WO2005096011A1 - Vorrichtung und verfahren zum ansteuern zumindest einer fahrzeugschutzeinrichtung - Google Patents

Vorrichtung und verfahren zum ansteuern zumindest einer fahrzeugschutzeinrichtung Download PDF

Info

Publication number
WO2005096011A1
WO2005096011A1 PCT/EP2005/001740 EP2005001740W WO2005096011A1 WO 2005096011 A1 WO2005096011 A1 WO 2005096011A1 EP 2005001740 W EP2005001740 W EP 2005001740W WO 2005096011 A1 WO2005096011 A1 WO 2005096011A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
radar
vehicle
distance
speed
Prior art date
Application number
PCT/EP2005/001740
Other languages
English (en)
French (fr)
Inventor
Marc-Michael Meinecke
Raimond Holze
Ralph Mende
Rajko Petelka
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Publication of WO2005096011A1 publication Critical patent/WO2005096011A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/468Indirect determination of position data by Triangulation, i.e. two antennas or two sensors determine separately the bearing, direction or angle to a target, whereby with the knowledge of the baseline length, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • the invention relates to a method and a device for controlling at least one vehicle protection device.
  • vehicle protection devices for occupants and / or pedestrians such as airbag devices, belt tensioners, active head restraints, automatic seat conditioning, raising / lowering the chassis and / or raising the bonnet, according to the situation and needs used in motor vehicle crash detection systems.
  • vehicle protection devices for passengers and / or pedestrians such as airbag devices, belt tensioners, active head restraints, automatic seat conditioning, raising / lowering the chassis and / or raising the bonnet.
  • These systems record continuously! physical variables of the motor vehicle and evaluate these variables with regard to an ongoing collision. "Intelligent" sensors are often used here.
  • the extent to which vehicle protection devices for passengers and / or pedestrians are activated depends both on the severity and course of the accident and, for example, on the seat occupancy.
  • the known control of protective devices is linked to central or distributed acceleration sensors in the vehicle, which provide information at the time of the crash or impact.
  • information from the pre-crash phase i.e. from the period shortly before the impact, is required for an improved triggering strategy.
  • Preventive (preventive) safety procedures can prevent accidents or mitigate their consequences.
  • sensors such as radar sensors, laser sensors or cameras
  • suitable protective devices such as belt tensioners or automatic emergency braking, can be triggered earlier.
  • DE10223363 A1 describes a method and a device for controlling a restraint device.
  • a reversible belt tensioner is electronically controlled via the information from radar sensors.
  • a monopulse azimuth radar system for motor vehicle location is known in the document DE 69433 113.
  • the monopulse radar system is able to determine both the distance and the relative movement as well as the angular deviation from a reference azimuth for a target object located in the detection area.
  • the system uses a monopulse antenna that restricts and controls the dimension of one Tracking beam width enabled. In this way, vehicles that are in the same lane as the vehicle that is equipped with the system, or also those that are in an adjacent lane, can be identified, distinguished and tracked.
  • a transmission signal is emitted by the system, reflected by a target object and received at two spatially separated locations.
  • the signals received at the two spatially different locations are linked to generate both a sum and a difference signal.
  • the ratio between the sum and the difference signal is then used to determine the deviation of the target object from the reference azimuth.
  • the distance to a target object can be determined by mixing the sum and difference signals.
  • Document DE 100 50 278 also describes a method and a device for determining the distance and relative speed of a distant object.
  • the linear frequency modulation of the transmitted signal is based on the principle of frequency shift keying.
  • the method presented is used for adaptive route guidance in the automotive sector.
  • Another radar method for measuring distances and relative speeds between a vehicle and one or more obstacles is known from the patent DE 195 38 309. Continuous transmission signals are transmitted and the reception signals reflected at obstacles are mixed with the transmission signals broken down into frequency-coded bursts. From this, distances and relative speeds between the vehicle and obstacles are determined.
  • Known vehicle control systems also use radar sensors with a frequency of 77 GHz, as described in Bosch "Sensors in a Motor Vehicle", 2001 edition.
  • the radar sensors measure the distance, the relative speed and the lateral position of vehicles in front the radar (Radio Detection and Ranging) wave packets from mm-waves.
  • the transmitted wave packets reflect on surfaces made of metal or other material and are picked up again by the receiving part of the radar.
  • the received signals are transmitted in terms of time and / or frequency with the transmitted signals So that the comparison can be used for the desired interpretations, the wave packet to be emitted is shaped in the frequency-time curve (modulation).
  • Radar sensors with a frequency of 77 GHz are characterized by a narrow opening angle and a large range the known pre-crash systems ag large number of radar sensors, for example 4 to 6. Each of these sensors is only able to sense a small angular range.
  • the object angles are determined by using multiple sensors and Trilateration or multilateration techniques determined. This is a very complex and error-prone process.
  • the system costs are very high due to the use of many sensors, cabling and fusion of the sensor data. Such a system is also known from DE 101 52 078 A1.
  • the invention is based on the object of providing a method and a device for actuating at least one vehicle protective device for at least one occupant and / or at least one pedestrian in the pre-crash phase, that is to say in the period shortly before the impact, with at least one pre-crash sensor create.
  • this object is achieved by a device for controlling a vehicle protection device with a radar device for measuring a distance, a speed and / or an angle and for outputting a measurement signal, the radar device having at least one radar transmitter element, and this single radar transmitter element for removal. and / or speed measurement can be operated in continuous wave mode.
  • the invention provides a method for actuating a vehicle protection device by measuring a distance, a speed and / or an angle using radar technology with output of measurement signals and outputting an actuation signal on the basis of the evaluated measurement signals, the measurement being carried out with at least one radar transmitter element , and this radar transmitter element for distance and / or speed measurement is operated in continuous wave mode.
  • the advantage of the method and the device according to the invention is that a radar in continuous wave mode is used to control the vehicle protection device, for which there is generally a radio license.
  • a continuous wave radar sensor transmits continuously, with the frequency changing linearly and the received signals being mixed into the baseband and being detected there.
  • the device according to the invention preferably has a monopulse antenna for angle measurement.
  • This monopulse antenna advantageously consists of a single transmitting antenna and two receiving antennas. With monopulse technology it can thus be achieved that only one radar sensor, preferably a short-range radar sensor in the 2-4 GHz range, has to be accommodated in the vehicle. This is particularly advantageous with regard to the installation space to be made available. Compared to known systems in which object angles can only be achieved by using several sensors and trilateration or Multilateration techniques can be determined, a single sensor for angle measurement is sufficient with monopulse technology.
  • the radar device can be aligned for frequency modulation.
  • frequency modulation can be based on the principle of linear frequency modulated shift keying.
  • the distance and the relative speed can be measured very simply and reliably with a short reaction time, so that there is a minimum of false alarms.
  • a collision location of the vehicle with a foreign object can also be determined with the radar device. In this way, a prediction can advantageously be made at which location and at what time a collision takes place, so that appropriate safety measures can be initiated.
  • an occupant protection system can be equipped with the device according to the invention and a protective device that can be triggered with the device.
  • the protective device can include a belt tensioner, an airbag device, active headrests, a device for raising / lowering the chassis and / or a seat adjustment device or others.
  • any other systems can also be controlled with the device according to the invention.
  • a reversible belt tensioner for example, is advantageously triggered via an evaluation device.
  • the triggering only takes place if the analysis of the sensor data by the evaluation device shows that a collision between the vehicle and an object, such as a pedestrian, a cyclist, a motorcycle driver, another vehicle (car; truck), a tree or road boundary devices , has a very high probability or is unavoidable.
  • Fig. 1 Representation of a block diagram for signal evaluation
  • Fig. 2 Representation of a bumper with a radar sensor
  • Fig. 3 Representation of the monitoring area
  • Fig. 4 Representation of a reversible belt tensioner
  • Fig. 1 the sequence of signal evaluation of a pre-crash system is shown schematically.
  • the pre-crash system has a radar sensor 1 which supplies object data to an evaluation device 2.
  • the sensor data are processed and analyzed there.
  • the evaluated data are then subjected to a test 3, in which it is determined whether an impact is unavoidable or has a very high probability. If this is the case, a safety device is activated. 4. If, on the other hand, the test shows that the impact can be avoided, the safety device is not activated at the present time. 5. If necessary, the purely binary decision could be replaced by a three-step decision, which is contained in it there is an additional warning system activated if, for example, there is a high probability of a collision.
  • a pre-crash system should have the following properties:
  • the pre-crash system requires the following components: at least one sensor device, at least one triggering algorithm and at least one actuator.
  • the sensor device senses the surroundings around the vehicle and provides dynamic object data, such as position, relative speed, acceleration, or geometric object data, such as length, width, height.
  • the dynamic data are required to determine the time until the accident or the collision.
  • vehicle dynamics data such as own speed, own yaw rate
  • the location of the impact on the vehicle can be determined using the geometric data, for example.
  • An evaluation device processes and analyzes the sensor data and, for example, carries out a plausibility check of the sensor data. The evaluation device analyzes the current one Traffic scenarios and decides whether an impact is avoidable or not.
  • the evaluation device sends a trigger signal to the at least one actuator for activating at least one safety device before the impact occurs, that is to say in the pre-crash phase.
  • at least one reversible belt tensioner is electronically controlled, which contributes to the at least one occupant being in an optimal sitting position, for example with regard to at least one airbag to be deployed. (Avoiding out-of-position of the occupant with respect to the airbag)
  • TTC time to impact
  • T E X I T time to impact
  • the pre-crash system has at least one radar sensor 6, the z. B. works with a frequency of 24 GHz.
  • This at least one sensor 6 is referred to as a short-range radar (SRR) sensor and is integrated, for example, in a bumper 7 of the vehicle, as shown in FIG. 2.
  • SRR short-range radar
  • the vehicle 10 shown in FIG. 3 has a sensor which monitors an area 11 of approximately 40 meters around the vehicle with an opening angle of approximately 60 °. All objects in this area, such as vehicles, pedestrians, motorcyclists, cyclists, trees or road boundaries, can be identified with a high object classification probability.
  • the radar sensor determines the object distance, the relative speed and the angle itself in a simultaneous manner.
  • a special triggering algorithm is required for signal processing and decision making regarding the triggering of protective devices.
  • the current object data are analyzed and their future movements are calculated in advance. Based on these analyzes, the probability of a collision between the vehicle and the object is calculated.
  • the triggering algorithm makes the decision as to whether the protection systems need to be put into the active state because a collision is unavoidable. For example, at least one reversible belt tensioner 13 (cf. FIG. 4) is triggered to move at least one occupant through the belt 14 into an optimal position with regard to a bring possible airbag deployment. The risk of injury to the occupant from out-of-position with respect to the airbag is thus minimized.
  • the object movement sequence must be precisely determined so that the reversible belt tensioner is only triggered in dangerous situations, i.e. the sensors must be characterized by high performance and accuracy.
  • the quality of the measured data is directly related to the waveform used.
  • the resolution of the distance and speed data, the accuracy of the object position as well as the functional reliability can be derived from the waveform characteristics.
  • the frequency modulation waveform (LFMSK) was selected, as described in more detail in DE 100 50 278 A1 (cf. FIG. 5). This measurement method has many advantages, such as short measurement time, simultaneous measurement of distance and speed, low number of errors, good behavior when there are many objects, low calculation complexity and much more.
  • the received data are broken down into the in-phase (real part) and quadrature-phase (imaginary part) components in accordance with predetermined steps A, B.
  • the two time sequences A, B are Fourier transformed.
  • objects can be detected at peak positions.
  • the measured frequencies of these local maxima depend on the object distance and speed.
  • the frequency measurements and the information about the signal phases the distance and the speed of the object can be easily calculated.
  • the frequency and phase measurements depend on the distance and the speed of the object.
  • a TX antenna and two RX antennas are integrated in each sensor, which is designed as a monopulse antenna. Based on the monopulse technique, the exact azimuth angle can be used with the radar in continuous wave mode (the azimuth angle describes the horizontal Direction) of the objects can be determined.
  • a special feature of the radar sensors used is the ability to detect small objects with a small cross-section (RCS), such as pedestrians up to 40 meters away. This enables high quality object classification with low system costs using these radar sensors.
  • the protection mechanisms are triggered based on the measurement mode and the resulting measurement values for a single object.
  • the trigger signal has a high reliability (low false alarm rate). This results from the trigger criteria used specifically for this system:
  • the collision location results from the known dynamics of your own vehicle and the measured movement of the potential collision partner.
  • the statistical probability of the collision at the collision location results from the uncertainty of the measured quantities, which, due to the measuring principle, can be considered very low here.
  • the time until the collision results from the calculated collision location and the dynamics of the objects involved Based on a classification of the objects carried out in this system (it is a truck, car, two-wheeler [motorcycle, bicycle], pedestrian, tree or another object), the maximum avoidance radii of the collision partner can be calculated. Based on the avoidance radii, it can be determined whether the collision is unavoidable.
  • the history of the observed object includes the detection quality (measurement frequency, noise level), the changes in movement and various properties related to the measurement principle over the entire observation period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Kollision eines Fahrzeugs mit einem Fremdobjekt soll einfach und sicher erkannt werden können. Hierzu wird ein Radarsensor (1) eingesetzt, der im Dauerstrichmodus betrieben wird und Objektdaten bezüglich Entfernung und Geschwindigkeit an eine Auswerteeinrichtung (2) liefert. Die Daten werden verarbeitet und analysiert sowie einer Prüfung (3) unterzogen, ob der Aufprall unvermeidbar ist oder nicht. Ist ein Aufprall unvermeidbar, so erfolgt die Aktivierung (4) einer entsprechenden Sicherheitseinrichtung, wie beispielsweise eines reversiblen Gurtstraffers.

Description

Beschreibung
VORRICHTUNG UND VERFAHREN ZUM ANSTEUERN ZUMINDEST EINER FAHRZEUGSCHUTZEINRICHTUNG
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ansteuern zumindest einer Fahrzeug-Schutzeinrichtung.
Um eine situations- und bedarfsgerechte Aktivierung von Fahrzeug-Schutzeinrichtungen für Insassen und/oder Fußgänger, wie beispielsweise Airbag-Einrichtungen, Gurtstraffer, aktive Kopfstützen, eine automatische Sitzkonditionierung, Anheben/Absenken des Fahrwerks und/oder Aufstellen der Motorhaube, vornehmen zu können, werden in Kraftfahrzeugen Crasherkennungssysteme eingesetzt. Diese Systeme erfassen kontinuierlich! physikalische Größen des Kraftfahrzeuges und bewerten diese Größen bezüglich einer ablaufenden Kollision. Häufig werden hierbei „intelligente" Sensoren eingesetzt. Das Ausmaß der Aktivierung von Fahrzeug-Schutzeinrichtungen für Insassen und/oder Fußgänger ist sowohl von der Unfallschwere und dem Unfallverlauf als beispielsweise auch von der Sitzbelegung abhängig.
Die bekannte Steuerung von Schutzeinrichtungen ist mit zentralen bzw. im Fahrzeug verteilten Beschleunigungssensoren verknüpft, die zum Zeitpunkt des Crashs bzw. Aufpralls Informationen liefern. Für eine verbesserte Auslösestrategie werden jedoch Informationen aus der Precrash-Phase, also aus dem Zeitraum kurz vor dem Aufprall, benötigt. Mittels vorbeugender (präventiver) Sicherheitsverfahren können Unfälle vermieden bzw. deren Folgen gemildert werden. Beim Erkennen einer kritischen Situation durch Sensoren, wie beispielsweise Radarsensoren, Lasersensoren oder Kameras, können geeignete Schutzeinrichtungen, wie beispielsweise Gurtstraffer oder eine automatische Notbremsung, eher ausgelöst werden.
In der DE10223363 A1 ist ein Verfahren und eine Vorrichtung zur Steuerung eines Rückhaltemittels beschrieben. Hierbei wird ein reversibler Gurtstraffer über die Informationen von Radarsensoren elektronisch angesteuert.
Darüber hinaus ist in der Druckschrift DE 69433 113 ein Monopuls-Azimutradarsystem zur Kraftfahrzeugortung bekannt. Das Monopuls-Radarsystem ist in der Lage, sowohl den Abstand und die Relativbewegung als auch die Winkelabweichung von einen Referenzazimut für ein im Erfassungsbereich befindliches Zielobjekt zu ermitteln. Das System verwendet eine Monopulsantenne, die ein Beschränken und Steuern der Abmessung einer Verfolgungsstrahlbreite ermöglicht. Auf diese Weise können Fahrzeuge, die sich auf derselben Spur befinden, wie das Fahrzeug, das mit dem System ausgerüstet ist, oder auch solche, die sich in einer benachbarten Spur befinden, identifiziert, unterschieden und verfolgt werden. Dabei wird ein Sendesignal von dem System ausgesandt, von einem Zielobjekt reflektiert und an zwei räumlich getrennten Orten empfangen. Die an den zwei räumlich unterschiedlichen Orten empfangenen Signale werden verknüpft, um sowohl ein Summen- als auch ein Differenzsignal zu erzeugen. Das Verhältnis zwischen dem Summen- und dem Differenzsignal wird anschließend verwendet, um die Abweichung des Zielobjekts von dem Referenzazimut zu ermitteln. Weiterhin kann durch Mischen der Summen- und Differenzsignale die Entfern ung zu einem Zielobjekt ermittelt werden.
In der Druckschrift DE 100 50 278 ist ferner ein Verfahren und eine Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objekts beschrieben. Dabei erfolgt die lineare Frequenzmodulation des Sendesignals nach dem Prinzip des Frequency Shift Keyings. Das vorgestellte Verfahren wird zur adaptiven Zielführung im Automobilbereich verwendet.
Ein weiteres Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen ist aus der Patentschrift DE 195 38 309 bekannt. Dabei werden kontinuierliche Sendesignale ausgesandt und die an Hindernissen reflektierten Empfangssignale mit den in frequenzcodierte Bursts zerlegten Sendesignale gemischt. Daraus werden Abstände und Relativgeschwindigkeiten zwischen Fahrzeug und Hindernissen ermittelt.
Bei bekannten Fahrzeugsteuerungs-Systemen werden ferner Radarsensoren mit einer Frequenz von 77 GHz verwendet, wie dies in Bosch „Sensoren im Kraftfahrzeug", Ausgabe 2001 beschrieben ist. Die Radarsensoren messen den Abstand, die Relativgeschwindig keit und die seitliche Lage von vorausfahrenden Fahrzeugen. Dazu sendet das Radar (Radio Detection and Ranging) Wellenpakete von mm-Wellen aus. Die ausgesendeten Wellenpakete reflektieren an Oberflächen aus Metall oder anderem Material und werden vom Empfangsteil des Radars wieder aufgenommen. Die empfangenen Signale werden bezüglich Zeit und/oder Freq enz mit den ausgesendeten Signalen verglichen. Damit der Vergleich für die gewünschten Interpretationen verwendbar ist, wird das auszusendende Wellenpaket im Frequenz-Zeit-Verlauf geformt (Modulation). Radarsensoren mit einer Frequenz von 77 GHz zeichnen sich durch einen schmalen Öffnungswinkel und eine große Reichweite aus. Aus diesem Grund weisen die bekannten Precrash-Systeme eine große Anzahl von Radarsensoren, beispielsweise 4 bis 6, auf. Jeder dieser Sensoren für sich ist nur in der Lage einen kleinen Winkelbereich zu sensieren. Die Objektwinkel werden durch die Verwendung mehrerer Sensoren und Trilaterations- bzw. Multilaterationstechniken ermittelt. Dies ist ein sehr aufwendiges und fehleranfälliges Verfahren. Zudem sind die Systemkosten, aufgrund des Einsatzes vieler Sensoren, Verkabelung und Fusion der Sensordaten sehr hoch. Ein derartiges System ist auch aus der Druckschrift DE 101 52 078 A1 bekannt.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Ansteuern zumindest einer Fahrzeug-Schutzeinrichtung für zumindest einen Insassen und/oder zumindest einen Fußgänger in der Precrash-Phase, also im Zeitraum kurz vor dem Aufprall, mit mindestens einem Precrash-Sensor zu schaffen.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine Vorrichtung zum Ansteuern einer Fahrzeug-Schutzeinrichtung mit einer Radareinrichtung zur Messung einer Entfernung, einer Geschwindigkeit und/oder eines Winkels und zur Ausgabe eines Messsignals, wobei die Radareinrichtung mindestens ein Radarsendeelement aufweist, und dieses einzige Radarsendeelement zur Entfemungs- und/oder Geschwindigkeitsmessung im Dauerstrichmodus betreibbar ist.
Darüber hinaus ist erfindungsgemäß vorgesehen ein Verfahren zum Ansteuern einer Fahrzeug- Schutzeinrichtung durch Messen einer Entfernung, einer Geschwindigkeit und/oder eines Winkels mit Radartechnik unter Ausgabe von Messsignalen sowie Ausgeben eines Ansteuersignais auf der Grundlage der bewerteten Messsignale, wobei das Messen mit mindestens einem Radarsendeelement erfolgt, und dieses Radarsendeelement zur Entfemungs- und/oder Geschwindigkeitsmessung im Dauerstrichmodus betrieben wird.
Der Vorteil des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung besteht darin, dass für das Ansteuern der Fahrzeug-Schutzeinrichtung ein Radar im Dauerstrichmodus verwendet wird, für den im Allgemeinen eine Funkzulassung besteht. Ein Dauerstrich-Radarsensor sendet ständig, wobei sich die Frequenz linear ändert und die empfangenen Signale ins Basisband abgemischt werden und dort detektiert werden.
Vorzugsweise besitzt die erfindungsgemäße Vorrichtung eine Monopulsantenne zur Winkelmessung. Diese Monopulsantenne besteht günstigerweise aus einer einzigen Sendeantenne und zwei Empfangsantennen. Mit der Monopulstechnik kann somit erreicht werden, dass lediglich ein Radarsensor, vorzugsweise ein Nahbereichsradarsensor im 2-4 GHz- Bereich, im Fahrzeug untergebracht werden muss. Dies ist hinsichtlich des zur Verfügung zu stellenden Einbauraums besonders vorteilhaft. Gegenüber bekannten Systemen, bei denen Objektwinkel nur durch Ausnutzung mehrerer Sensoren und Trilaterations- bzw. Multilaterationstechniken ermittelt werden können, reicht mit der Monopulstechnik ein Einzelsensor für die Winkelmessung.
Die Radareinrichtung kann für eine Frequenzmodulation ausgerichtet sein. Speziell kann die Frequenzmodulation nach dem Prinzip der Linear Frequency Modulated Shift Keying erfolgen. Mit diesem Verfahren ist sehr einfach und zuverlässig der Abstand und die Relativgeschwindigkeit bei kurzer Reaktionszeit zu messen, so dass sich ein Minimum an Falschalarmen ergibt. Mit der Radareinrichtung kann ferner ein Kollisionsort des Fahrzeugs mit einem Fremdobjekt ermittelt werden. Somit kann in vorteilhafter Weise eine Vorhersage getroffen werden, an welchem Ort und zu welcher Zeit eine Kollision stattfindet, so dass entsprechende Sicherungsmaßnahmen eingeleitet werden können.
Wie bereits angedeutet wurde, kann ein Insassenschutzsystem mit der erfindungsgemäßen Vorrichtung und einer Schutzeinrichtung, die mit der Vorrichtung auslösbar ist, ausgestattet sein. Dabei kann die Schutzeinrichtung einen Gurtstraffer, eine Airbag-Einrichtung, aktive Kopfstützen, eine Einrichtung zur Anhebung/Absenkung des Fahrwerks und/oder eine Sitzeinstelleinrichtung oder andere umfassen. Selbstverständlich können auch beliebig andere Systeme mit der erfindungsgemäßen Vorrichtung angesteuert werden.
Vorteilhafterweise wird über eine Auswerteeinrichtung beispielsweise ein reversibler Gurtstraffer ausgelöst. Die Auslösung erfolgt jedoch nur, wenn die Analyse der Sensordaten durch die Auswerteeinrichtung ergibt, dass eine Kollision zwischen dem Fahrzeug und einem Objekt, wie beispielsweise einem Fußgänger, einem Radfahrer, einem Motorradfahrer, einem andern Fahrzeug (PKW; LKW), einem Baum oder Straßenbegrenzungseinrichtungen, eine sehr hohe Wahrscheinlichkeit aufweist oder unvermeidbar ist.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Darin zeigen:
Fig. 1 : Darstellung eines Blockdiagramms zur Signalauswertung
Fig. 2: Darstellung eines Stoßfängers mit einem Radarsensor
Fig. 3: Darstellung des Überwachungsbereiches
Fig. 4: Darstellung eines reversiblen Gurtstraffers
Fig. 5: Darstellung einer Frequenzmodulation des Sendesignals Fig. 6: Darstellung der Geschwindigkeits- und Entfernungsmesswerte zur Kollisionsermittlung
In Fig. 1 ist der Ablauf der Signalauswertung eines Precrash-Systems schematisch dargestellt.
Das Precrash-System verfügt über einen Radarsensor 1 , der Objektdaten an eine Auswerteeinrichtung 2 liefert. Dort werden die Sensordaten verarbeitet und analysiert. Anschließend werden die ausgewerteten Daten einer Prüfung 3 unterzogen, bei der ermittelt wird, ob ein Aufprall unvermeidbar ist oder eine sehr hohe Wahrscheinlichkeit aufweist. Falls dies der Fall ist, wird eine Sicherheitseinrichtung aktiviert 4. Wenn die Prüfung hingegen ergibt, dass der Aufprall vermeidbar ist, wird zum jetzigen Zeitpunkt die Sicherheitseinrichtung nicht aktiviert 5. Gegebenenfalls könnte die reine binäre Entscheidung durch eine dreifach gestufte Entscheidung ersetzt werden, die darin besteht, dass zusätzlich ein Warnsystem aktiviert wird, wenn beispielsweise eine Kollision mit hoher Wahrscheinlichkeit bevorsteht.
Ein Precrash-System sollte die folgenden Eigenschaften haben:
• Robustheit: Das System muss bei allen Wetterbedingungen mit einer minimalen Fehlerrate arbeiten, da jeder Fehlalarm einen Komfortverlust für die Insassen bedeutet.
• Wiederverwendbarkeit: Das System kann über die gesamte Lebensdauer des Fahrzeuges genutzt werden.
• Einfacher Aufbau: Es können unkompliziert neue Sensoren oder Aktuatoren in das System integriert werden.
• Geringe Berechnungskomplexität des Systems
• Geringe Kosten für das System
• Kleines Bauvolumen der Komponenten
Um diese Anforderungen zu erfüllen, benötigt das Precrash-System folgende Komponenten: zumindest eine Sensoreinrichtung, zumindest einen Auslösealgorithmus und zumindest einen Aktuator. Die Sensoreinrichtung sensiert die Umgebung um das Fahrzeug und stellt dynamische Objektdaten, wie beispielsweise Position, Relativgeschwindigkeit, Beschleunigung, oder geometrische Objektdaten, wie beispielsweise Länge, Breite, Höhe zur Verfügung. Die dynamischen Daten werden benötigt, um die Zeit bis zum Unfall bzw. bis zur Kollision zu ermitteln. Zusätzlich bietet es sich an, Fahrzeugdynamikdaten (wie z. B. Eigengeschwindigkeit, Eigengierrate) mit für die Berechnung heranzuziehen. Mittels der geometrischen Daten kann beispielsweise der Ort des Aufschlages am Fahrzeug ermittelt werden. Eine Auswerteeinrichtung verarbeitet und analysiert die Sensordaten und führt beispielsweise eine Plausibilitätsprüfung der Sensordaten durch. Die Auswerteeinrichtung analysiert die aktuellen Verkehrsszenarien und entscheidet, ob ein Aufprall vermeidbar ist oder nicht. In dem Fall, dass der Aufprall unvermeidbar ist, sendet die Auswerteeinrichtung ein Auslösesignal an den zumindest einen Aktuator zum Aktivieren zumindest einer Sicherheitseinrichtung bevor der Aufprall stattfindet, also in der Precrash-Phase. Beispielsweise wird zumindest ein reversibler Gurtstraffer elektronisch angesteuert, der dazu beiträgt, dass sich der zumindest eine Insasse in einer optimale Sitzposition beispielsweise im Hinblick auf zumindest einen auszulösenden Airbag befindet. (Vermeidung out-of-position des Insassen bezüglich des Airbags)
Erst nach einer erfolgreichen Objektklassifikation kann die Kollisionswahrscheinlichkeit, die Z*it bis zum Aufprall (TTC) und die Zeit (TEXIT), die nötig ist, um eine Unfallvermeidung durch den Fahrer einzuleiten, genau ermittelt werden. Mittels dieser Informationen gilt ein Unfall als unvermeidbar, wenn die Kollisionswahrscheinlichkeit sehr hoch und TTC gegenüber TEXIT sehr klein ist.
Die wichtigsten Eigenschaften eines solchen Precrash-Systems sind die Robustheit mit einer minimalen Fehlerrate und eine sehr kurze Verarbeitungs- bzw. Auswertezeit der Sensorsignale für eine sehr schnelle Auslösung von Schutzeinrichtungen.
Das Precrash-System weist zumindest einen Radarsensor 6 auf, der z. B. mit einer Frequenz von 24 GHz arbeitet. Dieser zumindest eine Sensor 6 wird als Short-Range-Radar (SRR) Sensor bezeichnet und ist beispielsweise in einem Stoßfänger 7 des Fahrzeuges integriert, wie in Fig. 2 dargestellt.
Das in Fig. 3 dargestellte Fahrzeug 10 weist einen Sensor auf, der einen Bereich 11 von circa 40 Metern um das Fahrzeug mit einem Öffnungswinkel von circa 60° überwacht. Alle Objekte in diesem Bereich, wie beispielsweise Fahrzeuge, Fußgänger, Motorradfahrer, Radfahrer, Bäume oder Straßenbegrenzungen, können mit einer hohen Objektklassifikationswahrscheinlichkeit erkannt werden. Der Radarsensor ermittelt die Objektentfernung, die Relativgeschwindigkeit und den Winkel an sich in simultaner Art und Weise.
Für die Signalverarbeitung und Entscheidungsfällung hinsichtlich des Auslösens von Schutzeinrichtungen ist ein spezieller Auslösealgorithmus nötig. Hierbei werden die aktuellen Objektdaten analysiert und deren zukünftige Bewegungsabläufe vorausberechnet. Basierend auf diesen Analysen wird die Wahrscheinlichkeit eines Zusammenstoßes zwischen dem Fahrzeug und dem Objekt berechnet. Der Auslösealgorithmus trifft die Entscheidung, ob die Schutzsysteme in den aktiven Zustand versetzt werden müssen, da eine Kollision unvermeidbar ist. Beispielsweise wird zumindest ein reversibler Gurtstraffer 13 (vgl. Fig. 4) ausgelöst, um mindestens einen Insassen durch den Gurt 14 in eine optimale Position im Hinblick auf eine mögliche Airbagauslösung zu bringen. Somit ist die Gefahr der Verletzung des Insassen durch out-of-position bezüglich des Airbags minimiert.
Der Objektbewegungsablauf muss exakt bestimmt werden, damit der reversible Gurtstraffer nur in gefährlichen Situationen ausgelöst wird, d.h. die Sensoren müssen sich durch eine hohe Leistungsfähigkeit und Genauigkeit auszeichnen. Die Qualität der gemessenen Daten steht dabei in direktem Zusammenhang mit der verwendeten Wellenform. Die Auflösung der Entfemungs- und Geschwindigkeitsdaten, die Genauigkeit der Objektposition wie auch die Funktionssicherheit kann aus der Wellenformcharakteristik abgeleitet werden. Aufgrund der hohen Anforderungen an das Precrash-System wurde die Frequenzmodulationswellenform (LFMSK) gewählt, wie sie in der DE 100 50 278 A1 näher beschrieben ist (vgl. Fig. 5). Dieses Messverfahren hat viele Vorteile, wie beispielsweise kurze Messzeit, gleichzeitige Messung von Entfernung und Geschwindigkeit, geringe Anzahl von Fehlern, gutes Verhalten beim Vorhandensein von vielen Objekten, geringe Berechnungskomplexität und vieles mehr. Die empfangenen Daten werden entsprechend vorgegebenen Schritten A, B in die In-phase- (Realteil) und Quadraturphase- (Imaginärteil) Komponente zerlegt. Die beiden Zeitsequenzen A, B werden fouriertransformiert. In den resultierenden komplexen Spektren von A und B können Objekte bei Peak-Positionen detektiert werden. Die gemessenen Frequenzen dieser lokalen Maxima sind abhängig von der Objektentfemung und -geschwindigkeit. Unter Verwendung der Frequenzmessungen und der Informationen über die Signalphasen können die Entfernung und die Geschwindigkeit des Objektes einfach kalkuliert werden. Die Frequenz- und die Phasenmessungen sind jeweils abhängig von der Entfernung und der Geschwindigkeit des Objektes.
In Fig. 6 ist die Ermittlung von Entfernung und Geschwindigkeit in Form einer graphischen Lösung dargestellt. Dabei ist zu erkennen, dass die Phasenmessung und die Frequenzmessung an sich mehrdeutig sind, aber die Kombination der beiden Messungen zu einem Schnittpunkt der Geraden führt, der die gewünschten Werte für Entfernung R0 und Geschwindigkeit v0 ermitteln lässt. Dieser Schnittpunkt stellt den Kollisionsort dar. Durch Variation von fsnift und fsweep (vergleiche Figur 5) verändern sich die Steigungen der Geraden. Die zuverlässigsten Ergebnisse werden erzielt, wenn die beiden Geraden annähernd senkrecht zueinander verlaufen.
In jeden Sensor, der als Monopulsantenne ausgestaltet ist, sind eine TX-Antenne und zwei RX- Antennen integriert. Basierend auf der Monopulstechnik kann mit dem Radar im Dauerstrichmodus der genaue Azimutwinkel (Der Azimutwinkel beschreibt die horizontale Richtung) der Objekte bestimmt werden. Ein spezielle Eigenschaft der verwendeten Radarsensoren ist die Fähigkeit kleine Objekte mit einem geringen Querschnitt (RCS), wie beispielsweise Fußgänger in einer Entfernung von bis zu 40 Metern, zu erfassen. Somit ist eine Objektklassifikation hoher Qualität bei gleichzeitig geringen Systemkosten mittels dieser Radarsensoren möglich.
Auf Basis des Messmodus und der daraus resultierenden Messwerte für ein einzelnes Objekt erfolgt die Auslösung der Schutzmechanismen. Das Auslösesignal besitzt eine hohe Zuverlässigkeit (geringe Falschalarmrate). Dies resultiert aus den speziell für dieses System verwendeten Auslösekriterien:
1. Kollisionsort am eigenen Fahrzeug 2. statistische Wahrscheinlichkeit der Kollision am Kollisionsort 3. Zeit bis zur Kollision 4. maximale Ausweichradien 5. Historie des beobachteten Zieles (Objektes)
Der Kollisionsort ergibt sich aus der bekannten Dynamik des eigenen Fahrzeuges und der gemessenen Bewegung des potentiellen Kollisionspartners. Die statistische Wahrscheinlichkeit der Kollision am Kollisionsort resultiert aus der Unsicherheit der gemessenen Größen, welche hier bedingt durch das Messprinzip als sehr gering anzusetzen sind. Die Zeit bis zur Kollision ergibt sich aus dem berechneten Kollisionsort und der Dynamik der beteiligten Objekte. Auf Basis einer in diesem System durchgeführten Klassifikation der Objekte (handelt es sich um einen LKW, PKW, Zweirad [Motorrad, Fahrrad], Fußgänger, Baum oder ein anderes Objekt) lassen sich die maximalen Ausweichradien des Kollisionspartners berechnen. Auf Basis der Ausweichradien lässt sich feststellen, ob die Kollision unvermeidbar ist. Die Historie des beobachteten Objektes beinhaltet die Detektionsgüte (Messfrequenz, Rauschpegel), die Bewegungsänderungen und verschiedene Messprinzip-bedingte Eigenschaften über den gesamten Beobachtungszeitraum. Durch die Auswertung der Historie ist man nicht auf eine Einzelmessung angewiesen, die unter Umständen sehr verrauscht ist. Vielmehr kann das Objekt über längere Zeit auf dem Kollisionskurs beobachtet werden, so dass eine zuverlässige Entscheidung hinsichtlich des Auslösens eines Sicherheitsmechanismus getroffen werden kann. Bezugszeichenliste
Radarsensor
Auswerteeinrichtung
Prüfung
Aktivierung keine Aktivierung
Stoßfänger
Fahrzeug
Sensorbereich
Gurtstraffer
Gurt

Claims

Patentansprüche
1. Vorrichtung zum Ansteuern einer Fahrzeug-Schutzeinrichtung (13) mit einer Radareinrichtung (1, 6) zur Messung einer Entfernung, einer Geschwindigkeit und/oder eines Winkels und zur Ausgabe eines Messsignals, dadurch gekennzeichnet, dass die Radareinrichtung (1, 6) mindestens ein Radarsendeelement aufweist, und dieses Radarsendeelement zur Entfemungs- und/oder Geschwindigkeitsmessung im Dauerstrichmodus betreibbar ist.
2. Vorrichtung nach Anspruch 1 , die eine Monopulsantenne zur Winkelmessung aufweist.
3. Vorrichtung nach Anspruch 2, wobei die Monopulsantenne genau eine Sendeantenne und zwei Empfangsantennen umfasst.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Radareinrichtung (1 , 6) für eine Frequenzmodulation ausgebildet ist.
5. Vorrichtung nach Anspruch 4, wobei die Frequenzmodulation nach dem Prinzip der Linear Frequency Modulated Shift Keying, LFMSK, erfolgt.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei mit der Radarein richtung (1, 6) ein Kollisionsort des Fahrzeugs (10) mit einem Fremdobjekt ermittelbar ist.
7. Insassenschutzsystem mit einer Vorrichtung nach einem der vorhergehenden Ansprüche und einer Schutzeinrichtung (13), die mit der Vorrichtung auslösbar ist.
8. Insassenschutzsystem nach Anspruch 7, wobei die Schutzeinrichtung (13) einen Gurtstraffer, eine Airbag-Einrichtung, aktive Kopfstützen, eine Einrichtung zum Anheben/Absenken des Fahrwerks und/oder eine Sitzeinsteil-Einrichtung umfasst.
9. Verfahren zum Ansteuern einer Fahrzeug-Schutzeinrichtung (13) durch Messen einer Entfernung, einer Geschwindigkeit und/oder eines Winkels mit Radartechnik unter Ausgabe von Messsignalen und Ausgeben eines Ansteuersignais auf der Grundlage der bewerteten Messsignale, dadurch gekennzeichnet, dass das Messen mit mindestens einem Radarseπdeelement erfolgt, und dieses Radarsendeelement zur Entfemungs- und/oder Geschwindigkeitsmessung im Dauerstrichmodus betrieben wird.
10. Verfahren nach Anspruch 9, wobei die Winkelmessung durch Monopulstechnik erfolgt.
11. Verfahren nach Anspruch 10, wobei die Winkelmessung durch eine Monopulsantenne, die genau eine Sendeantenne und zwei Empfangsantennen aufweist, erfolgt.
12. Verfahren nach einem der Ansprüche 9 bis 11, wobei das Messen durch frequenzmodulierte Signale erfolgt.
13. Verfahren nach Anspruch 12, wobei die frequenzmodulierten Signale nach dem Prinzip der Linear Frequency Modulated Shirt Keying, LFMSK, moduliert sind.
14. Verfahren nach einem der Ansprüche 9 bis 13, wobei ein Kollisionsort des Fahrzeugs (10) mit einem Fremdobjekt ermittelt wird.
PCT/EP2005/001740 2004-03-18 2005-02-19 Vorrichtung und verfahren zum ansteuern zumindest einer fahrzeugschutzeinrichtung WO2005096011A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004013693.9 2004-03-18
DE102004013693 2004-03-18
DE102004045838A DE102004045838A1 (de) 2004-03-18 2004-09-22 Vorrichtung und Verfahren zum Ansteuern zumindest einer Fahrzeug-Schutzeinrichtung
DE102004045838.3 2004-09-22

Publications (1)

Publication Number Publication Date
WO2005096011A1 true WO2005096011A1 (de) 2005-10-13

Family

ID=34960487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/001740 WO2005096011A1 (de) 2004-03-18 2005-02-19 Vorrichtung und verfahren zum ansteuern zumindest einer fahrzeugschutzeinrichtung

Country Status (2)

Country Link
DE (1) DE102004045838A1 (de)
WO (1) WO2005096011A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041904A1 (en) * 2006-10-05 2008-04-10 Autoliv Development Ab A control system for a vehicle
EP2423052A1 (de) * 2010-08-25 2012-02-29 FH Frankfurt Vorrichtung und Verfahren zur Erkennung von Personen
US20190337451A1 (en) * 2018-05-02 2019-11-07 GM Global Technology Operations LLC Remote vehicle spatial awareness notification system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024667B4 (de) 2006-05-26 2019-07-11 Robert Bosch Gmbh Vorrichtung und Verfahren zur Detektion eines Fußgängeraufpralls
DE102007037610A1 (de) * 2007-08-09 2009-02-19 Siemens Restraint Systems Gmbh Verfahren zum Bestimmen eines wahrscheinlichen Bewegungs-Aufenthaltsbereichs eines Lebewesens
JP4706984B2 (ja) * 2009-02-25 2011-06-22 トヨタ自動車株式会社 衝突推定装置及び衝突推定方法
DE102009045921B4 (de) * 2009-10-22 2020-06-10 Robert Bosch Gmbh Vorrichtung für ein Kraftfahrzeug
DE102010023603A1 (de) 2010-06-12 2011-12-15 Volkswagen Ag Verfahren für eine Fahrzeug zu Fahrzeug Kommunikation
DE102010023871A1 (de) * 2010-06-15 2011-12-15 Daimler Ag Verfahren zur Ansteuerung eines Insassenschutzmittels und Insassenschutzvorrichtung mit wenigstens einem ansteuerbaren Insassenschutzmittel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940689A1 (de) * 1998-03-03 1999-09-08 Thomson-Csf Dauerstrichradar-Empfänger mit Frequenzsprung
DE19961799A1 (de) * 1999-12-21 2001-07-05 Breed Automotive Tech Passives Sicherheitssystem eines Kraftfahrzeugs
DE10050278A1 (de) * 2000-10-10 2002-04-25 S M S Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objektes
US6438491B1 (en) * 1999-08-06 2002-08-20 Telanon, Inc. Methods and apparatus for stationary object detection
US6674394B1 (en) * 2003-03-28 2004-01-06 Visteon Global Technologies, Inc. Method for determining object location from side-looking sensor data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940689A1 (de) * 1998-03-03 1999-09-08 Thomson-Csf Dauerstrichradar-Empfänger mit Frequenzsprung
US6438491B1 (en) * 1999-08-06 2002-08-20 Telanon, Inc. Methods and apparatus for stationary object detection
DE19961799A1 (de) * 1999-12-21 2001-07-05 Breed Automotive Tech Passives Sicherheitssystem eines Kraftfahrzeugs
DE10050278A1 (de) * 2000-10-10 2002-04-25 S M S Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objektes
US6674394B1 (en) * 2003-03-28 2004-01-06 Visteon Global Technologies, Inc. Method for determining object location from side-looking sensor data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROHLING H ET AL: "Waveform design principles for automotive radar systems", RADAR, 2001 CIE INTERNATIONAL CONFERENCE ON, PROCEEDINGS OCT 15-18, 2001, PISCATAWAY, NJ, USA,IEEE, 15 October 2001 (2001-10-15), pages 1 - 4, XP010577760, ISBN: 0-7803-7000-7 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041904A1 (en) * 2006-10-05 2008-04-10 Autoliv Development Ab A control system for a vehicle
EP2423052A1 (de) * 2010-08-25 2012-02-29 FH Frankfurt Vorrichtung und Verfahren zur Erkennung von Personen
WO2012025552A1 (de) * 2010-08-25 2012-03-01 Fh Frankfurt Vorrichtung und verfahren zur erkennung von personen
JP2013541696A (ja) * 2010-08-25 2013-11-14 ファヒホークシュール フランクフルト アム マイン 人物の識別装置および識別方法
US9162643B2 (en) 2010-08-25 2015-10-20 Frankfurt University Of Applied Sciences Device and method for the detection of persons
US20190337451A1 (en) * 2018-05-02 2019-11-07 GM Global Technology Operations LLC Remote vehicle spatial awareness notification system

Also Published As

Publication number Publication date
DE102004045838A1 (de) 2005-11-10

Similar Documents

Publication Publication Date Title
EP1856555B1 (de) Radarsystem für kraftfahrzeuge mit automatischer precrash-cw-funktion
EP1381884B1 (de) Mehrzweck-fahrerassistenzsystem (einparkhilfe, pre-crash und geschwindigkeitsregelung) für ein kraftfahrzeug
DE102010061057B4 (de) Kraftfahrzeug mit Seitenaufprall-Sicherheitssystem mit Totwinkelerkennungs-Radardatenfusion sowie Verfahren zum Betreiben eines Seitenaufprall-Sicherheitssystems
WO2005096011A1 (de) Vorrichtung und verfahren zum ansteuern zumindest einer fahrzeugschutzeinrichtung
EP1157287B1 (de) Verfahren und vorrichtung zur erfassung und auswertung von objekten im umgebungsbereich eines fahrzeuges
EP1728097B1 (de) Radarsystem f r kraftfahrzeuge
DE69829946T2 (de) Prädikatives kollisionsentdeckungssystem
DE19647660B4 (de) Auslösevorrichtung für Insassenrückhaltesysteme in einem Fahrzeug
EP1932016B1 (de) Verfahren und vorrichtung zur steuerung mindestens eines objektdetektionssensors
DE10233163A1 (de) Anordnung und Verfahren zur Vorhersage einer Kollision mit integriertem Radar und aktivem Transponder
DE102016226040A1 (de) Verfahren und Vorrichtung in einem Kraftfahrzeug zum Fußgängerschutz
WO2005106526A1 (de) Verfahren zur einleitung von sicherheitsmassnahmen für ein kraftfahrzeug
EP2333578B1 (de) Verfahren und Steuergerät zur Bestimmung einer Bewegungsrichtung eines sich auf ein Fahrzeug zu bewegenden Objektes
EP2244104A2 (de) Verfahren und Vorrichtung zum Betrieb eines radargestützten Umfelderkennungssystems
EP1797459B1 (de) Infrarotsensor zur parklückenvermessung und umfeldüberwachung für ein fahrzeug
EP1636070B1 (de) Vorrichtung zur bestimmung einer relativgeschwindigkeit zwischen einem fahrzeug und einem aufprallobjekt
EP1873737A1 (de) Verfahren zur Erkennung einer kritischen Situation vor einem Kraftfahrzeug
DE102004037704A1 (de) Kraftfahrzeug mit einem präventiv wirkenden Schutzsystem
DE102005003354B4 (de) Verfahren und Vorrichtung zur Erfassung der Relativgeschwindigkeit zwischen einem Kollisionsobjekt und einem Fahrzeug
EP1966631B1 (de) Vorrichtung zur detektion eines objekts
DE102018102398A1 (de) Verfahren zur Unterstützung eines Fahrers eines Fahrzeugs, insbesondere eines Nutzfahrzeugs
WO2002091019A1 (de) Sensorsystem zur umgebungserfassung in kraftfahrzeugen
EP1636069B1 (de) Vorrichtung zur ansteuerung von r ckhaltemitteln
EP1431776B1 (de) Verfahren zur Bestimmung der Länge eines Objektes mittels Radar
DE102010062987A1 (de) Verfahren zur Steuerung einer Fahrzeugverriegelung eines Fahrzeugs und Verriegelungssteuerung eines Fahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase