WO2005117075A1 - Correcting method, predicting method, exposuring method, reflectance correcting method, reflectance measuring method, exposure apparatus, and device manufacturing method - Google Patents

Correcting method, predicting method, exposuring method, reflectance correcting method, reflectance measuring method, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
WO2005117075A1
WO2005117075A1 PCT/JP2005/009536 JP2005009536W WO2005117075A1 WO 2005117075 A1 WO2005117075 A1 WO 2005117075A1 JP 2005009536 W JP2005009536 W JP 2005009536W WO 2005117075 A1 WO2005117075 A1 WO 2005117075A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
liquid
sensor
exposure apparatus
measurement
Prior art date
Application number
PCT/JP2005/009536
Other languages
French (fr)
Japanese (ja)
Inventor
Kousuke Suzuki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006513905A priority Critical patent/JP4582344B2/en
Publication of WO2005117075A1 publication Critical patent/WO2005117075A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present invention relates to a calibration method, a prediction method, an exposure method, a reflectance calibration method and a reflectance measurement method, an exposure apparatus, and a device manufacturing method, and more particularly, to a method of detecting a detection beam via a liquid repellent film.
  • the present invention relates to an exposure apparatus that exposes an object by irradiating an energy beam through an optical system and a liquid to form a pattern on the object, and a device manufacturing method using the exposure apparatus.
  • a resist photosensitive agent
  • a mask or reticle
  • a projection optical system Is transferred to each of a plurality of shot areas on a photosensitive object such as a wafer or a glass plate (hereinafter, referred to as a “wafer”) coated with a).
  • a loose exposure stepper and a step-and-scan projection exposure apparatus are mainly used.
  • An exposure apparatus using a liquid immersion method has recently attracted attention.
  • an exposure apparatus using the liquid immersion method there is known an exposure apparatus which performs exposure while a space between a lower surface of a projection optical system and a wafer surface is locally filled with a liquid such as water or an organic solvent (for example, And Patent Document 1 below).
  • the exposure apparatus described in Patent Document 1 utilizes the fact that the wavelength of the exposure light in a liquid is lZn times that in air (n is the refractive index of the liquid, usually about 1.2 to 1.6). Resolution, and obtain the same resolution as that resolution regardless of the immersion method.
  • n is the refractive index of the liquid, usually about 1.2 to 1.6
  • stage which can be driven in a two-dimensional plane independently of a wafer stage (substrate stage) and is provided with a measuring instrument used for measurement is provided.
  • An exposure apparatus has also been proposed (for example, see Patent Documents 2 and 3).
  • a liquid-repellent film corresponding to the type of the liquid is formed on the surface of the member in contact with the liquid on the measurement stage, for example, in order to facilitate the collection of the liquid.
  • the lyophobic film deteriorates with time due to irradiation with exposure light (light in the far ultraviolet region or vacuum ultraviolet region) used in immersion exposure.
  • the light transmittance decreases due to the deterioration of the liquid repellent film, and the decrease in various measurement accuracy caused by the decrease in the light transmittance maintains the exposure accuracy required for recent exposure apparatuses for a long time. It has recently been found that this can be difficult.
  • Patent Document 1 International Publication No. 99Z49504 pamphlet
  • Patent Document 2 JP-A-11-135400
  • Patent Document 3 Japanese Patent Application Laid-Open No. 3-212812
  • the present invention has been made under the above circumstances, and in a first aspect, the output of a first sensor that receives a first detection beam via a liquid-repellent film on the surface of a member is calibrated.
  • a calibration method comprising: receiving a second detection beam by a second sensor without passing through a liquid-repellent film, and obtaining an output of the second sensor corresponding to an energy amount of the received beam; The first detection beam is received by the first sensor via the liquid-repellent film, and the received beam is received.
  • a third step of obtaining the calibration information comprising: receiving a second detection beam by a second sensor without passing through a liquid-repellent film, and obtaining an output of the second sensor corresponding to an energy amount of the received beam; The first detection beam is received by the first sensor via the liquid-repellent
  • the second sensor receives the second detection beam without passing through the liquid-repellent film, and obtains the output of the second sensor corresponding to the energy amount of the received beam. I do. That is, the output of the second sensor that is not affected by the change in the beam transmittance of the liquid-repellent film is obtained.
  • the first detection beam is received by the first sensor via the liquid-repellent film, and the output of the first sensor corresponding to the energy amount of the received beam is obtained. In this case, the output of the first sensor is directly affected by the temporal change of the beam transmittance of the liquid-repellent film.
  • a third step calibration information for calibrating the output of the first sensor is obtained based on the output of the first sensor and the output of the second sensor. Therefore, when the output of the first sensor is calibrated using this calibration information, the output of the first sensor after the calibration is not affected by the change in the beam transmittance of the liquid-repellent film.
  • an energy beam is irradiated onto an object via an optical system and a liquid.
  • a first exposure method including a step of exposing the object.
  • the output of the first sensor calibrated using the calibration method of the present invention that is, the output of the first sensor that is not affected by the change in the beam transmittance of the liquid-repellent film is considered. Then, since the object is exposed, it is possible to perform the liquid immersion exposure for the object with high accuracy over a long period without being affected by the temporal change in the beam transmittance of the liquid repellent film. .
  • a method for predicting a change in beam transmittance of a liquid-repellent film formed on a surface of a member comprising: This is a prediction method including a step of predicting a change in a beam transmittance of the liquid-repellent film based on information related to a beam irradiation history.
  • the liquid repellent film is irradiated with the liquid repellent film in order to predict the fluctuation of the beam transmittance of the liquid repellent film based on the information related to the irradiation history of the energy beam applied to the liquid repellent film.
  • the beam transmission of the lyophobic film can be easily performed. It is possible to predict a change in the rate.
  • the present invention in order to measure the reflectance of an object irradiated with an energy beam via an optical system, is arranged on the beam exit side of the optical system, and has a surface A reflectance calibration method for calibrating reflectance data of a measurement reflector having a liquid-repellent film, wherein the reference reflector having a predetermined reflectance without a liquid-repellent film on the surface thereof is used for the optical system. It is arranged on the beam exit side, irradiates the energy beam to the reference reflector via the optical system, and receives a reflected beam from the reference reflector by a sensor via the optical system to acquire reference data.
  • a three-step reflectance calibration method
  • a reference reflector having no liquid-repellent film on its surface and having a predetermined reflectance is arranged on the beam emission side of the optical system, In addition to irradiating the reference reflector with an energy beam through the filter, the reflected beam from the reference reflector is received by a sensor via the optical system to acquire reference data.
  • a measuring reflector is arranged on the beam emission side of the optical system, and the measuring reflector is irradiated with an energy beam through the optical system and the liquid. The reflected beam is received by the sensor via the liquid and the optical system, and measurement data is acquired.
  • the difference between the reference data and the measurement data is mainly due to the influence of the beam transmittance of the liquid-repellent film.
  • the reference data since no liquid-repellent film is present on the surface of the reference reflector, the reference data does not change as long as the irradiation condition of the energy beam is constant. Therefore, in the third step, the beam transmittance of the liquid-repellent film on the surface of the measurement reflector is calibrated by calibrating information related to the reflectance of the measurement reflector based on the reference data and the measurement data. If there is a fluctuation in the measurement, it becomes possible to acquire information related to the reflectance of the measuring reflector that compensates for the influence of the fluctuation.
  • the measurement reflector has a first reflection surface having a first reflectance and a second reflection surface. It can be composed of the same member having the second reflection surface having the emissivity. However, the first reflection surface having the first reflectance and the second reflection surface having the second reflectance may be formed on separate member surfaces.
  • a reflectivity measuring method for measuring a reflectivity of an object which is disposed on a beam emission side of an optical system and is irradiated with an energy beam via the optical system and a liquid.
  • a reference reflector having no liquid-repellent film on its surface and having a predetermined reflectance is disposed on the beam exit side of the optical system, and the reference reflector is provided on the reference reflector via the optical system.
  • a third step of calibrating information to be performed arranging the object on a beam emission side of the optical system, irradiating the energy beam onto the object via the optical system and liquid, and A fourth step of receiving the reflected beam by the sensor via the liquid and the optical system; and information relating to the reflectance of the measurement reflector calibrated in the third step and a result of the fourth step.
  • a fifth step of obtaining the reflectance of the object based on the above.
  • the reflection plate for measurement eliminates the effect of the beam transmittance fluctuation of the liquid-repellent film on the surface of the reflection plate for measurement. It is possible to obtain information related to the reflectance of the object.
  • the object is arranged on the image plane side of the optical system, the energy beam is irradiated on the object via the optical system and the liquid, and the reflected light from the object is reflected on the liquid.
  • the information received by the sensor via the optical system and in a fifth step, the information related to the reflectance of the reflective plate for measurement calibrated in the third step and the result received by the sensor in the fourth step.
  • the reflectance of the object is determined by a predetermined method based on the It is possible to measure the reflectance of an object with high accuracy without being affected by the change in the rate.
  • the reflectance measurement of the object disposed on the beam emission side of the optical system and irradiated with the energy beam through the optical system and the liquid according to the present invention comprising: measuring using a method; and exposing the object in consideration of the measured reflectance of the object.
  • the reflectivity of the object is measured with high accuracy without being affected by the fluctuation of the beam transmittance of the liquid-repellent film on the surface of the measuring reflector in the measuring step, and the measurement is performed in the exposing step. Since the object is exposed in consideration of the reflectance of the object, a highly accurate exposure is possible as a result.
  • the present invention is an exposure apparatus that irradiates an energy beam from a beam source through an optical system and a liquid, if necessary, to expose an object and form a pattern on the object.
  • a first sensor for receiving a first detection beam via a liquid-repellent film on the surface of a member arranged on the beam exit side of the optical system; and a first sensor for receiving a second detection beam without passing through the liquid-repellent film.
  • a calculation processing device that calculates calibration information for calibrating the output of the first sensor based on the output of the second sensor and the output of the first sensor acquired by the measurement processing device.
  • the second detection beam is received by the second sensor without passing through the liquid-repellent film, and the output of the second sensor corresponding to the amount of the received second detection beam is received.
  • the output of the second sensor that is not affected by the change in the beam transmittance of the liquid-repellent film
  • obtaining an output of the first sensor corresponding to the amount of the first detection beam In this case, the output of the first sensor is directly affected by the temporal change of the beam transmittance of the liquid-repellent film.
  • the arithmetic device calculates calibration information for calibrating the output of the first sensor based on the output of the second sensor and the output of the first sensor acquired by the measurement processing device. . Therefore, if the output of the first sensor is calibrated using this calibration information, the output of the first sensor after the calibration will not be affected by the change in the beam transmittance of the lyophobic film.
  • an exposure apparatus for exposing an object by irradiating an energy beam onto the object via an optical system and a liquid, and exposing the object to a beam.
  • a sensor for receiving a detection beam through a film on the surface of a member disposed on the side of the sensor; and performing an exposure operation on the object based on an output of the sensor and information related to a change in beam transmittance of the film.
  • a control device for controlling.
  • the control device allows the output of the sensor that receives the detection beam via the film on the surface of the member disposed on the beam emission side of the optical system and the information related to the change in the beam transmittance of the film to be obtained.
  • the exposure operation of the object is controlled based on the image, so that it is possible to expose the object with high accuracy for a long time without being affected by the change in the film beam transmittance.
  • the present invention provides a device manufacturing method including a lithographic process for exposing an object by any of the first and second exposure methods of the present invention to form a device pattern on the object. It can be said that it is a method.
  • a lithographic process for exposing an object by any of the first and second exposure methods of the present invention to form a device pattern on the object. It can be said that it is a method.
  • an object is exposed using one of the first and second exposure methods of the present invention, and a pattern is formed on the object to form the pattern on the object with high accuracy. can do.
  • the present invention provides a device including a lithographic process for exposing an object by one of the first and second exposure apparatuses of the present invention to form a device pattern on the object. It can also be said to be a manufacturing method.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to one embodiment.
  • FIG. 2 is a perspective view showing the stage device of FIG. 1.
  • FIG. 3 (A) is a perspective view showing a measurement stage.
  • FIG. 3 (B) is a perspective view showing a state in which a measurement stage force is also removed from a measurement stage force.
  • FIG. 4 is a plan view showing a measurement table main body 59.
  • FIG. 5 is a longitudinal sectional view of the upper portion of a measurement table main body showing the vicinity of an illuminance monitor 122.
  • FIG. 6 is a block diagram showing a main configuration of a control system of the exposure apparatus of the embodiment.
  • FIG. 7 (A) is a plan view (part 1) for explaining the parallel processing operation of the embodiment.
  • FIG. 7 (B) is a plan view (part 2) for explaining the parallel processing operation of the embodiment.
  • FIG. 8 (A) is a plan view (part 3) for explaining the parallel processing operation of the embodiment.
  • FIG. 8 (B) is a plan view (part 4) for explaining the parallel processing operation of the embodiment
  • FIG. 9 is a plan view (part 5) for explaining the parallel processing operation of the embodiment.
  • FIG. 10 is a flowchart corresponding to a processing algorithm of a CPU in a main control device, which is related to calibration of a measurement value (output) of an illuminance monitor.
  • FIG. 11 is a flowchart corresponding to a processing algorithm of a CPU in main controller 50 related to calibration of reflectance data.
  • FIG. 12 is a view for explaining a modified example of the illuminance monitor.
  • FIG. 1 schematically shows a configuration of an exposure apparatus 10 according to an embodiment suitable for carrying out a calibration method, a prediction method, an exposure method, a reflectance calibration method, and a reflectance measurement method of the present invention.
  • the exposure apparatus 10 is a step-and-scan type scanning exposure apparatus using an excimer laser as a pulse light source as an exposure light source, that is, a so-called scanner.
  • the exposure apparatus 10 holds an illumination system including a light source 16 and an illumination optical system 12, and a reticle R as a mask illuminated by exposure illumination light IL from the illumination system, and holds the reticle R in a predetermined scanning direction (this direction).
  • the reticle stage RST moves in the Y-axis direction, which is the horizontal direction in the plane of the paper in FIG. 1, and the projection optics PL that projects the exposure illumination light IL emitted from the reticle R onto the wafer W.
  • a stage apparatus 100 having a unit PU, a wafer stage WST, and a measurement stage MST, and a control system thereof are provided.
  • the wafer W is mounted on the Ueno stage W ST.
  • the light source 16 has, for example, a wavelength of 200 ⁇ !
  • An ArF excimer laser (output wavelength: 193 nm), which is a pulse light source that emits light in the vacuum ultraviolet region of up to 170 nm, is used.
  • the illumination optical system 12 includes a beam shaping optical system 18, an energy rough adjuster 20, a diffraction optical unit 17, an optical 'integrator (uniformizer or homogenizer) 22, and an illumination, which are arranged in a predetermined positional relationship.
  • the optical 'integrator 22 uses a fly-eye lens, an internal reflection type integrator, or a diffractive optical element. Call.
  • the beam shaping optical system 18 changes the cross-sectional shape of the laser beam LB, which is emitted by the light source 16 and enters through a light transmitting optical system (not shown), on the optical path of the laser beam LB.
  • the laser beam LB is shaped so as to be efficiently incident on the provided fly-eye lens 22.
  • the laser beam LB is formed of, for example, a cylinder lens and a beam expander (a deviation is not shown).
  • the energy rough adjuster 20 is composed of a two-stage reporn having a plurality of ND filters, or a one-stage or a plurality of filter replacement members having a plurality of mesh filters having different transmittances. May be.
  • the diffractive optical unit 17 includes a plurality of, for example, two diffractive optical elements 17a, 17b, and a holder 17c for holding the diffractive optical elements 17a, 17b in a predetermined positional relationship.
  • the holder 17c is rotated or slid by the main controller 50 via a drive mechanism (not shown).
  • a drive mechanism not shown.
  • the one diffractive optical element 17a is provided in a predetermined area on a pupil plane of the illumination optical system 12 (in the present embodiment, the exit focal plane of the fly-eye lens 22, or the rear focal plane of the second relay lens 28B).
  • the incident laser light LB is diffracted so that the diffracted light is distributed in a circular area or an annular area centered on the optical axis of the illumination optical system 12, or a plurality of areas decentered on the optical axis). Things.
  • the diffracted light (illumination light IL) generated from the diffractive optical element 17a passes through a lens system (not shown) on the optical path to an incident surface of a fly-eye lens 22 disposed behind the diffractive optical element 17a.
  • the other diffractive optical element 17b is a region on the pupil plane of the illumination optical system 12 in which at least one of a shape, a size, and a position is different from a region where the diffracted light generated from the one diffractive optical element 17a is distributed. This diffracts the incident laser light LB so that the diffracted light is distributed to the light.
  • Each of the diffractive optical elements 17a and 17b has a diffraction pattern (such as a diffraction grating), and at least one of the diffraction patterns may be a phase shift type diffraction pattern.
  • the diffractive optical unit 17 may include three or more diffractive optical elements.
  • the fly-eye lens 22 is disposed on the optical path of the laser beam LB behind the diffractive optical unit 17, and irradiates the reticle R with a uniform illuminance distribution.
  • the laser light that also emits the secondary light source power, ie, the above-described illumination light IL for exposure, is hereinafter referred to as “illumination light IL”.
  • the illumination system aperture stop plate 24 is provided at equal angular intervals, for example, an aperture stop (normal stop) composed of a normal circular aperture, and an aperture stop (consisting of a small circular aperture for reducing the ⁇ value, which is a coherence factor). Small ⁇ stop), annular aperture stop for annular illumination, and modified aperture stop with multiple apertures eccentrically arranged for the modified light source method (Fig. 1 shows only two types of aperture stop) Etc.) are arranged.
  • the illumination system aperture stop plate 24 is rotated by a drive device 40 such as a motor controlled by a main controller 50, whereby one of the aperture stops is selectively set on the optical path of the illumination light IL.
  • a lens system (not shown) provided between one of the diffractive optical elements 17 a and 17 b disposed in the optical path of the illumination optical system 12 and the fly's eye lens 22 is a zoom lens.
  • the diffractive optical unit 17 As a lens (a focal system), the light amount distribution (size and shape of the secondary light source) of the illumination light IL on the pupil plane of the illumination optical system 12, ie, the illumination of the reticle R It is also possible to suppress the light quantity loss when the condition is changed (improve the utilization efficiency of the illumination light).
  • a pair of prisms (or V-shaped or quadrangular pyramid-shaped prisms) each having a conical surface is incorporated in a lens system (not shown), and at least one of the pair of prisms is moved along the optical axis of the illumination optical system 12.
  • the interval variable it is also possible to similarly suppress the light amount loss when the illumination condition is changed.
  • the above-mentioned illumination condition is achieved by the above-described diffractive optical unit 17 alone or a shaping optical system combining a diffractive optical unit 17 with a lens system (not shown) in which at least one of the zoom lens and a pair of prisms is incorporated.
  • the aperture stop plate 24 may not necessarily be provided on the exit-side focal plane of the fly eye lens 22 as long as can be set arbitrarily.
  • a fly-eye lens is used as the optical 'integrator 22. Therefore, a substantially parallel light beam is incident on the fly-eye lens by a lens system (not shown).
  • the illumination light IL diffiffraction light
  • the focal point of the illumination light IL by a lens system (not shown) be shifted from the incident surface force of the internal reflection type integrator.
  • the diffractive optical unit 17 or the shaping optical system described above.
  • a beam splitter 26 having a small reflectance and a large transmittance is arranged on the optical path of the illumination light IL behind the illumination system aperture stop plate 24, and a fixed reticle blind (fixed field stop) is further provided on the optical path behind this.
  • a relay optical system that also has a first relay lens 28A and a second relay lens 28B with a 30A and a movable reticle blind (movable field stop) 30B interposed is provided.
  • Fixed reticle blind 30A is arranged on a plane slightly defocused from a conjugate plane with respect to the pattern plane of reticle R, and defines illumination area IAR (rectangular illumination area elongated in the X-axis direction) on reticle R.
  • a rectangular opening is formed.
  • an opening whose position and width in the direction corresponding to the scanning direction are variable.
  • a movable reticle blind 30B having an opening is disposed.
  • a bending mirror 1M that reflects the illumination light IL passing through the second relay lens 28B toward the reticle R is provided.
  • the condenser lens 32 is disposed on the optical path of the illumination light IL behind the mirror M.
  • the illumination light IL reflected on one surface (surface) of the beam splitter 26 is received by the integrator sensor 46 including the photoelectric conversion element via the condenser lens 44, and the photoelectric conversion signal of the integrator sensor 46 is output.
  • the power is supplied to the main controller 50 as an output DS (digit / pulse) via a hold circuit (not shown) (for example, a peak hold circuit) and an AZD transformation.
  • a hold circuit for example, a peak hold circuit
  • AZD transformation for example, a PIN-type photodiode or the like having sensitivity in the deep ultraviolet region or vacuum ultraviolet region and having a high response frequency for detecting pulsed light from the light source 16 can be used.
  • a reflection amount monitor 47 including a photoelectric conversion element is arranged at a position conjugate with the pupil plane of the illumination optical system 12.
  • the illumination light IL (reflected light) reflected by the wafer W returns to the beam splitter 26 via the liquid Lq, the projection optical system PL, the condenser lens 32, the mirror M, and the relay optical system, and is returned to the beam splitter 26.
  • the light reflected by the is received by the reflection amount monitor 47, and the detection signal of the reflection amount monitor 47 is supplied to the main controller 50.
  • the light amount (referred to as the first light amount) of the illumination light IL incident on the reticle R, the projection optical system PL and the like is monitored from the output signal of the integrator sensor 46, and the reflection amount monitor 47 Since the amount of reflected light (referred to as the second light amount) that is reflected by the wafer W and passes again through the liquid Lq, the projection optical system PL, the reticle R, and the like from the detection signal can be monitored, the first light amount and the second light amount can be monitored. Is added, the total amount of light passing through the projection optical system PL and the reticle R can be monitored more accurately. That is, based on the first light amount and the second light amount, the light amount of light incident on the projection optical system PL can be accurately monitored.
  • reticle stage RST On reticle stage RST, a circuit pattern or the like is provided on its pattern surface (see FIG. 1).
  • the reticle formed on the lower surface of the reticle is fixed by, for example, a vacuum suction system.
  • the reticle stage RST can be finely driven in an XY plane perpendicular to the optical axis of the illumination optical system 12 (coincident with the optical axis AX of the projection optical system PL described later) by a reticle stage driving device 55 including, for example, a linear motor.
  • it can be driven at a scanning speed specified in a predetermined scanning direction (here, the Y-axis direction, which is the horizontal direction in FIG. 1).
  • the position (including rotation about the Z axis) of the reticle stage RST in the stage movement plane is moved by a moving mirror 65 (actually, Y position) by a retinal laser interferometer (hereinafter referred to as a "reticle interferometer") 53.
  • the measured value of reticle interferometer 53 is sent to main controller 50, and based on the measured value of reticle interferometer 53, the main controller 50!
  • the position (and speed) of the reticle stage RST is controlled by calculating the direction and the position in the 0 z direction (the rotation direction around the Z axis) and controlling the reticle stage driving device 55 based on the calculation result.
  • the end surface of reticle stage RST may be mirror-finished to form a reflecting surface (corresponding to the reflecting surface of moving mirror 65).
  • first reference mark a pair of reticle alignment marks on the reticle R via the projection optical system PL and a pair of reference marks on the measurement stage MST corresponding thereto.
  • a pair of reticle alignment detection systems RAa and RAb consisting of a TTR (Through The Reticle) alignment system using light of the exposure wavelength for simultaneous observation of Te ru.
  • TTR Through The Reticle
  • RAa and RAb those having the same configuration as those disclosed in, for example, JP-A-7-176468 and corresponding US Pat. No. 5,646,413 are used. Has been. To the extent permitted by the national laws of the designated States (or selected elected States) specified in this International Application, the disclosures of the above publications and corresponding US Patents are incorporated herein by reference.
  • the projection unit PU is arranged below the reticle stage RST in FIG.
  • the projection unit PU was held in the lens barrel 80 in a predetermined positional relationship within the lens barrel 80.
  • a projection optical system PL including a plurality of optical elements As the projection optical system PL, for example, a refraction optical system having a plurality of lenses (lens elements) having a common optical axis AX in the Z-axis direction is used.
  • the projection optical system PL has a predetermined projection magnification (for example, 1Z4 times or 1Z5 times), for example, both-side telecentric.
  • the illumination area IAR on the reticle R is illuminated by the illumination light IL from the illumination optical system 12
  • the illumination light IL that has passed through the reticle R passes through the projection optical system PL (projection unit PU).
  • a reduced image (reduced image of a part of the circuit pattern) of the circuit pattern of the reticle R in the illuminated area IAR An area conjugate to the illuminated area IA on the wafer W coated with a resist (photosensitive agent) on the surface (Hereinafter, also referred to as “exposure area”).
  • the plurality of lenses of the force projection optical system PL are formed based on an instruction from the main controller 50, based on the imaging characteristic correction controller 181 (FIG. 6).
  • the imaging characteristic correction controller 181 To adjust the optical characteristics (including imaging characteristics) of the projection optical system PL, such as magnification, distortion, coma, and field curvature (including field tilt). .
  • the aperture on the reticle side increases as the numerical aperture NA substantially increases.
  • the refractive optical system including only the lens it is difficult for the refractive optical system including only the lens to satisfy the Petzval condition, and the projection optical system tends to be large.
  • a catadioptric system catadiy, optric system including a mirror and a lens may be used.
  • the exposure device 10 since exposure is performed by applying the liquid immersion method, the exposure device 10 is located closest to the image plane (wafer W) of the projection optical system PL, and has an optical element (hereinafter referred to as “tip lens”). In the vicinity of 91, a liquid supply nozzle 131A and a liquid recovery nozzle 131B of the liquid immersion device 132 are provided.
  • the liquid supply nozzle 131A is connected to the other end of a supply pipe (not shown) connected at one end to a liquid supply device 138 (not shown in Fig. 1, see Fig. 6).
  • the nozzle 131B is connected to the other end of a collection pipe (not shown) whose one end is connected to a liquid recovery device 139 (not shown in FIG. 1, see FIG. 6).
  • the liquid supply device 138 includes a liquid tank, a pressure pump, a temperature control device, and a valve for controlling start and stop of supply of the liquid to the supply pipe.
  • the valve for example, it is desirable to use a flow rate control valve so that the flow rate can be adjusted as well as start and stop of liquid supply.
  • the temperature control device adjusts the temperature of the liquid in the liquid tank to a temperature substantially equal to the temperature in a chamber (not shown) in which the exposure apparatus main body is housed. It is not necessary that the tank for supplying the liquid, the pressurizing pump, the temperature control device, the knob, and the like all be provided in the exposure apparatus 10. Equipment can be used instead.
  • the liquid recovery device 139 includes a liquid tank and a suction pump, a valve for controlling start and stop of liquid recovery performed through a recovery pipe, and the like.
  • As the valve it is preferable to use a flow control valve corresponding to the valve on the liquid supply device 138 described above.
  • the tank, suction pump, valve, etc. for collecting the liquid need not be all equipped with the exposure apparatus 10, but at least a part of it should be replaced with equipment such as a factory where the exposure apparatus 10 is installed. You can also.
  • ultrapure water (hereinafter, simply referred to as “water” unless otherwise required) through which ArF excimer laser light (light having a wavelength of 193 nm) passes is used.
  • Ultrapure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist or optical lenses on the wafer.
  • ultrapure water since ultrapure water has no adverse effect on the environment and has an extremely low impurity content, it can be expected to have an effect of cleaning the surface of the wafer and the surface of the tip lens 91.
  • the refractive index n of water with respect to ArF excimer laser light is approximately 1.44.
  • the liquid supply device 138 and the liquid recovery device 139 each include a controller, and each controller is controlled by the main control device 50 (see Fig. 6).
  • the controller of the liquid supply device 138 opens the valve connected to the supply pipe at a predetermined opening in accordance with an instruction from the main control device 50, and connects the tip lens 91, the head and the W through the liquid supply nozzle 131A. Supply water between.
  • the controller of the liquid recovery device 139 opens a valve connected to the recovery pipe at a predetermined opening in accordance with an instruction from the main control device 50, The force between the tip lens 91 and the wafer W is also recovered through the liquid recovery nozzle 13 IB into the liquid recovery device 139 (liquid tank).
  • main controller 50 determines that the amount of water supplied by liquid supply nozzle 131A between tip lens 91 and wafer W is always equal to the amount of water recovered through liquid recovery nozzle 131B. In this way, the controller 207 issues a command to the controller of the liquid supply device 138 and the controller of the liquid recovery device 139. Therefore, a certain amount of water Lq (see FIG. 1) is held between the tip lens 91 and the wafer W. In this case, the water Lq held between the tip lens 91 and the wafer W is constantly replaced.
  • the liquid immersion device 132 of the present embodiment includes the liquid supply device 138, the liquid recovery device 139, the supply pipe, the recovery pipe, the liquid supply nozzle 131A, the liquid recovery nozzle 131B, and the like.
  • a liquid immersion area is formed on a part of the wafer W.
  • the space between the measurement table MTB and the tip lens 91 can be filled with water in the same manner as described above.
  • the stage device 100 includes a frame caster FC, a base plate 60 provided on the frame caster FC, a wafer stage WST and a measurement stage MST disposed above the upper surface of the base plate 60, An interferometer system 118 (see FIG. 6) described later for measuring the positions of these stages WST and MST, and a stage driving device 124 (see FIG. 6) for driving the stages WST and MST are provided.
  • the frame caster FC has a Y-axis direction as a longitudinal direction near one end in the X-axis direction and an end near the other side, as shown in FIG. Overhang A substantially flat member having the convex portions FCa and FCb formed integrally is also provided.
  • the base plate 60 serves as a plate-like member, also referred to as a platen, and is arranged on a region of the frame caster FC sandwiched between the aforementioned convex portions FCa and FCb.
  • the upper surface of the base plate 60 has a very high degree of flatness and serves as a guide surface when the wafer stage WST and the measurement stage MST are moved.
  • the wafer stage WST includes a wafer stage main body 78 disposed above the base board 60 and a ⁇ -tilt drive mechanism (not shown) on the wafer stage main body 78. It has a mounted wafer table WTB.
  • the tilt drive mechanism actually includes three actuators (for example, a voice coil motor or an electromagnet) that support the wafer table WTB at three points on the wafer stage body 78, and the wafer table WTB is Micro-drive in three degrees of freedom: direction, 0 0 direction (rotation direction around X axis), and 0 y direction (rotation direction around ⁇ axis).
  • the wafer stage main body 78 is formed of a hollow member having a rectangular cross section and extending in the X-axis direction. On the lower surface of the wafer stage main body 78, a plurality of, for example, four unshown gas static pressure bearings, for example, air bearings are provided, and these air bearings move the wafer stage WST several ⁇ m above the guide surface. It is supported without contact through a clearance of about m.
  • a Y-axis stator 86 extending in the Y-axis direction is arranged above the protrusion FCa of the frame caster FC.
  • a Y-axis stator 87 extending in the Y-axis direction is arranged above the convex portion FCb of the frame caster FC.
  • These Y-axis stators 86 and 87 are supported by a static gas bearing (not shown) provided on each lower surface, for example, an air bearing, with a predetermined clearance to the upper surfaces of the convex portions FCa and FCb.
  • the Y-axis stators 86 and 87 are constituted by magnetic pole units having a plurality of permanent magnets arranged at predetermined intervals along the Y-axis direction.
  • a mover 90 comprising a magnetic pole unit having a U-shaped cross section and having a plurality of permanent magnets arranged at predetermined intervals along the X-axis direction.
  • An X-axis stator 79 extending in the X-axis direction is inserted into the internal space of the mover 90.
  • the stator 79 for the X-axis is constituted by an armature unit having a plurality of armature coils arranged at predetermined intervals along the X-axis direction.
  • a moving magnet type X-axis linear motor that drives the wafer stage WST in the X-axis direction is constituted by the mover 90 composed of a magnetic pole unit and the X-axis stator 79 composed of an armature unit.
  • the X-axis linear motor will be referred to as the X-axis linear motor 79 using the same reference numerals as the stator (stator for the X-axis) 79 as appropriate.
  • a moving coil type linear motor may be used instead of the moving magnet type linear motor as the X-axis linear motor.
  • An armature unit incorporating a plurality of armature coils arranged at predetermined intervals along the Y-axis direction is provided at one end of the X-axis stator 79 on one side and the other side in the longitudinal direction, for example.
  • the movers 82 and 83 consist of a fixed force.
  • Each of these movers 82 and 83 is inserted into the above-mentioned stator 86 and 87 for the Y-axis, respectively. That is, in the present embodiment, the movers 82 and 83 formed of armature units and the Y-axis stators 86 and 87 formed of magnetic pole units into which the movers 82 and 83 are inserted, respectively.
  • two moving coil type Y-axis linear motors are provided at one end of the X-axis stator 79 on one side and the other side in the longitudinal direction, for example.
  • the movers 82 and 83 consist of a fixed force.
  • Each of these movers 82 and 83 is inserted
  • each of the two Y-axis linear motors will be referred to as the Y-axis linear motor 82 and the Y-axis linear motor 83 as appropriate, using the same reference numerals as the respective movers 82 and 83.
  • moving magnet type linear motors may be used as the Y-axis linear motors 82 and 83.
  • the wafer stage WST is driven in the X-axis direction by the X-axis linear motor 79, and is driven in the Y-axis direction integrally with the X-axis linear motor 79 by the pair of Y-axis linear motors 82 and 83. You.
  • the wafer stage WST is also driven to rotate in the z-direction by slightly varying the driving force in the Y-axis direction generated by the Y-axis linear motors 82 and 83.
  • a wafer holder 70 for holding a wafer W is provided on the wafer table WTB.
  • the wafer holder 70 has a plate-shaped main body and a plate fixed to the upper surface of the main body.
  • a circular opening having a diameter of about 0.1 to 2 mm larger than the diameter of the wafer W is formed at the center of the plate, and a small circular opening is formed near the circular opening.
  • the top of the body inside the large circular opening of this plate The wafer W is vacuum-adsorbed to the wafer holder 70 in a state where the wafer W is supported by the pins.
  • the height of the surface of the wafer W and the height of the surface of the plate are substantially the same.
  • the reference mark plate FM1 is fitted into the small circular opening of the plate so that its surface is almost the same height as the surface of the plate.
  • a pair of first fiducial marks for reticle alignment the pair of first fiducial marks are fiducial marks RM to RM described later (see FIG. 4)).
  • the fiducial mark plate FM1 has a glass member (for example, a very low expansion glass ceramic, for example, Thalia Serum (registered trademark)) and a chromium layer formed on the surface thereof, and a chromium layer formed on the chromium layer by patterning. An opening pattern is formed as a first fiducial mark.
  • the entire surface of the plate including the fiducial mark plate FM1 is coated with a liquid-repellent material (water-repellent material) such as a fluorine resin material or an acrylic resin material to provide a water-repellent film as a liquid-repellent film. A film is formed.
  • a liquid-repellent material water-repellent material
  • an X movable mirror 67X having a reflecting surface orthogonal to the X axis at one end (one X side end) in the X axis direction is provided on the upper surface of the wafer table WTB in the Y axis direction.
  • One end (+ Y side end) in the Y-axis direction is provided, and a Y moving mirror 67Y having a reflecting surface orthogonal to the Y-axis is extended in the X-axis direction.
  • the interferometer beams from the X-axis interferometer 96 and the Y-axis interferometer 68 of the interferometer system 118 see FIG.
  • the interferometer system 118 includes three interferometers, the X-axis interferometer 96, the Y-axis interferometer 68, and the X-axis interferometer 66 shown in FIG.
  • the Y-axis interferometer 68 has a length measuring axis parallel to the Y axis connecting the projection center (optical axis AX) of the projection optical system PL and the detection center of the alignment system A LG,
  • the total 96 has a length measurement axis that vertically intersects the length measurement axis of the Y-axis interferometer 68 at the projection center of the projection optical system PL (see FIG. 7 (A) and the like).
  • the Y-axis interferometer 68 is a multi-axis interferometer having at least three optical axes, and each optical axis can independently measure the displacement of the reflecting surface.
  • the X-axis interferometer 96 is a multi-axis interferometer having at least two optical axes, and each optical axis can independently measure the displacement of the reflecting surface.
  • the output value (measured value) of each interferometer of the interferometer system 118 is supplied to the main controller 50 as shown in FIG. Therefore, main controller 50 determines the position of wafer table WTB in the ⁇ -axis direction ( ⁇ -position), the amount of rotation around X-axis (the amount of pitching), and the amount of rotation around ⁇ -axis based on the output value from ⁇ -axis interferometer 68. Measure the rotation amount (jowing amount). Further, main controller 50 measures the position of wafer table W in the X-axis direction (X position) and the amount of rotation around ⁇ axis (rolling amount) based on the output value from X-axis interferometer 96.
  • movable mirrors 67 # and 67 # are actually provided on wafer table WTB, but these are typically shown as movable mirror 67 in FIG. Note that, for example, the end surface of the wafer table WTB may be mirror-finished to form a reflective surface (corresponding to the reflective surfaces of the movable mirrors 67 and 67 described above).
  • the measurement stage MST is composed of a combination of a plurality of members including a stage 81 having the X-axis direction as a longitudinal direction, and the lowermost surface thereof (the base plate 60).
  • a plurality of hydrostatic bearings provided on the lower surface of the closest member for example, an air bearing is used to lift the upper surface (guide surface) of the base board 60 through a taller of several ⁇ m over the upper surface (guide surface). It is supported by contact.
  • the measuring stage MST has a rectangular plate-shaped measuring stage body 81c elongated in the X-axis direction and an X-axis direction on the upper surface of the measuring stage body 81c.
  • a Y stage 81 having a pair of protrusions 81a and 8 lb fixed to one side and the other side, a leveling table 52 disposed above the upper surface of the measurement stage body 81c, A measurement table MTB provided on the ring table 52 is provided.
  • An armature having a plurality of armature coils arranged at predetermined intervals along the Y-axis direction is provided on one end surface of the measurement stage body 81 c of the Y stage 81 on one side and the other side in the X-axis direction.
  • the movers 84 and 85 made of units are fixed. Each of these movers 84 and 85 is inserted into the above-mentioned Y-axis stators 86 and 87, respectively. That is, in the present embodiment, the movers 84 and 85 each composed of an armature unit, , 85 and the Y-axis stators 86, 87, each of which is a magnetic pole unit inserted therein, constitute two moving coil type ⁇ -axis linear motors.
  • each of the above two ⁇ -axis linear motors will be referred to as ⁇ -axis linear motor 84 and ⁇ -axis linear motor 85 as appropriate, using the same reference numerals as the movers 84 and 85.
  • the total force of the measurement stage MST is driven in the positive and negative axial directions by these positive and negative linear motors 84 and 85.
  • the ⁇ -axis linear motors 84, 85 may be moving magnet type linear motors.
  • the plurality of static gas pressure bearings described above are provided on the bottom surface of the measurement stage main body 81c.
  • the pair of protruding portions 81a and 81b are fixed to each other near one end of the upper surface of the measurement stage body 81c in the X-axis direction and near the -Y-side end on the other side.
  • stators 61 and 63 extending in the X-axis direction are provided at predetermined intervals in the Z-axis direction (up and down).
  • a movable element of the X voice coil motor 54a is provided on the + X side end surface of the leveling table 52, and the stator of the X voice coil motor 54a is fixed to the upper surface of the measurement stage main body 81c. Have been.
  • movers for Y voice coil motors 54b and 54c are provided, respectively.
  • the stators of these Y voice coil motors 54b and 54c are connected to the upper surface of the measurement stage body 81c.
  • the X voice coil motor 54a is composed of, for example, a mover composed of a magnetic pole unit and a stator composed of an armature unit, and generates a driving force in the X-axis direction by electromagnetic interaction between them.
  • the Y voice coil motors 54b and 54c are similarly configured to generate a driving force in the Y-axis direction. That is, the leveling table 52 is driven in the X-axis direction with respect to the Y stage 81 by the X voice coil motor 54a, and is moved in the Y-axis direction with respect to the Y stage 81 by the Y voice coil motors 54b and 54c. Is driven. Further, by making the driving forces generated by the voice coil motors 54b and 54c different, the leveling table 52 can be driven relative to the Y stage 81 in the rotation direction around the Z axis ( ⁇ z direction).
  • the leveling table 52 is controlled in six directions of freedom (X, ⁇ ) by the X voice coil motor 54a, the Y voice coil motors 54b, 54c, and the Z voice coil motor (not shown) arranged inside. , Z, ⁇ , ⁇ , 0 ⁇ ) in a non-contact manner.
  • the measurement table MTB has a measurement table main body 59 and a longitudinal direction in the X-axis direction, which is fixed vertically on the -Y side surface of the measurement table main body 59. Movable elements 62 and 64 having a substantially U-shaped cross section are provided.
  • the mover 62 includes a mover yoke having a substantially U-shaped YZ section, and N-pole permanent magnets arranged at predetermined intervals and alternately on the inner surface (upper and lower surfaces) of the mover yoke along the X-axis direction.
  • a permanent magnet group including a plurality of pairs of magnets and S pole permanent magnets is provided, and is engaged with the stator 61 described above.
  • an alternating magnetic field is formed along the X-axis direction.
  • the stator 61 is formed of, for example, an armature unit including a plurality of armature coils arranged at predetermined intervals along the X-axis direction. That is, a moving magnet type X-axis linear motor LX that drives the measurement table MTB in the X-axis direction is constituted by the stator 61 and the mover 62!
  • the mover 64 includes a mover yoke having a substantially U-shaped YZ section, and an N-pole permanent magnet and an S-pole permanent magnet provided on the inner surface (upper and lower surfaces) of the mover yoke. , And are engaged with the stator 63 described above.
  • a magnetic field in the + Z direction or the ⁇ Z direction is formed in the inner space of the mover yoke of the mover 64.
  • the stator 63 is provided therein with an armature coil arranged so that current flows only in the X-axis direction in a magnetic field formed by the N-pole magnet and the S-pole magnet. That is, a moving magnet type Y voice coil motor VY that drives the measurement table MTB in the Y-axis direction is constituted by the mover 64 and the stator 63.
  • the above-described motors (54a to 54c, LX, VY, and a Z voice coil motor (not shown)) on the stage MST constitute at least a part of the stage driving device 124 shown in FIG.
  • Various driving mechanism forces of the stage driving device 124 are controlled by the main control device 50 shown in FIG.
  • the measurement table main body 59 of the measurement table MTB is composed of a lower half first portion 59a and an upper half second portion 59b.
  • the first portion 59a is constituted by a rectangular parallelepiped member, and has a plurality of air bearings on its bottom surface. Is fixed.
  • the second portion 59b has a rectangular parallelepiped shape having a larger width in the Y-axis direction and the same length in the X-axis direction as the first portion 59a, and has a Y-side end surface, a + X-side end surface, and an —X-side end surface. Are fixed on the first portion 59a so as to be flush with the first portion 59a.
  • the second portion 59b actually includes a hollow rectangular parallelepiped housing 120 (see FIG. 5) having an open upper surface, and a plate 101 having a predetermined thickness for closing the upper surface of the housing 120.
  • the plate 101 is formed of a liquid-repellent material such as polytetrafluoroethylene (Teflon (registered trademark)).
  • the plate 101 includes a first region on the + X side of the boundary line BL and a second region on the X side of the boundary line BL. It has two areas.
  • the first area is an area where various measurement members to be irradiated with illumination light IL via water Lq as a liquid are arranged
  • the second area is various measurement where illumination light IL is irradiated without passing through liquid. This is the area where the members are arranged. Therefore, a partition (wall or groove) may be provided along the boundary line BL so that the water Lq on the first area does not flow into the second area! /.
  • the first region of the plate 101 has a rectangular opening 101a having a longitudinal direction in the Y-axis direction, and has substantially the same dimensions in the X-axis direction as the opening 101a, with the X-axis direction as the longitudinal direction.
  • an opening 101g having substantially the same shape as the above-described opening 101b and an opening 101h having substantially the same shape as the above-described opening 101c are formed.
  • An illuminance monitor (irradiation amount monitor) 122 which is an illuminance measuring device, is arranged inside the housing 120 below the opening 101b of the plate 101.
  • the illuminance monitor 122 includes an optical member 126 made of synthetic quartz or fluorite and also having a glass force, and a first sensor 128 fixed to the lower surface of the optical member 126 with almost no gap. It has.
  • the first sensor 128 has a light receiving surface having a predetermined area enough to receive almost all of the illumination light IL applied to the above-described exposure area IA (see FIG. 4) shown in FIG.
  • a plurality of silicon photodiodes that are sensitive in the wavelength region (for example, a wavelength of about 300 ⁇ to about 100 nm) and have a high response frequency to detect the illumination light IL. Includes light-receiving elements such as tiplier tubes.
  • the optical member 126 has a shape facing the inner surface and the lower surface of the opening 101b portion of the plate 101 with a predetermined gap therebetween.
  • the width of the gap B between the opening 101b and the upper side surface of the optical member 126 is set to, for example, about 0.3 mm.
  • the optical member 126 also has an upward force associated with the support member 130 provided on the upper surface of the bottom wall of the housing 120.
  • the support member 130 has a frame shape with a predetermined width surrounding the light receiving element 128 when viewed from above (when viewed from above), and the outer edge of the lower surface of the optical member 126 is attached to the upper end of the support member 130. Is formed.
  • a dimming film 129 made of a metal thin film of chromium or the like for dimming the illumination light IL is formed on the entire upper surface thereof.
  • a liquid-repellent material such as a fluorine resin or an acrylic resin is coated on the light-reducing film, thereby forming a water-repellent HWRF as a liquid-repellent film.
  • a liquid-repellent material such as a fluorine resin or an acrylic resin is coated on the light-reducing film, thereby forming a water-repellent HWRF as a liquid-repellent film.
  • the upper surface of the water-repellent HWRF and the upper surface of the plate 101 are set to be substantially the same (the same surface).
  • a light-shielding film 127 made of a metal film such as chromium is formed in a region other than the central rectangular region. As shown in FIG. 5, this light-shielding film 127 cuts (shields) stray light (see a thick solid line arrow in FIG. 5) incident on the optical member 126 via the gap B portion.
  • the illuminance monitor 122 of the present embodiment is similar to the illuminance monitor (irradiation amount monitor) disclosed in, for example, Japanese Patent Application Laid-Open No. 6-291016 and the corresponding US Pat. No. 5,721,608. And the illuminance of the illumination light IL is measured via the water Lq on the image plane of the projection optical system PL.
  • the detection signal (photoelectric conversion signal) of the first sensor 128 of the illuminance monitor 122 is supplied to the main controller 50 via a not-shown hold circuit (for example, a peak hold circuit) and an analog Z-digital (AZD) converter. I have. To the extent permitted by the national laws of the designated country (or selected elected country) specified in this international application, the disclosures in the above published gazettes and corresponding US patents are incorporated herein by reference.
  • At least a region on the side surface of the optical member 126 facing the inner wall surface of the opening 101b of the plate 101, and the inner wall surface of the opening 101b of the plate 101 facing the optical member 126 are: It is liquid repellent (water repellent) after liquid repellent treatment (water repellent treatment).
  • the liquid-repellent treatment can be performed by applying a liquid-repellent material such as the above-mentioned fluorine resin material or acrylic resin material.
  • a discharge hole 120a is formed in the bottom wall of the housing 120 near the support member 130, and the discharge hole 120a is connected to a collection unit (not shown) via a pipe (not shown). It is connected.
  • the recovery unit includes a vacuum system and a gas-liquid separator including a tank capable of storing water Lq. Despite the above-described liquid-repellent treatment, the water Lq that has flowed into the housing 120 through the gap B is recovered by the recovery unit through the discharge hole 120a.
  • the reference illuminance monitor 122 configured in the same manner as the illuminance monitor 122 described above, except that a water-repellent film is not formed above the dimming film on the upper surface of the optical member 126 at the opening lOlg of the plate 101. 'Is located.
  • the reference illuminance monitor 122 'measures the illuminance of the illumination light IL on the image plane of the projection optical system PL without passing through water.
  • the reference illuminance monitor 122 has a sensor similar to the first sensor 128 of the illuminance monitor 122, and a detection circuit (photoelectric conversion signal) of the reference illuminance monitor 122, a hold circuit (not shown) (for example, a peak hold circuit) , And analog Z are supplied to the main controller 50 via digital (A / D) conversion.
  • a fiducial mark plate FM2 having a rectangular shape in a plan view is arranged inside the opening 101a of the plate 101.
  • a gap A of, for example, about 0.3 mm is formed between the reference mark plate FM2 and the plate 101 around the reference mark plate FM2.
  • Reference mark Plate The top surface of FM2 is set at almost the same height (the same level) as the plate 101 surface.
  • three pairs of first fiducial marks RM to RM which can be simultaneously measured one by one by the above-mentioned reticle alignment detection systems RAa and RAb, are described later.
  • Each of these reference marks is provided on a chromium layer formed almost entirely on the surface of a member (for example, an ultra-low expansion glass ceramic, for example, Talia Serum (registered trademark)) constituting a reference mark plate FM2. It is formed as an opening pattern formed by the pattern Jung in a positional relationship.
  • a member for example, an ultra-low expansion glass ceramic, for example, Talia Serum (registered trademark) constituting a reference mark plate FM2. It is formed as an opening pattern formed by the pattern Jung in a positional relationship.
  • Each reference mark may be formed by a pattern (remaining pattern) of aluminum or the like.
  • the arrangement of the above fiducial marks is determined so that j can be measured by the alignment ALG.
  • the upper surface of the reference mark plate FM2 is almost flat, and may be used as a reference surface of a multipoint focal position detection system described later.
  • a water-repellent film made of a liquid-repellent material such as the above-mentioned fluorine resin or acrylic resin is formed on the chromium layer. Is formed.
  • At least the area of the side surface of the reference mark plate FM2 facing the inner wall surface of the opening 101a of the plate 101, and the inner wall surface of the opening 101a of the plate 101 facing the reference mark plate FM2 are subjected to the same lyophobic treatment as described above. Has been done. Also, on the bottom wall of the housing 120, a discharge hole similar to the above-described discharge hole 120a is formed near the fiducial mark plate FM2, and this discharge hole is connected to the vacuum system of the collecting section described above! Puru.
  • a measurement reflecting plate 102 having a rectangular shape in a plan view is arranged with its surface being substantially flush with the plate 101.
  • a gap C 1S having a width of, for example, about 0.3 mm is formed between the reflection plate 102 for measurement and the plate 101 around the reflection plate 102 for measurement. At least the area of the side surface of the measuring reflector 102 facing the inner wall surface of the opening 101c of the plate 101 and the inner wall surface of the opening 101c facing the measuring reflector 102 of the plate 101 are subjected to the same lyophobic treatment as described above. It has been done. Further, on the bottom wall of the housing 120, a discharge hole similar to the above-described discharge hole 120a is formed in the vicinity of the reflection plate 102 for measurement, and this discharge hole is connected to the vacuum system of the above-mentioned collection unit. You.
  • the upper surface of the measurement reflector 102 is divided into two regions in the Y-axis direction, and one of the regions has a high reflectivity in which the designed reflectivity (initial reflectivity) is the first reflectivity R.
  • Surface area 102H is the designed reflectivity (initial reflectivity) is the first reflectivity R.
  • the other area is a low-reflection surface area 102L in which the designed reflectance (initial reflectance) is the second reflectance R ( ⁇ first reflectance R).
  • Each of the areas 102L is an area wider than the exposure area IA described above. All over the high-reflection surface area 102H and the low-reflection surface area 102L of the measuring reflector 102.
  • a water-repellent film made of a liquid-repellent material such as a fluorine resin material or an acrylic resin material is formed.
  • a reference reflection plate 202 whose surface or the like is not subjected to a liquid repellent treatment (no liquid repellent film is formed) is substantially flush with the upper surface of the plate 101 ( It is placed in a state where it is flush. It is assumed that the reflectance of the reference reflector 202 is the third reflectance.
  • an uneven illuminance measuring device 104 having a circular pattern plate 103 in a plan view is arranged inside the opening 101d of the plate 101.
  • a gap D having a width of about 0.3 mm is formed between the pattern plate 103 and the plate 101 around the pattern plate 103.
  • the uneven illuminance measuring device 104 is a sensor that also has the above-mentioned pattern plate 103 and a light receiving element (not shown) such as a silicon "photo" diode or a photomultiplier tube arranged below the pattern plate.
  • the pattern plate 103 is made of quartz glass or the like similarly to the optical member 126 described above, and a light-shielding film such as chromium is formed on the surface thereof, and a pinhole 103a is formed in the center of the light-shielding film as a light transmitting portion. .
  • a water-repellent film made of a liquid-repellent material such as the above-mentioned fluorine resin material or acrylic resin material is formed on the light-shielding film.
  • the illuminance unevenness measuring instrument 104 has the same configuration as the illuminance unevenness measuring instrument disclosed in Japanese Patent Application Laid-Open No. 57-117238 and the corresponding US Patent No. 4,465,368. Therefore, the illuminance unevenness of the illumination light IL is measured via the water Lq on the image plane of the projection optical system PL.
  • the detection signal (photoelectric conversion signal) of the sensor constituting the uneven illuminance measurement device is mainly transmitted through a hold circuit (not shown) (for example, a peak hold circuit) and analog Z digital (A / D) conversion. It is supplied to the controller 50.
  • a hold circuit not shown
  • analog Z digital (A / D) conversion analog Z digital
  • a slit plate 105 having a circular shape in a plan view is disposed so that the surface thereof is substantially flush with the surface of the plate 101.
  • a gap E having a width of, for example, about 0.3 mm is formed between the slit plate 105 and the plate 101 around the slit plate 105.
  • This slit plate 105 is similar to the pattern plate 103 described above, It has an English glass and a light-shielding film such as chromium formed on the surface of the quartz glass, and a slit pattern extending in the X-axis direction and the Y-axis direction is formed as a light-transmitting portion at a predetermined portion of the light-shielding film.
  • the slit plate 105 constitutes a part of an aerial image measuring device for measuring the light intensity of the aerial image (projected image) of the pattern projected by the projection optical system PL.
  • the illumination light IL applied to the plate 101 via the projection optical system PL and the water Lq is provided inside the measurement table main body 59 (housing 120) below the slit plate 105 in the slit pattern.
  • a light receiving system for receiving light through the
  • a circular wavefront aberration-measuring pattern plate 107 having a circular shape in a plan view is arranged so that its surface is substantially flush with the surface of the plate 101.
  • the wavefront aberration measurement pattern plate 107 has quartz glass and a light-shielding film such as chromium formed on the surface of the quartz glass, and has a circular shape at the center of the light-shielding film, similarly to the pattern plate 103 described above. Openings are formed.
  • a light receiving system including, for example, a microlens array is provided inside the measurement table main body 59 (housing 120) below the wavefront aberration measurement pattern plate 107, whereby, for example, WO99Z60361
  • the wavefront aberration measuring instrument disclosed in the fret and the corresponding European Patent No. 1,079,223 is constituted.
  • national laws of the designated country (or selected elected country) designated in this international application a part of the description of this specification is incorporated by reference to the disclosure in the above-mentioned international pamphlet and the corresponding European patent specification. And
  • the above-mentioned pattern plate 103, slit plate 105, and wavefront aberration measurement pattern plate 107 have at least the side surfaces thereof at least facing the opening 101d, the opening 101e, the inner wall surface of the opening 101f, and the plate 101, respectively.
  • the inner wall surface of the opening 10Id facing the pattern plate 103, the inner wall surface of the opening 101e facing the slit plate 105, and the inner wall surface of the opening 101f facing the wavefront aberration measuring pattern plate 107 are respectively the same repellent as described above. Liquid treatment Has been made.
  • the same discharge holes as the above-described discharge holes 120a are formed in the vicinity of the pattern plate 103, the slit plate 105, and the wavefront aberration measurement pattern plate 107, respectively. Is connected to the vacuum system of the collecting section described above.
  • the light receiving elements (sensors) constituting the various measuring instruments described above are arranged inside the housing 120!
  • the light receiving elements and the cooling mechanism of the housing 120 are provided so as to minimize the influence of heat generation of the elements.
  • a cooling mechanism for the light receiving element for example, a combination of a heat sink provided on the bottom wall of the housing 120 and a Peltier element connected to the heat sink is exemplified.
  • a cooling mechanism of the housing 120 itself for example, a liquid-cooling type mechanism for flowing a cooling liquid into a piping system can be adopted.
  • the stage MST On the viewpoint of suppressing the influence of heat, in the above-described aerial image measurement device or wavefront aberration measurement device, for example, only a part of the optical system or the like is mounted on the measurement stage MST, and the light receiving element and the like are measured.
  • the stage may be placed on a member away from the MST.
  • one end (one X-side end) in the X-axis direction is provided with an X movable mirror 117X having a reflecting surface orthogonal to the X-axis, extending in the Y-axis direction, At one end (one Y side end) in the direction, a Y moving mirror 117Y having a reflecting surface orthogonal to the Y axis is extended in the X axis direction.
  • the interferometer beam (length measuring beam) from the Y-axis interferometer 66 of the interferometer system 118 is projected onto the reflecting surface of the Y moving mirror 117Y, and the reflected light is reflected by the interferometer 66.
  • the displacement of the reflecting surface of the Y movable mirror 117Y is measured as much as the reference position force.
  • the interferometer beam (length measuring beam) from the X-axis interferometer 96 is projected on the reflecting surface of the X movable mirror 117X, and the interference
  • the total 96 measures the displacement of the reflecting surface of the X movable mirror 117X as much as the reference position force.
  • the Y-axis interferometer 66 has a length measurement axis parallel to the Y-axis direction that intersects perpendicularly with the length measurement axis of the aforementioned X-axis interferometer 96 at the projection center (optical axis AX) of the projection optical system PL. .
  • the Y-axis interferometer 66 is a multi-axis interferometer having at least three optical axes, and each optical axis can independently measure the displacement of the reflecting surface.
  • the output value (measurement value) of this Y-axis interferometer 66 The main controller 50 is supplied to the controller 50, and based on the output value from the Y-axis interferometer 66, can measure not only the Y position of the measurement table MTB but also the pitching amount and the Zawing amount. Further, main controller 50 measures the X position and rolling amount of measurement table MTB based on the output value from X-axis interferometer 96.
  • the interferometer beam from the Y-axis interferometer 68 is always projected onto the movable mirror 67Y over the entire movement range of the wafer stage WST.
  • the Y-axis interferometer 66-interferometer beam is always projected on the moving mirror 117Y over the entire moving range of the measurement stage MST. Therefore, in the Y-axis direction, the positions of stages WST and MST are always managed by main controller 50 based on the measurement values of ⁇ -axis interferometers 68 and 66.
  • main controller 50 controls X-axis interferometer 96 only within a range that hits interferometer beam force movable mirror 67 ° from X-axis interferometer 96.
  • the X position of the wafer table WTB (wafer stage WST) is managed based on the output value, and the beam power of the interferometer from the X-axis interferometer 96 is based on the output value of the X-axis interferometer 96 only within the range of the movable mirror 117X. Then, manage the X position of measurement table ⁇ (measurement stage MST).
  • the control device 50 manages the positions of the wafer table WTB and the measurement table MTB.
  • main controller 50 controls the state in which the interferometer beam from X-axis interferometer 96 does not hit any of moving mirrors 67X and 117X. At that point, the X-axis interferometer 96 that was not used for control was reset, and thereafter, the Y-axis interferometer 68 or 66 and the X-axis interferometer 96 of the interferometer system 118 were used. , The position of the wafer stage WST or the measurement stage MST.
  • At least a part of the interferometer system 118 in FIG. 6 is configured by two Y-axis interferometers 66 and 68 and one X-axis interferometer 96.
  • a configuration may be employed in which a plurality of interferometers are provided so that the beam force of any one of the X-axis interferometers hits the movable mirror 67X or 117X.
  • Ueno, Stage WST, Measurement Stage M The X-axis interferometer that manages the ST position may be switched according to the X position of these stages.
  • the above-described multi-axis interferometer irradiates a laser beam onto a reflection surface installed on a holding member that holds projection unit PU through a reflection surface installed on stages WST and MST at an angle of 45 °.
  • relative position information about the optical axis direction (Z-axis direction) of the projection optical system PL between the reflection surface and the stage may be detected.
  • a holding member for holding the projection unit PU includes an off-axis alignment system (hereinafter abbreviated as “alignment system”) ALG (not shown in FIG. 1, 6 and 7 (A) etc.).
  • this alignment-based ALG irradiates the target mark with a broadband detection light beam that does not expose the resist on the wafer, and the target mark image formed on the light-receiving surface by the reflected light with the target mark power.
  • An image of the index (the index pattern on the index plate provided in the alignment system ALG) is captured using an imaging element (such as a CCD), and the image processing method FI A ( Field Image Alignment) type sensors are used.
  • the imaging signal from the alignment ALG is supplied to main controller 50 in FIG.
  • the alignment type ALG is not limited to the FIA type, but irradiates a target mark with coherent detection light and detects scattered light or diffracted light that also generates the target mark force, or detects the target target ALG.
  • a single alignment sensor that detects and interferes with two diffracted lights that also generate a mark force is used alone.
  • can be used in an appropriate combination .
  • the exposure apparatus 10 of the present embodiment includes a force irradiation system 110a and a light reception system 110b (see FIG. 6), which are not shown in FIG. 1, for example, as disclosed in Japanese Unexamined Patent Publication No. 6-283403 (corresponding US patents). No. 5, 448, 332), etc., a multi-point focal point position detection system of the oblique incidence type similar to that disclosed in Japanese Patent Application Laid-Open No. HEI 7-284, 1988 is provided.
  • the irradiation system 110a is suspended and supported by a holding member that holds the projection unit PU on the negative X side of the projection unit PU, and the light receiving system 110b is mounted on the + X side of the projection unit PU. And suspended below the holding member! That is, the irradiation system 110a and the light receiving system 110b are mounted on the same member as the projection optical system PL, and the positional relationship between them is maintained constant.
  • the multipoint focus position detection system may irradiate the detection light from the irradiation system 110a into the liquid immersion area formed by the water Lq, or may detect the detection light outside the liquid immersion area. May be irradiated.
  • the multi-point focal position detection system is placed at a position far away from the projection unit PU force (for example, wafer replacement position), and height information (irregularity information) on the wafer surface is acquired before wafer exposure starts. You can!
  • FIG. 6 shows a main configuration of a control system of exposure apparatus 10.
  • This control system is mainly configured by a main controller 50 including a microcomputer (or a workstation) that controls the entire apparatus as a whole.
  • a memory 51 and a display DIS such as a CRT display (or a liquid crystal display) are connected to the main controller 50.
  • the above-described uneven illuminance measuring device 104, illuminance monitor 122, reference illuminance monitor 122 ', an aerial image measuring device, a wavefront aberration measuring device, and the like are shown as a measuring device group 43.
  • the main controller 50 also has the functions of an exposure controller and a stage controller. Of course, these controllers may be provided separately from the main controller 50. It is.
  • the main controller 50 controls the opening and closing of each valve of the liquid supply device 138 and the liquid recovery device 139 of the liquid immersion device 132 as described above.
  • the water immediately below the tip lens 91 of the projection optical system PL is always filled with water.
  • description on control of the liquid supply device 138 and the liquid recovery device 139 will be omitted to facilitate the description.
  • FIG. 7 (A) shows a step-and-scan exposure for wafer W on wafer stage WST (here, for example, the last wafer of one lot (one lot is 25 or 50)). The state where light is being performed is shown. At this time, measurement stage MST waits at a predetermined standby position without colliding with wafer stage WST! /
  • main controller 50 performs a process performed in advance by a wafer alignment result such as an Enhance, Global Alignment (EGA) and a reticle R and a wafer detected in advance.
  • a wafer alignment result such as an Enhance, Global Alignment (EGA) and a reticle R and a wafer detected in advance.
  • EGA Enhance, Global Alignment
  • the positional relationship with the stage WST (wafer W) and the alignment ALG Based on the latest measurement results of the baseline, the movement between the shots that moves the wafer stage WST to the scan start position (acceleration start position) for exposure of each shot area on the wafer W,
  • the scanning exposure operation of transferring the pattern formed on the reticle R to the area by the scanning exposure method is performed repeatedly.
  • the movement operation between shots in which wafer stage WST is moved is performed by main controller 50 monitoring X-axis linear motor 79 and Y-axis This is performed by controlling your motors 82 and 83.
  • the above scanning exposure is performed while monitoring the measured values of the main control unit 50 force interferometers 68 and 96 and the reticle interferometer 53 while the reticle stage drive unit 55 and the Y-axis linear motors 82 and 83 (and the X-axis linear
  • the reticle R (reticle stage RST) and the wafer W (wafer stage WST) are scanned relative to each other in the Y-axis direction.
  • the above-described exposure operation is performed in a state where water is held between the tip lens 91 and the wafer W.
  • main controller 50 sets the Y-axis linear position based on the measurement value of interferometer 66 and the measurement value of an encoder (not shown).
  • the measurement stage MST (measurement table MTB) is moved to the position shown in FIG. 7 (B).
  • the + Y side surface of the measurement table MTB is in contact with the Y side surface of the wafer table WTB.
  • the measurement values of the interferometers 66 and 68 may be monitored to keep the measurement table MTB and the wafer table WTB apart by about 300 m in the Y-axis direction to maintain a non-contact state.
  • main controller 50 starts an operation of simultaneously driving both stages WST and MST in the + Y direction while maintaining the positional relationship between wafer table WTB and measurement table MTB in the Y-axis direction.
  • Fig. 8 (A) shows the state when water is simultaneously present on the wafer stage WST and the measurement stage MST during the above movement, that is, just before water is passed on the wafer stage WST force measurement stage MST. State is shown.
  • the measurement stage MST and the tip lens are moved.
  • the water is held between the air conditioner and 91.
  • the main controller 50 started irradiating the moving mirror 117X on the measurement table MTB with the interferometer beam from the X-axis interferometer 96! / Perform a 96 reset.
  • main controller 50 manages the X position of wafer table WTB (wafer stage WST) based on a measurement value of an encoder (not shown).
  • main controller 50 controls linear motors 79, 82, and 83 while controlling the position of wafer stage WST based on the interferometer 68 and the measurement values of the encoder, and performs predetermined wafer exchange.
  • the wafer stage WST is moved to the position and replaced with the first wafer of the next lot, and in parallel with this, predetermined measurement using the measurement stage MST is performed as necessary.
  • An example of this measurement is a baseline measurement of an alignment ALG performed after the reticle is replaced on the reticle stage RST.
  • main controller 50 includes a pair of first fiducial marks formed on fiducial mark plate FM2 on measurement table MTB, for example, reticle corresponding to first fiducial marks RM, RM.
  • the above reticle alignment marks are simultaneously detected using the above-described reticle alignment systems RAa and RAb to detect the positional relationship between the pair of first reference marks and the corresponding reticle alignment marks.
  • the main controller 50 sets a second fiducial mark paired with the first fiducial mark (RM, RM) on the fiducial mark plate FM2, in this case a second fiducial mark.
  • main controller 50 controls the pair of (1) The positional relationship between the fiducial mark and the corresponding reticle alignment mark, the positional relationship between the detection center of the alignment ALG and the second fiducial mark, and the positional relationship between a pair of known first fiducial marks and the second fiducial mark. Then, the distance between the projection center of the reticle pattern by the projection optical system PL and the detection center of the alignment system ALG (hereinafter, referred to as a “first distance” for convenience) is obtained. The state at this time is shown in FIG.
  • main controller 50 moves reticle stage RST and measurement table MTB stepwise in the Y-axis direction, and performs another step formed on reference mark plate FM2 on measurement table MTB in the same manner as described above.
  • first fiducial marks RM, RM corresponds to a pair of first fiducial marks.
  • the reticle alignment marks on the reticle are simultaneously detected using the reticle alignment systems RAa and RAb described above, and at the same time, the reticle alignment marks forming pairs with the first fiducial marks (RM, RM).
  • main controller 50 is
  • Projection optical system P based on the known positional relationship between the first fiducial mark and the second fiducial mark of
  • Main controller 50 further detects the remaining first fiducial mark and second fiducial mark in the same manner as described above, and projects the projection center of the reticle pattern by projection optical system PL and the alignment system.
  • the distance from the ALG detection center (third distance) may be obtained.
  • main controller 50 sets the average value of at least two of the first, second, and third distances as the baseline (measured value) of the alignment ALG. Further, main controller 50 uses the reticle stage coordinate system defined by the length measurement axis of reticle interferometer 53 and the length measurement axes of interferometers 68 and 96 of interferometer system 118 based on the above positional relationships. Obtain the relationship with the specified wafer stage coordinate system.
  • the detection of marks using the above-described reticle alignment systems RAa and RAb is performed via the projection optical system PL and the water Lq.
  • main controller 50 brings measurement stage MST and wafer stage WST into contact with each other, and changes the state. While maintaining, drive in the XY plane to return the wafer stage WST directly below the projection unit. Even during this movement, the main controller 50 irradiates the interferometer beam from the X-axis interferometer 96 to the moving mirror 67 ⁇ on the wafer table WTB! / A total of 96 resets have been performed. Then, the wafer alignment, that is, the alignment mark on the replaced wafer by the alignment system ALG is detected for the replaced wafer held by the wafer stage WST, and the positions of the plurality of shot areas on the wafer are detected. Calculate the coordinates. As described above, measurement stage MST and wafer stage WST may be in a non-contact state.
  • main controller 50 simultaneously drives both stages WST and MST in the ⁇ Y direction while maintaining the positional relationship in the ⁇ -axis direction between wafer stage WST and measurement stage ⁇ ST, contrary to the above.
  • the measurement stage MST is retracted to a predetermined position.
  • main controller 50 moves ueno and stage WST to a position where a pair of first fiducial marks on fiducial mark plate FM1 can be simultaneously detected by a pair of reticle alignment detection systems RAa and RAb described above. And a pair of first reference marks on the reference mark plate FM1 and a pair of reticle alignment marks on the corresponding reticle are simultaneously detected using the reticle alignment system RAa and RAb, and correspond to the pair of first reference marks. Detects the positional relationship of the reticle alignment marks (ie, the positional relationship between reticle R and wafer stage WST (wafer W)).
  • the first fiducial mark on fiducial mark plate FM1 and the corresponding reticle alignment mark on the reticle are detected using reticle alignment systems R Aa and RAb. This force may be omitted.
  • main controller 50 performs the above-described processing on a new wafer based on the above positional relationship, the previously measured baseline, the results of the wafer alignment, and the measured values of interferometers 68 and 96.
  • the exposure operation of the 'and' scan method is executed, and the reticle pattern is sequentially transferred to a plurality of shot areas on the wafer.
  • Measurement stage Performs at least one of illuminance measurement, illuminance unevenness measurement, aerial image measurement, and wavefront aberration measurement using the measuring instruments in the MST measuring instrument group 43, and uses the measurement results for subsequent wafer exposure. It may be reflected.
  • the above-described imaging characteristic correction controller 181 can adjust the projection optical system PL based on the measurement result.
  • the measurement using each of the measuring instruments is performed by measuring the measuring members (optical member 126, pattern plate 103, slit plate 105, wavefront aberration measuring pattern plate 107) of the measuring table MTB. ) Is filled with water (liquid) Lq, so that a water-repellent HWRF as a liquid-repellent film is formed on the surface (upper surface) of each measurement member.
  • the water-repellent film WRF deteriorates when exposed to ultraviolet light for a long time, which is weak to ultraviolet light, and its light transmittance decreases.
  • the decrease in the light transmittance of the water-repellent film WRF is measured by the illuminance monitor 122, which measures the amount of illumination light IL itself on the image plane of the projection optical system PL, and the measurement value of the illuminance unevenness measuring device 104.
  • the illuminance monitor 122 and the illuminance non-uniformity measuring device 104 are model functions used for the prediction calculation when, for example, performing a prediction calculation such as an irradiation variation of an imaging characteristic of the projection optical system PL or a transmittance variation. This is used when measuring the transmittance of a reticle or a projection optical system for setting initial conditions for determining the transmittance.
  • the measurement results of the illuminance monitor 122 and the illuminance unevenness measuring device 104 are used to control the integrated exposure amount (dose amount) for the wafer W.
  • FIG. 10 shows a flowchart corresponding to the processing algorithm of the CPU in main controller 50, which is related to the calibration of the measurement value (output) of illuminance motor 122.
  • the processing shown in the flowchart of Fig. 10 starts when the illuminance (average) of the illuminating light IL on the image plane of the projection optical system PL is obtained by an instruction from a higher-level device or an operator, or by processing according to a predetermined program. This is when the need for illuminance) measurement arises.
  • the reticle is unloaded from reticle stage RST! That is, the reticle stage RST does not have a reticle.
  • the measurement stage MST (measurement table MTB) is moved so that the illuminance monitor 122 is located immediately below the projection optical system PL.
  • the measurement stage MST ( Needless to say, the measurement table MTB) is moved.
  • “the position immediately below the projection optical system PL” refers to the projection area on the image plane of the illumination area IAR defined by the above-mentioned fixed blind (irradiation of the illumination light IL on the image plane).
  • the center of the region, that is, the exposure region IA) substantially coincides with the optical axis of the projection optical system PL substantially coincides with the center of the light receiving surface of the illuminance monitor 122.
  • the illuminance monitor 122 on the measurement stage MST moves directly below the projection optical system PL while the water (liquid) Lq is held on the image plane side of the projection optical system PL (immediately below the tip lens 91). Therefore, the space between the tip lens 91 of the projection optical system PL and the upper surface of the illuminance monitor 122 is filled with the liquid Lq.
  • the illuminance monitor 122 measures the image plane illuminance of the projection optical system PL, and acquires the measurement value P.
  • the light source 16 emits a test light emission of a predetermined pulse number
  • the projection optical system PL, water Lq, and water repellent HWRF emitted from the light source 16 pass through the illumination optical system 12 without passing through a reticle.
  • the illumination light IL (first detection light) that has passed through is received by the first sensor 128 of the dose monitor 122 for each pulse, and the output (detection) of the first sensor 128 (that is, the dose monitor 122) for each pulse is received. Signal).
  • the above test light emission in which the output (detection signal) of the dose monitor 122 is taken, is the average of each pulse of the output DS (digitZpulse) of the integrator sensor 46 (or the output of the energy monitor inside the light source 16). This is performed while the light source 16 is feedback-controlled so that the value becomes a desired value. Then, an average value of a predetermined number of pulses integrated value of the output of the resulting irradiation monitor 122, the measurement value of the image plane illuminance P; obtained as.
  • i indicates that the illuminance (average illuminance) of the image plane of the projection optical system PL is the i-th measurement value from the initial state (at the start of use of the irradiation amount monitor 22). After the measurement value P is obtained, the water immediately below the tip lens 91 is collected.
  • step 308 the processing in step 306 is the first illuminance measurement.
  • the determination in step 308 is affirmed, and the process proceeds to step 310. Transition.
  • the measurement stage MST (measurement table MTB) is moved so that the reference illuminance monitor 122 'is located immediately below the projection optical system PL.
  • the reference illuminance monitor 122 measures the image plane illuminance of the projection optical system PL, and acquires the measurement value Pref. Specifically, the average value of the output DS (digit / pulse) of the integrator sensor 46 (or the energy monitor inside the light source 16) becomes a desired value (the same value as in step 306) as in step 306 described above.
  • the reference illuminance monitor 122 receives the illumination light IL that has passed through the projection optical system PL without passing through the reticle, while causing the light source 16 to perform test emission of a predetermined number of pulses while performing feedback control of the light source 16. Capture the output (detection signal) of '. Then, the average value of the outputs of the illuminance monitor 122 'for a predetermined number of pulses is acquired as the measured value Pref.
  • is a correction parameter defined by the following equation (1).
  • step 306 is the second or subsequent illuminance measurement
  • step 308 the determination in step 308 above is denied, and the flow shifts to step 318.
  • step 318 referring to the log data of the device, the number of irradiation pulses n to the illuminance monitor 122 from the previous update of ⁇ (or at the time of setting:
  • step 318 by determining whether or not the irradiation pulse number n has reached the predetermined pulse number N, the accumulated irradiation amount of the illumination light IL to the illuminance monitor 122 (integrated irradiation energy amount) is substantially determined. Is to determine whether or not the force has reached a predetermined amount. Therefore, it may be determined whether or not the integrated light amount of the illumination light IL to the illuminance monitor 122 from the time of the previous update of ⁇ , which is different from the irradiation pulse number n, has reached a predetermined value.
  • step 320 the measurement stage MST (measurement table MTB) is moved to a position where the reference illuminance monitor 122 'is located immediately below the projection optical system PL, as in step 310 described above, and then the process proceeds to the next step 322. Then, the image plane illuminance of the projection optical system PL is measured by the reference illuminance monitor 122 'in the same manner as in step 312, and the measured value Pref is obtained. In this case, the illumination light IL emitted from the light source 16 is received by the reference illuminance monitor 122 '(via the projection optical system PL) without passing through the liquid repellent film and the water Lq.
  • step 324 the ratio (P / Pref) between the measured value P. obtained in step 306 and the measured value Pref obtained in step 322 is calculated, and a predetermined storage area in the internal memory is calculated.
  • step 326 the correction value ⁇ defined by the above equation (1) is updated. The update of ⁇ is performed by reading out the data stored in the above-described initial value storage area and the data stored in the predetermined storage area at that time, and then using these, by the calculation of equation (1). This is realized by calculating ⁇ and overwriting the calculation result in the ⁇ storage area.
  • the parameters ⁇ and ⁇ are each initialized to 0, and the process proceeds to step 332.
  • the parameters ⁇ are parameters included in the model formula expressed by the following equation (2), which are used for estimating a parameter ⁇ (calibration information) described later, and t is the initial time t the elapsed time of the force [sec], and p is the total irradiation power of the illuminance monitor 122 at the initial time t.
  • is the number of irradiation pulses described above.
  • Tt is a time-dependent damping coefficient [sec]
  • Tp is an energy-dependent damping coefficient [sec].
  • a function represented by the following equation (3) can be used as a model equation (transfer function) indicating a change in light transmittance of the water-repellent film.
  • t, Tt, p, and Tp are as described above. Note that the time-dependent damping coefficient Tt and the energy-dependent damping coefficient Tp are determined in advance based on simulation results and the like.
  • Equation (3) is modified to change the light transmittance of the water-repellent film at the initial time (t) and the light of the current water-repellent film.
  • the parameter represented by the function of equation (4) is a parameter that increases as the elapsed time increases, and is a parameter related to the function of equation (3). Therefore, the parameter ⁇ , which is updated each time measurement is performed by the reference illuminance monitor 122 ′, is initialized at time t.
  • the model function of the above equation (2) corresponding to the product of ⁇ and the above equation (4) is used for estimating the calibration parameter ⁇ of the output (measured value) of the illuminance motor 122. It is said that.
  • step 318 determines whether the determination in step 318 is denied.
  • the flow shifts to step 330 to update the calibration parameter ⁇ defined by the above equation (2).
  • the updating of ⁇ is realized by reading out the data stored in the ⁇ storage area described above, calculating ⁇ by the operation of equation (2), and overwriting the calculation result in the ⁇ storage area.
  • the integrated irradiation power p of the illuminance monitor 122 from the initial time t required for the festival of the calculation of the equation (2) is
  • the irradiation power per unit time [W] (Or the irradiation power per pulse CiZpulse]) is calculated and the time for the corresponding dose measurement (or the number of pulses for the corresponding dose measurement) is given to the illuminance monitor 122 (ie the illuminance monitor 122).
  • This is stored in the memory 51 as light irradiation history data (for the water repellent film WRF).
  • the irradiation power per unit time (or 1 pulse) and the time during which the corresponding dose measurement is performed (or the number of pulses of the corresponding dose measurement festival) are read out. By multiplying them, the irradiation energy during one measurement is calculated. Such calculation is performed for measurements performed after the initial time t, and the obtained
  • step 330 After the calibration parameter ⁇ is updated in step 330 as described above, the flow shifts to step 334 described above.
  • age Output for example, on the display DIS, and stored in the internal memory or the memory 51.
  • step 334 After the processing of step 334 is completed, the processing of this routine is completed, and the process proceeds to normal processing.
  • the processing algorithm in the flowchart of FIG. In this case, if any measurement using the illuminance monitor 122 is performed before the processing algorithm of the above flowchart is executed next, the measured value P of the illuminance monitor 122 obtained by the measurement is used.
  • the illuminance monitor 122 Water-repellent film on the surface Processing that is hardly affected by fluctuations in the light transmittance of the WRF can be performed.
  • reference illuminance monitor 122 'on measurement table ⁇ ⁇ ⁇ is used as a reference sensor (second sensor) used to acquire reference data for updating correction value ⁇ .
  • the invention is not limited thereto, and an integrator sensor 46 that can receive the illumination light IL without passing through the liquid repellent film may be used.
  • a processing algorithm corresponding to the flowchart in which the processing of steps 310, 312, 320 and 322 in the flowchart of FIG. 10 described above is omitted can be adopted.
  • the illuminance monitor 122 emits the light from the light source 16 on the image plane of the projection optical system PL and the illumination optical system 12 and the projection optical system PL.
  • the illuminance is measured by receiving the light that has passed through as the first detection light and measuring the illuminance at the same time, the light emitted from the light source 16 is emitted from the light source 16 by the integrator sensor 46 on the optical path inside the illumination optical system 12.
  • the split light (illumination light IL) is received as the second detection light. That is, in step 306, the simultaneous measurement by the illuminance monitor 122 (the first sensor 128) and the integrator sensor 46 are inevitably performed.
  • the reference sensor ( A second sensor) may be provided, and at least a part of the illumination light IL may be received as second detection light on the optical path by the reference sensor.
  • This reticle stage RST When the upper reference sensor is used, even if the reticle R is still loaded on the reticle stage RST, the illumination light IL is received by the reference sensor only by moving the reticle stage RST. This has the effect of preventing the disadvantages of the throughput evil.
  • calibration of the measurement value (output) of the uneven illuminance measuring device 104 can be realized in the same manner as in the case of the illuminance monitor 122 described above, and a detailed description thereof will be omitted.
  • a reference sensor (second sensor) used for acquiring reference data for updating the correction value ⁇ is provided on the measurement table ⁇
  • the water repellent is located on the top of the pattern plate 103 as the reference sensor. Except that no film is formed, a calibration sensor similar to the illumination unevenness measuring instrument 104 described above can be used.
  • the illumination light IL incident on the projection optical system PL is used for predicting a change in the imaging characteristic due to the absorption of the illumination light of the projection optical system PL. It is a prerequisite to know the reflectivity of the wafer together with the amount of irradiation.
  • the measurement reflection plate 102 on the measurement table MTB is used. Since the measurement using the measurement reflector 102 is repeatedly performed as necessary, the water-repellent film on the surface of the measurement reflector 102 is deteriorated with time by the irradiation of the illumination light IL, and the light transmittance is reduced. Deteriorates.
  • FIG. 11 shows a flowchart corresponding to the processing algorithm of the CPU in main controller 50 relating to the calibration of the information relating to the reflectance!
  • step 402 it is determined whether or not the force is the first measurement. And the second
  • step 402 determines whether the determination in step 402 is denied. If the determination in step 402 is denied, the flow advances to step 404 to refer to the log data of the apparatus, and to determine the correction parameters ⁇ and ⁇ (this will be described later).
  • step 406 measurement stage MST (measurement table MTB) is moved to a position where reference reflection plate 202 is located immediately below projection optical system PL.
  • measurement stage MST (measurement table MTB) is moved to a position where reference reflection plate 202 is located immediately below projection optical system PL.
  • the wafer stage WST is also retracted under the projection optical system PL, and then the measurement stage MST (measurement Needless to say, the table MTB is moved! /.
  • the light source 16 is caused to emit test light of a predetermined pulse number, and the illumination light IL from the illumination optical system 12 is applied to the reference reflector 202 via the projection optical system PL without passing through a reticle. Then, the reflected light from the reference reflector 202 is received for each pulse by the reflection amount monitor 47 via the projection optical system PL, and the output (detection signal) of the reflection amount monitor 47 for each pulse is captured.
  • the above test light emission, in which the output (detection signal) of the reflection amount monitor 47 is taken, is desired to have an average value for each pulse of the output DS (digitZpulse) of the integrator sensor 46 (or the output of the energy monitor inside the light source 16).
  • the feedback control is performed on the light source 16 so that the value becomes as follows. Then, the predetermined value of the integrated value of the output of the obtained reflection amount monitor 47 is determined. The average value of the number of pulses is obtained as the measured value Rrei; Here, i indicates the i-th measured value from the initial state.
  • measurement stage MST (measurement table MTB) is moved to a position where high reflection surface area 102H of measurement reflection plate 102 is located immediately below projection optical system PL.
  • the measurement value RH of the reflection amount monitor 47 is obtained. Specifically, the high-reflection surface area 102H of the measurement reflector 102 on the measurement stage MST is moved directly below the projection optical system PL, and the image of the projection optical system PL is Water (liquid) Lq is supplied to the surface side (immediately below the front lens 91), and the liquid Lq is filled between the front lens 91 of the projection optical system PL and the high reflection surface area 102H of the measuring reflector 102.
  • the light source 16 is caused to emit the same test light emission as in the step 408, and the illuminating light IL from the illumination optical system 12 passes through the projection optical system PL and the water Lq without passing through the reticle, and a liquid-repellent film is formed on the surface thereof. Irradiate the high-reflection surface area 102H of the formed reflection plate 102 for measurement.
  • the reflected light from the measuring reflector 102 is received for each pulse by the reflection monitor 47 via the water Lq and the projection optical system PL, and the output value (detection signal) of the reflection monitor 47 for each pulse is integrated.
  • the average value of the predetermined number of pulses is obtained as the measurement value RH as the measurement data.
  • the measurement stage MST (measurement table MTB) is moved so that the low reflection surface area 102L of the measurement reflection plate 102 is located directly below the projection optical system PL. This movement is performed while holding the water Lq between the tip lens 91 of the projection optical system PL and the measurement table MTB.
  • the same test light emission as in the above step 414 is performed, and the illumination light IL from the illumination optical system 12 is passed through the projection optical system PL and the water Lq without passing through the reticle. Irradiation is performed on the low reflection surface area 102L of the measurement reflection plate 102 on which the liquid repellent film is formed. Then, the reflected light from the measuring reflector 102 is received for each pulse by the reflection amount monitor 47 via the water Lq and the projection optical system PL, and the output (detection signal) of the reflection amount monitor 47 for each pulse is received. Acquire and acquire the average value of the predetermined number of pulses of the integrated value of the output as the measurement value RL as the measurement data.
  • step 422 the ratio (RH / Rref), (RL / Rref) of each of the measured values RH and RL obtained in steps 414 and 418, respectively, to the measured value Rref obtained in step 408 above.
  • step 424 the process proceeds to step 424.
  • step 424 it is again determined whether or not the force is the first measurement, as in step 402 described above, and if this determination is affirmed, the flow proceeds to step 425 to proceed to step 422.
  • the ratio (RH H / Rref) and the ratio (RL / Rref) calculated in the above are stored in the initial value storage area in the internal memory.
  • step 426 a correction parameter ⁇ for compensating for a decrease in light transmittance of the water-repellent film is set.
  • step 424 determines whether the measurement is the second or later measurement. If the measurement is the second or later measurement, the determination in step 424 is denied, and the flow shifts to step 428 to perform the correction defined by the above equations (5) and (6). Values ⁇ , y
  • step 404 Terminating the process.
  • the process proceeds to, for example, a normal wafer reflectivity measurement process.
  • the method of measuring the wafer reflectivity is described in, for example, Japanese Patent Application Laid-Open No. 11-258498, Japanese Patent Application Laid-Open No. 62-183522, and corresponding US Pat. It is disclosed in detail in U.S. Pat. No. 5,721,608.
  • a method similar to the method disclosed in these publications is executed by the exposure apparatus 10 of the present embodiment, the following method may be used.
  • main controller 50 sets exposure conditions (reticle R, reticle blind, illumination conditions, etc.) in the same manner as in actual exposure.
  • main controller 50 moves measurement stage MST (measurement table MTB) to a position where high reflection surface region 102H of measurement reflection plate 102 is located immediately below projection optical system PL.
  • measurement stage MST measurement table MTB
  • the area immediately below the front lens 91 of the projection optical system PL that is, the space between the upper surface of the measuring reflector 102 and the front lens 91 is filled with water.
  • main controller 50 causes light source 16 to emit light (laser oscillation) and moves reticle stage RST under the same conditions as the actual exposure (when the area of reflection plate 102 for measurement is sufficiently large).
  • the output RH of the reflection amount monitor 47 and the output of the integrator sensor 46 are synchronized with the reticle stage RST and the wafer stage WST under the same conditions as the actual exposure.
  • the scanning position (synchronized movement)
  • the output DS of the memory 46 is stored in the memory 51.
  • the output RH of the reflection amount monitor 47 is stored in the memory 51.
  • measurement stage MST (measurement table MTB) is moved to a position where low-reflection surface area 102L of measurement reflection plate 102 is located immediately below projection optical system PL. , The output RL of the reflection amount monitor 47, and
  • Main controller 50 executes such preparation work prior to exposure.
  • the reflection amount stored in accordance with the scanning position of reticle R is stored.
  • the wafer reflectance R is calculated by the following equation (
  • Y stored in the memory 51 as a function corresponding to the scanning position of the reticle R.
  • the outputs RH and RL of the reflection monitor 47 are calibrated. Therefore, it is calculated by the above equation (7).
  • the wafer reflectivity R is measured by the effect of a decrease in light transmittance of the water-repellent film on the surface of the measurement reflector 102.
  • this wafer reflectivity R is, for example,
  • the light transmission of the water-repellent film of the measurement reflector 102 described above is used by estimating the change of the imaging performance due to the absorption of the illumination light of the projection optical system PL disclosed in JP-A-11-258498 and the like.
  • This makes it possible to perform highly accurate estimation calculation of the change in imaging performance, which is hardly affected by the fluctuation of the rate over time. Therefore, it is necessary to correct the imaging performance other than the focus of the projection optical system PL in consideration of the estimation calculation result, and to control the Z position of the wafer W during scanning exposure in consideration of the change in focus.
  • the reticle pattern can be transferred onto the wafer W with high accuracy.
  • the main control device 50 more specifically, the CPU and the software program.
  • the main control device 50 more specifically, the CPU and the software program.
  • the processing unit is realized by the processing of steps 302, 304, 306, 320, and 322 in FIG. 10 performed by the CPU, and the processing unit is executed by the processing of steps 324 and 326 performed by the CPU. At least some of them have been realized.
  • the main controller 50 controls at least a part of the controller that controls the exposure operation on the object based on the output of the sensor and information related to the change in the light transmittance (beam transmittance) of the liquid repellent film. Is configured.
  • the reference illuminance monitor (the second sensor The second detection light is received by 122 ', and the output (Pref) of the reference illuminance monitor 122' corresponding to the received light amount is obtained (step 322). That is, the output (Prel) of the reference illuminance monitor 122 'which is not affected by the change in the light transmittance of the liquid-repellent film is obtained.
  • the first detection light is received by the first sensor 128 via the liquid-repellent film.
  • the output (P) of the first sensor corresponding to the received light amount is obtained (step 306), in which case the output (P) of the first sensor 128 is determined by the effect of the temporal change in the light transmittance of the liquid-repellent film. Receive directly.
  • calibration information ⁇ (or ⁇ ) for calibrating the output of the first sensor 128 is obtained based on the output of the first sensor 128 and the output of the reference illuminance monitor 122 (steps 324 to 324). 332).
  • the relationship (P ZPref) between the output of the first sensor 128 and the output of the reference illuminance monitor 122 ′ obtained in advance and the output of the first sensor 128 and the output of the reference illuminance monitor 122 are used.
  • calibration information for calibrating the output of the first sensor 128 is obtained.
  • the output of the first sensor 128 after the calibration is accurate optical information (image plane) without being affected by the change in the light transmittance of the liquid-repellent film. (Illuminance).
  • the output of the first sensor 128 calibrated using the above-described calibration method that is, the influence of the change in the light transmittance of the liquid-repellent film.
  • Exposure to the wafer W is performed in consideration of the accurate measured value of the image plane illuminance, so that the light transmittance of the liquid-repellent film is not affected by the change over time.
  • High-precision immersion exposure can be performed over a long period of time.
  • main controller 50 detects detection light via a liquid-repellent film on the surface of a member (eg, optical member 126) disposed on the image plane side of projection optical system PL. age Since the exposure operation for the wafer W is controlled based on the output of the sensor (for example, the first sensor 128) that receives all the illumination light IL and information related to the change in the light transmittance of the liquid repellent film, High-precision wafer exposure is possible over a long period without being affected by changes in the light transmittance of the liquid film.
  • the pattern of the reticle R is transferred onto the wafer with high precision by performing the exposure with high resolution and a large depth of focus as compared with that in the air by immersion exposure. For example, it is possible to realize the transfer of a fine pattern of about 70 to LOOnm as a device rule.
  • the reference illuminance monitor 122 ′ performs projection without passing through the water-repellent film.
  • Absolute value calibration in which the illuminance measurement of the image plane of the optical system PL is performed, and the measurement value (output) of the measurement value (output) of the illuminance monitor 122 is used to update the correction parameter ⁇ for decreasing the light transmittance of the water-repellent film.
  • the estimation calculation using the model function (transfer function) of Equation (2) described above is used together with the estimation calculation calibration for updating the parameter ⁇ . I explained the case.
  • the present invention is not limited to this.
  • only the absolute value calibration or only the estimation calculation using the model function is performed on the surface of the member arranged on the image plane side (beam exit side of the optical system) of the projection optical system PL.
  • Variations in the light transmittance (beam transmittance) of the liquid-repellent film may be predicted.
  • the member examples include a measurement member arranged on the image plane side of the projection optical system PL (a beam emission side of the optical system), for example, a measurement member having a predetermined light transmission portion (a pinhole, a slit, Or the above-mentioned pattern plate or slit plate with a rectangular aperture, etc.), a measurement member with a reference mark (such as the reference mark plate), a measurement member with a reflective surface (such as a reflection plate for measurement), etc.
  • a measurement member arranged on the image plane side of the projection optical system PL a beam emission side of the optical system
  • a measurement member having a predetermined light transmission portion a pinhole, a slit, Or the above-mentioned pattern plate or slit plate with a rectangular aperture, etc.
  • a measurement member with a reference mark such as the reference mark plate
  • a measurement member with a reflective surface such as a reflection plate for measurement
  • a predetermined function that uses information related to the irradiation history of light (energy beam) irradiated to the liquid-repellent film as input information is used as a model function.
  • the model function includes, for example, a function including an integrated amount of light (energy beam) applied to the liquid-repellent film as information related to the irradiation history of light (energy beam) applied to the liquid-repellent film.
  • the model function of equation (3) be able to.
  • the initial time t is initially set to 0, and the light transmittance of the liquid-repellent film (beam transmission
  • the power that determines the light transmittance (beam transmittance) attenuation based on the total energy applied is as follows.
  • a pulsed light source is used as the light source as in the above-described embodiment
  • An integrated value of the number of light emission pulses may be used instead of the total energy.
  • the parameter p in the above equation (3) is the number of emission pulses irradiated after t.
  • the integrated value may be used, and the coefficient Tp may be an emission pulse-dependent attenuation coefficient [sec]. In this way, it is possible to obtain a change in light transmittance (beam transmittance) only for the laser emission information.
  • the change in the light transmittance (beam transmittance) of the liquid-repellent film is an irreversible change, and is a phenomenon that occurs when the physical properties of the liquid-repellent film are destroyed. Generally, in these phenomena, no change occurs below a certain threshold, but it is thought that (a! /, The change is small! /,), But the change becomes intense beyond the threshold. Can be For such a case, when calculating the irradiation energy QF] in the above equations (2) and (3), it is possible to adopt a method in which a pulse with a predetermined power [W] value or less is regarded as 0. good.
  • the selection setting of the diffractive optical elements 17a and 17b and the selection setting of the illumination system aperture stop plate 24 are set for each illumination condition.
  • the attenuation coefficient Tp depending on the irradiation energy may be obtained in advance for each combination, and the attenuation coefficient Tp in the model function may be changed according to the illumination condition.
  • the angle of the light beam incident on the water-repellent film varies depending on the illumination conditions, and the different angles cause different damage to the water-repellent film, resulting in a change in the light transmittance of the water-repellent film. May be different. Therefore, by replacing such angle dependence with the illumination condition, the change in the light transmittance of the water-repellent film can be calculated with higher accuracy.
  • the input of a model function (transfer function) for estimating the change in light transmittance of the liquid-repellent film varies with time. Any physical quantity related to the conversion may be used, for example, at least one of the number of exposure pulses and time, or the temperature may be added thereto.
  • the transfer function is not limited to the function such as the above-described equation (3). As a form of the transfer function, the first-order lag and its composite form will be common. A higher-order precise transfer function may be employed depending on the required accuracy.
  • a model function is used when estimating a change in light transmittance of a liquid-repellent film formed on the surface of a member arranged on the image plane side of the projection optical system PL.
  • the change in the light transmittance of the liquid-repellent film may be predicted based on information relating to the irradiation history of the light applied to the liquid-repellent film without using the force model function described above. In such a case, by acquiring information related to the irradiation history of the light applied to the liquid-repellent film at a predetermined timing, it is possible to easily predict a change in the light transmittance of the liquid-repellent film.
  • the exposure area IA is irradiated, transmitted through the optical member 126, and directed to the light receiving surface of the first sensor 128.
  • the illumination light IL (dotted line in FIG. 5) (Indicated by arrows) are partially shielded from light by the light-shielding film 127.
  • an illuminance monitor 222 as shown in FIG. 12 may be employed in the above embodiment instead of the illuminance monitor 122 described above.
  • the illuminance monitor 222 of FIG. 12 is different from the illuminance monitor 222 in that a light-attenuating film is provided on the upper surface of the optical member 126.
  • a light-attenuating film 129 is formed on the entire lower surface of the optical member 126.
  • the other points are the same as those of the illuminance monitor 122.
  • all of the illuminating light IL (V, V shown by the dotted arrow in FIG. 12) is directed to the light receiving surface of the first sensor 128 after being irradiated to the exposure area IA and passing through the optical member 126.
  • the light can be received by the first sensor 128 after the light is attenuated by the light attenuating film 129, and the stray light (see the thick solid line arrow in FIG. 12) that has entered the optical member 126 through the gap B portion is applied by the light attenuating film 129. It can be dimmed. Since the intensity of the stray light is much lower than that of the illumination light IA, the intensity after passing through the light attenuating film 129 becomes very small.
  • the first sensor (light receiving element) 128 is physically fixed to the lower surface (back surface) of the optical member 126, but is not limited thereto.
  • the first sensor may be formed on the back surface of 126.
  • the liquid repellent (water repellent) film on the upper surface of the illuminance monitor 122 and the liquid repellent (water repellent) film on the upper surface of the measurement reflector 102 have been mainly described.
  • M ST measurement table MTB
  • aerial image measurement device with slit plate 105 and wavefront aberration measurement device with pattern plate 107 Force of light transmittance of liquid repellent (water repellent) film on the upper surface of slit plate 105 or pattern plate 107
  • calibration may be performed in the same manner as the illuminance monitor 122 described above.
  • the extinction ratio of the extinction film 129 formed on at least one of the upper surface and the lower surface of the optical member 126 of the illuminance monitor 122 changes over time due to irradiation with an ultraviolet energy beam such as ArF excimer laser light.
  • an ultraviolet energy beam such as ArF excimer laser light.
  • the calibration can be performed in the same manner as the change with time of the light transmittance of the liquid-repellent (water-repellent) film.
  • the liquid repellent (water repellent) formed on the upper surface of the fiducial mark plate FM1, FM2 is used. If a measurement error or the like occurs due to the influence of the temporal change in the light transmittance of the film, for example, the detection light of the reticle alignment system RAa, RAb applied to the reference mark plates FM1 and FM2 (ArF excimer laser light ), The temporal change in the light transmittance of the liquid-repellent film may be estimated based on the integrated irradiation amount and the like, and measures such as correcting the output signals of the reticle alignment systems RAa and RAb may be taken.
  • the reflectance of a metal material film such as chromium may change over time due to irradiation with an ultraviolet energy beam such as ArF excimer laser light. Therefore, when the reference marks on the reference mark plates FM1 and FM2 are formed using a metal material (for example, chrome), the reflectance of the metal material can be determined not only by the change with time of the light transmittance of the liquid-repellent film. It is better to take measures such as correcting the output signals of the reticle alignment systems RAa and RAb in consideration of the aging of the reticle.
  • the measuring stage MST having the measuring table MTB provided with various measuring instruments such as the illuminance monitor 122 is described in the case where the measuring stage MST is provided separately from the wafer stage WST.
  • the various measuring instruments described above are not limited to the above, and may be provided on the wafer stage WST. If powerful, no measurement stage is required.
  • the stage device is used for one wafer stage. Although the case where one measurement stage is provided has been described, the present invention is not limited to this, and a plurality of wafer stages for holding a wafer may be provided in order to improve the throughput of the exposure operation.
  • the change in the imaging performance of the projection optical system PL is compensated for by using the measurement result of the illuminance monitor 122.
  • Japanese Patent Application Laid-Open No. 11-16816 and the corresponding As disclosed in US Patent Application Publication No. 2002Z0061469 the exposure amount control for the wafer W may be performed using the measurement result of the illuminance monitor 122.
  • by performing calibration such that V is not affected by the liquid-repellent film (water-repellent film) or the light-reducing film it becomes possible to accurately control the exposure amount of the wafer W.
  • the disclosures in the above gazettes and corresponding US Patent Application Publications will be incorporated herein by reference.
  • the exposure apparatus to which the above-described liquid immersion method is applied has a configuration in which the optical path space on the light emission side of the terminal optical element of the projection optical system PL is filled with liquid (pure water) to expose the wafer W.
  • liquid pure water
  • the optical path space on the light incident side of the terminal optical element of the projection optical system PL may be filled with liquid.
  • the present invention is not limited to this, and the leveling table 52 may have three degrees of freedom.
  • the configuration in which the measurement table MTB has three degrees of freedom may be adopted.
  • ultrapure water water
  • a liquid which is chemically stable and has high transmittance of the illumination light IL and which is safe for example, a fluorine-based inert liquid
  • a fluorine-based inert liquid for example, Fluorinert (trade name of Threehem, USA) can be used. This fluorine-based inert liquid is also excellent in the cooling effect.
  • a liquid that is transparent to the illuminating light IL and has as high a refractive index as possible and that is stable against the photoresist applied to the surface of the projection optical system wafer should be used.
  • the collected liquid may be reused.
  • a filter for removing impurities from the collected liquid may be provided in the liquid collection device, the collection pipe, or the like. It is desirable to keep.
  • the optical element on the image plane side of the projection optical system PL is assumed to be the tip lens 91.
  • the optical element is not limited to a lens, but is an optical element of the projection optical system PL.
  • An optical plate (parallel plane plate or the like) used for adjusting characteristics such as aberration (spherical aberration, coma aberration, etc.) may be used, or a simple cover glass may be used.
  • the optical element closest to the image plane of the projection optical system PL (the tip lens 91 in each of the above embodiments) is a liquid (due to scattering particles generated from the resist by irradiation of the illumination light IL or adhesion of impurities in the liquid, etc.).
  • the surface may be soiled by contact with water. For this reason, the optical element may be detachably (exchangeably) fixed to the lowermost part of the lens barrel 40, and may be periodically replaced.
  • the optical element that comes into contact with the liquid is a lens
  • the cost of replacement parts is high and the time required for replacement (including adjustment) is long, resulting in maintenance costs (running costs).
  • Increase in throughput and decrease in throughput. Therefore, the optical element that comes into contact with the liquid may be, for example, a parallel flat plate that is less expensive than the lens 91.
  • the present invention is applied to a scanning exposure apparatus such as a step 'and' scan method.
  • a scanning exposure apparatus such as a step 'and' scan method
  • the scope of the present invention is not limited to this. It is. That is, the present invention can be applied to a step-and-repeat type projection exposure apparatus, a step-and-stitch type exposure apparatus, or a proximity type exposure apparatus.
  • the reticle using a light-transmitting mask in which a predetermined light-shielding pattern (or a phase pattern ⁇ a dimming pattern) is formed on a light-transmitting substrate.
  • a predetermined light-shielding pattern or a phase pattern ⁇ a dimming pattern
  • an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is used. Good.
  • the present invention can also be applied to an exposure apparatus (lithography system) that forms a line 'and' space pattern on the wafer W by forming the pattern on the wafer w.
  • an exposure apparatus lithography system
  • the application of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing.
  • an exposure apparatus for liquid crystal for transferring a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head it can be widely applied to exposure devices for manufacturing imaging devices (CCD, etc.), micromachines, DNA chips, and the like.
  • glass substrates or silicon wafers are used to manufacture reticles or masks used in light exposure equipment that can be used only with micro devices such as semiconductor devices, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern to a substrate.
  • the light source of the exposure apparatus of the above embodiment is not limited to an ArF excimer laser, but a KrF excimer laser (output wavelength 248 nm), an F laser (output wavelength 157 nm), an Ar laser (output
  • Pulse laser light source such as Kr laser (output wavelength 146 nm) and g-line (wavelength
  • ultra-high pressure mercury lamps that emit bright lines such as 436 nm long and i-line (365 nm wavelength).
  • a harmonic generation device of a YAG laser can be used.
  • a DFB semiconductor laser or fiber laser power A single-wavelength laser beam in the infrared or visible range that is oscillated is amplified by, for example, an erbium (or both erbium and ytterbium) power S-doped fiber amplifier, and then nonlinearly amplified. It is also possible to use harmonics whose wavelength has been converted to ultraviolet light using an optical crystal. Further, the projection optical system may be not only a reduction system but also any one of an equal magnification and an enlargement system.
  • the transfer characteristics of the pattern are adjusted by the lithography step of transferring the pattern formed on the mask onto the photosensitive object, and the device assembling step (including the dicing step, the bonding step, and the knocking step). , Manufactured through inspection steps and the like.
  • the exposure apparatus of the above embodiment is used in the lithography step, highly accurate exposure can be realized for a long time. Therefore, the productivity of a highly integrated microdevice on which a fine pattern is formed can be improved.
  • the calibration method of the present invention is suitable for calibrating the output of a sensor that receives a detection beam via an optical system, a liquid, and a water-repellent film. Further, the prediction method of the present invention is suitable for predicting a change in the beam transmittance of the liquid-repellent film. Further, the exposure method of the present invention is suitable for exposing an object. Further, the reflectance calibration method of the present invention is suitable for correcting reflectance data of a reflector used for reflectance measurement of an object irradiated with an energy beam via an optical system and a liquid. Further, the reflectance measurement method of the present invention is suitable for measuring the reflectance of an object. The exposure apparatus of the present invention is suitable for exposing an object by irradiating an energy beam from a beam source through an optical system and a liquid to form a pattern on the object. Further, the device manufacturing method of the present invention is suitable for manufacturing micro devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A second detection beam is received by a reference illuminance monitor (second sensor) without passing the second detection beam through a liquid-repellent film, and the output (Pref) of the reference illuminance monitor corresponding to the amount of light of the received beam is acquired (step 322). A first detection beam is received by a first sensor after passing the beam through a liquid-repellent film, and the output (Pi) of the first sensor corresponding to the amount of light of the received beam is acquired (step 306). From the output of the first sensor and the output of the reference illuminance monitor, correction information δ (or Ϝ) used to correct the output of the first sensor is acquired (steps 324 to 332). Correct energy information not influenced by the variation of the beam transmittance of the liquid-repellent film is collected.

Description

明 細 書  Specification
較正方法、予測方法、露光方法、反射率較正方法及び反射率計測方法 、露光装置、並びにデバイス製造方法  Calibration method, prediction method, exposure method, reflectance calibration method and reflectance measurement method, exposure apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、較正方法、予測方法、露光方法、反射率較正方法及び反射率計測方 法、露光装置、並びにデバイス製造方法に係り、更に詳しくは、撥液膜を介して検出 ビームを受けるセンサの出力を較正する較正方法、撥液膜のビーム透過率の変動を 予測する予測方法、前記較正方法を利用する露光方法、光学系及び液体を介して エネルギビームが照射される物体の反射率計測に用いられる反射板の反射率に関 連する情報を較正する反射率較正方法及び該反射率較正方法を利用して前記物 体の反射率を計測する反射率計測方法、ビーム源からのエネルギビームを光学系及 び液体を介して照射して物体を露光し、該物体上にパターンを形成する露光装置、 並びに該露光装置を用いるデバイス製造方法に関する。  The present invention relates to a calibration method, a prediction method, an exposure method, a reflectance calibration method and a reflectance measurement method, an exposure apparatus, and a device manufacturing method, and more particularly, to a method of detecting a detection beam via a liquid repellent film. A calibration method for calibrating the output of a sensor to be received, a prediction method for predicting a change in beam transmittance of a liquid-repellent film, an exposure method using the calibration method, reflection of an object irradiated with an energy beam via an optical system and a liquid A reflectance calibration method for calibrating information related to the reflectance of a reflector used for reflectance measurement, a reflectance measurement method for measuring the reflectance of the object using the reflectance calibration method, and a method for measuring a reflectance from a beam source. The present invention relates to an exposure apparatus that exposes an object by irradiating an energy beam through an optical system and a liquid to form a pattern on the object, and a device manufacturing method using the exposure apparatus.
背景技術  Background art
[0002] 従来より、半導体素子 (集積回路等)、液晶表示素子等の電子デバイスを製造する リソグラフイエ程では、マスク (又はレチクル)のパターンの像を投影光学系を介して、 レジスト (感光剤)が塗布されたウェハ又はガラスプレート等の感光性の物体 (以下、「 ウェハ」と呼ぶ)上の複数のショット領域の各々に転写するステップ.アンド ·リピート方 式の縮小投影露光装置 ( 、わゆるステツパ)や、ステップ ·アンド'スキャン方式の投影 露光装置 ( 、わゆるスキャニング'ステツパ (スキャナとも呼ばれる) )などが、主として 用いられている。  [0002] Conventionally, in a lithographic process for manufacturing electronic devices such as semiconductor devices (integrated circuits and the like) and liquid crystal display devices, a resist (photosensitive agent) is formed by projecting an image of a mask (or reticle) pattern through a projection optical system. ) Is transferred to each of a plurality of shot areas on a photosensitive object such as a wafer or a glass plate (hereinafter, referred to as a “wafer”) coated with a). A loose exposure stepper and a step-and-scan projection exposure apparatus (a so-called scanning stepper (also called a scanner)) are mainly used.
[0003] また、液浸法を利用した露光装置が、最近注目されるようになってきた。この液浸法 を利用した露光装置として、投影光学系の下面とウェハ表面との間を水又は有機溶 媒等の液体で局所的に満たした状態で露光を行うものが知られている(例えば、下記 特許文献 1参照)。この特許文献 1に記載の露光装置では、液体中での露光光の波 長力 空気中の lZn倍 (nは液体の屈折率で通常 1. 2〜1. 6程度)になることを利 用して解像度を向上すると共に、その解像度と同一の解像度が液浸法によらず得ら れる投影光学系(このような投影光学系の製造が可能であるとして)に比べて焦点深 度を n倍に拡大する、すなわち空気中に比べて焦点深度を実質的に n倍に拡大する ことができる。 [0003] An exposure apparatus using a liquid immersion method has recently attracted attention. As an exposure apparatus using the liquid immersion method, there is known an exposure apparatus which performs exposure while a space between a lower surface of a projection optical system and a wafer surface is locally filled with a liquid such as water or an organic solvent (for example, And Patent Document 1 below). The exposure apparatus described in Patent Document 1 utilizes the fact that the wavelength of the exposure light in a liquid is lZn times that in air (n is the refractive index of the liquid, usually about 1.2 to 1.6). Resolution, and obtain the same resolution as that resolution regardless of the immersion method. To increase the depth of focus by a factor of n compared to the projection optics to be manufactured (assuming that such projection optics can be manufactured), ie to substantially increase the depth of focus by a factor of n compared to air. Can be.
[0004] また、近時においては、ウェハステージ (基板ステージ)とは独立して、 2次元面内 で駆動可能で、計測に用いられる計測器が設けられたステージ (計測ステージ)を、 備えた露光装置も提案されている (例えば、特許文献 2、 3等参照)。  [0004] In recent years, a stage (measurement stage) which can be driven in a two-dimensional plane independently of a wafer stage (substrate stage) and is provided with a measuring instrument used for measurement is provided. An exposure apparatus has also been proposed (for example, see Patent Documents 2 and 3).
[0005] しかるに、前述した液浸露光装置に、計測ステージを採用する場合には、計測ステ ージ上に液浸領域を形成した状態で露光に関する種々の計測が行われる。この場 合、計測ステージの液体に接する部材の表面には、例えば、その液体の回収を容易 にするために、その液体の種類に応じた撥液膜が形成される。この撥液膜は、液浸 露光で用いられる露光光 (遠紫外域又は真空紫外域の光)の照射により経時的に劣 化する。この撥液膜の劣化によりその光透過率が低下し、この光透過率の低下に起 因する各種計測精度の低下が、最近の露光装置に要求されている露光精度を長期 に渡って維持することを困難にする可能性があることが、最近になって判明した。  [0005] However, when a measurement stage is employed in the above-described liquid immersion exposure apparatus, various measurements related to exposure are performed with the liquid immersion area formed on the measurement stage. In this case, a liquid-repellent film corresponding to the type of the liquid is formed on the surface of the member in contact with the liquid on the measurement stage, for example, in order to facilitate the collection of the liquid. The lyophobic film deteriorates with time due to irradiation with exposure light (light in the far ultraviolet region or vacuum ultraviolet region) used in immersion exposure. The light transmittance decreases due to the deterioration of the liquid repellent film, and the decrease in various measurement accuracy caused by the decrease in the light transmittance maintains the exposure accuracy required for recent exposure apparatuses for a long time. It has recently been found that this can be difficult.
[0006] また、計測ステージを採用せず、ウェハステージに各種計測器を設ける場合であつ ても、液体に接する部材の表面に形成された撥液膜の劣化は上記と同様に生じるの で、結果として露光に関する各種計測の計測精度が低下し、露光精度を長期に渡つ て維持することが困難になる可能性がある。  [0006] Also, even when various measuring instruments are provided on the wafer stage without using the measurement stage, the degradation of the liquid-repellent film formed on the surface of the member in contact with the liquid occurs in the same manner as described above. As a result, the measurement accuracy of various measurements related to exposure may decrease, and it may be difficult to maintain the exposure accuracy over a long period of time.
[0007] 特許文献 1:国際公開第 99Z49504号パンフレット  [0007] Patent Document 1: International Publication No. 99Z49504 pamphlet
特許文献 2:特開平 11— 135400号公報  Patent Document 2: JP-A-11-135400
特許文献 3:特開平 3— 211812号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 3-212812
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、上述の事情の下でなされたもので、第 1の観点力 すると、部材の表面 の撥液膜を介して第 1の検出ビームを受ける第 1センサの出力を較正する較正方法 であって、撥液膜を介することなく第 2センサにより第 2の検出ビームを受け、その受 けたビームのエネルギ量に対応する前記第 2センサの出力を取得する第 1工程と;前 記第 1の検出ビームを前記撥液膜を介して前記第 1センサで受け、その受けたビー ムのエネルギ量に対応する前記第 1センサの出力を取得する第 2工程と;前記第 1セ ンサの出力と前記第 2センサの出力とに基づいて、前記第 1センサの出力を較正する ための較正情報を取得する第 3工程と;を含む較正方法である。 [0008] The present invention has been made under the above circumstances, and in a first aspect, the output of a first sensor that receives a first detection beam via a liquid-repellent film on the surface of a member is calibrated. A calibration method, comprising: receiving a second detection beam by a second sensor without passing through a liquid-repellent film, and obtaining an output of the second sensor corresponding to an energy amount of the received beam; The first detection beam is received by the first sensor via the liquid-repellent film, and the received beam is received. A second step of obtaining an output of the first sensor corresponding to an energy amount of the system; and calibrating an output of the first sensor based on an output of the first sensor and an output of the second sensor. And a third step of obtaining the calibration information.
[0009] これによれば、第 1工程で、撥液膜を介することなく第 2センサにより第 2の検出ビー ムを受け、その受けたビームのエネルギ量に対応する第 2センサの出力を取得する。 すなわち、撥液膜のビーム透過率変化の影響を受けない第 2センサの出力を取得す る。また、第 2工程で、第 1の検出ビームを撥液膜を介して第 1センサで受け、その受 けたビームのエネルギ量に対応する第 1センサの出力を取得する。この場合、第 1セ ンサの出力は、撥液膜のビーム透過率の経時変化の影響を直接受ける。  According to this, in the first step, the second sensor receives the second detection beam without passing through the liquid-repellent film, and obtains the output of the second sensor corresponding to the energy amount of the received beam. I do. That is, the output of the second sensor that is not affected by the change in the beam transmittance of the liquid-repellent film is obtained. In the second step, the first detection beam is received by the first sensor via the liquid-repellent film, and the output of the first sensor corresponding to the energy amount of the received beam is obtained. In this case, the output of the first sensor is directly affected by the temporal change of the beam transmittance of the liquid-repellent film.
[0010] そして、第 3工程で、第 1センサの出力と第 2センサの出力とに基づいて、第 1セン サの出力を較正するための較正情報を取得する。従って、この較正情報を用いて、 第 1のセンサの出力を較正すると、その較正後の第 1センサの出力は、撥液膜のビー ム透過率変化の影響を受けな 、ものとなる。  [0010] Then, in a third step, calibration information for calibrating the output of the first sensor is obtained based on the output of the first sensor and the output of the second sensor. Therefore, when the output of the first sensor is calibrated using this calibration information, the output of the first sensor after the calibration is not affected by the change in the beam transmittance of the liquid-repellent film.
[0011] 本発明は、第 2の観点からすると、本発明の較正方法を用いて較正された前記第 1 センサの出力を考慮して、エネルギビームを光学系及び液体を介して物体上に照射 することによって、前記物体を露光する工程を含む第 1の露光方法である。  According to a second aspect of the present invention, in consideration of an output of the first sensor calibrated using the calibration method of the present invention, an energy beam is irradiated onto an object via an optical system and a liquid. A first exposure method including a step of exposing the object.
[0012] これによれば、本発明の較正方法を用いて較正された前記第 1センサの出力、す なわち撥液膜のビーム透過率変化の影響を受けない前記第 1センサの出力を考慮し て、物体に対する露光が行われるので、撥液膜のビーム透過率の経時的変化の影 響を受けることがない高精度な物体に対する液浸露光を長期に渡って行うことが可 能となる。  [0012] According to this, the output of the first sensor calibrated using the calibration method of the present invention, that is, the output of the first sensor that is not affected by the change in the beam transmittance of the liquid-repellent film is considered. Then, since the object is exposed, it is possible to perform the liquid immersion exposure for the object with high accuracy over a long period without being affected by the temporal change in the beam transmittance of the liquid repellent film. .
[0013] 本発明は、第 3の観点カゝらすると、部材の表面に形成された撥液膜のビーム透過率 の変動を予測する予測方法であって、前記撥液膜に照射されるエネルギビームの照 射履歴に関連する情報に基づいて前記撥液膜のビーム透過率の変動を予測するェ 程を含む予測方法である。  According to a third aspect of the present invention, there is provided a method for predicting a change in beam transmittance of a liquid-repellent film formed on a surface of a member, the method comprising: This is a prediction method including a step of predicting a change in a beam transmittance of the liquid-repellent film based on information related to a beam irradiation history.
[0014] これによれば、撥液膜に照射されるエネルギビームの照射履歴に関連する情報に 基づ 、て撥液膜のビーム透過率の変動を予測するため、撥液膜に照射されるェネル ギビームの照射履歴に関連する情報を取得することで、容易に撥液膜のビーム透過 率の変動を予測することが可能となる。 [0014] According to this, the liquid repellent film is irradiated with the liquid repellent film in order to predict the fluctuation of the beam transmittance of the liquid repellent film based on the information related to the irradiation history of the energy beam applied to the liquid repellent film. By acquiring information related to the energy beam irradiation history, the beam transmission of the lyophobic film can be easily performed. It is possible to predict a change in the rate.
[0015] 本発明は、第 4の観点力 すると、光学系を介してエネルギビームが照射される物 体の反射率を計測するために、前記光学系のビーム射出側に配置され、その表面に 撥液膜を有する計測用反射板の反射率データを較正する反射率較正方法であって 、その表面に撥液膜が存在せず、所定の反射率を有する基準反射板を、前記光学 系のビーム射出側に配置し、前記光学系を介して前記基準反射板に前記エネルギ ビームを照射するとともに、前記基準反射板からの反射ビームを前記光学系を介して センサで受けて、基準データを取得する第 1工程と;前記計測用反射板を前記光学 系のビーム射出側に配置して、前記光学系及び液体を介して前記計測用反射板に 前記エネルギビームを照射するとともに、前記計測用反射板力 の反射ビームを前 記液体及び前記光学系を介して前記センサで受光して、計測データを取得する第 2 工程と;前記基準データと前記計測データとに基づいて、前記計測用反射板の反射 率データを較正する第 3工程と;を含む反射率較正方法である。  According to a fourth aspect of the present invention, in order to measure the reflectance of an object irradiated with an energy beam via an optical system, the present invention is arranged on the beam exit side of the optical system, and has a surface A reflectance calibration method for calibrating reflectance data of a measurement reflector having a liquid-repellent film, wherein the reference reflector having a predetermined reflectance without a liquid-repellent film on the surface thereof is used for the optical system. It is arranged on the beam exit side, irradiates the energy beam to the reference reflector via the optical system, and receives a reflected beam from the reference reflector by a sensor via the optical system to acquire reference data. A first step of: arranging the measurement reflection plate on the beam emission side of the optical system, irradiating the measurement reflection plate with the energy beam via the optical system and the liquid, and In front of the reflected beam A second step of acquiring measurement data by receiving light with the sensor via the liquid and the optical system; and calibrating reflectance data of the measurement reflector based on the reference data and the measurement data. And a three-step reflectance calibration method.
[0016] これによれば、第 1工程で、その表面に撥液膜が存在せず、所定の反射率を有す る基準反射板を、光学系のビーム射出側に配置し、前記光学系及を介して基準反射 板にエネルギビームを照射するとともに、基準反射板からの反射ビームを前記光学 系を介してセンサで受けて、基準データを取得する。また、第 2工程で、計測用反射 板を前記光学系のビーム射出側に配置して、前記光学系及び液体を介して計測用 反射板にエネルギビームを照射するとともに、計測用反射板からの反射ビームを前 記液体及び前記光学系を介して前記センサで受けて、計測データを取得する。ここ で、エネルギビームの照射条件が同じであるとすると、基準データと計測データとの 差は、主として、撥液膜のビーム透過率の影響によるものである。また、基準反射板 表面には、撥液膜が存在しないので、基準データは、エネルギビームの照射条件が 一定である限り変化しない。従って、第 3工程で、前記基準データと前記計測データ とに基づいて、前記計測用反射板の反射率に関連する情報を較正することで、計測 用反射板表面の撥液膜のビーム透過率に変動があった場合に、その変動の影響を 補償した計測用反射板の反射率に関連する情報の取得が可能となる。  [0016] According to this, in the first step, a reference reflector having no liquid-repellent film on its surface and having a predetermined reflectance is arranged on the beam emission side of the optical system, In addition to irradiating the reference reflector with an energy beam through the filter, the reflected beam from the reference reflector is received by a sensor via the optical system to acquire reference data. Further, in the second step, a measuring reflector is arranged on the beam emission side of the optical system, and the measuring reflector is irradiated with an energy beam through the optical system and the liquid. The reflected beam is received by the sensor via the liquid and the optical system, and measurement data is acquired. Here, assuming that the irradiation conditions of the energy beam are the same, the difference between the reference data and the measurement data is mainly due to the influence of the beam transmittance of the liquid-repellent film. Further, since no liquid-repellent film is present on the surface of the reference reflector, the reference data does not change as long as the irradiation condition of the energy beam is constant. Therefore, in the third step, the beam transmittance of the liquid-repellent film on the surface of the measurement reflector is calibrated by calibrating information related to the reflectance of the measurement reflector based on the reference data and the measurement data. If there is a fluctuation in the measurement, it becomes possible to acquire information related to the reflectance of the measuring reflector that compensates for the influence of the fluctuation.
[0017] この場合において、前記計測用反射板は、第 1反射率を有する第 1反射面と第 2反 射率を有する第 2反射面とを有する同一部材で構成することができる。但し、第 1反 射率を有する第 1反射面と、第 2反射率を有する第 2反射面とを、別々の部材表面に 形成しても良い。 [0017] In this case, the measurement reflector has a first reflection surface having a first reflectance and a second reflection surface. It can be composed of the same member having the second reflection surface having the emissivity. However, the first reflection surface having the first reflectance and the second reflection surface having the second reflectance may be formed on separate member surfaces.
[0018] 本発明は、第 5の観点からすると、光学系のビーム射出側に配置され、前記光学系 と液体とを介してエネルギビームが照射される物体の反射率を計測する反射率計測 方法であって、その表面に撥液膜が存在せず、所定の反射率を有する基準反射板 を、前記光学系のビーム射出側に配置して、前記光学系を介して前記基準反射板に 前記エネルギビームを照射するとともに、前記基準反射板力 の反射ビームを前記 光学系を介してセンサで受けて、基準データを取得する第 1工程と;その表面に撥液 膜が形成され該撥液膜を含む全体として所定の反射率を有する計測用反射板を、 前記光学系のビーム射出側に配置して、前記光学系及び液体を介して前記計測用 反射板に前記エネルギビームを照射するとともに、前記計測用反射板からの反射ビ ームを前記液体及び光学系を介して前記センサで受けて、計測データを取得する第 2工程と;前記基準データと前記計測データとに基づいて、前記計測用反射板の反 射率に関連する情報を較正する第 3工程と;前記物体を、前記光学系のビーム射出 側に配置し、前記エネルギビームを前記光学系及び液体を介して前記物体上に照 射するとともに、前記物体力 の反射ビームを前記液体及び前記光学系を介して前 記センサで受ける第 4工程と;前記第 3工程で較正された前記計測用反射板の反射 率に関連する情報と前記第 4工程での結果とに基づいて前記物体の反射率を求め る第 5工程と;を含む反射率計測方法である。  According to a fifth aspect of the present invention, there is provided a reflectivity measuring method for measuring a reflectivity of an object which is disposed on a beam emission side of an optical system and is irradiated with an energy beam via the optical system and a liquid. A reference reflector having no liquid-repellent film on its surface and having a predetermined reflectance is disposed on the beam exit side of the optical system, and the reference reflector is provided on the reference reflector via the optical system. A first step of irradiating an energy beam and receiving a reflected beam of the reference reflector force by a sensor via the optical system to acquire reference data; and a lyophobic film formed on the surface thereof, A measurement reflection plate having a predetermined reflectance as a whole including: is arranged on the beam emission side of the optical system, and irradiates the energy beam to the measurement reflection plate via the optical system and liquid, Reflection from the measuring reflector A second step of receiving measurement by the sensor via the liquid and the optical system to obtain measurement data; and relating to the reflectance of the measurement reflection plate based on the reference data and the measurement data. A third step of calibrating information to be performed; arranging the object on a beam emission side of the optical system, irradiating the energy beam onto the object via the optical system and liquid, and A fourth step of receiving the reflected beam by the sensor via the liquid and the optical system; and information relating to the reflectance of the measurement reflector calibrated in the third step and a result of the fourth step. And a fifth step of obtaining the reflectance of the object based on the above.
[0019] これによれば、第 1工程、第 2工程及び第 3工程の処理を行う度に、計測用反射板 表面の撥液膜のビーム透過率変動の影響をなくした、計測用反射板の反射率に関 連する情報の取得が可能となる。そして、第 4工程において、物体を、光学系の像面 側に配置し、前記エネルギビームを前記光学系及び液体を介して前記物体上に照 射するととともに、前記物体からの反射光を前記液体及び前記光学系を介して前記 センサで受け、第 5工程で、前記第 3工程で較正された前記計測用反射板の反射率 に関連する情報と前記第 4工程でのセンサによる受けた結果とに基づいて所定の方 法で前記物体の反射率を求めることで、計測用反射板表面の撥液膜のビーム透過 率変動の影響を受けることがない高精度な物体の反射率計測が可能となる。 [0019] According to this, each time the first, second, and third steps are performed, the reflection plate for measurement eliminates the effect of the beam transmittance fluctuation of the liquid-repellent film on the surface of the reflection plate for measurement. It is possible to obtain information related to the reflectance of the object. Then, in a fourth step, the object is arranged on the image plane side of the optical system, the energy beam is irradiated on the object via the optical system and the liquid, and the reflected light from the object is reflected on the liquid. And the information received by the sensor via the optical system, and in a fifth step, the information related to the reflectance of the reflective plate for measurement calibrated in the third step and the result received by the sensor in the fourth step. The reflectance of the object is determined by a predetermined method based on the It is possible to measure the reflectance of an object with high accuracy without being affected by the change in the rate.
[0020] 本発明は、第 6の観点からすると、光学系のビーム射出側に配置され、前記光学系 と液体とを介してエネルギビームが照射される物体の反射率を本発明の反射率計測 方法を用いて計測する工程と;計測された前記物体の反射率を考慮して、前記物体 を露光する工程と;を含む第 2の露光方法である。  [0020] According to a sixth aspect of the present invention, the reflectance measurement of the object disposed on the beam emission side of the optical system and irradiated with the energy beam through the optical system and the liquid according to the present invention. A second exposure method, comprising: measuring using a method; and exposing the object in consideration of the measured reflectance of the object.
[0021] これによれば、計測する工程で計測用反射板表面の撥液膜のビーム透過率変動 の影響を受けることなく高精度に物体の反射率が計測され、露光する工程で、その 計測された物体の反射率を考慮して、物体が露光されるので、結果的に高精度な露 光が可能となる。  [0021] According to this, the reflectivity of the object is measured with high accuracy without being affected by the fluctuation of the beam transmittance of the liquid-repellent film on the surface of the measuring reflector in the measuring step, and the measurement is performed in the exposing step. Since the object is exposed in consideration of the reflectance of the object, a highly accurate exposure is possible as a result.
[0022] 本発明は、第 7の観点力もすると、ビーム源からのエネルギビームを光学系及び液 体を介して照射して、物体を露光し、該物体上にパターンを形成する露光装置であ つて、前記光学系のビーム射出側に配置される部材表面の撥液膜を介して第 1の検 出ビームを受ける第 1センサと;第 2の検出ビームを撥液膜を介さずに受ける第 2セン サと;前記第 2の検出ビームを受けた量に対応する前記第 2センサの出力を取得する とともに、前記第 1の検出ビームを受けた量に対応する前記第 1センサの出力を取得 する計測処理装置と;前記計測処理装置で取得された前記第 2センサの出力と前記 第 1センサの出力とに基づいて前記第 1センサの出力を較正するための較正情報を 算出する演算装置と;を備える第 1の露光装置である。  [0022] The present invention is an exposure apparatus that irradiates an energy beam from a beam source through an optical system and a liquid, if necessary, to expose an object and form a pattern on the object. A first sensor for receiving a first detection beam via a liquid-repellent film on the surface of a member arranged on the beam exit side of the optical system; and a first sensor for receiving a second detection beam without passing through the liquid-repellent film. 2 sensors; acquiring an output of the second sensor corresponding to the amount of the second detection beam received, and acquiring an output of the first sensor corresponding to the amount of the first detection beam received; A calculation processing device that calculates calibration information for calibrating the output of the first sensor based on the output of the second sensor and the output of the first sensor acquired by the measurement processing device. Is a first exposure apparatus provided with;
[0023] これによれば、計測処理装置では、撥液膜を介することなく第 2センサにより第 2の 検出ビームを受け、その受けた第 2の検出ビームの量に対応する第 2センサの出力( すなわち、撥液膜のビーム透過率変化の影響を受けない第 2センサの出力)を取得 するとともに、第 1の検出ビームを撥液膜及び前記部材を介して第 1センサで受け、 その受けた第 1の検出ビームの量に対応する第 1センサの出力を取得する。この場 合、第 1センサの出力は、撥液膜のビーム透過率の経時変化の影響を直接受ける。  According to this, in the measurement processing device, the second detection beam is received by the second sensor without passing through the liquid-repellent film, and the output of the second sensor corresponding to the amount of the received second detection beam is received. (Ie, the output of the second sensor that is not affected by the change in the beam transmittance of the liquid-repellent film), and receives the first detection beam by the first sensor via the liquid-repellent film and the member. And obtaining an output of the first sensor corresponding to the amount of the first detection beam. In this case, the output of the first sensor is directly affected by the temporal change of the beam transmittance of the liquid-repellent film.
[0024] そして、演算装置により、計測処理装置で取得された前記第 2センサの出力と前記 第 1センサの出力とに基づいて前記第 1センサの出力を較正するための較正情報が 算出される。従って、この較正情報を用いて、第 1センサの出力を較正すると、その較 正後の第 1センサの出力は、撥液膜のビーム透過率変化の影響を受けないものとな る。 [0024] Then, the arithmetic device calculates calibration information for calibrating the output of the first sensor based on the output of the second sensor and the output of the first sensor acquired by the measurement processing device. . Therefore, if the output of the first sensor is calibrated using this calibration information, the output of the first sensor after the calibration will not be affected by the change in the beam transmittance of the lyophobic film. The
[0025] 本発明は、第 8の観点力 すると、 光学系と液体とを介して物体上にエネルギビー ムを照射して、前記物体を露光する露光装置であって、前記光学系のビーム射出側 に配置された部材表面の膜を介して検出ビームを受けるセンサと;前記センサの出 力と前記膜のビーム透過率の変化に関連する情報とに基づいて、前記物体に対す る露光動作を制御する制御装置と;を備える第 2の露光装置である。  According to an eighth aspect of the present invention, there is provided an exposure apparatus for exposing an object by irradiating an energy beam onto the object via an optical system and a liquid, and exposing the object to a beam. A sensor for receiving a detection beam through a film on the surface of a member disposed on the side of the sensor; and performing an exposure operation on the object based on an output of the sensor and information related to a change in beam transmittance of the film. And a control device for controlling.
[0026] これによれば、制御装置により、光学系のビーム射出側に配置された部材表面の 膜を介して検出ビームを受けるセンサの出力と前記膜のビーム透過率の変化に関連 する情報とに基づいて、物体に対する露光動作が制御されるので、膜のビーム透過 率変化の影響を受けることがない高精度な物体の露光が長期にわたって可能となる  [0026] According to this, the control device allows the output of the sensor that receives the detection beam via the film on the surface of the member disposed on the beam emission side of the optical system and the information related to the change in the beam transmittance of the film to be obtained. The exposure operation of the object is controlled based on the image, so that it is possible to expose the object with high accuracy for a long time without being affected by the change in the film beam transmittance.
[0027] また、リソグラフイエ程において、本発明の第 1及び第 2の露光方法のいずれかを用 いて物体を露光し、その物体上にパターンを形成することで、そのパターンをその物 体上に精度良く形成することができる。従って、本発明は、さらに別の観点からすると 、本発明の第 1及び第 2の露光方法のいずれかにより物体を露光して、該物体上に デバイスパターンを形成するリソグラフイエ程を含むデバイス製造方法であるとも言え る。また、リソグラフイエ程において、本発明の第 1及び第 2の露光方法のいずれかを 用いて、物体を露光し、その物体上にパターンを形成することでそのパターンをその 物体上に精度良く形成することができる。従って、本発明は、さらに別の観点からする と、本発明の第 1及び第 2の露光装置のいずれかにより物体を露光して、該物体上に デバイスパターンを形成するリソグラフイエ程を含むデバイス製造方法であるとも言え る。 [0027] In the lithographic process, an object is exposed using one of the first and second exposure methods of the present invention, and a pattern is formed on the object, so that the pattern is exposed on the object. It can be formed with high precision. Therefore, from a further aspect, the present invention provides a device manufacturing method including a lithographic process for exposing an object by any of the first and second exposure methods of the present invention to form a device pattern on the object. It can be said that it is a method. In the lithographic process, an object is exposed using one of the first and second exposure methods of the present invention, and a pattern is formed on the object to form the pattern on the object with high accuracy. can do. Accordingly, from a further aspect, the present invention provides a device including a lithographic process for exposing an object by one of the first and second exposure apparatuses of the present invention to form a device pattern on the object. It can also be said to be a manufacturing method.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]一実施形態の露光装置の構成を概略的に示す図である。 FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to one embodiment.
[図 2]図 1のステージ装置を示す斜視図である。  FIG. 2 is a perspective view showing the stage device of FIG. 1.
[図 3(A)]計測ステージを示す斜視図である。  FIG. 3 (A) is a perspective view showing a measurement stage.
[図 3(B)]計測ステージ力も計測テーブルが取り外された状態を示す斜視図である。  FIG. 3 (B) is a perspective view showing a state in which a measurement stage force is also removed from a measurement stage force.
[図 4]計測テーブル本体 59を示す平面図である。 [図 5]照度モニタ 122近傍を示す計測テーブル本体上部の縦断面図である。 FIG. 4 is a plan view showing a measurement table main body 59. FIG. 5 is a longitudinal sectional view of the upper portion of a measurement table main body showing the vicinity of an illuminance monitor 122.
[図 6]—実施形態の露光装置の制御系の主要な構成を示すブロック図である。  FIG. 6 is a block diagram showing a main configuration of a control system of the exposure apparatus of the embodiment.
[図 7(A)]—実施形態の並行処理動作を説明するための平面図(その 1)である。  FIG. 7 (A) is a plan view (part 1) for explaining the parallel processing operation of the embodiment.
[図 7(B)]—実施形態の並行処理動作を説明するための平面図(その 2)である。  FIG. 7 (B) is a plan view (part 2) for explaining the parallel processing operation of the embodiment.
[図 8(A)]—実施形態の並行処理動作を説明するための平面図(その 3)である。  FIG. 8 (A) is a plan view (part 3) for explaining the parallel processing operation of the embodiment;
[図 8(B)]—実施形態の並行処理動作を説明するための平面図(その 4)である。  FIG. 8 (B) is a plan view (part 4) for explaining the parallel processing operation of the embodiment;
[図 9]一実施形態の並行処理動作を説明するための平面図(その 5)である。  FIG. 9 is a plan view (part 5) for explaining the parallel processing operation of the embodiment.
[図 10]照度モニタの計測値(出力)の較正に関連する、主制御装置内の CPUの処理 アルゴリズムに対応するフローチャートである。  FIG. 10 is a flowchart corresponding to a processing algorithm of a CPU in a main control device, which is related to calibration of a measurement value (output) of an illuminance monitor.
[図 11]反射率データの較正に関連する、主制御装置 50内の CPUの処理アルゴリズ ムに対応するフローチャートである。  FIG. 11 is a flowchart corresponding to a processing algorithm of a CPU in main controller 50 related to calibration of reflectance data.
[図 12]照度モニタの変形例を説明するための図である。  FIG. 12 is a view for explaining a modified example of the illuminance monitor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の一実施形態を図 1〜図 11に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 11.
[0030] 図 1には、本発明の較正方法、予測方法、露光方法、反射率較正方法及び反射率 計測方法の実施に好適な一実施形態に係る露光装置 10の構成が概略的に示され ている。この露光装置 10は、露光光源にパルス光源としてのエキシマレーザを用い たステップ ·アンド'スキャン方式の走査型露光装置、すなわちいわゆるスキャナであ る。 FIG. 1 schematically shows a configuration of an exposure apparatus 10 according to an embodiment suitable for carrying out a calibration method, a prediction method, an exposure method, a reflectance calibration method, and a reflectance measurement method of the present invention. ing. The exposure apparatus 10 is a step-and-scan type scanning exposure apparatus using an excimer laser as a pulse light source as an exposure light source, that is, a so-called scanner.
[0031] 露光装置 10は、光源 16及び照明光学系 12を含む照明系、該照明系からの露光 用照明光 ILにより照明されるマスクとしてのレチクル Rを保持して所定の走査方向(こ こでは、図 1における紙面内左右方向である Y軸方向とする)に移動するレチクルス テージ RST、レチクル Rから射出された露光用照明光 ILをウェハ W上に投射する投 影光学系 PLを含む投影ユニット PU、ウェハステージ WST及び計測ステージ MST を有するステージ装置 100、及びこれらの制御系等を備えている。ウエノ、ステージ W ST上には、ウェハ Wが載置される。  The exposure apparatus 10 holds an illumination system including a light source 16 and an illumination optical system 12, and a reticle R as a mask illuminated by exposure illumination light IL from the illumination system, and holds the reticle R in a predetermined scanning direction (this direction). The reticle stage RST moves in the Y-axis direction, which is the horizontal direction in the plane of the paper in FIG. 1, and the projection optics PL that projects the exposure illumination light IL emitted from the reticle R onto the wafer W. A stage apparatus 100 having a unit PU, a wafer stage WST, and a measurement stage MST, and a control system thereof are provided. The wafer W is mounted on the Ueno stage W ST.
[0032] 前記光源 16としては、一例として波長 200ηπ!〜 170nmの真空紫外域の光を発す るパルス光源である ArFエキシマレーザ(出力波長 193nm)が用いられている。 [0033] 前記照明光学系 12は、所定の位置関係で配置された、ビーム整形光学系 18、ェ ネルギ粗調器 20、回折光学ユニット 17、オプティカル 'インテグレータ(ュニフォマイ ザ、又はホモジナイザ) 22、照明系開口絞り板 24、ビームスプリッタ 26、第 1リレーレ ンズ 28A、第 2リレーレンズ 28B、固定レチクルブラインド 30A、可動レチクルブライン ド 30B、光路折り曲げ用のミラー M及びコンデンサレンズ 32等を含む。なお、ォプテ ィカル'インテグレータ 22としては、フライアイレンズ、内面反射型インテグレータ、又 は回折光学素子などが用いられる力 図 1ではフライアイレンズを用いているので、以 下では「フライアイレンズ」とも呼ぶ。 The light source 16 has, for example, a wavelength of 200ηπ! An ArF excimer laser (output wavelength: 193 nm), which is a pulse light source that emits light in the vacuum ultraviolet region of up to 170 nm, is used. [0033] The illumination optical system 12 includes a beam shaping optical system 18, an energy rough adjuster 20, a diffraction optical unit 17, an optical 'integrator (uniformizer or homogenizer) 22, and an illumination, which are arranged in a predetermined positional relationship. It includes a system aperture stop plate 24, a beam splitter 26, a first relay lens 28A, a second relay lens 28B, a fixed reticle blind 30A, a movable reticle blind 30B, a mirror M for bending an optical path, and a condenser lens 32. Note that the optical 'integrator 22 uses a fly-eye lens, an internal reflection type integrator, or a diffractive optical element. Call.
[0034] 前記ビーム整形光学系 18は、光源 16で発光され、不図示の送光光学系を介して 入射したレーザビーム LBの断面形状を、該レーザビーム LBの光路上において、そ の後方に設けられたフライアイレンズ 22にレーザビーム LBが効率良く入射するように 整形するもので、例えばシリンダレンズやビームエキスパンダ ( ヽずれも図示省略)等 で構成される。  [0034] The beam shaping optical system 18 changes the cross-sectional shape of the laser beam LB, which is emitted by the light source 16 and enters through a light transmitting optical system (not shown), on the optical path of the laser beam LB. The laser beam LB is shaped so as to be efficiently incident on the provided fly-eye lens 22. The laser beam LB is formed of, for example, a cylinder lens and a beam expander (a deviation is not shown).
[0035] 前記エネルギ粗調器 20は、ビーム整形光学系 18後方のレーザビーム LBの光路 上に配置された回転板(レボルバ) 34を含む。この回転板 34の周囲には透過率(= 1 減光率)の異なる複数個(例えば 6個)の NDフィルタ(図 1ではそのうちの 2個の N Dフィルタが示されている)が配置されている。回転板 34を駆動モータ 38で回転する ことにより、入射するレーザビーム LBに対する透過率を 100%から複数段階で切り換 えることができる。駆動モータ 38は、主制御装置 50によって制御される。なお、エネ ルギ粗調器 20を、複数個の NDフィルタを備えた 2段のレポルノく、又は透過率の異な る複数のメッシュフィルタ等を備えた 1段若しくは複数段のフィルタ交換部材より構成 しても良い。  The energy rough adjuster 20 includes a rotating plate (revolver) 34 disposed on the optical path of the laser beam LB behind the beam shaping optical system 18. Around this rotating plate 34, a plurality of (for example, six) ND filters (two of which are shown in FIG. 1) having different transmittances (= 1 dimming rate) are arranged. I have. By rotating the rotating plate 34 with the drive motor 38, the transmittance for the incident laser beam LB can be switched from 100% in multiple stages. Drive motor 38 is controlled by main controller 50. The energy rough adjuster 20 is composed of a two-stage reporn having a plurality of ND filters, or a one-stage or a plurality of filter replacement members having a plurality of mesh filters having different transmittances. May be.
[0036] 前記回折光学ユニット 17は、複数、例えば 2つの回折光学素子 17a, 17bと該回折 光学素子 17a, 17bを所定の位置関係で保持するホルダ 17cを備えている。ホルダ 1 7cは、主制御装置 50により、不図示の駆動機構を介して回転又はスライド駆動され る。これにより、例えばウェハ Wに転写すべきレチクル Rのパターンに応じて、すなわ ちレチクル Rの照明条件に応じて、回折光学素子 17a, 17bのいずれかがレーザビ ーム LBの光路上に選択的に設定される。 [0037] 前記一方の回折光学素子 17aは、照明光学系 12の瞳面 (本実施形態ではフライア ィレンズ 22の射出側焦点面、又は第 2リレーレンズ 28Bの後側焦点面など)上の所定 領域 (例えば、照明光学系 12の光軸を中心とする円形領域又は輪帯領域、あるいは その光軸力 偏心した複数の領域など)に回折光が分布するように、入射したレーザ 光 LBを回折するものである。この回折光学素子 17aから発生する回折光 (照明光 IL )は、不図示のレンズ系を介して、光路上において、回折光学素子 17aの後方に配 置されたフライアイレンズ 22の入射面に、ほぼ平行な光束となって入射する。また、 他方の回折光学素子 17bは、照明光学系 12の瞳面上で、一方の回折光学素子 17a から発生される回折光が分布する領域と形状、大きさ、及び位置の少なくとも 1つが 異なる領域に回折光が分布するように、入射したレーザ光 LBを回折するものである。 なお、回折光学素子 17a、 17bはそれぞれ回折パターン(回折格子など)が形成され 、その少なくとも一方が位相シフト型の回折パターンでも良い。また、回折光学ュ-ッ ト 17は 3つ以上の回折光学素子を備えていても良い。 [0036] The diffractive optical unit 17 includes a plurality of, for example, two diffractive optical elements 17a, 17b, and a holder 17c for holding the diffractive optical elements 17a, 17b in a predetermined positional relationship. The holder 17c is rotated or slid by the main controller 50 via a drive mechanism (not shown). Thus, for example, according to the pattern of the reticle R to be transferred to the wafer W, that is, according to the illumination condition of the reticle R, one of the diffractive optical elements 17a and 17b is selectively placed on the optical path of the laser beam LB. Is set to [0037] The one diffractive optical element 17a is provided in a predetermined area on a pupil plane of the illumination optical system 12 (in the present embodiment, the exit focal plane of the fly-eye lens 22, or the rear focal plane of the second relay lens 28B). (For example, the incident laser light LB is diffracted so that the diffracted light is distributed in a circular area or an annular area centered on the optical axis of the illumination optical system 12, or a plurality of areas decentered on the optical axis). Things. The diffracted light (illumination light IL) generated from the diffractive optical element 17a passes through a lens system (not shown) on the optical path to an incident surface of a fly-eye lens 22 disposed behind the diffractive optical element 17a. The light is incident as a substantially parallel light flux. Further, the other diffractive optical element 17b is a region on the pupil plane of the illumination optical system 12 in which at least one of a shape, a size, and a position is different from a region where the diffracted light generated from the one diffractive optical element 17a is distributed. This diffracts the incident laser light LB so that the diffracted light is distributed to the light. Each of the diffractive optical elements 17a and 17b has a diffraction pattern (such as a diffraction grating), and at least one of the diffraction patterns may be a phase shift type diffraction pattern. Further, the diffractive optical unit 17 may include three or more diffractive optical elements.
[0038] 前記フライアイレンズ 22は、前記回折光学ユニット 17後方のレーザビーム LBの光 路上に配置され、レチクル Rを均一な照度分布で照明するためにその射出側焦点面 (本実施形態では照明光学系 12の瞳面とほぼ一致)に多数の点光源力 成る面光 源、すなわち 2次光源を形成する。この 2次光源力も射出されるレーザ光、すなわち 前述の露光用照明光 ILを以下においては、「照明光 IL」と呼ぶものとする。  [0038] The fly-eye lens 22 is disposed on the optical path of the laser beam LB behind the diffractive optical unit 17, and irradiates the reticle R with a uniform illuminance distribution. A surface light source having a large number of point light sources, ie, a secondary light source, is formed on the pupil plane of the optical system 12). The laser light that also emits the secondary light source power, ie, the above-described illumination light IL for exposure, is hereinafter referred to as “illumination light IL”.
[0039] フライアイレンズ 22の射出側焦点面に、円板状部材カも成る照明系開口絞り板 24 が配置されている。この照明系開口絞り板 24には、等角度間隔で、例えば通常の円 形開口より成る開口絞り(通常絞り)、小さな円形開口より成りコヒーレンスファクタであ る σ値を小さくするための開口絞り(小 σ絞り)、輪帯照明用の輪帯状の開口絞り、及 び変形光源法用に複数の開口を偏心させて配置した変形開口絞り(図 1ではこのう ちの 2種類の開口絞りのみが図示されている)等が配置されている。この照明系開口 絞り板 24は、主制御装置 50により制御されるモータ等の駆動装置 40により回転され 、これによりいずれかの開口絞りが照明光 ILの光路上に選択的に設定される。  An illumination system aperture stop plate 24, which also includes a disc-shaped member, is arranged on the exit-side focal plane of the fly-eye lens 22. The illumination system aperture stop plate 24 is provided at equal angular intervals, for example, an aperture stop (normal stop) composed of a normal circular aperture, and an aperture stop (consisting of a small circular aperture for reducing the σ value, which is a coherence factor). Small σ stop), annular aperture stop for annular illumination, and modified aperture stop with multiple apertures eccentrically arranged for the modified light source method (Fig. 1 shows only two types of aperture stop) Etc.) are arranged. The illumination system aperture stop plate 24 is rotated by a drive device 40 such as a motor controlled by a main controller 50, whereby one of the aperture stops is selectively set on the optical path of the illumination light IL.
[0040] なお、照明光学系 12の光路内に配置される回折光学素子 17a、 17bの一方とフラ ィアイレンズ 22との間に設けられる不図示のレンズ系の少なくとも一部をズームレン ズ (ァフォーカル系)として、回折光学ユニット 17と組み合わせて用いることで、照明 光学系 12の瞳面上での照明光 ILの光量分布(2次光源の大きさや形状)、すなわち レチクル Rの照明条件の変更時における光量損失を抑える(照明光の利用効率を向 上させる)ようにしても良い。さらに、それぞれ円錐面を持つ一対のプリズム(又は V型 あるいは四角錐型のプリズム)を不図示のレンズ系に組み込み、一対のプリズムの少 なくとも一方を照明光学系 12の光軸に沿って移動してその間隔を可変とすることで、 同様に照明条件の変更時における光量損失を抑えるようにしても良い。また、前述の 回折光学ユニット 17のみ、あるいは前述したズームレンズと一対のプリズムとの少なく とも一方が組み込まれる不図示のレンズ系と回折光学ユニット 17とを組み合わせた 整形光学系によって、前述の照明条件を任意に設定可能であれば、フライアイレン ズ 22の射出側焦点面に開口絞り板 24を必ずしも設けなくても良い。さらに、本実施 形態ではオプティカル 'インテグレータ 22としてフライアイレンズを用いるものとしてい るので、不図示のレンズ系によってフライアイレンズにほぼ平行な光束を入射させて いるが、内面反射型インテグレータ(ロッド'インテグレータ)を用いる場合には、不図 示のレンズ系によって照明光 IL (回折光)を集光して内面反射型インテグレータに入 射させることになる。このとき、不図示のレンズ系による照明光 ILの集光点は、内面反 射型インテグレータの入射面力 ずらしておくと良い。また、照明条件の変更時には 回折光学ユニット 17 (又は前述の整形光学系)によって内面反射型インテグレータの 入射面上での照明光 ILの入射角度範囲が変化することになる。 Note that at least a part of a lens system (not shown) provided between one of the diffractive optical elements 17 a and 17 b disposed in the optical path of the illumination optical system 12 and the fly's eye lens 22 is a zoom lens. When used in combination with the diffractive optical unit 17 as a lens (a focal system), the light amount distribution (size and shape of the secondary light source) of the illumination light IL on the pupil plane of the illumination optical system 12, ie, the illumination of the reticle R It is also possible to suppress the light quantity loss when the condition is changed (improve the utilization efficiency of the illumination light). Further, a pair of prisms (or V-shaped or quadrangular pyramid-shaped prisms) each having a conical surface is incorporated in a lens system (not shown), and at least one of the pair of prisms is moved along the optical axis of the illumination optical system 12. By making the interval variable, it is also possible to similarly suppress the light amount loss when the illumination condition is changed. In addition, the above-mentioned illumination condition is achieved by the above-described diffractive optical unit 17 alone or a shaping optical system combining a diffractive optical unit 17 with a lens system (not shown) in which at least one of the zoom lens and a pair of prisms is incorporated. The aperture stop plate 24 may not necessarily be provided on the exit-side focal plane of the fly eye lens 22 as long as can be set arbitrarily. Furthermore, in the present embodiment, a fly-eye lens is used as the optical 'integrator 22. Therefore, a substantially parallel light beam is incident on the fly-eye lens by a lens system (not shown). When an integrator is used, the illumination light IL (diffraction light) is condensed by a lens system (not shown) and is incident on the internal reflection type integrator. At this time, it is preferable that the focal point of the illumination light IL by a lens system (not shown) be shifted from the incident surface force of the internal reflection type integrator. When the illumination conditions are changed, the range of the incident angle of the illumination light IL on the incident surface of the internal reflection type integrator is changed by the diffractive optical unit 17 (or the shaping optical system described above).
[0041] 前記照明系開口絞り板 24後方の照明光 ILの光路上に、反射率が小さく透過率の 大きなビームスプリッタ 26が配置され、更にこの後方の光路上に、固定レチクルブラ インド(固定視野絞り) 30A及び可動レチクルブラインド(可動視野絞り) 30Bを介在さ せて第 1リレーレンズ 28A及び第 2リレーレンズ 28B力も成るリレー光学系が配置され ている。 A beam splitter 26 having a small reflectance and a large transmittance is arranged on the optical path of the illumination light IL behind the illumination system aperture stop plate 24, and a fixed reticle blind (fixed field stop) is further provided on the optical path behind this. A relay optical system that also has a first relay lens 28A and a second relay lens 28B with a 30A and a movable reticle blind (movable field stop) 30B interposed is provided.
[0042] 固定レチクルブラインド 30Aは、レチクル Rのパターン面に対する共役面から僅か にデフォーカスした面に配置され、レチクル R上で照明領域 IAR(X軸方向に細長く 延びる長方形の照明領域)を規定する矩形開口が形成されている。また、この固定レ チクルブラインド 30Aの近傍に走査方向に対応する方向の位置及び幅が可変の開 口部を有する可動レチクルブラインド 30Bが配置されて 、る。走査露光の開始時及 び終了時にその可動レチクルブラインド 30Bを用いて照明領域 IARを更に制限する ことによって、不要な部分の露光が防止される。 [0042] Fixed reticle blind 30A is arranged on a plane slightly defocused from a conjugate plane with respect to the pattern plane of reticle R, and defines illumination area IAR (rectangular illumination area elongated in the X-axis direction) on reticle R. A rectangular opening is formed. In addition, in the vicinity of the fixed reticle blind 30A, an opening whose position and width in the direction corresponding to the scanning direction are variable. A movable reticle blind 30B having an opening is disposed. By further limiting the illumination area IAR using the movable reticle blind 30B at the start and end of the scanning exposure, exposure of unnecessary portions is prevented.
[0043] リレー光学系を構成する第 2リレーレンズ 28B後方の照明光 ILの光路上には、当該 第 2リレーレンズ 28Bを通過した照明光 ILをレチクル Rに向けて反射する折り曲げミラ 一 Mが配置され、このミラー M後方の照明光 ILの光路上にコンデンサレンズ 32が配 置されている。 On the optical path of the illumination light IL behind the second relay lens 28B forming the relay optical system, a bending mirror 1M that reflects the illumination light IL passing through the second relay lens 28B toward the reticle R is provided. The condenser lens 32 is disposed on the optical path of the illumination light IL behind the mirror M.
[0044] 一方、ビームスプリッタ 26の一方の面 (表面)で反射された照明光 ILは、集光レンズ 44を介して光電変換素子を含むインテグレータセンサ 46で受光され、インテグレー タセンサ 46の光電変換信号力 不図示のホールド回路 (例えばピークホールド回路 など)及び AZD変 を介して出力 DS (digit/pulse)として主制御装置 50に供給さ れる。インテグレータセンサ 46としては、例えば遠紫外域や真空紫外域で感度があり 、且つ光源 16からのパルス光を検出するために高 、応答周波数を有する PIN型の フォトダイオード等が使用できる。  On the other hand, the illumination light IL reflected on one surface (surface) of the beam splitter 26 is received by the integrator sensor 46 including the photoelectric conversion element via the condenser lens 44, and the photoelectric conversion signal of the integrator sensor 46 is output. The power is supplied to the main controller 50 as an output DS (digit / pulse) via a hold circuit (not shown) (for example, a peak hold circuit) and an AZD transformation. As the integrator sensor 46, for example, a PIN-type photodiode or the like having sensitivity in the deep ultraviolet region or vacuum ultraviolet region and having a high response frequency for detecting pulsed light from the light source 16 can be used.
[0045] また、ビームスプリッタ 26の他方の面 (裏面)側で、照明光学系 12の瞳面と共役な 位置に光電変換素子を含む反射量モニタ 47が配置されている。本実施形態では、 ウェハ Wで反射された照明光 IL (反射光)は、液体 Lq、投影光学系 PL、コンデンサ レンズ 32、ミラー M及びリレー光学系を介してビームスプリッタ 26に戻り、ビームスプ リツタ 26で反射された光が反射量モニタ 47で受光され、反射量モニタ 47の検出信号 が主制御装置 50に供給される。  On the other surface (back surface) side of the beam splitter 26, a reflection amount monitor 47 including a photoelectric conversion element is arranged at a position conjugate with the pupil plane of the illumination optical system 12. In the present embodiment, the illumination light IL (reflected light) reflected by the wafer W returns to the beam splitter 26 via the liquid Lq, the projection optical system PL, the condenser lens 32, the mirror M, and the relay optical system, and is returned to the beam splitter 26. The light reflected by the is received by the reflection amount monitor 47, and the detection signal of the reflection amount monitor 47 is supplied to the main controller 50.
[0046] 従って、露光中には、インテグレータセンサ 46の出力信号よりレチクル R、投影光 学系 PL等に入射する照明光 ILの光量 (第 1光量とする)がモニタされ、反射量モニタ 47の検出信号よりウェハ Wで反射されて液体 Lq、投影光学系 PL、レチクル R等を再 び通過する反射光の光量 (第 2光量とする)がモニタできるため、その第 1光量と第 2 光量とを加算することによって、投影光学系 PL、レチクル Rを通過する全体の光量が より正確にモニタできる。すなわち、第 1光量と第 2光量とに基づいて、投影光学系 P Lに入射する光の光量を正確にモニタすることができる。  Therefore, during the exposure, the light amount (referred to as the first light amount) of the illumination light IL incident on the reticle R, the projection optical system PL and the like is monitored from the output signal of the integrator sensor 46, and the reflection amount monitor 47 Since the amount of reflected light (referred to as the second light amount) that is reflected by the wafer W and passes again through the liquid Lq, the projection optical system PL, the reticle R, and the like from the detection signal can be monitored, the first light amount and the second light amount can be monitored. Is added, the total amount of light passing through the projection optical system PL and the reticle R can be monitored more accurately. That is, based on the first light amount and the second light amount, the light amount of light incident on the projection optical system PL can be accurately monitored.
[0047] 前記レチクルステージ RST上には、回路パターンなどがそのパターン面(図 1にお ける下面)に形成されたレチクル R力 例えば真空吸着システムにより固定されている 。レチクルステージ RSTは、例えばリニアモータ等を含むレチクルステージ駆動装置 55によって、照明光学系 12の光軸 (後述する投影光学系 PLの光軸 AXに一致)に 垂直な XY平面内で微少駆動可能であるとともに、所定の走査方向(ここでは図 1に おける紙面内左右方向である Y軸方向とする)に指定された走査速度で駆動可能と なっている。 [0047] On reticle stage RST, a circuit pattern or the like is provided on its pattern surface (see FIG. 1). The reticle formed on the lower surface of the reticle is fixed by, for example, a vacuum suction system. The reticle stage RST can be finely driven in an XY plane perpendicular to the optical axis of the illumination optical system 12 (coincident with the optical axis AX of the projection optical system PL described later) by a reticle stage driving device 55 including, for example, a linear motor. In addition, it can be driven at a scanning speed specified in a predetermined scanning direction (here, the Y-axis direction, which is the horizontal direction in FIG. 1).
[0048] レチクルステージ RSTのステージ移動面内の位置(Z軸回りの回転を含む)は、レ チタルレーザ干渉計 (以下、「レチクル干渉計」という) 53によって、移動鏡 65 (実際 には、 Y軸方向に直交する反射面を有する Y移動鏡と X軸方向に直交する反射面を 有する X移動鏡とが設けられている)を介して、例えば 0. 5〜: Lnm程度の分解能で 常時検出される。このレチクル干渉計 53の計測値は、主制御装置 50に送られ、主制 御装置 50では、このレチクル干渉計 53の計測値に基づ!/、てレチクルステージ RST の X軸方向、 Y軸方向及び 0 z方向(Z軸回りの回転方向)の位置を算出するとともに 、この算出結果に基づいてレチクルステージ駆動装置 55を制御することで、レチクル ステージ RSTの位置 (及び速度)を制御する。なお、移動鏡 65に代えて、レチクルス テージ RSTの端面を鏡面加工して反射面 (移動鏡 65の反射面に相当)を形成するこ ととしても良い。  [0048] The position (including rotation about the Z axis) of the reticle stage RST in the stage movement plane is moved by a moving mirror 65 (actually, Y position) by a retinal laser interferometer (hereinafter referred to as a "reticle interferometer") 53. Through a Y-moving mirror having a reflecting surface orthogonal to the axial direction and an X-moving mirror having a reflecting surface orthogonal to the X-axis direction). Is done. The measured value of reticle interferometer 53 is sent to main controller 50, and based on the measured value of reticle interferometer 53, the main controller 50! The position (and speed) of the reticle stage RST is controlled by calculating the direction and the position in the 0 z direction (the rotation direction around the Z axis) and controlling the reticle stage driving device 55 based on the calculation result. Instead of moving mirror 65, the end surface of reticle stage RST may be mirror-finished to form a reflecting surface (corresponding to the reflecting surface of moving mirror 65).
[0049] レチクル Rの上方には、投影光学系 PLを介してレチクル R上の一対のレチクルァラ ィメントマークとこれらに対応する計測ステージ MST上の一対の基準マーク(以下、「 第 1基準マーク」と呼ぶ)とを同時に観察するための露光波長の光を用いた TTR(Thr ough The Reticle)ァライメント系から成る一対のレチクルァライメント検出系 RAa, RA bが X軸方向に所定距離隔てて設けられて 、る。これらのレチクルァライメント検出系 RAa, RAbとしては、例えば特開平 7— 176468号公報及びこれに対応する米国特 許第 5, 646, 413号などに開示されるものと同様の構成のものが用いられている。本 国際出願で指定した指定国 (又は選択した選択国)の国内法令が許す限りにおいて 、上記公報及び対応米国特許の開示を援用して本明細書の記載の一部とする。  [0049] Above the reticle R, a pair of reticle alignment marks on the reticle R via the projection optical system PL and a pair of reference marks on the measurement stage MST corresponding thereto (hereinafter, "first reference mark"). A pair of reticle alignment detection systems RAa and RAb consisting of a TTR (Through The Reticle) alignment system using light of the exposure wavelength for simultaneous observation of Te ru. As these reticle alignment detection systems RAa and RAb, those having the same configuration as those disclosed in, for example, JP-A-7-176468 and corresponding US Pat. No. 5,646,413 are used. Has been. To the extent permitted by the national laws of the designated States (or selected elected States) specified in this International Application, the disclosures of the above publications and corresponding US Patents are incorporated herein by reference.
[0050] 前記投影ユニット PUは、図 1においてレチクルステージ RSTの下方に配置されて いる。投影ユニット PUは、鏡筒 80と、該鏡筒 80内に所定の位置関係で保持された 複数の光学素子から成る投影光学系 PLとを含む。投影光学系 PLとしては、例えば Z 軸方向の共通の光軸 AXを有する複数のレンズ(レンズエレメント)力も成る屈折光学 系が用いられている。この投影光学系 PLは、例えば両側テレセントリックで所定の投 影倍率 (例えば 1Z4倍又は 1Z5倍)を有する。このため、照明光学系 12からの照明 光 ILによってレチクル R上の照明領域 IARが照明されると、このレチクル Rを通過した 照明光 ILにより、投影光学系 PL (投影ユニット PU)を介して、その照明領域 IAR内 のレチクル Rの回路パターンの縮小像(回路パターンの一部の縮小像)力 表面にレ ジスト (感光剤)が塗布されたウェハ W上の前記照明領域 IAに共役な領域 (以下、「 露光領域」とも呼ぶ) IAに形成される。 [0050] The projection unit PU is arranged below the reticle stage RST in FIG. The projection unit PU was held in the lens barrel 80 in a predetermined positional relationship within the lens barrel 80. And a projection optical system PL including a plurality of optical elements. As the projection optical system PL, for example, a refraction optical system having a plurality of lenses (lens elements) having a common optical axis AX in the Z-axis direction is used. The projection optical system PL has a predetermined projection magnification (for example, 1Z4 times or 1Z5 times), for example, both-side telecentric. Therefore, when the illumination area IAR on the reticle R is illuminated by the illumination light IL from the illumination optical system 12, the illumination light IL that has passed through the reticle R passes through the projection optical system PL (projection unit PU). A reduced image (reduced image of a part of the circuit pattern) of the circuit pattern of the reticle R in the illuminated area IAR An area conjugate to the illuminated area IA on the wafer W coated with a resist (photosensitive agent) on the surface ( (Hereinafter, also referred to as “exposure area”).
[0051] また、図示は省略されている力 投影光学系 PLの複数のレンズのうち、特定の複数 のレンズは、主制御装置 50からの指令に基づいて、結像特性補正コントローラ 181 ( 図 6参照)によって制御され、投影光学系 PLの光学特性 (結像特性を含む)、例えば 倍率、ディストーション、コマ収差、及び像面湾曲(像面傾斜を含む)などを調整でき るようになっている。 Further, among the plurality of lenses of the force projection optical system PL, not shown, specific ones of the plurality of lenses are formed based on an instruction from the main controller 50, based on the imaging characteristic correction controller 181 (FIG. 6). ) To adjust the optical characteristics (including imaging characteristics) of the projection optical system PL, such as magnification, distortion, coma, and field curvature (including field tilt). .
[0052] なお、本実施形態の露光装置 10では、後述するように液浸法を適用した露光が行 われるため、開口数 NAが実質的に増大することに伴いレチクル側の開口が大きくな る。このため、レンズのみで構成する屈折光学系においては、ペッツヴァルの条件を 満足することが困難となり、投影光学系が大型化する傾向にある。かかる投影光学系 の大型化を避けるために、ミラーとレンズとを含む反射屈折系(カタディ,ォプトリック 系)を用いても良い。  [0052] In the exposure apparatus 10 of the present embodiment, since exposure is performed by applying a liquid immersion method as described later, the aperture on the reticle side increases as the numerical aperture NA substantially increases. . For this reason, it is difficult for the refractive optical system including only the lens to satisfy the Petzval condition, and the projection optical system tends to be large. In order to avoid such an increase in the size of the projection optical system, a catadioptric system (catadiy, optric system) including a mirror and a lens may be used.
[0053] また、本実施形態の露光装置 10では、液浸法を適用した露光を行うため、投影光 学系 PLの最も像面(ウェハ W)に近 、光学素子(以下、「先端レンズ」とも 、う) 91の 近傍には、液浸装置 132の液体供給ノズル 131Aと、液体回収ノズル 131Bとが設け られている。  Further, in the exposure apparatus 10 of the present embodiment, since exposure is performed by applying the liquid immersion method, the exposure device 10 is located closest to the image plane (wafer W) of the projection optical system PL, and has an optical element (hereinafter referred to as “tip lens”). In the vicinity of 91, a liquid supply nozzle 131A and a liquid recovery nozzle 131B of the liquid immersion device 132 are provided.
[0054] 前記液体供給ノズル 131Aには、その一端が液体供給装置 138 (図 1では不図示、 図 6参照)に接続された不図示の供給管の他端が接続されており、前記液体回収ノ ズル 131Bには、その一端が液体回収装置 139 (図 1では不図示、図 6参照)に接続 された不図示の回収管の他端が接続されている。 [0055] 前記液体供給装置 138は、液体のタンク、加圧ポンプ、温度制御装置、並びに供 給管に対する液体の供給の開始及び停止を制御するためのバルブ等を含む。バル ブとしては、例えば液体の供給の開始及び停止のみならず、流量の調整も可能とな るように、流量制御弁を用いることが望ましい。前記温度制御装置は、液体タンク内 の液体の温度を、露光装置本体が収納されているチャンバ(不図示)内の温度と同 程度の温度に調整する。なお、液体を供給するためのタンク、加圧ポンプ、温度制御 装置、ノ レブなどは、その全てを露光装置 10で備えている必要はなぐ少なくとも一 部を露光装置 10が設置される工場などの設備で代替することもできる。 [0054] The liquid supply nozzle 131A is connected to the other end of a supply pipe (not shown) connected at one end to a liquid supply device 138 (not shown in Fig. 1, see Fig. 6). The nozzle 131B is connected to the other end of a collection pipe (not shown) whose one end is connected to a liquid recovery device 139 (not shown in FIG. 1, see FIG. 6). [0055] The liquid supply device 138 includes a liquid tank, a pressure pump, a temperature control device, and a valve for controlling start and stop of supply of the liquid to the supply pipe. As the valve, for example, it is desirable to use a flow rate control valve so that the flow rate can be adjusted as well as start and stop of liquid supply. The temperature control device adjusts the temperature of the liquid in the liquid tank to a temperature substantially equal to the temperature in a chamber (not shown) in which the exposure apparatus main body is housed. It is not necessary that the tank for supplying the liquid, the pressurizing pump, the temperature control device, the knob, and the like all be provided in the exposure apparatus 10. Equipment can be used instead.
[0056] 前記液体回収装置 139は、液体のタンク及び吸引ポンプ、並びに回収管を介して 行われる液体の回収の開始及び停止を制御するためのバルブ等を含。バルブとして は、前述した液体供給装置 138側のバルブに対応して流量制御弁を用いることが望 ましい。なお、液体を回収するためのタンク、吸引ポンプ、バルブなどは、その全てを 露光装置 10で備えている必要はなぐ少なくとも一部を露光装置 10が設置されるェ 場などの設備で代替することもできる。  [0056] The liquid recovery device 139 includes a liquid tank and a suction pump, a valve for controlling start and stop of liquid recovery performed through a recovery pipe, and the like. As the valve, it is preferable to use a flow control valve corresponding to the valve on the liquid supply device 138 described above. The tank, suction pump, valve, etc. for collecting the liquid need not be all equipped with the exposure apparatus 10, but at least a part of it should be replaced with equipment such as a factory where the exposure apparatus 10 is installed. You can also.
[0057] 上記の液体としては、ここでは、 ArFエキシマレーザ光(波長 193nmの光)が透過 する超純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものと する。超純水は、半導体製造工場等で容易に大量に入手できると共に、ウェハ上の フォトレジストや光学レンズ等に対する悪影響がない利点がある。また、超純水は環 境に対する悪影響がないと共に、不純物の含有量が極めて低いため、ウェハの表面 及び先端レンズ 91の表面を洗浄する作用も期待できる。  Here, as the liquid, ultrapure water (hereinafter, simply referred to as “water” unless otherwise required) through which ArF excimer laser light (light having a wavelength of 193 nm) passes is used. And Ultrapure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist or optical lenses on the wafer. In addition, since ultrapure water has no adverse effect on the environment and has an extremely low impurity content, it can be expected to have an effect of cleaning the surface of the wafer and the surface of the tip lens 91.
[0058] ArFエキシマレーザ光に対する水の屈折率 nは、ほぼ 1. 44である。この水の中で は、照明光 ILの波長は、 193nm X lZn=約 134nmに短波長化される。  [0058] The refractive index n of water with respect to ArF excimer laser light is approximately 1.44. In this water, the wavelength of the illumination light IL is shortened to 193 nm XlZn = about 134 nm.
[0059] 前記液体供給装置 138及び液体回収装置 139は、それぞれコントローラを具備し ており、それぞれのコントローラは、主制御装置 50によって制御される(図 6参照)。 液体供給装置 138のコントローラは、主制御装置 50からの指示に応じ、供給管に接 続されたバルブを所定開度で開き、液体供給ノズル 131 Aを介して先端レンズ 91とゥ エノ、 Wとの間に水を供給する。また、このとき、液体回収装置 139のコントローラは、 主制御装置 50からの指示に応じ、回収管に接続されたバルブを所定開度で開き、 液体回収ノズル 13 IBを介して先端レンズ 91とウェハ Wとの間力も液体回収装置 13 9 (液体のタンク)の内部に水を回収する。このとき、主制御装置 50は、先端レンズ 91 とウェハ Wとの間に液体供給ノズル 131A力 供給される水の量と、液体回収ノズル 131Bを介して回収される水の量とが常に等しくなるように、液体供給装置 138のコン トローラ、液体回収装置 139のコントローラに対して指令を与える。従って、先端レン ズ 91とウェハ Wとの間に、一定量の水 Lq (図 1参照)が保持される。この場合、先端 レンズ 91とウェハ Wとの間に保持された水 Lqは、常に入れ替わつている。 [0059] The liquid supply device 138 and the liquid recovery device 139 each include a controller, and each controller is controlled by the main control device 50 (see Fig. 6). The controller of the liquid supply device 138 opens the valve connected to the supply pipe at a predetermined opening in accordance with an instruction from the main control device 50, and connects the tip lens 91, the head and the W through the liquid supply nozzle 131A. Supply water between. At this time, the controller of the liquid recovery device 139 opens a valve connected to the recovery pipe at a predetermined opening in accordance with an instruction from the main control device 50, The force between the tip lens 91 and the wafer W is also recovered through the liquid recovery nozzle 13 IB into the liquid recovery device 139 (liquid tank). At this time, main controller 50 determines that the amount of water supplied by liquid supply nozzle 131A between tip lens 91 and wafer W is always equal to the amount of water recovered through liquid recovery nozzle 131B. In this way, the controller 207 issues a command to the controller of the liquid supply device 138 and the controller of the liquid recovery device 139. Therefore, a certain amount of water Lq (see FIG. 1) is held between the tip lens 91 and the wafer W. In this case, the water Lq held between the tip lens 91 and the wafer W is constantly replaced.
[0060] 上記の説明から明らかなように、本実施形態の液浸装置 132は、上記液体供給装 置 138、液体回収装置 139、供給管、回収管、液体供給ノズル 131A及び液体回収 ノズル 131B等を含む局所液浸装置であり、ウェハ Wを露光する場合には、ウェハ W 上の一部に液浸領域が形成される。  As is clear from the above description, the liquid immersion device 132 of the present embodiment includes the liquid supply device 138, the liquid recovery device 139, the supply pipe, the recovery pipe, the liquid supply nozzle 131A, the liquid recovery nozzle 131B, and the like. When the wafer W is exposed, a liquid immersion area is formed on a part of the wafer W.
[0061] なお、投影ユニット PU下方に計測ステージ MSTが位置する場合にも、上記と同様 に計測テーブル MTBと先端レンズ 91との間を水で満たすことが可能である。  [0061] Even when the measurement stage MST is located below the projection unit PU, the space between the measurement table MTB and the tip lens 91 can be filled with water in the same manner as described above.
[0062] なお、上記の説明では、その説明を簡単にするため、液体供給ノズルと液体回収ノ ズルとがそれぞれ 1つずつ設けられているものとした力 これに限らず、例えば、国際 公開第 99Z49504号パンフレットに開示されるように、ノズルを多数有する構成を採 用することとしても良い。要は、投影光学系 PLの最下端の光学部材 (先端レンズ) 91 とウェハ Wとの間に液体を供給することができるのであれば、その構成はいかなるも のであっても良い。例えば、国際公開第 2004Z053955号パンフレットに開示され ている液浸機構や、欧州特許公開第 1420298号公報に開示されている液浸機構も 本実施形態の露光装置に適用することができる。  [0062] In the above description, in order to simplify the description, it is assumed that one liquid supply nozzle and one liquid recovery nozzle are provided, and the present invention is not limited to this. As disclosed in the 99Z49504 pamphlet, a configuration having many nozzles may be employed. In short, as long as the liquid can be supplied between the optical member (tip lens) 91 at the lowermost end of the projection optical system PL and the wafer W, any configuration may be used. For example, a liquid immersion mechanism disclosed in International Publication No. 2004Z053955 pamphlet and a liquid immersion mechanism disclosed in European Patent Publication No. 1420298 can also be applied to the exposure apparatus of the present embodiment.
[0063] 前記ステージ装置 100は、フレームキャスタ FCと、該フレームキャスタ FC上に設け られたベース盤 60と、該ベース盤 60の上面の上方に配置されたウェハステージ WS T及び計測ステージ MSTと、これらのステージ WST、 MSTの位置を計測する後述 する干渉計システム 118 (図 6参照)と、ステージ WST、 MSTを駆動するステージ駆 動装置 124 (図 6参照)と、を備えている。  [0063] The stage device 100 includes a frame caster FC, a base plate 60 provided on the frame caster FC, a wafer stage WST and a measurement stage MST disposed above the upper surface of the base plate 60, An interferometer system 118 (see FIG. 6) described later for measuring the positions of these stages WST and MST, and a stage driving device 124 (see FIG. 6) for driving the stages WST and MST are provided.
[0064] 前記フレームキャスタ FCは、ステージ装置 100を斜視図にて示す図 2から分力るよ うに、その X軸方向一側と他側の端部近傍に Y軸方向を長手方向とし上方に突出し た凸部 FCa, FCbがー体的に形成された概略平板状の部材カも成る。 The frame caster FC has a Y-axis direction as a longitudinal direction near one end in the X-axis direction and an end near the other side, as shown in FIG. Overhang A substantially flat member having the convex portions FCa and FCb formed integrally is also provided.
[0065] 前記ベース盤 60は、定盤とも呼ばれる板状部材力 なり、フレームキャスタ FCの前 記凸部 FCa, FCbに挟まれた領域上に配置されている。ベース盤 60の上面は平坦 度が非常に高く仕上げられ、ウェハステージ WST及び計測ステージ MSTの移動の 際のガイド面とされている。  [0065] The base plate 60 serves as a plate-like member, also referred to as a platen, and is arranged on a region of the frame caster FC sandwiched between the aforementioned convex portions FCa and FCb. The upper surface of the base plate 60 has a very high degree of flatness and serves as a guide surface when the wafer stage WST and the measurement stage MST are moved.
[0066] 前記ウェハステージ WSTは、図 2に示されるように、ベース盤 60の上方に配置され たウェハステージ本体 78と、該ウェハステージ本体 78上に不図示の Ζ·チルト駆動 機構を介して搭載されたウェハテーブル WTBとを備えて 、る。 Ζ ·チルト駆動機構は 、実際には、ウェハステージ本体 78上でウェハテーブル WTBを 3点で支持する 3つ のァクチユエータ (例えば、ボイスコイルモータ又は電磁石)等を含み、ウェハテープ ル WTBを Ζ軸方向、 0 χ方向(X軸回りの回転方向)、 0 y方向(Υ軸回りの回転方向 )の 3自由度方向に微小駆動する。  As shown in FIG. 2, the wafer stage WST includes a wafer stage main body 78 disposed above the base board 60 and a Ζ-tilt drive mechanism (not shown) on the wafer stage main body 78. It has a mounted wafer table WTB. The tilt drive mechanism actually includes three actuators (for example, a voice coil motor or an electromagnet) that support the wafer table WTB at three points on the wafer stage body 78, and the wafer table WTB is Micro-drive in three degrees of freedom: direction, 0 0 direction (rotation direction around X axis), and 0 y direction (rotation direction around Υ axis).
[0067] 前記ウェハステージ本体 78は、断面矩形枠状で X軸方向に延びる中空部材によつ て構成されている。このウェハステージ本体 78の下面には、複数、例えば 4つの不図 示の気体静圧軸受け、例えばエアベアリングが設けられ、これらのエアベアリングに よってウェハステージ WSTが前述のガイド面の上方に数 μ m程度のクリアランスを介 して非接触で支持されて ヽる。  The wafer stage main body 78 is formed of a hollow member having a rectangular cross section and extending in the X-axis direction. On the lower surface of the wafer stage main body 78, a plurality of, for example, four unshown gas static pressure bearings, for example, air bearings are provided, and these air bearings move the wafer stage WST several μm above the guide surface. It is supported without contact through a clearance of about m.
[0068] 前記フレームキャスタ FCの凸部 FCaの上方には、図 2に示されるように、 Y軸方向 に延びる Y軸用の固定子 86が配置されている。同様に、フレームキャスタ FCの凸部 FCbの上方には、 Y軸方向に延びる Y軸用の固定子 87が、配置されている。これら の Y軸用の固定子 86、 87は、それぞれの下面に設けられた不図示の気体静圧軸受 、例えばエアベアリングによって凸部 FCa, FCbの上面に対して所定のクリアランスを 介して支持されている。 Y軸用の固定子 86, 87は、本実施形態では、 Y軸方向に沿 つて所定間隔で配置された複数の永久磁石を有する磁極ユニットによって構成され ている。  As shown in FIG. 2, a Y-axis stator 86 extending in the Y-axis direction is arranged above the protrusion FCa of the frame caster FC. Similarly, a Y-axis stator 87 extending in the Y-axis direction is arranged above the convex portion FCb of the frame caster FC. These Y-axis stators 86 and 87 are supported by a static gas bearing (not shown) provided on each lower surface, for example, an air bearing, with a predetermined clearance to the upper surfaces of the convex portions FCa and FCb. ing. In the present embodiment, the Y-axis stators 86 and 87 are constituted by magnetic pole units having a plurality of permanent magnets arranged at predetermined intervals along the Y-axis direction.
[0069] 前記ウェハステージ本体 78の内部には、 X軸方向に沿って所定間隔で配置された 複数の永久磁石を有する断面 U字状の磁極ユニットから成る可動子 90が設けられて いる。 [0070] この可動子 90の内部空間には、 X軸方向に延びる X軸用の固定子 79が挿入され ている。この X軸用の固定子 79は、 X軸方向に沿って所定間隔で配置された複数の 電機子コイルを内蔵する電機子ユニットによって構成されている。この場合、磁極ュ ニットから成る可動子 90と電機子ユニットから成る X軸用の固定子 79とによって、ゥェ ハステージ WSTを X軸方向に駆動するムービングマグネット型の X軸リニアモータが 構成されている。以下においては、適宜、上記 X軸リニアモータを、その固定子 (X軸 用の固定子) 79と同一の符号を用いて、 X軸リニアモータ 79と呼ぶものとする。なお、 X軸リニアモータとしてムービングマグネット型のリニアモータに代えて、ムービングコ ィル型のリニアモータを用いても良!、。 [0069] Inside the wafer stage main body 78, there is provided a mover 90 comprising a magnetic pole unit having a U-shaped cross section and having a plurality of permanent magnets arranged at predetermined intervals along the X-axis direction. [0070] An X-axis stator 79 extending in the X-axis direction is inserted into the internal space of the mover 90. The stator 79 for the X-axis is constituted by an armature unit having a plurality of armature coils arranged at predetermined intervals along the X-axis direction. In this case, a moving magnet type X-axis linear motor that drives the wafer stage WST in the X-axis direction is constituted by the mover 90 composed of a magnetic pole unit and the X-axis stator 79 composed of an armature unit. ing. Hereinafter, the X-axis linear motor will be referred to as the X-axis linear motor 79 using the same reference numerals as the stator (stator for the X-axis) 79 as appropriate. Note that a moving coil type linear motor may be used instead of the moving magnet type linear motor as the X-axis linear motor.
[0071] 前記 X軸用の固定子 79の長手方向の一側と他側の端部には、例えば Y軸方向に 沿って所定間隔で配置された複数の電機子コイルを内蔵する電機子ユニットから成 る可動子 82、 83力 それぞれ固定されている。これらの可動子 82、 83のそれぞれは 、前述した Y軸用の固定子 86、 87にそれぞれ内側カゝら挿入されている。すなわち、 本実施形態では、電機子ユニットから成る可動子 82、 83と、該可動子 82, 83がそれ ぞれ揷入された磁極ユニットから成る Y軸用の固定子 86, 87と〖こよって、ムービング コイル型の 2つの Y軸リニアモータが構成されている。以下においては、上記 2つの Y 軸リニアモータのそれぞれを、それぞれの可動子 82、 83と同一の符号を用いて、適 宜、 Y軸リニアモータ 82、 Y軸リニアモータ 83とも呼ぶものとする。なお、 Y軸リニアモ ータ 82, 83として、ムービングマグネット型のリニアモータを用いても良い。  An armature unit incorporating a plurality of armature coils arranged at predetermined intervals along the Y-axis direction is provided at one end of the X-axis stator 79 on one side and the other side in the longitudinal direction, for example. The movers 82 and 83 consist of a fixed force. Each of these movers 82 and 83 is inserted into the above-mentioned stator 86 and 87 for the Y-axis, respectively. That is, in the present embodiment, the movers 82 and 83 formed of armature units and the Y-axis stators 86 and 87 formed of magnetic pole units into which the movers 82 and 83 are inserted, respectively. And two moving coil type Y-axis linear motors. In the following, each of the two Y-axis linear motors will be referred to as the Y-axis linear motor 82 and the Y-axis linear motor 83 as appropriate, using the same reference numerals as the respective movers 82 and 83. Note that moving magnet type linear motors may be used as the Y-axis linear motors 82 and 83.
[0072] すなわち、ウェハステージ WSTは、 X軸リニアモータ 79により、 X軸方向に駆動さ れるとともに、一対の Y軸リニアモータ 82, 83によって X軸リニアモータ 79と一体で Y 軸方向に駆動される。また、ウェハステージ WSTは、 Y軸リニアモータ 82, 83が発生 する Y軸方向の駆動力を僅かに異ならせることにより、 Θ z方向にも回転駆動される。  That is, the wafer stage WST is driven in the X-axis direction by the X-axis linear motor 79, and is driven in the Y-axis direction integrally with the X-axis linear motor 79 by the pair of Y-axis linear motors 82 and 83. You. The wafer stage WST is also driven to rotate in the z-direction by slightly varying the driving force in the Y-axis direction generated by the Y-axis linear motors 82 and 83.
[0073] 前記ウェハテーブル WTB上には、図 2に示されるように、ウェハ Wを保持するゥェ ハホルダ 70が設けられている。このウェハホルダ 70は、板状の本体と、該本体の上 面に固定されたプレートを備えている。そのプレートの中央にウェハ Wの直径より 0. l〜2mm程度直径が大きな円形開口が形成されるとともに、その円形開口の近傍に 小さな円形開口が形成されている。このプレートの大きな円形開口内部の本体上面 には、多数のピンが配置されており、その多数のピンによってウェハ Wが支持された 状態でウェハ Wがウェハホルダ 70に真空吸着されている。この場合、ウェハ Wがゥ ェハホルダ 70に真空吸着された状態では、そのウェハ W表面とプレートの表面との 高さがほぼ同一の高さとなる。また、プレートの小さな円形開口内には、その表面が プレートの表面とほぼ同一高さとなるように基準マーク板 FM1が嵌め込まれている。 この基準マーク板 FM1の表面には、例えばレチクルァライメント用の一対の第 1基準 マーク(この一対の第 1基準マークは、後述する基準マーク RM 〜RM (図 4参照) As shown in FIG. 2, a wafer holder 70 for holding a wafer W is provided on the wafer table WTB. The wafer holder 70 has a plate-shaped main body and a plate fixed to the upper surface of the main body. A circular opening having a diameter of about 0.1 to 2 mm larger than the diameter of the wafer W is formed at the center of the plate, and a small circular opening is formed near the circular opening. The top of the body inside the large circular opening of this plate The wafer W is vacuum-adsorbed to the wafer holder 70 in a state where the wafer W is supported by the pins. In this case, when the wafer W is vacuum-sucked to the wafer holder 70, the height of the surface of the wafer W and the height of the surface of the plate are substantially the same. The reference mark plate FM1 is fitted into the small circular opening of the plate so that its surface is almost the same height as the surface of the plate. On the surface of the fiducial mark plate FM1, for example, a pair of first fiducial marks for reticle alignment (the pair of first fiducial marks are fiducial marks RM to RM described later (see FIG. 4)).
11 32 と同様のマークである)などが形成されている。基準マーク板 FM1は、ガラス部材 (例 えば極低膨張ガラスセラミック、例えばタリアセラム (登録商標)など)とその表面に形 成されたクロム層とを有し、そのクロム層にパターユングよって形成された開口パター ンが第 1基準マークとして形成されている。また、この基準マーク板 FM1を含むプレ ート全面の表面にフッ素系榭脂材料やアクリル系榭脂材料等の撥液性材料 (撥水材 料)がコーティングされ、撥液膜としての撥水膜が形成されている。  11 32) are formed. The fiducial mark plate FM1 has a glass member (for example, a very low expansion glass ceramic, for example, Thalia Serum (registered trademark)) and a chromium layer formed on the surface thereof, and a chromium layer formed on the chromium layer by patterning. An opening pattern is formed as a first fiducial mark. The entire surface of the plate including the fiducial mark plate FM1 is coated with a liquid-repellent material (water-repellent material) such as a fluorine resin material or an acrylic resin material to provide a water-repellent film as a liquid-repellent film. A film is formed.
[0074] また、ウェハテーブル WTBの上面には、図 2に示されるように、 X軸方向の一端(一 X側端)に X軸に直交する反射面を有する X移動鏡 67Xが Y軸方向に延設され、 Y軸 方向の一端( + Y側端)〖こ Y軸に直交する反射面を有する Y移動鏡 67Yが X軸方向 に延設されている。これらの移動鏡 67X, 67Yの各反射面には、図 2に示されるよう に、後述する干渉計システム 118 (図 6参照)の X軸干渉計 96, Y軸干渉計 68からの 干渉計ビーム (測長ビーム)がそれぞれ投射され、各干渉計 96、 68ではそれぞれの 反射光を受光することで、各反射面の基準位置 (一般には投影ユニット PU側面や、 オファクシス 'ァライメント系 ALG (図 6, 07 (A)等参照)の側面に固定ミラーを配置 し、そこを基準面とする)力 の計測方向の変位を計測する。  As shown in FIG. 2, an X movable mirror 67X having a reflecting surface orthogonal to the X axis at one end (one X side end) in the X axis direction is provided on the upper surface of the wafer table WTB in the Y axis direction. One end (+ Y side end) in the Y-axis direction is provided, and a Y moving mirror 67Y having a reflecting surface orthogonal to the Y-axis is extended in the X-axis direction. As shown in FIG. 2, the interferometer beams from the X-axis interferometer 96 and the Y-axis interferometer 68 of the interferometer system 118 (see FIG. (Measurement beams) are projected, and the interferometers 96 and 68 receive the respective reflected light, so that the reference position of each reflecting surface (generally, the side of the projection unit PU or the ALGAX alignment system (Fig. 6) , 07 (A), etc.), a fixed mirror is placed on the side, and this is used as the reference plane.) The displacement in the force measurement direction is measured.
[0075] なお、干渉計システム 118は、上記 X軸干渉計 96, Y軸干渉計 68と、図 2に示され る X軸干渉計 66との 3つの干渉計を含む。  The interferometer system 118 includes three interferometers, the X-axis interferometer 96, the Y-axis interferometer 68, and the X-axis interferometer 66 shown in FIG.
[0076] 前記 Y軸干渉計 68は、投影光学系 PLの投影中心 (光軸 AX)及びァライメント系 A LGの検出中心を結ぶ Y軸に平行な測長軸を有しており、 X軸干渉計 96は、 Y軸干 渉計 68の測長軸と投影光学系 PLの投影中心で垂直に交差する測長軸を有してい る(図 7 (A)等参照)。 [0077] 前記 Y軸干渉計 68は、少なくとも 3本の光軸を有する多軸干渉計であり、各光軸は 反射面の変位を独立に計測できる。また、 X軸干渉計 96は、少なくとも 2本の光軸を 有する多軸干渉計であり、各光軸は反射面の変位を独立に計測できる。 The Y-axis interferometer 68 has a length measuring axis parallel to the Y axis connecting the projection center (optical axis AX) of the projection optical system PL and the detection center of the alignment system A LG, The total 96 has a length measurement axis that vertically intersects the length measurement axis of the Y-axis interferometer 68 at the projection center of the projection optical system PL (see FIG. 7 (A) and the like). The Y-axis interferometer 68 is a multi-axis interferometer having at least three optical axes, and each optical axis can independently measure the displacement of the reflecting surface. The X-axis interferometer 96 is a multi-axis interferometer having at least two optical axes, and each optical axis can independently measure the displacement of the reflecting surface.
[0078] 本実施形態では、干渉計システム 118の各干渉計の出力値 (計測値)は、図 6に示 されるように、主制御装置 50に供給されている。従って、主制御装置 50は、 Υ軸干渉 計 68からの出力値に基づいて、ウェハテーブル WTBの Υ軸方向の位置 (Υ位置)、 X軸回りの回転量 (ピッチング量)及び Ζ軸回りの回転量 (ョーイング量)を計測する。 また、主制御装置 50は、 X軸干渉計 96からの出力値に基づいて、ウェハテーブル W ΤΒの X軸方向の位置 (X位置)及び Υ軸回りの回転量 (ローリング量)を計測する。  In the present embodiment, the output value (measured value) of each interferometer of the interferometer system 118 is supplied to the main controller 50 as shown in FIG. Therefore, main controller 50 determines the position of wafer table WTB in the Υ-axis direction (Υ-position), the amount of rotation around X-axis (the amount of pitching), and the amount of rotation around Ζ-axis based on the output value from Υ-axis interferometer 68. Measure the rotation amount (jowing amount). Further, main controller 50 measures the position of wafer table W in the X-axis direction (X position) and the amount of rotation around Υ axis (rolling amount) based on the output value from X-axis interferometer 96.
[0079] 上述のように、ウェハテーブル WTB上には、実際には、移動鏡 67Χ、 67Υが設け られているが、図 1ではこれらが代表的に移動鏡 67として示されている。なお、例え ば、ウェハテーブル WTBの端面を鏡面カ卩ェして反射面(前述した移動鏡 67Χ、 67Υ の反射面に相当)を形成しても良 、。  [0079] As described above, movable mirrors 67 # and 67 # are actually provided on wafer table WTB, but these are typically shown as movable mirror 67 in FIG. Note that, for example, the end surface of the wafer table WTB may be mirror-finished to form a reflective surface (corresponding to the reflective surfaces of the movable mirrors 67 and 67 described above).
[0080] 前記計測ステージ MSTは、図 2に示されるように、 X軸方向を長手方向とする Υス テージ 81などを含む複数の部材の組み合わせによって構成され、その最下面 (ベー ス盤 60に最も接近している部材の下面)に設けられた複数の気体静圧軸受け、例え ばエアベアリングを用いてベース盤 60の上面 (ガイド面)の上方に数 μ m程度のタリ ァランスを介して非接触で支持されて ヽる。  As shown in FIG. 2, the measurement stage MST is composed of a combination of a plurality of members including a stage 81 having the X-axis direction as a longitudinal direction, and the lowermost surface thereof (the base plate 60). A plurality of hydrostatic bearings provided on the lower surface of the closest member), for example, an air bearing is used to lift the upper surface (guide surface) of the base board 60 through a taller of several μm over the upper surface (guide surface). It is supported by contact.
[0081] 計測ステージ MSTは、図 3 (A)の斜視図からも分力るように、 X軸方向に細長い長 方形板状の計測ステージ本体 81cと、該計測ステージ本体 81c上面の X軸方向の一 側、他側にそれぞれ固定された一対の突出部 81a、 8 lbとを有する Yステージ 81と、 前記計測ステージ本体 81cの上面の上方に配置されたレべリングテーブル 52と、該 レべリングテーブル 52上に設けられた計測テーブル MTBとを備えている。  As can be seen from the perspective view of FIG. 3 (A), the measuring stage MST has a rectangular plate-shaped measuring stage body 81c elongated in the X-axis direction and an X-axis direction on the upper surface of the measuring stage body 81c. A Y stage 81 having a pair of protrusions 81a and 8 lb fixed to one side and the other side, a leveling table 52 disposed above the upper surface of the measurement stage body 81c, A measurement table MTB provided on the ring table 52 is provided.
[0082] 前記 Yステージ 81の計測ステージ本体 81 cの X軸方向の一側と他側の端面には、 Y軸方向に沿って所定間隔で配置された複数の電機子コイルを内蔵する電機子ュ ニットから成る可動子 84、 85力 それぞれ固定されている。これらの可動子 84、 85の それぞれは、前述した Y軸用の固定子 86、 87にそれぞれ内側カゝら挿入されている。 すなわち、本実施形態では、電機子ユニットから成る可動子 84, 85と、該可動子 84 , 85それぞれが挿入された磁極ユニットから成る Y軸用の固定子 86, 87とによって、 2つのムービングコイル型の Υ軸リニアモータが構成されている。以下においては、上 記 2つの Υ軸リニアモータのそれぞれを、それぞれの可動子 84、 85と同一の符号を 用いて、適宜、 Υ軸リニアモータ 84、 Υ軸リニアモータ 85とも呼ぶものとする。本実施 形態では、これらの Υ軸リニアモータ 84、 85によって、計測ステージ MSTの全体力 Υ軸方向に駆動される。なお、この Υ軸リニアモータ 84, 85をムービングマグネット型 のリニアモータとしても良い。 An armature having a plurality of armature coils arranged at predetermined intervals along the Y-axis direction is provided on one end surface of the measurement stage body 81 c of the Y stage 81 on one side and the other side in the X-axis direction. The movers 84 and 85 made of units are fixed. Each of these movers 84 and 85 is inserted into the above-mentioned Y-axis stators 86 and 87, respectively. That is, in the present embodiment, the movers 84 and 85 each composed of an armature unit, , 85 and the Y-axis stators 86, 87, each of which is a magnetic pole unit inserted therein, constitute two moving coil type 型 -axis linear motors. In the following, each of the above two Υ-axis linear motors will be referred to as Υ-axis linear motor 84 and Υ-axis linear motor 85 as appropriate, using the same reference numerals as the movers 84 and 85. In the present embodiment, the total force of the measurement stage MST is driven in the positive and negative axial directions by these positive and negative linear motors 84 and 85. Note that the Υ-axis linear motors 84, 85 may be moving magnet type linear motors.
[0083] 前記計測ステージ本体 81cの底面には、前述の複数の気体静圧軸受けが設けら れている。この計測ステージ本体 81c上面の X軸方向の一側、他側の—Y側端部近 傍に、前述の一対の突出部 81a、 81bが相互に対畤して固定されている。これらの突 出部 81a、 81b相互間には、 X軸方向にそれぞれ延びる固定子 61, 63が、 Z軸方向 (上下)に所定間隔を隔てて架設されている。  [0083] The plurality of static gas pressure bearings described above are provided on the bottom surface of the measurement stage main body 81c. The pair of protruding portions 81a and 81b are fixed to each other near one end of the upper surface of the measurement stage body 81c in the X-axis direction and near the -Y-side end on the other side. Between the protruding portions 81a and 81b, stators 61 and 63 extending in the X-axis direction are provided at predetermined intervals in the Z-axis direction (up and down).
[0084] 前記レべリングテーブル 52の +X側の端面には、 Xボイスコイルモータ 54aの可動 子が設けられ、該 Xボイスコイルモータ 54aの固定子は、計測ステージ本体 81cの上 面に固定されている。また、レべリングテーブル 52の +Y側の端面には、 Yボイスコィ ルモータ 54b、 54cの可動子がそれぞれ設けられ、これらの Yボイスコイルモータ 54b 、 54cの固定子は、計測ステージ本体 81cの上面に固定されている。前記 Xボイスコ ィルモータ 54aは、例えば磁極ユニットから成る可動子と電機子ユニットから成る固定 子とから構成され、これらの間の電磁相互作用により、 X軸方向の駆動力を発生する 。また、前記 Yボイスコイルモータ 54b, 54cも同様に構成され、 Y軸方向の駆動力を 発生する。すなわち、レべリングテーブル 52は、 Xボイスコイルモータ 54aにより Yステ ージ 81に対して、 X軸方向に駆動され、 Yボイスコイルモータ 54b, 54cにより Yステ ージ 81に対して Y軸方向に駆動される。また、ボイスコイルモータ 54b, 54cが発生 する駆動力を異ならせることにより、レべリングテーブル 52を Yステージ 81に対して Z 軸回りの回転方向( Θ z方向)へ駆動することができる。  A movable element of the X voice coil motor 54a is provided on the + X side end surface of the leveling table 52, and the stator of the X voice coil motor 54a is fixed to the upper surface of the measurement stage main body 81c. Have been. On the + Y side end surface of the leveling table 52, movers for Y voice coil motors 54b and 54c are provided, respectively. The stators of these Y voice coil motors 54b and 54c are connected to the upper surface of the measurement stage body 81c. Fixed to. The X voice coil motor 54a is composed of, for example, a mover composed of a magnetic pole unit and a stator composed of an armature unit, and generates a driving force in the X-axis direction by electromagnetic interaction between them. The Y voice coil motors 54b and 54c are similarly configured to generate a driving force in the Y-axis direction. That is, the leveling table 52 is driven in the X-axis direction with respect to the Y stage 81 by the X voice coil motor 54a, and is moved in the Y-axis direction with respect to the Y stage 81 by the Y voice coil motors 54b and 54c. Is driven. Further, by making the driving forces generated by the voice coil motors 54b and 54c different, the leveling table 52 can be driven relative to the Y stage 81 in the rotation direction around the Z axis (Θz direction).
[0085] すなわち、レべリングテーブル 52は、前述した Xボイスコイルモータ 54a、 Yボイスコ ィルモータ 54b, 54c、内部に配置された不図示の Zボイスコイルモータにより、 6自 由度方向(X, Υ, Z, θ χ, θ γ, 0 ζ)に非接触で微小駆動可能とされている。 [0086] 図 3 (A)に戻り、前記計測テーブル MTBは、計測テーブル本体 59と、該計測テー ブル本体 59の—Y側面に上下に並んで固定された、 X軸方向を長手方向とする断 面略 U字状の可動子 62、 64とを備えている。 That is, the leveling table 52 is controlled in six directions of freedom (X, Υ) by the X voice coil motor 54a, the Y voice coil motors 54b, 54c, and the Z voice coil motor (not shown) arranged inside. , Z, θχ, θγ, 0ζ) in a non-contact manner. [0086] Returning to Fig. 3 (A), the measurement table MTB has a measurement table main body 59 and a longitudinal direction in the X-axis direction, which is fixed vertically on the -Y side surface of the measurement table main body 59. Movable elements 62 and 64 having a substantially U-shaped cross section are provided.
[0087] 前記可動子 62は、 YZ断面略 U字状の可動子ヨークと、該可動子ヨークの内面(上 下面)に X軸方向に沿って所定間隔でかつ交互に配置された N極永久磁石と S極永 久磁石の複数の組から成る永久磁石群とを備え、前述の固定子 61に係合状態とさ れている。可動子 62の可動子ヨークの内部空間には、 X軸方向に沿って交番磁界が 形成されている。前記固定子 61は、例えば X軸方向に沿って所定間隔で配置された 複数の電機子コイルを内蔵する電機子ユニットから成る。すなわち、固定子 61と可動 子 62と〖こよって、計測テーブル MTBを X軸方向に駆動するムービングマグネット型 の X軸リニアモータ LXが構成されて!、る。  The mover 62 includes a mover yoke having a substantially U-shaped YZ section, and N-pole permanent magnets arranged at predetermined intervals and alternately on the inner surface (upper and lower surfaces) of the mover yoke along the X-axis direction. A permanent magnet group including a plurality of pairs of magnets and S pole permanent magnets is provided, and is engaged with the stator 61 described above. In the inner space of the mover yoke of the mover 62, an alternating magnetic field is formed along the X-axis direction. The stator 61 is formed of, for example, an armature unit including a plurality of armature coils arranged at predetermined intervals along the X-axis direction. That is, a moving magnet type X-axis linear motor LX that drives the measurement table MTB in the X-axis direction is constituted by the stator 61 and the mover 62!
[0088] 前記可動子 64は、 YZ断面略 U字状の可動子ヨークと、該可動子ヨークの内面(上 下面)に 1つずつ設けられた N極永久磁石と S極永久磁石とを備え、前述の固定子 6 3に係合状態とされている。可動子 64の可動子ヨークの内部空間には、 +Z向き又は —Z向きの磁界が形成されている。前記固定子 63は、その内部に、 N極磁石と S極 磁石とにより形成される磁界中で X軸方向にのみ電流が流れるような配置で配置され た電機子コイルを備えている。すなわち、可動子 64と固定子 63とによって、計測テー ブル MTBを Y軸方向に駆動するムービングマグネット型の Yボイスコイルモータ VY が構成されている。  The mover 64 includes a mover yoke having a substantially U-shaped YZ section, and an N-pole permanent magnet and an S-pole permanent magnet provided on the inner surface (upper and lower surfaces) of the mover yoke. , And are engaged with the stator 63 described above. A magnetic field in the + Z direction or the −Z direction is formed in the inner space of the mover yoke of the mover 64. The stator 63 is provided therein with an armature coil arranged so that current flows only in the X-axis direction in a magnetic field formed by the N-pole magnet and the S-pole magnet. That is, a moving magnet type Y voice coil motor VY that drives the measurement table MTB in the Y-axis direction is constituted by the mover 64 and the stator 63.
[0089] これまでの説明から明らかなように、本実施形態では、 Y軸リニアモータ 82〜85及 び X軸リニアモータ 79、ウェハテーブル WTBを駆動する不図示の Ζ·チルト駆動機 構、計測ステージ MST上の上述した各モータ(54a〜54c, LX, VY,及び不図示 の Zボイスコイルモータ)により、図 6に示されるステージ駆動装置 124の少なくとも一 部が構成されている。このステージ駆動装置 124の各種駆動機構力 図 6に示される 主制御装置 50によって制御される。  As is clear from the above description, in the present embodiment, the Y-axis linear motors 82 to 85 and the X-axis linear motor 79, a not-shown Ζ-tilt driving mechanism for driving the wafer table WTB, measurement The above-described motors (54a to 54c, LX, VY, and a Z voice coil motor (not shown)) on the stage MST constitute at least a part of the stage driving device 124 shown in FIG. Various driving mechanism forces of the stage driving device 124 are controlled by the main control device 50 shown in FIG.
[0090] 前記計測テーブル MTBの計測テーブル本体 59は、図 3 (B)に示されるように、下 半部の第 1部分 59aと、上半部の第 2部分 59bとの 2部分によって構成されている。第 1部分 59aは、直方体部材によって構成され、その底面に前述の複数のエアべアリン グが固定されている。第 2部分 59bは、第 1部分 59aに比べて Y軸方向の幅が大きく かつ X軸方向の長さが同一寸法の直方体形状を有し、 Y側端面、 +X側端面及び — X側端面が、第 1部分 59aと同一面 (面一)となる状態で、第 1部分 59a上に固定さ れている。第 2部分 59bは、実際には、上面が開口した中空直方体状の筐体 120 (図 5参照)と、該筐体 120の上面を閉塞する所定の厚さのプレート 101とを含む。プレー ト 101は、例えばポリ四フッ化工チレン (テフロン (登録商標))などの撥液性を有する 材料によって形成される。 As shown in FIG. 3 (B), the measurement table main body 59 of the measurement table MTB is composed of a lower half first portion 59a and an upper half second portion 59b. ing. The first portion 59a is constituted by a rectangular parallelepiped member, and has a plurality of air bearings on its bottom surface. Is fixed. The second portion 59b has a rectangular parallelepiped shape having a larger width in the Y-axis direction and the same length in the X-axis direction as the first portion 59a, and has a Y-side end surface, a + X-side end surface, and an —X-side end surface. Are fixed on the first portion 59a so as to be flush with the first portion 59a. The second portion 59b actually includes a hollow rectangular parallelepiped housing 120 (see FIG. 5) having an open upper surface, and a plate 101 having a predetermined thickness for closing the upper surface of the housing 120. The plate 101 is formed of a liquid-repellent material such as polytetrafluoroethylene (Teflon (registered trademark)).
[0091] 前記プレート 101は、計測テーブル本体 59の平面図である図 4に示されるように、 境界線 BLの +X側の第 1領域と、境界線 BLの X側の第 2領域との 2つの領域を有 している。第 1領域は、液体としての水 Lqを介して照明光 ILが照射される各種計測 部材が配置された領域であり、第 2領域は、液体を介することなく照明光 ILが照射さ れる各種計測部材が配置された領域である。従って、第 1領域上の水 Lqが第 2領域 へ流れ込まな!/、ように、境界線 BLに沿って仕切り(壁や溝)を設けても良 ヽ。  As shown in FIG. 4, which is a plan view of the measurement table main body 59, the plate 101 includes a first region on the + X side of the boundary line BL and a second region on the X side of the boundary line BL. It has two areas. The first area is an area where various measurement members to be irradiated with illumination light IL via water Lq as a liquid are arranged, and the second area is various measurement where illumination light IL is irradiated without passing through liquid. This is the area where the members are arranged. Therefore, a partition (wall or groove) may be provided along the boundary line BL so that the water Lq on the first area does not flow into the second area! /.
[0092] 前記プレート 101の第 1領域には、 Y軸方向を長手方向とする長方形の開口 101a 、該開口 101aとほぼ同一の X軸方向寸法を有し、その X軸方向を長手方向とする長 方形の開口 101b、該開口 101bのほぼ 2倍の Y軸方向の幅を有しかつほぼ同一の X 軸方向長さを有する開口 101cと、 3つの円形開口 lOld, lOle, lOlfが形成されて いる。  [0092] The first region of the plate 101 has a rectangular opening 101a having a longitudinal direction in the Y-axis direction, and has substantially the same dimensions in the X-axis direction as the opening 101a, with the X-axis direction as the longitudinal direction. An opening 101b having a rectangular shape, an opening 101c having a width in the Y-axis direction almost twice as large as the opening 101b and having the same length in the X-axis direction, and three circular openings lOld, lOle, and lOlf are formed. I have.
[0093] また、プレート 101の第 2領域には、上述の開口 101bとほぼ同一形状の開口 101g 、及び上述の開口 101cとほぼ同一形状の開口 101hが形成されている。  [0093] In the second region of the plate 101, an opening 101g having substantially the same shape as the above-described opening 101b and an opening 101h having substantially the same shape as the above-described opening 101c are formed.
[0094] 前記プレート 101の開口 101b下方の筐体 120の内部には、照度計測器である照 度モニタ(照射量モニタ) 122が、配置されている。この照度モニタ 122は、図 5に示さ れるように、合成石英又は蛍石などを素材とするガラス力も成る光学部材 126、及び 該光学部材 126の下面にほぼ隙間なく固定された第 1センサ 128等を備えている。 第 1センサ 128は、図 5に示される前述の露光領域 IA (図 4参照)に照射された照明 光 ILのほぼ全部を受光できる程度の所定面積の受光面を有し、照明光 ILと同じ波 長域 (例えば波長 300ηπ!〜 lOOnm程度)で感度があり、且つ照明光 ILを検出する ために高 、応答周波数を有する複数のシリコン'フォト ·ダイオード (又はフォト'マル チプライア ·チューブ)などの受光素子群を含む。 [0094] An illuminance monitor (irradiation amount monitor) 122, which is an illuminance measuring device, is arranged inside the housing 120 below the opening 101b of the plate 101. As shown in FIG. 5, the illuminance monitor 122 includes an optical member 126 made of synthetic quartz or fluorite and also having a glass force, and a first sensor 128 fixed to the lower surface of the optical member 126 with almost no gap. It has. The first sensor 128 has a light receiving surface having a predetermined area enough to receive almost all of the illumination light IL applied to the above-described exposure area IA (see FIG. 4) shown in FIG. A plurality of silicon photodiodes (or photomultipliers) that are sensitive in the wavelength region (for example, a wavelength of about 300ηπ to about 100 nm) and have a high response frequency to detect the illumination light IL. Includes light-receiving elements such as tiplier tubes.
[0095] 光学部材 126は、図 5に示されるように、プレート 101の開口 101b部分の内側面及 び下側面に対して所定のギャップを介して対向するような形状を有して 、る。この場 合、開口 101bと光学部材 126の上部側面との間のギャップ Bの幅は、例えば 0. 3m m程度に設定されている。  [0095] As shown in FIG. 5, the optical member 126 has a shape facing the inner surface and the lower surface of the opening 101b portion of the plate 101 with a predetermined gap therebetween. In this case, the width of the gap B between the opening 101b and the upper side surface of the optical member 126 is set to, for example, about 0.3 mm.
[0096] 光学部材 126は、筐体 120の底壁の上面に設けられた支持部材 130に上方力も係 合している。すなわち、支持部材 130は、受光素子 128を取り囲む平面視(上方から 見て)所定幅の枠状の形状を有しており、光学部材 126の下面の外縁部には、支持 部材 130の上端部に係合する段部が形成されている。光学部材 126には、その上面 に照明光 ILを減光するクロム等の金属薄膜から成る減光膜 129が全面に渡って形 成されている。さらにその減光膜の上部にフッ素系榭脂材料やアクリル系榭脂材料 等の撥液性材料 (撥水材料)がコーティングされ、これによつて撥液膜としての撥水 HWRFが形成されている。本実施形態では、この撥水 HWRFの上面とプレート 101 の上面とは、ほぼ同一面(面一)に設定されている。  [0096] The optical member 126 also has an upward force associated with the support member 130 provided on the upper surface of the bottom wall of the housing 120. In other words, the support member 130 has a frame shape with a predetermined width surrounding the light receiving element 128 when viewed from above (when viewed from above), and the outer edge of the lower surface of the optical member 126 is attached to the upper end of the support member 130. Is formed. On the optical member 126, a dimming film 129 made of a metal thin film of chromium or the like for dimming the illumination light IL is formed on the entire upper surface thereof. Furthermore, a liquid-repellent material (water-repellent material) such as a fluorine resin or an acrylic resin is coated on the light-reducing film, thereby forming a water-repellent HWRF as a liquid-repellent film. I have. In the present embodiment, the upper surface of the water-repellent HWRF and the upper surface of the plate 101 are set to be substantially the same (the same surface).
[0097] 一方、光学部材 126の下面には、中央の長方形領域を除く領域にクロムなどの金 属膜から成る遮光膜 127が形成されている。この遮光膜 127により、図 5に示されるよ うにギャップ B部分を介して光学部材 126に入射した迷光(図 5中の太線の実線矢印 参照)がカット (遮光)される。  On the other hand, on the lower surface of the optical member 126, a light-shielding film 127 made of a metal film such as chromium is formed in a region other than the central rectangular region. As shown in FIG. 5, this light-shielding film 127 cuts (shields) stray light (see a thick solid line arrow in FIG. 5) incident on the optical member 126 via the gap B portion.
[0098] 本実施形態の照度モニタ 122は、例えば特開平 6— 291016号公報及びこれに対 応する米国特許第 5, 721, 608号などに開示される照度モニタ (照射量モニタ)と同 様の構成を有しており、投影光学系 PLの像面上で水 Lqを介して照明光 ILの照度を 計測する。照度モニタ 122の第 1センサ 128の検出信号 (光電変換信号)が不図示 のホールド回路(例えばピークホールド回路など)、及びアナログ Zデジタル (AZD) 変換器を介して主制御装置 50に供給されている。本国際出願で指定した指定国 (又 は選択した選択国)の国内法令が許す限りにおいて、上記公開公報及び対応する米 国特許における開示を援用して本明細書の記載の一部とする。  The illuminance monitor 122 of the present embodiment is similar to the illuminance monitor (irradiation amount monitor) disclosed in, for example, Japanese Patent Application Laid-Open No. 6-291016 and the corresponding US Pat. No. 5,721,608. And the illuminance of the illumination light IL is measured via the water Lq on the image plane of the projection optical system PL. The detection signal (photoelectric conversion signal) of the first sensor 128 of the illuminance monitor 122 is supplied to the main controller 50 via a not-shown hold circuit (for example, a peak hold circuit) and an analog Z-digital (AZD) converter. I have. To the extent permitted by the national laws of the designated country (or selected elected country) specified in this international application, the disclosures in the above published gazettes and corresponding US patents are incorporated herein by reference.
[0099] なお、光学部材 126の側面の少なくともプレート 101の開口 101bの内壁面に対向 する領域、並びにプレート 101の光学部材 126に対向する開口 101bの内壁面は、 撥液処理 (撥水処理)されて撥液性 (撥水性)となっている。撥液処理としては、前述 したフッ素系榭脂材料やアクリル系榭脂材料等の撥液性材料を塗布する等して行う ことができる。 [0099] At least a region on the side surface of the optical member 126 facing the inner wall surface of the opening 101b of the plate 101, and the inner wall surface of the opening 101b of the plate 101 facing the optical member 126 are: It is liquid repellent (water repellent) after liquid repellent treatment (water repellent treatment). The liquid-repellent treatment can be performed by applying a liquid-repellent material such as the above-mentioned fluorine resin material or acrylic resin material.
[0100] また、筐体 120底壁には、前述の支持部材 130の近傍に、排出孔 120aが形成され ており、この排出孔 120aは、不図示の配管を介して不図示の回収部に接続されてい る。この回収部は、真空系及び水 Lqを収容可能なタンクを含む気液分離器等を備え ている。上述した撥液処理にもかかわらず、ギャップ Bを介して筐体 120の内部に流 入した水 Lqは、排出孔 120aを介して回収部で回収される。  [0100] A discharge hole 120a is formed in the bottom wall of the housing 120 near the support member 130, and the discharge hole 120a is connected to a collection unit (not shown) via a pipe (not shown). It is connected. The recovery unit includes a vacuum system and a gas-liquid separator including a tank capable of storing water Lq. Despite the above-described liquid-repellent treatment, the water Lq that has flowed into the housing 120 through the gap B is recovered by the recovery unit through the discharge hole 120a.
[0101] 前記プレート 101の開口 lOlgには、光学部材 126上面の減光膜の上部に撥水膜 が形成されていない点を除き、前述の照度モニタ 122と同様に構成された基準照度 モニタ 122'が配置されている。この基準照度モニタ 122'は、投影光学系 PLの像面 上で水を介さずに照明光 ILの照度を計測する。基準照度モニタ 122'は、照度モニ タ 122の第 1センサ 128と同様のセンサを有し、基準照度モニタ 122,の検出信号( 光電変換信号)が不図示のホールド回路 (例えばピークホールド回路など)、及びァ ナログ Zデジタル (A/D)変翻を介して主制御装置 50に供給されて ヽる。  [0101] The reference illuminance monitor 122 configured in the same manner as the illuminance monitor 122 described above, except that a water-repellent film is not formed above the dimming film on the upper surface of the optical member 126 at the opening lOlg of the plate 101. 'Is located. The reference illuminance monitor 122 'measures the illuminance of the illumination light IL on the image plane of the projection optical system PL without passing through water. The reference illuminance monitor 122 'has a sensor similar to the first sensor 128 of the illuminance monitor 122, and a detection circuit (photoelectric conversion signal) of the reference illuminance monitor 122, a hold circuit (not shown) (for example, a peak hold circuit) , And analog Z are supplied to the main controller 50 via digital (A / D) conversion.
[0102] 前記プレート 101の開口 101aの内部には、平面視長方形の基準マーク板 FM2が 配置されている。この場合、基準マーク板 FM2とプレート 101との間には例えば 0. 3 mm程度のギャップ Aが、基準マーク板 FM2の周囲に形成されている。基準マーク 板 FM2の上面はプレート 101表面とほぼ同じ高さ(面一)に設定されている。この基 準マーク板 FM2の表面には、前述の一対のレチクルァライメント検出系 RAa, RAb によって一対ずつ同時計測が可能な 3対の第 1基準マーク RM 〜RM と、後述す  [0102] Inside the opening 101a of the plate 101, a fiducial mark plate FM2 having a rectangular shape in a plan view is arranged. In this case, a gap A of, for example, about 0.3 mm is formed between the reference mark plate FM2 and the plate 101 around the reference mark plate FM2. Reference mark Plate The top surface of FM2 is set at almost the same height (the same level) as the plate 101 surface. On the surface of the fiducial mark plate FM2, three pairs of first fiducial marks RM to RM, which can be simultaneously measured one by one by the above-mentioned reticle alignment detection systems RAa and RAb, are described later.
11 32 るァライメント系 ALGにより検出される 3つの第 2基準マーク WM〜WMとが所定の  11 32 The three second fiducial marks WM to WM detected by the alignment ALG
1 3 位置関係で形成されている。これらの基準マークのそれぞれは、基準マーク板 FM2 を構成する部材 (例えば極低膨張ガラスセラミック、例えばタリアセラム (登録商標)な ど)の表面にほぼ全面に渡って形成されたクロム層に上記所定の位置関係でパター ユングよつて形成された開口パターンとして形成されている。なお、各基準マークを、 アルミニウムなどのパターン (残しパターン)によって形成しても良 、。  1 3 It is formed in a positional relationship. Each of these reference marks is provided on a chromium layer formed almost entirely on the surface of a member (for example, an ultra-low expansion glass ceramic, for example, Talia Serum (registered trademark)) constituting a reference mark plate FM2. It is formed as an opening pattern formed by the pattern Jung in a positional relationship. Each reference mark may be formed by a pattern (remaining pattern) of aluminum or the like.
[0103] 本実施形態では、例えば特開平 5— 21314号公報及びこれに対応する米国特許 第 5, 243, 195号などに開示されるのと同様に、上記第 1基準マーク RM , RM (j [0103] In the present embodiment, for example, Japanese Patent Application Laid-Open No. Hei 5-21314 and the corresponding US Patent No. 5, 243, 195, etc., the first fiducial marks RM, RM (j
jl ]2 jl] 2
= 1〜3)は、前述の一対のレチクルァライメント検出系 RAa, RAbによって同時に計 測可能で、かっこの第 1基準マーク RM , RM の計測と同時に第 2基準マーク WM = 1 to 3) can be measured simultaneously by the pair of reticle alignment detection systems RAa and RAb described above, and the second reference mark WM is simultaneously measured with the first reference marks RM and RM of the parentheses.
]1 ]2 j をァライメント系 ALGによって計測が可能になるように、上記各基準マークの配置が 定められている。また、基準マーク板 FM2の上面はほぼ平坦面となっており、後述す る多点焦点位置検出系の基準面として用いることとしても良い。この基準マーク板 F M2の上面には、不図示ではあるが、前述のクロム層の上部に前述したフッ素系榭脂 材料やアクリル系榭脂材料等の撥液性材料カゝら成る撥水膜が形成されている。  ] 1] 2 The arrangement of the above fiducial marks is determined so that j can be measured by the alignment ALG. The upper surface of the reference mark plate FM2 is almost flat, and may be used as a reference surface of a multipoint focal position detection system described later. On the upper surface of the fiducial mark plate FM2, although not shown, a water-repellent film made of a liquid-repellent material such as the above-mentioned fluorine resin or acrylic resin is formed on the chromium layer. Is formed.
[0104] 基準マーク板 FM2の側面の少なくともプレート 101の開口 101aの内壁面に対向 する領域、並びにプレート 101の基準マーク板 FM2に対向する開口 101aの内壁面 は、前述と同様の撥液処理がなされている。また、筐体 120の底壁には、基準マーク 板 FM2の近傍にも前述の排出孔 120aと同様の排出孔が形成され、この排出孔が前 述の回収部の真空系に接続されて!ヽる。  [0104] At least the area of the side surface of the reference mark plate FM2 facing the inner wall surface of the opening 101a of the plate 101, and the inner wall surface of the opening 101a of the plate 101 facing the reference mark plate FM2 are subjected to the same lyophobic treatment as described above. Has been done. Also, on the bottom wall of the housing 120, a discharge hole similar to the above-described discharge hole 120a is formed near the fiducial mark plate FM2, and this discharge hole is connected to the vacuum system of the collecting section described above! Puru.
[0105] 前記プレート 101の開口 101cの内部には、平面視長方形の計測用反射板 102が 、その表面がプレート 101とほぼ同一面となる状態で配置されている。  [0105] Inside the opening 101c of the plate 101, a measurement reflecting plate 102 having a rectangular shape in a plan view is arranged with its surface being substantially flush with the plate 101.
[0106] 計測用反射板 102とプレート 101との間には例えば 0. 3mm程度の幅のギャップ C 1S 計測用反射板 102の周囲に形成されている。計測用反射板 102の側面の少なく ともプレート 101の開口 101cの内壁面に対向する領域、並びにプレート 101の計測 用反射板 102に対向する開口 101cの内壁面は、前述と同様の撥液処理がなされて いる。また、筐体 120の底壁には、計測用反射板 102の近傍にも前述の排出孔 120 aと同様の排出孔が形成され、この排出孔が前述の回収部の真空系に接続されてい る。  A gap C 1S having a width of, for example, about 0.3 mm is formed between the reflection plate 102 for measurement and the plate 101 around the reflection plate 102 for measurement. At least the area of the side surface of the measuring reflector 102 facing the inner wall surface of the opening 101c of the plate 101 and the inner wall surface of the opening 101c facing the measuring reflector 102 of the plate 101 are subjected to the same lyophobic treatment as described above. It has been done. Further, on the bottom wall of the housing 120, a discharge hole similar to the above-described discharge hole 120a is formed in the vicinity of the reflection plate 102 for measurement, and this discharge hole is connected to the vacuum system of the above-mentioned collection unit. You.
[0107] 計測用反射板 102の上面は、 Y軸方向に関して 2つの領域に分割され、一方の領 域が設計上の反射率 (初期の反射率)が第 1の反射率 Rである高反射面領域 102H  [0107] The upper surface of the measurement reflector 102 is divided into two regions in the Y-axis direction, and one of the regions has a high reflectivity in which the designed reflectivity (initial reflectivity) is the first reflectivity R. Surface area 102H
H  H
とされ、他方の領域が設計上の反射率 (初期の反射率)が第 2の反射率 R (<第 1の し 反射率 R )である低反射面領域 102Lとされている。高反射面領域 102H、低反射面  The other area is a low-reflection surface area 102L in which the designed reflectance (initial reflectance) is the second reflectance R (<first reflectance R). High reflection surface area 102H, low reflection surface
H  H
領域 102Lのそれぞれは、前述した露光領域 IAより広い領域となっている。この計測 用反射板 102の高反射面領域 102H、低反射面領域 102Lの上部にも全面に渡つ てしたフッ素系榭脂材料やアクリル系榭脂材料等の撥液性材料カゝら成る撥水膜が形 成されている。 Each of the areas 102L is an area wider than the exposure area IA described above. All over the high-reflection surface area 102H and the low-reflection surface area 102L of the measuring reflector 102. A water-repellent film made of a liquid-repellent material such as a fluorine resin material or an acrylic resin material is formed.
[0108] プレート 101の前述の開口 lOlh内部には、その表面等に撥液処理が施されてい ない (撥液膜が形成されていない)基準反射板 202が、プレート 101上面とほぼ同一 面 (面一)となる状態で配置されて 、る。この基準反射板 202の反射率は第 3の反射 率であるものとする。  [0108] Inside the above-mentioned opening lOlh of the plate 101, a reference reflection plate 202 whose surface or the like is not subjected to a liquid repellent treatment (no liquid repellent film is formed) is substantially flush with the upper surface of the plate 101 ( It is placed in a state where it is flush. It is assumed that the reflectance of the reference reflector 202 is the third reflectance.
[0109] 前記プレート 101の開口 101dの内部には、平面視円形のパターン板 103を有する 照度むら計測器 104が配置されている。パターン板 103とプレート 101との間には例 えば 0. 3mm程度の幅のギャップ Dが、パターン板 103の周囲に形成されている。  [0109] Inside the opening 101d of the plate 101, an uneven illuminance measuring device 104 having a circular pattern plate 103 in a plan view is arranged. For example, a gap D having a width of about 0.3 mm is formed between the pattern plate 103 and the plate 101 around the pattern plate 103.
[0110] 照度むら計測器 104は、上記パターン板 103と、該パターン板の下方に配置された 不図示の受光素子(前述のシリコン'フォト'ダイオードあるいはフォト ·マルチプライア 'チューブなど)力も成るセンサとを有している。パターン板 103は、前述の光学部材 126と同様に石英ガラスなど力 成り、その表面にクロムなどの遮光膜が成膜され、 該遮光膜の中央に光透過部としてピンホール 103aが形成されている。そして、その 遮光膜の上に、前述したフッ素系榭脂材料やアクリル系榭脂材料等の撥液性材料か ら成る撥水膜が形成されて ヽる。  [0110] The uneven illuminance measuring device 104 is a sensor that also has the above-mentioned pattern plate 103 and a light receiving element (not shown) such as a silicon "photo" diode or a photomultiplier tube arranged below the pattern plate. And The pattern plate 103 is made of quartz glass or the like similarly to the optical member 126 described above, and a light-shielding film such as chromium is formed on the surface thereof, and a pinhole 103a is formed in the center of the light-shielding film as a light transmitting portion. . Then, a water-repellent film made of a liquid-repellent material such as the above-mentioned fluorine resin material or acrylic resin material is formed on the light-shielding film.
[0111] 上述の照度むら計測器 104は、特開昭 57— 117238号公報及びこれに対応する 米国特許第 4, 465, 368号などに開示される照度むら計測器と同様の構成を有して おり、投影光学系 PLの像面上で水 Lqを介して照明光 ILの照度むらを計測する。そ して、照度むら計測器を構成するセンサの検出信号 (光電変換信号)が不図示のホ 一ルド回路 (例えばピークホールド回路など)、及びアナログ Zデジタル (A/D)変 を介して主制御装置 50に供給されている。本国際出願で指定した指定国 (又は 選択した選択国)の国内法令が許す限りにおいて、上記公報及び対応米国特許に おける開示を援用して本明細書の記載の一部とする。  [0111] The illuminance unevenness measuring instrument 104 has the same configuration as the illuminance unevenness measuring instrument disclosed in Japanese Patent Application Laid-Open No. 57-117238 and the corresponding US Patent No. 4,465,368. Therefore, the illuminance unevenness of the illumination light IL is measured via the water Lq on the image plane of the projection optical system PL. The detection signal (photoelectric conversion signal) of the sensor constituting the uneven illuminance measurement device is mainly transmitted through a hold circuit (not shown) (for example, a peak hold circuit) and analog Z digital (A / D) conversion. It is supplied to the controller 50. To the extent permitted by the national laws of the designated States (or selected elected States) specified in this International Application, the disclosures in the above-mentioned publications and corresponding US patents are incorporated herein by reference.
[0112] 前記プレート 101の開口 101eの内部には、平面視円形のスリット板 105が、その表 面がプレート 101表面とほぼ同一面(面一)となる状態で配置されている。スリット板 1 05とプレート 101との間には例えば 0. 3mm程度の幅のギャップ E力 スリット板 105 の周囲に形成されている。このスリット板 105は、前述のパターン板 103と同様に、石 英ガラスと、該石英ガラスの表面に形成されたクロムなどの遮光膜とを有し、該遮光 膜の所定箇所に X軸方向、 Y軸方向に伸びるスリットパターンが光透過部として形成 されている。このスリット板 105は、投影光学系 PLにより投影されるパターンの空間像 (投影像)の光強度を計測する空間像計測器の一部を構成するものである。本実施 形態では、このスリット板 105の下方の計測テーブル本体 59 (筐体 120)の内部には 、投影光学系 PL及び水 Lqを介してプレート 101に照射される照明光 ILを、前記スリ ットパターンを介して受光する受光系が設けられており、これによつて、例えば特開 2[0112] Inside the opening 101e of the plate 101, a slit plate 105 having a circular shape in a plan view is disposed so that the surface thereof is substantially flush with the surface of the plate 101. A gap E having a width of, for example, about 0.3 mm is formed between the slit plate 105 and the plate 101 around the slit plate 105. This slit plate 105 is similar to the pattern plate 103 described above, It has an English glass and a light-shielding film such as chromium formed on the surface of the quartz glass, and a slit pattern extending in the X-axis direction and the Y-axis direction is formed as a light-transmitting portion at a predetermined portion of the light-shielding film. . The slit plate 105 constitutes a part of an aerial image measuring device for measuring the light intensity of the aerial image (projected image) of the pattern projected by the projection optical system PL. In the present embodiment, the illumination light IL applied to the plate 101 via the projection optical system PL and the water Lq is provided inside the measurement table main body 59 (housing 120) below the slit plate 105 in the slit pattern. There is provided a light receiving system for receiving light through the
002— 14005号公報及びこれに対応する米国特許出願公開第 2002Z0041377 号明細書などに開示される空間像計測器と同様の空間像計測器が構成されている。 本国際出願で指定した指定国 (又は選択した選択国)の国内法令が許す限りにおい て、上記公開公報及び対応する米国特許出願公開明細書における開示を援用して 本明細書の記載の一部とする。 An aerial image measuring device similar to the aerial image measuring device disclosed in Japanese Patent Application Publication No. 002-14005 and the corresponding US Patent Application Publication No. 2002Z0041377 is provided. To the extent permitted by the national laws of the designated country (or selected elected country) designated in this international application, the disclosures in the above published gazettes and corresponding U.S. patent application publications are partially incorporated herein by reference. And
[0113] 前記プレート 101の開口 101fの内部には、平面視円形の波面収差計測用パター ン板 107が、その表面がプレート 101表面とほぼ同一面(面一)となる状態で配置さ れている。この波面収差計測用パターン板 107は、前述のパターン板 103と同様に、 石英ガラスと、該石英ガラスの表面に形成されたクロムなどの遮光膜とを有し、該遮 光膜の中央に円形の開口が形成されている。この波面収差計測用パターン板 107 の下方の計測テーブル本体 59 (筐体 120)の内部には、例えばマイクロレンズアレイ を含む受光系が設けられており、これによつて例えば国際公開第 99Z60361号パ ンフレット及びこれに対応する欧州特許第 1, 079, 223号明細書などに開示される 波面収差計測器が構成されて ヽる。本国際出願で指定した指定国 (又は選択した選 択国)の国内法令が許す限りにおいて、上記国際公開パンフレット及び対応する欧 州特許明細書における開示を援用して本明細書の記載の一部とする。  [0113] Inside the opening 101f of the plate 101, a circular wavefront aberration-measuring pattern plate 107 having a circular shape in a plan view is arranged so that its surface is substantially flush with the surface of the plate 101. I have. The wavefront aberration measurement pattern plate 107 has quartz glass and a light-shielding film such as chromium formed on the surface of the quartz glass, and has a circular shape at the center of the light-shielding film, similarly to the pattern plate 103 described above. Openings are formed. A light receiving system including, for example, a microlens array is provided inside the measurement table main body 59 (housing 120) below the wavefront aberration measurement pattern plate 107, whereby, for example, WO99Z60361 The wavefront aberration measuring instrument disclosed in the fret and the corresponding European Patent No. 1,079,223 is constituted. To the extent permitted by national laws of the designated country (or selected elected country) designated in this international application, a part of the description of this specification is incorporated by reference to the disclosure in the above-mentioned international pamphlet and the corresponding European patent specification. And
[0114] 上述したパターン板 103、スリット板 105及び波面収差計測用パターン板 107それ ぞれの側面の少なくともプレート 101の開口 101d、開口 101e、開口 101fの内壁面 にそれぞれ対向する領域、並びにプレート 101のパターン板 103に対向する開口 10 Idの内壁面、スリット板 105に対向する開口 101eの内壁面、及び波面収差計測用 パターン板 107に対向する開口 101fの内壁面それぞれは、前述と同様の撥液処理 がなされている。また、筐体 120の底壁には、パターン板 103の近傍、スリット板 105 の近傍、及び波面収差計測用パターン板 107の近傍に前述の排出孔 120aと同様 の排出孔がそれぞれ形成され、これらの排出孔が前述の回収部の真空系に接続さ れている。 The above-mentioned pattern plate 103, slit plate 105, and wavefront aberration measurement pattern plate 107 have at least the side surfaces thereof at least facing the opening 101d, the opening 101e, the inner wall surface of the opening 101f, and the plate 101, respectively. The inner wall surface of the opening 10Id facing the pattern plate 103, the inner wall surface of the opening 101e facing the slit plate 105, and the inner wall surface of the opening 101f facing the wavefront aberration measuring pattern plate 107 are respectively the same repellent as described above. Liquid treatment Has been made. On the bottom wall of the housing 120, the same discharge holes as the above-described discharge holes 120a are formed in the vicinity of the pattern plate 103, the slit plate 105, and the wavefront aberration measurement pattern plate 107, respectively. Is connected to the vacuum system of the collecting section described above.
[0115] なお、図示は省略されている力 本実施形態では、筐体 120の内部に、前述した各 種計測器を構成する受光素子 (センサ)が配置されて!、るので、それらの受光素子の 発熱の影響を極力回避すベぐそれらの受光素子及び筐体 120の冷却機構が設け られている。受光素子の冷却機構としては、例えば筐体 120の底壁に設けられたヒー トシンク及びこれに接続されたペルチェ素子の組み合わせなどが挙げられる。また、 筐体 120そのものの冷却機構としては、例えば配管系の内部に冷却液を流す液冷 方式の機構を採用することができる。  In the present embodiment, the light receiving elements (sensors) constituting the various measuring instruments described above are arranged inside the housing 120! The light receiving elements and the cooling mechanism of the housing 120 are provided so as to minimize the influence of heat generation of the elements. As a cooling mechanism for the light receiving element, for example, a combination of a heat sink provided on the bottom wall of the housing 120 and a Peltier element connected to the heat sink is exemplified. Further, as a cooling mechanism of the housing 120 itself, for example, a liquid-cooling type mechanism for flowing a cooling liquid into a piping system can be adopted.
[0116] なお、熱の影響を抑制する観点から、上記の空間像計測器や波面収差計測器など では、例えば光学系などの一部だけが計測ステージ MSTに搭載され、受光素子な どが計測ステージ MSTから離れた部材に配置されて ヽても良 、。  [0116] From the viewpoint of suppressing the influence of heat, in the above-described aerial image measurement device or wavefront aberration measurement device, for example, only a part of the optical system or the like is mounted on the measurement stage MST, and the light receiving element and the like are measured. The stage may be placed on a member away from the MST.
[0117] 前記計測テーブル MTBの上面には、 X軸方向の一端(一 X側端)〖こ X軸に直交す る反射面を有する X移動鏡 117Xが Y軸方向に延設され、 Y軸方向の一端(一 Y側端 )に Y軸に直交する反射面を有する Y移動鏡 117Yが X軸方向に延設されている。 Y 移動鏡 117Yの反射面には、図 2に示されるように、干渉計システム 118の Y軸干渉 計 66からの干渉計ビーム (測長ビーム)が投射され、干渉計 66ではその反射光を受 光することにより、 Y移動鏡 117Yの反射面の基準位置力もの変位を計測する。また 、計測テーブル MTB力 計測時などに投影ユニット PUの直下に移動した場合には 、 X移動鏡 117Xの反射面に X軸干渉計 96からの干渉計ビーム (測長ビーム)が投射 され、干渉計 96ではその反射光を受光することにより、 X移動鏡 117Xの反射面の基 準位置力もの変位を計測する。 Y軸干渉計 66は、投影光学系 PLの投影中心 (光軸 AX)で前述の X軸干渉計 96の測長軸と垂直に交差する Y軸方向に平行な測長軸を 有している。  [0117] On the upper surface of the measurement table MTB, one end (one X-side end) in the X-axis direction is provided with an X movable mirror 117X having a reflecting surface orthogonal to the X-axis, extending in the Y-axis direction, At one end (one Y side end) in the direction, a Y moving mirror 117Y having a reflecting surface orthogonal to the Y axis is extended in the X axis direction. As shown in FIG. 2, the interferometer beam (length measuring beam) from the Y-axis interferometer 66 of the interferometer system 118 is projected onto the reflecting surface of the Y moving mirror 117Y, and the reflected light is reflected by the interferometer 66. By receiving the light, the displacement of the reflecting surface of the Y movable mirror 117Y is measured as much as the reference position force. In addition, when the measurement table MTB force is measured, for example, when it is moved directly below the projection unit PU, the interferometer beam (length measuring beam) from the X-axis interferometer 96 is projected on the reflecting surface of the X movable mirror 117X, and the interference By receiving the reflected light, the total 96 measures the displacement of the reflecting surface of the X movable mirror 117X as much as the reference position force. The Y-axis interferometer 66 has a length measurement axis parallel to the Y-axis direction that intersects perpendicularly with the length measurement axis of the aforementioned X-axis interferometer 96 at the projection center (optical axis AX) of the projection optical system PL. .
[0118] 前記 Y軸干渉計 66は、少なくとも 3本の光軸を有する多軸干渉計であり、各光軸は 反射面の変位を独立に計測できる。この Y軸干渉計 66の出力値 (計測値)は、主制 御装置 50に供給され、主制御装置 50では Y軸干渉計 66からの出力値に基づいて、 計測テーブル MTBの Y位置のみならず、ピッチング量及び Zョーイング量をも計測 できる。また、主制御装置 50では X軸干渉計 96からの出力値に基づいて、計測テー ブル MTBの X位置及びローリング量を計測する。 [0118] The Y-axis interferometer 66 is a multi-axis interferometer having at least three optical axes, and each optical axis can independently measure the displacement of the reflecting surface. The output value (measurement value) of this Y-axis interferometer 66 The main controller 50 is supplied to the controller 50, and based on the output value from the Y-axis interferometer 66, can measure not only the Y position of the measurement table MTB but also the pitching amount and the Zawing amount. Further, main controller 50 measures the X position and rolling amount of measurement table MTB based on the output value from X-axis interferometer 96.
[0119] これまでの説明からわ力るように、本実施形態では、 Y軸干渉計 68からの干渉計ビ ームは、ウェハステージ WSTの移動範囲の全域で常に移動鏡 67Yに投射され、 Y 軸干渉計 66力 の干渉計ビームは、計測ステージ MSTの移動範囲の全域で常に 移動鏡 117Yに投射される。従って、 Y軸方向については、常にステージ WST、 MS Tの位置は、主制御装置 50により Υ軸干渉計 68、 66の計測値に基づいて管理され る。 [0119] As can be understood from the above description, in the present embodiment, the interferometer beam from the Y-axis interferometer 68 is always projected onto the movable mirror 67Y over the entire movement range of the wafer stage WST. The Y-axis interferometer 66-interferometer beam is always projected on the moving mirror 117Y over the entire moving range of the measurement stage MST. Therefore, in the Y-axis direction, the positions of stages WST and MST are always managed by main controller 50 based on the measurement values of Υ-axis interferometers 68 and 66.
[0120] この一方、図 2からも容易に想像されるように、主制御装置 50は、 X軸干渉計 96か らの干渉計ビーム力 移動鏡 67Χに当たる範囲でのみ、 X軸干渉計 96の出力値に 基づいてウェハテーブル WTB (ウェハステージ WST)の X位置を管理するとともに、 X軸干渉計 96からの干渉計ビーム力 移動鏡 117Xに当たる範囲でのみ、 X軸干渉 計 96の出力値に基づ 、て計測テーブル ΜΤΒ (計測ステージ MST)の X位置を管理 する。従って、 X軸干渉計 96の出力値に基づいて X位置を管理できない間、ウェハ テーブル WTB、計測テーブル MTBの位置は、不図示のエンコーダで計測され、こ のエンコーダの計測値に基づいて、主制御装置 50は、ウェハテーブル WTB、計測 テーブル MTBの位置を管理する。  On the other hand, as can be easily imagined from FIG. 2, main controller 50 controls X-axis interferometer 96 only within a range that hits interferometer beam force movable mirror 67 ° from X-axis interferometer 96. The X position of the wafer table WTB (wafer stage WST) is managed based on the output value, and the beam power of the interferometer from the X-axis interferometer 96 is based on the output value of the X-axis interferometer 96 only within the range of the movable mirror 117X. Then, manage the X position of measurement table ΜΤΒ (measurement stage MST). Therefore, while the X position cannot be controlled based on the output value of the X-axis interferometer 96, the positions of the wafer table WTB and the measurement table MTB are measured by an encoder (not shown), and the main position is determined based on the measurement value of the encoder. The control device 50 manages the positions of the wafer table WTB and the measurement table MTB.
[0121] また、主制御装置 50は、 X軸干渉計 96からの干渉計ビームが、移動鏡 67X、 117 Xのいずれにも当たらない状態力 移動鏡 67X又は移動鏡 117Xに当たり始めた直 後の時点で、それまで制御に用いられていな力つた X軸干渉計 96をリセットし、それ 以後は、干渉計システム 118の、 Y軸干渉計 68又は 66と、 X軸干渉計 96とを用いて 、ウェハステージ WST又は計測ステージ MSTの位置を管理する。  [0121] In addition, main controller 50 controls the state in which the interferometer beam from X-axis interferometer 96 does not hit any of moving mirrors 67X and 117X. At that point, the X-axis interferometer 96 that was not used for control was reset, and thereafter, the Y-axis interferometer 68 or 66 and the X-axis interferometer 96 of the interferometer system 118 were used. , The position of the wafer stage WST or the measurement stage MST.
[0122] 本実施形態では、 2つの Y軸干渉計 66, 68と、 1つの X軸干渉計 96とによって、図 6の干渉計システム 118の少なくとも一部が構成されて ヽるが、 X軸干渉計を複数設 け、常にいずれかの X軸干渉計力 の干渉計ビーム力 移動鏡 67X、 117Xに当たる ような構成を採用しても良い。この場合には、ウエノ、ステージ WST、計測ステージ M STの位置を管理する X軸干渉計を、これらのステージの X位置に応じて切り替えれ ば良い。 In the present embodiment, at least a part of the interferometer system 118 in FIG. 6 is configured by two Y-axis interferometers 66 and 68 and one X-axis interferometer 96. A configuration may be employed in which a plurality of interferometers are provided so that the beam force of any one of the X-axis interferometers hits the movable mirror 67X or 117X. In this case, Ueno, Stage WST, Measurement Stage M The X-axis interferometer that manages the ST position may be switched according to the X position of these stages.
[0123] また、前述の多軸干渉計は 45° 傾いてステージ WST、 MSTに設置される反射面 を介して、投影ユニット PUが保持される保持部材に設置される反射面にレーザビー ムを照射し、その反射面とステージとの投影光学系 PLの光軸方向(Z軸方向)に関す る相対位置情報を検出するようにしても良 ヽ。  [0123] In addition, the above-described multi-axis interferometer irradiates a laser beam onto a reflection surface installed on a holding member that holds projection unit PU through a reflection surface installed on stages WST and MST at an angle of 45 °. Alternatively, relative position information about the optical axis direction (Z-axis direction) of the projection optical system PL between the reflection surface and the stage may be detected.
[0124] また、本実施形態の露光装置 10では、投影ユニット PUを保持する保持部材には、 オファクシス ·ァライメント系(以下、「ァライメント系」と略述する) ALG (図 1では図示 せず、図 6、図 7 (A)等参照)が設けられている。このァライメント系 ALGとしては、例 えばウェハ上のレジストを感光させないブロードバンドな検出光束を対象マークに照 射し、その対象マーク力もの反射光により受光面に結像された対象マークの像と不図 示の指標 (ァライメント系 ALG内に設けられた指標板上の指標パターン)の像とを撮 像素子 (CCD等)を用いて撮像し、それらの撮像信号を出力する画像処理方式の FI A (Field Image Alignment)系のセンサが用いられている。ァライメント系 ALGからの 撮像信号は、図 6の主制御装置 50に供給される。  In the exposure apparatus 10 of the present embodiment, a holding member for holding the projection unit PU includes an off-axis alignment system (hereinafter abbreviated as “alignment system”) ALG (not shown in FIG. 1, 6 and 7 (A) etc.). For example, this alignment-based ALG irradiates the target mark with a broadband detection light beam that does not expose the resist on the wafer, and the target mark image formed on the light-receiving surface by the reflected light with the target mark power. An image of the index (the index pattern on the index plate provided in the alignment system ALG) is captured using an imaging element (such as a CCD), and the image processing method FI A ( Field Image Alignment) type sensors are used. The imaging signal from the alignment ALG is supplied to main controller 50 in FIG.
[0125] なお、ァライメント系 ALGとしては、 FIA系に限らず、コヒーレントな検出光を対象マ ークに照射し、その対象マーク力も発生する散乱光又は回折光を検出する、あるい はその対象マーク力も発生する 2つの回折光 (例えば同次数の回折光、あるいは同 方向に回折する回折光)を干渉させて検出するァライメントセンサを単独である ヽは 適宜組み合わせて用いることは勿論可能である。  [0125] The alignment type ALG is not limited to the FIA type, but irradiates a target mark with coherent detection light and detects scattered light or diffracted light that also generates the target mark force, or detects the target target ALG. A single alignment sensor that detects and interferes with two diffracted lights that also generate a mark force (for example, diffracted lights of the same order or diffracted in the same direction) is used alone. Of course, ヽ can be used in an appropriate combination .
[0126] 本実施形態の露光装置 10では、図 1では図示が省略されている力 照射系 110a 及び受光系 110b (図 6参照)から成る、例えば特開平 6— 283403号公報 (対応米 国特許第 5, 448, 332号)等に開示されるものと同様の斜入射方式の多点焦点位置 検出系が設けられている。本実施形態では、一例として、照射系 110aが投影ュ-ッ ト PUの— X側にて投影ユニット PUを保持する保持部材に吊り下げ支持され、受光 系 110bが投影ユニット PUの +X側にて保持部材の下方に吊り下げ支持されて!、る 。すなわち、照射系 110a及び受光系 110bと、投影光学系 PLと力 同一の部材に取 り付けられており、両者の位置関係が一定に維持されている。 [0127] なお、多点焦点位置検出系は、水 Lqで形成された液浸領域内に照射系 110aから の検出光を照射するものであってもよいし、液浸領域の外側に検出光を照射するも のであってもよい。また多点焦点位置検出系を、投影ユニット PU力も離れた位置 (例 えば、ウェハ交換位置など)に配置し、ウェハの露光を開始する前に、ウェハ表面の 高さ情報 (凹凸情報)を取得してもよ!、。 The exposure apparatus 10 of the present embodiment includes a force irradiation system 110a and a light reception system 110b (see FIG. 6), which are not shown in FIG. 1, for example, as disclosed in Japanese Unexamined Patent Publication No. 6-283403 (corresponding US patents). No. 5, 448, 332), etc., a multi-point focal point position detection system of the oblique incidence type similar to that disclosed in Japanese Patent Application Laid-Open No. HEI 7-284, 1988 is provided. In the present embodiment, as an example, the irradiation system 110a is suspended and supported by a holding member that holds the projection unit PU on the negative X side of the projection unit PU, and the light receiving system 110b is mounted on the + X side of the projection unit PU. And suspended below the holding member! That is, the irradiation system 110a and the light receiving system 110b are mounted on the same member as the projection optical system PL, and the positional relationship between them is maintained constant. [0127] The multipoint focus position detection system may irradiate the detection light from the irradiation system 110a into the liquid immersion area formed by the water Lq, or may detect the detection light outside the liquid immersion area. May be irradiated. In addition, the multi-point focal position detection system is placed at a position far away from the projection unit PU force (for example, wafer replacement position), and height information (irregularity information) on the wafer surface is acquired before wafer exposure starts. You can!
[0128] 図 6には、露光装置 10の制御系の主要な構成が示されている。この制御系は、装 置全体を統括的に制御するマイクロコンピュータ (又はワークステーション)を含む主 制御装置 50を中心として構成されている。また、主制御装置 50には、メモリ 51や CR Tディスプレイ (又は液晶ディスプレイ)等のディスプレイ DISなどが接続されて 、る。 なお、図 6では、前述した照度むら計測器 104、照度モニタ 122、基準照度モニタ 12 2'、空間像計測器、及び波面収差計測器などが、計測器群 43として示されている。  FIG. 6 shows a main configuration of a control system of exposure apparatus 10. This control system is mainly configured by a main controller 50 including a microcomputer (or a workstation) that controls the entire apparatus as a whole. In addition, a memory 51 and a display DIS such as a CRT display (or a liquid crystal display) are connected to the main controller 50. In FIG. 6, the above-described uneven illuminance measuring device 104, illuminance monitor 122, reference illuminance monitor 122 ', an aerial image measuring device, a wavefront aberration measuring device, and the like are shown as a measuring device group 43.
[0129] 本実施形態の露光装置 10では、主制御装置 50が、露光コントローラ及びステージ コントローラの役目をも有している力 これらのコントローラを主制御装置 50とは別に 設けても良いことは勿論である。  In the exposure apparatus 10 of the present embodiment, the main controller 50 also has the functions of an exposure controller and a stage controller. Of course, these controllers may be provided separately from the main controller 50. It is.
[0130] 次に、上述のようにして構成された本実施形態の露光装置 10における、ウェハステ ージ WSTと計測ステージ MSTとを用 、た並行処理動作につ!、て、図 7 (A)〜図 9に 基づいて説明する。なお、以下の動作中、特に説明がない限り、主制御装置 50によ つて、液浸装置 132の液体供給装置 138及び液体回収装置 139の各バルブの開閉 制御が前述したようにして行われ、投影光学系 PLの先端レンズ 91の直下には常時 水が満たされている。しかし、以下では、説明を分力り易くするため、液体供給装置 1 38及び液体回収装置 139の制御に関する説明は省略する。  Next, in the exposure apparatus 10 of the present embodiment configured as described above, the parallel processing operation using the wafer stage WST and the measurement stage MST will be described with reference to FIG. This will be described with reference to FIG. During the following operation, unless otherwise specified, the main controller 50 controls the opening and closing of each valve of the liquid supply device 138 and the liquid recovery device 139 of the liquid immersion device 132 as described above. The water immediately below the tip lens 91 of the projection optical system PL is always filled with water. However, in the following, description on control of the liquid supply device 138 and the liquid recovery device 139 will be omitted to facilitate the description.
[0131] 図 7 (A)には、ウェハステージ WST上のウェハ W (ここでは例えば 1ロット(1ロットは 25枚又は 50枚)の最後のウェハとする)に対するステップ ·アンド'スキャン方式の露 光が行われている状態が示されている。このとき、計測ステージ MSTは、ウェハステ ージ WSTと衝突しな 、所定の待機位置にて待機して!/、る。  [0131] FIG. 7 (A) shows a step-and-scan exposure for wafer W on wafer stage WST (here, for example, the last wafer of one lot (one lot is 25 or 50)). The state where light is being performed is shown. At this time, measurement stage MST waits at a predetermined standby position without colliding with wafer stage WST! /
[0132] 上記の露光動作は、主制御装置 50が、事前に行われた例えばェンハンスト,グロ 一バル 'ァライメント (EGA)などのウェハァライメントの結果と、事前に検出されたレ チクル Rとウェハステージ WST (ウェハ W)との位置関係と、ァライメント系 ALGのべ ースラインの最新の計測結果とに基づ 、て、ウェハ W上の各ショット領域の露光のた めの走査開始位置 (加速開始位置)へウェハステージ WSTを移動するショット間の 移動動作と、各ショット領域に対してレチクル Rに形成されたパターンを走査露光方 式で転写する走査露光動作と、を繰り返すことにより行われる。 [0132] In the above-described exposure operation, main controller 50 performs a process performed in advance by a wafer alignment result such as an Enhance, Global Alignment (EGA) and a reticle R and a wafer detected in advance. The positional relationship with the stage WST (wafer W) and the alignment ALG Based on the latest measurement results of the baseline, the movement between the shots that moves the wafer stage WST to the scan start position (acceleration start position) for exposure of each shot area on the wafer W, The scanning exposure operation of transferring the pattern formed on the reticle R to the area by the scanning exposure method is performed repeatedly.
[0133] ここで、上記のウェハステージ WSTが移動されるショット間の移動動作は、主制御 装置 50が、干渉計 68、 96の計測値をモニタしつつ、 X軸リニアモータ 79及び Y軸リ ユアモータ 82, 83を制御することで行われる。また、上記の走査露光は、主制御装 置 50力 干渉計 68, 96及びレチクル干渉計 53の計測値をモニタしつつ、レチクル ステージ駆動装置 55並びに Y軸リニアモータ 82, 83 (及び X軸リニアモータ 79)を制 御して、レチクル R (レチクルステージ RST)とウェハ W (ウェハステージ WST)とを Y 軸方向に関して相対走査し、その相対走査中の加速終了後と減速開始直前との間 の等速移動時に、照明光 ILに対してレチクル R (レチクルステージ RST)とウエノ、 W( ウエノ、ステージ WST)とを Y軸方向に関して等速同期移動することで実現される。な お、上記の露光動作は、先端レンズ 91とウェハ Wとの間に水を保持した状態で行わ れる。  [0133] Here, the movement operation between shots in which wafer stage WST is moved is performed by main controller 50 monitoring X-axis linear motor 79 and Y-axis This is performed by controlling your motors 82 and 83. In addition, the above scanning exposure is performed while monitoring the measured values of the main control unit 50 force interferometers 68 and 96 and the reticle interferometer 53 while the reticle stage drive unit 55 and the Y-axis linear motors 82 and 83 (and the X-axis linear By controlling the motor 79), the reticle R (reticle stage RST) and the wafer W (wafer stage WST) are scanned relative to each other in the Y-axis direction. This is achieved by synchronously moving the reticle R (reticle stage RST) and the reticle and the reticle W (the reticle, stage WST) with respect to the illumination light IL at a constant velocity in the Y-axis direction. The above-described exposure operation is performed in a state where water is held between the tip lens 91 and the wafer W.
[0134] そして、ウェハステージ WSTに保持されたウェハ Wに対する露光が終了した段階 で、主制御装置 50は、干渉計 66の計測値、及び不図示のエンコーダの計測値に基 づいて Y軸リニアモータ 84, 85及び X軸リニアモータ LXを制御して、計測ステージ MST (計測テーブル MTB)を図 7 (B)に示される位置まで移動させる。この図 7 (B) の状態では、計測テーブル MTBの + Y側面とウェハテーブル WTBの Y側面とは 接触している。なお、干渉計 66, 68の計測値をモニタして計測テーブル MTBとゥェ ハテーブル WTBとを Y軸方向に 300 m程度離間させて、非接触の状態を保っても 良い。  Then, at the stage where exposure of wafer W held on wafer stage WST is completed, main controller 50 sets the Y-axis linear position based on the measurement value of interferometer 66 and the measurement value of an encoder (not shown). By controlling the motors 84 and 85 and the X-axis linear motor LX, the measurement stage MST (measurement table MTB) is moved to the position shown in FIG. 7 (B). In the state shown in FIG. 7B, the + Y side surface of the measurement table MTB is in contact with the Y side surface of the wafer table WTB. In addition, the measurement values of the interferometers 66 and 68 may be monitored to keep the measurement table MTB and the wafer table WTB apart by about 300 m in the Y-axis direction to maintain a non-contact state.
[0135] 次いで、主制御装置 50は、ウェハテーブル WTBと計測テーブル MTBとの Y軸方 向の位置関係を保ちつつ、両ステージ WST、 MSTを +Y方向に同時に駆動する動 作を開始する。  Next, main controller 50 starts an operation of simultaneously driving both stages WST and MST in the + Y direction while maintaining the positional relationship between wafer table WTB and measurement table MTB in the Y-axis direction.
[0136] このようにして、主制御装置 50により、ウェハステージ WST、計測ステージ MSTが 同時に駆動されると、図 7 (B)の状態では、投影光学系 PLの先端レンズ 91とウェハ Wとの間に保持されていた水力 ウェハステージ WST、計測ステージ MSTの +Y側 への移動に伴って、ウェハ W→ウェハホルダ 70→計測テーブル MTB上を順次移動 する。なお、上記の移動の間中、ウェハテーブル WTB、計測テーブル MTBは相互 に接触する位置関係を保っている。図 8 (A)には、上記の移動の途中に水がウェハ ステージ WST、計測ステージ MST上に同時に存在するときの状態、すなわちゥェ ハステージ WST上力 計測ステージ MST上に水が渡される直前の状態が示されて いる。 In this way, when main controller 50 drives wafer stage WST and measurement stage MST simultaneously, in the state of FIG. 7B, tip lens 91 of projection optical system PL and wafer Hydraulic force held between W and wafer stage WST and measurement stage MST move in the + Y side and move sequentially from wafer W to wafer holder 70 to measurement table MTB. During the above movement, the wafer table WTB and the measurement table MTB maintain the positional relationship of contact with each other. Fig. 8 (A) shows the state when water is simultaneously present on the wafer stage WST and the measurement stage MST during the above movement, that is, just before water is passed on the wafer stage WST force measurement stage MST. State is shown.
[0137] 図 8 (A)の状態から、更にウェハステージ WST,計測ステージ MSTが +Y方向に 同時に所定距離駆動されると、図 8 (B)に示されるように、計測ステージ MSTと先端 レンズ 91との間に水が保持された状態となる。これに先立って、主制御装置 50では 、 X軸干渉計 96からの干渉計ビームが計測テーブル MTB上の移動鏡 117Xに照射 されるようになった!/、ずれかの時点で X軸干渉計 96のリセットを実行して 、る。また、 図 8 (B)の状態では、主制御装置 50は、ウェハテーブル WTB (ウェハステージ WST )の X位置を、不図示のエンコーダの計測値に基づいて管理している。  When the wafer stage WST and the measurement stage MST are simultaneously driven a predetermined distance in the + Y direction from the state of FIG. 8A, as shown in FIG. 8B, the measurement stage MST and the tip lens are moved. The water is held between the air conditioner and 91. Prior to this, the main controller 50 started irradiating the moving mirror 117X on the measurement table MTB with the interferometer beam from the X-axis interferometer 96! / Perform a 96 reset. Further, in the state of FIG. 8B, main controller 50 manages the X position of wafer table WTB (wafer stage WST) based on a measurement value of an encoder (not shown).
[0138] 次いで、主制御装置 50は、ウェハステージ WSTの位置を干渉計 68、エンコーダ の計測値に基づいて管理しつつ、リニアモータ 79, 82, 83を制御して、所定のゥェ ハ交換位置にウェハステージ WSTを移動させるとともに次のロットの最初のウェハへ の交換を行い、これと並行して、計測ステージ MSTを用いた所定の計測を必要に応 じて実行する。この計測としては、例えばレチクルステージ RST上のレチクル交換後 に行われる、ァライメント系 ALGのベースライン計測が一例として挙げられる。具体的 には、主制御装置 50では、計測テーブル MTB上の基準マーク板 FM2上に形成さ れた一対の第 1基準マーク、例えば第 1基準マーク RM , RM と対応するレチクル  [0138] Next, main controller 50 controls linear motors 79, 82, and 83 while controlling the position of wafer stage WST based on the interferometer 68 and the measurement values of the encoder, and performs predetermined wafer exchange. The wafer stage WST is moved to the position and replaced with the first wafer of the next lot, and in parallel with this, predetermined measurement using the measurement stage MST is performed as necessary. An example of this measurement is a baseline measurement of an alignment ALG performed after the reticle is replaced on the reticle stage RST. Specifically, main controller 50 includes a pair of first fiducial marks formed on fiducial mark plate FM2 on measurement table MTB, for example, reticle corresponding to first fiducial marks RM, RM.
11 12  11 12
上のレチクルァライメントマークとを前述のレチクルァライメント系 RAa、 RAbを用いて 同時に検出して一対の第 1基準マークと対応するレチクルァライメントマークの位置 関係を検出する。これと同時に、主制御装置 50では、基準マーク板 FM2上の前記 第 1基準マーク (RM , RM )と組を成す第 2基準マーク、この場合第 2基準マーク  The above reticle alignment marks are simultaneously detected using the above-described reticle alignment systems RAa and RAb to detect the positional relationship between the pair of first reference marks and the corresponding reticle alignment marks. At the same time, the main controller 50 sets a second fiducial mark paired with the first fiducial mark (RM, RM) on the fiducial mark plate FM2, in this case a second fiducial mark.
11 12  11 12
WMをァライメント系 ALGで検出することで、ァライメント系 ALGの検出中心とその By detecting WM with the alignment ALG, the detection center of the alignment ALG and its
1 1
第 2基準マークとの位置関係を検出する。そして、主制御装置 50は、上記一対の第 1基準マークと対応するレチクルァライメントマークの位置関係とァライメント系 ALG の検出中心と第 2基準マークとの位置関係と、既知の一対の第 1基準マークと第 2基 準マークとの位置関係とに基づいて、投影光学系 PLによるレチクルパターンの投影 中心とァライメント系 ALGの検出中心との距離 (以下、便宜上「第 1の距離」と呼ぶ)を 求める。なお、このときの状態が、図 9に示されている。 Detect the positional relationship with the second fiducial mark. Then, main controller 50 controls the pair of (1) The positional relationship between the fiducial mark and the corresponding reticle alignment mark, the positional relationship between the detection center of the alignment ALG and the second fiducial mark, and the positional relationship between a pair of known first fiducial marks and the second fiducial mark. Then, the distance between the projection center of the reticle pattern by the projection optical system PL and the detection center of the alignment system ALG (hereinafter, referred to as a “first distance” for convenience) is obtained. The state at this time is shown in FIG.
[0139] 次に、主制御装置 50は、レチクルステージ RST、計測テーブル MTBを Y軸方向に ステップ移動し、上記と同様に、計測テーブル MTB上の基準マーク板 FM2上に形 成された別の一対の第 1基準マーク、例えば第 1基準マーク RM , RM と対応する [0139] Next, main controller 50 moves reticle stage RST and measurement table MTB stepwise in the Y-axis direction, and performs another step formed on reference mark plate FM2 on measurement table MTB in the same manner as described above. Corresponds to a pair of first fiducial marks, for example, first fiducial marks RM, RM
21 22 レチクル上のレチクルァライメントマークとを前述のレチクルァライメント系 RAa、RAb を用いて同時に検出すると同時に、前記第 1基準マーク (RM , RM )と組を成す第  21 22 The reticle alignment marks on the reticle are simultaneously detected using the reticle alignment systems RAa and RAb described above, and at the same time, the reticle alignment marks forming pairs with the first fiducial marks (RM, RM).
21 22  21 22
2基準マーク (WM )をァライメント系 ALGで検出する。そして、主制御装置 50は、上  2Detect the fiducial mark (WM) with the alignment ALG. And main controller 50 is
2  2
記一対の第 1基準マーク (RM , RM )と対応するレチクルァライメントマークの位置  The position of the reticle alignment mark corresponding to the pair of first fiducial marks (RM, RM)
21 22  21 22
関係とァライメント系 ALGの検出中心と第 2基準マーク (WM )との位置関係と、一対  Relationship and alignment system The positional relationship between the ALG detection center and the second fiducial mark (WM)
2  2
の第 1基準マークと第 2基準マークとの既知の位置関係とに基づいて、投影光学系 P Projection optical system P based on the known positional relationship between the first fiducial mark and the second fiducial mark of
Lによるレチクルパターンの投影中心とァライメント系 ALGの検出中心との距離 (以下Distance between the center of projection of the reticle pattern by L and the center of detection of the alignment ALG (hereinafter
、「第 2の距離」と呼ぶ)を求める。 , "The second distance").
[0140] 主制御装置 50は、さらに、残りの第 1基準マークと第 2基準マークとを、上記と同様 にして検出して、投影光学系 PLによるレチクルパターンの投影中心とァライメント系[0140] Main controller 50 further detects the remaining first fiducial mark and second fiducial mark in the same manner as described above, and projects the projection center of the reticle pattern by projection optical system PL and the alignment system.
ALGの検出中心との距離 (第 3の距離)を求めても良い。 The distance from the ALG detection center (third distance) may be obtained.
[0141] そして、主制御装置 50では、上記の第 1、第 2、第 3の距離のうちの少なくとも 2つの 平均値をァライメント系 ALGのベースライン (計測値)とする。また、主制御装置 50で は、上記の各位置関係に基づいてレチクル干渉計 53の測長軸によって規定されるレ チクルステージ座標系と干渉計システム 118の干渉計 68, 96の測長軸によって規定 されるウェハステージ座標系との関係を求める。 [0141] Then, main controller 50 sets the average value of at least two of the first, second, and third distances as the baseline (measured value) of the alignment ALG. Further, main controller 50 uses the reticle stage coordinate system defined by the length measurement axis of reticle interferometer 53 and the length measurement axes of interferometers 68 and 96 of interferometer system 118 based on the above positional relationships. Obtain the relationship with the specified wafer stage coordinate system.
[0142] 本実施形態では、上述のレチクルァライメント系 RAa, RAbを用いたマークの検出 は、投影光学系 PL及び水 Lqを介して行われる。 In the present embodiment, the detection of marks using the above-described reticle alignment systems RAa and RAb is performed via the projection optical system PL and the water Lq.
[0143] そして、上述した両ステージ WST、 MST上における作業が終了した段階で、主制 御装置 50は、計測ステージ MSTとウェハステージ WSTとを、接触させ、その状態を 維持しつつ、 XY面内で駆動し、ウェハステージ WSTを投影ユニット直下に戻す。こ の移動中も、主制御装置 50では、 X軸干渉計 96からの干渉計ビームがウェハテー ブル WTB上の移動鏡 67Χに照射されるようになった!/、ずれかの時点で X軸干渉計 9 6のリセットを実行している。そして、ウェハステージ WSTに保持された交換後のゥェ ハに対してウェハァライメント、すなわちァライメント系 ALGによる交換後のウェハ上 のァライメントマークの検出を行い、ウェハ上の複数のショット領域の位置座標を算出 する。なお、前述のように、計測ステージ MSTとウェハステージ WSTとを非接触の状 態にしても良い。 [0143] At the stage where the work on both stages WST and MST is completed, main controller 50 brings measurement stage MST and wafer stage WST into contact with each other, and changes the state. While maintaining, drive in the XY plane to return the wafer stage WST directly below the projection unit. Even during this movement, the main controller 50 irradiates the interferometer beam from the X-axis interferometer 96 to the moving mirror 67Χ on the wafer table WTB! / A total of 96 resets have been performed. Then, the wafer alignment, that is, the alignment mark on the replaced wafer by the alignment system ALG is detected for the replaced wafer held by the wafer stage WST, and the positions of the plurality of shot areas on the wafer are detected. Calculate the coordinates. As described above, measurement stage MST and wafer stage WST may be in a non-contact state.
[0144] その後、主制御装置 50では、先程とは逆にウェハステージ WSTと計測ステージ Μ STの Υ軸方向の位置関係を保ちつつ、両ステージ WST、 MSTを— Y方向に同時 に駆動して、ウェハステージ WST (ウエノ、)を投影光学系 PLの下方に移動させた後 、計測ステージ MSTを所定の位置に退避させる。  Thereafter, main controller 50 simultaneously drives both stages WST and MST in the −Y direction while maintaining the positional relationship in the の -axis direction between wafer stage WST and measurement stage ΜST, contrary to the above. After moving the wafer stage WST (Ueno) below the projection optical system PL, the measurement stage MST is retracted to a predetermined position.
[0145] 次いで、主制御装置 50では、前述の一対のレチクルァライメント検出系 RAa, RAb によって基準マーク板 FM1上の一対の第 1基準マークを同時に検出可能な位置に ウエノ、ステージ WSTを移動し、基準マーク板 FM1上の一対の第 1基準マークと対応 するレチクル上の一対のレチクルァライメントマークとをレチクルァライメント系 RAa、 RAbを用いて同時に検出して一対の第 1基準マークと対応するレチクルァライメント マークの位置関係(すなわちレチクル Rとウェハステージ WST (ウェハ W)との位置関 係)を検出する。  [0145] Next, main controller 50 moves ueno and stage WST to a position where a pair of first fiducial marks on fiducial mark plate FM1 can be simultaneously detected by a pair of reticle alignment detection systems RAa and RAb described above. And a pair of first reference marks on the reference mark plate FM1 and a pair of reticle alignment marks on the corresponding reticle are simultaneously detected using the reticle alignment system RAa and RAb, and correspond to the pair of first reference marks. Detects the positional relationship of the reticle alignment marks (ie, the positional relationship between reticle R and wafer stage WST (wafer W)).
[0146] なお、本実施形態においては、ウェハ交換後に、基準マーク板 FM1上の第 1基準 マークと対応するレチクル上のレチクルァライメントマークとをレチクルァライメント系 R Aa、 RAbを用いて検出している力 これを省略してもよい。  [0146] In the present embodiment, after the wafer is replaced, the first fiducial mark on fiducial mark plate FM1 and the corresponding reticle alignment mark on the reticle are detected using reticle alignment systems R Aa and RAb. This force may be omitted.
[0147] その後、主制御装置 50では、上記の位置関係と先に計測したベースラインとウェハ ァライメントの結果と干渉計 68, 96の計測値とに基づいて、新たなウェハに対して、 前述と同様のステップ 'アンド'スキャン方式の露光動作を実行し、ウェハ上の複数の ショット領域にレチクルパターンを順次転写する。  [0147] Thereafter, main controller 50 performs the above-described processing on a new wafer based on the above positional relationship, the previously measured baseline, the results of the wafer alignment, and the measured values of interferometers 68 and 96. In the same step, the exposure operation of the 'and' scan method is executed, and the reticle pattern is sequentially transferred to a plurality of shot areas on the wafer.
[0148] なお、上記の説明では、計測動作として、ベースライン計測を行う場合について説 明したが、これに限らず、ウェハステージ WSTで各ウェハの交換を行っている間に、 計測ステージ MSTの計測器群 43の計測器を用いて、照度計測、照度むら計測、空 間像計測、波面収差計測の少なくとも一つを行い、その計測結果をその後に行われ るウェハの露光に反映させることとしても良い。具体的には、例えば、計測結果に基 づいて前述した結像特性補正コントローラ 181により投影光学系 PLの調整を行うこと とすることができる。 [0148] In the above description, the case where the baseline measurement is performed as the measurement operation is described. However, the present invention is not limited to this. Measurement stage Performs at least one of illuminance measurement, illuminance unevenness measurement, aerial image measurement, and wavefront aberration measurement using the measuring instruments in the MST measuring instrument group 43, and uses the measurement results for subsequent wafer exposure. It may be reflected. Specifically, for example, the above-described imaging characteristic correction controller 181 can adjust the projection optical system PL based on the measurement result.
[0149] ところで、上述したように、前記各計測器を用いた計測は、計測テーブル MTBの各 計測器の計測部材 (光学部材 126、パターン板 103、スリット板 105、波面収差計測 用パターン板 107など)上に、水 (液体) Lqが満たされた状態で行われるため、各計 測部材の表面 (上面)には撥液膜としての撥水 HWRFが形成されている。し力しなが ら、前述の如ぐこの撥水膜 WRFは紫外線に弱ぐ長時間紫外線が照射されると劣 化し、その光透過率が低下する。この撥水膜 WRFの光透過率の低下現象は、各種 計測の中でも特に投影光学系 PLの像面上で照明光 ILの光量そのものを計測する 照度モニタ 122や、照度むら計測器 104の計測値に大きな影響を与える。これら照 度モニタ 122、照度むら計測器 104は、例えば投影光学系 PLの結像特性の照射変 動や、透過率変動などの予測演算を行う際などに、その予測演算に用いられるモデ ル関数を決定するための初期条件の設定のためのレチクルや投影光学系などの透 過率計測を行うときなどに用いられる。あるいは、照度モニタ 122、照度むら計測器 1 04の計測結果は、ウェハ Wに対する積算露光量 (ドーズ量)を制御するために用い られる。  By the way, as described above, the measurement using each of the measuring instruments is performed by measuring the measuring members (optical member 126, pattern plate 103, slit plate 105, wavefront aberration measuring pattern plate 107) of the measuring table MTB. ) Is filled with water (liquid) Lq, so that a water-repellent HWRF as a liquid-repellent film is formed on the surface (upper surface) of each measurement member. However, as described above, the water-repellent film WRF deteriorates when exposed to ultraviolet light for a long time, which is weak to ultraviolet light, and its light transmittance decreases. Among the various measurements, the decrease in the light transmittance of the water-repellent film WRF is measured by the illuminance monitor 122, which measures the amount of illumination light IL itself on the image plane of the projection optical system PL, and the measurement value of the illuminance unevenness measuring device 104. Have a great effect on The illuminance monitor 122 and the illuminance non-uniformity measuring device 104 are model functions used for the prediction calculation when, for example, performing a prediction calculation such as an irradiation variation of an imaging characteristic of the projection optical system PL or a transmittance variation. This is used when measuring the transmittance of a reticle or a projection optical system for setting initial conditions for determining the transmittance. Alternatively, the measurement results of the illuminance monitor 122 and the illuminance unevenness measuring device 104 are used to control the integrated exposure amount (dose amount) for the wafer W.
[0150] 本実施形態の露光装置 10では、照度モニタ 122の計測値に関して、撥水膜 WRF の光透過率低下の影響を極力抑制するような照度モニタ 122の計測値(出力)の較 正方法が採用されている。以下、この方法について説明する。図 10には、照度モ- タ 122の計測値(出力)の較正に関連する、主制御装置 50内の CPUの処理アルゴリ ズムに対応するフローチャートが示されて 、る。  In exposure apparatus 10 of the present embodiment, with respect to the measurement value of illuminance monitor 122, a method of calibrating the measurement value (output) of illuminance monitor 122 so as to minimize the influence of the decrease in light transmittance of water-repellent film WRF. Has been adopted. Hereinafter, this method will be described. FIG. 10 shows a flowchart corresponding to the processing algorithm of the CPU in main controller 50, which is related to the calibration of the measurement value (output) of illuminance motor 122.
[0151] この図 10のフローチャートで示される処理がスタートするのは、上位装置又はオペ レータからの指示、あるいは所定のプログラムに従う処理により投影光学系 PLの像 面での照明光 ILの照度 (平均照度)計測の必要性が生じたときである。  [0151] The processing shown in the flowchart of Fig. 10 starts when the illuminance (average) of the illuminating light IL on the image plane of the projection optical system PL is obtained by an instruction from a higher-level device or an operator, or by processing according to a predetermined program. This is when the need for illuminance) measurement arises.
[0152] 前提条件として、レチクルステージ RST上からレチクルがアンロードされて!/、る(す なわちレチクルステージ RSTにはレチクルが搭載されていない)ものとする。 [0152] As a prerequisite, the reticle is unloaded from reticle stage RST! That is, the reticle stage RST does not have a reticle.
[0153] まず、ステップ 302において、投影光学系 PLの直下に照度モニタ 122が位置する ように計測ステージ MST (計測テーブル MTB)を移動する。勿論、このとき、投影光 学系 PLの下方にウェハステージ WSTが位置して!/、る場合には、そのウェハステー ジ WSTを投影光学系 PLの下方力も退避させた後に上記の計測ステージ MST (計 測テーブル MTB)の移動が行われることは言うまでもない。なお、本実施形態におい て、「投影光学系 PLの直下の位置」とは、前述した固定ブラインドによって規定される 照明領域 IARの像面上への投影領域 (像面上の照明光 ILの照射領域、すなわち露 光領域 IA)の中心 (投影光学系 PLの光軸にほぼ一致)が照度モニタ 122の受光面 の中心にほぼ一致する位置を指す。 First, in step 302, the measurement stage MST (measurement table MTB) is moved so that the illuminance monitor 122 is located immediately below the projection optical system PL. Of course, at this time, if the wafer stage WST is located below the projection optical system PL! /, If the wafer stage WST is also retracted under the projection optical system PL, the measurement stage MST ( Needless to say, the measurement table MTB) is moved. In the present embodiment, “the position immediately below the projection optical system PL” refers to the projection area on the image plane of the illumination area IAR defined by the above-mentioned fixed blind (irradiation of the illumination light IL on the image plane). The center of the region, that is, the exposure region IA) (substantially coincides with the optical axis of the projection optical system PL) substantially coincides with the center of the light receiving surface of the illuminance monitor 122.
[0154] なお、投影光学系 PLの像面側 (先端レンズ 91の直下)に水 (液体) Lqが保持され たまま、計測ステージ MST上の照度モニタ 122が投影光学系 PLの直下に移動する ので、投影光学系 PLの先端レンズ 91と照度モニタ 122の上面との間は液体 Lqで満 たされている。 [0154] The illuminance monitor 122 on the measurement stage MST moves directly below the projection optical system PL while the water (liquid) Lq is held on the image plane side of the projection optical system PL (immediately below the tip lens 91). Therefore, the space between the tip lens 91 of the projection optical system PL and the upper surface of the illuminance monitor 122 is filled with the liquid Lq.
[0155] 次のステップ 306で、照度モニタ 122により投影光学系 PLの像面照度の計測を行 い、計測値 Pを取得する。具体的には、光源 16に予め定めた所定パルス数のテスト 発光を行わせると共に、光源 16で発光され照明光学系 12を介してレチクルを介する ことなく投影光学系 PL、水 Lq及び撥水 HWRFを通過した照明光 IL (第 1の検出光) を照射量モニタ 122の第 1センサ 128でパルス毎に受光し、そのパルス毎の第 1セン サ 128 (すなわち照射量モニタ 122)の出力(検出信号)を取り込む。この照射量モ- タ 122の出力(検出信号)の取り込みが行われる上記のテスト発光は、インテグレータ センサ 46の出力 DS (digitZpulse) (又は光源 16内部のエネルギモニタの出力)のパ ルス毎の平均値が所望の値になるように光源 16をフィードバック制御しつつ行われる 。そして、得られた照射量モニタ 122の出力の積算値の所定パルス数の平均値を、 像面照度の計測値 P;として取得する。ここで、 iは、投影光学系 PLの像面の照度 (平 均照度)の初期状態 (照射量モニタ 22の使用開始時)から第 i回目の計測値であるこ とを示す。なお、計測値 Pの取得後、先端レンズ 91の直下の水は回収される。 [0155] In the next step 306, the illuminance monitor 122 measures the image plane illuminance of the projection optical system PL, and acquires the measurement value P. Specifically, the light source 16 emits a test light emission of a predetermined pulse number, and the projection optical system PL, water Lq, and water repellent HWRF emitted from the light source 16 pass through the illumination optical system 12 without passing through a reticle. The illumination light IL (first detection light) that has passed through is received by the first sensor 128 of the dose monitor 122 for each pulse, and the output (detection) of the first sensor 128 (that is, the dose monitor 122) for each pulse is received. Signal). The above test light emission, in which the output (detection signal) of the dose monitor 122 is taken, is the average of each pulse of the output DS (digitZpulse) of the integrator sensor 46 (or the output of the energy monitor inside the light source 16). This is performed while the light source 16 is feedback-controlled so that the value becomes a desired value. Then, an average value of a predetermined number of pulses integrated value of the output of the resulting irradiation monitor 122, the measurement value of the image plane illuminance P; obtained as. Here, i indicates that the illuminance (average illuminance) of the image plane of the projection optical system PL is the i-th measurement value from the initial state (at the start of use of the irradiation amount monitor 22). After the measurement value P is obtained, the water immediately below the tip lens 91 is collected.
[0156] 次のステップ 308では、上記ステップ 306の処理が第 1回目の照度計測である力否 かを判断する。そして、第 1回目(照射量モニタ 22の使用開始時点 (撥水膜 WRFが 全く劣化していない時点)から第 1回目)である場合には、このステップ 308における 判断が肯定され、ステップ 310に移行する。このステップ 310では、投影光学系 PLの 直下に基準照度モニタ 122'が位置するように計測ステージ MST (計測テーブル M TB)を移動する。 [0156] In the next step 308, the processing in step 306 is the first illuminance measurement. Judge. If it is the first time (the first time since the start of use of the irradiation amount monitor 22 (the time when the water-repellent film WRF is not degraded at all)), the determination in step 308 is affirmed, and the process proceeds to step 310. Transition. In this step 310, the measurement stage MST (measurement table MTB) is moved so that the reference illuminance monitor 122 'is located immediately below the projection optical system PL.
[0157] 次のステップ 312で、基準照度モニタ 122'により投影光学系 PLの像面照度の計 測を行い、計測値 Prefを取得する。具体的には、上記ステップ 306と同様にインテグ レータセンサ 46の出力 DS (digit/pulse) (又は光源 16内部のエネルギモニタ)の平 均値が所望の値 (ステップ 306と同じ値)になるように光源 16をフィードバック制御し つつ、光源 16に所定パルス数のテスト発光を行わせると共に、各パルス光毎にレチ クルを介することなく投影光学系 PLを通過した照明光 ILを受光した基準照度モニタ 122'の出力(検出信号)を取り込む。そして、所定パルス数の照度モニタ 122'の出 力の平均値を、計測値 Prefとして取得する。  [0157] In the next step 312, the reference illuminance monitor 122 'measures the image plane illuminance of the projection optical system PL, and acquires the measurement value Pref. Specifically, the average value of the output DS (digit / pulse) of the integrator sensor 46 (or the energy monitor inside the light source 16) becomes a desired value (the same value as in step 306) as in step 306 described above. The reference illuminance monitor 122 receives the illumination light IL that has passed through the projection optical system PL without passing through the reticle, while causing the light source 16 to perform test emission of a predetermined number of pulses while performing feedback control of the light source 16. Capture the output (detection signal) of '. Then, the average value of the outputs of the illuminance monitor 122 'for a predetermined number of pulses is acquired as the measured value Pref.
[0158] 次のステップ 314では、上記ステップ 306で取得した計測値 P =Pと、上記ステップ  [0158] In the next step 314, the measured value P = P obtained in the above step 306 and the above step
i 1  i 1
312で取得した計測値 Pref = Prefとの比(P /Pref )を計算して、内部メモリ内の初  Calculate the ratio (P / Pref) to the measured value Pref = Pref obtained in 312 and
i 1 1 1  i 1 1 1
期値格納領域に格納した後、ステップ 316に進んで撥水膜の光透過率の減少を補 償するための補正パラメータ γ (較正情報)の初期値として γ = 1を設定(内部メモリ の γ格納領域に格納)した後、ステップ 332に移行する。ここで、 γは、次式(1)で定 義される補正パラメータである。  After storing in the initial value storage area, the process proceeds to step 316 to set γ = 1 as an initial value of a correction parameter γ (calibration information) for compensating for a decrease in the light transmittance of the water-repellent film (γ in the internal memory). After that, the process proceeds to step 332. Here, γ is a correction parameter defined by the following equation (1).
[0159] [数 1] [0159] [Number 1]
7= … ) 7 =…)
Pref,  Pref,
[0160] 従って、第 1回目の計測時には、 i= 1であるから、式(1)の右辺 = 1となるので、ス テツプ 316では、 γ = 1としたのである。 [0160] Accordingly, at the time of the first measurement, since i = 1, the right side of equation (1) = 1, so that in step 316, γ = 1.
[0161] この一方、上記ステップ 306の処理が第 2回目以降の照度計測である場合には、上 記ステップ 308における判断が否定され、ステップ 318に移行する。このステップ 318 では、装置のログデータを参照し、前回の γの更新時 (又は設定時:以下、適宜初期 時刻 tと呼ぶ)からの照度モニタ 122に対する照射パルス数 n力 所定パルス数 NにOn the other hand, if the processing in step 306 is the second or subsequent illuminance measurement, the determination in step 308 above is denied, and the flow shifts to step 318. This step 318 Then, referring to the log data of the device, the number of irradiation pulses n to the illuminance monitor 122 from the previous update of γ (or at the time of setting:
0 0
達した力否かを判断し、この判断が肯定された場合には、ステップ 320に移行する。 なお、ステップ 318では、照射パルス数 nが所定パルス数 Nに達したカゝ否かを判断す ることで、実質的に照度モニタ 122に対する照明光 ILの積算照射量 (積算照射エネ ルギ量)が所定量に達した力否かを判断しているものである。従って、照射パルス数 n ではなぐ前回の Ίの更新時からの照度モニタ 122に対する照明光 ILの積算照射量 が所定値に達した力否かを判断しても良 、。 It is determined whether the force has been reached or not, and if this determination is affirmed, the process proceeds to step 320. In step 318, by determining whether or not the irradiation pulse number n has reached the predetermined pulse number N, the accumulated irradiation amount of the illumination light IL to the illuminance monitor 122 (integrated irradiation energy amount) is substantially determined. Is to determine whether or not the force has reached a predetermined amount. Therefore, it may be determined whether or not the integrated light amount of the illumination light IL to the illuminance monitor 122 from the time of the previous update of Ί , which is different from the irradiation pulse number n, has reached a predetermined value.
[0162] ステップ 320では、前述のステップ 310と同様に投影光学系 PLの直下に基準照度 モニタ 122'が位置する位置に計測ステージ MST (計測テーブル MTB)を移動した 後、次のステップ 322に進んで、前述のステップ 312と同様にして基準照度モニタ 12 2'により投影光学系 PLの像面照度の計測を行い、計測値 Prefを取得する。この場 合、光源 16で発光された照明光 ILは撥液膜及び水 Lqを介さずに (投影光学系 PL を介して)基準照度モニタ 122'で受光される。  [0162] In step 320, the measurement stage MST (measurement table MTB) is moved to a position where the reference illuminance monitor 122 'is located immediately below the projection optical system PL, as in step 310 described above, and then the process proceeds to the next step 322. Then, the image plane illuminance of the projection optical system PL is measured by the reference illuminance monitor 122 'in the same manner as in step 312, and the measured value Pref is obtained. In this case, the illumination light IL emitted from the light source 16 is received by the reference illuminance monitor 122 '(via the projection optical system PL) without passing through the liquid repellent film and the water Lq.
[0163] 次のステップ 324では、上記ステップ 306で取得した計測値 P.と、上記ステップ 322 で取得した計測値 Prefとの比(P /Pref)を計算して、内部メモリ内の所定格納領域に 格納(この領域のデータは、上書きされる)した後、ステップ 326に進む。このステップ 326では、前述の式(1)で定義される補正値 γを更新する。この γの更新は、前述 の初期値格納領域に格納されて 、るデータと、その時点で所定格納領域に格納され ているデータをそれぞれ読み出した後に、これらを用いて式(1)の演算により γを算 出し、この算出結果を、 γ格納領域に上書きすることで実現される。  [0163] In the next step 324, the ratio (P / Pref) between the measured value P. obtained in step 306 and the measured value Pref obtained in step 322 is calculated, and a predetermined storage area in the internal memory is calculated. After that, the process proceeds to step 326. In this step 326, the correction value γ defined by the above equation (1) is updated. The update of γ is performed by reading out the data stored in the above-described initial value storage area and the data stored in the predetermined storage area at that time, and then using these, by the calculation of equation (1). This is realized by calculating γ and overwriting the calculation result in the γ storage area.
[0164] 次のステップ 328では、パラメータお ρ、 ηをそれぞれ 0に初期化した後、ステップ 33 2に進む。ここで、パラメータお ρは、後述するパラメータ δ (較正情報)の推定演算に 用いられる、次式(2)で表されるモデル式に含まれるパラメータであり、 tは初期時刻 t 力もの経過時間 [sec]を示し、 pは初期時刻 t力もの照度モニタ 122の積算照射パヮ [0164] In the next step 328, the parameters ρ and η are each initialized to 0, and the process proceeds to step 332. Here, the parameters ρ are parameters included in the model formula expressed by the following equation (2), which are used for estimating a parameter δ (calibration information) described later, and t is the initial time t the elapsed time of the force [sec], and p is the total irradiation power of the illuminance monitor 122 at the initial time t.
0 0 0 0
一(すなわち t以降に照度モニタ 122に対して照射された総エネルギ) Q[]を示す。ま  One (ie, the total energy applied to the illuminance monitor 122 after t) Q []. Ma
0  0
た、 ηは前述の照射パルス数である。  Η is the number of irradiation pulses described above.
[0165] [数 2]
Figure imgf000043_0001
[0165] [Number 2]
Figure imgf000043_0001
[0166] 上式(2)にお 、て、 Ttは、時間依存の減衰係数 [sec]、 Tpはエネルギ依存の減衰 係数 [sec]である。 In the above equation (2), Tt is a time-dependent damping coefficient [sec], and Tp is an energy-dependent damping coefficient [sec].
[0167] ここで、上記式(2)を採用する理由について説明する。 [0167] Here, the reason for adopting the above equation (2) will be described.
[0168] 撥水膜の光透過率変化を示すモデル式 (伝達関数)として、次式 (3)で示される関 数を用いることができる。  [0168] A function represented by the following equation (3) can be used as a model equation (transfer function) indicating a change in light transmittance of the water-repellent film.
[0169] [数 3] η = η,0 χ β 10 x e Tp■■■{?>) [0169] [Equation 3] η = η, 0 χ β 10 xe Tp ■■■ {?>)
[0170] ここで、 r?は現在の撥水膜の光透過率であり、 r? )の撥水膜の光透
Figure imgf000043_0002
Here, r? Is the light transmittance of the current water-repellent film, and the light transmittance of the water-repellent film in r?) Is
Figure imgf000043_0002
過率であり、 t、 Tt、 p、 Tpは、前述した通りである。なお、時間依存の減衰係数 Tt及 びエネルギ依存の減衰係数 Tpは、シミュレーション結果などに基づいて、予め定めら れる。  And t, Tt, p, and Tp are as described above. Note that the time-dependent damping coefficient Tt and the energy-dependent damping coefficient Tp are determined in advance based on simulation results and the like.
[0171] 上式 (3)から明らかなように、撥水膜の光透過率は経過時間 tの増加に伴って低下 する。従って、撥水膜の光透過率の経時的な低下に起因する照度モニタ 122による 像面照度の計測値の低下を補償するためには、経過時間の増加に伴って増加する ノ メータであって、上記式(3)の関数に関連するパラメータを用いなければならな い。  [0171] As is apparent from the above equation (3), the light transmittance of the water-repellent film decreases as the elapsed time t increases. Therefore, in order to compensate for the decrease in the measured value of the image plane illuminance by the illuminance monitor 122 due to the temporal decrease in the light transmittance of the water-repellent film, the nomometer increases with the lapse of time. However, parameters related to the function of the above equation (3) must be used.
[0172] そこで、式 (3)を変形して初期時刻 (t )の撥水膜の光透過率と現在の撥水膜の光  [0172] Therefore, the equation (3) is modified to change the light transmittance of the water-repellent film at the initial time (t) and the light of the current water-repellent film.
0  0
透過率との比を表す関数を求めると、次式 (4)のようになる。  When a function representing the ratio to the transmittance is obtained, the following equation (4) is obtained.
[0173] [数 4] [0173] [Number 4]
^i = eT' x e7p - - - (4) ^ i = e T 'xe 7p--- (4)
[0174] 式 (4)の関数で表されるパラメータは、経過時間の増加に伴って増加するパラメ一 タであって、上記式(3)の関数に関連するパラメータである。従って、基準照度モニタ 122'による計測が行われる度に更新される前述のパラメータ γを時刻 tにおける初 期値とし、この γと上式 (4)との積に相当する前述の式(2)のモデル関数を照度モ- タ 122の出力(計測値)の較正パラメータ δの推定演算用に用いることとしたものであ る。 [0174] The parameter represented by the function of equation (4) is a parameter that increases as the elapsed time increases, and is a parameter related to the function of equation (3). Therefore, the parameter γ, which is updated each time measurement is performed by the reference illuminance monitor 122 ′, is initialized at time t. The model function of the above equation (2) corresponding to the product of γ and the above equation (4) is used for estimating the calibration parameter δ of the output (measured value) of the illuminance motor 122. It is said that.
[0175] ステップ 332では、その時点で γ格納領域に格納されて 、る γを較正パラメータ δ の格納領域にそのままコピーして上書きすることで、 δ = γの設定を行った後、ステ ップ 334に移行する。  [0175] In step 332, by setting the value of δ = γ by copying and overwriting the γ stored in the γ storage area at that point in the storage area of the calibration parameter δ, Move to 334.
[0176] 一方、上記ステップ 318における判断が否定された場合には、ステップ 330に移行 して、前述の式(2)で定義される較正パラメータ δを更新する。この δの更新は、前 述の γ格納領域に格納されているデータを読み出した後に、式(2)の演算により δ を算出し、この算出結果を、 δ格納領域に上書きすることで実現される。ここで、式(2 )の演算の祭に必要となる初期時刻 tからの照度モニタ 122の積算照射パワー pは、  [0176] On the other hand, if the determination in step 318 is denied, the flow shifts to step 330 to update the calibration parameter δ defined by the above equation (2). The updating of δ is realized by reading out the data stored in the γ storage area described above, calculating δ by the operation of equation (2), and overwriting the calculation result in the δ storage area. You. Here, the integrated irradiation power p of the illuminance monitor 122 from the initial time t required for the festival of the calculation of the equation (2) is
0  0
以下のようにして求められる。  It is determined as follows.
[0177] すなわち、照度モニタ 122を用いて投影光学系の PLの像面での照度(照射パワー )計測を行う度に、得られた照度モニタ 122の出力から単位時間当たりの照射パワー [W] (又は 1パルス当たりの照射パワー CiZpulse])が算出され、対応する照射量計測 が行われる時間 (又は対応する照射量計測の際のパルス数)とともに、照度モニタ 12 2に対する(すなわち、照度モニタ 122の撥水膜 WRFに対する)光の照射履歴デー タとして、メモリ 51内に格納されている。  [0177] That is, every time the illuminance (irradiation power) is measured on the image plane of the PL of the projection optical system using the illuminance monitor 122, the irradiation power per unit time [W] (Or the irradiation power per pulse CiZpulse]) is calculated and the time for the corresponding dose measurement (or the number of pulses for the corresponding dose measurement) is given to the illuminance monitor 122 (ie the illuminance monitor 122). This is stored in the memory 51 as light irradiation history data (for the water repellent film WRF).
[0178] 従って、各回の計測について、単位時間(又は 1パルス)当たりの照射パワーと、対 応する照射量計測が行われる時間 (又は対応する照射量計測の祭のパルス数)を読 み出し、両者を掛けることで、その 1回の計測中の照射エネルギを算出する。このよう な算出を、初期時刻 t以降に行われた計測について行い、得られた各回の計測中の  [0178] Therefore, for each measurement, the irradiation power per unit time (or 1 pulse) and the time during which the corresponding dose measurement is performed (or the number of pulses of the corresponding dose measurement festival) are read out. By multiplying them, the irradiation energy during one measurement is calculated. Such calculation is performed for measurements performed after the initial time t, and the obtained
0  0
照射エネルギの総合計を算出することで、初期時刻 t以降の総エネルギを算出する  Calculate the total energy after the initial time t by calculating the total irradiation energy
0  0
[0179] 上述のようにしてステップ 330において、較正パラメータ δを更新した後、前述のス テツプ 334に移行する。 After the calibration parameter δ is updated in step 330 as described above, the flow shifts to step 334 described above.
[0180] ステップ 334では、ステップ 306で取得した計測値 Ρに、較正パラメータ δを掛けて 、撥水膜の光透過率変動の影響を補償した Ρ= δ Χ Ρを、像面照度の計測結果とし て出力、例えばディスプレイ DISに表示するとともに、内部メモリ又はメモリ 51に記憶 する。 [0180] In step 334, the measurement value で obtained in step 306 is multiplied by the calibration parameter δ to compensate for the effect of the light transmittance variation of the water-repellent film, and Ρ = δ Χ 、 is calculated as the image plane illuminance measurement result. age Output, for example, on the display DIS, and stored in the internal memory or the memory 51.
[0181] 上記ステップ 334の処理を終了後、本ルーチンの処理を終了して、通常の処理に 移行する。なお、光学部材 126上の撥水膜 WRFの光透過率変化 (低下)が小さい場 合には、照度モニタ 122を用いた計測毎に図 10のフローチャートの処理アルゴリズム を実行しなくても良い。この場合、次に上記のフローチャートの処理アルゴリズムが実 行されるまでの間に、照度モニタ 122を用いた何らかの計測を行う場合には、その計 測によって得られた照度モニタ 122の計測値 Pに、その時点で δ格納領域に格納さ れている較正パラメータ δを乗じた値を、照度モニタ 122の計測値の代わりに用いて ウェハ Wを露光するための各種の処理を行うことで、照度モニタ 122表面の撥水膜 WRFの光透過率変動の影響を殆ど受けることがない処理が可能となる。  [0181] After the processing of step 334 is completed, the processing of this routine is completed, and the process proceeds to normal processing. When the change (decrease) in the light transmittance of the water-repellent film WRF on the optical member 126 is small, the processing algorithm in the flowchart of FIG. In this case, if any measurement using the illuminance monitor 122 is performed before the processing algorithm of the above flowchart is executed next, the measured value P of the illuminance monitor 122 obtained by the measurement is used. By performing various processes for exposing the wafer W using the value multiplied by the calibration parameter δ stored in the δ storage area at that time instead of the measurement value of the illuminance monitor 122, the illuminance monitor 122 Water-repellent film on the surface Processing that is hardly affected by fluctuations in the light transmittance of the WRF can be performed.
[0182] なお、上述の実施形態では、補正値 γの更新のための基準データの取得に用いら れる基準センサ(第 2センサ)として計測テーブル ΜΤΒ上の基準照度モニタ 122'を 用いる場合について説明したが、これに限らず、撥液膜を介さずに照明光 ILを受光 可能なインテグレータセンサ 46を用いても良い。この場合には、前述した図 10のフロ 一チャート中のステップ 310、 312、 320及び 322の処理を省略したフローチャートに 対応する処理アルゴリズムを採用することができる。その理由は、インテグレータセン サ 46を第 2センサとして用いる場合、前述のステップ 306で、照度モニタ 122により投 影光学系 PLの像面上で光源 16から発射され照明光学系 12及び投影光学系 PLを 通過した光が第 1の検出光として受光されて照度計測がなされるときに、これと同時 に、インテグレータセンサ 46により、光源 16から発射された光のうち照明光学系 12 内部の光路上で分岐された光 (照明光 IL)が第 2の検出光として受光される。すなわ ち、ステップ 306で、必然的に照度モニタ 122 (第 1センサ 128)とインテグレータセン サ 46とによる同時計測が行われるからである。  [0182] In the above-described embodiment, a case will be described in which reference illuminance monitor 122 'on measurement table と し て is used as a reference sensor (second sensor) used to acquire reference data for updating correction value γ. However, the invention is not limited thereto, and an integrator sensor 46 that can receive the illumination light IL without passing through the liquid repellent film may be used. In this case, a processing algorithm corresponding to the flowchart in which the processing of steps 310, 312, 320 and 322 in the flowchart of FIG. 10 described above is omitted can be adopted. The reason is that when the integrator sensor 46 is used as the second sensor, in step 306 described above, the illuminance monitor 122 emits the light from the light source 16 on the image plane of the projection optical system PL and the illumination optical system 12 and the projection optical system PL. When the illuminance is measured by receiving the light that has passed through as the first detection light and measuring the illuminance at the same time, the light emitted from the light source 16 is emitted from the light source 16 by the integrator sensor 46 on the optical path inside the illumination optical system 12. The split light (illumination light IL) is received as the second detection light. That is, in step 306, the simultaneous measurement by the illuminance monitor 122 (the first sensor 128) and the integrator sensor 46 are inevitably performed.
[0183] あるいは、光源 16から発射され照明光学系 12を介して投影光学系 PLに向力 光( 照明光 IL)の光路に垂直な面内で移動可能なレチクルステージ RST上に基準セン サ (第 2センサ)を設け、この基準センサにより前記光路上で、前記照明光 ILの少なく とも一部を第 2の検出光として受光することとしても良、。このレチクルステージ RST 上の基準センサを用いる場合、レチクルステージ RST上にレチクル Rをロードしたま まの状態であっても、レチクルステージ RSTを移動するだけで照明光 ILをその基準 センサにより第 2の検出光の受光が可能となるので、スループット悪ィ匕のデメリットを 防ぐ効果がある。 [0183] Alternatively, on the reticle stage RST, which is movable from the light source 16 to the projection optical system PL via the illumination optical system 12 and in a plane perpendicular to the optical path of the directional light (illumination light IL), the reference sensor ( A second sensor) may be provided, and at least a part of the illumination light IL may be received as second detection light on the optical path by the reference sensor. This reticle stage RST When the upper reference sensor is used, even if the reticle R is still loaded on the reticle stage RST, the illumination light IL is received by the reference sensor only by moving the reticle stage RST. This has the effect of preventing the disadvantages of the throughput evil.
[0184] なお、照度むら計測器 104の計測値(出力)の較正は、上述した照度モニタ 122の 場合と同様にして実現できるので、詳細説明は省略する。この場合、補正値 γの更 新のための基準データの取得に用いられる基準センサ(第 2センサ)を計測テーブル ΜΤΒ上に設ける場合、その基準センサとしては、パターン板 103の最上部に撥水膜 が形成されていない点を除き、前述の照明むら計測器 104と同様の較正用のセンサ を用いることができる。  [0184] Note that calibration of the measurement value (output) of the uneven illuminance measuring device 104 can be realized in the same manner as in the case of the illuminance monitor 122 described above, and a detailed description thereof will be omitted. In this case, when a reference sensor (second sensor) used for acquiring reference data for updating the correction value γ is provided on the measurement table ΜΤΒ, the water repellent is located on the top of the pattern plate 103 as the reference sensor. Except that no film is formed, a calibration sensor similar to the illumination unevenness measuring instrument 104 described above can be used.
[0185] また、本実施形態の露光装置 10などの露光装置では、投影光学系 PLの照明光吸 収による結像特性変化の予測などを行う際に、投影光学系 PLに入射する照明光 IL の照射量とともにウェハ反射率を知ることが前提となる。そのウェハ反射率計測の際 に、計測テーブル MTB上の計測用反射板 102が使用される。この計測用反射板 10 2を用いた計測は、必要に応じて、繰り返し行われるので、計測用反射板 102表面の 撥水膜が、照明光 ILの照射により経時的に劣化し、光透過率が劣化する。し力るに、 ウェハ反射率計測方法では、計測用反射板 102の高反射面領域 102H,低反射面 領域 102Lそれぞれの反射率は既知であり、変化しないことを前提として、ウェハ反 射率計測が行われている。従って、計測用反射板 102を用いて、上記公報 (対応米 国特許)に開示される方法をそのまま採用して、ウェハ反射率計測を行った場合、計 測用反射板 102表面の撥水膜の光透過率低下の影響を受け、ウェハ反射率の計測 結果に誤差が生じ、ひいては投影光学系 PLの照明光吸収による結像特性変化の予 測結果に誤差が生じかねない。力かる点に鑑み、本実施形態では、ウェハステージ WST上のウェハに対する反射率の計測に先立って、その前段階として、計測用反 射板 102の高反射面領域 102H、低反射面領域 102Lの反射率に関連する情報の 較正を行っている。以下、この較正方法について説明する。図 11には、反射率に関 連する情報の較正に関連する、主制御装置 50内の CPUの処理アルゴリズムに対応 するフローチャートが示されて!/ヽる。 [0186] この図 11のフローチャートで示される処理がスタートするのは、上位装置又はオペ レータからの指示、あるいは所定のプログラムに従う処理により、ウェハ反射率の計 測が必要になったときである。 Further, in the exposure apparatus such as the exposure apparatus 10 of the present embodiment, the illumination light IL incident on the projection optical system PL is used for predicting a change in the imaging characteristic due to the absorption of the illumination light of the projection optical system PL. It is a prerequisite to know the reflectivity of the wafer together with the amount of irradiation. At the time of the wafer reflectance measurement, the measurement reflection plate 102 on the measurement table MTB is used. Since the measurement using the measurement reflector 102 is repeatedly performed as necessary, the water-repellent film on the surface of the measurement reflector 102 is deteriorated with time by the irradiation of the illumination light IL, and the light transmittance is reduced. Deteriorates. In the wafer reflectivity measurement method, it is assumed that the reflectivity of each of the high-reflection surface area 102H and the low-reflection surface area 102L of the measurement reflector 102 is known and does not change. Has been done. Therefore, when the wafer reflectance is measured using the method disclosed in the above publication (corresponding U.S. patent) as it is using the measurement reflector 102, the water-repellent film on the surface of the measurement reflector 102 is measured. As a result, an error may occur in the measurement result of the wafer reflectance due to the influence of the decrease in the light transmittance, and an error may occur in the prediction result of the imaging characteristic change due to the absorption of the illumination light of the projection optical system PL. In view of the power, in the present embodiment, prior to the measurement of the reflectance of the wafer on the wafer stage WST, as a pre-stage, the high reflection surface area 102H and the low reflection surface area 102L of the measurement reflector 102 are measured. Calibration of information related to reflectance. Hereinafter, this calibration method will be described. FIG. 11 shows a flowchart corresponding to the processing algorithm of the CPU in main controller 50 relating to the calibration of the information relating to the reflectance! [0186] The processing shown in the flowchart of Fig. 11 starts when measurement of the wafer reflectance is required by an instruction from a higher-level device or an operator, or by processing according to a predetermined program.
[0187] 前提条件として、レチクルステージ RST上からレチクルがアンロードされて!/、る(す なわち照明光 ILの光路上にレチクルが無い)ものとする。 As a precondition, it is assumed that the reticle is unloaded from reticle stage RST! (That is, there is no reticle on the optical path of illumination light IL).
[0188] まず、ステップ 402において、第 1回目の計測である力否かを判断する。そして、第First, in step 402, it is determined whether or not the force is the first measurement. And the second
1回目(計測用反射板 102の使用開始時点 (計測用反射板 102表面の撥水膜が全く 劣化していない時点)から第 1回目)の計測である場合には、このステップ 402におけ る判断が肯定され、ステップ 406に移行する。 If this is the first measurement (from the start of use of the measurement reflector 102 (the time when the water-repellent film on the surface of the measurement reflector 102 has not deteriorated at all)), the measurement is performed in step 402. If the determination is affirmative, the process proceeds to step 406.
[0189] 一方、上記ステップ 402の判断が否定された場合には、ステップ 404に進み、装置 のログデータを参照し、補正パラメータ γΎ (これについては後述する)の前回の On the other hand, if the determination in step 402 is denied, the flow advances to step 404 to refer to the log data of the apparatus, and to determine the correction parameters γ and Ύ (this will be described later).
1 2  1 2
更新時 (又は設定時)からの計測用反射板 102に対する照射パルス数 nが、所定パ ルス数 Nに達したカゝ否かを判断し、この判断が肯定された場合には、ステップ 406に 移行する。  It is determined whether the number n of irradiation pulses to the measuring reflector 102 from the time of updating (or the time of setting) has reached a predetermined number N of pulses, and if this determination is affirmed, the process proceeds to step 406. Transition.
[0190] ステップ 406では、投影光学系 PLの直下に基準反射板 202が位置する位置に計 測ステージ MST (計測テーブル MTB)を移動する。勿論、このとき、投影光学系 PL の下方にウェハステージ WSTが位置して!/、る場合には、そのウェハステージ WST を投影光学系 PLの下方力も退避させた後に上記の計測ステージ MST (計測テープ ル MTB)の移動が行われることは言うまでもな!/、。  [0190] In step 406, measurement stage MST (measurement table MTB) is moved to a position where reference reflection plate 202 is located immediately below projection optical system PL. Of course, at this time, if the wafer stage WST is positioned below the projection optical system PL! /, The wafer stage WST is also retracted under the projection optical system PL, and then the measurement stage MST (measurement Needless to say, the table MTB is moved! /.
[0191] 次のステップ 408では、反射量モニタ 47の計測値 Rref (基準データ)を取得する。  [0191] In the next step 408, a measurement value Rref (reference data) of the reflection amount monitor 47 is obtained.
具体的には、光源 16に予め定めた所定パルス数のテスト発光を行わせ、照明光学 系 12からの照明光 ILをレチクルを介することなく投影光学系 PLを介して基準反射板 202に照射し、基準反射板 202からの反射光を投影光学系 PLを介して反射量モ- タ 47でパルス毎に受光し、そのパルス毎の反射量モニタ 47の出力(検出信号)を取 り込む。この反射量モニタ 47の出力(検出信号)の取り込みが行われる上記のテスト 発光は、インテグレータセンサ 46の出力 DS (digitZpulse) (又は光源 16内部のエネ ルギモニタの出力)のパルス毎の平均値が所望の値になるように光源 16をフィードバ ック制御しつつ行われる。そして、得られた反射量モニタ 47の出力の積算値の所定 パルス数の平均値を、計測値 Rrei;として取得する。ここで、 iは、初期状態から第 i回 目の計測値であることを示す。 Specifically, the light source 16 is caused to emit test light of a predetermined pulse number, and the illumination light IL from the illumination optical system 12 is applied to the reference reflector 202 via the projection optical system PL without passing through a reticle. Then, the reflected light from the reference reflector 202 is received for each pulse by the reflection amount monitor 47 via the projection optical system PL, and the output (detection signal) of the reflection amount monitor 47 for each pulse is captured. The above test light emission, in which the output (detection signal) of the reflection amount monitor 47 is taken, is desired to have an average value for each pulse of the output DS (digitZpulse) of the integrator sensor 46 (or the output of the energy monitor inside the light source 16). The feedback control is performed on the light source 16 so that the value becomes as follows. Then, the predetermined value of the integrated value of the output of the obtained reflection amount monitor 47 is determined. The average value of the number of pulses is obtained as the measured value Rrei; Here, i indicates the i-th measured value from the initial state.
[0192] 次のステップ 410では、投影光学系 PLの直下に計測用反射板 102の高反射面領 域 102Hが位置する位置に計測ステージ MST (計測テーブル MTB)を移動する。  In the next step 410, measurement stage MST (measurement table MTB) is moved to a position where high reflection surface area 102H of measurement reflection plate 102 is located immediately below projection optical system PL.
[0193] 次のステップ 414では、反射量モニタ 47の計測値 RHを取得する。具体的には、計 測ステージ MST上の計測用反射板 102の高反射面領域 102Hを投影光学系 PLの 直下に移動させるとともに、前述の液浸装置 132を用いて、投影光学系 PLの像面側 (先端レンズ 91の直下)に水 (液体) Lqを供給し、投影光学系 PLの先端レンズ 91と 計測用反射板 102の高反射面領域 102Hとの間に液体 Lqを満たす。そして、光源 1 6に上記ステップ 408と同様のテスト発光を行わせ、照明光学系 12からの照明光 IL をレチクルを介することなく投影光学系 PL及び水 Lqを介してその表面に撥液膜が形 成された計測用反射板 102の高反射面領域 102Hに照射する。そして、計測用反射 板 102からの反射光を水 Lq及び投影光学系 PLを介して反射量モニタ 47でパルス 毎に受光し、そのパルス毎の反射量モニタ 47の出力(検出信号)の積算値の所定パ ルス数の平均値を、計測データとしての計測値 RHとして取得する。  [0193] In the next step 414, the measurement value RH of the reflection amount monitor 47 is obtained. Specifically, the high-reflection surface area 102H of the measurement reflector 102 on the measurement stage MST is moved directly below the projection optical system PL, and the image of the projection optical system PL is Water (liquid) Lq is supplied to the surface side (immediately below the front lens 91), and the liquid Lq is filled between the front lens 91 of the projection optical system PL and the high reflection surface area 102H of the measuring reflector 102. Then, the light source 16 is caused to emit the same test light emission as in the step 408, and the illuminating light IL from the illumination optical system 12 passes through the projection optical system PL and the water Lq without passing through the reticle, and a liquid-repellent film is formed on the surface thereof. Irradiate the high-reflection surface area 102H of the formed reflection plate 102 for measurement. The reflected light from the measuring reflector 102 is received for each pulse by the reflection monitor 47 via the water Lq and the projection optical system PL, and the output value (detection signal) of the reflection monitor 47 for each pulse is integrated. The average value of the predetermined number of pulses is obtained as the measurement value RH as the measurement data.
[0194] 次のステップ 416では、投影光学系 PLの直下に計測用反射板 102の低反射面領 域 102Lが位置するように計測ステージ MST (計測テーブル MTB)を移動する。この 移動は、投影光学系 PLの先端レンズ 91と計測テーブル MTBとの間に水 Lqを保持 した状態で行われる。  [0194] In the next step 416, the measurement stage MST (measurement table MTB) is moved so that the low reflection surface area 102L of the measurement reflection plate 102 is located directly below the projection optical system PL. This movement is performed while holding the water Lq between the tip lens 91 of the projection optical system PL and the measurement table MTB.
[0195] 次のステップ 418では、前述のステップ 414と同様のテスト発光を行って、照明光学 系 12からの照明光 ILをレチクルを介することなく投影光学系 PL及び水 Lqを介して その表面に撥液膜が形成された計測用反射板 102の低反射面領域 102Lに照射す る。そして、計測用反射板 102からの反射光を水 Lq及び投影光学系 PLを介して反 射量モニタ 47でパルス毎に受光し、そのパルス毎の反射量モニタ 47の出力(検出信 号)を取り込み、その出力の積算値の所定パルス数の平均値を、計測データとしての 計測値 RLとして取得する。  [0195] In the next step 418, the same test light emission as in the above step 414 is performed, and the illumination light IL from the illumination optical system 12 is passed through the projection optical system PL and the water Lq without passing through the reticle. Irradiation is performed on the low reflection surface area 102L of the measurement reflection plate 102 on which the liquid repellent film is formed. Then, the reflected light from the measuring reflector 102 is received for each pulse by the reflection amount monitor 47 via the water Lq and the projection optical system PL, and the output (detection signal) of the reflection amount monitor 47 for each pulse is received. Acquire and acquire the average value of the predetermined number of pulses of the integrated value of the output as the measurement value RL as the measurement data.
[0196] 次のステップ 422では、上記ステップ 414、 418でそれぞれ取得した計測値 RH、 R Lのそれぞれと、上記ステップ 408で取得した計測値 Rrefとの比(RH /Rref ) , (RL / Rrel をそれぞれ計算して、内部メモリ内の所定格納領域にそれぞれ格納した後、ス テツプ 424に進む。 [0196] In the next step 422, the ratio (RH / Rref), (RL / Rref) of each of the measured values RH and RL obtained in steps 414 and 418, respectively, to the measured value Rref obtained in step 408 above. After calculating Rrel and storing them in predetermined storage areas in the internal memory, the process proceeds to step 424.
[0197] ステップ 424では、再度、前述の 402と同様に、第 1回目の計測である力否かを判 断し、この判断が肯定された場合には、ステップ 425に進んで、上記ステップ 422で 算出された比 (RH H /Rref )、及び比 (RL /Rref )を、内部メモリ内の初期値格納領域  [0197] In step 424, it is again determined whether or not the force is the first measurement, as in step 402 described above, and if this determination is affirmed, the flow proceeds to step 425 to proceed to step 422. The ratio (RH H / Rref) and the ratio (RL / Rref) calculated in the above are stored in the initial value storage area in the internal memory.
1 1 1 1  1 1 1 1
に格納した後、ステップ 426に進む。  After that, go to step 426.
[0198] ステップ 426では、撥水膜の光透過率の減少を補償するための補正パラメータ γ In step 426, a correction parameter γ for compensating for a decrease in light transmittance of the water-repellent film is set.
1 One
、 y の モリの γ , Y of moly γ
2 初期値として、それぞれに 1を設定(内部メ 格納領域に格納)した後、 本ルーチンの処理を終了する。ここで、撥水膜の補正パラメータ Ύ 、 y は、それぞ 2 Set 1 as the initial value for each (stored in the internal memory area) and end the processing of this routine. Here, the correction parameters Ύ and y of the water-repellent film are respectively
1 2  1 2
れ次式 (5)、(6)で定義される補正パラメータである。  This is a correction parameter defined by the following equations (5) and (6).
[0199] [数 5]
Figure imgf000049_0001
[0199] [Number 5]
Figure imgf000049_0001
[0200] [数 6]
Figure imgf000049_0002
[0200] [Number 6]
Figure imgf000049_0002
[0201] 従って、第 1回目の計測時には、 i= lであるから、式(5)、式 (6)それぞれの右辺 = 1となるので、ステップ 426では、 γ = 1、 γ = 1としたのである。 [0201] Therefore, at the time of the first measurement, since i = l, the right side of each of Expressions (5) and (6) = 1, so that in Step 426, γ = 1 and γ = 1 It is.
1 2  1 2
[0202] 一方、第 2回目以降の計測である場合には、上記ステップ 424における判断が否 定され、ステップ 428に移行して、上述の式(5)、式 (6)で定義される補正値 γ 、 y  [0202] On the other hand, if the measurement is the second or later measurement, the determination in step 424 is denied, and the flow shifts to step 428 to perform the correction defined by the above equations (5) and (6). Values γ, y
1 2 を更新する。この γ 、 Ύ  Update 1 2. This γ, Ύ
1 2の更新は、前述の初期値格納領域に格納されているデータ と、その時点で所定格納領域に格納されているデータをそれぞれ読み出した後に、 これらを用いて式(5)、式(6)の演算により γ 、 y を算出し、この算出結果を、 γ格  12 is updated by reading the data stored in the above-described initial value storage area and the data stored in the predetermined storage area at that time, and using these, the equations (5) and (6) are used. ), Γ and y are calculated, and the calculation result is expressed as γ
1 2  1 2
納領域に格納されている γ 、 Ύ  Γ and Ύ stored in the storage area
1 2に上書きすることで実現される。  This is achieved by overwriting 1 and 2.
[0203] この一方、上記ステップ 404における判断が否定された場合には、直ちに本ルーチ ンの処理を終了する。 [0203] On the other hand, if the determination in step 404 is negative, Terminating the process.
[0204] その後、例えば通常のウェハ反射率の計測処理に移行する。このウェハ反射率の 計測方法は、例えば特開平 11— 258498号公報、特開昭 62— 183522号公報及 び対応する米国特許第 4, 780, 747号ゃ特開平 6— 291016号公報及び対応する 米国特許第 5, 721, 608号などに詳細に開示されている。これらの公報などに開示 される方法と同様の方法を、本実施形態の露光装置 10で実行する場合には、以下 のようにすれば良い。  [0204] Thereafter, the process proceeds to, for example, a normal wafer reflectivity measurement process. The method of measuring the wafer reflectivity is described in, for example, Japanese Patent Application Laid-Open No. 11-258498, Japanese Patent Application Laid-Open No. 62-183522, and corresponding US Pat. It is disclosed in detail in U.S. Pat. No. 5,721,608. When a method similar to the method disclosed in these publications is executed by the exposure apparatus 10 of the present embodiment, the following method may be used.
[0205] まず、主制御装置 50では、実際の露光時と同一に露光条件(レチクル R、レチクル ブラインド、照明条件など)を設定する。  First, main controller 50 sets exposure conditions (reticle R, reticle blind, illumination conditions, etc.) in the same manner as in actual exposure.
[0206] 次に、主制御装置 50は、投影光学系 PLの直下に計測用反射板 102の高反射面 領域 102Hが位置する位置に計測ステージ MST (計測テーブル MTB)を移動する 。このとき投影光学系 PLの先端レンズ 91の直下、すなわち計測用反射板 102の上 面と先端レンズ 91との間は水で満たされている。  Next, main controller 50 moves measurement stage MST (measurement table MTB) to a position where high reflection surface region 102H of measurement reflection plate 102 is located immediately below projection optical system PL. At this time, the area immediately below the front lens 91 of the projection optical system PL, that is, the space between the upper surface of the measuring reflector 102 and the front lens 91 is filled with water.
[0207] 次に、主制御装置 50では光源 16を発光(レーザ発振)させてレチクルステージ RS Tを実際の露光と同じ条件で移動しながら (計測用反射板 102の面積が十分に広い 場合には、レチクルステージ RSTとウェハステージ WSTとを実際の露光と同じ条件 で同期移動しながら)反射量モニタ 47の出力 RH及びインテグレータセンサ 46の出  Next, main controller 50 causes light source 16 to emit light (laser oscillation) and moves reticle stage RST under the same conditions as the actual exposure (when the area of reflection plate 102 for measurement is sufficiently large). The output RH of the reflection amount monitor 47 and the output of the integrator sensor 46 are synchronized with the reticle stage RST and the wafer stage WST under the same conditions as the actual exposure.
0  0
力 DS を所定のサンプリング間隔で同時に取り込むことにより、走査位置(同期移動 The scanning position (synchronized movement)
H0 H0
位置)に応じた反射量モニタ 47の出力 RH、及びこれに対応するインテグレータセン  Output RH of the reflection amount monitor 47 according to the position) and the corresponding integrator sensor.
0  0
サ 46の出力 DS をメモリ 51に記憶する。これにより、反射量モニタ 47の出力 RH、  The output DS of the memory 46 is stored in the memory 51. As a result, the output RH of the reflection amount monitor 47,
H0 0 及びインテグレータセンサ 46の出力 DS 力 レチクル Rの走査位置に応じた関数と  H0 0 and output of integrator sensor 46 DS force Function and function according to the scanning position of reticle R
H0  H0
して、メモリ 51内に記憶される。次に、主制御装置 50では、投影光学系 PLの直下に 計測用反射板 102の低反射面領域 102Lが位置する位置に計測ステージ MST (計 測テーブル MTB)を移動し、上記と同様にして、反射量モニタ 47の出力 RL、及び  Then, it is stored in the memory 51. Next, in main controller 50, measurement stage MST (measurement table MTB) is moved to a position where low-reflection surface area 102L of measurement reflection plate 102 is located immediately below projection optical system PL. , The output RL of the reflection amount monitor 47, and
0 インテグレータセンサ 46の出力 DS を、レチクル Rの走査位置に応じた関数としてメ  0 Use the output DS of the integrator sensor 46 as a function according to the scanning position of the reticle R.
L0  L0
モリ 51内に記憶する。  Stored in Mori 51.
[0208] このような準備作業を、主制御装置 50は露光に先立って実行しておく。 [0208] Main controller 50 executes such preparation work prior to exposure.
[0209] そして、実際の露光時にはレチクル Rの走査位置に応じて記憶しておいた反射量 モニタ 47の出力とインテグレータセンサ 46の出力、及び露光時の反射量モニタ 47の 出力 Rとインテグレータセンサ 46の出力 DSに基づいて、ウェハ反射率 Rを、次式([0209] At the time of actual exposure, the reflection amount stored in accordance with the scanning position of reticle R is stored. Based on the output of the monitor 47, the output of the integrator sensor 46, and the output R of the reflection amount monitor 47 during exposure and the output DS of the integrator sensor 46, the wafer reflectance R is calculated by the following equation (
1 W 1 W
7)に基づいて算出する。  Calculated based on 7).
[0210] [数 7]
Figure imgf000051_0001
[0210] [Number 7]
Figure imgf000051_0001
ただし  However
DS DS
DSH0 DS H0
[0211] 上式(7)中に、前述のステップ 428で更新された γ 、 y が含まれており、これら γ [0211] In the above equation (7), γ and y updated in step 428 described above are included.
1 2 1 1 2 1
、 y によってレチクル Rの走査位置に応じた関数としてメモリ 51内に記憶されている, Y stored in the memory 51 as a function corresponding to the scanning position of the reticle R.
2 2
反射量モニタ 47の出力 RH、 RLが較正されている。従って、上式(7)で算出される  The outputs RH and RL of the reflection monitor 47 are calibrated. Therefore, it is calculated by the above equation (7).
0 0  0 0
ウェハ反射率 R は、計測用反射板 102表面の撥水膜の光透過率低下の影響を実  The wafer reflectivity R is measured by the effect of a decrease in light transmittance of the water-repellent film on the surface of the measurement reflector 102.
W  W
質的に受けていない高精度な値となる。従って、このウェハ反射率 Rを、例えば上  It is a high-precision value that is not qualitatively received. Therefore, this wafer reflectivity R is, for example,
W  W
記特開平 11— 258498号公報などに開示される投影光学系 PLの照明光吸収によ る結像性能変化の推定演算に用いることで、前述の計測用反射板 102の撥水膜の 光透過率の経時的な変動の影響を殆ど受けることがない高精度な結像性能変化の 推定演算が可能となる。従って、この推定演算結果を考慮して、投影光学系 PLのフ オーカス以外の結像性能を補正するとともに、フォーカスの変化分を考慮して走査露 光中のウェハ Wの Z位置を制御することで、レチクルパターンのウェハ W上への高精 度な転写が可能になる。  The light transmission of the water-repellent film of the measurement reflector 102 described above is used by estimating the change of the imaging performance due to the absorption of the illumination light of the projection optical system PL disclosed in JP-A-11-258498 and the like. This makes it possible to perform highly accurate estimation calculation of the change in imaging performance, which is hardly affected by the fluctuation of the rate over time. Therefore, it is necessary to correct the imaging performance other than the focus of the projection optical system PL in consideration of the estimation calculation result, and to control the Z position of the wafer W during scanning exposure in consideration of the change in focus. Thus, the reticle pattern can be transferred onto the wafer W with high accuracy.
[0212] これまでの説明から明らかなように、本実施形態では、主制御装置 50、より具体的 には CPUとソフトウェアプログラムとによって、計測処理装置、演算装置、補償装置、 補正装置それぞれの少なくとも一部が実現されている。すなわち、 CPUが行う、図 1 0のステップ 302、 304、 306、 320及び 322の処理によって計柳』処理装置の少なくと も一部が実現され、 CPUが行うステップ 324及び 326の処理によって演算装置の少 なくとも一部が実現されている。また、 CPUが行うステップ 332及び 334の処理によつ て補償装置の少なくとも一部が実現され、 CPUが行うステップ 318及び 330の処理 によって補正装置の少なくとも一部が実現されている。また、主制御装置 50によって 、センサの出力と前記撥液膜の光透過率 (ビーム透過率)の変化に関連する情報と に基づいて、前記物体に対する露光動作を制御する制御装置の少なくとも一部が構 成されている。 [0212] As is clear from the above description, in the present embodiment, at least each of the measurement processing device, the arithmetic device, the compensating device, and the correcting device is controlled by the main control device 50, more specifically, the CPU and the software program. Some have been realized. That is, at least a part of the processing unit is realized by the processing of steps 302, 304, 306, 320, and 322 in FIG. 10 performed by the CPU, and the processing unit is executed by the processing of steps 324 and 326 performed by the CPU. At least some of them have been realized. Also, according to the processing of steps 332 and 334 performed by the CPU, Thus, at least a part of the compensator is realized, and the processing of steps 318 and 330 performed by the CPU realizes at least a part of the corrector. Further, the main controller 50 controls at least a part of the controller that controls the exposure operation on the object based on the output of the sensor and information related to the change in the light transmittance (beam transmittance) of the liquid repellent film. Is configured.
[0213] 以上詳細に説明したように、本実施形態の露光装置 10で行われる第 1センサ 128 の出力を較正する較正方法によると、撥液膜を介することなく基準照度モニタ (第 2セ ンサ) 122'により第 2の検出光を受光し、その受光量に対応する基準照度モニタ 12 2'の出力(Pref)を取得する (ステップ 322)。すなわち、撥液膜の光透過率変化の影 響を受けない基準照度モニタ 122'の出力(Prel を取得する。また、第 1の検出光を 撥液膜を介して第 1センサ 128で受光し、その受光量に対応する第 1センサの出力( P )を取得する (ステップ 306)。この場合、第 1センサ 128の出力(P)は、撥液膜の光 透過率の経時変化の影響を直接受ける。  As described above in detail, according to the calibration method for calibrating the output of the first sensor 128 performed by the exposure apparatus 10 of the present embodiment, the reference illuminance monitor (the second sensor The second detection light is received by 122 ', and the output (Pref) of the reference illuminance monitor 122' corresponding to the received light amount is obtained (step 322). That is, the output (Prel) of the reference illuminance monitor 122 'which is not affected by the change in the light transmittance of the liquid-repellent film is obtained. The first detection light is received by the first sensor 128 via the liquid-repellent film. Then, the output (P) of the first sensor corresponding to the received light amount is obtained (step 306), in which case the output (P) of the first sensor 128 is determined by the effect of the temporal change in the light transmittance of the liquid-repellent film. Receive directly.
[0214] そして、第 1センサ 128の出力と基準照度モニタ 122,の出力とに基づいて、第 1セ ンサ 128の出力を較正するための較正情報 δ (又は γ )を取得する(ステップ 324〜 332)。この場合、予め求めた第 1センサ 128の出力と基準照度モニタ 122'の出力と の関係(P ZPref )と、第 1センサ 128の出力と基準照度モニタ 122,の出力とに基づ  Then, calibration information δ (or γ) for calibrating the output of the first sensor 128 is obtained based on the output of the first sensor 128 and the output of the reference illuminance monitor 122 (steps 324 to 324). 332). In this case, the relationship (P ZPref) between the output of the first sensor 128 and the output of the reference illuminance monitor 122 ′ obtained in advance and the output of the first sensor 128 and the output of the reference illuminance monitor 122, are used.
1 1  1 1
いて、第 1センサ 128の出力を較正するための較正情報を取得する。この較正情報 を用いて、第 1センサ 128の出力を較正すると、その較正後の第 1センサ 128の出力 は、撥液膜の光透過率変化の影響を受けな 、正確な光情報 (像面照度)の計測値と なる。  Then, calibration information for calibrating the output of the first sensor 128 is obtained. When the output of the first sensor 128 is calibrated using this calibration information, the output of the first sensor 128 after the calibration is accurate optical information (image plane) without being affected by the change in the light transmittance of the liquid-repellent film. (Illuminance).
[0215] また、本実施形態の露光装置 10で実行される露光法方によると、上述の較正方法 を用いて較正された第 1センサ 128の出力、すなわち撥液膜の光透過率変化の影響 を受けな!/、正確な像面照度の計測値を考慮して、ウェハ Wに対する露光が行われる ので、撥液膜の光透過率の経時的変化の影響を受けることがな 、ウェハ Wに対する 高精度な液浸露光を長期に渡って行うことが可能となる。  Further, according to the exposure method executed by the exposure apparatus 10 of the present embodiment, the output of the first sensor 128 calibrated using the above-described calibration method, that is, the influence of the change in the light transmittance of the liquid-repellent film. Exposure to the wafer W is performed in consideration of the accurate measured value of the image plane illuminance, so that the light transmittance of the liquid-repellent film is not affected by the change over time. High-precision immersion exposure can be performed over a long period of time.
[0216] また、本実施形態の露光装置 10によると、主制御装置 50により、投影光学系 PLの 像面側に配置された部材 (例えば光学部材 126)表面の撥液膜を介して検出光とし ての照明光 ILを受光するセンサ (例えば第 1センサ 128)の出力と撥液膜の光透過 率の変化に関連する情報とに基づいて、ウェハ Wに対する露光動作が制御されるの で、撥液膜の光透過率変化の影響を受けることがな 、高精度なウェハの露光が長期 にわたつて可能となる。 Further, according to exposure apparatus 10 of the present embodiment, main controller 50 detects detection light via a liquid-repellent film on the surface of a member (eg, optical member 126) disposed on the image plane side of projection optical system PL. age Since the exposure operation for the wafer W is controlled based on the output of the sensor (for example, the first sensor 128) that receives all the illumination light IL and information related to the change in the light transmittance of the liquid repellent film, High-precision wafer exposure is possible over a long period without being affected by changes in the light transmittance of the liquid film.
[0217] また、本実施形態の露光装置 10によると、液浸露光により、高解像度かつ空気中と 比べて大焦点深度の露光を行うことで、レチクル Rのパターンを精度良くウェハ上に 転写することができ、例えばデバイスルールとして 70〜: LOOnm程度の微細パターン の転写を実現することができる。  In addition, according to the exposure apparatus 10 of the present embodiment, the pattern of the reticle R is transferred onto the wafer with high precision by performing the exposure with high resolution and a large depth of focus as compared with that in the air by immersion exposure. For example, it is possible to realize the transfer of a fine pattern of about 70 to LOOnm as a device rule.
[0218] なお、上記実施形態では、照度モニタ 122に対する照明光 IL (エネルギビーム)の 照射パルス数が所定パルス数に達する毎に、基準照度モニタ 122'で撥水膜を介す ることなぐ投影光学系 PLの像面の照度計測を実行し、この計測結果を用いて照度 モニタ 122の計測値(出力)の撥水膜の光透過率減少分補正パラメータ γを更新す る、絶対値キャリブレーションと、そのパラメータ γの更新が行われるまでの間は、前 述の式(2)のモデル関数 (伝達関数)を用いた推定演算により、そのパラメータ γの 更新する推定演算キャリブレーションとを、併用する場合を説明した。しかし、これに 限らず、例えば、絶対値キャリブレーションのみ、あるいはモデル関数を用いた推定 演算のみで、投影光学系 PLの像面側 (光学系のビーム射出側)に配置される部材 表面に形成された撥液膜 (例えば撥水膜)の光透過率 (ビーム透過率)の変動を予測 することとしても良い。上記部材としては、投影光学系 PLの像面側(光学系のビーム 射出側)に配置される計測部材、例えば、所定の光透過部を有する計測部材 (光透 過部としてピンホール、スリット、あるいは矩形開口などが形成された前述のパターン 板やスリット板など)、基準マークを有する計測部材 (前述の基準マーク板など)、反 射面を有する計測部材 (計測用反射板など)などが挙げられる。  In the above embodiment, each time the number of irradiation pulses of the illumination light IL (energy beam) to the illuminance monitor 122 reaches a predetermined number, the reference illuminance monitor 122 ′ performs projection without passing through the water-repellent film. Absolute value calibration in which the illuminance measurement of the image plane of the optical system PL is performed, and the measurement value (output) of the measurement value (output) of the illuminance monitor 122 is used to update the correction parameter γ for decreasing the light transmittance of the water-repellent film. Until the parameter γ is updated, the estimation calculation using the model function (transfer function) of Equation (2) described above is used together with the estimation calculation calibration for updating the parameter γ. I explained the case. However, the present invention is not limited to this. For example, only the absolute value calibration or only the estimation calculation using the model function is performed on the surface of the member arranged on the image plane side (beam exit side of the optical system) of the projection optical system PL. Variations in the light transmittance (beam transmittance) of the liquid-repellent film (for example, the water-repellent film) may be predicted. Examples of the member include a measurement member arranged on the image plane side of the projection optical system PL (a beam emission side of the optical system), for example, a measurement member having a predetermined light transmission portion (a pinhole, a slit, Or the above-mentioned pattern plate or slit plate with a rectangular aperture, etc.), a measurement member with a reference mark (such as the reference mark plate), a measurement member with a reflective surface (such as a reflection plate for measurement), etc. Can be
[0219] 後者のモデル関数を用いた推定演算のみを行う場合、撥液膜に照射される光 (ェ ネルギビーム)の照射履歴に関連する情報を入力情報とする所定関数を、モデル関 数として用いることができる。このモデル関数としては、例えば撥液膜に照射される光 (エネルギビーム)の照射履歴に関連する情報として撥液膜に照射される光 (ェネル ギビーム)の積算量を含む、関数、一例として前述した式(3)のモデル関数を用いる ことができる。その際、初期時刻 tを最初は 0にして撥液膜の光透過率 (ビーム透過 [0219] When only the estimation calculation using the latter model function is performed, a predetermined function that uses information related to the irradiation history of light (energy beam) irradiated to the liquid-repellent film as input information is used as a model function. be able to. The model function includes, for example, a function including an integrated amount of light (energy beam) applied to the liquid-repellent film as information related to the irradiation history of light (energy beam) applied to the liquid-repellent film. Using the model function of equation (3) be able to. At this time, the initial time t is initially set to 0, and the light transmittance of the liquid-repellent film (beam transmission
0  0
率)の変動を予測する予測計算を開始する。  Start the prediction calculation to predict the change in rate.
[0220] 上の説明及び前述した実施形態では、照射された総エネルギによって光透過率( ビーム透過率)減衰を求めるものとした力 上記実施形態のように光源としてパルス 光源を用いる場合には、総エネルギに代えて発光パルス数の積算値を採用しても良 い。この場合、前述の式(3)中のパラメータ pは、 t以降に照射された発光パルス数  [0220] In the above description and the above-described embodiment, the power that determines the light transmittance (beam transmittance) attenuation based on the total energy applied is as follows. When a pulsed light source is used as the light source as in the above-described embodiment, An integrated value of the number of light emission pulses may be used instead of the total energy. In this case, the parameter p in the above equation (3) is the number of emission pulses irradiated after t.
0  0
積算値とし、係数 Tpは発光パルス依存の減衰係数 [sec]とすれば良い。このようにす ると、レーザの発光情報だけ力 光透過率 (ビーム透過率)変化を求めることが可能と なる。  The integrated value may be used, and the coefficient Tp may be an emission pulse-dependent attenuation coefficient [sec]. In this way, it is possible to obtain a change in light transmittance (beam transmittance) only for the laser emission information.
[0221] 撥液膜の光透過率 (ビーム透過率)変化は不可逆な変化であり、撥液膜の物理的 な性質が破壊されて起こる現象である。一般的にこういった現象では、ある閾値以下 では何の変化も起きな 、 (ある!/、は変化が小さ!/、)のに、閾値を越えた所で変化が激 しくなることが考えられる。このようなケースのために、上式(2)、(3)中の照射エネル ギ QF]を計算する際に、所定のパワー [W]値以下のパルスを 0とみなす方法を採用し ても良い。  [0221] The change in the light transmittance (beam transmittance) of the liquid-repellent film is an irreversible change, and is a phenomenon that occurs when the physical properties of the liquid-repellent film are destroyed. Generally, in these phenomena, no change occurs below a certain threshold, but it is thought that (a! /, The change is small! /,), But the change becomes intense beyond the threshold. Can be For such a case, when calculating the irradiation energy QF] in the above equations (2) and (3), it is possible to adopt a method in which a pulse with a predetermined power [W] value or less is regarded as 0. good.
[0222] また、式(2)又は式(3)のモデル関数を用いる場合、照明条件毎に、例えば、前述 の回折光学素子 17a, 17bの選択設定と照明系開口絞り板 24の選択設定の組み合 わせ毎に、照射エネルギに依存する減衰係数 Tpを予め求めておいて、照明条件に 応じてモデル関数中の減衰係数 Tpを変更することとしても良い。  [0222] When the model function of Expression (2) or Expression (3) is used, for example, the selection setting of the diffractive optical elements 17a and 17b and the selection setting of the illumination system aperture stop plate 24 are set for each illumination condition. The attenuation coefficient Tp depending on the irradiation energy may be obtained in advance for each combination, and the attenuation coefficient Tp in the model function may be changed according to the illumination condition.
[0223] また、照明条件の違いによって撥水膜に入射する光線の角度が異なり、角度が異 なることで撥水膜に与えるダメージに違いが生じ、結果的に撥水膜の光透過率変化 の様子が異なる場合が考えられる。従って、このような角度依存性を照明条件に置き 換えて計算することで、より高精度に撥水膜の光透過率変化を算出することができる  [0223] Also, the angle of the light beam incident on the water-repellent film varies depending on the illumination conditions, and the different angles cause different damage to the water-repellent film, resulting in a change in the light transmittance of the water-repellent film. May be different. Therefore, by replacing such angle dependence with the illumination condition, the change in the light transmittance of the water-repellent film can be calculated with higher accuracy.
[0224] また、前述の計測用反射板力もの反射光量の変化を推定演算により求める場合、 撥液膜の光透過率変化の他、クロムの反射率変化を考慮したモデル関数を用いても 良い。 [0224] In the case where the change in the amount of reflected light with the measuring reflector force is obtained by the estimation calculation, a model function that considers the change in the reflectance of chromium in addition to the change in the light transmittance of the liquid-repellent film may be used. .
[0225] また、撥液膜の光透過率変化を推定するモデル関数 (伝達関数)の入力は経時変 化に関係する物理量なら何でも良ぐ例えば露光パルス数及び時間の少なくとも 1つ 、あるいはこれに温度をカ卩えても良い。また、伝達関数は、前述した式(3)のような関 数に限らないことは勿論である。伝達関数の形としては、 1次遅れ、及びその複合形 が一般的であろう。必要精度に応じてより高次の精密な伝達関数を採用しても良い。 [0225] In addition, the input of a model function (transfer function) for estimating the change in light transmittance of the liquid-repellent film varies with time. Any physical quantity related to the conversion may be used, for example, at least one of the number of exposure pulses and time, or the temperature may be added thereto. Also, the transfer function is not limited to the function such as the above-described equation (3). As a form of the transfer function, the first-order lag and its composite form will be common. A higher-order precise transfer function may be employed depending on the required accuracy.
[0226] また、これまでの説明では、投影光学系 PLの像面側に配置される部材表面に形成 された撥液膜の光透過率の変動を予測する場合に、モデル関数を用いるものとした 力 モデル関数を用いることなぐ撥液膜に照射される光の照射履歴に関連する情 報に基づいて撥液膜の光透過率の変動を予測することとしても良い。かかる場合、撥 液膜に照射される光の照射履歴に関連する情報を所定のタイミングで取得すること で、容易に撥液膜の光透過率の変動を予測することが可能となる。  [0226] Further, the description so far assumes that a model function is used when estimating a change in light transmittance of a liquid-repellent film formed on the surface of a member arranged on the image plane side of the projection optical system PL. The change in the light transmittance of the liquid-repellent film may be predicted based on information relating to the irradiation history of the light applied to the liquid-repellent film without using the force model function described above. In such a case, by acquiring information related to the irradiation history of the light applied to the liquid-repellent film at a predetermined timing, it is possible to easily predict a change in the light transmittance of the liquid-repellent film.
[0227] なお、上記実施形態では、図 5に示されるように、露光領域 IAに照射され光学部材 126を透過して第 1センサ 128に受光面に向力 照明光 IL (図 5中に点線矢印で示さ れている)の一部が遮光膜 127によって遮光されている。この点を改善すベぐ図 12 に示されるような照度モニタ 222を、前述の照度モニタ 122に代えて上記実施形態で 採用しても良い。この図 12の照度モニタ 222は、光学部材 126の上面に減光膜が設 けられて 、な 、代わりに、光学部材 126の下面の全面に減光膜 129が形成されて 、 る点が前述の照度モニタ 122と相違する力 その他の点は照度モニタ 122と同様に 構成されている。この照度モニタ 222では、露光領域 IAに照射され光学部材 126を 透過して第 1センサ 128の受光面に向力 照明光 IL (図 12中に点線矢印で示されて V、る)の全てを減光膜 129で減光後に第 1センサ 128で受光することができるとともに 、ギャップ B部分を介して光学部材 126に入射した迷光(図 12中の太線の実線矢印 参照)を減光膜 129で減光することができる。迷光は、照明光 IAに比べれば格段強 度が小さいので、減光膜 129を通過後の強度は非常に小さくなる。  In the above-described embodiment, as shown in FIG. 5, the exposure area IA is irradiated, transmitted through the optical member 126, and directed to the light receiving surface of the first sensor 128. The illumination light IL (dotted line in FIG. 5) (Indicated by arrows) are partially shielded from light by the light-shielding film 127. In order to improve this point, an illuminance monitor 222 as shown in FIG. 12 may be employed in the above embodiment instead of the illuminance monitor 122 described above. The illuminance monitor 222 of FIG. 12 is different from the illuminance monitor 222 in that a light-attenuating film is provided on the upper surface of the optical member 126. Instead, a light-attenuating film 129 is formed on the entire lower surface of the optical member 126. The other points are the same as those of the illuminance monitor 122. In the illuminance monitor 222, all of the illuminating light IL (V, V shown by the dotted arrow in FIG. 12) is directed to the light receiving surface of the first sensor 128 after being irradiated to the exposure area IA and passing through the optical member 126. The light can be received by the first sensor 128 after the light is attenuated by the light attenuating film 129, and the stray light (see the thick solid line arrow in FIG. 12) that has entered the optical member 126 through the gap B portion is applied by the light attenuating film 129. It can be dimmed. Since the intensity of the stray light is much lower than that of the illumination light IA, the intensity after passing through the light attenuating film 129 becomes very small.
[0228] なお、照度モニタ 122、 222のいずれにおいても、光学部材 126の下面(裏面)に 第 1センサ (受光素子) 128がー体的に固定されているが、これに限らず、光学部材 1 26の裏面に第 1センサを作りこんでおいても良い。  [0228] In each of the illuminance monitors 122 and 222, the first sensor (light receiving element) 128 is physically fixed to the lower surface (back surface) of the optical member 126, but is not limited thereto. The first sensor may be formed on the back surface of 126.
[0229] なお、上述の実施形態においては、主に照度モニタ 122の上面の撥液 (撥水)膜、 及び計測用反射板 102上面の撥液 (撥水)膜について説明したが、計測ステージ M ST (計測テーブル MTB)にスリット板 105を有する空間像計測器やパターン板 107 を有する波面収差計測器など力 スリット板 105やパターン板 107の上面の撥液 (撥 水)膜の光透過率の経時変化の影響を受ける場合には、上述の照度モニタ 122と同 じょうに較正を行っても良い。 In the above embodiment, the liquid repellent (water repellent) film on the upper surface of the illuminance monitor 122 and the liquid repellent (water repellent) film on the upper surface of the measurement reflector 102 have been mainly described. M ST (measurement table MTB) aerial image measurement device with slit plate 105 and wavefront aberration measurement device with pattern plate 107 Force of light transmittance of liquid repellent (water repellent) film on the upper surface of slit plate 105 or pattern plate 107 When affected by aging, calibration may be performed in the same manner as the illuminance monitor 122 described above.
[0230] また、例えば照度モニタ 122の光学部材 126の上面又は下面の少なくとも一方に 形成された減光膜 129の減光率が ArFエキシマレーザ光などの紫外域のエネルギ ビームの照射により経時変化する場合がある。この場合も、撥液 (撥水)膜の光透過 率の経時変化と同様にして較正を実行することができる。  [0230] Further, for example, the extinction ratio of the extinction film 129 formed on at least one of the upper surface and the lower surface of the optical member 126 of the illuminance monitor 122 changes over time due to irradiation with an ultraviolet energy beam such as ArF excimer laser light. There are cases. Also in this case, the calibration can be performed in the same manner as the change with time of the light transmittance of the liquid-repellent (water-repellent) film.
[0231] また、レチクルァライメント系 RAa, RAbが基準マーク板 FM1, FM2に形成された マークの検出を行うときに、その基準マーク板 FM1, FM2の上面に形成された撥液 (撥水)膜の光透過率の経時変化の影響を受けて、計測誤差などが生じる場合には 、例えば基準マーク板 FM1, FM2に照射されたレチクルァライメント系 RAa, RAb 力もの検出光 (ArFエキシマレーザ光)の積算照射量などに基づいて、その撥液膜 の光透過率の経時変化を推定して、レチクルァライメント系 RAa, RAbの出力信号を 補正するなどの対策を施しても良い。  [0231] When the reticle alignment system RAa, RAb detects a mark formed on the fiducial mark plate FM1, FM2, the liquid repellent (water repellent) formed on the upper surface of the fiducial mark plate FM1, FM2 is used. If a measurement error or the like occurs due to the influence of the temporal change in the light transmittance of the film, for example, the detection light of the reticle alignment system RAa, RAb applied to the reference mark plates FM1 and FM2 (ArF excimer laser light ), The temporal change in the light transmittance of the liquid-repellent film may be estimated based on the integrated irradiation amount and the like, and measures such as correcting the output signals of the reticle alignment systems RAa and RAb may be taken.
[0232] また、クロムなどの金属材料膜の反射率が、 ArFエキシマレーザ光などの紫外域の エネルギビームの照射により経時変化する場合がある。従って、金属材料 (例えばク ロム)を使って基準マーク板 FM1、 FM2上の基準マークが形成されている場合には 、撥液膜の光透過率の経時変化だけでなぐその金属材料の反射率の経時変化も 考慮して、レチクルァライメント系 RAa, RAbの出力信号を補正するなどの対策を施 すことちでさる。  [0232] Further, the reflectance of a metal material film such as chromium may change over time due to irradiation with an ultraviolet energy beam such as ArF excimer laser light. Therefore, when the reference marks on the reference mark plates FM1 and FM2 are formed using a metal material (for example, chrome), the reflectance of the metal material can be determined not only by the change with time of the light transmittance of the liquid-repellent film. It is better to take measures such as correcting the output signals of the reticle alignment systems RAa and RAb in consideration of the aging of the reticle.
[0233] なお、照度モニタ 122などの各種計測器の受光素子の感度が経時変化を起こすこ とが考えられる場合も上述と同様にして較正を行うと良い。  [0233] Note that when it is conceivable that the sensitivity of light receiving elements of various measuring instruments such as the illuminance monitor 122 may change with time, it is preferable to perform calibration in the same manner as described above.
[0234] なお、上記実施形態では、照度モニタ 122などの各種計測器が設けられた計測テ 一ブル MTBを有する計測ステージ MST力 ウェハステージ WSTとは別に設けられ ている場合について説明した力 本発明がこれに限定されるものではなぐ上記各種 計測器がウェハステージ WSTに設けられていて勿論良い。力かる場合には、計測ス テージは不要である。また、上記実施形態では、ステージ装置がウェハステージを 1 つ、計測ステージを 1つ具備する場合について説明したが、これに限らず露光動作 のスループットを向上するために、ウェハを保持するウェハステージを複数設けること としても良い。また、上述の実施形態においては、照度モニタ 122の計測結果を用い て投影光学系 PLの結像性能の変化を補償するようにしているが、特開平 11— 1681 6号公報及びこれに対応する米国特許出願公開第 2002Z0061469号明細書に開 示されているように、照度モニタ 122の計測結果を用いて、ウェハ Wに対する露光量 制御を行うようにしても良い。この場合も、撥液膜 (撥水膜)や減光膜の影響を受けな V、ように較正を行うことによって、ウェハ Wに対して正確な露光量制御を実行可能と なる。本国際出願で指定した指定国 (又は選択した選択国)の国内法令が許す限り において、上記公報及び対応米国特許出願公開明細書における開示を援用して本 明細書の記載の一部とする。 In the above embodiment, the measuring stage MST having the measuring table MTB provided with various measuring instruments such as the illuminance monitor 122 is described in the case where the measuring stage MST is provided separately from the wafer stage WST. However, it is needless to say that the various measuring instruments described above are not limited to the above, and may be provided on the wafer stage WST. If powerful, no measurement stage is required. Further, in the above embodiment, the stage device is used for one wafer stage. Although the case where one measurement stage is provided has been described, the present invention is not limited to this, and a plurality of wafer stages for holding a wafer may be provided in order to improve the throughput of the exposure operation. Further, in the above-described embodiment, the change in the imaging performance of the projection optical system PL is compensated for by using the measurement result of the illuminance monitor 122. However, Japanese Patent Application Laid-Open No. 11-16816 and the corresponding As disclosed in US Patent Application Publication No. 2002Z0061469, the exposure amount control for the wafer W may be performed using the measurement result of the illuminance monitor 122. Also in this case, by performing calibration such that V is not affected by the liquid-repellent film (water-repellent film) or the light-reducing film, it becomes possible to accurately control the exposure amount of the wafer W. To the extent permitted by the national laws of the designated country (or selected elected country) designated in this international application, the disclosures in the above gazettes and corresponding US Patent Application Publications will be incorporated herein by reference.
[0235] また、上述の液浸法を適用した露光装置は、投影光学系 PLの終端光学素子の光 射出側の光路空間を液体 (純水)で満たしてウェハ Wを露光する構成になっているが 、国際公開第 2004Z019128号に開示されているように、投影光学系 PLの終端光 学素子の光入射側の光路空間も液体で満たすようにしても良 ヽ。  The exposure apparatus to which the above-described liquid immersion method is applied has a configuration in which the optical path space on the light emission side of the terminal optical element of the projection optical system PL is filled with liquid (pure water) to expose the wafer W. However, as disclosed in International Publication WO 2004Z019128, the optical path space on the light incident side of the terminal optical element of the projection optical system PL may be filled with liquid.
[0236] また、上記実施形態では、レべリングテーブル 52が 6自由度、計測テーブル MTB 力 S3自由度有する構成を採用した場合について説明したが、これに限らず、レベリン グテーブル 52が 3自由度、計測テーブル MTBが 3自由度有する構成を採用しても 良い。また、レべリングテーブル 52を設けずに、計測テーブル MTBが 6自由度有す る構成を採用することとしてち良 、。  [0236] In the above embodiment, the case where the configuration in which the leveling table 52 has six degrees of freedom and the measurement table MTB force S3 degree of freedom is adopted has been described. However, the present invention is not limited to this, and the leveling table 52 may have three degrees of freedom. The configuration in which the measurement table MTB has three degrees of freedom may be adopted. In addition, it is possible to adopt a configuration in which the measurement table MTB has six degrees of freedom without providing the leveling table 52.
[0237] なお、上記実施形態では、液体として超純水(水)を用いるものとしたが、本発明が これに限定されないことは勿論である。液体としては、化学的に安定で、照明光 ILの 透過率が高く安全な液体、例えばフッ素系不活性液体を使用しても良い。このフッ素 系不活性液体としては、例えばフロリナート (米国スリーェム社の商品名)が使用でき る。このフッ素系不活性液体は冷却効果の点でも優れている。また、液体として、照 明光 ILに対する透過性があってできるだけ屈折率が高ぐまた、投影光学系ゃゥェ ハ表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油等)を使 用することもできる。また、 Fレーザを光源とする場合は、フォンブリンオイルを選択す れば良い。 [0237] In the above embodiment, ultrapure water (water) is used as the liquid. However, it goes without saying that the present invention is not limited to this. As the liquid, a liquid which is chemically stable and has high transmittance of the illumination light IL and which is safe, for example, a fluorine-based inert liquid may be used. As this fluorine-based inert liquid, for example, Fluorinert (trade name of Threehem, USA) can be used. This fluorine-based inert liquid is also excellent in the cooling effect. In addition, a liquid that is transparent to the illuminating light IL and has as high a refractive index as possible and that is stable against the photoresist applied to the surface of the projection optical system wafer (for example, cedar oil) should be used. Can also be used. When using the F laser as the light source, select Fomblin oil. Just do it.
[0238] また、上記実施形態で、回収された液体を再利用するようにしても良ぐこの場合は 回収された液体から不純物を除去するフィルタを液体回収装置、又は回収管等に設 けておくことが望ましい。  [0238] In the above embodiment, the collected liquid may be reused. In this case, a filter for removing impurities from the collected liquid may be provided in the liquid collection device, the collection pipe, or the like. It is desirable to keep.
[0239] なお、上記実施形態では、投影光学系 PLの最も像面側の光学素子が先端レンズ 91であるものとした力 その光学素子は、レンズに限られるものではなぐ投影光学 系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の調整に用いる光学プレー ト(平行平面板等)であっても良いし、単なるカバーガラスであっても良い。投影光学 系 PLの最も像面側の光学素子 (上記各実施形態では先端レンズ 91)は、照明光 IL の照射によってレジストから発生する飛散粒子又は液体中の不純物の付着等に起因 して液体 (上記各実施形態では水)に接触してその表面が汚れることがある。このた め、その光学素子は、鏡筒 40の最下部に着脱 (交換)自在に固定することとし、定期 的に交換することとしても良い。  In the above embodiment, the optical element on the image plane side of the projection optical system PL is assumed to be the tip lens 91. The optical element is not limited to a lens, but is an optical element of the projection optical system PL. An optical plate (parallel plane plate or the like) used for adjusting characteristics such as aberration (spherical aberration, coma aberration, etc.) may be used, or a simple cover glass may be used. The optical element closest to the image plane of the projection optical system PL (the tip lens 91 in each of the above embodiments) is a liquid (due to scattering particles generated from the resist by irradiation of the illumination light IL or adhesion of impurities in the liquid, etc.). In the above embodiments, the surface may be soiled by contact with water. For this reason, the optical element may be detachably (exchangeably) fixed to the lowermost part of the lens barrel 40, and may be periodically replaced.
[0240] このような場合、液体に接触する光学素子がレンズであると、その交換部品のコスト が高ぐかつ交換 (調整を含む)に要する時間が長くなつてしまい、メンテナンスコスト (ランニングコスト)の上昇やスループットの低下を招く。そこで、液体と接触する光学 素子を、例えばレンズ 91よりも安価な平行平面板とするようにしても良い。  In such a case, if the optical element that comes into contact with the liquid is a lens, the cost of replacement parts is high and the time required for replacement (including adjustment) is long, resulting in maintenance costs (running costs). Increase in throughput and decrease in throughput. Therefore, the optical element that comes into contact with the liquid may be, for example, a parallel flat plate that is less expensive than the lens 91.
[0241] また、上記実施形態では、ステップ'アンド'スキャン方式等の走査型露光装置に本 発明が適用された場合について説明したが、本発明の適用範囲がこれに限定されな いことは勿論である。すなわちステップ'アンド'リピート方式の投影露光装置、さらに 、ステップ ·アンド'スティツチ方式の露光装置、又はプロキシミティ方式の露光装置な どにも、本発明は適用できる。  [0241] Further, in the above embodiment, the case where the present invention is applied to a scanning exposure apparatus such as a step 'and' scan method has been described. However, the scope of the present invention is not limited to this. It is. That is, the present invention can be applied to a step-and-repeat type projection exposure apparatus, a step-and-stitch type exposure apparatus, or a proximity type exposure apparatus.
[0242] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスク(レチクル)を用いた力 こ のレチクルに代えて、例えば米国特許第 6, 778, 257号公報に開示されているよう に、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン 、あるいは発光パターンを形成する電子マスクを用いても良 、。  [0242] Note that, in the above-described embodiment, the reticle using a light-transmitting mask (reticle) in which a predetermined light-shielding pattern (or a phase pattern 減 a dimming pattern) is formed on a light-transmitting substrate. Instead, for example, as disclosed in U.S. Patent No. 6,778,257, an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is used. Good.
[0243] また、国際公開第 2001Z035168号パンフレットに開示されているように、干渉縞 をウェハ w上に形成することによって、ウェハ W上にライン 'アンド'スペースパターン を形成する露光装置 (リソグラフィシステム)にも本発明を適用することができる。 [0243] Further, as disclosed in WO 2001Z035168 pamphlet, The present invention can also be applied to an exposure apparatus (lithography system) that forms a line 'and' space pattern on the wafer W by forming the pattern on the wafer w.
[0244] 露光装置の用途としては半導体製造用の露光装置に限定されることなぐ例えば、 角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有 機 EL、薄膜磁気ヘッド、撮像素子 (CCD等)、マイクロマシン及び DNAチップなどを 製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバ イスだけでなぐ光露光装置、 EUV露光装置、 X線露光装置、及び電子線露光装置 などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンゥェ ハなどに回路パターンを転写する露光装置にも本発明を適用できる。  [0244] The application of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing. For example, an exposure apparatus for liquid crystal for transferring a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head Also, it can be widely applied to exposure devices for manufacturing imaging devices (CCD, etc.), micromachines, DNA chips, and the like. In addition, glass substrates or silicon wafers are used to manufacture reticles or masks used in light exposure equipment that can be used only with micro devices such as semiconductor devices, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern to a substrate.
[0245] なお、上記実施形態の露光装置の光源は、 ArFエキシマレーザに限らず、 KrFェ キシマレーザ(出力波長 248nm)、 Fレーザ(出力波長 157nm)、 Arレーザ(出力  The light source of the exposure apparatus of the above embodiment is not limited to an ArF excimer laser, but a KrF excimer laser (output wavelength 248 nm), an F laser (output wavelength 157 nm), an Ar laser (output
2 2  twenty two
波長 126nm)、 Krレーザ(出力波長 146nm)などのパルスレーザ光源や、 g線 (波  Pulse laser light source such as Kr laser (output wavelength 146 nm) and g-line (wavelength
2  2
長 436nm)、 i線 (波長 365nm)などの輝線を発する超高圧水銀ランプなどを用いる ことも可能である。また、 YAGレーザの高調波発生装置などを用いることもできる。こ の他、 DFB半導体レーザ又はファイバーレーザ力 発振される赤外域、又は可視域 の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方) 力 Sドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長 変換した高調波を用いても良い。また、投影光学系は縮小系のみならず等倍および 拡大系のいずれでも良い。  It is also possible to use ultra-high pressure mercury lamps that emit bright lines such as 436 nm long and i-line (365 nm wavelength). In addition, a harmonic generation device of a YAG laser can be used. In addition, a DFB semiconductor laser or fiber laser power A single-wavelength laser beam in the infrared or visible range that is oscillated is amplified by, for example, an erbium (or both erbium and ytterbium) power S-doped fiber amplifier, and then nonlinearly amplified. It is also possible to use harmonics whose wavelength has been converted to ultraviolet light using an optical crystal. Further, the projection optical system may be not only a reduction system but also any one of an equal magnification and an enlargement system.
[0246] なお、半導体デバイスは、デバイスの機能 ·性能設計を行うステップ、この設計ステ ップに基づ 、たレチクルを製作するステップ、シリコン材料からウェハを製作するステ ップ、前述した調整方法によりパターンの転写特性が調整される上記実施形態の露 光装置で、マスクに形成されたパターンを感光物体上に転写するリソグラフィステップ 、デバイス組み立てステップ (ダイシング工程、ボンディング工程、ノ ッケージ工程を 含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実 施形態の露光装置が用いられるので、高精度な露光を長期に渡って実現することが できる。従って、微細パターンが形成された高集積度のマイクロデバイスの生産性を 向上することができる。 産業上の利用可能性 [0246] In the semiconductor device, a step of designing the function and performance of the device, a step of manufacturing a reticle based on this design step, a step of manufacturing a wafer from a silicon material, and the adjusting method described above. In the exposure apparatus of the above embodiment, the transfer characteristics of the pattern are adjusted by the lithography step of transferring the pattern formed on the mask onto the photosensitive object, and the device assembling step (including the dicing step, the bonding step, and the knocking step). , Manufactured through inspection steps and the like. In this case, since the exposure apparatus of the above embodiment is used in the lithography step, highly accurate exposure can be realized for a long time. Therefore, the productivity of a highly integrated microdevice on which a fine pattern is formed can be improved. Industrial applicability
本発明の較正方法は、光学系、液体及び撥水膜を介して検出ビームを受けるセン サの出力を較正するのに適している。また、本発明の予測方法は、撥液膜のビーム 透過率の変動を予測するのに適している。また、本発明の露光方法は、物体の露光 に適している。また、本発明の反射率較正方法は、光学系及び液体を介してェネル ギビームが照射される物体の反射率計測に用いられる反射板の反射率データを較 正するのに適している。また、本発明の反射率計測方法は、物体の反射率を計測す るのに適している。また、本発明の露光装置は、ビーム源からのエネルギビームを光 学系及び液体を介して照射して物体を露光し、該物体上にパターンを形成するのに 適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適して いる。  The calibration method of the present invention is suitable for calibrating the output of a sensor that receives a detection beam via an optical system, a liquid, and a water-repellent film. Further, the prediction method of the present invention is suitable for predicting a change in the beam transmittance of the liquid-repellent film. Further, the exposure method of the present invention is suitable for exposing an object. Further, the reflectance calibration method of the present invention is suitable for correcting reflectance data of a reflector used for reflectance measurement of an object irradiated with an energy beam via an optical system and a liquid. Further, the reflectance measurement method of the present invention is suitable for measuring the reflectance of an object. The exposure apparatus of the present invention is suitable for exposing an object by irradiating an energy beam from a beam source through an optical system and a liquid to form a pattern on the object. Further, the device manufacturing method of the present invention is suitable for manufacturing micro devices.

Claims

請求の範囲 The scope of the claims
[1] 部材の表面の撥液膜を介して第 1の検出ビームを受ける第 1センサの出力を較正 する較正方法であって、  [1] A calibration method for calibrating an output of a first sensor that receives a first detection beam via a liquid-repellent film on a surface of a member,
撥液膜を介することなく第 2センサにより第 2の検出ビームを受け、その受けたビー ムのエネルギ量に対応する前記第 2センサの出力を取得する第 1工程と;  A first step of receiving a second detection beam by a second sensor without passing through a liquid-repellent film, and acquiring an output of the second sensor corresponding to an energy amount of the received beam;
前記第 1の検出ビームを前記撥液膜を介して前記第 1センサで受け、その受けたビ ームのエネルギ量に対応する前記第 1センサの出力を取得する第 2工程と; 前記第 1センサの出力と前記第 2センサの出力とに基づ 、て、前記第 1センサの出 力を較正するための較正情報を取得する第 3工程と;を含む較正方法。  A second step of receiving the first detection beam by the first sensor via the liquid-repellent film and obtaining an output of the first sensor corresponding to the energy amount of the received beam; A third step of obtaining calibration information for calibrating the output of the first sensor based on the output of the sensor and the output of the second sensor.
[2] 請求項 1に記載の較正方法において、 [2] In the calibration method according to claim 1,
前記較正情報に基づいて前記第 1センサの出力を較正することによって、前記撥 液膜のビーム透過率の変化が前記第 1センサの出力に与える影響を補償することを 特徴とする較正方法。  A calibration method, wherein the output of the first sensor is calibrated based on the calibration information to compensate for the effect of a change in the beam transmittance of the liquid-repellent film on the output of the first sensor.
[3] 請求項 1に記載の較正方法において、 [3] In the calibration method according to claim 1,
前記第 1工程力 第 3工程までの処理は、前記撥液膜のビーム透過率の変化に関 連する情報に基づくタイミングで実施されることを特徴とする較正方法。  The calibration method, wherein the processing up to the third step is performed at a timing based on information related to a change in the beam transmittance of the liquid-repellent film.
[4] 請求項 3に記載の較正方法において、 [4] The calibration method according to claim 3,
前記情報は、前記撥液膜に対する前記検出ビームの積算照射量に関することを特 徴とする較正方法。  A calibration method, wherein the information relates to an integrated irradiation amount of the detection beam to the liquid repellent film.
[5] 請求項 1に記載の較正方法において、 [5] The calibration method according to claim 1,
前記第 1センサは光学系のビーム射出側に配置され、  The first sensor is disposed on the beam emission side of the optical system,
前記第 2センサは、前記光学系のビーム射出側に配置され、前記撥液膜を介さず に前記第 2の検出ビームを受けることを特徴とする較正方法。  The calibration method, wherein the second sensor is disposed on a beam emission side of the optical system, and receives the second detection beam without passing through the liquid-repellent film.
[6] 請求項 1に記載の較正方法において、 [6] In the calibration method according to claim 1,
前記部材はビーム透過部を有し、  The member has a beam transmitting portion,
前記第 1センサは、前記撥液膜と前記ビーム透過部とを通過した前記第 1の検出ビ ームを受けることを特徴とする較正方法。  The calibration method, wherein the first sensor receives the first detection beam that has passed through the liquid-repellent film and the beam transmitting unit.
[7] 請求項 1に記載の較正方法において、 前記較正情報の次回の取得がなされるまでの間、所定関数に基づいて、前記撥液 膜のビーム透過率変化を計算し、その計算結果に基づいて、前回取得された較正情 報を補正する第 4工程を、更に含む較正方法。 [7] In the calibration method according to claim 1, Until the next acquisition of the calibration information, a change in the beam transmittance of the liquid-repellent film is calculated based on a predetermined function, and the previously acquired calibration information is corrected based on the calculation result. A calibration method further comprising a fourth step.
[8] 請求項 7に記載の較正方法において、 [8] The calibration method according to claim 7,
前記関数は、前記撥液膜に照射されるエネルギビームの照射履歴に関する情報を 入力とし前記撥液膜のビーム透過率を出力とすることを特徴とする較正方法。  The calibration method according to claim 1, wherein the function is an input of information regarding an irradiation history of an energy beam applied to the liquid-repellent film, and an output is a beam transmittance of the liquid-repellent film.
[9] 請求項 1に記載の較正方法において、 [9] The calibration method according to claim 1,
前記第 1センサは光学系のビーム射出側に配置され、ビーム源力 発射されたエネ ルギビームのうち前記光学系を通過したエネルギビームの少なくとも一部を前記第 1 の検出ビームとして受け、  The first sensor is disposed on a beam emission side of an optical system, and receives at least a part of an energy beam that has passed through the optical system among the emitted energy beams as the first detection beam,
前記第 2センサは、前記ビーム源力 発射されたエネルギビームのうち前記ビーム 源力 前記光学系に向力うビーム路上で分岐されたエネルギビームを前記第 2の検 出ビームとして受けることを特徴とする較正方法。  The second sensor receives, as the second detection beam, an energy beam that is branched on a beam path facing the optical system, out of the emitted energy beam. Calibration method.
[10] 請求項 1に記載の較正方法において、 [10] In the calibration method according to claim 1,
前記第 1センサは光学系のビーム射出側に配置され、ビーム源から発射され前記 光学系を通過したエネルギビームの少なくとも一部を前記第 1の検出ビームとして受 け、  The first sensor is arranged on a beam emission side of an optical system, and receives at least a part of an energy beam emitted from a beam source and passing through the optical system as the first detection beam,
前記第 2センサは、前記ビーム源から発射され前記光学系に向力うエネルギビーム のビーム路に垂直な面内で移動可能な移動部材上に設けられ、前記ビーム路上で、 前記ビーム源力 発射され前記光学系に向力うエネルギビームの少なくとも一部を前 記第 2の検出ビームとして受けることを特徴とする較正方法。  The second sensor is provided on a movable member that is movable in a plane perpendicular to a beam path of an energy beam emitted from the beam source and directed toward the optical system, and the beam source force is emitted on the beam path. And receiving at least a part of the energy beam directed to the optical system as the second detection beam.
[11] 請求項 1に記載の較正方法において、 [11] In the calibration method according to claim 1,
前記部材は、投影光学系の像面側に配置されることを特徴とする較正方法。  The calibration method, wherein the member is disposed on an image plane side of a projection optical system.
[12] 請求項 1〜11のいずれか一項に記載の較正方法を用いて較正された前記第 1セ ンサの出力を考慮して、エネルギビームを光学系及び液体を介して物体上に照射す ることによって、前記物体を露光する工程を含む露光方法。 [12] An energy beam is irradiated onto an object via an optical system and a liquid in consideration of an output of the first sensor calibrated using the calibration method according to any one of claims 1 to 11. Thereby exposing the object.
[13] 請求項 12に記載の露光方法により物体を露光して、該物体上にデバイスパターン を形成するリソグラフイエ程を含むデバイス製造方法。 [13] A device manufacturing method including a lithographic process in which an object is exposed by the exposure method according to claim 12, and a device pattern is formed on the object.
[14] 部材の表面に形成された撥液膜のビーム透過率の変動を予測する予測方法であ つて、 [14] A prediction method for predicting a change in beam transmittance of a liquid-repellent film formed on a surface of a member,
前記撥液膜に照射されるエネルギビームの照射履歴に関連する情報に基づいて 前記撥液膜のビーム透過率の変動を予測する工程を含む予測方法。  A prediction method including a step of predicting a change in beam transmittance of the liquid-repellent film based on information related to an irradiation history of an energy beam applied to the liquid-repellent film.
[15] 請求項 14に記載の予測方法において、 [15] The prediction method according to claim 14, wherein
前記予測する工程では、前記撥液膜に照射されるエネルギビームの照射履歴に関 連する情報を入力情報とする所定関数を用いて、前記撥液膜のビーム透過率の変 動を予測することを特徴とする予測方法。  In the predicting step, a change in beam transmittance of the liquid-repellent film is predicted using a predetermined function using information relating to the irradiation history of the energy beam applied to the liquid-repellent film as input information. A prediction method characterized by the following.
[16] 請求項 14に記載の予測方法において、 [16] The prediction method according to claim 14, wherein
前記情報は、前記撥液膜に照射されるエネルギビームの積算量を含むことを特徴 とする予測方法。  The prediction method, wherein the information includes an integrated amount of an energy beam applied to the liquid repellent film.
[17] 請求項 14に記載の予測方法において、 [17] The prediction method according to claim 14, wherein
前記撥液膜に照射されるエネルギビームはパルス光であり、  The energy beam applied to the liquid repellent film is a pulse light,
前記情報は、前記撥液膜に照射されたパルス光の積算照射パルス数を含むことを 特徴とする予測方法。  The prediction method, wherein the information includes an integrated number of irradiation pulses of pulsed light applied to the liquid repellent film.
[18] 請求項 14に記載の予測方法において、 [18] The prediction method according to claim 14, wherein
前記部材は、投影光学系の像面側に配置されることを特徴とする予測方法。  The prediction method, wherein the member is disposed on an image plane side of a projection optical system.
[19] 請求項 14〜18のいずれか一項に記載の予測方法において、 [19] In the prediction method according to any one of claims 14 to 18,
前記部材は、光学系のビーム射出側に配置される計測部材であり、該計測部材は 、所定のビーム透過部、基準マーク、反射面の少なくとも 1つを含むことを特徴とする 予測方法。  The prediction method is characterized in that the member is a measurement member arranged on a beam emission side of an optical system, and the measurement member includes at least one of a predetermined beam transmission part, a reference mark, and a reflection surface.
[20] 光学系を介してエネルギビームが照射される物体の反射率を計測するために、前 記光学系のビーム射出側に配置され、その表面に撥液膜を有する計測用反射板の 反射率に関連する情報を較正する反射率較正方法であって、  [20] In order to measure the reflectance of an object irradiated with the energy beam through the optical system, the reflection of a measuring reflector disposed on the beam exit side of the optical system and having a liquid-repellent film on its surface is measured. A reflectance calibration method for calibrating information related to a reflectance,
その表面に撥液膜が存在せず、所定の反射率を有する基準反射板を、前記光学 系のビーム射出側に配置し、前記光学系を介して前記基準反射板に前記エネルギ ビームを照射するとともに、前記基準反射板からの反射ビームを前記光学系を介して センサで受けて、基準データを取得する第 1工程と; 前記計測用反射板を前記光学系のビーム射出側に配置して、前記光学系及び液 体を介して前記計測用反射板に前記エネルギビームを照射するとともに、前記計測 用反射板からの反射ビームを前記液体及び前記光学系を介して前記センサで受け て、計測データを取得する第 2工程と; A reference reflector having no liquid-repellent film on its surface and having a predetermined reflectance is arranged on the beam exit side of the optical system, and the energy beam is applied to the reference reflector via the optical system. A first step of receiving a reflected beam from the reference reflecting plate with a sensor via the optical system and acquiring reference data; The measurement reflector is disposed on the beam exit side of the optical system, the energy beam is applied to the measurement reflector via the optical system and the liquid, and the reflected beam from the measurement reflector is reflected. Receiving the measurement data with the sensor via the liquid and the optical system, and acquiring measurement data;
前記基準データと前記計測データとに基づいて、前記計測用反射板の反射率に 関連する情報を較正する第 3工程と;を含む反射率較正方法。  A third step of calibrating information related to the reflectance of the reflection plate for measurement based on the reference data and the measurement data.
[21] 請求項 20に記載の反射率較正方法にお!、て、 [21] The reflectance calibration method according to claim 20!
前記第 1工程、第 2工程及び第 3工程の処理は、前記計測用反射板上に形成され た撥液膜のビーム透過率変化を補償するために行われることを特徴とする反射率較 正方法。  Wherein the first, second, and third steps are performed to compensate for a change in beam transmittance of a liquid-repellent film formed on the reflection plate for measurement. Method.
[22] 請求項 20に記載の反射率較正方法において、  [22] The reflectance calibration method according to claim 20, wherein
前記光学系は、投影光学系を含むことを特徴とする反射率較正方法。  A reflectance calibration method, wherein the optical system includes a projection optical system.
[23] 請求項 20〜22の 、ずれか一項に記載の反射率較正方法にお!、て、 [23] The reflectance calibration method according to any one of claims 20 to 22, wherein:
前記計測用反射板は、第 1反射率を有する第 1反射面と第 2反射率を有する第 2反 射面とを含むことを特徴とする反射率較正方法。  A reflectance calibration method, wherein the measurement reflector includes a first reflection surface having a first reflectance and a second reflection surface having a second reflectance.
[24] 光学系のビーム射出側に配置され、前記光学系と液体とを介してエネルギビーム が照射される物体の反射率を計測する反射率計測方法であって、 [24] A reflectivity measurement method for measuring a reflectivity of an object which is arranged on a beam emission side of an optical system and is irradiated with an energy beam through the optical system and a liquid,
その表面に撥液膜が存在せず、所定の反射率を有する基準反射板を、前記光学 系のビーム射出側に配置して、前記光学系を介して前記基準反射板に前記エネル ギビームを照射するとともに、前記基準反射板からの反射ビームを前記光学系を介し てセンサで受けて、基準データを取得する第 1工程と;  A reference reflector having no liquid-repellent film on its surface and having a predetermined reflectance is arranged on the beam exit side of the optical system, and the reference beam is irradiated with the energy beam via the optical system. A first step of receiving a reflected beam from the reference reflector by a sensor via the optical system and acquiring reference data;
その表面に撥液膜が形成され該撥液膜を含む全体として所定の反射率を有する 計測用反射板を、前記光学系のビーム射出側に配置して、前記光学系及び液体を 介して前記計測用反射板に前記エネルギビームを照射するとともに、前記計測用反 射板からの反射ビームを前記液体及び光学系を介して前記センサで受けて、計測デ ータを取得する第 2工程と;  A liquid-repellent film is formed on the surface thereof, and a measuring reflection plate having a predetermined reflectance as a whole including the liquid-repellent film is arranged on the beam emission side of the optical system, and the measurement reflector is interposed through the optical system and the liquid. A second step of irradiating the measurement reflector with the energy beam, receiving the reflected beam from the measurement reflector through the liquid and the optical system with the sensor, and acquiring measurement data;
前記基準データと前記計測データとに基づいて、前記計測用反射板の反射率に 関連する情報を較正する第 3工程と; 前記物体を、前記光学系のビーム射出側に配置し、前記エネルギビームを前記光 学系及び液体を介して前記物体上に照射するとともに、前記物体からの反射ビーム を前記液体及び前記光学系を介して前記センサで受ける第 4工程と; A third step of calibrating information related to the reflectance of the measurement reflector based on the reference data and the measurement data; The object is arranged on the beam emission side of the optical system, the energy beam is irradiated on the object via the optical system and the liquid, and the reflected beam from the object is transmitted to the liquid and the optical system. A fourth step of receiving said sensor via
前記第 3工程で較正された前記計測用反射板の反射率に関連する情報と前記第 4 工程での結果とに基づ 、て前記物体の反射率を求める第 5工程と;を含む反射率計 測方法。  A fifth step of determining the reflectance of the object based on the information related to the reflectance of the measurement reflector calibrated in the third step and the result of the fourth step. Measurement method.
[25] 請求項 24に記載の反射率計測方法において、  [25] The reflectance measurement method according to claim 24,
前記第 5工程では、前記第 3工程で較正された前記計測用反射板の反射率に関 連する情報と、第 4工程での結果とを用いて、所定の演算により、前記物体の反射率 を算出することを特徴とする反射率計測方法。  In the fifth step, the reflectance of the object is calculated by a predetermined calculation using the information related to the reflectance of the measurement reflector corrected in the third step and the result of the fourth step. Is calculated.
[26] 請求項 24に記載の反射率計測方法において、 [26] In the reflectance measuring method according to claim 24,
前記光学系は、投影光学系を含むことを特徴とする反射率計測方法。  The reflectance measuring method, wherein the optical system includes a projection optical system.
[27] 光学系のビーム射出側に配置され、前記光学系と液体とを介してエネルギビーム が照射される物体の反射率を請求項 24〜26のいずれか一項に記載の反射率計測 方法を用いて計測する工程と; [27] The reflectance measurement method according to any one of claims 24 to 26, wherein a reflectance of an object which is arranged on a beam emission side of an optical system and is irradiated with an energy beam through the optical system and the liquid is measured. Measuring using;
計測された前記物体の反射率を考慮して、前記物体を露光する工程と;を含む露 光方法。  Exposing the object in consideration of the measured reflectance of the object.
[28] 請求項 27に記載の露光方法により物体を露光して、該物体上にデバイスパターン を形成するリソグラフイエ程を含むデバイス製造方法。  [28] A device manufacturing method including a lithographic process in which an object is exposed by the exposure method according to claim 27 to form a device pattern on the object.
[29] ビーム源からのエネルギビームを光学系及び液体を介して照射して物体を露光し、 該物体上にパターンを形成する露光装置であって、 [29] An exposure apparatus for irradiating an energy beam from a beam source through an optical system and a liquid to expose an object and form a pattern on the object,
前記光学系のビーム射出側に配置される部材表面の撥液膜を介して第 1の検出ビ ームを受ける第 1センサと;  A first sensor for receiving a first detection beam via a liquid-repellent film on a surface of a member disposed on a beam emission side of the optical system;
第 2の検出ビームを撥液膜を介さずに受ける第 2センサと;  A second sensor for receiving the second detection beam without passing through the liquid-repellent film;
受けた前記第 2の検出ビームの量に対応する前記第 2センサの出力を取得するとと もに、受けた前記第 1の検出ビームの量に対応する前記第 1センサの出力を取得す る計測処理装置と;  Measurement for obtaining the output of the second sensor corresponding to the amount of the received second detection beam and obtaining the output of the first sensor corresponding to the amount of the received first detection beam A processing device;
前記計測処理装置で取得された前記第 2センサの出力と前記第 1センサの出力と に基づいて前記第 1センサの出力を較正するための較正情報を算出する演算装置とThe output of the second sensor and the output of the first sensor acquired by the measurement processing device An arithmetic unit that calculates calibration information for calibrating the output of the first sensor based on
;を備える露光装置。 An exposure apparatus comprising:
[30] 請求項 29に記載の露光装置において、  [30] The exposure apparatus according to claim 29,
前記較正情報に基づいて前記第 1センサの出力を較正することによって、前記撥 液膜のビーム透過率の変化を補償する補償装置を更に備える露光装置。  An exposure apparatus further comprising a compensating device that compensates for a change in the beam transmittance of the liquid-repellent film by calibrating an output of the first sensor based on the calibration information.
[31] 請求項 29に記載の露光装置において、 [31] The exposure apparatus according to claim 29,
前記計測処理装置と前記演算装置とによる前記較正情報の算出のための処理は、 前記撥液膜のビーム透過率の変化に関連する情報に基づくタイミングで実施される ことを特徴とする露光装置。  An exposure apparatus, wherein a process for calculating the calibration information by the measurement processing device and the arithmetic device is performed at a timing based on information relating to a change in beam transmittance of the liquid-repellent film.
[32] 請求項 31に記載の露光装置において、 [32] The exposure apparatus according to claim 31,
前記情報は、前記撥液膜に対するエネルギビームの積算照射量に関することを特 徴とする露光装置。  An exposure apparatus, wherein the information relates to an integrated irradiation amount of an energy beam to the liquid repellent film.
[33] 請求項 29に記載の露光装置において、 [33] The exposure apparatus according to claim 29,
前記第 2センサは、前記光学系のビーム射出側に配置され、撥液膜を介さずに前 記第 2の検出ビームを受けることを特徴とする露光装置。  An exposure apparatus, wherein the second sensor is arranged on a beam emission side of the optical system, and receives the second detection beam without passing through a liquid-repellent film.
[34] 請求項 29に記載の露光装置において、 [34] The exposure apparatus according to claim 29,
前記部材は、ビーム透過部を有し、  The member has a beam transmitting portion,
前記第 1センサは、前記撥液膜と前記ビーム透過部とを通過した前記第 1の検出ビ ームを受けることを特徴とする露光装置。  An exposure apparatus, wherein the first sensor receives the first detection beam that has passed through the liquid-repellent film and the beam transmitting unit.
[35] 請求項 34に記載の露光装置において、 [35] The exposure apparatus according to claim 34,
前記物体が載置される物体ステージを更に備え、  Further comprising an object stage on which the object is mounted,
前記部材が、前記物体ステージ上に設けられて ヽることを特徴とする露光装置。  An exposure apparatus, wherein the member is provided on the object stage.
[36] 請求項 34に記載の露光装置において、 [36] The exposure apparatus according to claim 34,
前記物体が載置される物体ステージと;  An object stage on which the object is placed;
前記部材が設けられた、前記物体ステージとは異なる計測ステージと;を更に備え る露光装置。  An exposure apparatus, further comprising: a measurement stage provided with the member, which is different from the object stage.
[37] 請求項 29に記載の露光装置において、  [37] The exposure apparatus according to claim 29,
前記演算装置による前記較正情報の次回の算出がなされるまでの間、所定関数に 基づいて、前記撥液膜のビーム透過率の変化に関連する情報を計算し、その計算 結果に基づいて、前回算出された較正情報を補正する補正装置を更に備える露光 装置。 Until the next calculation of the calibration information by the arithmetic device is performed, the predetermined function An exposure apparatus further comprising: a correction device that calculates information related to a change in beam transmittance of the liquid-repellent film based on the calculation result, and corrects the previously calculated calibration information based on the calculation result.
[38] 請求項 37に記載の露光装置において、  [38] The exposure apparatus according to claim 37,
前記ビーム源からのエネルギビームにより前記光学系のビーム入射側に配置され たパターンを照明するとともに、その瞳面におけるビームエネルギの分布を変更する ことで前記パターンに対する照明条件を変更可能な照明光学系をさらに備え、 前記補正装置は、前記照明光学系によって設定された照明条件に応じた関数を用 いて、前記撥液膜のビーム透過率の変化に関連する情報を計算することを特徴とす る露光装置。  An illumination optical system capable of illuminating a pattern arranged on the beam incident side of the optical system with an energy beam from the beam source and changing an illumination condition for the pattern by changing a beam energy distribution on a pupil plane thereof Wherein the correction device calculates information related to a change in the beam transmittance of the liquid-repellent film using a function corresponding to an illumination condition set by the illumination optical system. Exposure equipment.
[39] 請求項 37に記載の露光装置において、  [39] The exposure apparatus according to claim 37,
前記関数は、前記撥液膜に照射されるエネルギビームの照射履歴に関連する情報 を入力とし、前記撥液膜のビーム透過率を出力とすることを特徴とする露光装置。  The exposure apparatus according to claim 1, wherein the function receives information relating to an irradiation history of an energy beam applied to the liquid-repellent film as input and outputs a beam transmittance of the liquid-repellent film.
[40] 請求項 29に記載の露光装置において、 [40] The exposure apparatus according to claim 29,
前記第 1センサは、前記ビーム源から発射されたエネルギビームのうち、前記光学 系を通過したエネルギビームの少なくとも一部を前記第 1の検出ビームとして受け、 前記第 2センサは、前記ビーム源力 発射されたエネルギビームのうち前記ビーム 源から前記光学系に向力うエネルギビームのビーム路上で分岐されたエネルギビー ムを前記第 2の検出ビームとして受けることを特徴とする露光装置。  The first sensor receives, as the first detection beam, at least a part of the energy beam that has passed through the optical system among the energy beams emitted from the beam source, and the second sensor has the beam source power An exposure apparatus, comprising: receiving, as the second detection beam, an energy beam branched out of the emitted energy beam on a beam path of the energy beam directed to the optical system from the beam source.
[41] 請求項 29に記載の露光装置において、 [41] The exposure apparatus according to claim 29,
前記ビーム源力 発射され前記光学系に向力うエネルギビームのビーム路に垂直 な面内で移動可能な移動部材を更に備え、  A moving member movable in a plane perpendicular to a beam path of the energy beam emitted and directed toward the optical system.
前記第 1センサは、前記ビーム源から発射され前記光学系を通過したエネルギビー ムの少なくとも一部を前記第 1の検出ビームとして受け、  The first sensor receives at least a part of the energy beam emitted from the beam source and passing through the optical system as the first detection beam,
前記第 2センサは、前記移動部材上に設けられ、前記ビーム路上で、前記ビーム 源力 発射され前記光学系に向力うエネルギビームの少なくとも一部を第 2の検出ビ ームとして受けることを特徴とする露光装置。  The second sensor is provided on the moving member, and receives at least a part of the energy beam emitted from the beam source and directed to the optical system as a second detection beam on the beam path. An exposure apparatus characterized by the following.
[42] 請求項 29に記載の露光装置において、 前記光学系は、投影光学系を含むことを特徴とする露光装置。 [42] The exposure apparatus according to claim 29, An exposure apparatus, wherein the optical system includes a projection optical system.
[43] 光学系と液体とを介して物体上にエネルギビームを照射して、前記物体を露光する 露光装置であって、  [43] An exposure apparatus that irradiates an energy beam onto an object through an optical system and a liquid to expose the object,
前記光学系のビーム射出側に配置された部材表面の膜を介して検出ビームを受け るセンサと;  A sensor for receiving a detection beam through a film on the surface of the member disposed on the beam exit side of the optical system;
前記センサの出力と前記膜のビーム透過率の変化に関連する情報とに基づいて、 前記物体に対する露光動作を制御する制御装置と;を備える露光装置。  A control device that controls an exposure operation on the object based on an output of the sensor and information related to a change in beam transmittance of the film.
[44] 請求項 43に記載の露光装置において、 [44] The exposure apparatus according to claim 43,
前記膜は撥液膜を含むことを特徴とする露光装置。  An exposure apparatus, wherein the film includes a liquid-repellent film.
[45] 請求項 43に記載の露光装置において、 [45] The exposure apparatus according to claim 43,
前記センサは、前記光学系と前記部材表面の膜とを介して検出ビームを受けること を特徴とする露光装置。  An exposure apparatus, wherein the sensor receives a detection beam via the optical system and a film on a surface of the member.
[46] 請求項 45に記載の露光装置において、 [46] The exposure apparatus according to claim 45, wherein
前記センサは、前記検出ビームとして、前記エネルギビームを受けることを特徴とす る露光装置。  An exposure apparatus, wherein the sensor receives the energy beam as the detection beam.
[47] 請求項 46に記載の露光装置において、  [47] The exposure apparatus according to claim 46,
前記センサの検出結果に基づいて、前記物体に対する露光量制御を行うことを特 徴とする露光装置。  An exposure apparatus, comprising: performing an exposure amount control on the object based on a detection result of the sensor.
[48] 請求項 45に記載の露光装置において、 [48] The exposure apparatus according to claim 45, wherein
前記部材は反射面を有し、  The member has a reflective surface,
前記センサは、前記反射面力 の検出ビームを前記光学系を介して受けることを特 徴とする露光装置。  An exposure apparatus, wherein the sensor receives a detection beam of the reflection surface force via the optical system.
[49] 請求項 43に記載の露光装置において、 [49] The exposure apparatus according to claim 43,
前記センサの検出結果に基づ!/、て、前記物体上に形成される像の形成状態を調 整することを特徴とする露光装置。  An exposure apparatus, comprising: adjusting an image formation state formed on the object based on a detection result of the sensor.
[50] 請求項 49に記載の露光装置において、 [50] The exposure apparatus according to claim 49,
前記形成状態の調整は、前記光学系の調整を含むことを特徴とする露光装置。  An exposure apparatus, wherein the adjustment of the formation state includes an adjustment of the optical system.
[51] 請求項 43に記載の露光装置において、 前記膜のビーム透過率の変化に関する情報は、前記膜に照射された検出ビームの 積算エネルギ情報を含むことを特徴とする露光装置。 [51] The exposure apparatus according to claim 43, The exposure apparatus according to claim 1, wherein the information about the change in the beam transmittance of the film includes integrated energy information of a detection beam applied to the film.
[52] 請求項 43に記載の露光装置において、  [52] The exposure apparatus according to claim 43,
前記検出ビームはパルス光であり、  The detection beam is pulsed light,
前記膜のビーム透過率の変化に関する情報は、前記膜に照射された検出ビームの 積算パルス数を含むことを特徴とする露光装置。  The exposure apparatus according to claim 1, wherein the information on the change in the beam transmittance of the film includes an integrated pulse number of a detection beam applied to the film.
[53] 請求項 43に記載の露光装置において、 [53] The exposure apparatus according to claim 43,
前記光学系は、投影光学系を含むことを特徴とする露光装置。  An exposure apparatus, wherein the optical system includes a projection optical system.
[54] 請求項 29〜53のいずれか一項に記載の露光装置を用いて物体を露光し、該物体 上にデバイスパターンを形成するリソグラフイエ程を含むデバイス製造方法。 [54] A device manufacturing method including a lithographic step of exposing an object using the exposure apparatus according to any one of claims 29 to 53 and forming a device pattern on the object.
PCT/JP2005/009536 2004-05-26 2005-05-25 Correcting method, predicting method, exposuring method, reflectance correcting method, reflectance measuring method, exposure apparatus, and device manufacturing method WO2005117075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513905A JP4582344B2 (en) 2004-05-26 2005-05-25 Calibration method, prediction method, exposure method, reflectance calibration method and reflectance measurement method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004155431 2004-05-26
JP2004-155431 2004-05-26

Publications (1)

Publication Number Publication Date
WO2005117075A1 true WO2005117075A1 (en) 2005-12-08

Family

ID=35451134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009536 WO2005117075A1 (en) 2004-05-26 2005-05-25 Correcting method, predicting method, exposuring method, reflectance correcting method, reflectance measuring method, exposure apparatus, and device manufacturing method

Country Status (3)

Country Link
JP (1) JP4582344B2 (en)
TW (1) TWI408504B (en)
WO (1) WO2005117075A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287817A (en) * 2006-04-14 2007-11-01 Nikon Corp Method of calibrating aligner and aligner
JP2012235165A (en) * 2006-02-21 2012-11-29 Nikon Corp Device and method for pattern forming, system and method for mobile driving, device and method for exposure, and device manufacturing method
JP2012251875A (en) * 2011-06-03 2012-12-20 Utsunomiya Univ Light intensity measuring device
JP2014085504A (en) * 2012-10-23 2014-05-12 Canon Inc Stage device, exposure device and method for producing article
US8854632B2 (en) 2006-02-21 2014-10-07 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9103700B2 (en) 2006-02-21 2015-08-11 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP2016048263A (en) * 2015-12-22 2016-04-07 国立大学法人宇都宮大学 Light intensity measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR119035A1 (en) * 2019-05-29 2021-11-17 Yara Int Asa METHOD TO ESTIMATE THE CHLOROPHYLL CONTENT OF A LEAF

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
WO2005031799A2 (en) * 2003-09-29 2005-04-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2005116571A (en) * 2003-10-02 2005-04-28 Nikon Corp Aligner and method of manufacturing device
WO2005043607A1 (en) * 2003-10-31 2005-05-12 Nikon Corporation Exposure apparatus and device producing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301153B2 (en) * 1993-04-06 2002-07-15 株式会社ニコン Projection exposure apparatus, exposure method, and element manufacturing method
TW559895B (en) * 2002-09-27 2003-11-01 Taiwan Semiconductor Mfg Exposure system and exposure method thereof
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
EP1420302A1 (en) * 2002-11-18 2004-05-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
WO2005031799A2 (en) * 2003-09-29 2005-04-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2005116571A (en) * 2003-10-02 2005-04-28 Nikon Corp Aligner and method of manufacturing device
WO2005043607A1 (en) * 2003-10-31 2005-05-12 Nikon Corporation Exposure apparatus and device producing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9423705B2 (en) 2006-02-21 2016-08-23 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US8854632B2 (en) 2006-02-21 2014-10-07 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9103700B2 (en) 2006-02-21 2015-08-11 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
JP2012235165A (en) * 2006-02-21 2012-11-29 Nikon Corp Device and method for pattern forming, system and method for mobile driving, device and method for exposure, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP2007287817A (en) * 2006-04-14 2007-11-01 Nikon Corp Method of calibrating aligner and aligner
JP2012251875A (en) * 2011-06-03 2012-12-20 Utsunomiya Univ Light intensity measuring device
JP2014085504A (en) * 2012-10-23 2014-05-12 Canon Inc Stage device, exposure device and method for producing article
JP2016048263A (en) * 2015-12-22 2016-04-07 国立大学法人宇都宮大学 Light intensity measuring device

Also Published As

Publication number Publication date
JP4582344B2 (en) 2010-11-17
JPWO2005117075A1 (en) 2008-04-03
TWI408504B (en) 2013-09-11
TW200609688A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4596191B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4678372B2 (en) Management method, management system, and program
JP4345098B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7965387B2 (en) Image plane measurement method, exposure method, device manufacturing method, and exposure apparatus
TWI585544B (en) An exposure apparatus and an exposure method, and an element manufacturing method
TWI463277B (en) Measuring apparatus and method, pattern forming apparatus, exposure apparatus and method, and component manufacturing method
JP4513299B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TWI460561B (en) Exposure method and apparatus, and component manufacturing method
EP1906437A1 (en) Exposure method, exposure device, and device manufacturing method
TW201243519A (en) Exposure method, exposure device, and device manufacturing method
JP4515209B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2004301825A (en) Surface position detection device, exposure method and method for manufacturing device
JP2009105414A (en) Exposure method, and device manufacturing method
WO2006035925A1 (en) Measurement method, exposure method, and device manufacturing method
KR20010089453A (en) Exposure method and device
JP4582344B2 (en) Calibration method, prediction method, exposure method, reflectance calibration method and reflectance measurement method, exposure apparatus, and device manufacturing method
JP4470433B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO2002043123A1 (en) Aligner, aligning method and method for fabricating device
JP2007005571A (en) Exposure device and device manufacturing method
JP4985812B2 (en) Exposure apparatus and device manufacturing method
JP2006024763A (en) Evaluating method for exposure apparatus, exposure system, and manufacturing method for device
JP2010087532A (en) Exposure system, exposure method, and method for manufacturing device
JP2006332206A (en) Exposure apparatus and method for manufacturing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513905

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase