is the no-load state at the time of the most recent adjustment. The output voltage of the gauge 3 at the load WO and the gauge 3 at the current load WO Change to a value based on the difference from the output voltage. In this example, as described above, since it is 0.1V and 0.15V, the difference is 0.05V. Therefore, the value of virtual ground VG of amplifier 12a is set to 0.05V. By doing this, the effective data width W of the gauge output voltage after amplification is changed from IV to 3V, and the effective data width of the upper and lower reference voltages of the AZD converter 13a and the gauge output voltage after amplification. W is matched.
[0048] 計測基準値は、車両用シート 20の上に乗員が存在しない無荷重状態における荷 重検出装置としてのセンサ 2の出力を定める値である。従って、本具体例においては 、アンプ 12aの仮想グラウンド VGの値がこれに相当する。  [0048] The measurement reference value is a value that determines the output of the sensor 2 as the load detection device in a no-load state where no occupant is present on the vehicle seat 20. Therefore, in this specific example, the value of the virtual ground VG of the amplifier 12a corresponds to this.
[0049] さらに、図 10 (a)に示すようにゲイン抵抗 12b及び 12cを可変として、ゲイン抵抗 12 b及び 12cで決定する増幅率を計測基準値とすることもできる。図 10 (b)に示す波形 Aは、図 9 (c)に示した波形例の内、ズレのない波形例と同様の波形である。つまり、 ズレの生じていないゲージ 3の出力電圧を、アンプ 12aの仮想グラウンド VGの値を 0 Vとして約 10倍に増幅した場合のものである。従って、出力荷重 WOと W1との間が有 効データ幅 Wとなるように、増幅後のゲージ出力電圧を得ている。波形 Bは、同じくズ レの生じていないゲージ 3の出力電圧を、約 20倍の増幅率で増幅したものであり、波 形 Cは、約 5倍の増幅率で増幅したものである。波形 Aから Cの全てが、増幅後の電 圧が IVの時に無荷重状態である荷重 WOとなるようにして 、る。  Further, as shown in FIG. 10 (a), the gain resistors 12b and 12c can be made variable, and the amplification factor determined by the gain resistors 12b and 12c can be used as the measurement reference value. The waveform A shown in FIG. 10 (b) is the same as the waveform example having no deviation from the waveform example shown in FIG. 9 (c). In other words, the output voltage of gauge 3, which is not displaced, is amplified about 10 times with the value of virtual ground VG of amplifier 12a set to 0 V. Therefore, the gauge output voltage after amplification is obtained so that the effective data width W is between the output loads WO and W1. Waveform B is obtained by amplifying the output voltage of gauge 3, which is also not displaced, with an amplification factor of about 20 times, and waveform C is amplified with an amplification factor of about 5 times. All of the waveforms A to C are set to have a load WO which is an unloaded state when the amplified voltage is IV.
[0050] 波形 Bは、波形 Aの有効データ幅 Wのほぼ中央に位置する荷重 W2の時点で AZ Dコンバータ 13aの上限基準電圧である 3Vに達している。反対に、波形 Cは、波形 A の有効データ幅 Wの最大荷重 W1の時点においては、まだ AZDコンバータ 13aの 上限基準電圧である 3Vには達していない。波形 Cは、荷重 W1の 2倍の荷重 W3の 時点で、上限基準電圧である 3Vに達する。このように、アナログ信号処理部 12の増 幅率を可変とすることにより、 ECU1へ伝達する必要のある荷重の範囲を定めること ができる。即ち、アナログ信号処理部 12の増幅率は、計測部としてのゲージ 3によつ て計測可能な荷重の内、制御装置としての ECU1へ伝達する必要のある範囲を定め る値である計測基準値に相当するものである。図 10において説明した例では、波形 B及び波形 Cを得るに際して、アンプ 12aの仮想グラウンド VGの値を適宜設定する 必要があり、この場合、仮想グラウンド VGの値も計測基準値に相当するものとなる。 