WO2002070873A1 - Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method - Google Patents

Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method Download PDF

Info

Publication number
WO2002070873A1
WO2002070873A1 PCT/JP2001/001659 JP0101659W WO02070873A1 WO 2002070873 A1 WO2002070873 A1 WO 2002070873A1 JP 0101659 W JP0101659 W JP 0101659W WO 02070873 A1 WO02070873 A1 WO 02070873A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
temperature
internal combustion
combustion engine
deterioration
Prior art date
Application number
PCT/JP2001/001659
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Iihoshi
Minoru Ohsuga
Yutaka Takaku
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002569561A priority Critical patent/JPWO2002070873A1/en
Priority to PCT/JP2001/001659 priority patent/WO2002070873A1/en
Publication of WO2002070873A1 publication Critical patent/WO2002070873A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diagnosis apparatus and a diagnosis method for an internal combustion engine, and a control method for an internal combustion engine using the same.
  • the present invention relates to a diagnosis apparatus and a diagnosis method for an internal combustion engine, and a control method for an internal combustion engine using the same. More particularly, the present invention relates to an apparatus and a diagnosis method for diagnosing a decrease in catalyst light-off performance and an abnormality in a temperature detector.
  • an exhaust sensor (02 sensor) is provided upstream and downstream of a catalyst converter installed in an exhaust pipe, and an 02 sensor on the upstream side is provided.
  • Japanese Patent Application Laid-Open No. 9-32553 discloses a catalyst converter provided in an exhaust system of an internal combustion engine, measuring means for measuring a catalyst temperature of the catalyst converter, and engine operation. Means for estimating the catalyst temperature of the catalyst converter based on the state, and calculating means for calculating a change amount of the catalyst temperature measured by the measuring means with respect to a change in temperature of the catalyst temperature estimated by the estimating means, Determination means for determining that the catalyst converter is in a state of abnormal catalyst deterioration when the amount of change calculated by the calculation means is smaller than a predetermined value. A determination device is disclosed. However, as described in Japanese Patent Application Laid-Open No.
  • the catalyst is rapidly heated (for example, by installing the catalyst near the internal combustion engine or by adding electrothermal energy to the catalyst).
  • exhaust reduction technique to quickly activate the catalyst spread noble metal deterioration of the catalyst can not be detected in a diagnostic method that focuses on 0SC is carried on c ie catalyst in question is aggregated catalyst exhibits purification capacity Decrease in light-off performance, in which the temperature (light-off temperature) shifts to a higher temperature side, cannot be determined by the 0SC amount of the catalyst.
  • catalysts installed in some engine systems that perform lean operation to reduce fuel consumption do not include 0SC from the beginning, so the 0SC diagnostic method cannot be applied.
  • the deterioration diagnosis method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-32553 discloses a method of estimating the rate of change of the catalyst temperature in a new or normal state and the rate of change in the value measured by the temperature sensor after the catalyst. Judgment is made based on the difference. Therefore, in estimating the catalyst temperature, it is necessary to calculate the exact heat of reaction using the content ratio of the inflowing exhaust components, the air flow rate, the air-fuel ratio, etc.
  • a first object of the present invention is to provide a diagnostic device for an internal combustion engine that can accurately diagnose the light-off performance of a catalyst.
  • a second object of the present invention is to enable catalyst diagnosis with high accuracy, and to be simple and inexpensive. And a diagnostic device for the internal combustion engine.
  • a third object of the present invention is to provide a diagnostic device for an internal combustion engine that can diagnose a catalyst with high accuracy without being affected by the type of the catalyst, operating conditions of the internal combustion engine, and the like.
  • a fourth object of the present invention is to provide a highly reliable diagnosis device for an internal combustion engine having a self-diagnosis function.
  • a fifth object of the present invention is to provide a method for controlling an internal combustion engine, which enables a highly accurate diagnosis of a catalyst using an inexpensive diagnosis device.
  • a first invention is directed to a diagnosis of an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst.
  • a catalyst temperature estimation model (deterioration catalyst model) that does not include a thermal reaction of the catalyst
  • a comparison device that compares an estimated value obtained by the degraded catalyst model with an actual measurement value obtained by the temperature detector, and based on the comparison result
  • a determination device for determining abnormality of the catalyst is directed to a diagnosis of an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst.
  • a catalyst temperature estimation model (deterioration catalyst model) that does not include a thermal reaction of the catalyst
  • a comparison device that compares an estimated value obtained by the degraded catalyst model with an actual measurement value obtained by the temperature detector, and based on the comparison result
  • a determination device for determining abnormality of the catalyst
  • a second invention includes a catalyst for purifying exhaust gas in an exhaust flow passage of an internal combustion engine, and a diagnostic device for an internal combustion engine including a catalyst temperature detecting device for detecting a temperature of the catalyst, wherein a thermal reaction of the catalyst is included.
  • a comparison device that compares the estimated catalyst temperature model (degraded catalyst model) with the estimated value based on the deteriorated catalyst model and the measured value measured by the temperature detector, and determines whether the temperature detector is abnormal based on the comparison result. And a device. .
  • a third invention is a diagnostic device for an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst, wherein a thermal reaction of the catalyst is included.
  • a catalyst temperature estimating model (deteriorated catalyst model), a comparing device for comparing the estimated value based on the deteriorated catalyst model with the measured value measured by the temperature detector, and an abnormality of the temperature detector when the measured value is smaller than a predetermined temperature.
  • a determination device that determines abnormality of the catalyst when the temperature is higher than a predetermined temperature.
  • the deteriorated catalyst model is a heat transfer model of a catalyst, and an air flow rate flowing into the catalyst and an exhaust gas temperature of the internal combustion engine are set as parameters. It was characterized by things.
  • an estimated value of the temperature in the deteriorated catalyst model is corrected using an actually measured value of the temperature detecting device.
  • the estimated value of the temperature in the deteriorated catalyst model is corrected using an actually measured value of the temperature detecting device, and a rate of change of the estimated value at the time of the correction is a predetermined value. It is characterized by judging abnormality of the temperature detector based on the temperature below.
  • the absolute value or the time rate of change of the actually measured value and the estimated value is compared.
  • An eighth invention is characterized in that, in the deterioration determination device, the deterioration determination is performed when an actual measured value of the catalyst temperature by the catalyst temperature detector is within a predetermined temperature range.
  • the deterioration determination is prohibited when a time change rate of an air amount or a fuel amount of the internal combustion engine is equal to or more than a predetermined value.
  • a tenth invention includes a diagnostic device for the internal combustion engine and an engine temperature detecting device for detecting a temperature of the internal combustion engine, wherein when the temperature of the internal combustion engine is higher than a predetermined value, deterioration judgment is prohibited. It was characterized.
  • an eleventh invention provides a diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst.
  • the feature is to prohibit catalyst deterioration judgment.
  • a twelfth invention provides a diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst.
  • a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst.
  • an air-fuel ratio sensor and a fuel adjusting device for adjusting a fuel injection amount are provided in an exhaust passage of the internal combustion engine, and the air-fuel ratio is kept constant during catalyst diagnosis.
  • a thirteenth invention is a diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst.
  • the fuel amount or ignition timing of the internal combustion engine is controlled so as to lower the catalyst temperature.
  • the diagnosis of a catalyst is possible by the simple catalyst deterioration model which does not have a thermal reaction of a catalyst, and the diagnostic device of the internal combustion engine which can diagnose the light-off function of a catalyst accurately can be provided.
  • a diagnostic device for an internal combustion engine capable of performing a catalyst diagnosis with high accuracy without being affected by the type of the catalyst or the operating conditions of the internal combustion engine.
  • the temperature detector can be diagnosed, the software capacity and the number of adaptation steps can be significantly reduced.
  • the accuracy of diagnosis is improved by correcting the estimated temperature using the value of the temperature detector.
  • the catalyst can be diagnosed with high accuracy, and a simple and inexpensive diagnostic device for an internal combustion engine can be provided.
  • a deterioration confirmation mode is provided, and during the confirmation mode, the exhaust gas temperature is reduced to the light-off temperature or less at the time of deterioration, and the temperature rise is slowed, so that the catalyst can be diagnosed reliably.
  • the diagnosis accuracy can be improved by prohibiting the diagnosis based on the change rate of the water temperature, the air amount, and the fuel injection amount of the internal combustion engine. Further, by switching the control method of the internal combustion engine when it is determined that the catalyst has deteriorated, further deterioration of the catalyst or deterioration of the exhaust gas can be prevented.
  • FIG. 1 is a system diagram of an embodiment in which the present invention is applied to an in-cylinder injection type internal combustion engine.
  • FIG. 2 is a block diagram showing functions of the diagnostic apparatus according to the embodiment of FIG. is there.
  • FIG. 3 is a flowchart showing a process for estimating the temperature of the deteriorated catalyst model.
  • FIG. 4 is an explanatory diagram of the deteriorated catalyst model of FIG.
  • FIG. 5 is a diagram showing the relationship between the measured value and the estimated value at the time of catalyst deterioration.
  • FIG. 6 is a map referred to in the processing step si02 of FIG.
  • FIG. 7 is a flowchart of a process for correcting the estimated value obtained in the process of FIG. 3 as another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a difference between a case where the estimated value of the model is corrected by the actually measured value and a case where the model is not corrected by the method of FIG.
  • FIG. 9 is a flowchart of another embodiment of the present invention, in which the comparison device generates the number of counts Ci corresponding to the deterioration index Ti.
  • FIG. 10 is a diagram showing the difference between the deterioration index Ti at the time of deterioration and the deterioration index Ti at the time of normality in relation to FIG.
  • FIG. 11 is a flowchart of a deterioration determination process as another embodiment of the present invention.
  • FIG. 12 is a map referred to when setting Cout in step s305 in FIG.
  • FIG. 13 is a diagram for explaining a deterioration index AdTl using a temperature change rate.
  • FIG. 14 is a diagram illustrating a deterioration index ⁇ (1 ⁇ 4 using a temperature change rate.
  • FIG. 17 is a diagram showing the relationship between the actually measured value and the estimated value when the temperature detector is abnormal.
  • FIG. 18 is a flowchart of a process of detecting and determining an abnormality of a temperature detector according to another embodiment of the present invention.
  • FIG. 19 is an explanatory diagram of the flowchart in FIG.
  • FIG. 20 shows a temperature detector and a catalyst according to another embodiment of the present invention. It is a flowchart of a conversion determination process.
  • Fig. 21 is a flowchart of a comparison device that generates a deterioration index based on the temperature change rate.
  • FIG. 22 is a flowchart of a determination device that makes a determination based on a temperature change rate.
  • FIG. 23 is a flowchart showing another embodiment of the present invention.
  • FIG. 24 is a diagram illustrating the upper and lower temperatures in step s501 of FIG.
  • FIG. 25 is a flowchart of another embodiment of the present invention, in which diagnosis is prohibited to prevent erroneous diagnosis.
  • FIG. 26 is a diagram showing a time change of the internal combustion engine and the catalyst temperature after the engine is stopped.
  • FIG. 27 is a flowchart of a process of deciding permission of deterioration determination based on the temperature of an internal combustion engine as another embodiment of the present invention.
  • FIG. 28 is a flowchart of a process according to another embodiment of the present invention, in which the deterioration determination is permitted when the temperature sensor is normal.
  • FIG. 29 is a flowchart of a process according to another embodiment of the present invention for permitting the deterioration determination when the air change rate is smaller than a predetermined value.
  • FIG. 30 is a diagram showing the relationship between the air-fuel ratio, the light-off temperature, and the purification rate at the time of catalyst diagnosis.
  • FIG. 31 is a flowchart of a process corresponding to FIG.
  • FIG. 32 is a flowchart of a process of switching between a diagnostic mode and a normal control mode according to another embodiment of the present invention.
  • FIG. 33 is a flowchart of the deterioration check mode in FIG.
  • FIG. 34 is a diagram for explaining the operation of the embodiment of FIGS. 32 and 33, showing the relationship between the diagnostic mode and the exhaust gas temperature during normal control.
  • BEST MODE FOR CARRYING OUT THE INVENTION hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
  • FIG. 1 shows an embodiment in which the present invention is applied to an in-cylinder injection type internal combustion engine.
  • the diagnostic device of the present invention is implemented in a program of an engine control unit (ECU) 1.
  • An air flow sensor 5 is provided upstream of the throttle 4 provided in the intake passage of the engine.
  • the engine cylinder is provided with an injector 10 for fuel injection.
  • a catalyst 9 for purifying exhaust gas is provided in the exhaust passage 12, a temperature sensor 2 is provided downstream thereof, and an oxygen sensor 3 is provided upstream (or downstream) of the catalyst. .
  • ECU 1 has a temperature signal from temperature sensor 2, an oxygen concentration signal from oxygen sensor 3, and an air flow signal from air flow sensor 5, and a crank angle sensor mounted on crankshaft 7 connected to piston 6.
  • the rotation angle signal from 8 is input.
  • a fuel injection signal to the injector 10 for injecting fuel from the ECU 1 an ignition signal to the spark plug 11 or a throttle control signal to the throttle 4 for adjusting the air amount are output. Is done.
  • FIG. 1 shows an in-cylinder injection engine as an example
  • the present invention can also be realized by a port injection engine.
  • the temperature sensor is arranged downstream of the catalyst in FIG. 1, the temperature sensor may be directly mounted in the catalyst.
  • a catalyst temperature estimation model (a deteriorated catalyst model) that does not include a thermal reaction of a catalyst
  • a comparison device that compares an estimated value obtained by the deteriorated catalyst model with an actually measured value obtained by the temperature detector
  • a judgment device for judging the abnormality of the catalyst based on the judgment.
  • FIG. 2 shows an overall functional block of the diagnostic apparatus according to the present embodiment.
  • a catalyst 9 for purifying exhaust gas is attached to an exhaust passage 12 of an internal combustion engine, and a temperature at which a gas temperature T downstream of the catalyst is detected.
  • Detector 2 is installed.
  • the medium 9 may be of various forms.
  • the catalyst 9 may or may not have OSC.
  • a catalyst heated by an electric heater or the like may be used.
  • the ECU 1 uses the deteriorated catalyst model 101 to estimate the gas temperature ⁇ downstream of the catalyst from the operating state of the internal combustion engine (rotational speed, air amount, fuel amount, etc.), the estimated value ⁇ ⁇ , and the actual measurement using the temperature detector 2.
  • the t ECU 1 including the comparing device 102 for comparing the value ⁇ and the judging device 103 for judging an abnormality based on the comparison result and other conditions has a predetermined program code, etc. It is realized by microcomputer.
  • Reference numeral 100 denotes an engine control unit, which generates control signals such as an engine fuel injection amount, a fuel injection timing, and an ignition timing based on information such as an intake air amount, a fuel amount, and a rotation speed of the engine. Output. Further, as will be described later, based on the output of the determination device 103 of the catalyst 9, a necessary engine control signal is generated and output.
  • the diagnostic device may be configured to be separated from the ECU 1 and transmit and receive necessary data to and from each other.
  • step sio1 the operation state of the engine is read, and in step sio2, the inflow temperature is estimated.
  • Figure 6 shows a typical relationship between engine operating conditions and exhaust temperature.
  • the exhaust gas temperature increases as the air flow rate and the fuel amount increase, and the air-fuel ratio tends to be maximum at a slightly leaner stoichiometric ratio.
  • the exhaust temperature tends to be higher until the ignition timing reaches the retard limit.
  • the inflow temperature Tin is estimated with reference to these maps.
  • a temperature sensor may be installed upstream of the catalyst, and its output may be reflected in step si02.
  • step s103 the amount of heat ⁇ per unit flowing into the catalyst is calculated using the air flow rate Qa (n) and the temperature Tin.
  • the inflow heat ⁇ per unit time is calculated from the temperature Tin, the air flow Qa (n) (n is the current value, n-1 is the past value one step before) and the specific heat C1 of the exhaust.
  • the calorie Qcat (n) of the catalyst is calculated. Heat changes of the catalyst, the inflow amount of heat q in the heat radiation quantity ⁇ and the exhaust heat q.
  • This model considers only the heat balance of ut .
  • the heat release q ex is the amount of heat radiated from the catalyst to the atmosphere
  • the exhaust heat ut ut is the heat released to the exhaust gas passing through the catalyst.
  • the actual calorific value of the catalyst includes the inflow calorific value and the reaction calorific value.
  • the reaction heat associated with the catalyst reaction is large enough.
  • the heat of reaction associated with the reaction of the catalyst decreases. Therefore, by obtaining an estimated value based on the deteriorated catalyst model based on the amount of heat flowing into the catalyst and comparing the estimated value with the measured amount of heat, it is possible to detect only the amount of reaction heat and diagnose the deterioration of the catalyst.
  • step sl05 the catalyst outlet temperature ⁇ is calculated.
  • This estimation model is a model of a completely degraded catalyst that considers only heat transfer. By comparing this estimated value and the measured value T, deterioration diagnosis of the catalyst or the temperature detector can be performed.
  • the deteriorated catalyst model 101 uses only heat transfer from the internal combustion engine. Is considered. Therefore, the relationship between the estimated value ⁇ ⁇ and the measured value ⁇ ⁇ ⁇ ⁇ at the same time is as shown in Fig. 5.
  • the straight line having a slope of 1 represents a completely degraded catalyst in which the catalyst does not react with any exhaust components, and the model of the present invention has the same temperature profile as this degraded catalyst. Therefore, if the catalyst deteriorates and the reaction heat of the catalyst decreases, the plot of the estimated temperature and the measured temperature approaches the straight line with a slope of 1. Moves to the high temperature side.
  • the reaction calorie or the light-off temperature is monitored from the comparison between the estimated temperature and the measured temperature in the comparison device 102 of FIG.
  • the amount of reaction heat becomes lower than the predetermined value ( ⁇ Tout) or the light-off temperature becomes higher than the predetermined temperature (Cout) in the judgment device 103, it is judged that the catalyst has deteriorated, and a warning is issued.
  • a lamp (not shown) is turned on, abnormality information is stored in memory 104, or abnormality information is transmitted to the outside by radio to notify the user or an external organization of the deterioration of the catalyst.
  • the external organization is an automobile repair organization such as an automobile manufacturer or a repair shop, and the environmental management organization that manages air pollution.
  • the measured value detected by the sensor 1 is not strictly accurate, and is affected by the evaporation of the water stored in the catalyst. May stop the temperature rise.
  • a discrepancy occurs between the estimated value and the actually measured value, which causes erroneous diagnosis.
  • FIG. 7 shows a flowchart of the second embodiment of the present invention.
  • step s201 it is determined whether or not the measured value T is equal to or lower than a predetermined temperature TL. If the temperature is equal to or lower than the predetermined temperature, the process proceeds to step s202, and if not, the process ends without performing correction.
  • the predetermined temperature TL is preferably set at about 100 to 200 ° C., which is slightly lower than the light-off temperature at which the catalyst starts a thermal reaction.
  • the temperature change rate of the measured value T is calculated, and the calculated value is compared with a predetermined value ⁇ 0 (a positive number that is almost 0).
  • step s203 substitutes the measured value T (N) for the estimated value ⁇ ( ⁇ ). If the condition is not satisfied in step s202, step 203 is skipped and no correction is performed.
  • step s204 it is determined whether or not the estimated value ⁇ ( ⁇ ) is greater than or equal to the measured value ⁇ ( ⁇ ) by a predetermined value ⁇ 1 (a positive number that is almost 0). If it is equal to or more than the predetermined value T1 in step s204, the process proceeds to step s205 to correct the estimated temperature in the negative direction (K is a correction coefficient and a positive number smaller than 1). If not, skip step s203 To end the process.
  • Fig. 8 schematically shows the difference in the estimated value depending on the presence or absence of correction based on the actual measurement value. Since the magnitude of the correction amount indicates the difference between the temperature sensor and the estimated value, which is not related to the evaporation of moisture, the integrated value of the correction amount ⁇ 1 * ⁇ is stored and compared with a predetermined value to obtain the temperature. Detector errors can also be diagnosed.
  • T (N) in step s203 is extremely lower than the normal temperature (30-50 ° C), or when step s203 is started when the engine is started. If the reproducibility of the correction value T (N) cannot be obtained, it can be determined that the temperature detector is abnormal.
  • the estimation accuracy of the model is improved and the diagnosis can be performed more accurately.
  • the present embodiment discloses a method of generating a deterioration index that accurately indicates the degree of deterioration of a catalyst from a difference between an actually measured value and an estimated value or a difference in a change rate.
  • Figure 9 shows the change over time between the measured and estimated values immediately after starting.
  • the temperature difference between the measured value and the estimated value decreases. Therefore, the light-off performance of the catalyst can be monitored by setting the time when the difference between the measured value and the estimated value becomes larger than the predetermined value ⁇ 2 as the deterioration index Ti.
  • the comparison device and the determination device for realizing this diagnosis will be described with reference to the flowcharts of FIGS. 10 and 11.
  • step s303 the countup permission flag is checked. If the flag is in the permitted state, the power up of Ci is performed in step S304, and if not, the processing ends.
  • step S305 the counter value Ci is compared with the diagnostic threshold value Cout (Fig. 12 (a)).
  • the light-off time Cout tends to be shortened as the flow rate Q increases, so that the predetermined value Cout is reduced to the exhaust flow rate Q in step S305.
  • the rate of change in temperature indicates the generation (change) of the heat of reaction.
  • Figures 13 to 15 schematically show the relationship between catalyst temperature and catalyst temperature change rate. For the sake of simplicity, the case where temperature correction is performed is shown here.
  • the estimated temperature change rate peaks slightly after the engine starts due to exhaust heat transfer, and then gradually decreases as the catalyst temperature rises. Therefore, the difference between the actually measured value and the temperature change rate increases after the temperature T1 at which the catalytic reaction starts.
  • ⁇ (1 ⁇ 1 is the difference of the temperature change rate at a predetermined temperature or under a predetermined condition.
  • the index is an index indicating that the closer the AdTl becomes to 0, the more the measured value becomes the maximum value.
  • the difference AdT2 between the estimated value and the measured value at the temperature taken, or the maximum value AdT3 of the difference between the estimated value and the measured value, also decreases with deterioration. Become a mark.
  • the temperature difference between the measured value and the estimated value at which the rate of temperature change is the maximum (difference in peak temperature) ⁇ (1 ⁇ 4 also decreases with deterioration, so it is used for deterioration diagnosis. be able to.
  • the area AS surrounded by the temperature change rate between the actually measured value and the estimated value becomes smaller due to deterioration, so that this can also be used for deterioration diagnosis.
  • the apparatus of this embodiment includes a catalyst temperature estimation model (deterioration catalyst model) that does not include a thermal reaction of a catalyst, a comparison device that compares an estimated value obtained by the degraded catalyst model with an actual measurement value obtained by the temperature detector, And a determination device for determining an abnormality of the temperature detector based on the comparison result.
  • a catalyst temperature estimation model deterioration catalyst model
  • the measured value ⁇ ⁇ ⁇ by the temperature detector 2 does not become higher than the estimated value ⁇ ⁇ because there is no reaction heat below the light-off temperature at which the reaction starts, or conversely, the light-off Above the temperature, the measured value does not become lower than the estimated value due to the heat of reaction.
  • the diagnosis of the temperature detector is performed at the predetermined value T11 or lower lower than the light-off temperature, and the diagnosis of the catalyst is performed at the light-off temperature or higher. In other words, a difference below the light-off temperature indicates an error of the temperature detector. If the difference exceeds a predetermined value, it is diagnosed that the temperature detector is abnormal.
  • the difference above the light-off temperature indicates the amount of heat of reaction
  • the difference ⁇ is equal to or less than a predetermined value, it is diagnosed that the catalyst is abnormal.
  • the diagnosis of the catalyst is performed after the diagnosis of the temperature detector, the reliability of the diagnosis is improved.
  • Another embodiment of the present invention provides a catalyst temperature estimation model (a deteriorated catalyst model) that does not include a thermal reaction of a catalyst, a comparison device that compares an estimated value obtained by the deteriorated catalyst model with an actually measured value obtained by the temperature detector, When the measured value is lower than the predetermined temperature, the abnormality of the temperature detector is determined, and when it is higher than the predetermined temperature, the abnormality of the catalyst is determined.
  • a catalyst temperature estimation model a deteriorated catalyst model
  • a comparison device that compares an estimated value obtained by the deteriorated catalyst model with an actually measured value obtained by the temperature detector, When the measured value is lower than the predetermined temperature, the abnormality of the temperature detector is determined, and when it is higher than the predetermined temperature, the abnormality of the catalyst is determined.
  • the deterioration determination process of the temperature detector 2 is performed ( s XO 2). Conversely, if the temperature is larger than the predetermined value T11, which is lower than the light-off temperature, it is checked whether the temperature detector 2 is normal based on the diagnosis result of the temperature detector (sXO3). Perform the deterioration judgment processing (s XO 4).
  • FIG. 21 shows a flowchart of a comparison device using a temperature change rate as one of the other embodiments.
  • the temperature change rate is calculated.
  • the temperature change rate is calculated using the difference between the previous temperature and the current temperature. It is also possible to perform a blanking process, and it is not necessary to use the previous temperature, and the temperature change rate may be appropriately calculated from a previous value.
  • Step s In 402 the difference in temperature change rate ( ⁇ (1 41, ⁇ (1 ⁇ 2, ⁇ (1 ⁇ 3)) or the difference in peak temperature ( ⁇ (1 ⁇ 4 ) Or Calculate at least one of the area (AS).
  • step S403 of FIG. 22 the process proceeds to step s404. If the determination condition is not satisfied, the following steps are skipped and the process ends.
  • the branch based on the determination condition of s403 is a step provided for preventing erroneous diagnosis. For example, the process branches with reference to a determination permission flag fDIAGEX described later.
  • step s404 the F calculated in step 402 of FIG. 22 is compared with the predetermined value ⁇ T, and if the value is larger than the predetermined value ⁇ , the process proceeds to step s405. Proceed to s406.
  • one deterioration index may be used as F, or a new deterioration index may be created by weighting each of the plurality of deterioration indices to further improve accuracy, and may be compared with a predetermined value.
  • the present invention prevents erroneous diagnosis by limiting the diagnosis region to a temperature region where the catalyst starts a reaction.
  • the deterioration determination device it is desirable to perform the deterioration determination when the measured value of the catalyst temperature by the catalyst temperature detector is within a predetermined temperature range. Further, in the deterioration determination device, it is desirable to prohibit the deterioration determination when the time change rate of the air flow rate or the fuel injection amount of the internal combustion engine is a predetermined value or more.
  • the deterioration determination device it is desirable to prohibit the deterioration determination when the temperature of the internal combustion engine is higher than a predetermined value. Furthermore, in the internal combustion engine diagnostic device, when the temperature detecting device is abnormal, the catalyst It is desirable to prohibit the deterioration judgment.
  • Figure 24 shows a typical relationship between the catalyst temperature and the rate of change of the catalyst temperature.
  • the temperature change rate rises sharply after the engine is started, but decreases at low temperatures (70-100 ° C) and rises again due to evaporation of water.
  • the optimal temperature range for catalyst diagnosis is between 100-200 ° C and 300-400 ° C, taking into account the catalyst light-off temperature and the location of the temperature detector. Diagnosis should be performed at.
  • FIG. 25 is a flowchart illustrating an embodiment in which the diagnosis is prohibited.
  • the diagnosis permission flag: fDIAGEX is referred to in step s504, and if the diagnosis permission flag is not set, the diagnosis is prohibited by skipping the deterioration determination processing in step s505.
  • the diagnostic device of the present invention when the catalyst is already warmed, such as when the engine is restarted, the estimated value and the measured value greatly differ, and there is a possibility of erroneous diagnosis. Therefore, if the catalyst has already warmed up, the deterioration judgment is prohibited to prevent erroneous diagnosis.
  • Figure 26 shows the relationship between the internal combustion engine water temperature and the catalyst temperature after the internal combustion engine is stopped. After the engine stops, both the catalyst temperature and the water temperature approach the outside air temperature, but the catalyst temperature drops faster due to the difference in specific heat. Therefore, focusing on the water temperature, the difference between the estimated value at engine start and the measured value can be made sufficiently small.
  • FIG. 27 is a flowchart showing one embodiment of the present invention. If the water temperature is higher than the predetermined temperature in step s601 of Fig. 2.7, the process proceeds to step s602 and the deterioration judgment is prohibited. Otherwise, the deterioration judgment is performed in step s603. Allow
  • FIG. 28 shows a flowchart for carrying out the present invention. If the temperature sensor is abnormal in step s701 in FIG. 28, the flow advances to step s702 to inhibit the deterioration determination, and otherwise, the deterioration determination is permitted in step s703.
  • the present invention it is desirable to prohibit the deterioration determination when the time change rate of the air flow rate or the fuel injection amount of the internal combustion engine is equal to or more than a predetermined value. That is, when the exhaust gas heat is extremely large compared to the reaction heat, the catalyst diagnosis method using the temperature detector makes it difficult to separate the reaction heat from the actually measured value for diagnosis. Further, the method of comparing the temperature change rates described in the above embodiments causes erroneous diagnosis if the air flow rate or the fuel amount changes near the light-off temperature at which reaction heat is generated. Therefore, in the present embodiment, the diagnosis is prohibited when the rate of change of the displacement or the rate of change of the fuel exceeds a predetermined value.
  • FIG. 29 shows a flowchart for carrying out this embodiment.
  • step s801 of FIG. 29 the rate of change of the air amount is compared with a predetermined value. If the airflow rate is larger than the predetermined value, the process proceeds to step s802, and the deterioration determination is prohibited. Step 3 permits deterioration judgment. By replacing step s801 with the fuel amount, erroneous diagnosis due to a change in the fuel amount can be similarly prevented.
  • FIG. FIG. 30 schematically shows the relationship between the air-fuel ratio and the light-off temperature or HC purification rate. This figure shows that the write-off temperature is the lowest at a slightly leaner air-fuel ratio. If the air-fuel ratio is rich, HC does not react sufficiently in the catalyst, so the heat of reaction decreases. Therefore, by keeping the air-fuel ratio constant during catalyst diagnosis, it is possible to suppress variations in light-off temperature and reaction amount. Thus, erroneous diagnosis can be prevented.
  • an air-fuel ratio sensor and a fuel adjusting device for adjusting the fuel injection amount are provided in the exhaust passage of the internal combustion engine, and as shown in s 3101 to s 3103 in FIG. 31, the air-fuel ratio is suitable for diagnosis during catalyst diagnosis. Control to maintain a constant diagnostic air-fuel ratio.
  • a catalyst deterioration confirmation mode is provided, and during the deterioration confirmation mode, the fuel amount or the ignition timing of the internal combustion engine is controlled so as to lower the catalyst temperature.
  • FIG. 33 is a flowchart showing details of the deterioration confirmation mode sXO 3 in FIG.
  • sXOl to sX03 in Fig. 33 when a failure is notified by catalyst diagnosis, the failure is recorded in memory and the engine ignition timing and fuel Controls radiation.
  • FIG. 34 shows the exhaust temperature in the diagnostic mode and the exhaust temperature in the normal state.
  • the exhaust gas temperature is lowered to control the catalyst temperature lower than the light-off temperature of the criteria catalyst (the catalyst warm-up such as retard or double injection or the engine warm-up control is stopped).
  • the rate of change in temperature during deterioration is smaller than in normal times, and catalyst diagnosis can be performed reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An internal combustion engine diagnosing device, comprising a catalyst for purifying exhaust gases and a catalyst temperature detector for detecting the temperature of the catalyst installed in the exhaust gas flow path of an internal combustion engine, a catalyst temperature prediction model (deteriorated catalyst model) not containing the heat reaction of the catalyst, a comparator for comparing the predicted value by the deteriorated catalyst model with the actually measured value by the temperature detector, and a judgment device for judging on whether the catalyst or temperature detector is abnormal or not based on the compared results.

Description

明細書  Specification
内燃機関の診断装置及び診断方法及びそれを用いた内燃機関の制御方法 技術分野  TECHNICAL FIELD The present invention relates to a diagnosis apparatus and a diagnosis method for an internal combustion engine, and a control method for an internal combustion engine using the same.
本発明は、 内燃機関の診断装置及び診断方法及びそれを用いた内燃機関 の制御方法に関し、 特に触媒のライトオフ性能の低下および温度検出器の 異常を診断する装置及び診断方法に関するものである。 背景技術  The present invention relates to a diagnosis apparatus and a diagnosis method for an internal combustion engine, and a control method for an internal combustion engine using the same. More particularly, the present invention relates to an apparatus and a diagnosis method for diagnosing a decrease in catalyst light-off performance and an abnormality in a temperature detector. Background art
自動車の排気規制が強化されるなかで、 排気を浄化する触媒の浄化効率 をモニタリングし、 触媒を診断する技術が数々提案されている。 例えば、 特開平 5 - 2 4 8 8 2 2 7号公報に記載のように、排気管に設置した触媒コ ンバ一夕の上流下流に排気センサ (0 2センサ)を設け、上流側の 02センサ と下流側の 0 2センサの相関 (例えば、 空燃比をリーンからリッチあるい はリッチからリーンに反転させた場合の上流側 0 2センサの出力反転から、 下流側 0 2センサの出力反転までの時間計測値、上流側 0 2センサと下流側 0 2センサの出力比、応答比、位相差等)から触媒の劣化を診断する技術が ある。これらの手法は触媒の有する酸素ストレージ能力(0SC)を定量化して、 触媒の劣化を判断する技術である。  As automobile exhaust regulations are tightening, various technologies for monitoring the purification efficiency of catalysts that purify exhaust gas and diagnosing catalysts have been proposed. For example, as described in Japanese Patent Application Laid-Open No. 5-248828 / 27, an exhaust sensor (02 sensor) is provided upstream and downstream of a catalyst converter installed in an exhaust pipe, and an 02 sensor on the upstream side is provided. (For example, from the output reversal of the upstream 02 sensor when the air-fuel ratio is reversed from lean to rich or from rich to lean, to the output reversal of the downstream 02 sensor) There is a technology for diagnosing catalyst deterioration based on a time measurement value, an output ratio between the upstream 02 sensor and the downstream 02 sensor, a response ratio, a phase difference, and the like. These techniques quantify the oxygen storage capacity (0SC) of the catalyst and determine the deterioration of the catalyst.
また、特開平 9 - 3 2 5 3 5号公報には、内燃機関の排気系に設けられた 触媒コンバ一夕と、 前記触媒コンバ一夕の触媒温度を測定するための測定 手段と、 機関運転状態に基づき前記触媒コンバ一夕の触媒温度を推定する 手段と、 前記推定手段により推定された触媒温度の温度上昇変化に対する 前記測定手段により測定された触媒温度の変化量を算出する算出手段と、 前記算出手段により算出される前記変化量が所定値より小さい時に前記触 媒コンバ一夕が触媒異常劣化状態であると判断する判断手段、 とを具備す ることを特徴とする内燃機関の触媒劣化判定装置が開示されている。 しかし、特開平 5 - 2 4 8 8 2 2 7号公報に記載のように、触媒を急速に 暖めて (例えば内燃機関の近くに触媒を設置したり、 触媒に電気熱ェネル ギーを加える)、触媒を速やかに活性化させる排気低減技術が広まるに従い、 0SC に着目した診断方法では検出できない触媒の劣化が問題となっている c つまり触媒に担持される貴金属が凝集し触媒が浄化能力を発揮する温度 (ライ トオフ温度)が高温側にシフトするライトオフ性能の低下は触媒の 0SC 量では判定できない。 また燃費低減のためにリーン運転を行う一部の エンジンシステムに搭載される触媒は、 0SC を最初からほとんど含まない ため 0SCによる診断方法は適用できない。 Also, Japanese Patent Application Laid-Open No. 9-32553 discloses a catalyst converter provided in an exhaust system of an internal combustion engine, measuring means for measuring a catalyst temperature of the catalyst converter, and engine operation. Means for estimating the catalyst temperature of the catalyst converter based on the state, and calculating means for calculating a change amount of the catalyst temperature measured by the measuring means with respect to a change in temperature of the catalyst temperature estimated by the estimating means, Determination means for determining that the catalyst converter is in a state of abnormal catalyst deterioration when the amount of change calculated by the calculation means is smaller than a predetermined value. A determination device is disclosed. However, as described in Japanese Patent Application Laid-Open No. 5-24888227, the catalyst is rapidly heated (for example, by installing the catalyst near the internal combustion engine or by adding electrothermal energy to the catalyst). according exhaust reduction technique to quickly activate the catalyst spread, noble metal deterioration of the catalyst can not be detected in a diagnostic method that focuses on 0SC is carried on c ie catalyst in question is aggregated catalyst exhibits purification capacity Decrease in light-off performance, in which the temperature (light-off temperature) shifts to a higher temperature side, cannot be determined by the 0SC amount of the catalyst. Also, catalysts installed in some engine systems that perform lean operation to reduce fuel consumption do not include 0SC from the beginning, so the 0SC diagnostic method cannot be applied.
そこでこれらの問題を解決する方法として、 触媒の反応熱に着目した触 媒の劣化検出方法が開示されている。すなわち、前記特開平 9 - 3 2 5 3 5 号公報に開示の劣化診断方法は、 新品あるいは正常時の触媒温度変化率を 推定した推定値と触媒後の温度センサによる実測値の変化率との差によつ て劣化を判断する。 従って触媒温度の推定には、 流入する排気成分の含有 率や空気流量および空燃比などを用いて正確な反応熱を計算する必要があ る ο  Therefore, as a method for solving these problems, a method for detecting catalyst deterioration focusing on the reaction heat of the catalyst is disclosed. That is, the deterioration diagnosis method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-32553 discloses a method of estimating the rate of change of the catalyst temperature in a new or normal state and the rate of change in the value measured by the temperature sensor after the catalyst. Judgment is made based on the difference. Therefore, in estimating the catalyst temperature, it is necessary to calculate the exact heat of reaction using the content ratio of the inflowing exhaust components, the air flow rate, the air-fuel ratio, etc.
しかし、 エンジン始動直後の排気成分や空燃比は一般に非定常で再現性 も低い。 従って、 これらを正確に把握することは困難であり、 仮に正確に 把握することができたとしても、 これらを取り込んだモデルは非常に複雑 となる。 また触媒の反応熱を検出するためには、 モデルだけでなく温度検 出器の精度も重要な要素であるが、 温度検出器の診断方法については明確 にされていない。 発明の開示  However, the exhaust components and air-fuel ratio immediately after starting the engine are generally unsteady and have low reproducibility. Therefore, it is difficult to grasp them accurately, and even if they can be grasped accurately, the model incorporating them becomes very complicated. In order to detect the heat of reaction of the catalyst, not only the model but also the accuracy of the temperature detector is an important factor, but the diagnostic method of the temperature detector has not been clarified. Disclosure of the invention
本発明の第 1の目的は、 正確に触媒のライトオフ性能を診断できる内燃 機関の診断装置を提供する事にある。  A first object of the present invention is to provide a diagnostic device for an internal combustion engine that can accurately diagnose the light-off performance of a catalyst.
本発明の第 2の目的は、 高精度に触媒の診断ができ、 しかも簡便で安価 な内燃機関の診断装置を提供する事にある。 A second object of the present invention is to enable catalyst diagnosis with high accuracy, and to be simple and inexpensive. And a diagnostic device for the internal combustion engine.
本発明の第 3の目的は、 触媒の種類や内燃機関の運転条件などに左右さ れずに、 高精度に触媒の診断ができる内燃機関の診断装置を提供する事に める。  A third object of the present invention is to provide a diagnostic device for an internal combustion engine that can diagnose a catalyst with high accuracy without being affected by the type of the catalyst, operating conditions of the internal combustion engine, and the like.
本発明の第 4の目的は、 自己診断機能を有し、 信頼性の高い内燃機関の 診断装置を提供する事にある。  A fourth object of the present invention is to provide a highly reliable diagnosis device for an internal combustion engine having a self-diagnosis function.
本発明の第 5の目的は、 安価な診断装置を用いて高精度に触媒の診断が できるようにする、 内燃機関の制御方法を提供する事にある。  A fifth object of the present invention is to provide a method for controlling an internal combustion engine, which enables a highly accurate diagnosis of a catalyst using an inexpensive diagnosis device.
上記の目的を達成するために、 第 1の発明は、 内燃機関の排気流路に排 気を浄ィヒする触媒と、 前記触媒の温度を検出する触媒温度検出装置を具備 した内燃機関の診断装置において、 触媒の熱反応を含まない触媒温度推定 モデル (劣化触媒モデル) と、 前記劣化触媒モデルによる推定値と前記温 度検出器による実測値とを比較する比較装置と、 その比較結果にもとづき 触媒の異常を判定する判定装置と、 を備えた。  In order to achieve the above object, a first invention is directed to a diagnosis of an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst. In the apparatus, a catalyst temperature estimation model (deterioration catalyst model) that does not include a thermal reaction of the catalyst, a comparison device that compares an estimated value obtained by the degraded catalyst model with an actual measurement value obtained by the temperature detector, and based on the comparison result A determination device for determining abnormality of the catalyst.
また第 2の発明は、 内燃機関の排気流路に排気を浄化する触媒と、 前記 触媒の温度を検出する触媒温度検出装置を具備した内燃機関の診断装置に おいて、 触媒の熱反応を含まない触媒温度推定モデル (劣化触媒モデル) と、 前記劣化触媒モデルによる推定値と前記温度検出器による実測値とを 比較する比較装置と、 その比較結果にもとづき温度検出器の異常を判定す る判定装置と、 を備えた。 .  Also, a second invention includes a catalyst for purifying exhaust gas in an exhaust flow passage of an internal combustion engine, and a diagnostic device for an internal combustion engine including a catalyst temperature detecting device for detecting a temperature of the catalyst, wherein a thermal reaction of the catalyst is included. A comparison device that compares the estimated catalyst temperature model (degraded catalyst model) with the estimated value based on the deteriorated catalyst model and the measured value measured by the temperature detector, and determines whether the temperature detector is abnormal based on the comparison result. And a device. .
また第 3の発明は、 内燃機関の排気流路に排気を浄化する触媒と、 前記 触媒の温度を検出する触媒温度検出装置を具備した内燃機関の診断装置に おいて、 触媒の熱反応を含まない触媒温度推定モデル (劣化触媒モデル) と、 前記劣化触媒モデルによる推定値と前記温度検出器による実測値とを 比較する比較装置と、 実測値が所定温度よりも小さい時に温度検出器の異 常を判定し、所定温度よりも大きい時に触媒の異常を判定する判定装置と、 を備えた。 また第 4の発明は、 前記内燃機関の診断装置において、 前記劣化触媒モ デルは触媒の熱伝達モデルであって、 前記触媒に流入する空気流量と前記 内燃機関の排気温度をパラメ一夕とする事を特徴とした。 Further, a third invention is a diagnostic device for an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst, wherein a thermal reaction of the catalyst is included. A catalyst temperature estimating model (deteriorated catalyst model), a comparing device for comparing the estimated value based on the deteriorated catalyst model with the measured value measured by the temperature detector, and an abnormality of the temperature detector when the measured value is smaller than a predetermined temperature. And a determination device that determines abnormality of the catalyst when the temperature is higher than a predetermined temperature. In a fourth aspect of the present invention, in the diagnostic device for an internal combustion engine, the deteriorated catalyst model is a heat transfer model of a catalyst, and an air flow rate flowing into the catalyst and an exhaust gas temperature of the internal combustion engine are set as parameters. It was characterized by things.
また第 5の発明は、 前記内燃機関の診断装置において、 前記劣化触媒モ デルにおける温度の推定値を前記温度検出装置の実測値を用いて補正する 事を特徴とした。  According to a fifth aspect of the present invention, in the diagnostic device for an internal combustion engine, an estimated value of the temperature in the deteriorated catalyst model is corrected using an actually measured value of the temperature detecting device.
また第 6の発明は、 前記内燃機関の診断装置において、 前記劣化触媒モ デルにおける温度の推定値を前記温度検出装置の実測値を用いて補正し、 補正時の推定値の変化率が所定値以下になる温度にもとづき温度検出器の 異常を判定することを特徴とした。  In a sixth aspect of the present invention, in the diagnostic device for an internal combustion engine, the estimated value of the temperature in the deteriorated catalyst model is corrected using an actually measured value of the temperature detecting device, and a rate of change of the estimated value at the time of the correction is a predetermined value. It is characterized by judging abnormality of the temperature detector based on the temperature below.
また第 7の発明は、請求項 2 - 5記載の前記比較装置において、実測値と 推定値の絶対値あるいは時間変化率を比較する事を特徴とした。  According to a seventh aspect of the present invention, in the comparison device according to the second aspect, the absolute value or the time rate of change of the actually measured value and the estimated value is compared.
また第 8の発明は、 前記劣化判定装置において、 前記触媒温度検出器に よる触媒温度の実測値が所定温度範囲であるときに劣化判定を行うことを 特徴とした。  An eighth invention is characterized in that, in the deterioration determination device, the deterioration determination is performed when an actual measured value of the catalyst temperature by the catalyst temperature detector is within a predetermined temperature range.
また第 9の発明は、 前記内燃機関の診断装置において、 前記内燃機関の 空気量あるいは燃料量の時間変化率が所定値以上の場合は劣化判定を禁止 する事を特徴とした。  In a ninth aspect of the present invention, in the diagnostic device for an internal combustion engine, the deterioration determination is prohibited when a time change rate of an air amount or a fuel amount of the internal combustion engine is equal to or more than a predetermined value.
また第 1 0の発明は、 前記内燃機関の診断装置と前記内燃機関の温度を 検出する機関温度検出装置を具備し、 前記内燃機関の温度が所定値より高 い場合は劣化判定を禁止する事を特徴とした。  Further, a tenth invention includes a diagnostic device for the internal combustion engine and an engine temperature detecting device for detecting a temperature of the internal combustion engine, wherein when the temperature of the internal combustion engine is higher than a predetermined value, deterioration judgment is prohibited. It was characterized.
また第 1 1の発明は、 内燃機関の排気流路に排気を浄化する触媒と、 前 記触媒の温度を検出する触媒温度検出装置を具備した内燃機関の診断装置 において、 温度検出装置の異常時には触媒の劣化判定を禁止する事を特徴 とした。  Further, an eleventh invention provides a diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst. The feature is to prohibit catalyst deterioration judgment.
また第 1 2の発明は、 内燃機関の排気流路に排気を浄化する触媒と、 前 記触媒の温度を検出する触媒温度検出装置を具備した内燃機関の診断装置 において、 内燃機関の排気流路に空燃比センサと、 燃料噴射量を調整する 燃料調整装置を具備し、触媒診断中は空燃比を一定に保つ事を特徴とした。 Further, a twelfth invention provides a diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst. In the above, an air-fuel ratio sensor and a fuel adjusting device for adjusting a fuel injection amount are provided in an exhaust passage of the internal combustion engine, and the air-fuel ratio is kept constant during catalyst diagnosis.
また第 1 3の発明は、 内燃機関の排気流路に排気を浄化する触媒と、 前 記触媒の温度を検出する触媒温度検出装置を具備した内燃機関の診断装置 において、 触媒の劣化確認モードをもうけ、 劣化確認モード中は触媒温度 を下げるように内燃機関の燃料量または点火時期等を制御することを特徴 とした。  A thirteenth invention is a diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst. In addition, during the deterioration confirmation mode, the fuel amount or ignition timing of the internal combustion engine is controlled so as to lower the catalyst temperature.
本発明によれば、 触媒の熱反応を持たない簡便な触媒劣化モデルによつ て触媒の診断が可能であり、 正確に触媒のライトオフ機能を診断できる内 燃機関の診断装置を提供できる。  ADVANTAGE OF THE INVENTION According to this invention, the diagnosis of a catalyst is possible by the simple catalyst deterioration model which does not have a thermal reaction of a catalyst, and the diagnostic device of the internal combustion engine which can diagnose the light-off function of a catalyst accurately can be provided.
また、 触媒の種類や内燃機関の運転条件などに左右されずに、 高精度に 触媒の診断ができる内燃機関の診断装置を提供できる。  Further, it is possible to provide a diagnostic device for an internal combustion engine capable of performing a catalyst diagnosis with high accuracy without being affected by the type of the catalyst or the operating conditions of the internal combustion engine.
さらに温度検出器の診断も可能であるのでソフ ト容量および適合工数を 大幅に低減できる。 また温度検出器の値を用いて推定温度を補正すること で診断の精度が向上する。 これにより、 高精度に触媒の診断ができ、 しか も簡便で安価な内燃機関の診断装置を提供できる。  In addition, since the temperature detector can be diagnosed, the software capacity and the number of adaptation steps can be significantly reduced. In addition, the accuracy of diagnosis is improved by correcting the estimated temperature using the value of the temperature detector. As a result, the catalyst can be diagnosed with high accuracy, and a simple and inexpensive diagnostic device for an internal combustion engine can be provided.
また、 劣化確認モードを持たせ、 確認モード中は排気温度を劣化時のラ ィ トオフ温度以下に下げ、 温度上昇を遅くすることにより確実に触媒が診 断できる。  In addition, a deterioration confirmation mode is provided, and during the confirmation mode, the exhaust gas temperature is reduced to the light-off temperature or less at the time of deterioration, and the temperature rise is slowed, so that the catalyst can be diagnosed reliably.
また、 内燃機関の水温、 空気量の変化率、 燃料噴射量の変化率に基づき 診断を禁止することにより診断精度を向上できる。 また、 劣化と判定され たとき内燃機関の制御方法を切り替えることにより、触媒のさらなる劣化、 あるいは排気の悪化を防止できる。  In addition, the diagnosis accuracy can be improved by prohibiting the diagnosis based on the change rate of the water temperature, the air amount, and the fuel injection amount of the internal combustion engine. Further, by switching the control method of the internal combustion engine when it is determined that the catalyst has deteriorated, further deterioration of the catalyst or deterioration of the exhaust gas can be prevented.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明を筒内噴射型の内燃機関に適用した一実施形態のシステ ム図である。  FIG. 1 is a system diagram of an embodiment in which the present invention is applied to an in-cylinder injection type internal combustion engine.
図 2は、 図 1の一実施形態における診断装置の機能を示すプロヅク図で ある。 FIG. 2 is a block diagram showing functions of the diagnostic apparatus according to the embodiment of FIG. is there.
図 3は、 劣化触媒モデルの温度推定処理を示すフローチャートである。 図 4は、 図 2の劣化触媒モデルの説明図である。  FIG. 3 is a flowchart showing a process for estimating the temperature of the deteriorated catalyst model. FIG. 4 is an explanatory diagram of the deteriorated catalyst model of FIG.
図 5は、 触媒劣化時の実測値と推定値の関係を示す図である。  FIG. 5 is a diagram showing the relationship between the measured value and the estimated value at the time of catalyst deterioration.
図 6は、 図 3の処理ステップ s i 0 2で参照するマップである。  FIG. 6 is a map referred to in the processing step si02 of FIG.
図 7は、 本発明の他の実施形態として、 図 3の処理で得られた推定値に 対する補正を行う処理のフローチャートである。  FIG. 7 is a flowchart of a process for correcting the estimated value obtained in the process of FIG. 3 as another embodiment of the present invention.
図 8は、 図 7の方法によりモデルの推定値を実測値により補正した場合 と補正しない場合の違いを示す図である。  FIG. 8 is a diagram illustrating a difference between a case where the estimated value of the model is corrected by the actually measured value and a case where the model is not corrected by the method of FIG.
図 9は、本発明の他の実施形態としての、劣化指標 Tiに対応するカウン ト数 Ci を、 比較装置により生成するフローチャートである。  FIG. 9 is a flowchart of another embodiment of the present invention, in which the comparison device generates the number of counts Ci corresponding to the deterioration index Ti.
図 1 0は、図 9に関連して、劣化時と正常時の劣化指数 Tiの違いを示す 図である。  FIG. 10 is a diagram showing the difference between the deterioration index Ti at the time of deterioration and the deterioration index Ti at the time of normality in relation to FIG.
図 1 1は、 本発明の他の実施形態としての、 劣化判定処理のフローチヤ ートである。  FIG. 11 is a flowchart of a deterioration determination process as another embodiment of the present invention.
図 1 2は、図 1 1におけるステップ s 3 0 5で Coutを設定するときに参 照するマップである。  FIG. 12 is a map referred to when setting Cout in step s305 in FIG.
図 1 3は、 温度変化率を用いた劣化指標 AdT lを説明する図である。 図 1 4は、 温度変化率を用いた劣化指標 Δ(1Τ4を説明する図である。 図 1 5は、 温度変化率を用いた劣化指標 Δ(1Τ 5を説明する図である。 図 1 6は、 本発明の他の実施形態としての、 比較処理のフローチャート である。  FIG. 13 is a diagram for explaining a deterioration index AdTl using a temperature change rate. FIG. 14 is a diagram illustrating a deterioration index Δ (1Τ4 using a temperature change rate. FIG. 15 is a diagram illustrating a deterioration index Δ (1Τ5 using a temperature change rate. 9 is a flowchart of a comparison process as another embodiment of the present invention.
図 1 7は、 温度検出器異常時の実測値と推定値の関係を示す図である。 図 1 8は、 本発明の他の実施形態としての、 温度検出器の異常を検出、 判定する処理のフローチャートである。  FIG. 17 is a diagram showing the relationship between the actually measured value and the estimated value when the temperature detector is abnormal. FIG. 18 is a flowchart of a process of detecting and determining an abnormality of a temperature detector according to another embodiment of the present invention.
図 1 9は、 図 1 8のフローチャートの説明図である。  FIG. 19 is an explanatory diagram of the flowchart in FIG.
図 2 0は、 本発明の他の実施形態としての、 温度検出器および触媒の劣 化判定処理のフローチャートである。 FIG. 20 shows a temperature detector and a catalyst according to another embodiment of the present invention. It is a flowchart of a conversion determination process.
図 2 1は、 温度変化率による劣化指標を生成する比較装置のフローチヤ —トである。  Fig. 21 is a flowchart of a comparison device that generates a deterioration index based on the temperature change rate.
図 2 2は、 温度変化率により判定を行う判定装置のフローチャートであ る。  FIG. 22 is a flowchart of a determination device that makes a determination based on a temperature change rate.
図 2 3は、 本発明の他の一実施形態を示すフローチャートである。  FIG. 23 is a flowchart showing another embodiment of the present invention.
図 2 4は、 図 2 3のステップ s 5 0 1における温度上下限を説明する図 である。  FIG. 24 is a diagram illustrating the upper and lower temperatures in step s501 of FIG.
図 2 5は、 本発明の他の実施形態としての、 誤診断防止のため診断を禁 止するフローチャートである。  FIG. 25 is a flowchart of another embodiment of the present invention, in which diagnosis is prohibited to prevent erroneous diagnosis.
図 2 6は、機関停止後の内燃機関と触媒温度の時間変化を示す図である。 図 2 7は、 本発明の他の実施形態としての、 内燃機関の温度にもとづき 劣化判定の許可を決める処理のフローチャートである。  FIG. 26 is a diagram showing a time change of the internal combustion engine and the catalyst temperature after the engine is stopped. FIG. 27 is a flowchart of a process of deciding permission of deterioration determination based on the temperature of an internal combustion engine as another embodiment of the present invention.
図 2 8は、 本発明の他の実施形態としての、 温度センサが正常であると きに劣化判定を許可する処理のフローチャートである。  FIG. 28 is a flowchart of a process according to another embodiment of the present invention, in which the deterioration determination is permitted when the temperature sensor is normal.
図 2 9は、 本発明の他の実施形態としての、 空気変化率が所定値よりも 小さい場合に劣化判定を許可する処理のフローチャートである。  FIG. 29 is a flowchart of a process according to another embodiment of the present invention for permitting the deterioration determination when the air change rate is smaller than a predetermined value.
図 3 0は、 触媒の診断時における空燃比とライトオフ温度および浄化率 の関係を示す図である。  FIG. 30 is a diagram showing the relationship between the air-fuel ratio, the light-off temperature, and the purification rate at the time of catalyst diagnosis.
図 3 1は、 図 3 0に対応する処理のフローチャートである。  FIG. 31 is a flowchart of a process corresponding to FIG.
図 3 2は、 本発明の他の実施形態としての、 診断モードと通常制御モー ドとを切り替える処理のフローチャートである。  FIG. 32 is a flowchart of a process of switching between a diagnostic mode and a normal control mode according to another embodiment of the present invention.
図 3 3は、 図 3 2における劣化確認モードのフローチャートである。 図 3 4は、 図 3 2、 図 3 3の実施形態の動作を説明するための、 診断モ ードと通常制御時の排気温度の関係を示す図である。 発明を実施するための最良の形態 以下、 図に従って、 本発明の実施例を詳細に説明する。 図 1は、 本発明 を筒内噴射型の内燃機関に適用した一実施形態を示すものである。 FIG. 33 is a flowchart of the deterioration check mode in FIG. FIG. 34 is a diagram for explaining the operation of the embodiment of FIGS. 32 and 33, showing the relationship between the diagnostic mode and the exhaust gas temperature during normal control. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to an in-cylinder injection type internal combustion engine.
本発明の診断装置は、 エンジンコントロールユニット (E C U) 1のプ ログラムに実装される。 エンジンの吸気流路に設けられたスロットル 4の 上流には空気量センサ 5が設けられている。 エンジンのシリンダーには燃 料噴射用のインジヱクタ 1 0が設けられている。 また、 排気流路 1 2には 排気ガスを浄化するための触媒 9が設けられ、 その下流には温度センサ 2 が設置され、 触媒の上流 (または下流) には酸素センサ 3が取り付けられ ている。  The diagnostic device of the present invention is implemented in a program of an engine control unit (ECU) 1. An air flow sensor 5 is provided upstream of the throttle 4 provided in the intake passage of the engine. The engine cylinder is provided with an injector 10 for fuel injection. Further, a catalyst 9 for purifying exhaust gas is provided in the exhaust passage 12, a temperature sensor 2 is provided downstream thereof, and an oxygen sensor 3 is provided upstream (or downstream) of the catalyst. .
E C U 1には、 温度センサ 2からの温度信号、 酸素センサ 3からの酸素 濃度信号、 および空気量センサ 5からの空気量信号、 ピストン 6に接続さ れたクランク軸 7に取り付けられたクランク角度センサ 8からの回転角度 信号等が入力される。 そしてこれらの情報に基づいて E C U 1から燃料を 噴射するインジェク夕 1 0への燃料噴射信号や点火プラグ 1 1への点火信 号あるいは空気量を調整するスロットル 4へのスロットル制御信号等が出 力される。  ECU 1 has a temperature signal from temperature sensor 2, an oxygen concentration signal from oxygen sensor 3, and an air flow signal from air flow sensor 5, and a crank angle sensor mounted on crankshaft 7 connected to piston 6. The rotation angle signal from 8 is input. Based on the information, a fuel injection signal to the injector 10 for injecting fuel from the ECU 1, an ignition signal to the spark plug 11 or a throttle control signal to the throttle 4 for adjusting the air amount are output. Is done.
なお、 図 1には例として筒内噴射エンジンを示しているが、 本発明はポ ート噴射エンジンでも実現可能である。 また、 図 1では触媒の下流に温度 センサを配置してあるが、 温度センサを直接触媒中に取り付けても良い。 以下、 図 2〜図 6を用いて本発明の第 1の実施形態の構成を説明する。 この実施形態では、 触媒の熱反応を含まない触媒温度推定モデル (劣化触 媒モデル) と、 前記劣化触媒モデルによる推定値と前記温度検出器による 実測値とを比較する比較装置と、 その比較結果にもとづき触媒の異常を判 定する判定装置とを備えている。  Although FIG. 1 shows an in-cylinder injection engine as an example, the present invention can also be realized by a port injection engine. Although the temperature sensor is arranged downstream of the catalyst in FIG. 1, the temperature sensor may be directly mounted in the catalyst. Hereinafter, the configuration of the first embodiment of the present invention will be described with reference to FIGS. In this embodiment, a catalyst temperature estimation model (a deteriorated catalyst model) that does not include a thermal reaction of a catalyst, a comparison device that compares an estimated value obtained by the deteriorated catalyst model with an actually measured value obtained by the temperature detector, And a judgment device for judging the abnormality of the catalyst based on the judgment.
図 2は本実施形態による診断装置の全体的な機能ブロックを示すもので あり、 内燃機関の排気流路 1 2に排気を浄化する触媒 9が取り付けられ、 触媒下流のガス温度 Tを検出する温度検出器 2が設置されている。 この触 媒 9としては、 種々の形態のものが対象となる。 例えば、 触媒 9が O S C を有していても良く、 あるいは有していなくても良い。 また、 電機ヒー夕 などによって加熱される触媒でも良い。 FIG. 2 shows an overall functional block of the diagnostic apparatus according to the present embodiment. A catalyst 9 for purifying exhaust gas is attached to an exhaust passage 12 of an internal combustion engine, and a temperature at which a gas temperature T downstream of the catalyst is detected. Detector 2 is installed. This touch The medium 9 may be of various forms. For example, the catalyst 9 may or may not have OSC. Also, a catalyst heated by an electric heater or the like may be used.
一方、 E C U 1は、 内燃機関の運転状態 (回転数、 空気量、 燃料量等) から触媒下流のガス温度 Γを推定する劣化触媒モデル 1 0 1と推定値 ΤΛ と温度検出器 2による実測値 Τを比較する比較装置 1 0 2と比較結果およ びその他の条件にもとづいて異常を判定する判定装置 1 0 3を備えている t E C U 1は所定のプログラムゃデ一夕などを保有するマイクロコンピュー 夕により実現される。 なお、 1 0 0はエンジン制御部であり、 エンジンの 吸入空気量、 燃料量、 回転数などの情報に基づいて、 エンジンの燃料噴射 量、 燃料噴射時期、 点火時期などの制御信号を生成し、 出力する。 また、 後述するように、 触媒 9の判定装置 1 0 3の出力に基づき、 必要なェンジ ン制御信号を生成し、 出力する。 なお、 診断装置は E C U 1から分離し、 必要なデータを相互に送受信するように構成してもよい。 On the other hand, the ECU 1 uses the deteriorated catalyst model 101 to estimate the gas temperature 下流 downstream of the catalyst from the operating state of the internal combustion engine (rotational speed, air amount, fuel amount, etc.), the estimated value Τ Λ, and the actual measurement using the temperature detector 2. The t ECU 1 including the comparing device 102 for comparing the value と and the judging device 103 for judging an abnormality based on the comparison result and other conditions has a predetermined program code, etc. It is realized by microcomputer. Reference numeral 100 denotes an engine control unit, which generates control signals such as an engine fuel injection amount, a fuel injection timing, and an ignition timing based on information such as an intake air amount, a fuel amount, and a rotation speed of the engine. Output. Further, as will be described later, based on the output of the determination device 103 of the catalyst 9, a necessary engine control signal is generated and output. The diagnostic device may be configured to be separated from the ECU 1 and transmit and receive necessary data to and from each other.
次に、 本発明の第 1の実施形態の動作について、 図 3のフローチャート 等で説明する。 図 3のステップ s i 0 1においては、 エンジンの運転状態 の読み込みを行い、 ステップ s i 0 2において流入温度を推定する。  Next, the operation of the first exemplary embodiment of the present invention will be described with reference to the flowchart of FIG. In step sio1, the operation state of the engine is read, and in step sio2, the inflow temperature is estimated.
図 6に、 エンジン運転状態と排気温度の代表的な関係を示す。 一般に空 気流量や燃料量が多いほど排気温度は高くなり、 また空燃比はストィキょ りもややリーンで最大となり、 また点火時期もリタード限界までは排気温 度が高くなる傾向がある。 ステップ a l 0 2ではこれらのマヅプを参照し て流入温度 Tin を推定する。 (図 2において触媒上流に温度センサを取り 付けて、 その出力をステップ s i 0 2に反映させても良い。)  Figure 6 shows a typical relationship between engine operating conditions and exhaust temperature. In general, the exhaust gas temperature increases as the air flow rate and the fuel amount increase, and the air-fuel ratio tends to be maximum at a slightly leaner stoichiometric ratio. In addition, the exhaust temperature tends to be higher until the ignition timing reaches the retard limit. In step a102, the inflow temperature Tin is estimated with reference to these maps. (In Fig. 2, a temperature sensor may be installed upstream of the catalyst, and its output may be reflected in step si02.)
次にステツプ s 1 0 3において、空気流量 Qa(n)と温度 Tinを用いて触媒 に流入する単位あたりの熱量 ηを演算する。 ここでは温度 Tin と空気流 量 Qa(n)(nは現在の値、 n- 1は 1ステツプ前の過去の値を示す)および排気 の比熱 C 1から単位時間あたりの流入熱量 ηが計算される。 次にステップ s l 0 4では触媒の熱量 Qcat(n)を演算する。触媒の熱量変 化は、 流入熱量 qinと放熱量 χと排気熱量 q。utの熱収支のみを考慮したモ デルである。 ここで、 放熱量 qexとは触媒から大気中に放熱される熱量で あり、 排気熱量 ¾utとは触媒を通る排気ガスに放出される熱量である。 Next, in step s103, the amount of heat η per unit flowing into the catalyst is calculated using the air flow rate Qa (n) and the temperature Tin. Here, the inflow heat η per unit time is calculated from the temperature Tin, the air flow Qa (n) (n is the current value, n-1 is the past value one step before) and the specific heat C1 of the exhaust. You. Next, at step sl 04, the calorie Qcat (n) of the catalyst is calculated. Heat changes of the catalyst, the inflow amount of heat q in the heat radiation quantity χ and the exhaust heat q. This model considers only the heat balance of ut . Here, the heat release q ex is the amount of heat radiated from the catalyst to the atmosphere, and the exhaust heat ut ut is the heat released to the exhaust gas passing through the catalyst.
しかし、 図 4に示すように、 実際の触媒の熱量には流入熱量と反応熱量 とが含まれている。 そして、 触媒が新品で完全に機能している場合、 触媒 の反応に伴う反応熱量が十分に大きい。 一方、 触媒が劣化してくると、 触 媒の反応に伴う反応熱量は、 小さくなる。 そこで、 触媒の流入熱量に基づ いた劣化触媒モデルによる推定値を求め、実測値による熱量と比較すれば、 反応熱量のみを検出して触媒の劣化診断を行うことができる。  However, as shown in Fig. 4, the actual calorific value of the catalyst includes the inflow calorific value and the reaction calorific value. And when the catalyst is new and fully functional, the reaction heat associated with the catalyst reaction is large enough. On the other hand, when the catalyst deteriorates, the heat of reaction associated with the reaction of the catalyst decreases. Therefore, by obtaining an estimated value based on the deteriorated catalyst model based on the amount of heat flowing into the catalyst and comparing the estimated value with the measured amount of heat, it is possible to detect only the amount of reaction heat and diagnose the deterioration of the catalyst.
この熱収支をもとに、 ステップ s l 0 5では触媒出口温度 Γの演算を行 う。この推定モデルは熱伝達のみを考慮した完全劣化触媒のモデルであり、 この推定値 と実測値 Tを比較することで触媒または温度検出器の劣化診 断ができる。  Based on this heat balance, in step sl05, the catalyst outlet temperature 演算 is calculated. This estimation model is a model of a completely degraded catalyst that considers only heat transfer. By comparing this estimated value and the measured value T, deterioration diagnosis of the catalyst or the temperature detector can be performed.
本モデルは従来の反応熱を考慮した触媒モデルよりも非常にシンプルで あるためソフトウエアとメモリの占有率が小さく、 マッチングも容易であ 劣化触媒モデル 1 0 1は、 内燃機関からの熱伝達のみを考慮している。 そのため、同時刻における推定値 ΤΛと実測値 Τの関係は図 5に示すように なる。 この図 5において、 傾き 1の直線は触媒が全く排気成分と反応しな い完全劣化触媒を表し、 本発明のモデルはこの劣化触媒と同じ温度プロフ ィールを持つ。 従って触媒の劣化が進み触媒の反応熱が減少すれば、 推定 温度と実測温度とのプロットは傾き 1の直線に近づき、 さらに劣化により ライトオフ温度が高温側にシフトすると傾き 1の直線から離れる温度が高 温側に移動する。 This model is much simpler than the conventional catalyst model that takes into account the heat of reaction, so the software and memory occupancy is small, and matching is easy.The deteriorated catalyst model 101 uses only heat transfer from the internal combustion engine. Is considered. Therefore, the relationship between the estimated value Τ Λ and the measured value に お け る at the same time is as shown in Fig. 5. In FIG. 5, the straight line having a slope of 1 represents a completely degraded catalyst in which the catalyst does not react with any exhaust components, and the model of the present invention has the same temperature profile as this degraded catalyst. Therefore, if the catalyst deteriorates and the reaction heat of the catalyst decreases, the plot of the estimated temperature and the measured temperature approaches the straight line with a slope of 1. Moves to the high temperature side.
そこで第 1の実施形態では、 図 2の比較装置 1 0 2において、 推定温度 と実測温度の比較から少なくとも反応熱量あるいはライトオフ温度をモニ 夕し、判定装置 1 0 3において反応熱量が所定値(Δ Tout)以下になった 場合、 もしくはライトオフ温度が所定温度(Cout)以上になった場合は触 媒が劣化したと判定し、 警告灯 (図示せず)を点灯したり、 異常情報をメモ リ 1 0 4に記憶したり、 あるいは異常情報を無線により外部に発信したり して触媒の劣化をユーザあるいは外部の機関に通知する。 ここで外部の機 関とは自動車メーカや修理工場等の自動車修理機関ある 、は大気汚染を管 理する環境管理機関のことを示す。 Therefore, in the first embodiment, at least the reaction calorie or the light-off temperature is monitored from the comparison between the estimated temperature and the measured temperature in the comparison device 102 of FIG. In the evening, if the amount of reaction heat becomes lower than the predetermined value (ΔTout) or the light-off temperature becomes higher than the predetermined temperature (Cout) in the judgment device 103, it is judged that the catalyst has deteriorated, and a warning is issued. A lamp (not shown) is turned on, abnormality information is stored in memory 104, or abnormality information is transmitted to the outside by radio to notify the user or an external organization of the deterioration of the catalyst. Here, the external organization is an automobile repair organization such as an automobile manufacturer or a repair shop, and the environmental management organization that manages air pollution.
ところで、 上記本発明の一実施形態において、 センサ一で検出される実 測値は厳密には正確ではなく、 触媒内に蓄えられた水分の蒸発の影響を受 けて 7 0 - 9 0 °Cで温度上昇が止まることがある。本発明の第 1の実施形態 のモデルではこの水分蒸発の影響を考慮していないため、 推定値と実測値 に食い違いが生じ誤診断の原因となってしまう。  By the way, in the embodiment of the present invention, the measured value detected by the sensor 1 is not strictly accurate, and is affected by the evaporation of the water stored in the catalyst. May stop the temperature rise. In the model of the first embodiment of the present invention, since the influence of the water evaporation is not taken into account, a discrepancy occurs between the estimated value and the actually measured value, which causes erroneous diagnosis.
そこで本発明では、 第 2の実施形態として、 モデルの推定値を実測値に より補正することにより誤診断を防止する。 図 7に本発明の第 2の実施形 態のフローチャートを示す。 ステップ s 2 0 1では実測値 Tが所定温度 TL 以下であるか否かを判定し、 所定温度以下であればステップ s 2 0 2以降 に進み、そうでなければ補正を行わずに終了する。ここで所定温度 TLは触 媒が熱反応を開始するライトオフ温度より若干低い 1 0 0 - 2 0 0 °C程度 に設定されるのが好ましい。 ステップ s 2 0 2では実測値 Tの温度変化率 を計算し、 その値と所定値 ΔΤ 0 (ほぼ 0である正数)と比較する。  Therefore, in the present invention, as a second embodiment, erroneous diagnosis is prevented by correcting the estimated value of the model with the actually measured value. FIG. 7 shows a flowchart of the second embodiment of the present invention. In step s201, it is determined whether or not the measured value T is equal to or lower than a predetermined temperature TL. If the temperature is equal to or lower than the predetermined temperature, the process proceeds to step s202, and if not, the process ends without performing correction. Here, the predetermined temperature TL is preferably set at about 100 to 200 ° C., which is slightly lower than the light-off temperature at which the catalyst starts a thermal reaction. In step s202, the temperature change rate of the measured value T is calculated, and the calculated value is compared with a predetermined value ΔΤ0 (a positive number that is almost 0).
ここで温度変化が所定値 ΔΤ 0より小さければ、ステップ s 2 0 3に進み 推定値 Γ(Ν)に実測値 T(N)を代入する。 またステップ s 2 0 2において条 件が不成立の場合はステップ 2 0 3を飛ばし補正を行わない。 次にステヅ プ s 2 0 4では推定値 Γ(Ν)が実測値 Τ(Ν)よりも所定値 ΔΤ 1 (ほぼ 0であ る正数)以上であるか否かを判定する。 ステップ s 2 0 4で所定値厶 T 1以 上であれば、 ステップ s 2 0 5に進み推定温度を負の方向に補正し (Kは補 正係数で 1よりも小さい正数)、そうでなければステヅプ s 2 0 3をスキヅ プして処理を終了する。 If the temperature change is smaller than the predetermined value ΔΤ0, the process proceeds to step s203 and substitutes the measured value T (N) for the estimated value Γ (Ν). If the condition is not satisfied in step s202, step 203 is skipped and no correction is performed. Next, in step s204, it is determined whether or not the estimated value Γ (Ν) is greater than or equal to the measured value Τ (Ν) by a predetermined value ΔΤ1 (a positive number that is almost 0). If it is equal to or more than the predetermined value T1 in step s204, the process proceeds to step s205 to correct the estimated temperature in the negative direction (K is a correction coefficient and a positive number smaller than 1). If not, skip step s203 To end the process.
図 8に、実測値による補正の有無による推定値の違いを模式的に示した。 なお補正量の大きさは水分の蒸発とは関係ない温度センサと推定値のず れを表すため、 補正量 ΔΤ 1 *Κ の積分値を記憶しておき、 所定値と比較す る事で温度検出器の異常も診断できる。  Fig. 8 schematically shows the difference in the estimated value depending on the presence or absence of correction based on the actual measurement value. Since the magnitude of the correction amount indicates the difference between the temperature sensor and the estimated value, which is not related to the evaporation of moisture, the integrated value of the correction amount ΔΤ 1 * Κ is stored and compared with a predetermined value to obtain the temperature. Detector errors can also be diagnosed.
また、水の蒸発時の実測温度 Τ (Ν)は、始動時の大気圧および温度検出器 の取り付け位置にも左右されるが大体 7 0 - 9 0 °Cの一定値に再現される。 そこで、 例えば図 7においてステップ s 2 0 3の T(N)が正常時の温度より も極端に低い温度(3 0 - 5 0 °C)であったり、エンジン始動每にステップ s 2 0 3の補正値 T(N)の再現性がとれない場合には温度検出器の異常と判 定できる。  The measured temperature 水 の (Ν) at the time of water evaporation depends on the atmospheric pressure at start-up and the mounting position of the temperature detector, but it is generally reproduced as a constant value of 70-90 ° C. Therefore, for example, in FIG. 7, T (N) in step s203 is extremely lower than the normal temperature (30-50 ° C), or when step s203 is started when the engine is started. If the reproducibility of the correction value T (N) cannot be obtained, it can be determined that the temperature detector is abnormal.
このように、 本発明の第 2の実施形態によれば、 劣化触媒モデルによる 温度推定値を実測値により補正することにより、 モデルの推定精度が向上 し診断をより正確に行える。  As described above, according to the second embodiment of the present invention, by correcting the temperature estimation value based on the deteriorated catalyst model based on the actually measured value, the estimation accuracy of the model is improved and the diagnosis can be performed more accurately.
次に、 本発明の第 3の実施形態について、 図 9〜図 1 2で説明する。 本 実施形態は、 実測値と推定値の差あるいは変化率の差から触媒の劣化度を 正確に表す劣化指標を生成する方法を開示するものである。  Next, a third embodiment of the present invention will be described with reference to FIGS. The present embodiment discloses a method of generating a deterioration index that accurately indicates the degree of deterioration of a catalyst from a difference between an actually measured value and an estimated value or a difference in a change rate.
まず、第一の劣化指標 Tiについて説明する。図 9は始動直後からの実測 値と推定値の時間変化を示したものである。 触媒が劣化すると実測値と推 定値の温度差が減少する。そこで実測値から推定値の差が所定値 ΔΤ 2より も大きくなつた時間を劣化指標 Ti とすることで触媒のライトオフ性能が モニタできる。  First, the first deterioration index Ti will be described. Figure 9 shows the change over time between the measured and estimated values immediately after starting. When the catalyst deteriorates, the temperature difference between the measured value and the estimated value decreases. Therefore, the light-off performance of the catalyst can be monitored by setting the time when the difference between the measured value and the estimated value becomes larger than the predetermined value ΔΤ2 as the deterioration index Ti.
この診断を実現する比較装置および判定装置の動作を図 1 0と図 1 1の フローチャートを用いて説明する。 まず図 1 0の比較装置の動作を説明す るが、 この処理に入る前の初期化処理として、 エンジン停止時にカウント 数 Ciを 0とし、 またカウン夕許可フラグ: fCUP0K= lに設定しておく事、 ま た比較処理を行う前には実測値 T(N)の測定および推定値 Γ(Ν)を更新して おく。 ステップ s 3 0 1において実測値 T(N)から推定値 Γ(Ν)への差が所 定値 ΔΤ 2よりも小さければ、 ステップ S 3 0 2に進み、 それ以外ではステ ヅプ S 3 0 3に進む。ステップ s 3 0 2ではカウンタを停止するためカウン ト許可フラグをクリアする(fCUPOK= 0 )。ステヅプ s 3 0 3ではカウン夕ァ ヅプ許可フラグをチェックし許可状態であればステップ S 3 0 4で Ciの力 ゥン夕 UP処理をおこない、 許可状態でなければ処理を終了する。 The operations of the comparison device and the determination device for realizing this diagnosis will be described with reference to the flowcharts of FIGS. 10 and 11. First, the operation of the comparison device shown in Fig. 10 will be described. As an initialization process before entering this process, the count number Ci is set to 0 when the engine is stopped, and the count permission flag: fCUP0K = l is set Before performing the comparison process, update the measured and estimated values 推定 (Ν) of the measured values T (N). deep. If the difference from the measured value T (N) to the estimated value Γ (Ν) is smaller than the predetermined value ΔΤ2 in step s301, proceed to step S302, otherwise, step S303 Proceed to. In step s302, the count permission flag is cleared to stop the counter (fCUPOK = 0). In step s303, the countup permission flag is checked. If the flag is in the permitted state, the power up of Ci is performed in step S304, and if not, the processing ends.
次に判定装置では、 図 1 1に示したフローチャートに従い劣化判定を行 う。 ステップ S 3 0 5ではカウンタ値 Ci と診断しきい値 Cout (図 1 2 (a)) を比較し、 しきい値以上 Coutであればステップ S 3 0 7に進み触媒劣化状 態であるとして触媒劣化フラグをセット (fCATNG= l )し、 そうでなければ ステップ s 3 0 6に進み触媒正常状態であるとしてフラグをクリア (fCATNG= 0 )する。  Next, the determination device performs the deterioration determination according to the flowchart shown in FIG. In step S305, the counter value Ci is compared with the diagnostic threshold value Cout (Fig. 12 (a)). The deterioration flag is set (fCATNG = l), and if not, the process proceeds to step s306 and the flag is cleared as the catalyst is in the normal state (fCATNG = 0).
ここで、 一般にライ トオフ時間 Coutは、 図 1 2 (b)に示したように、 流 量 Qが多いほど短縮される傾向があるので、 ステップ S 3 0 5において、 所定値 Coutを排気流量 Qが多いほど小さく設定すると、より正確な診断が できる。  Here, generally, as shown in FIG. 12 (b), the light-off time Cout tends to be shortened as the flow rate Q increases, so that the predetermined value Cout is reduced to the exhaust flow rate Q in step S305. The more the number, the smaller the setting, the more accurate the diagnosis.
次に、 温度変化率を用いた劣化指標について説明する。 温度変化率から は反応熱量の発生 (変化) がわかる。 図 1 3〜 1 5は触媒温度と触媒温度 変化率の関係を模式的に示したものである。 簡単のためここでは温度補正 を行った場合を示す。 推定値の温度変化率は排気の熱伝達のためエンジン 始動からやや遅れてピークを取りその後触媒温度の上昇にともない緩やか に減少する。 従って実測値の温度変化率との差は触媒反応が始まる温度 T 1以降で拡大する。  Next, a deterioration index using the temperature change rate will be described. The rate of change in temperature indicates the generation (change) of the heat of reaction. Figures 13 to 15 schematically show the relationship between catalyst temperature and catalyst temperature change rate. For the sake of simplicity, the case where temperature correction is performed is shown here. The estimated temperature change rate peaks slightly after the engine starts due to exhaust heat transfer, and then gradually decreases as the catalyst temperature rises. Therefore, the difference between the actually measured value and the temperature change rate increases after the temperature T1 at which the catalytic reaction starts.
図 1 3の Δ(1Τ 1は所定温度あるいは所定条件における温度変化率の差で ある。 この AdT lが 0に近づくほど劣化している事を示す指標となる。 ま た実測値が最大値をとる温度での推定値と実測値の差 AdT 2、 あるいは推 定値と実測値の差の最大値 AdT 3も劣化に従い小さくなるので劣化判定指 標となる。 In Fig. 13, Δ (1Τ1 is the difference of the temperature change rate at a predetermined temperature or under a predetermined condition. The index is an index indicating that the closer the AdTl becomes to 0, the more the measured value becomes the maximum value. The difference AdT2 between the estimated value and the measured value at the temperature taken, or the maximum value AdT3 of the difference between the estimated value and the measured value, also decreases with deterioration. Become a mark.
また図 1 4に示したように、 実測値および推定値のそれそれの温度変化 率が最大となる温度の温度差 (ピーク温度の差) Δ(1Τ4も劣化に従い小さ くなるので劣化診断に用いることができる。  Also, as shown in Fig. 14, the temperature difference between the measured value and the estimated value at which the rate of temperature change is the maximum (difference in peak temperature) Δ (1Τ4 also decreases with deterioration, so it is used for deterioration diagnosis. be able to.
また同様に、 図 1 5に示したように実測値と推定値との温度変化率で囲 まれる面積 AS も劣化により小さくなるので、 これも劣化診断に用いるこ とができる。  Similarly, as shown in Fig. 15, the area AS surrounded by the temperature change rate between the actually measured value and the estimated value becomes smaller due to deterioration, so that this can also be used for deterioration diagnosis.
次に、 図 1 6〜図 1 8に示す実施形態は、 温度検出器 2の異常を検出、 判定処理するものである。 この実施形態の装置は、 触媒の熱反応を含まな い触媒温度推定モデル (劣化触媒モデル) と、 前記劣化触媒モデルによる 推定値と前記温度検出器による実測値とを比較する比較装置と、 その比較 結果にもとづき温度検出器の異常を判定する判定装置とで構成される。  Next, the embodiments shown in FIGS. 16 to 18 detect and determine an abnormality of the temperature detector 2. The apparatus of this embodiment includes a catalyst temperature estimation model (deterioration catalyst model) that does not include a thermal reaction of a catalyst, a comparison device that compares an estimated value obtained by the degraded catalyst model with an actual measurement value obtained by the temperature detector, And a determination device for determining an abnormality of the temperature detector based on the comparison result.
この実施形態では、 まず、 図 1 6に示すように、 推定値 Γ(Ν)と実測値 Τ (Ν)の差厶 Τ (Ν)を求める。  In this embodiment, first, as shown in FIG. 16, a difference Τ (Ν) between the estimated value Γ (Ν) and the actually measured value Τ (Ν) is obtained.
ここで、 図 1 7に示すように、 温度検出器 2による実測値 Τは反応が始 まるライトオフ温度以下では反応熱がないため推定値 Γよりも高くなる 事はなく、 あるいは逆にライトオフ温度以上においては反応熱のため実測 値が推定値よりも低くなる事もない。  Here, as shown in Fig. 17, the measured value に よ る by the temperature detector 2 does not become higher than the estimated value た め because there is no reaction heat below the light-off temperature at which the reaction starts, or conversely, the light-off Above the temperature, the measured value does not become lower than the estimated value due to the heat of reaction.
そこで、 図 1 8のフローチャート及び図 1 9の説明図に示したように、 ライトオフ温度のモニタ値が正常時のライトオフ温度よりも低い所定値 Τ 11以下の場合で、 かつ、 実測値 Τと推定値 ΤΛの差 Δ Τ (Ν)が所定値 Δ Τ 11 以上、 すなわち図 1 9の左上の領域の場合(sX02)、 あるいは正常時のライ トオフ温度よりも高い所定温度値 Thlより高く、 かつ、反応熱モニタ値厶 Tが所定値 Δ ΤΙιΙ以下の負の値となる、すなわち図 1 9の右下の領域の場 合 (SX03) は、 温度検出器の異常 (sX05) と診断する。 また、 温度検出器 の出力が無い場合も異常 (sXOl) と診断する。 温度検出器に異常が無いと き、 触媒の診断を行う (sX04)。 ここでさらに詳しく推定値と実測値の差について考察すると、 ライトォ フ温度以下では実測値と推定値は一致し、 一方ライトオフ温度以上では反 応熱を示す事が分かる。 すなわち、 本実施形態では、 温度検出器の診断は ライトオフ温度より低い所定値 T 11以下ので行ない、触媒の診断はライト オフ温度以上で行うことにした。 つまりライトオフ温度以下での差は温度 検出器の誤差を表し、 この差が所定値以上になれば温度検出器が異常であ ると診断する。 また一方でライトオフ温度以上での差は反応熱量を示すの で、 この差 Δ Τが所定値以下であれば触媒が異常であると診断する。 この ように温度検出器の診断後に触媒の診断を行うので診断の信頼性が高めら れる。 Therefore, as shown in the flowchart of FIG. 18 and the explanatory diagram of FIG. 19, when the monitor value of the light-off temperature is equal to or less than the predetermined value Τ11, which is lower than the normal light-off temperature, and the measured value Τ a difference between the estimated value Τ Λ Δ Τ (Ν) is a predetermined value delta T 11 or more, that is, when the upper left region of Fig. 1 9 (SX02), or higher than the predetermined high temperature value Thl than Rye-off temperature during normal If the reaction heat monitor value T is a negative value equal to or less than the predetermined value ΔΤΙιΙ, that is, if it is in the lower right region of FIG. 19 (SX03), it is diagnosed that the temperature detector is abnormal (sX05). . If there is no output from the temperature detector, it is diagnosed as abnormal (sXOl). If there is no abnormality in the temperature detector, diagnose the catalyst (sX04). Considering the difference between the estimated value and the measured value in more detail here, it can be seen that the measured value and the estimated value match below the light-off temperature, but show reaction heat above the light-off temperature. That is, in the present embodiment, the diagnosis of the temperature detector is performed at the predetermined value T11 or lower lower than the light-off temperature, and the diagnosis of the catalyst is performed at the light-off temperature or higher. In other words, a difference below the light-off temperature indicates an error of the temperature detector. If the difference exceeds a predetermined value, it is diagnosed that the temperature detector is abnormal. On the other hand, since the difference above the light-off temperature indicates the amount of heat of reaction, if the difference ΔΤ is equal to or less than a predetermined value, it is diagnosed that the catalyst is abnormal. As described above, since the diagnosis of the catalyst is performed after the diagnosis of the temperature detector, the reliability of the diagnosis is improved.
本発明の他の実施形態は、 触媒の熱反応を含まない触媒温度推定モデル (劣化触媒モデル) と、 前記劣化触媒モデルによる推定値と前記温度検出 器による実測値とを比較する比較装置と、 実測値が所定温度よりも小さい 時に温度検出器の異常を判定し、 所定温度よりも大きい時に触媒の異常を 判定するものである。  Another embodiment of the present invention provides a catalyst temperature estimation model (a deteriorated catalyst model) that does not include a thermal reaction of a catalyst, a comparison device that compares an estimated value obtained by the deteriorated catalyst model with an actually measured value obtained by the temperature detector, When the measured value is lower than the predetermined temperature, the abnormality of the temperature detector is determined, and when it is higher than the predetermined temperature, the abnormality of the catalyst is determined.
すなわち、 図 2 0のフローチャートに示したように、 まず、 温度検出器 2による実測値 Tがライトオフ温度よりも低い所定値 T 11 より小さい場 合は温度検出器 2 の劣化判定処理を行う(s X O 2 )。 逆にライ トオフ温度 よりも低い所定値 T 11 より大きい場合は温度検出器の診断結果により温 度検出器 2が正常であるかを確認し(s X O 3 )、 正常である場合にのみ触 媒の劣化判定処理 ( s X O 4 )を行う。  That is, as shown in the flow chart of FIG. 20, first, when the actually measured value T by the temperature detector 2 is smaller than the predetermined value T11 lower than the light-off temperature, the deterioration determination process of the temperature detector 2 is performed ( s XO 2). Conversely, if the temperature is larger than the predetermined value T11, which is lower than the light-off temperature, it is checked whether the temperature detector 2 is normal based on the diagnosis result of the temperature detector (sXO3). Perform the deterioration judgment processing (s XO 4).
次に、 図 2 1は他の本実施形態の 1つとしての温度変化率を用いた場合 の比較装置の、 フローチャートを示す。 ステップ s 4 0 1では温度変化率 を演算する、 ここでは前回の温度と現在の温度の差を用いて温度変化率を 演算しているが、 温度センサのノイズをさけるために測定温度にはローパ スフィル夕処理を施しても良いし、 必ずしも前回の温度を使用するのでは なくそれより以前の値から適宜温度変化率を演算しても良い。 ステップ s 4 0 2ではステップ s 4 0 1で演算した温度変化率を元に、 温度変化率の 差 (Δ(1Τ 1,Δ(1Τ 2,Δ(1Τ 3 ) あるいはピーク温度の差 (Δ(1Τ 4 ) あるいは 面積(A S)の少なくとも一つを演算する。 Next, FIG. 21 shows a flowchart of a comparison device using a temperature change rate as one of the other embodiments. In step s401, the temperature change rate is calculated. In this example, the temperature change rate is calculated using the difference between the previous temperature and the current temperature. It is also possible to perform a blanking process, and it is not necessary to use the previous temperature, and the temperature change rate may be appropriately calculated from a previous value. Step s In 402, the difference in temperature change rate (Δ (1 41, Δ (1Τ2, Δ (1Τ3)) or the difference in peak temperature (Δ (1Τ4 ) Or Calculate at least one of the area (AS).
次に、 判定装置について図 2 2のフローチャートを用いて説明する。 図 2 2のステップ S 4 0 3において判定条件が成立した場合にはステップ s 4 0 4に進み、 不成立の場合には以下のステップをすぺてスキップして処 理を終了する。 なお s 4 0 3の判定条件による分岐は誤診断防止のために もうけられたステツプであり、 例えば後述の判定許可フラグ fDIAGEXを参 照し処理を分岐する。  Next, the determination device will be described with reference to the flowchart of FIG. If the determination condition is satisfied in step S403 of FIG. 22, the process proceeds to step s404. If the determination condition is not satisfied, the following steps are skipped and the process ends. The branch based on the determination condition of s403 is a step provided for preventing erroneous diagnosis. For example, the process branches with reference to a determination permission flag fDIAGEX described later.
ステップ s 4 0 4では、 図 2 2ステップ 4 0 2で演算した Fと所定値 Δ Tを比較し、 所定値 Δ Τよりも大きい場合にはステップ s 4 0 5に進み、 小さい場合にはステップ s 4 0 6に進む。 ここで Fとして一つの劣化指標 を用いても良いし、 より精度を上げるために複数の劣化指標にそれぞれ重 み付けをした新たな劣化指標を造って所定値と比較しても良い。 ステップ s 4 0 5では劣化指数が所定値よりも大きいので触媒は正常状態であり触 媒劣化フラグをクリア (fCATNG= 0 )し、 ステップ s 4 0 6では劣化触媒が 所定値よりも小さいので触媒が劣化状態として触媒劣化フラグをセット (fCATNG= l )する。  In step s404, the F calculated in step 402 of FIG. 22 is compared with the predetermined value ΔT, and if the value is larger than the predetermined value ΔΤ, the process proceeds to step s405. Proceed to s406. Here, one deterioration index may be used as F, or a new deterioration index may be created by weighting each of the plurality of deterioration indices to further improve accuracy, and may be compared with a predetermined value. In step s405, the catalyst is in a normal state because the deterioration index is larger than the predetermined value, and the catalyst deterioration flag is cleared (fCATNG = 0) .In step s406, the catalyst is low because the deterioration catalyst is smaller than the predetermined value. Sets the catalyst deterioration flag (fCATNG = l) as the deterioration state.
次に、 本発明の他の実施形態として、 触媒の誤診断防止に関する発明の 実施形態を説明する。 この発明は、 診断領域を触媒が反応を開始する温度 領域に限定することにより誤診断を防止するものである。 例えば、 劣化判 定装置において、 触媒温度検出器による触媒温度の実測値が所定温度範囲 であるときに劣化判定を行うのが望ましい。また、劣化判定装置において、 内燃機関の空気流量あるいは燃料噴射量の時間変化率が所定値以上の場合 は劣化判定を禁止するのが望ましい。 さらに、 劣化判定装置において、 内 燃機関の温度が所定値より高い場合は劣化判定を禁止するのが望ましい。 さらに、 内燃機関の診断装置において、 温度検出装置の異常時には触媒の 劣化判定を禁止するのが望ましい。 Next, as another embodiment of the present invention, an embodiment of the invention relating to prevention of misdiagnosis of a catalyst will be described. The present invention prevents erroneous diagnosis by limiting the diagnosis region to a temperature region where the catalyst starts a reaction. For example, in the deterioration determination device, it is desirable to perform the deterioration determination when the measured value of the catalyst temperature by the catalyst temperature detector is within a predetermined temperature range. Further, in the deterioration determination device, it is desirable to prohibit the deterioration determination when the time change rate of the air flow rate or the fuel injection amount of the internal combustion engine is a predetermined value or more. Further, in the deterioration determination device, it is desirable to prohibit the deterioration determination when the temperature of the internal combustion engine is higher than a predetermined value. Furthermore, in the internal combustion engine diagnostic device, when the temperature detecting device is abnormal, the catalyst It is desirable to prohibit the deterioration judgment.
図 2 3のフローチャートに、 その一実施形態を示す。 ステップ s 5 0 1 において実測値が所定範囲にあるか否かを判定し、 所定範囲以内であれば ステヅプ s 5 0 3に進み診断許可フラグをセヅト(fDIAGEX= l )し、 所定範 囲以外であればステップ s 5 0 3に進み診断許可フラグをクリアする (fDIAGEX= 0 )o An embodiment is shown in the flowchart of FIG. In step s501, it is determined whether or not the measured value is within a predetermined range, and if it is within the predetermined range, the flow advances to step s503 to set a diagnosis permission flag (fDIAGEX = l). If so, proceed to step s503 to clear the diagnosis permission flag (fDIAGEX = 0) o
図 2 4は、 触媒温度と触媒温度の変化率の典型的な関係を示したもので ある。 まずエンジン始動後から温度変化率は急激に上昇するが、 水の蒸発 により低温時(7 0— 1 0 0 °C )に減少しまた再び上昇する。 このため触媒 診断に最適な温度範囲は触媒のライトオフ温度と温度検出器を設置する位 置も考慮して、 1 0 0 - 2 0 0 °Cから 3 0 0 - 4 0 0 °Cの間で診断を行えば よい。  Figure 24 shows a typical relationship between the catalyst temperature and the rate of change of the catalyst temperature. First, the temperature change rate rises sharply after the engine is started, but decreases at low temperatures (70-100 ° C) and rises again due to evaporation of water. For this reason, the optimal temperature range for catalyst diagnosis is between 100-200 ° C and 300-400 ° C, taking into account the catalyst light-off temperature and the location of the temperature detector. Diagnosis should be performed at.
図 2 5には、 診断を禁止する一実施形態をフローチャートで示す。 ここ ではステップ s 5 0 4において診断許可フラグ: fDIAGEXを参照し、 診断許 可フラグがセヅトされていなければ、 ステップ s 5 0 5の劣化判定処理を スキップすることで診断を禁止する。  FIG. 25 is a flowchart illustrating an embodiment in which the diagnosis is prohibited. Here, the diagnosis permission flag: fDIAGEX is referred to in step s504, and if the diagnosis permission flag is not set, the diagnosis is prohibited by skipping the deterioration determination processing in step s505.
次に、 図 2 6〜図 2 7で他の実施形態について説明する。 本発明の診断 装置では、 エンジン再始動時など触媒がすでに暖まっている状態の時は、 推定値と実測値が大きく異なり誤診断の可能性がある。 そこで触媒がすで に暖まっている場合は劣化判定を禁止し誤診断を防止する。  Next, another embodiment will be described with reference to FIGS. In the diagnostic device of the present invention, when the catalyst is already warmed, such as when the engine is restarted, the estimated value and the measured value greatly differ, and there is a possibility of erroneous diagnosis. Therefore, if the catalyst has already warmed up, the deterioration judgment is prohibited to prevent erroneous diagnosis.
図 2 6に内燃機関停止後の内燃機関水温と触媒温度の関係を示す。 ェン ジン停止後から触媒温度と水温の両者とも外気温に近づくが、 比熱の違い により触媒温度の方が早く低下する。 従って水温に着目すれば、 エンジン 始動時の推定値と実測値の差を十分に小さくできる。  Figure 26 shows the relationship between the internal combustion engine water temperature and the catalyst temperature after the internal combustion engine is stopped. After the engine stops, both the catalyst temperature and the water temperature approach the outside air temperature, but the catalyst temperature drops faster due to the difference in specific heat. Therefore, focusing on the water temperature, the difference between the estimated value at engine start and the measured value can be made sufficiently small.
図 2 7は本発明の一実形態をフローチャートで示したものである。 図 2. 7のステップ s 6 0 1で水温が所定温度よりも高い場合はステップ s 6 0 2に進み劣化判定を禁止し、 そうでなければステップ s 6 0 3で劣化判定 を許可する。 FIG. 27 is a flowchart showing one embodiment of the present invention. If the water temperature is higher than the predetermined temperature in step s601 of Fig. 2.7, the process proceeds to step s602 and the deterioration judgment is prohibited. Otherwise, the deterioration judgment is performed in step s603. Allow
次に、 本発明の他の実施形態について説明する。 温度検出器が異常の場 合は、 温度検出器の出力に基づいた触媒診断は誤診断の可能性が高いので 触媒の劣化判定を禁止する。 図 2 8は本発明を実施するためのフローチヤ ートを示す。 図 2 8のステヅプ s 7 0 1で温度センサが異常である場合は ステップ s 7 0 2に進み劣化判定を禁止し、そうでなければステヅプ s 7 0 3で劣化判定を許可する。  Next, another embodiment of the present invention will be described. If the temperature detector is abnormal, the catalyst diagnosis based on the output of the temperature detector has a high possibility of erroneous diagnosis. FIG. 28 shows a flowchart for carrying out the present invention. If the temperature sensor is abnormal in step s701 in FIG. 28, the flow advances to step s702 to inhibit the deterioration determination, and otherwise, the deterioration determination is permitted in step s703.
さらに、 本発明の他の実施形態を図 2 9で説明する。 既に述べた本発明 の劣化判定装置において、 内燃機関の空気流量あるいは燃料噴射量の時間 変化率が所定値以上の場合は劣化判定を禁止するのが望ましい。すなわち、 温度検出器を用いた触媒診断方法は排気熱が反応熱にくらベて極端に大き い場合には、実測値から反応熱を分離して診断する事が困難となる。また、 先の実施形態で述べた温度変化率を比較する方法は、 反応熱が発生するラ ィトオフ温度付近で空気流量や燃料量が変化すると誤診断の原因となる。 そこで本実施形態では排気量の変化率あるいは燃料量の変化率が所定値を 越えた場合には診断を禁止する。  Further, another embodiment of the present invention will be described with reference to FIG. In the above-described deterioration determination device of the present invention, it is desirable to prohibit the deterioration determination when the time change rate of the air flow rate or the fuel injection amount of the internal combustion engine is equal to or more than a predetermined value. That is, when the exhaust gas heat is extremely large compared to the reaction heat, the catalyst diagnosis method using the temperature detector makes it difficult to separate the reaction heat from the actually measured value for diagnosis. Further, the method of comparing the temperature change rates described in the above embodiments causes erroneous diagnosis if the air flow rate or the fuel amount changes near the light-off temperature at which reaction heat is generated. Therefore, in the present embodiment, the diagnosis is prohibited when the rate of change of the displacement or the rate of change of the fuel exceeds a predetermined value.
図 2 9はこの実施形態を実施するためのフローチャートを示す。 図 2 9 のステップ s 8 0 1で空気量の変化率と所定値を比較し、 所定値より大き ければステップ s 8 0 2に進み劣化判定を禁止し、 そうでなければステツ プ s 8 0 3で劣化判定を許可する。なおステップ s 8 0 1を燃料量に置き換 える事で同様に燃料量変化による誤診断も防止できる。  FIG. 29 shows a flowchart for carrying out this embodiment. In step s801 of FIG. 29, the rate of change of the air amount is compared with a predetermined value. If the airflow rate is larger than the predetermined value, the process proceeds to step s802, and the deterioration determination is prohibited. Step 3 permits deterioration judgment. By replacing step s801 with the fuel amount, erroneous diagnosis due to a change in the fuel amount can be similarly prevented.
次に、 本発明の他の実施形態について、 図 3 0、 図 3 1で説明する。 図 3 0は空燃比とライトオフ温度あるいは HC浄化率の関係を模式的に示し た物である。 この図はストイキょりもややリーンの空燃比の時にライトォ フ温度が最も低い事を示している。また空燃比がリツチだと HCが十分に触 媒内で反応しないため反応熱が下がる。 よって触媒の診断時において空燃 比を一定に保つ事でライトオフ温度および反応量のばらつきを押さえるこ とで、 誤診断を防止できる。 Next, another embodiment of the present invention will be described with reference to FIGS. 30 and 31. FIG. FIG. 30 schematically shows the relationship between the air-fuel ratio and the light-off temperature or HC purification rate. This figure shows that the write-off temperature is the lowest at a slightly leaner air-fuel ratio. If the air-fuel ratio is rich, HC does not react sufficiently in the catalyst, so the heat of reaction decreases. Therefore, by keeping the air-fuel ratio constant during catalyst diagnosis, it is possible to suppress variations in light-off temperature and reaction amount. Thus, erroneous diagnosis can be prevented.
そこで、 内燃機関の排気流路に空燃比センサと、 燃料噴射量を調整する 燃料調整装置を具備し、 図 31の s 3101〜s 3103に示すように、 触媒診断中は空燃比を診断に適した一定の診断用空燃比に保つように制御 する。  Therefore, an air-fuel ratio sensor and a fuel adjusting device for adjusting the fuel injection amount are provided in the exhaust passage of the internal combustion engine, and as shown in s 3101 to s 3103 in FIG. 31, the air-fuel ratio is suitable for diagnosis during catalyst diagnosis. Control to maintain a constant diagnostic air-fuel ratio.
次に、 本発明の他の実施形態について、 図 32〜図 34で説明する。 こ の実施形態では、 図 32の sX01〜sX06に示すように、 触媒の劣化 確認モードをもち、 劣化確認モード中は触媒温度を下げるように内燃機関 の燃料量または点火時期等を制御する。  Next, another embodiment of the present invention will be described with reference to FIGS. In this embodiment, as shown by sX01 to sX06 in FIG. 32, a catalyst deterioration confirmation mode is provided, and during the deterioration confirmation mode, the fuel amount or the ignition timing of the internal combustion engine is controlled so as to lower the catalyst temperature.
図 33は、 図 32における劣化確認モード sXO 3の詳細を示すフロー チャートである。 図 33の sXO l〜sX03に示すように、 触媒診断に より故障通知があつたときはその故障をメモリ一に記録し、 エンジンの出 力を制限するように、 エンジンの点火時期や燃料の憤射量を制御する。 図 34は、 診断モード時の排気温度と通常時の排気温度を示す。 このよ うに診断モード中に排気温度を下げてクライテリア触媒のライトオフ温度 よりも低く触媒温度を制御する (リタ一ドまたは 2回噴射等の触媒暖機ぁ るいは機関暖機制御を停止する) ことにより、 劣化時は正常時に比べて温 度の変化率が小さくなり確実に触媒の診断ができる。  FIG. 33 is a flowchart showing details of the deterioration confirmation mode sXO 3 in FIG. As shown in sXOl to sX03 in Fig. 33, when a failure is notified by catalyst diagnosis, the failure is recorded in memory and the engine ignition timing and fuel Controls radiation. FIG. 34 shows the exhaust temperature in the diagnostic mode and the exhaust temperature in the normal state. Thus, during the diagnosis mode, the exhaust gas temperature is lowered to control the catalyst temperature lower than the light-off temperature of the criteria catalyst (the catalyst warm-up such as retard or double injection or the engine warm-up control is stopped). As a result, the rate of change in temperature during deterioration is smaller than in normal times, and catalyst diagnosis can be performed reliably.
また、 図 32の sXO 6における触媒異常時処理は、 触媒のさらなる劣 化を防止するため、 例えば図 34に示したような排気温度を下げる制御を 行うことが好ましい。  Further, in the case of catalyst abnormality processing in sXO 6 in FIG. 32, it is preferable to perform control to lower the exhaust gas temperature as shown in FIG. 34, for example, in order to prevent further deterioration of the catalyst.

Claims

請求の範囲 The scope of the claims
1 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検出 する温度検出装置を具備した内燃機関の診断装置において、  1. A diagnosis device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a temperature detection device for detecting a temperature of the catalyst.
前記温度検出器による実測値を基に前記触媒の排気熱と反応熱とを分離 して求める手段と、 該反応熱の大小により前記触媒の劣化度を判定する手 段とを備えたこと特徴とする内燃機関の診断装置。  Means for separating and obtaining exhaust heat and reaction heat of the catalyst based on the measured value of the temperature detector, and means for determining the degree of deterioration of the catalyst based on the magnitude of the reaction heat. Diagnostic device for an internal combustion engine.
2 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検出 する触媒温度検出装置を具備した内燃機関の診断装置において、  2. A diagnostic device for an internal combustion engine comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst.
触媒の熱反応を含まない触媒温度推定モデル (劣化触媒モデル) と、 前 記劣化触媒モデルによる推定値と前記温度検出器による実測値とを比較す る比較装置と、その結果にもとづき前記触媒の異常を判定する判定装置と、 を備えたことを特徴とする内燃機関の診断装置。  A catalyst temperature estimation model that does not include the thermal reaction of the catalyst (deteriorated catalyst model); a comparison device that compares the estimated value obtained by the aforementioned degraded catalyst model with the actual measurement value obtained by the temperature detector; A diagnosis device for an internal combustion engine, comprising: a determination device for determining an abnormality;
3 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検出 する触媒温度検出装置を具備した内燃機関の診断装置において、  3. A diagnostic device for an internal combustion engine including: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst.
触媒の熱反応を含まない触媒温度推定モデル (劣化触媒モデル) と、 前 記劣化触媒モデルによる推定値と前記温度検出器による実測値とを比較す る比較装置と、 その比較結果にもとづき温度検出器の異常を判定する判定 装置と、 を備えた内燃機関の診断装置。  A comparison device that compares a catalyst temperature estimation model that does not include the thermal reaction of the catalyst (degraded catalyst model), an estimated value based on the aforementioned deteriorated catalyst model, and an actual measurement value obtained by the temperature detector, and detects a temperature based on the comparison result. A diagnostic device for an internal combustion engine, comprising: a determining device that determines an abnormality of a fuel cell.
4 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検出 する触媒温度検出装置を具備した内燃機関の診断装置において、  4. In a diagnostic device for an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst,
触媒の熱反応を含まない触媒温度推定モデル (劣化触媒モデル) と、 前 記劣化触媒モデルによる推定値と前記温度検出器による実測値とを比較す る比較装置と、 実測値が所定温度よりも小さい時に温度検出器の異常を判 定し、 所定温度よりも大きい時に触媒の異常を判定する判定装置と、 を備 えた内燃機関の診断装置。  A catalyst temperature estimation model that does not include the thermal reaction of the catalyst (deteriorated catalyst model); a comparison device that compares the estimated value obtained by the degraded catalyst model with the actually measured value by the temperature detector; A diagnostic device for an internal combustion engine, comprising: a determination device that determines an abnormality of a temperature detector when the temperature is lower than a predetermined value, and determines an abnormality of the catalyst when the temperature is higher than a predetermined temperature.
5 . 前記劣化触媒モデルは触媒の熱伝達モデルであって、 前記触媒に流入 する空気流量と前記内燃機関の排気温度をパラメ一夕とする事を特徴とす る請求項 2 - 4のいずれかに記載の内燃機関の診断装置。 5. The deteriorated catalyst model is a heat transfer model of a catalyst, wherein the flow rate of air flowing into the catalyst and the exhaust gas temperature of the internal combustion engine are set to parameters. The diagnostic device for an internal combustion engine according to any one of claims 2 to 4.
6 . 前記劣化触媒モデルにおける温度の推定値を前記温度検出装置の実測 値を用いて補正する事を特徴としたとする請求項 2 - 5のいずれかに記載 の内燃機関の診断装置。  6. The diagnostic device for an internal combustion engine according to claim 2, wherein the estimated value of the temperature in the deteriorated catalyst model is corrected using an actually measured value of the temperature detecting device.
7 . 前記劣化触媒モデルにおける温度の推定値を前記温度検出装置の実測 値を用いて補正し、 補正時の推定値の変化率が所定値以下になる温度にも とづき温度検出器の異常を判定することを特徴とする請求項 3 - 5のいず れかに記載の内燃機関の診断装置。  7. The estimated value of the temperature in the deteriorated catalyst model is corrected using the actually measured value of the temperature detecting device, and the abnormality of the temperature detector is determined based on the temperature at which the rate of change of the estimated value at the time of correction is equal to or less than a predetermined value. The diagnostic device for an internal combustion engine according to any one of claims 3 to 5, wherein the determination is performed.
8 . 前記比較装置において、 実測値と推定値の絶対値あるいは時間変化率 を比較する事を特徴とした請求項 2 - 5のいずれかに記載の内燃機関の診  8. The diagnosis of an internal combustion engine according to any one of claims 2 to 5, wherein the comparison device compares an absolute value or a time rate of change between the measured value and the estimated value.
9 . 前記劣化判定装置において、 前記触媒温度検出器による触媒温度の実 測値が所定温度範囲であるときに劣化判定を行うことを特徴とする請求項 2 - 5のいずれかに記載の内燃機関の診断装置。 9. The internal combustion engine according to claim 2, wherein the deterioration determination device performs the deterioration determination when the measured value of the catalyst temperature by the catalyst temperature detector is within a predetermined temperature range. Diagnostic device.
1 0 . 前記劣化判定装置において、 前記内燃機関の空気流量あるいは燃料 噴射量の時間変化率が所定値以上の場合は劣化判定を禁止する事を特徴と する請求項 2 - 5のいずれかに記載の内燃機関の診断装置。  10. The deterioration judging device according to any one of claims 2 to 5, wherein the deterioration judgment is prohibited when a time change rate of the air flow rate or the fuel injection amount of the internal combustion engine is equal to or more than a predetermined value. Diagnostic device for internal combustion engines.
1 1 . 前記劣化判定装置において、 内燃機関の温度を検出する機関温度検 出装置を具備し、 前記内燃機関の温度が所定値より高い場合は劣化判定を 禁止する事を特徴とする請求項 2 - 5のいずれかに記載の内燃機関の診断  11. The deterioration determination device, further comprising: an engine temperature detection device for detecting a temperature of the internal combustion engine, wherein the deterioration determination is prohibited when the temperature of the internal combustion engine is higher than a predetermined value. -Diagnosis of internal combustion engine according to any of 5
1 2 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検 出する触媒温度検出装置を具備した内燃機関の診断装置において、 前記温度検出器による実測値を基に前記触媒の排気熱と反応熱とを分離 して求め該反応熱の大小により前記触媒の劣化度を判定する手段と、 前記 温度検出装置の異常時には前記触媒の劣化判定を禁止する事を特徴とする 内燃機関の診断装置。 12. A diagnostic device for an internal combustion engine, comprising: a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine; and a catalyst temperature detecting device for detecting a temperature of the catalyst. Means for determining the exhaust heat and reaction heat of the catalyst separately to determine the degree of deterioration of the catalyst based on the magnitude of the reaction heat; and prohibiting the determination of deterioration of the catalyst when the temperature detection device is abnormal. Diagnostic device for internal combustion engine.
1 3 . 内燃機関の排気流路に排気を浄ィヒする触媒と、 前記触媒の温度を検 出する触媒温度検出装置を含む診断装置を具備した内燃機関の制御装置に おいて、 13. A control device for an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine, and a diagnostic device including a catalyst temperature detection device for detecting a temperature of the catalyst.
前記温度検出器による実測値を基に前記触媒の排気熱と反応熱とを分離 して求め該反応熱の大小により前記触媒の劣化度を診断する手段と、 内燃 機関の排気流路に設けられた空燃比センサと、 燃料噴射量を調整する燃料 調整装置を具備し、 前記触媒の診断中は内燃機関の空燃比を一定に保つよ うに前記燃料調整装置を制御する事を特徴とする内燃機関の制御装置。 Means for separating and obtaining the exhaust heat and the reaction heat of the catalyst based on the actual value measured by the temperature detector, and diagnosing the degree of deterioration of the catalyst based on the magnitude of the reaction heat; and provided in the exhaust passage of the internal combustion engine. An internal combustion engine comprising: an air-fuel ratio sensor; and a fuel adjustment device that adjusts a fuel injection amount, and controls the fuel adjustment device so that the air-fuel ratio of the internal combustion engine is kept constant during diagnosis of the catalyst. Control device.
1 4 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検 出する触媒温度検出装置を含む診断装置を具備した内燃機関の制御装置に おいて、 14. An internal combustion engine control device including a catalyst for purifying exhaust gas in an exhaust passage of the internal combustion engine and a diagnostic device including a catalyst temperature detection device for detecting a temperature of the catalyst.
前記制御装置は触媒の劣化確認モードをもち、 該劣化確認モードにおい て前記温度検出器による実測値を基に前記触媒の排気熱と反応熱とを分離 して求め該反応熱の大小により前記触媒の劣化度を診断する手段と、 劣化 確認モ一ド中は触媒温度を下げるように内燃機関の燃料量または点火時期 等を制御する手段とを備えたことを特徴とした内燃機関の制御装置。 The controller has a catalyst deterioration confirmation mode. In the deterioration confirmation mode, the exhaust heat and the reaction heat of the catalyst are separated and obtained based on the measured value of the temperature detector, and the catalyst heat is determined based on the magnitude of the reaction heat. A control device for an internal combustion engine, comprising: means for diagnosing the degree of deterioration of the internal combustion engine; and means for controlling the fuel amount or the ignition timing of the internal combustion engine so as to lower the catalyst temperature during the deterioration confirmation mode.
1 5 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検 出する触媒温度検出装置を具備した内燃機関における診断方法において、 前記触媒温度検出器による実測値を基に前記触媒の排気熱と反応熱とを 分離して求め、 該反応熱の大小により前記触媒の劣化度を判定することを 特徴とする内燃機関の診断方法。 15. A diagnostic method for an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of an internal combustion engine and a catalyst temperature detecting device for detecting a temperature of the catalyst, the method comprising: A method for diagnosing an internal combustion engine, characterized in that exhaust heat and reaction heat of the catalyst are obtained separately, and the degree of deterioration of the catalyst is determined based on the magnitude of the reaction heat.
1 6 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検 出する触媒温度検出装置を具備した内燃機関における診断方法において、 触媒の熱反応を含まなレヽ劣化触媒モデルによる推定値と前記温度検出器 による実測値とを比較し、 該比較結果にもとづき前記触媒の異常を判定す ることを特徴とする内燃機関の診断方法。  16. A diagnostic method for an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of an internal combustion engine and a catalyst temperature detecting device for detecting a temperature of the catalyst, wherein a degradation catalyst model including a thermal reaction of the catalyst is provided. A method for diagnosing an internal combustion engine, comprising: comparing an estimated value obtained by the temperature detector with an actually measured value obtained by the temperature detector; and determining an abnormality of the catalyst based on the comparison result.
1 7 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検 出する触媒温度検出装置を具備した内燃機関における診断方法において、 触媒の熱反応を含まない劣化触媒モデルによる推定値と前記温度検出器 による実測値とを比較し、 該比較結果にもとづき前記温度検出器の異常を 判定することを特徴とする内燃機関の診断方法。 17. A catalyst for purifying exhaust gas in the exhaust passage of the internal combustion engine, and detecting the temperature of the catalyst A method for diagnosing an internal combustion engine provided with a catalyst temperature detecting device that outputs an estimated value based on a deteriorated catalyst model that does not include a thermal reaction of a catalyst and an actual measured value obtained by the temperature detector, and based on the comparison result, detects the temperature based on the comparison result. A method for diagnosing an internal combustion engine, characterized by determining an abnormality of a fuel cell.
1 8 . 内燃機関の排気流路に排気を浄化する触媒と、 前記触媒の温度を検 出する触媒温度検出装置を具備した内燃機関における診断方法において、 触媒の熱反応を含まない劣化触媒モデルによる推定値と前記温度検出器 による実測値とを比較し、 前記実測値が所定温度よりも小さい時に前記温 度検出器の異常を判定し、 前記所定温度よりも大きい時に前記触媒の異常 を判定することを特徴とする内燃機関の診断方法。  18. A method for diagnosing an internal combustion engine including a catalyst for purifying exhaust gas in an exhaust passage of an internal combustion engine and a catalyst temperature detecting device for detecting a temperature of the catalyst, wherein a deterioration catalyst model that does not include a thermal reaction of the catalyst is used. The estimated value is compared with the actual value measured by the temperature detector, and when the actual value is lower than a predetermined temperature, the abnormality of the temperature detector is determined. When the actual value is higher than the predetermined temperature, the abnormality of the catalyst is determined. A method for diagnosing an internal combustion engine, comprising:
1 9 . 排気流路に設けられた空燃比センサと、 燃料噴射量を調整する燃料 調整装置と、 機関の排気流路に排気を浄ィヒする触媒と、 前記触媒の温度を 検出する触媒温度検出装置を含む診断装置を具備した内燃機関の制御方法 において、  1 9. An air-fuel ratio sensor provided in the exhaust passage, a fuel adjustment device for adjusting the fuel injection amount, a catalyst for purifying exhaust gas in the exhaust passage of the engine, and a catalyst temperature for detecting the temperature of the catalyst A control method for an internal combustion engine including a diagnostic device including a detection device,
前記温度検出器による実測値を基に前記触媒の排気熱と反応熱とを分離 して求め該反応熱の大小により前記触媒の劣化度を診断し、 前記触媒の診 断中は内燃機関の空燃比を一定に保つように前記燃料調整装置を制御する 事を特徴とする内燃機関の制御方法。  The exhaust heat and the reaction heat of the catalyst are separated and obtained based on the actual value measured by the temperature detector, and the degree of deterioration of the catalyst is diagnosed based on the magnitude of the reaction heat. A method for controlling an internal combustion engine, comprising controlling the fuel adjusting device so as to maintain a constant fuel ratio.
2 0 . 内燃機関の排気流路に排気を浄化する触媒と、 内燃機関の燃料量ま たは点火時期等を制御する手段と、 前記触媒の温度を検出する触媒温度検 出装置を含む診断装置を具備した内燃機関の制御方法において、  20. A diagnostic device including a catalyst for purifying exhaust gas in an exhaust passage of an internal combustion engine, a means for controlling a fuel amount or an ignition timing of the internal combustion engine, and a catalyst temperature detecting device for detecting a temperature of the catalyst. In a control method for an internal combustion engine comprising:
内燃機関は運転モードとして、 通常の運転モードと前記診断装置による 前記触媒の劣化確認モードとを有し、  The internal combustion engine has, as operation modes, a normal operation mode and a catalyst deterioration confirmation mode by the diagnostic device,
前記触媒の劣化確認モードにおいて前記温度検出器による実測値を基に 前記触媒の排気熱と反応熱とを分離して求め該反応熱の大小により前記触 媒の劣化度を診断し、 該劣化確認モード中は触媒温度を下げるように前記 燃料量または点火時期等を制御することを特徴とした内燃機関の制御方法  In the catalyst deterioration confirmation mode, the exhaust heat and the reaction heat of the catalyst are separated and obtained based on the actually measured values by the temperature detector, and the degree of deterioration of the catalyst is diagnosed based on the magnitude of the reaction heat. Controlling the fuel amount or the ignition timing so as to lower the catalyst temperature during the mode.
PCT/JP2001/001659 2001-03-02 2001-03-02 Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method WO2002070873A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002569561A JPWO2002070873A1 (en) 2001-03-02 2001-03-02 Apparatus and method for diagnosing internal combustion engine and method for controlling internal combustion engine using the same
PCT/JP2001/001659 WO2002070873A1 (en) 2001-03-02 2001-03-02 Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001659 WO2002070873A1 (en) 2001-03-02 2001-03-02 Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method

Publications (1)

Publication Number Publication Date
WO2002070873A1 true WO2002070873A1 (en) 2002-09-12

Family

ID=11737092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001659 WO2002070873A1 (en) 2001-03-02 2001-03-02 Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method

Country Status (2)

Country Link
JP (1) JPWO2002070873A1 (en)
WO (1) WO2002070873A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169997A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Deterioration determining device of catalyst
EP1676991A2 (en) 2004-12-28 2006-07-05 HONDA MOTOR CO., Ltd. Plant temperature control system
JP2007002700A (en) * 2005-06-22 2007-01-11 Honda Motor Co Ltd Abnormality diagnosing device for exhaust temperature sensor
JP2007332905A (en) * 2006-06-16 2007-12-27 Honda Motor Co Ltd Temperature measuring device of internal combustion engine
JP2008175118A (en) * 2007-01-18 2008-07-31 Toyota Motor Corp Catalyst deterioration detection device
EP1986067A1 (en) 2007-04-27 2008-10-29 HONDA MOTOR CO., Ltd. Electronic control system for controlling plant temperature
WO2009101736A1 (en) 2008-02-13 2009-08-20 Honda Motor Co., Ltd. Control apparatus for fuel reformer
JP2010112220A (en) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd Catalyst diagnostic device
JP2010523891A (en) * 2007-04-13 2010-07-15 ルノー・エス・アー・エス Method and apparatus for controlling the operating state of a catalytic converter in an exhaust pipe of an internal combustion engine
KR100999638B1 (en) 2008-12-05 2010-12-08 기아자동차주식회사 Engine control system of vehicle and method thereof
JP4978856B2 (en) * 2009-01-16 2012-07-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9945801B1 (en) 2016-10-14 2018-04-17 Air Products And Chemicals, Inc. Monitoring the activity of reforming catalyst
EP3309122A1 (en) * 2016-10-14 2018-04-18 Air Products and Chemicals, Inc. Monitoring the activity of reforming catalyst
JP2019120238A (en) * 2018-01-11 2019-07-22 ボッシュ株式会社 Exhaust gas estimated temperature error reduction method and vehicle operation control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317161U (en) * 1989-06-28 1991-02-20
JPH05256175A (en) * 1992-03-16 1993-10-05 Mazda Motor Corp Exhaust sensor degradation detecting device for engine
JPH08270438A (en) * 1995-04-03 1996-10-15 Toyota Motor Corp Catalyst degradation judging device
JPH0941952A (en) * 1995-08-02 1997-02-10 Honda Motor Co Ltd Deterioration detector for catalyst of internal combustion engine
JP2000291423A (en) * 1999-04-08 2000-10-17 Toyota Central Res & Dev Lab Inc Catalyst deterioration determining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317161U (en) * 1989-06-28 1991-02-20
JPH05256175A (en) * 1992-03-16 1993-10-05 Mazda Motor Corp Exhaust sensor degradation detecting device for engine
JPH08270438A (en) * 1995-04-03 1996-10-15 Toyota Motor Corp Catalyst degradation judging device
JPH0941952A (en) * 1995-08-02 1997-02-10 Honda Motor Co Ltd Deterioration detector for catalyst of internal combustion engine
JP2000291423A (en) * 1999-04-08 2000-10-17 Toyota Central Res & Dev Lab Inc Catalyst deterioration determining device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169997A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Deterioration determining device of catalyst
EP1676991A2 (en) 2004-12-28 2006-07-05 HONDA MOTOR CO., Ltd. Plant temperature control system
US7305819B2 (en) 2004-12-28 2007-12-11 Honda Motor Co., Ltd. Plant temperature control system
JP4503498B2 (en) * 2005-06-22 2010-07-14 本田技研工業株式会社 Exhaust temperature sensor abnormality diagnosis device
JP2007002700A (en) * 2005-06-22 2007-01-11 Honda Motor Co Ltd Abnormality diagnosing device for exhaust temperature sensor
JP2007332905A (en) * 2006-06-16 2007-12-27 Honda Motor Co Ltd Temperature measuring device of internal combustion engine
JP4675284B2 (en) * 2006-06-16 2011-04-20 本田技研工業株式会社 Internal combustion engine temperature measurement device
JP2008175118A (en) * 2007-01-18 2008-07-31 Toyota Motor Corp Catalyst deterioration detection device
JP2010523891A (en) * 2007-04-13 2010-07-15 ルノー・エス・アー・エス Method and apparatus for controlling the operating state of a catalytic converter in an exhaust pipe of an internal combustion engine
US7881830B2 (en) 2007-04-27 2011-02-01 Honda Motor Co., Ltd. Electronic control system for controlling plant temperature
JP4512610B2 (en) * 2007-04-27 2010-07-28 本田技研工業株式会社 Electronic control device for controlling plant temperature
JP2008276562A (en) * 2007-04-27 2008-11-13 Honda Motor Co Ltd Electronic control device for controlling temperature of plant
EP1986067A1 (en) 2007-04-27 2008-10-29 HONDA MOTOR CO., Ltd. Electronic control system for controlling plant temperature
JP2009190913A (en) * 2008-02-13 2009-08-27 Honda Motor Co Ltd Controlling device for fuel reformer
WO2009101736A1 (en) 2008-02-13 2009-08-20 Honda Motor Co., Ltd. Control apparatus for fuel reformer
JP2010112220A (en) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd Catalyst diagnostic device
KR100999638B1 (en) 2008-12-05 2010-12-08 기아자동차주식회사 Engine control system of vehicle and method thereof
JP4978856B2 (en) * 2009-01-16 2012-07-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9945801B1 (en) 2016-10-14 2018-04-17 Air Products And Chemicals, Inc. Monitoring the activity of reforming catalyst
EP3309122A1 (en) * 2016-10-14 2018-04-18 Air Products and Chemicals, Inc. Monitoring the activity of reforming catalyst
EP3309121A1 (en) * 2016-10-14 2018-04-18 Air Products And Chemicals, Inc. Monitoring the activity of reforming catalyst
JP2019120238A (en) * 2018-01-11 2019-07-22 ボッシュ株式会社 Exhaust gas estimated temperature error reduction method and vehicle operation control device

Also Published As

Publication number Publication date
JPWO2002070873A1 (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP3674017B2 (en) Catalyst degradation detection device for exhaust gas purification
US6908225B2 (en) Failure diagnosing apparatus for an engine cooling water temperature sensor
EP0947683A2 (en) Method and apparatus for catalyst temperature control
JP2008121533A (en) Control device of internal combustion engine
JP4453836B2 (en) Engine catalyst deterioration diagnosis device and method, and exhaust gas purification catalyst device
US20060217857A1 (en) Fault diagnostic apparatus
WO2002070873A1 (en) Device and method for diagnosing internal combustion engine and internal combustion engine control method using the device and method
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
JPH10121947A (en) Method for estimating middle bed temperature of catalyst converter on exhaust system of internal combustion engine provided with at least one cylinder
CN101482049A (en) Temperature sensor diagnostics
US6883307B2 (en) Diagnosis apparatus for internal combustion engine
JP3267188B2 (en) Catalyst deterioration determination device for internal combustion engine
CN112211704B (en) Control device for internal combustion engine
JP2008051092A (en) Device and method for protecting exhaust system of internal combustion engine
JP2004251186A (en) Device for diagnosing failure of cooling water temperature sensor for internal combustion engine
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP2008038720A (en) Abnormality diagnosis device for downstream side oxygen sensor of exhaust emission control system
JP2003176714A (en) Function diagnosis device for exhaust emission control device in internal combustion engine
JP4719129B2 (en) Failure diagnosis device for exhaust gas purification system
JP2962089B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4736797B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP4692274B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP2005282475A (en) Abnormality diagnosis device for air fuel ratio sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002569561

Country of ref document: JP

122 Ep: pct application non-entry in european phase