JP2004301825A - Surface position detection device, exposure method and method for manufacturing device - Google Patents

Surface position detection device, exposure method and method for manufacturing device Download PDF

Info

Publication number
JP2004301825A
JP2004301825A JP2003412586A JP2003412586A JP2004301825A JP 2004301825 A JP2004301825 A JP 2004301825A JP 2003412586 A JP2003412586 A JP 2003412586A JP 2003412586 A JP2003412586 A JP 2003412586A JP 2004301825 A JP2004301825 A JP 2004301825A
Authority
JP
Japan
Prior art keywords
substrate
light
detection
liquid
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003412586A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hidaka
康弘 日高
Hideo Mizutani
英夫 水谷
Nobutaka Umagome
伸貴 馬込
Soichi Yamato
壮一 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003412586A priority Critical patent/JP2004301825A/en
Publication of JP2004301825A publication Critical patent/JP2004301825A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface position detection device that can precisely detect surface position information of a surface to be detected even when a refractive index of a detection light for surface position detection on an optical path changes. <P>SOLUTION: The surface position detection device 100 is provided with a light projection system 8 to project detection light onto a surface S to be detected and a light receiving system 9 to receive light reflected on the surface S, and it detects a surface position information of the surface S on the basis of information acquired by the light receiving system 9. A plurality of beams of light L1 and L2 are projected as detection light onto the surface S at incident angles θ<SB>1</SB>and θ<SB>2</SB>respectively. Even if the refractive index of a medium on the surface S changes due to temperature change, the surface position information can be corrected based on the beams of reflection light of the lights L1 and L2. The surface position detector 100 is useful for an immersion aligner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被検面の面位置情報を光学的に検出する面位置検出装置、マスクのパターンの像を基板上に露光する露光方法、及びデバイス製造方法に関するものである。   The present invention relates to a surface position detecting device for optically detecting surface position information of a surface to be inspected, an exposure method for exposing a mask pattern image on a substrate, and a device manufacturing method.

半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。露光装置には、投影光学系の像面に対して基板表面を合わせ込むために、基板表面の面位置情報を検出するオートフォーカス検出系が設けられている。オートフォーカス検出系(AF検出系)には、例えば特開平6−66543号公報に開示されているような斜入射方式がある。これは、基板表面に対して斜め方向からフォーカス用検出光を照射し、基板表面での反射光により基板表面の位置情報を検出するものである。斜入射方式のAF検出系では、図10(a)の模式図に示すように、被検面である基板Pの表面が例えば符号P’のように上下方向に移動すると、照射したAF用検出光Lの基板表面での反射光がAF検出系を構成する光学系の光軸と垂直方向にずれるので、このずれ量Daを検出することで基板表面の投影光学系の光軸方向における面位置情報を検出することができる。   A semiconductor device and a liquid crystal display device are manufactured by a so-called photolithography technique of transferring a pattern formed on a mask onto a photosensitive substrate. The exposure apparatus used in this photolithography process has a mask stage that supports a mask and a substrate stage that supports a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. This is to be transferred to a substrate. The exposure apparatus is provided with an autofocus detection system that detects surface position information of the substrate surface in order to align the substrate surface with the image plane of the projection optical system. As an autofocus detection system (AF detection system), there is an oblique incidence system as disclosed in, for example, JP-A-6-66543. In this method, focus detection light is applied to the substrate surface from an oblique direction, and positional information on the substrate surface is detected by light reflected on the substrate surface. In the oblique incidence type AF detection system, as shown in the schematic diagram of FIG. 10A, when the surface of the substrate P, which is the surface to be inspected, moves in the vertical direction, for example, as indicated by the symbol P ′, the irradiated AF detection system is detected. Since the reflected light of the light L on the substrate surface is shifted in the direction perpendicular to the optical axis of the optical system constituting the AF detection system, by detecting the amount of shift Da, the surface position of the substrate surface in the optical axis direction of the projection optical system is detected. Information can be detected.

ところで、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短くなるほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長は、KrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
By the way, in order to cope with higher integration of device patterns, further higher resolution of the projection optical system is desired. The resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. For this reason, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing. The exposure wavelength currently mainstream is 248 nm of KrF excimer laser, but 193 nm of shorter wavelength ArF excimer laser is also being put to practical use. When performing exposure, the depth of focus (DOF) becomes important as well as the resolution. The resolution R and the depth of focus δ are respectively represented by the following equations.
R = k 1 · λ / NA (1)
δ = ± k 2 · λ / NA 2 (2)
Here, λ is the exposure wavelength, NA is the numerical aperture of the projection optical system, and k 1 and k 2 are the process coefficients. From the expressions (1) and (2), it can be seen that when the exposure wavelength λ is shortened and the numerical aperture NA is increased in order to increase the resolution R, the depth of focus δ becomes narrower.

焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のフォーカスマージンが不足する恐れがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば国際公開第99/49504号公報に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、液体中での露光光の波長が、空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
特開平6−66543号公報 国際公開第99/49504号パンフレット
If the depth of focus δ becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and the focus margin during the exposure operation may be insufficient. Therefore, as a method of substantially shortening the exposure wavelength and widening the depth of focus, for example, a liquid immersion method disclosed in International Publication WO99 / 49504 has been proposed. In this immersion method, the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid is 1 / n (n is the refraction of the liquid) in the air. The ratio is usually about 1.2 to 1.6), thereby improving the resolution and expanding the depth of focus to about n times.
JP-A-6-66543 WO 99/49504 pamphlet

ところで、投影光学系の下面と基板表面との間に液体を満たした状態において上述したような斜入射方式のAF検出系で基板表面の面位置情報を求めようとする場合、例えば温度変化等に起因して液体の屈折率が変化すると、図10(b)の模式図に示すように、屈折率変化前では基板Pの表面に対する検出光Lの入射角がθであったものが、屈折率変化後ではθ’のように変化するという不都合が生じる。入射角が変化すると検出光L及び基板Pでの反射光の光路は屈折率変化前の光路に対してずれるため、基板表面の位置が変化していないにもかかわらず、AF検出系の受光面に入射する検出光L(基板表面での反射光)の位置がずれてしまい、AF検出系は、基板の位置が変動したと誤った判断をしてしまうことになる。この結果、基板表面の面位置を精度良く測定することができなくなるおそれがある。   By the way, in a case where the liquid is filled between the lower surface of the projection optical system and the surface of the substrate, when the surface position information of the substrate surface is to be obtained by the oblique incidence type AF detection system as described above, for example, when the temperature is changed, etc. When the refractive index of the liquid changes due to this, the incident angle of the detection light L with respect to the surface of the substrate P was θ before the change in the refractive index, as shown in the schematic diagram of FIG. After the change, there is an inconvenience of a change like θ ′. If the incident angle changes, the optical paths of the detection light L and the light reflected by the substrate P deviate from the optical paths before the change in the refractive index, so that the light-receiving surface of the AF detection system does not change even if the position of the substrate surface has not changed. The position of the detection light L (reflected light on the surface of the substrate) incident on the substrate is shifted, and the AF detection system erroneously determines that the position of the substrate has changed. As a result, the surface position of the substrate surface may not be measured with high accuracy.

本発明はこのような事情に鑑みてなされたものであって、AF検出系の検出光の光路上の屈折率が変化しても基板表面の面位置情報を精度良く検出できる面位置検出装置を提供することを第1の目的とする。また、AF検出系の検出光の光路上の屈折率が変化しても精度良く基板面位置情報を検出してデバイスを製造できる露光方法及びデバイス製造方法を提供することを第2の目的とする。また、投影光学系と基板との間の液体を介してパターン像を基板上に投影する液浸露光法を用いても、パターン像を精度よく基板上に形成することのできる露光方法の提供を第3の目的とする。特にその液体の温度が変化した場合にも、パターン像を精度よく基板上に形成することのできる露光方法の提供を第4の目的とする。   The present invention has been made in view of such circumstances, and a surface position detection device capable of accurately detecting surface position information on a substrate surface even when a refractive index on an optical path of detection light of an AF detection system changes. The primary purpose is to provide. It is a second object of the present invention to provide an exposure method and a device manufacturing method that can accurately detect substrate surface position information and manufacture a device even if the refractive index of the detection light on the optical path of the AF detection system changes. . In addition, the present invention provides an exposure method that can form a pattern image on a substrate with high accuracy even when using an immersion exposure method in which a pattern image is projected onto the substrate via a liquid between a projection optical system and the substrate. This is the third purpose. In particular, a fourth object is to provide an exposure method capable of forming a pattern image on a substrate with high accuracy even when the temperature of the liquid changes.

上記の課題を解決するため、本発明は実施の形態に示す図1〜図9に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定する意図は無い。   In order to solve the above-described problem, the present invention employs the following configuration corresponding to FIGS. However, the parenthesized code given to each element is only an example of the element, and there is no intention to limit each element.

本発明の第1の態様に従えば、検出光を被検面(S)に投射するとともに、その被検面(S)からの反射光を受光することによって得られる情報に基づいて、被検面(S)の面位置を検出する面位置検出装置であって、検出光として、複数の光(L1、L2)を異なる入射角(θ、θ)で被検面(S)に投射する送光系(8)と;被検面(S)からの反射光を受光する受光系(9)と;を備える面位置検出装置(100)が提供される。 According to the first aspect of the present invention, the detection light is projected on the test surface (S), and the detection light is reflected based on the information obtained by receiving the reflected light from the test surface (S). a surface position detecting apparatus for detecting a surface position of the surface (S), projected as the detection light, a plurality of light (L1, L2) of different angles of incidence (θ 1, θ 2) on the test surface (S) with And a light receiving system (9) for receiving reflected light from the surface to be detected (S).

また、本発明の第2の態様に従えば、マスク(M)のパターンの像を投影光学系(PL)により基板(P)上に投影して、基板(P)を露光する露光方法であって:板表面(S)に複数の検出光(L1、L2)を異なる入射角(θ、θ)で投射するとともに、基板表面(S)からの反射光(L1r、L2r)を受光することによって、検出光(L1、L2)及び反射光(L1r、L2r)の光路の屈折率情報を検出することと;マスク(M)のパターンの像を投影光学系(PL)により基板(P)上に投影すること;を含む露光方法が提供される。 According to a second aspect of the present invention, there is provided an exposure method for projecting an image of a pattern of a mask (M) onto a substrate (P) by a projection optical system (PL) and exposing the substrate (P). Te: a plurality of detection light on the plate surface (S) (L1, L2) of different angles of incidence (θ 1, θ 2) with projecting at, for receiving reflected light from the substrate surface (S) (L1r, L2r) In this way, the refractive index information of the optical path of the detection light (L1, L2) and the reflected light (L1r, L2r) is detected; and the image of the pattern of the mask (M) is projected onto the substrate (P) by the projection optical system (PL). Exposure method is provided.

本発明によれば、検出光の光路上の屈折率が変化しても、検出光として複数の光を異なる入射角で被検面に投射することにより、これら各検出光に基づく面位置情報のそれぞれは互いに異なる測定誤差(誤差量)を示すので、これら誤差量の違い(差)に基づいて光路上の屈折率変化量を求めることができる。そして、求めた屈折率情報である屈折率変化量に基づいて検出した面位置情報を補正することができるので、被検面の面位置情報を精度良く求めることができる。なお、複数の光を異なる入射角で被検面に投射するには、例えば、複数の光源及び光学系を用いてもよい。あるいは、波長可変レーザや複数の波長を有する光源を、波長選択フィルタ、エタロン、分光器、プリズムなどとともに用いて、被検面への入射角が異なるように光の波長の毎に光路を変更してもよい。あるいは、瞳分割板やガルバノミラーを用いて光路を分割または偏向してもよい。   According to the present invention, even when the refractive index on the optical path of the detection light changes, by projecting a plurality of lights as detection light at different incident angles on the surface to be detected, surface position information based on each of these detection lights is obtained. Since each shows a different measurement error (error amount), the refractive index change amount on the optical path can be obtained based on the difference (difference) between these error amounts. Since the detected surface position information can be corrected based on the obtained refractive index change amount, the surface position information of the test surface can be obtained with high accuracy. In order to project a plurality of lights on the surface to be inspected at different incident angles, for example, a plurality of light sources and an optical system may be used. Alternatively, a wavelength tunable laser or a light source having a plurality of wavelengths is used together with a wavelength selection filter, an etalon, a spectroscope, a prism, and the like to change an optical path for each wavelength of light so that an incident angle on a surface to be measured is different. You may. Alternatively, the optical path may be split or deflected using a pupil splitter or a galvanomirror.

本発明の第3の態様に従えば、検出光を被検面(S)に投射するとともに、その被検面(S)からの反射光を受光することによって得られる情報に基づいて、被検面(S)の面位置を検出する面位置検出装置であって:検出光として、波長の異なる複数の光を被検面(S)に投射する送光系(8)と;被検面(S)からの反射光を受光する受光系(9)と;を備える面位置検出装置(100)が提供される。   According to the third aspect of the present invention, the detection light is projected on the test surface (S), and the detection target is detected based on information obtained by receiving the reflected light from the test surface (S). A surface position detection device for detecting a surface position of a surface (S), comprising: a light transmission system (8) for projecting a plurality of lights having different wavelengths as detection light onto a surface (S) to be detected; And a light receiving system (9) for receiving the reflected light from S).

また、本発明の第4の態様に従えば、マスク(M)のパターンの像を投影光学系(PL)により基板(P)上に投影して、基板(P)を露光する露光方法であって:基板表面(S)に波長の異なる複数の検出光を投射するとともに、基板表面(S)からの反射光を受光することによって、検出光及び反射光の光路の屈折率情報を検出することと;マスク(M)のパターンの像を投影光学系(PL)を介して基板(P)上に投影することと;を含む露光方法が提供される。   According to a fourth aspect of the present invention, there is provided an exposure method for projecting an image of a pattern of a mask (M) onto a substrate (P) by a projection optical system (PL) and exposing the substrate (P). T: Detecting the refractive index information of the detection light and the optical path of the reflected light by projecting a plurality of detection lights having different wavelengths on the substrate surface (S) and receiving the reflected light from the substrate surface (S). And projecting an image of the pattern of the mask (M) onto the substrate (P) via the projection optical system (PL).

本発明によれば、互いに異なる波長を有する光を物体に入射した際の屈折角のそれぞれは異なる値を示すことを利用し、波長の異なる複数の検出光を投射することで、被検面に対して互いに異なる入射角で検出光を照射できる。   According to the present invention, by utilizing the fact that each of the refraction angles when light having different wavelengths is incident on an object shows different values, and by projecting a plurality of detection lights having different wavelengths, on the surface to be measured. On the other hand, the detection light can be irradiated at mutually different incident angles.

この場合において、検出光は、光透過部材を介して被検面に投射されることを特徴とする。光透過部材としては、投影光学系を構成する光学素子、投影光学系と被検面との間に配置される光透過性を有する平行平面板が挙げられる。特に、液浸法による露光処理を行う場合にも、液体を介して高精度な基板表面の面位置検出を実現できるので、高解像度でパターン転写を行うことができる。   In this case, the detection light is projected on the surface to be detected via the light transmitting member. Examples of the light transmitting member include an optical element constituting a projection optical system, and a light transmitting parallel flat plate disposed between the projection optical system and the surface to be inspected. In particular, even in the case of performing the exposure process by the liquid immersion method, since the surface position of the substrate surface can be detected with high accuracy via the liquid, pattern transfer can be performed with high resolution.

また、本発明の第5の態様に従えば、投影光学系(PL)により液体(50)を介してパターンの像を基板(P)上に投影して、基板(P)を液浸露光する露光方法であって:投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たすことと;投影光学系(PL)と基板(P)との間の液体(50)の温度情報を光学的に検出することと;投影光学系(PL)により液体(50)を介してパターンの像を基板(P)上に投影することとを含む露光方法が提供される。   According to a fifth aspect of the present invention, an image of a pattern is projected onto a substrate (P) by a projection optical system (PL) via a liquid (50), and the substrate (P) is subjected to immersion exposure. An exposure method, wherein at least a part between the projection optical system (PL) and the substrate (P) is filled with a liquid (50); and a liquid between the projection optical system (PL) and the substrate (P). An exposure method is provided, comprising: optically detecting the temperature information of (50); and projecting an image of a pattern onto a substrate (P) via a liquid (50) by a projection optical system (PL). You.

本発明によれば、投影光学系と基板との間の液体の温度情報(温度変化)を検出することによって、その液体を介して行われる基板表面の面位置の検出やその液体を介して形成されるパターン像への影響を把握することができ、例えばその検出された温度情報に基づいて像調整を行うこともできる。   According to the present invention, by detecting temperature information (temperature change) of a liquid between a projection optical system and a substrate, detection of a surface position of a substrate surface performed through the liquid and formation of the liquid through the liquid are performed. The influence on the pattern image to be performed can be grasped, and for example, the image adjustment can be performed based on the detected temperature information.

検出光の光路上の屈折率が変化しても、検出光として複数の光を異なる入射角で被検面に投射することにより、これら各検出光に基づく面位置情報のそれぞれは互いに異なる測定誤差を示すので、これら測定誤差の差に基づいて光路上の屈折率情報を求めることができる。したがって、求めた屈折率情報で検出した面位置情報を補正することができるので、被検面の面位置情報を精度良く求めることができる。   Even if the refractive index on the optical path of the detection light changes, by projecting a plurality of lights as detection light at different incident angles on the surface to be detected, each of the surface position information based on each of the detection lights has a different measurement error. Therefore, the refractive index information on the optical path can be obtained based on the difference between these measurement errors. Therefore, the detected surface position information can be corrected with the obtained refractive index information, so that the surface position information of the test surface can be obtained with high accuracy.

以下、本発明の面位置検出装置及び露光方法について図面を参照しながら説明するが、本発明はこれに限定されない。図1は本発明の面位置検出装置としてのオートフォーカス検出装置が搭載された露光装置の一実施形態を示す概略構成図である。   Hereinafter, the surface position detecting device and the exposure method of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus equipped with an autofocus detection device as a surface position detection device of the present invention.

図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、基板Pを支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、被検面としての基板Pの表面Sの面位置情報を検出する面位置検出装置としてのオートフォーカス検出装置100と、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。   1, an exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and an illumination optical system IL that illuminates the mask M supported by the mask stage MST with exposure light EL. A projection optical system PL for projecting and exposing an image of the pattern of the mask M illuminated by the exposure light EL onto a substrate P supported on a substrate stage PST, and surface position information of a surface S of the substrate P as a surface to be inspected An auto-focus detection device 100 as a surface position detection device for detecting an image, and a control device CONT for controlling the overall operation of the exposure apparatus EX.

ここで、本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びY軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわり方向をそれぞれ、θX、θY、及びθZ方向とする。なお、ここでいう「基板」は半導体ウエハ上にレジストを塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。   Here, in the present embodiment, the exposure apparatus EX scans the mask M and the substrate P synchronously in directions different from each other in the scanning direction (opposite directions) while exposing the pattern formed on the mask M to the substrate P. An example in which an apparatus (a so-called scanning stepper) is used will be described. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction, A direction perpendicular to the Z-axis direction and the Y-axis direction (non-scanning direction) is defined as a Y-axis direction. In addition, directions around the X axis, the Y axis, and the Z axis are defined as θX, θY, and θZ directions, respectively. Here, the “substrate” includes a semiconductor wafer coated with a resist, and the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.

照明光学系ILは、マスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においては、ArFエキシマレーザ光を用いる。 The illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL, and includes an exposure light source, an optical integrator for equalizing the illuminance of a light beam emitted from the exposure light source, and an optical integrator. A condenser lens, a relay lens system, and a variable field stop for setting an illumination area on the mask M by the exposure light EL in a slit shape. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution. The exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, i-line) emitted from a mercury lamp and far ultraviolet light (KrF excimer laser light (wavelength: 248 nm)). DUV light) and, ArF excimer laser light (wavelength 193 nm) and F 2 laser beam (wavelength 157 nm) vacuum ultraviolet light (VUV light) and the like. In the present embodiment, ArF excimer laser light is used.

マスクステージMSTは、マスクMを支持するものであって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDにより駆動される。マスクステージ駆動装置MSTDは制御装置CONTにより制御される。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。   The mask stage MST supports the mask M, and is two-dimensionally movable in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in an XY plane, and is capable of minute rotation in the θZ direction. The mask stage MST is driven by a mask stage driving device MSTD such as a linear motor. The mask stage driving device MSTD is controlled by the control device CONT. The position and the rotation angle of the mask M on the mask stage MST in the two-dimensional direction are measured in real time by a laser interferometer, and the measurement result is output to the control device CONT. The control device CONT drives the mask stage driving device MSTD based on the measurement result of the laser interferometer to position the mask M supported by the mask stage MST.

投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露光するものであって、複数の光学素子(レンズ)で構成されており、これら光学素子は金属部材としての鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4あるいは1/5の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは光学特性(結像特性)の補正を行う結像特性調整装置PLCを有している。この結像特性調整装置PLCは、例えば投影光学系PLを構成する一部のレンズ群の間隔調整機構や一部のレンズ群のレンズ室内の気体圧力調整機構を有しており、これら調整を行うことにより、投影光学系PLの投影倍率、歪曲収差等の光学特性の補正を行う。結像特性調整装置PLCは制御装置CONTにより制御される。   The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification β, and is composed of a plurality of optical elements (lenses). These optical elements are mirrors as metal members. It is supported by the cylinder PK. In the present embodiment, the projection optical system PL is a reduction system in which the projection magnification β is, for example, 4 or 5. Note that the projection optical system PL may be either a unity magnification system or an enlargement system. Further, the projection optical system PL has an imaging characteristic adjusting device PLC for correcting optical characteristics (imaging characteristics). The image forming characteristic adjusting device PLC has, for example, an interval adjusting mechanism for some of the lens groups constituting the projection optical system PL and a gas pressure adjusting mechanism in the lens chamber of some of the lens groups, and performs these adjustments. This corrects optical characteristics such as the projection magnification and distortion of the projection optical system PL. The imaging characteristic adjustment device PLC is controlled by the control device CONT.

基板ステージPSTは、基板Pを支持するものであって、基板Pを基板ホルダを介して保持するZステージ51と、Zステージ51を支持するXYステージ52と、XYステージ52を支持するベース53とを備えている。基板ステージPSTはリニアモータ等の基板ステージ駆動装置PSTDにより駆動される。基板ステージ駆動装置PSTDは制御装置CONTにより制御される。Zステージ51を駆動することにより、Zステージ51に保持されている基板PのZ軸方向における位置(フォーカス位置)、及びθX、θY方向における位置が制御される。また、XYステージ52を駆動することにより、基板PのXY方向における位置(投影光学系PLの像面と実質的に平行な方向の位置)が制御される。すなわち、Zステージ51は、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面をオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ込み、XYステージ52は基板PのX軸方向及びY軸方向における位置決めを行う。なお、ZステージとXYステージとを一体的に設けてよいことは言うまでもない。   The substrate stage PST supports the substrate P, and includes a Z stage 51 that holds the substrate P via a substrate holder, an XY stage 52 that supports the Z stage 51, and a base 53 that supports the XY stage 52. It has. The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor. The substrate stage driving device PSTD is controlled by the control device CONT. By driving the Z stage 51, the position (focus position) of the substrate P held on the Z stage 51 in the Z axis direction and the positions in the θX and θY directions are controlled. In addition, by driving the XY stage 52, the position of the substrate P in the XY directions (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 51 controls the focus position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the auto-focus method and the auto-leveling method, and the XY stage 52 controls the substrate P Are performed in the X-axis direction and the Y-axis direction. It goes without saying that the Z stage and the XY stage may be provided integrally.

基板ステージPST(Zステージ51)上には、基板ステージPSTとともに投影光学系PLに対して移動する移動鏡54が設けられている。また、移動鏡54に対向する位置にはレーザ干渉計55が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計55によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計55の計測結果に基づいて基板ステージ駆動装置PSTDを駆動することで基板ステージPSTに支持されている基板Pの位置決めを行う。   On the substrate stage PST (Z stage 51), a movable mirror 54 that moves with respect to the projection optical system PL together with the substrate stage PST is provided. A laser interferometer 55 is provided at a position facing the movable mirror 54. The two-dimensional position and the rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 55, and the measurement result is output to the control device CONT. The control device CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55 to position the substrate P supported by the substrate stage PST.

本実施形態では、露光波長を実質的に短くして解像度を向上するとともに、焦点深度を実質的に広くするために、液浸法を適用する。そのため、少なくともマスクMのパターンの像を基板P上に転写(投影)している間は、基板Pの表面と投影光学系PLの基板P側の光学素子の先端面(下面)7との間に所定の液体50が満たされる。本実施形態において、液体50には純水が用いられる。純水は、ArFエキシマレーザ光のみならず、露光光ELを例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)とした場合、この露光光ELを透過可能である。また、投影光学系PLの先端面7には露光光ELを透過可能な平行平面板が設けられている。この平行平面板は投影光学系PLの一部を構成する。   In the present embodiment, the immersion method is applied to improve the resolution by substantially shortening the exposure wavelength and substantially widen the depth of focus. Therefore, at least while the image of the pattern of the mask M is being transferred (projected) onto the substrate P, the distance between the surface of the substrate P and the tip surface (lower surface) 7 of the optical element on the substrate P side of the projection optical system PL is changed. Is filled with a predetermined liquid 50. In the present embodiment, pure water is used for the liquid 50. The pure water is used not only for the ArF excimer laser light but also for the exposure light EL as far ultraviolet rays such as ultraviolet bright lines (g line, h line, i line) emitted from a mercury lamp and KrF excimer laser light (wavelength 248 nm). When light (DUV light) is used, the exposure light EL can be transmitted. Further, a parallel flat plate that can transmit the exposure light EL is provided on the tip end surface 7 of the projection optical system PL. This parallel plane plate forms a part of the projection optical system PL.

露光装置EXは、投影光学系PLの先端面7と基板Pとの間の空間56に所定の液体50を供給する液体供給装置1と、空間56の液体50を回収する液体回収装置2とを備えている。液体供給装置1は、液体50を収容するタンク、加圧ポンプ、及び空間56に対して供給する液体50を所定の温度に調整する温度調整装置などを備えている。液体供給装置1には供給管3の一端部が接続され、供給管3の他端部には供給ノズル4が接続されている。液体供給装置1は供給管3及び供給ノズル4を介して空間56に液体50を供給する。ここで、液体供給装置1に設けられている温度調整装置は、空間56に供給する液体50の温度を、例えば露光装置EXが収容されているチャンバ内の温度と同程度に設定する。   The exposure apparatus EX includes a liquid supply device 1 that supplies a predetermined liquid 50 to a space 56 between the distal end surface 7 of the projection optical system PL and the substrate P, and a liquid recovery device 2 that recovers the liquid 50 in the space 56. Have. The liquid supply device 1 includes a tank for accommodating the liquid 50, a pressure pump, a temperature adjusting device for adjusting the liquid 50 supplied to the space 56 to a predetermined temperature, and the like. One end of a supply pipe 3 is connected to the liquid supply device 1, and a supply nozzle 4 is connected to the other end of the supply pipe 3. The liquid supply device 1 supplies the liquid 50 to the space 56 via the supply pipe 3 and the supply nozzle 4. Here, the temperature adjusting device provided in the liquid supply device 1 sets the temperature of the liquid 50 to be supplied to the space 56 to, for example, approximately the same as the temperature in the chamber in which the exposure device EX is housed.

液体回収装置2は、吸引ポンプ、回収した液体50を収容するタンクなどを備えている。液体回収装置2には回収管6の一端部が接続され、回収管6の他端部には回収ノズル5が接続されている。液体回収装置2は回収ノズル5及び回収管6を介して空間56の液体50を回収する。空間56に液体50を満たす際、制御装置CONTは液体供給装置1を駆動し、供給管3及び供給ノズル4を介して空間56に対して単位時間当たり所定量の液体50を供給するとともに、液体回収装置2を駆動し、回収ノズル5及び回収管6を介して単位時間当たり所定量の液体50を空間56より回収する。これにより、投影光学系PLの先端面7と基板Pとの間の空間56に所定量の液体50が配置される。   The liquid recovery device 2 includes a suction pump, a tank for storing the recovered liquid 50, and the like. One end of a recovery pipe 6 is connected to the liquid recovery apparatus 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6. The liquid recovery device 2 recovers the liquid 50 in the space 56 via the recovery nozzle 5 and the recovery pipe 6. When the space 56 is filled with the liquid 50, the control device CONT drives the liquid supply device 1 to supply a predetermined amount of the liquid 50 per unit time to the space 56 via the supply pipe 3 and the supply nozzle 4. The recovery device 2 is driven to recover a predetermined amount of the liquid 50 per unit time from the space 56 via the recovery nozzle 5 and the recovery pipe 6. As a result, a predetermined amount of liquid 50 is disposed in space 56 between distal end surface 7 of projection optical system PL and substrate P.

次に、基板Pの表面SのZ軸方向における位置(フォーカス位置)を検出する面位置検出装置としてのオートフォーカス検出装置100について説明する。   Next, an autofocus detection device 100 as a surface position detection device that detects the position (focus position) of the surface S of the substrate P in the Z-axis direction will be described.

オートフォーカス検出装置(AF検出装置)100は、AF検出用の検出光L(L1、L2)を基板Pの表面(被検面)Sに投射する送光系8と、基板Pの表面Sで反射した検出光Lの反射光を受光する受光系9とを備えている。図1に示すように、送光系8は、基板Pの表面に対して第1の検出光L1及び第2の検出光L2の2つの検出光を異なる入射角で斜め方向から基板Pの表面Sに投射する。送光系8からの検出光L1、L2のそれぞれは、光透過部材としての投影光学系PLの一部(一部の光学素子)、及び空間56に満たされている液体50を介して基板Pの表面Sに投射される。ここで、検出光L1、L2を投影光学系PLの一部を介して基板Pの表面Sに投射するのは、以下のような理由による。すなわち、空間56に液体50を安定して配置するためには、液体50の表面張力を維持できるように距離dは所定量(例えば2〜3mm程度)に設定される必要がある。しかし、このような距離dでは送光系8からの検出光L1、L2を基板Pの表面Sに斜入射方式で直接投射することは困難であり、一方、直接投射しようとして距離dを大きくすると空間56に液体50が安定して配置されない。本発明では、検出光L1、L2を投影光学系PLの一部を介して基板Pの表面Sに投射するようにしたので、空間56に液体50を安定して配置するための所望の距離dを維持しつつ、検出光L1、L2を基板Pの表面Sに投射することができる。この結果、投影光学系PLの先端面7と基板Pの表面Sとの距離d(ワーキングディスタンス)の設定の自由度を増すことができる。更に、基板Pの表面Sに対する検出光L1、L2の入射角を、投影光学系PLの位置に拘束されることなく、自由に変更することも可能となる。   The autofocus detection device (AF detection device) 100 includes a light transmission system 8 that projects detection light L (L1, L2) for AF detection onto the surface (test surface) S of the substrate P, and the surface S of the substrate P. A light receiving system 9 that receives the reflected light of the reflected detection light L; As shown in FIG. 1, the light transmission system 8 transmits the two detection lights, the first detection light L1 and the second detection light L2, to the surface of the substrate P from different directions at different angles of incidence. Project on S. Each of the detection light beams L1 and L2 from the light transmission system 8 passes through a part of the projection optical system PL (a part of the optical element) as a light transmitting member and the substrate 50 via the liquid 50 filled in the space 56. Is projected on the surface S of the Here, the detection light L1, L2 is projected onto the surface S of the substrate P via a part of the projection optical system PL for the following reason. That is, in order to stably arrange the liquid 50 in the space 56, the distance d needs to be set to a predetermined amount (for example, about 2 to 3 mm) so that the surface tension of the liquid 50 can be maintained. However, at such a distance d, it is difficult to directly project the detection lights L1 and L2 from the light transmitting system 8 onto the surface S of the substrate P by the oblique incidence method. The liquid 50 is not stably arranged in the space 56. In the present invention, since the detection lights L1 and L2 are projected on the surface S of the substrate P via a part of the projection optical system PL, a desired distance d for stably disposing the liquid 50 in the space 56 is set. , The detection lights L1 and L2 can be projected onto the surface S of the substrate P. As a result, the degree of freedom in setting the distance d (working distance) between the front end surface 7 of the projection optical system PL and the surface S of the substrate P can be increased. Further, the incident angles of the detection lights L1 and L2 with respect to the surface S of the substrate P can be freely changed without being restricted by the position of the projection optical system PL.

AF検出装置100は、基板Pの表面Sでの反射光から得られる受光系9の検出信号に基づいて、投影光学系PL及び液体50を介して形成される像面(結像面)に対する基板P表面のZ軸方向における高さ位置(フォーカス位置)を求める。また、基板P表面における複数の各点での各フォーカス位置を求めることにより、AF検出装置100は基板Pの傾斜方向の姿勢を求めることもできる。AF検出装置100の検出結果は制御装置CONTに出力され、制御装置CONTはAF検出装置100の検出結果に基づいて、投影光学系PLの結像面と基板P表面との位置関係を調整し、基板P表面を投影光学系PLの焦点深度内に合わせ込む焦点合わせ動作を行う。   The AF detection device 100 is configured to detect a substrate with respect to an image plane (imaging plane) formed via the projection optical system PL and the liquid 50 based on a detection signal of the light receiving system 9 obtained from light reflected on the surface S of the substrate P. The height position (focus position) of the P surface in the Z-axis direction is obtained. Further, the AF detection device 100 can also obtain the attitude of the substrate P in the tilt direction by obtaining each focus position at each of a plurality of points on the surface of the substrate P. The detection result of the AF detection device 100 is output to the control device CONT, and the control device CONT adjusts the positional relationship between the imaging plane of the projection optical system PL and the surface of the substrate P based on the detection result of the AF detection device 100, A focusing operation for adjusting the surface of the substrate P to within the depth of focus of the projection optical system PL is performed.

図2はAF検出装置100の第1実施形態を示す構成図である。なお、図2ではAF検出装置100以外の構成要素についての図示を一部省略している。図2において、AF検出装置100の送光系8は、基板Pの表面Sに対して第1の入射角θで第1の検出光L1を投射する第1送光系8Aと、基板Pの表面に対して第1の入射角θとは異なる第2の入射角θで第2の検出光L2を投射する第2送光系8Bとを備えている。また、AF検出装置100の受光系9は、第1送光系8Aに対応して設けられ、基板Pの表面Sで反射した第1の検出光L1の反射光を受光する第1受光系9Aと、第2送光系8Bに対応して設けられ、基板Pの表面Sで反射した第2の検出光L2の反射光を受光する第2受光系9Bとを備えている。 FIG. 2 is a configuration diagram illustrating a first embodiment of the AF detection device 100. In FIG. 2, some components other than the AF detection device 100 are not shown. 2, the optical system 8 feeding of AF detecting apparatus 100 includes a first light sending system 8A to project the first detection light L1 in the first incidence angle theta 1 with respect to the surface S of the substrate P, the substrate P and a second transmitting system 8B projecting the second detection light L2 in a different second incidence angle theta 2 to the first incident angle theta 1 with respect to the surface of the. Further, the light receiving system 9A of the AF detection device 100 is provided corresponding to the first light transmitting system 8A, and receives the reflected light of the first detection light L1 reflected by the surface S of the substrate P. And a second light receiving system 9B provided corresponding to the second light transmitting system 8B and receiving the reflected light of the second detection light L2 reflected by the surface S of the substrate P.

第1送光系8Aは、基板Pのフォトレジストに対して非感光性の光束(波長400nm〜900nm程度)を射出するAF用光源10と、光源10から射出された光束をスリット光に整形するスリット状の開口部を有する送光スリット11と、非点収差補正用シリンドリカルレンズ12と、リレーレンズ13と、光路折り曲げミラー14と、収差補正用平面板15と、対物レンズ16とを備えている。送光スリット11で整形されたスリット光は第1の検出光L1として、シリンドリカルレンズ12、リレーレンズ13、光路折り曲げミラー14、収差補正用平面板15、及び対物レンズ16を介して投影光学系PLに入射する。なお、鏡筒PKは開口部を有しており、スリット光はこの開口部を介して投影光学系PLに入射する。投影光学系PLに入射した第1の検出光L1は液体50を介して基板Pの表面Sに第1の入射角θで投射される。 The first light transmission system 8A forms an AF light source 10 that emits a non-photosensitive light beam (wavelength of about 400 nm to 900 nm) to the photoresist on the substrate P, and shapes the light beam emitted from the light source 10 into slit light. A light transmitting slit 11 having a slit-like opening, a cylindrical lens 12 for correcting astigmatism, a relay lens 13, an optical path bending mirror 14, a plane plate 15 for correcting aberration, and an objective lens 16 are provided. . The slit light shaped by the light transmission slit 11 is used as a first detection light L1 via a cylindrical lens 12, a relay lens 13, an optical path bending mirror 14, an aberration correction plane plate 15, and an objective lens 16 to form a projection optical system PL. Incident on. Note that the barrel PK has an opening, and the slit light enters the projection optical system PL through this opening. First detection light L1 incident on the projection optical system PL is projected at a first angle of incidence theta 1 to the surface S of the substrate P through the liquid 50.

基板Pの表面Sで反射した第1の検出光L1の反射光L1rは液体50及び投影光学系PLの一部を介して第1受光系9Aに受光される。ここで、鏡筒PKは開口部を有しており、反射光L1rはこの開口部を介して第1受光系9Aに受光される。第1受光系9Aは、投影光学系PLを介した反射光L1rが入射される対物レンズ17と、収差補正用平面板18と、所定の周期で振動する振動ミラー19と、リレーレンズ20と、非点収差補正用シリンドリカルレンズ21と、スリット状の開口部を有する受光スリット22と、例えばシリコン・フォト・ダイオードからなる受光センサ23とを備えている。第1の検出光L1の基板Pの表面Sでの反射光L1rは、対物レンズ17、収差補正量平面板18、振動ミラー19、リレーレンズ20、シリンドリカルレンズ21、及び受光スリット22を介して受光センサ23に受光される。振動ミラー19は所定の周期で矢印yで示すようにθY方向に振動する。この振動ミラー19の振動に伴って、受光スリット22に形成されるスリットパターンの像(送光スリット11で整形され基板Pの表面Sで反射したスリット状の反射光L1r)も振動する。このスリットパターンの像の振動に伴って、受光スリット22の開口部を通過する光の光量が変化する。受光スリット22の開口部を通過した光は受光センサ23に達する。ここで、受光スリット22の開口部の位置は、被検面である基板Pの表面Sと投影光学系PLの結像面とが一致しているときに、受光スリット22の開口部の中心がスリットパターンの像の振動中心に一致するように設けられている。したがって、受光センサ23で受光されるスリットパターンの像が一定周期で検出されれば投影光学系PLの結像面と基板Pの表面Sとが合致していることになる。一方、投影光学系PLの結像面と基板Pの表面Sとが合致していない場合には、第1の検出光L1に基づく反射光L1rは第1受光系9Aの光軸と垂直方向にずれ、受光スリット22の開口部の中心に対してスリットパターンの像の振動中心がずれることになるので、受光センサ23で受光されるスリットパターンの像は一定周期で検出されない。受光センサ23の検出結果は制御装置CONTに出力され、制御装置CONTは、受光センサ23の受光結果に基づいて基板Pの表面Sのフォーカス位置を求める。   The reflected light L1r of the first detection light L1 reflected on the surface S of the substrate P is received by the first light receiving system 9A via the liquid 50 and a part of the projection optical system PL. Here, the lens barrel PK has an opening, and the reflected light L1r is received by the first light receiving system 9A via this opening. The first light receiving system 9A includes an objective lens 17, on which reflected light L1r via the projection optical system PL is incident, a plane plate for aberration correction 18, a vibration mirror 19 vibrating at a predetermined cycle, a relay lens 20, The apparatus includes a cylindrical lens 21 for correcting astigmatism, a light receiving slit 22 having a slit-shaped opening, and a light receiving sensor 23 made of, for example, a silicon photodiode. The reflected light L1r of the first detection light L1 on the surface S of the substrate P is received via the objective lens 17, the aberration correction plane plate 18, the vibration mirror 19, the relay lens 20, the cylindrical lens 21, and the light receiving slit 22. The light is received by the sensor 23. The vibrating mirror 19 vibrates in the θY direction at a predetermined cycle as indicated by an arrow y. With the vibration of the vibration mirror 19, the image of the slit pattern formed in the light receiving slit 22 (the slit-shaped reflected light L1r shaped by the light transmitting slit 11 and reflected by the surface S of the substrate P) also vibrates. With the vibration of the image of the slit pattern, the amount of light passing through the opening of the light receiving slit 22 changes. The light that has passed through the opening of the light receiving slit 22 reaches the light receiving sensor 23. Here, the position of the opening of the light-receiving slit 22 is such that the center of the opening of the light-receiving slit 22 is located when the surface S of the substrate P, which is the surface to be measured, and the imaging plane of the projection optical system PL coincide with each other. The slit pattern is provided so as to coincide with the vibration center of the image. Therefore, if the image of the slit pattern received by the light receiving sensor 23 is detected at a constant period, the image forming plane of the projection optical system PL and the surface S of the substrate P match. On the other hand, when the imaging plane of the projection optical system PL does not match the surface S of the substrate P, the reflected light L1r based on the first detection light L1 is perpendicular to the optical axis of the first light receiving system 9A. Since the center of vibration of the image of the slit pattern is shifted with respect to the center of the opening of the light receiving slit 22, the image of the slit pattern received by the light receiving sensor 23 is not detected at a constant period. The detection result of the light receiving sensor 23 is output to the control device CONT, and the control device CONT obtains the focus position on the surface S of the substrate P based on the light receiving result of the light receiving sensor 23.

第2送光系8Bは、後述する本発明に従うフォーカス位置の調整方法または温度測定法(屈折率変化測定法)に基づいて第1送光系8Aに追加して設けられているが、第2の検出光L2の基板Pの表面に対する入射角をθに設定している点以外は、第1送光系8Aと同等の構成を有しているため、その説明を省略する。同様に、第2の検出光L2の基板P表面での反射光L2rを受光する第2受光系9Bも第1受光系9Aと同等の構成を有しているためその説明を省略する。ここで、第1送光系8A及び第2送光系8Bのそれぞれで投射される検出光L1、L2のそれぞれは同じ波長を有する。なお、投影光学系PLの先端面7と基板Pの表面Sとの距離が確保できる場合には、AF検出装置100の検出光を、投影光学系PLの一部を介さずに、基板P表面に投射するようにしてもよい。 The second light transmission system 8B is provided in addition to the first light transmission system 8A based on a focus position adjustment method or a temperature measurement method (refractive index change measurement method) according to the present invention, which will be described later. except that sets the incident angle to the surface of the substrate P of the detection light L2 in the theta 2, because it has the same structure as the first light sending system 8A, a description thereof will be omitted. Similarly, the second light receiving system 9B that receives the reflected light L2r of the second detection light L2 on the surface of the substrate P has the same configuration as that of the first light receiving system 9A, and a description thereof will be omitted. Here, each of the detection lights L1 and L2 projected by each of the first light transmission system 8A and the second light transmission system 8B has the same wavelength. When the distance between the front end surface 7 of the projection optical system PL and the surface S of the substrate P can be ensured, the detection light of the AF detection device 100 is transmitted to the surface of the substrate P without passing through a part of the projection optical system PL. May be projected.

次に、上述したAF検出装置100を用いて基板Pの表面Sの面位置情報を検出する方法について説明する。   Next, a method for detecting surface position information of the surface S of the substrate P using the above-described AF detection device 100 will be described.

図3は、第1、第2の検出光L1、L2が投射されている基板Pの表面S近傍の拡大図である。制御装置CONTは、第1、第2送光系8A、8Bのそれぞれから第1、第2の検出光L1、L2を基板Pの表面Sに対して同時に投射する。第1の検出光L1は液体50を介して入射角θで基板Pの表面Sに投射され、第2の検出光L2は液体50を介して入射角θで基板Pの表面Sに投射される。第1、第2の検出光L1、L2に基づく基板Pの表面Sでの反射光L1r、L2rのそれぞれは、第1、第2受光系9A、9Bに受光される。このとき、液体50は所定の温度Tに設定されており、このときの液体50の屈折率はnである。また、このときの第1、第2の検出光L1、L2のそれぞれは基板Pの表面S上において同じ位置に投射される。したがって、液体50に屈折率変化(温度変化)がない状態では、基板PがZ軸方向に移動した場合、反射光L1rの受光系の光軸と垂直な方向のずれ量と反射光L2rの受光系の光軸と垂直な方向のずれ量とは同じである。 FIG. 3 is an enlarged view near the surface S of the substrate P on which the first and second detection lights L1 and L2 are projected. The control device CONT simultaneously projects the first and second detection lights L1 and L2 from the first and second light transmission systems 8A and 8B onto the surface S of the substrate P. The first detection light L1 projected on the surface S of the substrate P at the incident angle theta 1 through the liquid 50, the second detection light L2 projected onto the surface S of the substrate P at the incident angle theta 2 through the liquid 50 Is done. The reflected lights L1r, L2r on the surface S of the substrate P based on the first and second detection lights L1, L2 are received by the first and second light receiving systems 9A, 9B, respectively. At this time, the liquid 50 is set to a predetermined temperature T 1, the refractive index of the liquid 50 at this time is n. At this time, the first and second detection lights L1 and L2 are projected on the same position on the surface S of the substrate P. Therefore, in a state where the liquid 50 has no refractive index change (temperature change), when the substrate P moves in the Z-axis direction, the amount of deviation of the reflected light L1r in the direction perpendicular to the optical axis of the light receiving system and the reception of the reflected light L2r. The shift amount in the direction perpendicular to the optical axis of the system is the same.

基板PがZ軸方向に移動せずに、液体50の温度がTからTに変化し、液体50の屈折率nがΔnだけ変化した場合について考える。温度変化により、第1、第2送光系8A、8Bからの第1、第2の検出光L1、L2は、投影光学系PLから液体50への界面での屈折角を変化させる。この屈折角の変化に伴って、第1、第2の検出光L1、L2の光路が符号L1’、L2’に示すように変動し、これにより第1の検出光L1の基板Pの表面Sに対する入射角がθからθ’に変化し、第2の検出光L2の基板Pの表面Sに対する入射角がθからθ’に変化する。すると、第1の検出光L1の反射光L1rの光路は受光系9Aの光軸と垂直な方向に距離D1ずれて反射光L1r’となる。同様に、第2の検出光L2の反射光L2rの光路は受光系9Bの光軸と垂直な方向に距離D2ずれて反射光L2r’となる。 The substrate P does not move in the Z axis direction, the temperature of the liquid 50 is changed from T 1 to T 2, consider the case where the refractive index n of the liquid 50 is changed by [Delta] n. Due to the temperature change, the first and second detection lights L1 and L2 from the first and second light transmission systems 8A and 8B change the refraction angle at the interface from the projection optical system PL to the liquid 50. With the change of the refraction angle, the optical paths of the first and second detection lights L1 and L2 change as indicated by reference numerals L1 'and L2', whereby the surface S of the substrate P of the first detection light L1 is changed. the incident angle is 'changed to angle of incidence with respect to the surface S of the substrate P in the second detection light L2 theta 2 from theta 2' theta 1 from theta 1 changes for. Then, the optical path of the reflected light L1r of the first detection light L1 is shifted by a distance D1 in a direction perpendicular to the optical axis of the light receiving system 9A to become the reflected light L1r ′. Similarly, the optical path of the reflected light L2r of the second detection light L2 is shifted by a distance D2 in a direction perpendicular to the optical axis of the light receiving system 9B to become the reflected light L2r '.

ここで、液体の厚さがdであり、温度変化に伴って液体50の屈折率がnからΔnだけ変化した場合を考える。この場合、検出光の基板表面への入射角が変化し、その変化量Δθは、
Δθ=arcsin〔n/(n+Δn)〕・sinθ … (3)
である。基板Pの表面SのZ軸方向への移動がないとすると、基板Pの表面のフォーカス位置の検出誤差量Δdは、
Δd=d・〔tan(θ+Δθ)−tanθ〕/(2tanθ) …(4)
となる。すなわち、検出誤差量Δdは、液体の屈折率変化前における検出光Lに基づき検出した基板P表面のフォーカス位置と、液体の屈折率変化後における検出光L’に基づき検出した基板P表面のフォーカス位置との誤差である。
Here, it is assumed that the thickness of the liquid is d, and the refractive index of the liquid 50 changes from n by Δn with temperature. In this case, the angle of incidence of the detection light on the substrate surface changes, and the change amount Δθ is
Δθ = arcsin [n / (n + Δn)] · sinθ (3)
It is. Assuming that the surface S of the substrate P does not move in the Z-axis direction, the detection error amount Δd of the focus position on the surface of the substrate P becomes
Δd = d · [tan (θ + Δθ) -tanθ] / (2tanθ) (4)
It becomes. That is, the detection error amount Δd is determined by the focus position on the surface of the substrate P detected based on the detection light L before the change in the refractive index of the liquid and the focus position on the surface of the substrate P detected based on the detection light L ′ after the change in the refractive index of the liquid. It is an error with the position.

ここで、式(3)から分るように、Δθはθの値に依存する。θ≠θであるので、第1の検出光L1の入射角の変化量Δθ(=θ’−θ)と、第2の検出光L2の入射角の変化量Δθ(=θ’−θ)とは異なる値になることが分る。それゆえ、第1の検出光L1に基づくフォーカス位置の検出誤差量Δdと、第2の検出光L2に基づくフォーカス位置の検出誤差量Δdは異なる値を示す。 Here, as can be seen from equation (3), Δθ depends on the value of θ. Since θ 1 ≠ θ 2 , the change amount Δθ 1 of the incident angle of the first detection light L1 (= θ 1 ′ −θ 1 ) and the change amount Δθ 2 of the incident angle of the second detection light L2 (= θ 2 ′ −θ 2 ). Therefore, a detection error amount [Delta] d 1 of the focus position based on the first detection light L1, the detection error amount [Delta] d 2 of the focus position based on the second detection light L2 show different values.

図4は、基板Pの表面Sに対する検出光Lの入射角θと、液体の温度変化に伴って生じる基板P表面のフォーカス位置の検出誤差量Δdとの関係の一例を示すものである。図4には、液体50が純水(水)であり、投影光学系PLのワーキングディスタンスに相当する水の厚さdが1mmである場合において、温度が0.01℃変化した場合の検出光Lの入射角θとフォーカス検出誤差量Δdとの関係を示している。   FIG. 4 shows an example of the relationship between the incident angle θ of the detection light L with respect to the surface S of the substrate P and the detection error amount Δd of the focus position on the surface of the substrate P caused by a change in the temperature of the liquid. FIG. 4 shows the detection light when the temperature changes by 0.01 ° C. when the liquid 50 is pure water (water) and the thickness d of the water corresponding to the working distance of the projection optical system PL is 1 mm. The relationship between the incident angle θ of L and the focus detection error amount Δd is shown.

例えば、第1の検出光L1の入射角θが80度、第2の検出光L2の入射角θが85度に設定されている場合、液体50としての純水の温度がTから0.01℃変化してTになった場合、図4より、第1の検出光L1に基づくフォーカス位置の検出誤差量Δdは約20nmであり、第2の検出光L2に基づくフォーカス位置の検出誤差量Δdは約80nmである。すなわち、図4の例によれば、厚さ1mmの液体(水)50の温度が0.01℃変化した場合、2つの検出光L1、L2に基づくフォーカス位置の検出誤差量Δd、Δdには60nmの差が生じている。 For example, the incident angle theta 1 is 80 degrees of the first detection light L1, when the incident angle theta 2 of the second detection light L2 is set to 85 degrees, the temperature of the pure water as the liquid 50 from T 1 When the temperature changes by 0.01 ° C. to reach T 2 , the detection error amount Δd 1 of the focus position based on the first detection light L 1 is about 20 nm from FIG. 4, and the focus position based on the second detection light L 2 the detection error amount [Delta] d 2 of about 80 nm. That is, according to the example of FIG. 4, when the temperature of the liquid (water) 50 having a thickness of 1 mm changes by 0.01 ° C., the detection error amounts Δd 1 and Δd 2 of the focus position based on the two detection lights L1 and L2. Has a difference of 60 nm.

上述の式(3)、(4)から明らかなように、検出光に基づくフォーカス位置の検出誤差量Δdは、液体の温度変化による屈折率の変化にほぼ比例する。したがって、第1の検出光L1に基づくフォーカス位置の検出誤差量Δdと、第2の検出光L2に基づくフォーカス位置の検出誤差量Δdとの差(Δd−Δd)も液体の温度変化による屈折率変化にほぼ比例する。例えば、図4の関係において、液体温度の0.01℃の変化によって液体の屈折率がΔn変化したとすると、ある温度変化における検出誤差量の差(Δd−Δd)が30nm(=60nm/2)の場合には、その温度変化により起こる液体の屈折率の変化はΔn/2となる。 As is apparent from the above equations (3) and (4), the detection error amount Δd of the focus position based on the detection light is substantially proportional to the change in the refractive index due to the temperature change of the liquid. Therefore, the difference (Δd 1 −Δd 2 ) between the detection error amount Δd 1 of the focus position based on the first detection light L 1 and the detection error amount Δd 2 of the focus position based on the second detection light L 2 is also the temperature of the liquid. It is almost proportional to the refractive index change due to the change. For example, in the relationship of FIG. 4, if the refractive index of the liquid changes by Δn due to a change in the liquid temperature of 0.01 ° C., the difference (Δd 1 −Δd 2 ) in the detection error amount at a certain temperature change is 30 nm (= 60 nm). / 2), the change in the refractive index of the liquid caused by the temperature change is Δn / 2.

すなわち、第1の検出光L1により検出される基板P表面のフォーカス位置Zと、第2の検出光L2により検出される基板P表面のフォーカス位置Zとの差(Z−Z)は、基板P表面のほぼ同じ位置を検出しているので、液体の温度変化(屈折率変化)がなければ変化しないが、液体の温度変化により屈折率が変化すると、そのフォーカス位置の検出差(Z−Z)が屈折率変化に比例して変化する。逆に言えば、そのフォーカス位置の検出差(Z−Z)から液体の屈折率変化量を検出することができるのである。本実施形態において、制御装置CONTは、予め実験やシミュレーションによって求められた、そのフォーカス位置の検出差(Z−Z)と屈折率変化量との関係を記憶しており、AF検出装置100を使って検出されたフォーカス位置Z、Zに基づいて屈折率の変化量を求めることができる。 That is, the focus position Z 1 of the surface of the substrate P detected by the first detection light L1, the difference between the focus position Z 2 of the surface of the substrate P detected by the second detection light L2 (Z 1 -Z 2) Does not change unless there is a temperature change (refractive index change) of the liquid because the same position on the surface of the substrate P is detected. However, when the refractive index changes due to the temperature change of the liquid, the detection difference of the focus position ( Z 1 −Z 2 ) changes in proportion to the change in the refractive index. Conversely, it is possible to detect the change in refractive index of the liquid from the detected difference (Z 1 -Z 2) of the focus position. In the present embodiment, the control device CONT stores the relationship between the detection difference (Z 1 -Z 2 ) of the focus position and the amount of change in the refractive index, which is obtained in advance by experiment or simulation, and stores the AF detection device 100. Can be used to determine the amount of change in the refractive index based on the focus positions Z 1 and Z 2 detected.

なお、液体の温度変化と屈折率変化とは比例関係にあるので、そのフォーカス位置の検出差(Z−Z)が液体の温度変化に比例して変化する。したがって、そのフォーカス位置の検出差(Z−Z)と屈折率変化量との関係、あるいは液体の温度変化量と液体の屈折率変化量との関係も合わせて制御装置CONTに記憶しておくと、AF検出装置100を使って検出されたフォーカス位置Z、Zに基づいて液体温度の変化量も求めることができる。 Since the temperature change and refractive index change of the liquid is proportional to the detected difference between the focus position (Z 1 -Z 2) is varied in proportion to the temperature change of the liquid. Therefore, the relationship between the detection difference (Z 1 −Z 2 ) of the focus position and the amount of change in the refractive index, or the relationship between the amount of change in the temperature of the liquid and the amount of change in the refractive index of the liquid is also stored in the control device CONT. In other words, the amount of change in the liquid temperature can be determined based on the focus positions Z 1 and Z 2 detected using the AF detection device 100.

次に、図5のフローチャート図を参照しながら基板P表面の検出手順について説明する。なお、AF検出装置100は、初期状態において、検出光L1に基づいて検出されるフォーカス位置Zと、検出光L2に基づいて検出されるフォーカス位置Zとは同一になるように調整されている。また、フォーカス位置Z、Zはそれぞれ像面に対するずれとして検出される。また、説明を簡単にするために、図5の説明では、基板P表面のZ軸方向の位置が変化しない場合について説明する。 Next, the procedure for detecting the surface of the substrate P will be described with reference to the flowchart of FIG. Incidentally, AF detecting apparatus 100 in the initial state, the focus position Z 1 which is detected based on the detection light L1, the focus position Z 2 which is detected based on the detection light L2 is adjusted to be the same I have. The focus positions Z 1 and Z 2 are each detected as a deviation from the image plane. For simplicity, FIG. 5 describes a case where the position of the surface of the substrate P in the Z-axis direction does not change.

AF検出装置100は、制御装置CONTの指令に基づき、基板P表面に向けて第1の検出光L1と第2の検出光L2とを投射するとともに、検出光L1、L2に対応する基板P表面からの反射光L1r、L2rを受光センサ23でそれぞれ受光し、第1の検出光L1に基づき基板P表面のフォーカス位置Zと、第2の検出光L2に基づき基板P表面のフォーカス位置Zとをそれぞれ検出する(ステップS1)。 The AF detection device 100 projects the first detection light L1 and the second detection light L2 toward the surface of the substrate P based on a command from the control device CONT, and also detects the surface of the substrate P corresponding to the detection lights L1 and L2. reflected light L1r from, respectively received by the light receiving sensor 23 L2r, the focus position Z 1 of the surface of the substrate P based on the first detection light L1, the focus position Z 2 of the surface of the substrate P based on the second detection light L2 Are respectively detected (step S1).

制御装置CONTは、検出されたフォーカス位置ZとZとの差(Z−Z)を求め、予め記憶されているフォーカス位置の検出差(Z−Z)と液体50の屈折率変化量Δnとの関係情報に基づいて、液体50の屈折率変化量Δnを求める(ステップS2)。 The control device CONT obtains the difference (Z 1 -Z 2 ) between the detected focus positions Z 1 and Z 2, and detects the focus position detection difference (Z 1 -Z 2 ) stored in advance and the refraction of the liquid 50. The refractive index change amount Δn of the liquid 50 is obtained based on the relationship information with the index change amount Δn (step S2).

さらに制御装置CONTは、ステップS2で求めた屈折率変化量Δnに基づいて、ステップS1で求めた第1の検出光L1によるフォーカス位置Zを補正する。具体的には、予め記憶している上記式(3)、(4)を使って、ステップS2で求めた屈折率変化量Δnによって生じる入射角変化量Δθを求め、そのΔθに基づいて第1の検出光L1によるフォーカス位置の検出誤差量Δdを求める。そして、その検出誤差量Δdに基づいて、第1の検出光L1を用いて検出された基板P表面のフォーカス位置Zを補正し、基板P表面の実際のフォーカス位置(面位置情報)を求める(ステップS3)。 Further, the control unit CONT based on the refractive index variation Δn obtained in step S2, corrects the focus position Z 1 of the first detection light L1 obtained in step S1. Specifically, the equation stored in advance (3), (4) using obtains the incidence angle variation [Delta] [theta] 1 caused by a refractive index change amount Δn obtained in step S2, on the basis of the [Delta] [theta] 1 by the first detection light L1 obtains detection error amount [Delta] d 1 of the focus position. Then, based on the detected error amount [Delta] d 1, the first detection light L1 to correct the focus position Z 1 of the detected surface of the substrate P by using the actual focus position of the substrate P surface (surface position information) It is determined (step S3).

そして、制御装置CONTは、補正した基板P表面の面位置情報に基づいて、この補正により求めた基板Pの表面と像面とが合致するように、基板ステージPSTを駆動して像面と基板Pの表面Sとの位置関係を調整する(ステップS4)。   Then, the control device CONT drives the substrate stage PST based on the corrected surface position information on the surface of the substrate P so that the surface of the substrate P obtained by the correction matches the image surface, and the image plane and the substrate The positional relationship between P and the surface S is adjusted (step S4).

なお、ここでは、液体50の厚さdが1mmである場合について説明したが、制御装置CONTには、複数の厚さdに対応した前記関係が予め記憶されている。また、ここでは液体50は純水であるが、用いる液体に応じた前記関係が予め記憶されている。また、第1の検出光L1を使って検出されたフォーカス位置Zではなく、第2の検出光L2を使って検出されたフォーカス位置Zを補正して使ってもよい。ただし、入射角度が大きい方が検出感度や検出分解能が高いので、第2の検出光L2をメインの検出光とし、第1の検出光L1を補正用の検出光として用いるのが望ましい。 Here, the case where the thickness d of the liquid 50 is 1 mm has been described, but the relationship corresponding to a plurality of thicknesses d is stored in the control device CONT in advance. Further, here, the liquid 50 is pure water, but the above-described relationship according to the liquid to be used is stored in advance. Also, rather than the focus position Z 1 is detected with the first detection light L1, the focus position Z 2 may be used to correct detected using a second detection light L2. However, since the detection sensitivity and the detection resolution are higher when the incident angle is larger, it is desirable to use the second detection light L2 as the main detection light and use the first detection light L1 as the correction detection light.

ところで、精度良く屈折率情報を求めるために、入射角θと入射角θとの差は可能な限り大きいことが望ましい。一方、基板Pの表面Sに対する入射角が小さくなると、基板PのZ軸方向における位置検出精度が低下する。したがって、検出光L1、L2の基板P表面に対する入射角はそれぞれ30°≦θ<90°の条件を満たしていることが好ましい。そして、基板Pの表面Sで十分な光量を有する反射光を得られるように、更に好ましくは、検出光L1、L2の基板P表面に対する入射角はそれぞれ70°≦θ<90°の条件を満たしていることが好ましい。つまり、図4のグラフに示されるように、入射角が70°以上であれば、入射角の変動に対して誤差量が大きく変化するため、液体50の温度変化(屈折率変化)を敏感に検出することができる。
さらに、本実施形態のように、液体(水)を介して、基板P表面の面位置を検出する場合には、検出光L1、L2に対する液体(水)の屈折率と基板P表面の感光材(レジスト)の屈折率との差が小さくなり、照射された検出光が感光材の表面で十分に反射せず、受光センサで受光される光の光量(光強度)が低下する虞があるばかりでなく、照射された検出光の一部が感光材を通過して感光材の下地面まで到達し、その下地面からの反射光がノイズ成分として受光センサで受光されてしまう可能性がある。したがって、検出光L1、L2に対する液体(水)の屈折率と基板P表面の感光材(レジスト)の屈折率との差、感光材表面での反射率、感光材の下地面からのノイズ光の影響などを考慮すると、検出光L1、L2の入射角はそれぞれ84°<θ<90°が望ましい。
Meanwhile, in order to determine accurately the refractive index information, it is preferable as large as possible the difference between the incident angle theta 1 and the incident angle theta 2. On the other hand, when the incident angle with respect to the surface S of the substrate P decreases, the position detection accuracy of the substrate P in the Z-axis direction decreases. Therefore, it is preferable that the incident angles of the detection lights L1 and L2 with respect to the surface of the substrate P satisfy the condition of 30 ° ≦ θ <90 °. More preferably, the incident angles of the detection lights L1 and L2 with respect to the surface of the substrate P satisfy the condition of 70 ° ≦ θ <90 ° so that reflected light having a sufficient light amount can be obtained on the surface S of the substrate P. Is preferred. That is, as shown in the graph of FIG. 4, if the incident angle is 70 ° or more, the error amount greatly changes with respect to the change of the incident angle, and thus the temperature change (refraction index change) of the liquid 50 is sensitive. Can be detected.
Further, when detecting the surface position of the surface of the substrate P via the liquid (water) as in the present embodiment, the refractive index of the liquid (water) with respect to the detection lights L1 and L2 and the photosensitive material on the surface of the substrate P The difference from the refractive index of (resist) becomes small, and the irradiated detection light does not sufficiently reflect on the surface of the photosensitive material, and the amount of light (light intensity) received by the light receiving sensor may be reduced. Instead, a part of the irradiated detection light may pass through the photosensitive material and reach the ground under the photosensitive material, and the light reflected from the underlying surface may be received by the light receiving sensor as a noise component. Therefore, the difference between the refractive index of the liquid (water) and the refractive index of the photosensitive material (resist) on the surface of the substrate P with respect to the detection lights L1 and L2, the reflectance on the photosensitive material surface, and the noise light from the ground below the photosensitive material Considering the influence and the like, it is desirable that the incident angles of the detection lights L1 and L2 are respectively 84 ° <θ <90 °.

こうして、像面と基板Pの表面Sとを合致させたら、制御装置CONTはマスクMを露光光ELで照明し、マスクMのパターンを投影光学系PLを介して基板Pに転写する。   When the image plane matches the surface S of the substrate P in this way, the control device CONT illuminates the mask M with the exposure light EL, and transfers the pattern of the mask M to the substrate P via the projection optical system PL.

露光処理を行うに際し、温度変化により液体50の屈折率が変動すると、マスクMのパターンを投影光学系PL及び液体50を介して基板Pに転写する際、基板Pに転写されるパターンの像に誤差が生じることが考えられる。例えば、液体50の屈折率変化に伴い、屈折率変化前に比べて基板Pに転写されるパターン像のスケーリングなどの各種収差が変動したり、あるいは像面位置が変動する場合が考えられる。制御装置CONTは、前記AF検出装置100を使って求めた液体50の屈折率変化量(または温度変化量)に基づいて、基板Pに転写されるパターンの像に誤差が生じないように、結像特性調整装置PLCを用いてパターン像の像調整を行う。例えば、液体50の屈折率変化に伴って、投影光学系PLの像面位置がZ軸方向にシフトした場合には、投影光学系PL内の一部の光学素子を駆動したり、マスクを動かしたり、露光光ELの波長を調整することで、投影光学系PL及び液体50を介したパターンの像面と、基板Pの表面Sとを合致させる。あるいは、液体50の屈折率変化(温度変化)に伴って、パターンの像のスケーリングやディストーションなどの各種収差が変動した場合にも、同様に、マスクMをZ軸方向あるいは傾斜方向へ移動したり、投影光学系PL内の一部の光学素子を駆動したり、あるいは露光光ELの波長を調整することによって、液体50の屈折率変化(温度変化)によってパターンの像に誤差が生じないように像調整を行う。   If the refractive index of the liquid 50 fluctuates due to a change in temperature during the exposure process, when the pattern of the mask M is transferred to the substrate P via the projection optical system PL and the liquid 50, the image of the pattern transferred to the substrate P An error may occur. For example, with the change in the refractive index of the liquid 50, various aberrations such as scaling of the pattern image transferred to the substrate P may change or the image plane position may change compared to before the change in the refractive index. The control device CONT is configured to perform an operation based on the refractive index change amount (or temperature change amount) of the liquid 50 obtained by using the AF detection device 100 so that no error occurs in the pattern image transferred to the substrate P. The image of the pattern image is adjusted using the image characteristic adjustment device PLC. For example, when the image plane position of the projection optical system PL shifts in the Z-axis direction due to a change in the refractive index of the liquid 50, some optical elements in the projection optical system PL are driven or the mask is moved. By adjusting the wavelength of the exposure light EL, the image plane of the pattern via the projection optical system PL and the liquid 50 matches the surface S of the substrate P. Alternatively, even when various aberrations such as scaling and distortion of a pattern image change due to a change in the refractive index (temperature change) of the liquid 50, the mask M is similarly moved in the Z-axis direction or the tilt direction. By driving some optical elements in the projection optical system PL or adjusting the wavelength of the exposure light EL, an error in the pattern image due to a change in the refractive index (temperature change) of the liquid 50 is prevented. Perform image adjustment.

以上説明したように、検出光の光路上の屈折率が変化しても、2つの検出光L1、L2を異なる入射角θ、θで基板Pの表面Sに投射することで、これら各検出光L1、L2に基づく面位置情報の測定誤差を用いて検出光の光路上に存在する液体の屈折率情報を求めることができる。したがって、求めた屈折率情報により検出した面位置情報を補正することできるので、基板Pの表面Sの面位置情報を精度良く検出することができる。
なお、上述の実施形態においては、2つの検出光L1、L2の入射角θ、θが80°を超えているため、説明を簡単にするために、液体50に屈折率変化(温度変化)がない状態で基板PがZ軸方向に移動した場合、反射光L1rの受光系の光軸と垂直な方向のずれ量と反射光L2rの受光系の光軸と垂直な方向のずれ量とは同じであるとして説明したが、厳密には、2つの検出光L1、L2の入射角θ、θが異なっているので、液体50に屈折率変化(温度変化)がない状態で、基板PがZ軸方向に移動した場合、反射光L1rの受光系の光軸と垂直な方向のずれ量と反射光L2rの受光系の光軸と垂直な方向のずれ量とが異なる。そのような場合には、基板PのZ方向へのずれ量に伴う反射光L1rの受光系の光軸と垂直な方向のずれ量と反射光L2rの受光系の光軸と垂直な方向のずれ量との関係を予め求めておき、実際の両反射光に基づく測定結果が、予め求めておいた関係と異なっていた場合に、液体50の温度変化(屈折率変化)が起きたと判断すればよい。
As described above, even if the refractive index on the optical path of the detection light changes, by projecting the two detection lights L1 and L2 onto the surface S of the substrate P at different incident angles θ 1 and θ 2 , The refractive index information of the liquid existing on the optical path of the detection light can be obtained by using the measurement error of the surface position information based on the detection lights L1 and L2. Therefore, the detected surface position information can be corrected based on the obtained refractive index information, so that the surface position information of the surface S of the substrate P can be accurately detected.
In the above-described embodiment, since the incident angle theta 1 of the two detection light L1, L2, theta 2 is greater than 80 °, in order to simplify the explanation, the refractive index change in the liquid 50 (temperature change ), When the substrate P moves in the Z-axis direction, the shift amount of the reflected light L1r in the direction perpendicular to the optical axis of the light receiving system and the shift amount of the reflected light L2r in the direction perpendicular to the optical axis of the light receiving system are calculated. Has been described as the same, but strictly speaking, since the incident angles θ 1 and θ 2 of the two detection lights L 1 and L 2 are different, the liquid 50 has no change in the refractive index (temperature change). When P moves in the Z-axis direction, the amount of deviation of the reflected light L1r in a direction perpendicular to the optical axis of the light receiving system differs from the amount of deviation of the reflected light L2r in the direction perpendicular to the optical axis of the light receiving system. In such a case, the displacement of the reflected light L1r in the direction perpendicular to the optical axis of the light receiving system and the displacement of the reflected light L2r in the direction perpendicular to the optical axis of the light receiving system due to the displacement of the substrate P in the Z direction. If the relationship with the amount is determined in advance, and if the measurement result based on the actual two reflected lights is different from the relationship determined in advance, it is determined that a temperature change (refractive index change) of the liquid 50 has occurred. Good.

上述したように、本実施形態における液体50は純水を用いた。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。   As described above, pure water is used as the liquid 50 in the present embodiment. Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that there is no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like. In addition, since pure water has no adverse effect on the environment and has a very low impurity content, an effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end surface of the projection optical system PL can be expected. .

そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nは1.44〜1.47程度と言われておりであるため、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち131〜134nm程度に短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち1.44〜1.47倍程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。   Since the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be about 1.44 to 1.47, an ArF excimer laser light (wavelength When 193 nm is used, the wavelength is shortened to 1 / n, that is, about 131 to 134 nm on the substrate P, and high resolution is obtained. Further, since the depth of focus is expanded to about n times, that is, about 1.44 to 1.47 times as compared with that in the air, if it is sufficient to secure the same depth of focus as when using in air, The numerical aperture of the projection optical system PL can be further increased, and the resolution is also improved in this regard.

本実施形態では、投影光学系PLの先端面7には、上述したように、露光光ELを透過可能な平行平面板が設けられている。この平行平面板は投影光学系PLの先端面に着脱(交換)自在に取り付けられている。液体50と接触する光学素子を、レンズより安価な平行平面板とすることにより、露光装置EXの運搬、組立、調整時等において投影光学系PLの透過率、基板P上での露光光ELの照度、及び照度分布の均一性を低下させる物質(例えばシリコン系有機物等)がその平行平面板に付着しても、液体50を供給する直前にその平行平面板を交換するだけでよく、液体50と接触する光学素子をレンズとする場合に比べてその交換コストが低くなるという利点がある。すなわち、露光光ELの照射によりレジストから発生する飛散粒子、または液体50中の不純物の付着などに起因して液体50に接触する光学素子の表面が汚れるため、その光学素子を定期的に交換する必要があるが、この光学素子を安価な平行平面板とすることにより、レンズに比べて交換部品のコストが低く、且つ交換に要する時間を短くすることができ、メンテナンスコスト(ランニングコスト)の上昇やスループットの低下を抑えることができる。もちろん、投影光学系PLの先端面に取り付ける光学素子がレンズであってもよい。また、投影光学系PLの先端面に取り付ける光学素子としては、投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整に用いる光学プレートであってもよい。また、投影光学系PLの先端部において、光学素子(平行平面板やレンズ)のみを液体50に接触させ、鏡筒PKを接触させない構成とすることにより、金属からなる鏡筒PKの腐蝕等が防止される。   In the present embodiment, as described above, the plane-parallel plate capable of transmitting the exposure light EL is provided on the distal end surface 7 of the projection optical system PL. This plane-parallel plate is detachably (exchangeably) attached to the distal end surface of the projection optical system PL. By making the optical element that comes into contact with the liquid 50 a parallel plane plate that is less expensive than a lens, the transmittance of the projection optical system PL and the exposure light EL on the substrate P during transportation, assembly, adjustment, and the like of the exposure apparatus EX. Even if a substance (for example, a silicon-based organic substance) that reduces the illuminance and the uniformity of the illuminance distribution adheres to the parallel flat plate, it is sufficient to replace the parallel flat plate just before supplying the liquid 50. There is an advantage that the replacement cost is reduced as compared with the case where the optical element that comes into contact with the lens is a lens. That is, the surface of the optical element that comes into contact with the liquid 50 due to scattering particles generated from the resist due to the irradiation of the exposure light EL or the adhesion of impurities in the liquid 50 is stained. Although it is necessary to use this optical element as an inexpensive parallel flat plate, the cost of replacement parts can be reduced and the time required for replacement can be reduced as compared with a lens, and the maintenance cost (running cost) increases. And a decrease in throughput can be suppressed. Of course, the optical element attached to the distal end surface of the projection optical system PL may be a lens. Further, the optical element attached to the distal end surface of the projection optical system PL may be an optical plate used for adjusting optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma aberration, etc.). In addition, at the tip of the projection optical system PL, only the optical element (parallel flat plate or lens) is brought into contact with the liquid 50 and the lens barrel PK is not contacted, so that the metal lens barrel PK is not corroded. Is prevented.

また、液体50の流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。   When the pressure between the optical element at the tip of the projection optical system PL and the substrate P caused by the flow of the liquid 50 is large, the optical element is not replaced but the optical element is moved by the pressure. It may be fixed firmly so that it does not occur.

なお、本実施形態では、2つの検出光L1、L2を異なる入射角θ、θで基板Pの表面Sに投射する例について説明したが、互いに異なる入射角で投射される検出光の数は2つに限らず3つ以上の任意の複数の光束を投射することができる。また、投影光学系の一部に検出光L1、L2を通過させる際には、投影光学系PLを構成する複数の光学素子のうち最も基板Pに近い1つの光学素子のみを通過させてもよいし、複数の光学素子を通過させるようにしてもよい。 In this embodiment, an example in which the two detection lights L1 and L2 are projected on the surface S of the substrate P at different incident angles θ 1 and θ 2 has been described. Can project not only two light beams but also three or more light beams. When allowing the detection light L1 and L2 to pass through a part of the projection optical system, only one of the plurality of optical elements constituting the projection optical system PL that is closest to the substrate P may pass. Alternatively, the light may pass through a plurality of optical elements.

なお、本実施形態では、投影光学系PLの先端面7と基板Pの表面Sとの間は液体50で満たされている構成であるが、例えば基板Pの表面Sに平行平面板からなるカバーガラスを取り付けた状態で液体50を満たす構成であってもよい。この場合、送光系8からの検出光L1、L2は、投影光学系PLの一部及び液体50の他に、光透過部材としてのカバーガラスを介して基板Pの表面Sに投射されることになる。   In the present embodiment, the space between the front end surface 7 of the projection optical system PL and the surface S of the substrate P is filled with the liquid 50. For example, a cover made of a flat plate parallel to the surface S of the substrate P is used. The liquid 50 may be filled with glass attached. In this case, the detection lights L1 and L2 from the light transmission system 8 are projected on the surface S of the substrate P via a cover glass as a light transmitting member in addition to a part of the projection optical system PL and the liquid 50. become.

なお、本実施形態では、投影光学系PLの先端面7と基板Pの表面Sとの間の空間56に液体50が満たされている場合を例にして説明したが、空間56に液体50がなく、例えば空間56は空気等の気体で満たされている場合についても、本発明を適用することはもちろん可能である。この場合、複数の異なる入射角で基板Pの表面Sに投射された検出光に基づき、空間56の気体の屈折率情報を検出することができる。そして、この検出光に基づき、空間56の気体の温度変化を検出することが可能である。また、空間56を含む検出光の光路上には、液体(水)50や空気以外の物質が存在していてもよい。例えば、光を透過可能な光学素子(ガラス、レンズ)や水以外の例えばフッ素系(フッ素系の液体)や過フッ化ポリエーテル(PFPE)オイル等の液体が存在していてもよい。特に、露光光としてFレーザ光等の真空紫外光を用いる場合には、液体として前記真空紫外光を透過可能なフッ素系オイルを用いることが好適である。そして、この場合においても、基板Pの表面Sに投射した検出光に基づき、光路上に存在する例えば光学素子やフッ素系オイルの温度変化を含む屈折率情報を検出することができる。本発明の原理を用いると、物質の温度変化を屈折率変化を通じて求めることができるので、本発明は、光透過性のある気体、液体などの流体及び固体の温度変化測定方法に使用することができる。特に、通常の温度センサで温度測定が困難な微小なエリア、高温雰囲気、高圧雰囲気、腐食性の高い雰囲気などで本発明の方法は有効となる。 In the present embodiment, the case where the space 50 between the front end surface 7 of the projection optical system PL and the surface S of the substrate P is filled with the liquid 50 has been described as an example. For example, the present invention can of course be applied to a case where the space 56 is filled with a gas such as air. In this case, the refractive index information of the gas in the space 56 can be detected based on the detection light projected on the surface S of the substrate P at a plurality of different incident angles. Then, it is possible to detect a temperature change of the gas in the space 56 based on the detection light. In addition, substances other than the liquid (water) 50 and air may exist on the optical path of the detection light including the space 56. For example, a liquid other than water, such as an optical element (glass or lens) that can transmit light or a liquid such as a fluorine-based (fluorine-based liquid) or perfluoropolyether (PFPE) oil, may be present. In particular, when using a vacuum ultraviolet light of F 2 laser light or the like as the exposure light, it is preferable to use the vacuum ultraviolet light capable of transmitting fluorinated oil as the liquid. Also in this case, based on the detection light projected on the surface S of the substrate P, it is possible to detect the refractive index information including the temperature change of, for example, an optical element or a fluorine-based oil existing on the optical path. According to the principle of the present invention, a change in temperature of a substance can be obtained through a change in refractive index. Therefore, the present invention can be used for a method of measuring temperature change of a fluid such as a gas or a liquid having optical transparency and a solid. it can. In particular, the method of the present invention is effective in a small area where temperature measurement is difficult with a normal temperature sensor, a high temperature atmosphere, a high pressure atmosphere, a highly corrosive atmosphere, and the like.

また、本実施形態では、検出光L1、L2は投影光学系PLを通過が、この投影光学系PLの屈折率も温度変化に伴ってわずかに変化する。この場合も、複数の異なる入射角の検出光のそれぞれに基づく誤差量を求めることで、投影光学系PLの温度変化(屈折率変化)を求めることができる。   In the present embodiment, the detection light beams L1 and L2 pass through the projection optical system PL, but the refractive index of the projection optical system PL also slightly changes with a change in temperature. Also in this case, the temperature change (refractive index change) of the projection optical system PL can be obtained by obtaining the error amount based on each of the plurality of detection light beams having different incident angles.

次に、図6を参照しながら、AF検出装置100の第2実施形態について説明する。ここで、以下の説明において、図2を用いて説明した第1実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。   Next, a second embodiment of the AF detection device 100 will be described with reference to FIG. Here, in the following description, the same or equivalent components as those of the first embodiment described with reference to FIG. 2 are denoted by the same reference numerals, and the description thereof will be simplified or omitted.

図6に示すAF検出装置100において、送光系8及び受光系9はそれぞれ1つずつ設けられている。そして、本実施形態の特徴部分は、送光系8に波長選択フィルタ24が設けられている点である。送光系8は、光源10と、光源10から射出される光束の光路下流側に設けられた波長選択フィルタ24と、送光スリット11と、非点収差補正用シリンドリカルレンズ12と、リレーレンズ13と、光路折り曲げミラー14と、収差補正用平面板15と、対物レンズ16とを備えている。受光系9は、投影光学系PLを介した反射光が入射される対物レンズ17と、収差補正用平面板18と、所定の周期で振動する振動ミラー19と、リレーレンズ20と、非点収差補正用シリンドリカルレンズ21と、ダイクロイックミラー26と、スリット状の開口部を有する受光スリット22a、22bと、例えばシリコン・フォト・ダイオードからなる受光センサ23a、23bとを備えている。   In the AF detection device 100 shown in FIG. 6, one light transmission system 8 and one light reception system 9 are provided. A feature of the present embodiment is that the light transmission system 8 is provided with a wavelength selection filter 24. The light transmission system 8 includes a light source 10, a wavelength selection filter 24 provided downstream of an optical path of a light beam emitted from the light source 10, a light transmission slit 11, a cylindrical lens 12 for correcting astigmatism, and a relay lens 13. , An optical path bending mirror 14, an aberration correcting plane plate 15, and an objective lens 16. The light receiving system 9 includes an objective lens 17 on which reflected light from the projection optical system PL is incident, a plane plate for aberration correction 18, a vibration mirror 19 that vibrates at a predetermined cycle, a relay lens 20, an astigmatism, It comprises a correcting cylindrical lens 21, a dichroic mirror 26, light receiving slits 22a and 22b having slit-shaped openings, and light receiving sensors 23a and 23b made of, for example, silicon photodiodes.

波長選択フィルタ24は、液体50及び基板Pに投射する検出光の波長を設定することができる。すなわち、送光系8は、波長選択フィルタ24により、波長の異なる複数の検出光を基板Pの表面Sに対して投射することができる。例えば、第1の波長を有する第1の検出光L1と、第1の波長とは異なる第2の波長を有する第2の検出光L2とでは、投影光学系PLから液体50に入射する際の屈折角が異なる。したがって、互いに異なる波長を有する第1、第2の検出光L1、L2のそれぞれの液体50を通過して基板Pに投射される際の入射角は互いに異なる。   The wavelength selection filter 24 can set the wavelength of the detection light projected on the liquid 50 and the substrate P. That is, the light transmission system 8 can project a plurality of detection lights having different wavelengths onto the surface S of the substrate P by the wavelength selection filter 24. For example, when the first detection light L1 having the first wavelength and the second detection light L2 having the second wavelength different from the first wavelength are incident on the liquid 50 from the projection optical system PL. Different refraction angles. Therefore, the incident angles when the first and second detection lights L1 and L2 having different wavelengths pass through the respective liquids 50 and are projected on the substrate P are different from each other.

例えば、液体50を水とし、第1の検出光L1としてC線(波長656.3nm)が投射され、第2の検出光L2としてd線(波長587.6nm)が投射される場合について考える。d線の基板Pの表面Sに対する入射角が80度である場合、d線とC線との基板Pの表面Sに対する入射角の差は0.14度となる。   For example, consider a case where the liquid 50 is water, and a C line (wavelength 656.3 nm) is projected as the first detection light L1 and a d line (wavelength 587.6 nm) is projected as the second detection light L2. When the incident angle of the d-line with respect to the surface S of the substrate P is 80 degrees, the difference between the d-line and the C-line with respect to the surface S of the substrate P is 0.14 degrees.

基板P表面で反射した反射光L1rとL2rとはそれぞれ受光系9に入射する。そして、受光系9内のダイクロイックミラー26を透過した反射光L1rは受光センサ23aに入射し、ダイクロイックミラー26で反射した反射光L2rは受光センサ23bに入射する。受光センサ23a、23bの検出結果はそれぞれ制御装置CONTに出力され、第1実施形態同様に、液体50の屈折率情報を求めることができる。なお、受光系9内にダイクロイックミラー26がなく、受光センサ23が1つしか配置されていない場合には、波長選択フィルタ24により第1の波長の検出光L1と第2の波長の検出光L2とをそれぞれ交互に基板P表面に入射させるようにすればよい。   The reflected lights L1r and L2r reflected on the surface of the substrate P enter the light receiving system 9, respectively. Then, the reflected light L1r transmitted through the dichroic mirror 26 in the light receiving system 9 enters the light receiving sensor 23a, and the reflected light L2r reflected by the dichroic mirror 26 enters the light receiving sensor 23b. The detection results of the light receiving sensors 23a and 23b are output to the control unit CONT, and the refractive index information of the liquid 50 can be obtained as in the first embodiment. When there is no dichroic mirror 26 in the light receiving system 9 and only one light receiving sensor 23 is disposed, the wavelength selection filter 24 detects the first wavelength detection light L1 and the second wavelength detection light L2. May be alternately incident on the surface of the substrate P.

次に、図7を参照しながらAF検出装置100の第3実施形態について説明する。図7に示すAF検出装置100において、送光系8及び受光系9はそれぞれ1つずつ設けられている。そして、本実施形態の特徴部分は、送光系8に瞳分割板25が設けられている点である。送光系8は、光源10と、送光スリット11と、非点収差補正用シリンドリカルレンズ12と、リレーレンズ13と、光路折り曲げミラー14と、収差補正用平面板15と、対物レンズ16と、対物レンズ16の光路下流側近傍に設けられた瞳分割板25とを備えている。受光系9は、投影光学系PLを介した反射光が入射される対物レンズ17と、収差補正用平面板18と、所定の周期で振動する振動ミラー19と、リレーレンズ20と、非点収差補正用シリンドリカルレンズ21と、スリット状の開口部を有する受光スリット22と、例えばシリコン・フォト・ダイオードからなる受光センサ23とを備えている。   Next, a third embodiment of the AF detection device 100 will be described with reference to FIG. In the AF detection device 100 shown in FIG. 7, one light transmitting system 8 and one light receiving system 9 are provided. The feature of the present embodiment is that the pupil division plate 25 is provided in the light transmission system 8. The light transmission system 8 includes a light source 10, a light transmission slit 11, a cylindrical lens 12 for astigmatism correction, a relay lens 13, an optical path bending mirror 14, a plane plate 15 for aberration correction, an objective lens 16, A pupil splitting plate 25 provided in the vicinity of the objective lens 16 on the downstream side of the optical path. The light receiving system 9 includes an objective lens 17 on which reflected light from the projection optical system PL is incident, a plane plate for aberration correction 18, a vibration mirror 19 that vibrates at a predetermined cycle, a relay lens 20, an astigmatism, A correction cylindrical lens 21, a light receiving slit 22 having a slit-shaped opening, and a light receiving sensor 23 made of, for example, a silicon photodiode are provided.

瞳分割板25は所定の開口部25Aを有するものであって、瞳分割板25に照射される光束の一部を開口部25Aを介して通過させる。すなわち、図8(a)、(b)に簡易的に示すように、瞳分割板25を送光系の光軸と垂直方向に移動して光束を瞳分割することで、基板Pの表面Sに対する検出光の入射角を互いに異なる入射角θ、θに設定し、それぞれに対応する反射光L1rとL2rとを受光センサ23で検出することによって、第1実施形態同様に、液体50の屈折率情報を求めることができる。また、図8(a)と図8(b)との状態を交互に繰り返すことによって、ほぼリアルタイムに液体50の屈折率情報を求めることができる。第3実施形態においても、瞳分割板25を配置することで、第2実施形態同様に、1つの送光系8及び受光系9であっても、複数の検出光を異なる入射角で基板Pに投射することができる。なお、瞳分割板を受光系9の基板Pと対物レンズ17との間に設けて、迷光などの外乱を防止するようにしてもよい。 The pupil splitting plate 25 has a predetermined opening 25A, and allows a part of the light beam applied to the pupil splitting plate 25 to pass through the opening 25A. That is, as shown in FIGS. 8A and 8B, the pupil splitting plate 25 is moved in the direction perpendicular to the optical axis of the light transmitting system to split the light beam into pupils, thereby obtaining the surface S of the substrate P. Are set to different incident angles θ 1 and θ 2 from each other, and the reflected light L1r and L2r corresponding thereto are detected by the light receiving sensor 23, so that the liquid 50 as in the first embodiment. Refractive index information can be determined. Also, by alternately repeating the states of FIG. 8A and FIG. 8B, the refractive index information of the liquid 50 can be obtained almost in real time. Also in the third embodiment, by disposing the pupil splitting plate 25, as in the second embodiment, even in the case of one light transmission system 8 and one light reception system 9, a plurality of detection lights can be transmitted to the substrate P at different incident angles. Can be projected. Note that a pupil splitting plate may be provided between the substrate P of the light receiving system 9 and the objective lens 17 to prevent disturbance such as stray light.

なお、上述の実施形態においては、AF検出装置100を用いて光学的に検出された液体50の温度情報(屈折率情報)に基づいて、パターンの像の最適像面と基板Pの表面Sとの関係を調整したり、基板P上に投影されるパターン像の調整を行ったりしているが、その検出された温度情報に基づいて、液体供給装置1から供給される液体の温度を制御するようにしてもよい。これにより投影光学系PLと基板Pとの間の液体50の温度(屈折率)最適化することが可能となる。   In the above-described embodiment, the optimal image plane of the pattern image and the surface S of the substrate P are determined based on the temperature information (refractive index information) of the liquid 50 optically detected by the AF detection device 100. And the adjustment of the pattern image projected on the substrate P, the temperature of the liquid supplied from the liquid supply device 1 is controlled based on the detected temperature information. You may do so. This makes it possible to optimize the temperature (refractive index) of the liquid 50 between the projection optical system PL and the substrate P.

また、上述の実施形態においては、被検面として基板Pの表面に検出光を投射するようにしているが、基板Pの表面に限らず、例えば基板ステージPST上に形成されている基準平面やセンサの上面を被検面として検出光を投射するようにしてもよい。   In the above-described embodiment, the detection light is projected on the surface of the substrate P as the surface to be detected. However, the detection light is not limited to the surface of the substrate P. For example, a reference plane or a reference plane formed on the substrate stage PST may be used. The detection light may be projected using the upper surface of the sensor as the surface to be detected.

また、上述の実施形態においては、マスクMのパターンの像が投影される投影領域の中央付近に検出光を投射するようにしているが、投影領域の外側に検出光を投射するようにしてもよい。   In the above embodiment, the detection light is projected near the center of the projection area where the image of the pattern of the mask M is projected. However, the detection light may be projected outside the projection area. Good.

また、上述の実施形態においては、AF検出装置100は、2つの検出光を被検面上に投射しているが、2つに限らず、3つ以上でよいことは言うまでもない。この場合は、複数の屈折率変化情報(温度変化情報)を得ることができるので、これらの平均値などを算出することで、より正確な屈折率変化情報(温度変化情報)を得ることが可能となる。   Further, in the above-described embodiment, the AF detection device 100 projects two detection lights on the surface to be detected, but it is needless to say that the number is not limited to two and may be three or more. In this case, since a plurality of pieces of refractive index change information (temperature change information) can be obtained, it is possible to obtain more accurate refractive index change information (temperature change information) by calculating an average value and the like. It becomes.

なお、上述の実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。   The substrate P of the above embodiment is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) and the like are applied.

露光装置EXとして、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。   As an exposure apparatus EX, a mask M and a substrate P are used in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P. The present invention can also be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively in a stationary state and the substrate P is sequentially moved stepwise. The present invention is also applicable to a step-and-stitch type exposure apparatus that transfers at least two patterns on the substrate P while partially overlapping each other.

また、本発明は、ツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の構造及び露光動作は、例えば特開平10−163099号及び特開平10−214783号(対応米国特許6,341,007号、6,400,441号、6,549,269号及び6,590,634号)、特表2000−505958号(対応米国特許5,969,441号)あるいは米国特許6,208,407号に開示されている。   The present invention is also applicable to a twin-stage type exposure apparatus. The structure and exposure operation of a twin-stage type exposure apparatus are described in, for example, JP-A-10-163099 and JP-A-10-214783 (corresponding to U.S. Pat. Nos. 6,341,007, 6,400,441, 6,549,269). And 6,590,634), JP-T-2000-505958 (corresponding U.S. Pat. No. 5,969,441) or U.S. Pat. No. 6,208,407.

また、上述の実施形態では、投影光学系PLと基板Pとの間に局所的に液体を満たす露光装置を採用しているが、露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置や、ステージ上に所定深さの液体槽を形成しその中に基板を保持する液浸露光装置にも本発明を適用可能である。露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置の構造及び露光動作については、例えば特開平6−124873号公報に、ステージ上に所定深さの液体槽を形成してその中に基板を保持する液浸露光装置については、例えば特開平10−303114号公報や米国特許第5,825,043号にそれぞれ開示されている。   Further, in the above-described embodiment, the exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is used, but the stage holding the substrate to be exposed is moved in the liquid tank. The present invention is also applicable to an immersion exposure apparatus or an immersion exposure apparatus in which a liquid tank having a predetermined depth is formed on a stage and a substrate is held therein. Regarding the structure and exposure operation of an immersion exposure apparatus that moves a stage holding a substrate to be exposed in a liquid tank, for example, Japanese Patent Application Laid-Open No. 6-124873 discloses a liquid tank having a predetermined depth formed on a stage. A liquid immersion exposure apparatus for holding a substrate therein is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-303114 and US Pat. No. 5,825,043.

露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。   The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto the substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging element (CCD). ) Or an exposure apparatus for manufacturing a reticle or a mask.

基板ステージPSTやマスクステージMSTにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。ステージにリニアモータを用いた例は、米国特許5,623,853及び5,528,118に開示されている。   When a linear motor is used for the substrate stage PST or the mask stage MST, any of an air levitation type using an air bearing and a magnetic levitation type using Lorentz force or reactance force may be used. Each of the stages PST and MST may be of a type that moves along a guide, or may be a guideless type that does not have a guide. Examples using a linear motor for the stage are disclosed in U.S. Patents 5,623,853 and 5,528,118.

各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。   As a driving mechanism of each stage PST, MST, a planar motor that drives each stage PST, MST by electromagnetic force by facing a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil. May be used. In this case, one of the magnet unit and the armature unit may be connected to the stages PST and MST, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stages PST and MST.

基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば特開平8−166475号公報(米国特許5,528,118)に詳細に開示されている。   The reaction force generated by the movement of the substrate stage PST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of processing this reaction force is disclosed in detail, for example, in Japanese Patent Application Laid-Open No. 8-166475 (US Pat. No. 5,528,118).

マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば特開平8−330224号公報(米国特許第5,874,820号)に詳細に開示されている。   The reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of processing this reaction force is disclosed in detail, for example, in Japanese Patent Application Laid-Open No. 8-330224 (U.S. Pat. No. 5,874,820).

以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。   As described above, the exposure apparatus EX according to the embodiment of the present invention controls various subsystems including the respective components described in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electric systems to ensure these various accuracy Are adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from the various subsystems includes mechanical connection, wiring connection of an electric circuit, and piping connection of a pneumatic circuit among the various subsystems. It goes without saying that there is an assembling process for each subsystem before the assembling process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature, the degree of cleanliness, and the like are controlled.

半導体デバイス等のマイクロデバイスは、図9に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。   As shown in FIG. 9, for a micro device such as a semiconductor device, a step 201 for designing the function and performance of the micro device, a step 202 for manufacturing a mask (reticle) based on this design step, a substrate as a base material of the device are provided. 203, an exposure processing step 204 of exposing a mask pattern to a substrate by the exposure apparatus EX of the above-described embodiment, a device assembling step (including a dicing step, a bonding step, and a packaging step) 205, an inspection step 206, and the like. Manufactured through

本発明の面位置検出装置を備えた露光装置の一実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an embodiment of an exposure apparatus including a surface position detection device according to the present invention. 本発明の面位置検出装置の第1実施形態を示す概略構成図である。It is a schematic structure figure showing a 1st embodiment of a surface position detecting device of the present invention. 検出光が投射される基板を示す要部拡大図である。It is a principal part enlarged view which shows the board | substrate to which a detection light is projected. 基板に対する検出光の入射角と誤差量との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between an incident angle of detection light with respect to a substrate and an error amount. 本発明の面位置検出方法の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the surface position detection method of this invention. 本発明の面位置検出装置の第2実施形態を示す概略構成図である。It is a schematic structure figure showing a 2nd embodiment of a surface position detecting device of the present invention. 本発明の面位置検出装置の第3実施形態を示す概略構成図である。It is a schematic structure figure showing a 3rd embodiment of a surface position detecting device of the present invention. 瞳分割板を示す模式図である。It is a schematic diagram which shows a pupil division plate. 半導体デバイスの製造工程の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the manufacturing process of a semiconductor device. 従来の課題を説明するための模式図である。FIG. 9 is a schematic diagram for explaining a conventional problem.

符号の説明Explanation of reference numerals

24…波長選択フィルタ、50…液体(水、光透過部材)、
100…AF検出装置(面位置検出装置)、EX…露光装置、L1…第1の検出光、
L2…第2の検出光、M…マスク、P…基板、PL…投影光学系(光透過部材)、
PLC…結像特性調整装置、S…基板の表面(被検面)、θ…第1の入射角、
θ…第2の入射角
24: wavelength selection filter, 50: liquid (water, light transmitting member),
100: AF detection device (surface position detection device), EX: exposure device, L1: first detection light,
L2: second detection light, M: mask, P: substrate, PL: projection optical system (light transmitting member),
PLC: imaging characteristic adjusting device, S: surface of substrate (surface to be inspected), θ 1 : first incident angle,
θ 2 : second incident angle

Claims (25)

検出光を被検面に投射するとともに、その被検面からの反射光を受光することによって得られる情報に基づいて、被検面の面位置を検出する面位置検出装置であって、
検出光として、複数の光を異なる入射角で被検面に投射する送光系と;
被検面からの反射光を受光する受光系と;を備える面位置検出装置。
A surface position detection device that detects the surface position of the test surface based on information obtained by projecting the detection light onto the test surface and receiving reflected light from the test surface,
A light transmission system for projecting a plurality of lights as detection light at different angles of incidence onto a surface to be measured;
A light receiving system for receiving light reflected from the surface to be inspected.
検出光を被検面に投射するとともに、その被検面からの反射光を受光することによって得られる情報に基づいて、被検面の面位置を検出する面位置検出装置であって:
検出光として、波長の異なる複数の光を被検面に投射する送光系と;
被検面からの反射光を受光する受光系と;を備える面位置検出装置。
A surface position detection device for projecting detection light onto a surface to be detected and detecting a surface position of the surface to be detected based on information obtained by receiving reflected light from the surface to be detected, comprising:
A light transmission system for projecting a plurality of lights having different wavelengths onto a surface to be detected as detection light;
A light receiving system for receiving light reflected from the surface to be inspected.
前記検出光は、光透過部材を介して前記被検面に投射される請求項1または2に記載の面位置検出装置。   The surface position detecting device according to claim 1, wherein the detection light is projected onto the surface to be detected via a light transmitting member. 前記検出光は、液体を介して前記被検面に投射される請求項3に記載の面位置検出装置。   The surface position detection device according to claim 3, wherein the detection light is projected onto the surface to be detected via a liquid. 前記検出光は、液体を介して前記被検面に投射される請求項1または2に記載の面位置検出装置。   The surface position detection device according to claim 1, wherein the detection light is projected onto the surface to be detected via a liquid. マスクのパターンを投影光学系を介して基板上に投影して前記基板を露光する露光装置に搭載され、前記投影光学系の像面と前記基板表面との位置関係を制御するために前記被検面としての前記基板表面に前記検出光を投射して前記基板表面の面位置情報を検出する請求項1〜5のいずれか一項記載の面位置検出装置。   The pattern of the mask is mounted on an exposure apparatus that exposes the substrate by projecting the pattern on the substrate via a projection optical system, and the test object is used to control a positional relationship between an image plane of the projection optical system and the substrate surface. The surface position detection device according to any one of claims 1 to 5, wherein the detection light is projected onto the surface of the substrate as a surface to detect surface position information of the substrate surface. マスクのパターンの像を投影光学系により基板上に投影して、基板を露光する露光方法であって:
基板表面に複数の検出光を異なる入射角で投射するとともに、基板表面からの反射光を受光することによって、検出光及び反射光の光路の屈折率情報を検出することと;
マスクのパターンの像を投影光学系により基板上に投影すること;を含む露光方法。
An exposure method for projecting an image of a pattern of a mask onto a substrate by a projection optical system to expose the substrate, comprising:
Projecting a plurality of detection lights on the substrate surface at different incident angles and receiving reflected light from the substrate surface to detect refractive index information of the detection light and the optical path of the reflected light;
Projecting an image of a pattern of a mask onto a substrate by a projection optical system.
前記複数の検出光の入射角θはそれぞれ30°≦θ<90°の条件を満たす請求項7に記載の露光方法。   The exposure method according to claim 7, wherein the incident angles θ of the plurality of detection lights each satisfy a condition of 30 ° ≦ θ <90 °. 前記複数の検出光の入射角θはそれぞれ70°≦θ<90°の条件を満たす請求項8に記載の露光方法。   9. The exposure method according to claim 8, wherein the incident angles θ of the plurality of detection lights each satisfy a condition of 70 ° ≦ θ <90 °. マスクのパターンの像を投影光学系により基板上に投影して、基板を露光する露光方法であって:
基板表面に波長の異なる複数の検出光を投射するとともに、基板表面からの反射光を受光することによって、検出光及び反射光の光路の屈折率情報を検出することと;
マスクのパターンの像を投影光学系を介して基板上に投影することと;を含む露光方法。
An exposure method for projecting an image of a pattern of a mask onto a substrate by a projection optical system to expose the substrate, comprising:
Projecting a plurality of detection lights having different wavelengths on the substrate surface and receiving the reflected light from the substrate surface, thereby detecting the refractive index information of the detection light and the optical path of the reflected light;
Projecting an image of a pattern of a mask onto a substrate via a projection optical system.
前記基板からの反射光を波長毎に検出する請求項10に記載の露光方法。   The exposure method according to claim 10, wherein the reflected light from the substrate is detected for each wavelength. 前記屈折率情報は前記光路の温度変化を含む請求項7〜11のいずれか一項記載の露光方法。   The exposure method according to any one of claims 7 to 11, wherein the refractive index information includes a temperature change of the optical path. 前記検出光は、前記投影光学系の一部の光学素子を介して前記基板表面に投射される請求項7〜12のいずれか一項記載の露光方法。   The exposure method according to any one of claims 7 to 12, wherein the detection light is projected onto the surface of the substrate via some optical elements of the projection optical system. 前記屈折率情報に基づいて、前記投影光学系の像面と前記基板表面との位置関係を調整する請求項7〜13のいずれか一項記載の露光方法。   The exposure method according to any one of claims 7 to 13, wherein a positional relationship between an image plane of the projection optical system and the substrate surface is adjusted based on the refractive index information. 前記複数の検出光のうちの少なくとも1つで前記基板表面の面位置を検出し、前記複数の検出光を使って得られる屈折率情報に基づいて前記検出された面位置を補正する請求項14に記載の露光方法。   15. The surface position of the substrate surface is detected by at least one of the plurality of detection lights, and the detected surface position is corrected based on refractive index information obtained using the plurality of detection lights. Exposure method according to 1. 前記投影光学系と前記基板表面との間には液体が存在し、前記屈折率情報は前記液体の屈折率情報を含む請求項7〜15のいずれか一項記載の露光方法。   The exposure method according to any one of claims 7 to 15, wherein a liquid exists between the projection optical system and the substrate surface, and the refractive index information includes refractive index information of the liquid. 前記液体は水である請求項16に記載の露光方法。   The exposure method according to claim 16, wherein the liquid is water. 前記反射光を受光することによって前記液体の屈折率変化を検出し、該液体の屈折率変化によって前記パターンの像に誤差が生じないように像調整を行う請求項16又は17に記載の露光方法。   18. The exposure method according to claim 16, wherein a change in the refractive index of the liquid is detected by receiving the reflected light, and an image adjustment is performed so that an error does not occur in the image of the pattern due to the change in the refractive index of the liquid. . 投影光学系により液体を介してパターンの像を基板上に投影して、基板を液浸露光する露光方法であって:
投影光学系と基板との間の少なくとも一部を液体で満たすことと;
投影光学系と基板との間の液体の温度情報を光学的に検出することと;
投影光学系により液体を介してパターンの像を基板上に投影すること;とを含む露光方法。
An exposure method for projecting an image of a pattern onto a substrate through a liquid by a projection optical system and subjecting the substrate to immersion exposure, comprising:
Filling at least a portion between the projection optics and the substrate with a liquid;
Optically detecting temperature information of the liquid between the projection optics and the substrate;
Projecting an image of the pattern onto the substrate through a liquid by a projection optical system.
前記液体を介して前記基板表面に検出光を投射するとともに、前記基板表面からの反射光を前記液体を介して受光することによって、前記液体の温度情報を検出する請求項19に記載の露光方法。   20. The exposure method according to claim 19, further comprising projecting detection light onto the surface of the substrate via the liquid and receiving light reflected from the surface of the substrate via the liquid, thereby detecting temperature information of the liquid. . 前記反射光を受光することによって前記基板表面の面位置情報を検出する請求項19又は20に記載の露光方法。   21. The exposure method according to claim 19, wherein surface position information of the substrate surface is detected by receiving the reflected light. 前記温度情報に基づいて、前記基板上に投影されるパターンの像の結像状態を調整する請求項19〜21に記載の露光方法。   22. The exposure method according to claim 19, wherein an image forming state of an image of a pattern projected on the substrate is adjusted based on the temperature information. 前記温度情報に基づいて、前記投影光学系と前記基板との間に供給される液体の温度を制御する請求項19〜22に記載の露光方法。   23. The exposure method according to claim 19, wherein a temperature of a liquid supplied between the projection optical system and the substrate is controlled based on the temperature information. 前記受光した反射光から液体の屈折率の変化を求め、屈折率の変化に基づいて液体の温度変化を求める請求項20に記載の露光方法。   21. The exposure method according to claim 20, wherein a change in the refractive index of the liquid is obtained from the received reflected light, and a change in the temperature of the liquid is obtained based on the change in the refractive index. 請求項7〜請求項24のいずれか一項記載の露光方法を用いるデバイス製造方法。
A device manufacturing method using the exposure method according to any one of claims 7 to 24.
JP2003412586A 2002-12-10 2003-12-10 Surface position detection device, exposure method and method for manufacturing device Pending JP2004301825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412586A JP2004301825A (en) 2002-12-10 2003-12-10 Surface position detection device, exposure method and method for manufacturing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002357955 2002-12-10
JP2003072485 2003-03-17
JP2003412586A JP2004301825A (en) 2002-12-10 2003-12-10 Surface position detection device, exposure method and method for manufacturing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008293400A Division JP2009105414A (en) 2002-12-10 2008-11-17 Exposure method, and device manufacturing method

Publications (1)

Publication Number Publication Date
JP2004301825A true JP2004301825A (en) 2004-10-28

Family

ID=33424732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412586A Pending JP2004301825A (en) 2002-12-10 2003-12-10 Surface position detection device, exposure method and method for manufacturing device

Country Status (1)

Country Link
JP (1) JP2004301825A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129914A (en) * 2003-10-02 2005-05-19 Nikon Corp Aligner and exposure method, and method for manufacturing device
WO2005031799A3 (en) * 2003-09-29 2005-06-23 Nippon Kogaku Kk Exposure apparatus, exposure method, and device manufacturing method
WO2005071717A1 (en) * 2004-01-26 2005-08-04 Nikon Corporation Exposure apparatus and device producing method
JP2006148106A (en) * 2004-11-16 2006-06-08 Samsung Electronics Co Ltd Auto-focusing system, auto-focusing method, and exposure device using them
EP1677156A1 (en) 2004-12-30 2006-07-05 ASML Netherlands BV Lithographic apparatus and device manufacturing method
WO2006080427A1 (en) * 2005-01-31 2006-08-03 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
WO2006080250A1 (en) * 2005-01-25 2006-08-03 Jsr Corporation Immersion exposure system, and recycle method and supply method of liquid for immersion exposure
JP2006313903A (en) * 2005-05-03 2006-11-16 Asml Netherlands Bv Lithography equipment, system and method for detecting position amount
JP2007005714A (en) * 2005-06-27 2007-01-11 Toshiba Corp Method and apparatus for immersion exposure
JP2007103841A (en) * 2005-10-07 2007-04-19 Toshiba Corp Manufacture of semiconductor device
JP2007123842A (en) * 2005-09-29 2007-05-17 Renesas Technology Corp Method of manufacturing semiconductor device
WO2007066687A1 (en) * 2005-12-06 2007-06-14 Nikon Corporation Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device
JP2007184576A (en) * 2005-12-21 2007-07-19 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7369968B2 (en) 2000-06-16 2008-05-06 Verisae, Inc. Enterprise energy management system
JP2008160155A (en) * 2003-05-13 2008-07-10 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US7440871B2 (en) 2002-12-09 2008-10-21 Verisae, Inc. Method and system for tracking and reporting emissions
US7474218B2 (en) 2000-06-16 2009-01-06 Verisae, Inc. Method and system of asset identification and tracking for enterprise asset management
US7496532B2 (en) 2000-06-16 2009-02-24 Verisae, Inc. Enterprise asset management system and method
JP2009054730A (en) * 2007-08-24 2009-03-12 Nikon Corp Moving body driving method and moving body driving system, pattern forming method and device, exposure and device, and device manufacturing method
US7512523B2 (en) 2000-06-16 2009-03-31 Verisae, Inc. Refrigerant loss tracking and repair
JP2009071316A (en) * 2003-10-15 2009-04-02 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2009133704A1 (en) * 2008-04-30 2009-11-05 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
US7616290B2 (en) 2005-05-11 2009-11-10 Canon Kabushiki Kaisha Exposure apparatus and method
JP2009295977A (en) * 2008-06-05 2009-12-17 Nikon Corp Surface position detecting apparatus, exposure apparatus, surface position detecting method and device manufacturing method
JP2010066256A (en) * 2008-09-09 2010-03-25 Nikon Corp Plane position detection apparatus, exposure system, method for detecting plane position, and method for manufacturing device
JP2010098328A (en) * 2003-09-29 2010-04-30 Nikon Corp Exposure apparatus, method for exposure, and method for manufacturing device
US7733461B2 (en) 2005-06-23 2010-06-08 Canon Kabushiki Kaisha Exposure apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014514543A (en) * 2011-03-31 2014-06-19 エーティーエス オートメーション ツーリング システムズ インコーポレイテッド Three-dimensional light detection through optical media
JP2015225222A (en) * 2014-05-28 2015-12-14 三菱電機株式会社 Beam scanning device, optical wireless communication system, and beam scanning method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369968B2 (en) 2000-06-16 2008-05-06 Verisae, Inc. Enterprise energy management system
US8005648B2 (en) 2000-06-16 2011-08-23 Verisae, Inc. Refrigerant loss tracking and repair
US7852222B2 (en) 2000-06-16 2010-12-14 Verisae, Inc. Method and system of asset identification and tracking for enterprise asset management
US7512523B2 (en) 2000-06-16 2009-03-31 Verisae, Inc. Refrigerant loss tracking and repair
US7496532B2 (en) 2000-06-16 2009-02-24 Verisae, Inc. Enterprise asset management system and method
US7474218B2 (en) 2000-06-16 2009-01-06 Verisae, Inc. Method and system of asset identification and tracking for enterprise asset management
US7853436B2 (en) 2002-12-09 2010-12-14 Verisae, Inc. Method and system for tracking and reporting emissions
US7440871B2 (en) 2002-12-09 2008-10-21 Verisae, Inc. Method and system for tracking and reporting emissions
US7647207B2 (en) 2002-12-09 2010-01-12 Verisae, Inc. Method and system for tracking and reporting emissions
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP2008160155A (en) * 2003-05-13 2008-07-10 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US11003096B2 (en) 2003-08-29 2021-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10514618B2 (en) 2003-08-29 2019-12-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2010098328A (en) * 2003-09-29 2010-04-30 Nikon Corp Exposure apparatus, method for exposure, and method for manufacturing device
JP2015008333A (en) * 2003-09-29 2015-01-15 株式会社ニコン Exposure device, measurement method, exposure method, and device manufacturing method
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2011086957A (en) * 2003-09-29 2011-04-28 Nikon Corp Exposure apparatus, measuring method, exposure method, and device manufacturing method
JP2012134560A (en) * 2003-09-29 2012-07-12 Nikon Corp Exposure device, measurement method, exposure method, and device manufacturing method
WO2005031799A3 (en) * 2003-09-29 2005-06-23 Nippon Kogaku Kk Exposure apparatus, exposure method, and device manufacturing method
JP2005129914A (en) * 2003-10-02 2005-05-19 Nikon Corp Aligner and exposure method, and method for manufacturing device
JP4515209B2 (en) * 2003-10-02 2010-07-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2009071316A (en) * 2003-10-15 2009-04-02 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8174674B2 (en) 2003-10-15 2012-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8570486B2 (en) 2003-10-15 2013-10-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US8330934B2 (en) 2004-01-26 2012-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
WO2005071717A1 (en) * 2004-01-26 2005-08-04 Nikon Corporation Exposure apparatus and device producing method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
JP2006148106A (en) * 2004-11-16 2006-06-08 Samsung Electronics Co Ltd Auto-focusing system, auto-focusing method, and exposure device using them
US7670730B2 (en) 2004-12-30 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8354209B2 (en) 2004-12-30 2013-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8102507B2 (en) 2004-12-30 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009055068A (en) * 2004-12-30 2009-03-12 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2011018925A (en) * 2004-12-30 2011-01-27 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
EP1677156A1 (en) 2004-12-30 2006-07-05 ASML Netherlands BV Lithographic apparatus and device manufacturing method
WO2006080250A1 (en) * 2005-01-25 2006-08-03 Jsr Corporation Immersion exposure system, and recycle method and supply method of liquid for immersion exposure
JPWO2006080250A1 (en) * 2005-01-25 2008-08-07 Jsr株式会社 Immersion type exposure system, recycling method and supply method of liquid for immersion type exposure
JPWO2006080427A1 (en) * 2005-01-31 2008-06-19 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
WO2006080427A1 (en) * 2005-01-31 2006-08-03 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
JP4565271B2 (en) * 2005-01-31 2010-10-20 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP4603998B2 (en) * 2005-05-03 2010-12-22 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, position quantity detection system and method
JP2006313903A (en) * 2005-05-03 2006-11-16 Asml Netherlands Bv Lithography equipment, system and method for detecting position amount
US7616290B2 (en) 2005-05-11 2009-11-10 Canon Kabushiki Kaisha Exposure apparatus and method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7733461B2 (en) 2005-06-23 2010-06-08 Canon Kabushiki Kaisha Exposure apparatus
JP2007005714A (en) * 2005-06-27 2007-01-11 Toshiba Corp Method and apparatus for immersion exposure
JP2007123842A (en) * 2005-09-29 2007-05-17 Renesas Technology Corp Method of manufacturing semiconductor device
JP2007103841A (en) * 2005-10-07 2007-04-19 Toshiba Corp Manufacture of semiconductor device
WO2007066687A1 (en) * 2005-12-06 2007-06-14 Nikon Corporation Temperature measuring method, exposure method, exposure apparatus and method for manufacturing device
JP2007184576A (en) * 2005-12-21 2007-07-19 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4576373B2 (en) * 2005-12-21 2010-11-04 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2009054730A (en) * 2007-08-24 2009-03-12 Nikon Corp Moving body driving method and moving body driving system, pattern forming method and device, exposure and device, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5472101B2 (en) * 2008-04-30 2014-04-16 株式会社ニコン Exposure apparatus and device manufacturing method
WO2009133704A1 (en) * 2008-04-30 2009-11-05 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
JP2009295977A (en) * 2008-06-05 2009-12-17 Nikon Corp Surface position detecting apparatus, exposure apparatus, surface position detecting method and device manufacturing method
JP2010066256A (en) * 2008-09-09 2010-03-25 Nikon Corp Plane position detection apparatus, exposure system, method for detecting plane position, and method for manufacturing device
JP2014514543A (en) * 2011-03-31 2014-06-19 エーティーエス オートメーション ツーリング システムズ インコーポレイテッド Three-dimensional light detection through optical media
US9551570B2 (en) 2011-03-31 2017-01-24 Ats Automation Tooling Systems Inc. Three dimensional optical sensing through optical media
JP2015225222A (en) * 2014-05-28 2015-12-14 三菱電機株式会社 Beam scanning device, optical wireless communication system, and beam scanning method

Similar Documents

Publication Publication Date Title
JP2004301825A (en) Surface position detection device, exposure method and method for manufacturing device
JP5218517B2 (en) Exposure apparatus, control method, and device manufacturing method
JP2009105414A (en) Exposure method, and device manufacturing method
JP5143331B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4513299B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5273163B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US20060181690A1 (en) Exposure apparatus, exposure method, and method for producing device
TWI418944B (en) A method of determining exposure conditions, an exposure method, an exposure apparatus, and an element manufacturing method
JP5099530B2 (en) Focus calibration method and exposure apparatus
WO2007000984A1 (en) Exposure method, exposure device, and device manufacturing method
KR20080007383A (en) Exposure method, exposure apparatus and device manufacturing method
JP4515209B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4470433B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO2009133704A1 (en) Exposure apparatus, exposure method and device manufacturing method
WO2005106930A1 (en) Exposure method, exposure system, and method for fabricating device
KR20090034736A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2010087532A (en) Exposure system, exposure method, and method for manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203