アナログ信号処理部 12で用いられる増幅率や仮想グラウンド VG等の値は、記憶部 5に記憶され、上記説明したように適宜更新される。 [0050] Waveform B reaches 3V, which is the upper limit reference voltage of AZ D converter 13a, at the time of load W2 located approximately at the center of effective data width W of waveform A. On the other hand, waveform C has not yet reached 3V, which is the upper limit reference voltage of AZD converter 13a, at the time of maximum load W1 of effective data width W of waveform A. Waveform C reaches the upper reference voltage of 3V at a load W3 that is twice the load W1. In this way, by making the amplification rate of the analog signal processing unit 12 variable, it is possible to determine the range of the load that needs to be transmitted to the ECU 1. In other words, the amplification factor of the analog signal processing unit 12 is determined by the gauge 3 as the measurement unit. This corresponds to the measurement reference value, which is a value that defines the range that needs to be transmitted to the ECU 1 as the control device among the measurable loads. In the example described in FIG. 10, it is necessary to appropriately set the value of the virtual ground VG of the amplifier 12a when obtaining the waveform B and the waveform C. In this case, the value of the virtual ground VG also corresponds to the measurement reference value. Become. Values such as the amplification factor and virtual ground VG used in the analog signal processing unit 12 are stored in the storage unit 5 and appropriately updated as described above.
[0051] 尚、上記の例においては、アンプ 12aの仮想グラウンド VGの値の初期値をグラウン ド =OVとして説明した。そうすると、例えば、上記波形 Bを得る場合の仮想グラウンド VGの値は 0. 05Vとなり、波形 Cを得るための仮想グラウンド VGの値はマイナス 0. 1 Vとなる。つまり、マイナス電源が必要となるなど、煩雑とも考えられる。しかし、これは 説明を容易にするために用いた一例に過ぎず、問題はない。例えば、ゲージ 3の出 力電圧に一律に一定電圧を加えるクランプ回路をアナログ信号処理部 12に設ける。 そして、一律に加えられた一定電圧 (クランプ電圧)を仮想グラウンド VGの初期値とし ておく。そうすれば、クランプ電圧とグラウンドとの間にはプラスの電位を有する区間 が存在するので、マイナス電源が必要となることもな 、。  [0051] In the above example, the initial value of the virtual ground VG value of the amplifier 12a has been described as ground = OV. Then, for example, the value of the virtual ground VG for obtaining the waveform B is 0.05 V, and the value of the virtual ground VG for obtaining the waveform C is minus 0.1 V. That is, it can be considered complicated, for example, a negative power source is required. However, this is only an example used for ease of explanation and there is no problem. For example, a clamp circuit that uniformly applies a constant voltage to the output voltage of the gauge 3 is provided in the analog signal processing unit 12. Then, a constant voltage (clamp voltage) applied uniformly is set as the initial value of the virtual ground VG. Then, there is a section with a positive potential between the clamp voltage and ground, so a negative power supply is not necessary.
[0052] また、実施形態の説明においては、荷重検出装置としてセンサ 2に AZD変換部 1 3を有し、制御装置としての ECU1へ荷重データを出力する際にデジタルデータを用 いたが、アナログデータで ECU1へ荷重データを出力してもよい。計測基準値変更 の例 2において説明したように、アナログ信号処理部 12において用いられる値を計 測基準値として構成した場合には、アナログデータで ECU1へ荷重データを出力す るように構成しても、本発明を適用可能である。  In the description of the embodiment, the sensor 2 as the load detection device has the AZD conversion unit 13 and the digital data is used when the load data is output to the ECU 1 as the control device. The load data may be output to ECU1. As explained in Example 2 of changing the measurement reference value, when the value used in the analog signal processing unit 12 is configured as the measurement reference value, the load data is output to the ECU 1 as analog data. Also, the present invention is applicable.
[0053] 以上、説明したように本発明によって、耐ノイズ性を損なうことなぐ精度良く車両用 シートの荷重を検出して車両用シート上の乗員を検出できる車両の乗員検出装置を 提供することができる。  As described above, according to the present invention, it is possible to provide a vehicle occupant detection device capable of detecting a load on a vehicle seat and detecting an occupant on the vehicle seat with high accuracy without impairing noise resistance. it can.
産業上の利用可能性  Industrial applicability
[0054] 本発明は、自動車や鉄道車両などに設置される車両用シートの荷重を検出し、検 出された荷重データに基づいて車両用シート上の乗員の判別を行う車両の乗員検 出装置に利用することができる。 図面の簡単な説明 The present invention detects an occupant detection device for a vehicle that detects a load on a vehicle seat installed in an automobile, a railway vehicle, or the like, and determines an occupant on the vehicle seat based on the detected load data. Can be used. Brief Description of Drawings
[0055] [図 1]本発明の実施形態に係る車両の乗員検出装置の各部の配置を示す模式図 [図 2]本発明の実施形態に係る車両の乗員検出装置のシステム構成を示すブロック 図  FIG. 1 is a schematic diagram showing an arrangement of each part of a vehicle occupant detection device according to an embodiment of the present invention. FIG. 2 is a block diagram showing a system configuration of a vehicle occupant detection device according to an embodiment of the present invention.
[図 3]図 2の ECUの標準動作を説明するフローチャート  FIG. 3 is a flowchart for explaining the standard operation of the ECU in FIG.
[図 4]図 2のセンサの標準動作を説明するフローチャート  FIG. 4 is a flowchart for explaining the standard operation of the sensor of FIG.
[図 5]図 2の ECUによる計測基準変更動作を説明するフローチャート  FIG. 5 is a flowchart for explaining the measurement standard changing operation by the ECU of FIG.
[図 6]図 2のセンサの計測基準変更動作を説明するフローチャート  FIG. 6 is a flowchart for explaining the measurement standard changing operation of the sensor in FIG.
[図 7]図 2のゲージ力 AZD変換部までの信号処理を説明するブロック図  [Fig. 7] Block diagram explaining the signal processing up to the gauge force AZD converter in Fig. 2
[図 8]図 7の AZD変換部による AZD変換を説明する図  [Fig.8] Diagram explaining AZD conversion by AZD converter in Fig.7
[図 9]図 7のアナログ信号処理部でのゲージ出力の信号処理を説明する図  FIG. 9 is a diagram for explaining signal processing of gauge output in the analog signal processing unit of FIG.
[図 10]図 9に示す信号処理の他の例を説明する図  FIG. 10 is a diagram for explaining another example of the signal processing shown in FIG.
符号の説明  Explanation of symbols
[0056] 1 ECU [0056] 1 ECU
2 センサ  2 Sensor
3 ゲージ  3 gauge
§己' I思 p:[5 §Self 'I p : [5

Claims

請求の範囲 The scope of the claims
[1] 車両用シートの荷重を検出する荷重検出装置と、この荷重検出装置力 入力され る荷重データに基づいて乗員の判別を行う制御装置とを備えた車両の乗員検出装 置であって、  [1] A vehicle occupant detection device including a load detection device that detects a load on a vehicle seat and a control device that determines an occupant based on load data input to the load detection device force,
前記荷重検出装置は、荷重を計測する計測部と、この計測部による計測の基準を 定める計測基準値を記憶する記憶部とを備え、  The load detection device includes a measurement unit that measures a load, and a storage unit that stores a measurement reference value that defines a measurement reference by the measurement unit,
前記記憶部は、書き換え可能且つ不揮発性の記憶手段を有して構成される車両の 乗員検出装置。  The vehicle occupant detection device is configured such that the storage unit includes rewritable and nonvolatile storage means.
[2] 前記計測基準値は、前記車両用シート上に乗員が存在しない無荷重状態におけ る前記荷重検出装置の出力を定める値である、請求項 1に記載の車両の乗員検出 装置。  2. The vehicle occupant detection device according to claim 1, wherein the measurement reference value is a value that defines an output of the load detection device in a no-load state where no occupant is present on the vehicle seat.
[3] 前記計測基準値は、前記計測部によって計測可能な荷重の内、前記制御装置へ 伝達する必要のある範囲を定める値である、請求項 1に記載の車両の乗員検出装置  [3] The vehicle occupant detection device according to claim 1, wherein the measurement reference value is a value that defines a range that needs to be transmitted to the control device among loads measurable by the measurement unit.
[4] 前記制御装置からの指示によって、前記荷重検出装置が計測基準値更新処理を 実行し、前記計測基準値を更新する、請求項 1〜3の何れか一項に記載の車両の乗 員検出装置。 [4] The vehicle occupant according to any one of claims 1 to 3, wherein the load detection device executes a measurement reference value update process and updates the measurement reference value according to an instruction from the control device. Detection device.
[5] 前記荷重検出装置と前記制御装置とは双方向通信を行う、請求項 1に記載の車両 の乗員検出装置。  5. The vehicle occupant detection device according to claim 1, wherein the load detection device and the control device perform two-way communication.
[6] 前記双方向通信は、通信速度が可変である、請求項 5に記載の車両の乗員検出 装置。  6. The vehicle occupant detection device according to claim 5, wherein the bidirectional communication has a variable communication speed.
[7] 前記制御装置による乗員判別情報は、前記車両の他の制御装置に伝達される、請 求項 1に記載の車両の乗員検出装置。  [7] The vehicle occupant detection device according to claim 1, wherein the occupant discrimination information by the control device is transmitted to another control device of the vehicle.
[8] 前記他の制御装置は、エアバッグ制御装置である、請求項 7に記載の車両の乗員 検出装置。 8. The vehicle occupant detection device according to claim 7, wherein the other control device is an airbag control device.
[9] 前記制御装置は、インターフェイスを介して検査機に接続可能である、請求項 1に 記載の車両の乗員検出装置。  [9] The vehicle occupant detection device according to claim 1, wherein the control device is connectable to an inspection machine via an interface.
[10] 前記検査機は、前記荷重検出装置の検査及び校正の一方又は双方を行う、請求 項 9に記載の車両の乗員検出装置。 [10] The inspection machine performs one or both of inspection and calibration of the load detection device. Item 10. The vehicle occupant detection device according to Item 9.
前記荷重検出装置は、前記車両用シートと前記車両側に設置されたシートレール との間に介装された、請求項 1に記載の車両の乗員検出装置。  2. The vehicle occupant detection device according to claim 1, wherein the load detection device is interposed between the vehicle seat and a seat rail installed on the vehicle side.
前記荷重検出装置は、歪センサを有する、請求項 1に記載の車両の乗員検出装置  The vehicle occupant detection device according to claim 1, wherein the load detection device includes a strain sensor.
PCT/JP2005/011316 2004-06-28 2005-06-21 Occupant detection apparatus for vehicle WO2006001264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-190132 2004-06-28
JP2004190132A JP2006010581A (en) 2004-06-28 2004-06-28 Passenger detection device of vehicle

Publications (1)

Publication Number Publication Date
WO2006001264A1 true WO2006001264A1 (en) 2006-01-05

Family

ID=35777994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011316 WO2006001264A1 (en) 2004-06-28 2005-06-21 Occupant detection apparatus for vehicle

Country Status (2)

Country Link
JP (1) JP2006010581A (en)
WO (1) WO2006001264A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509303A (en) * 2017-12-28 2021-03-25 エシコン エルエルシーEthicon LLC Surgical system with preferred data transmission capability
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11696778B2 (en) 2017-10-30 2023-07-11 Cilag Gmbh International Surgical dissectors configured to apply mechanical and electrical energy
US11701185B2 (en) 2017-12-28 2023-07-18 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11701139B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11737668B2 (en) 2017-12-28 2023-08-29 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11751958B2 (en) 2017-12-28 2023-09-12 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11775682B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11779337B2 (en) 2017-12-28 2023-10-10 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11890065B2 (en) 2017-12-28 2024-02-06 Cilag Gmbh International Surgical system to limit displacement
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11903587B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Adjustment to the surgical stapling control based on situational awareness
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11925350B2 (en) 2019-02-19 2024-03-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11931027B2 (en) 2018-03-28 2024-03-19 Cilag Gmbh Interntional Surgical instrument comprising an adaptive control system
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014528A (en) * 2001-06-28 2003-01-15 Denso Corp Seat load measuring system
JP2004125595A (en) * 2002-10-02 2004-04-22 Denso Corp Vehicle occupant detector and method for adjusting the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014528A (en) * 2001-06-28 2003-01-15 Denso Corp Seat load measuring system
JP2004125595A (en) * 2002-10-02 2004-04-22 Denso Corp Vehicle occupant detector and method for adjusting the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11793537B2 (en) 2017-10-30 2023-10-24 Cilag Gmbh International Surgical instrument comprising an adaptive electrical system
US11925373B2 (en) 2017-10-30 2024-03-12 Cilag Gmbh International Surgical suturing instrument comprising a non-circular needle
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11696778B2 (en) 2017-10-30 2023-07-11 Cilag Gmbh International Surgical dissectors configured to apply mechanical and electrical energy
US11819231B2 (en) 2017-10-30 2023-11-21 Cilag Gmbh International Adaptive control programs for a surgical system comprising more than one type of cartridge
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
JP7346423B2 (en) 2017-12-28 2023-09-19 エシコン エルエルシー Surgical systems with preferential data transmission capabilities
US11775682B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11779337B2 (en) 2017-12-28 2023-10-10 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11737668B2 (en) 2017-12-28 2023-08-29 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
JP2021509303A (en) * 2017-12-28 2021-03-25 エシコン エルエルシーEthicon LLC Surgical system with preferred data transmission capability
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11751958B2 (en) 2017-12-28 2023-09-12 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11864845B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Sterile field interactive control displays
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11701185B2 (en) 2017-12-28 2023-07-18 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11890065B2 (en) 2017-12-28 2024-02-06 Cilag Gmbh International Surgical system to limit displacement
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11903587B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Adjustment to the surgical stapling control based on situational awareness
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11918302B2 (en) 2017-12-28 2024-03-05 Cilag Gmbh International Sterile field interactive control displays
US11844545B2 (en) 2018-03-08 2023-12-19 Cilag Gmbh International Calcified vessel identification
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11701139B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11931027B2 (en) 2018-03-28 2024-03-19 Cilag Gmbh Interntional Surgical instrument comprising an adaptive control system
US11925350B2 (en) 2019-02-19 2024-03-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge

Also Published As

Publication number Publication date
JP2006010581A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
WO2006001264A1 (en) Occupant detection apparatus for vehicle
US6600985B2 (en) Roll sensor system for a vehicle
US8423229B2 (en) Device and method for performing self-diagnosis as to whether or not acceleration or angular-velocity sensor is in normal status
US7055639B2 (en) Occupant detection system for vehicle
US7082360B2 (en) Method and system for determining weight and position of a vehicle seat occupant
US7613550B2 (en) Occupant classifying device for vehicle
US8589059B2 (en) Vehicle with inclination estimation
EP1257435B1 (en) Signal processing in a vehicle weight classification system
US7289894B2 (en) Occupant sensing system and adjustment method thereof
US20150219683A1 (en) Method and device for calibrating an acceleration sensor in a motor vehicle
US6689960B2 (en) Seat weight measuring apparatus which determines the weight value based on a value other than the adder output when sensor output exceeds a predetermined value
US6922152B2 (en) Passenger weight measuring apparatus
US7676311B2 (en) Method for controlling a safety device in a motor vehicle
US20100001564A1 (en) Passenger detection device of automobile
JP3384753B2 (en) Seat load measuring device
WO2006011518A1 (en) Occupant detection device
US7359818B2 (en) Sensor apparatus, control system having the same and offset correction method
US5903855A (en) Acceleration sensor
US7178411B2 (en) Load sensing system for seat
US10082422B2 (en) Determination apparatus and method for occupant
KR100718395B1 (en) Passenger's class setting system of vehicle and mehod for the same
JP2008232694A (en) Apparatus for sensing vehicle passenger
JP4839584B2 (en) Crew weight measuring device
JP4345207B2 (en) Mechanical quantity detection sensor
JPH1114662A (en) Sensor apparatus for air bag

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase