JP3855720B2 - Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine - Google Patents

Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine Download PDF

Info

Publication number
JP3855720B2
JP3855720B2 JP2001318240A JP2001318240A JP3855720B2 JP 3855720 B2 JP3855720 B2 JP 3855720B2 JP 2001318240 A JP2001318240 A JP 2001318240A JP 2001318240 A JP2001318240 A JP 2001318240A JP 3855720 B2 JP3855720 B2 JP 3855720B2
Authority
JP
Japan
Prior art keywords
catalyst
warm
abnormality
abnormality diagnosis
early
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001318240A
Other languages
Japanese (ja)
Other versions
JP2003120382A (en
Inventor
啓二 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001318240A priority Critical patent/JP3855720B2/en
Priority to US10/270,270 priority patent/US6898927B2/en
Publication of JP2003120382A publication Critical patent/JP2003120382A/en
Application granted granted Critical
Publication of JP3855720B2 publication Critical patent/JP3855720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/146
    • Y02T10/47

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排出ガス浄化用の触媒の暖機を促進する触媒早期暖機制御システムの異常の有無を診断する内燃機関の触媒早期暖機制御システムの異常診断装置に関するものである。
【0002】
【従来の技術】
近年の自動車は、排出ガスを浄化するために三元触媒等の触媒を搭載しているが、この触媒は、エンジン始動後に活性温度に暖機されるまでは、排出ガス浄化率が低いため、エンジン始動後に触媒が活性温度に暖機されるまで、点火時期遅角制御等により触媒早期暖機制御を実行して、排気熱量を増加させて触媒を短時間で暖機するようにしている。
【0003】
【発明が解決しようとする課題】
上述した触媒早期暖機制御システムが正常に動作していれば、エンジン始動後の排気エミッションをかなり低減できるが、この触媒早期暖機制御システムの動作が異常になると、触媒が活性温度に暖機されるまでの時間が長くなってしまい、その分、排気エミッションが悪化してしまう。従って、触媒早期暖機制御システムの動作が異常になった場合は、それを早期に検出して、修理等を早期に行えるようにすることが望ましいが、現状では、触媒早期暖機制御システムが正常に機能しているか否かを自動的に診断する手法が開発されていないため、触媒早期暖機制御システムの動作が異常になっても、運転者がその異常を全く気付かずに運転を続けてしまうという問題がある。
【0004】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、内燃機関の運転中に触媒早期暖機制御システムの異常の有無を自動的に診断する機能を備えた内燃機関の触媒早期暖機制御システムの異常診断装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の触媒早期暖機制御システムの異常診断装置は、排出ガス浄化用の触媒の暖機を促進する触媒早期暖機制御手段と、前記触媒早期暖機制御手段が正常に動作しているか否かを診断する異常診断手段と、前記触媒の下流側の排出ガス成分を検出する排出ガス成分検出手段とを備え、前記異常診断手段によって、前記排出ガス成分検出手段により検出される排出ガス成分に基づいて前記触媒早期暖機制御手段の異常の有無を診断するようにしたものである。
【0006】
触媒の暖機の進み具合(活性度合)に応じて触媒を通過する排出ガスの浄化率が変化するため、触媒の暖機の進み具合に応じて触媒下流側の排出ガス成分検出手段の周辺に流れる排出ガス成分(例えば酸素濃度、空燃比等)が変化し、それに応じて触媒下流側の排出ガス成分検出手段の検出値が変化する。この関係から、触媒早期暖機制御中に、触媒下流側の排出ガス成分検出手段により検出される排出ガス成分に基づいて、触媒の暖機の進み具合が正常であるか、遅れているかを判断することが可能となり、もし、触媒の暖機が遅れていると判断される場合は、触媒早期暖機制御手段の異常と診断するものである。この場合、触媒下流側の排出ガス成分検出手段は、空燃比制御のために設置されているセンサを利用すれば良いため、触媒温度センサ等の新たなセンサを設ける必要がなく、低コスト化の要求を満たしながら、内燃機関の運転中に触媒早期暖機制御手段の異常診断を自動的に行うことができる。
【0007】
ところで、触媒は使用期間が長くなると、浄化特性が劣化してくるため、触媒早期暖機制御中の触媒の暖機の進み具合が正常であっても、触媒が劣化していると、触媒を通過する排出ガスの浄化率が通常よりも低下してくる。このため、触媒が劣化している場合と、触媒の暖機が遅れている場合とは、触媒早期暖機制御中の排出ガス浄化率の挙動(触媒下流側の排出ガス成分検出手段の検出値の挙動)が似通ってきて、触媒早期暖機制御中の触媒下流側の排出ガス成分検出手段の検出値のみからでは両者の区別が付きにくくなってくる場合がある。
【0008】
この点を考慮して、請求項1に係る発明では、異常診断手段は、前記触媒早期暖機制御手段による触媒早期暖機制御中に前記排出ガス成分検出手段により検出される排出ガス成分に基づいて前記触媒早期暖機制御手段の異常又は前記触媒の劣化のいずれかに該当する異常を仮検出する第1の異常診断手段と、触媒早期暖機制御終了後に前記排出ガス成分検出手段により検出される排出ガス成分に基づいて前記触媒の劣化を検出する第2の異常診断手段とを備え、前記第1の異常診断手段による仮検出の結果と前記第2の異常診断手段による前記触媒の劣化の検出結果とに基づいて前記触媒早期暖機制御手段が正常に動作しているか否かを診断するようにしている。これにより、触媒早期暖機制御手段の異常の診断精度を向上することができる。
【0009】
更に、請求項のように、前記第1の異常診断手段による前記触媒早期暖機制御手段の異常又は前記触媒の劣化の仮検出結果と前記第2の異常診断手段による前記触媒の劣化の検出結果とに基づいて前記触媒早期暖機制御手段の異常と前記触媒の劣化とを判別するようにすると良い。これにより、触媒早期暖機制御手段の異常の他に触媒の劣化も検出することができる。
【0010】
この場合、請求項のように、排出ガス成分検出手段は、触媒の下流側の排出ガス成分として、排出ガスの酸素濃度又は排出ガスの空燃比のいずれかを検出するものを用いれば良い。このようにすれば、空燃比制御のために設置されている代表的なセンサである酸素センサや空燃比センサを排出ガス成分検出手段として利用することができ、本発明を適用しやすい。
【0011】
ところで、触媒早期暖機制御中の触媒の暖機の進み具合が遅れても、触媒早期暖機制御終了後は、それまでに触媒の暖機がある程度進んでいるため、触媒が劣化していなければ、排出ガスの浄化率が高くなっている。
【0012】
従って、請求項のように、前記第1の異常診断手段によって触媒早期暖機制御手段の異常又は触媒の劣化のいずれかに該当する異常を仮検出し、且つ、前記第2の異常診断手段によって触媒の劣化を検出した場合に、最終的に触媒の劣化と診断するようにすると良い。このようにすれば、触媒の劣化を触媒早期暖機制御手段の異常と誤って判定することを未然に防止することができ、異常診断の信頼性を向上することができると共に、触媒の劣化も検出することができる。
【0013】
また、請求項のように、前記第1の異常診断手段によって触媒早期暖機制御手段の異常又は触媒の劣化のいずれかに該当する異常を仮検出し、且つ、前記第2の異常診断手段によって触媒の劣化を検出しない場合に、最終的に前記触媒早期暖機制御手段の異常と診断するようにすると良い。これにより、触媒早期暖機制御手段の異常を精度良く検出することができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側には、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、スロットルバルブ15とスロットル開度を検出するスロットル開度センサ16が設けられている。
【0015】
更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、燃料を噴射する燃料噴射弁20が取り付けられている。
【0016】
一方、エンジン11の排気管21の途中には、排出ガス中のCO,HC,NOx等を低減させる三元触媒等の触媒22が設置されている。この触媒22の上流側と下流側には、それぞれ排出ガスの酸素濃度等のガス成分濃度、空燃比、リッチ/リーンのいずれかを検出するセンサ23,24(排出ガス成分検出手段)が設置されている。本実施形態では、上流側センサ23は、排出ガスの空燃比に応じたリニアな空燃比信号を出力する空燃比センサ(A/Fセンサ)が用いられ、下流側センサ24は、排出ガスの空燃比が理論空燃比に対してリッチかリーンかによって出力電圧が反転する酸素センサが用いられている。また、エンジン11のシリンダブロックには、冷却水温を検出する水温センサ25や、エンジン回転速度を検出するクランク角センサ26が取り付けられている。
【0017】
これら各種のセンサ出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された空燃比制御用の各ルーチン(図示せず)を実行し、上流側空燃比センサ23と下流側酸素センサ24の出力に基づいて排出ガスの空燃比を制御する。具体的には、上流側空燃比センサ23の出力に基づいて触媒22上流側の排出ガスの空燃比を目標空燃比に一致させるように空燃比(燃料噴射量)をフィードバック制御し、更に、触媒22下流側の空燃比を制御目標値(例えば理論空燃比付近)に一致させるように、下流側酸素センサ24の出力に基づいて触媒22上流側の目標空燃比を補正するサブフィードバック制御を行う。
【0018】
また、ECU27は、イグニッションスイッチ(図示せず)のオン後に所定クランク角毎に図2の触媒早期暖機制御ルーチンを実行し、触媒早期暖機制御を実行する触媒早期暖機制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、触媒早期暖機制御実行条件が成立しているか否かを判定する。この触媒早期暖機制御実行条件としては、例えば、触媒22が暖機前(活性前)であること、点火時期遅角制御を実行可能な運転状態であること(例えばアイドル運転時)等であり、これらの条件が全て満たされたときに触媒早期暖機制御実行条件が成立する。尚、触媒22が暖機前であるか否かは、始動後経過時間と冷却水温で判断したり、或は、始動後の吸入空気量積算値又は燃料噴射量積算値で判断するようにして良く、要は、始動後に触媒22に与える総熱量に関係するパラメータを用いて触媒22が暖機前であるか否かを判定すれば良い。
【0019】
触媒早期暖機制御実行条件が成立している場合は、ステップ102に進み、点火時期遅角制御を実行して、排気熱量を増加させて触媒22の暖機を促進する。その後、触媒早期暖機制御実行条件が成立しなくなった時点で、ステップ103に進み、触媒早期暖機制御を終了して通常の点火時期制御に移行する。
【0020】
更に、ECU27は、ROMに記憶された図3及び図4の異常診断用の各ルーチンを実行し、触媒早期暖機制御の異常の有無と触媒22の劣化の有無を診断する。
【0021】
ここで、診断方法を概略的に説明する。触媒早期暖機制御中は、触媒22の暖機の進み具合(活性度合)に応じて触媒22を通過する排出ガスの浄化率が変化するため、触媒22の暖機の進み具合に応じてその下流側の酸素センサ24周辺に流れる排出ガスの空燃比が変化し、それに応じて下流側酸素センサ24の出力が変化する。この関係から、触媒早期暖機制御中に、下流側酸素センサ24の出力に基づいて触媒22の暖機の進み具合が正常であるか、遅れているかを判断することが可能となり(図5参照)、もし、触媒22の暖機が遅れていると判断される場合は、触媒早期暖機制御の異常と診断するものである。
【0022】
ところで、触媒22は使用期間が長くなると、浄化特性が劣化してくるため、触媒早期暖機制御中の触媒22の暖機の進み具合が正常であっても、触媒22が劣化していると、触媒22を通過する排出ガスの浄化率が通常よりも低下してくる。このため、触媒22が劣化している場合と、触媒22の暖機が遅れている場合とは、触媒早期暖機制御中の排出ガス浄化率の挙動(下流側酸素センサ24の出力の挙動)が似通ってきて、触媒早期暖機制御中の下流側酸素センサ24の出力のみからでは両者の区別が付きにくくなってくる。
【0023】
そこで、本実施形態では、触媒早期暖機制御中に触媒22の暖機がある程度進んだ段階で、下流側酸素センサ24の出力を用いて、触媒22の暖機(活性化)の進み具合が遅れていないか否かについての異常診断を行い(以下この異常診断を「暖機前異常診断」という)、更に、触媒早期暖機制御終了後に、触媒早期暖機制御の異常時でも触媒22の暖機が終了すると判断できる時期に、再び下流側酸素センサ24の出力を用いて異常診断を行い(以下この異常診断を「暖機後異常診断」という)、暖機前異常診断の結果と暖機後異常診断の結果とに基づいて触媒早期暖機制御の異常と触媒22の劣化とを判別する。
【0024】
つまり、触媒早期暖機制御中の触媒22の暖機の進み具合が遅れても、触媒早期暖機制御終了後は、それまでに触媒22の暖機がある程度進んでいるため、触媒22が劣化していなければ、排出ガスの浄化率が高くなっている。従って、暖機前異常診断で異常有りと診断された場合には、暖機後異常診断で再び異常有りと診断されるか否かで、触媒22の劣化と触媒早期暖機制御の異常とを判別することができる。
【0025】
以上説明した異常診断を実行する図3の異常診断ルーチンは、イグニッションスイッチ(図示せず)のオン後に所定時間毎(例えば50msec毎)に起動され、特許請求の範囲でいう異常診断手段としての役割を果たす。本ルーチンが起動されると、まずステップ201で、暖機前異常診断が終了したか否かを判定し、暖機前異常診断が終了していなければ、ステップ202に進み、図4の暖機前異常診断ルーチンを実行して、異常/正常を判定する。この暖機前異常診断で、異常と判定される場合は、触媒早期暖機制御の異常と触媒22の劣化のどちらかであることを意味する。尚、ステップ202で実行する図4の暖機前異常診断ルーチンは、特許請求の範囲でいう第1の異常診断手段としての役割を果たす。
【0026】
そして、次のステップ203で、暖機後異常診断が終了したか否かを判定し、暖機後異常診断が終了していなければ、ステップ204に進み、図4の暖機前異常診断ルーチンと同じ処理方法で異常診断する暖機後異常診断ルーチンを実行して、触媒早期暖機制御の異常時でも触媒22の暖機が終了すると判断できる時期に、再び異常/正常を判定する。この暖機後異常診断で、再び異常と判定される場合は、触媒22の劣化であることを意味し、正常と判定される場合は、触媒22の劣化が発生していないことを意味する。尚、ステップ204で実行する暖機機後異常診断ルーチンは、特許請求の範囲でいう第2の異常診断手段としての役割を果たす。
【0027】
その後、ステップ205に進み、暖機後異常診断で、異常と判定されたか否かを判定し、暖機後異常診断で、異常と判定された場合は、ステップ207に進み、触媒22の劣化であると判定して、警告ランプ(図示せず)を点灯して運転者に警告すると共に、触媒劣化を表す異常コードをECU27のバックアップRAM(図示せず)に記憶して、本ルーチンを終了する。
【0028】
これに対し、暖機後異常診断で、正常(触媒22の劣化無し)と判定された場合は、ステップ206に進み、暖機前異常診断で、異常と判定されたか否かを判定し、暖機前異常診断で、異常と判定された場合は、ステップ208に進み、触媒早期暖機制御の異常であると判定して、警告ランプ(図示せず)を点灯して運転者に警告すると共に、触媒早期暖機制御の異常を表す異常コードをECU27のバックアップRAM(図示せず)に記憶して、本ルーチンを終了する。
【0029】
一方、暖機前異常診断で、正常と判定された場合は、触媒早期暖機制御が正常に行われ、且つ、触媒22が劣化していないと判断して本ルーチンを終了する。
【0030】
次に、異常診断の方法を図5のタイムチャートを用いて説明する。時刻t1 でエンジン11が始動された後、時刻t2 で空燃比フィードバック制御が開始される。空燃比フィードバック制御中は、触媒22上流側の空燃比(空燃比センサ23の出力af)が周期的にリッチ/リーンに反転するため、触媒22が未暖機状態又は劣化状態で、排出ガス浄化率が低い場合は、触媒22上流側の空燃比のリッチ/リーンの反転に応じて触媒22下流側の酸素センサ24の出力soxが比較的大きく振れるが、触媒早期暖機制御中に触媒22の暖機がある程度進んで排出ガス浄化率がある程度高くなると、下流側酸素センサ24の出力soxの振れが小さくなる。
【0031】
そこで、本実施形態では、触媒早期暖機制御中に始動後の吸入空気量積算値sgが所定値sga以上になった時点(触媒早期暖機制御が正常に行われた場合に触媒22の暖機がある程度進んで下流側酸素センサ24の出力soxの振れが小さくなると判断される時点)で、触媒22上流側の空燃比(空燃比センサ23の出力af)の振れに対する下流側酸素センサ24の出力soxの振れの程度を判定する処理を開始する。この処理は、演算周期(例えば50msec)当たりの下流側酸素センサ24の出力soxの変化量Δsox(図6参照)を算出して、これを積算して下流側酸素センサ24の出力変化量積算値ΣΔsoxを求めると共に、演算周期(例えば50msec)当たりの上流側空燃比センサ23の出力afの変化量Δafを算出して、これを積算して上流側空燃比センサ23の出力変化量積算値ΣΔafを求める。この積算処理を所定時間(例えば30sec)が経過するまで行った後、上流側空燃比センサ23の出力変化量積算値ΣΔafと下流側酸素センサ24の出力変化量積算値ΣΔsoxとの比ΣΔaf/ΣΔsoxを異常診断パラメータとして算出し、この異常診断パラメータΣΔaf/ΣΔsoxが所定の判定値よりも小さいか否かで、異常/正常を判定する。
【0032】
次に、ステップ202で起動される図4の暖機前異常診断ルーチンの処理内容を説明する。本ルーチンが起動されると、まずステップ301、302で、暖機前異常診断実行条件が成立しているか否かを判定する。この暖機前異常診断実行条件は、▲1▼始動後の吸入空気量積算値sgが所定値sga以上であること[ステップ301]、▲2▼水温センサ25で検出した冷却水温が所定温度kthw(例えば20℃)を越えていることである[ステップ302]。つまり、始動後の吸入空気量積算値sgが所定値sga未満であったり、冷却水温が所定温度kthw以下である場合は、まだ触媒22の温度が低く、触媒早期暖機制御の正常/異常の区別が付きにくいため、暖機前異常診断実行条件が不成立となり、以降の処理を行うことなく、本ルーチンを終了する。
【0033】
これに対し、始動後の吸入空気量積算値sgが所定値sga以上で、且つ、冷却水温が所定温度kthwを越えている場合は、触媒22の暖機がある程度進んで、触媒早期暖機制御の正常/異常の区別が可能な状態になっているため、暖機前異常診断実行条件が成立して、ステップ303以降の暖機前異常診断処理を次のようにして実行する。まず、ステップ303で、上流側空燃比センサ23の今回の出力af(i) から前回の出力af(i-1) を引き算して、演算周期(例えば50msec)当たりの上流側空燃比センサ23の出力変化量Δafを求める。そして、次のステップ304で、下流側酸素センサ24の今回の出力sox(i) から前回の出力sox(i-1) を引き算して、演算周期(例えば50msec)当たりの下流側酸素センサ24の出力変化量Δsoxを求める。
【0034】
この後、ステップ305に進み、上流側空燃比センサ23の出力変化量Δafを積算して、その積算値ΣΔafを求め、次のステップ306で、下流側酸素センサ24の出力変化量Δsoxを積算して、その積算値ΣΔsoxを求める。この後、ステップ307に進み、エアフローメータ14で検出した吸入空気量gを積算して、始動後の吸入空気量積算値sgを求める。
【0035】
この後、ステップ308に進み、暖機前異常診断処理を開始してから所定時間(例えば30sec)が経過したか否かを判定し、所定時間が経過するまで、上述した積算処理を繰り返す。そして、所定時間が経過した時点で、ステップ309に進み、上流側空燃比センサ23の出力変化量積算値ΣΔafを下流側酸素センサ24の出力変化量積算値ΣΔsoxで割り算して異常診断パラメータspを求める。
sp=ΣΔaf/ΣΔsox
【0036】
この後、ステップ310に進み、異常診断パラメータspを所定の判定値と比較し、異常診断パラメータspが判定値よりも小さければ、ステップ311に進み、異常と判定し、異常診断パラメータspが判定値以上であれば、ステップ312に進み、正常と判定する。この際、判定値は、演算処理の簡略化のために固定値としても良いが、始動後の吸入空気量積算値sgに応じてマップ等により算出するようにしても良い。
【0037】
以上説明した図4の暖機前異常診断ルーチンで、異常と判定された場合は、触媒早期暖機制御の異常と触媒22の劣化のどちらかであることを意味する。
【0038】
図3のステップ204で起動される暖機後異常診断ルーチンは、図4の暖機前異常診断ルーチンのステップ301、302、310で判定値が異なること以外は、図4の暖機前異常診断ルーチンと同じである。暖機後異常診断実行条件は、▲1▼始動後の吸入空気量積算値sgが、触媒早期暖機制御の異常時でも触媒22の暖機が終了すると判断できる所定値以上であること、▲2▼水温センサ25で検出した冷却水温が触媒早期暖機制御の異常時でも触媒22の暖機が終了すると判断できる所定温度(例えば80℃)を越えていることであり、これら2つの条件▲1▼、▲2▼が共に満たされたときに、暖機後異常診断実行条件が成立して、暖機後異常診断を実行する。この暖機後異常診断で、再び異常と判定される場合は、触媒22の劣化であることを意味し、この暖機後異常診断で、正常と判定される場合は、触媒22の劣化が発生していないことを意味する。
【0039】
以上説明した本実施形態では、触媒早期暖機制御中の触媒22の暖機の進み具合に応じて触媒22下流側の酸素センサ24の出力が変化することを考慮して、下流側酸素センサ24の出力を用いて触媒早期暖機制御の異常の有無を診断するようにしたので、エンジン運転中に触媒早期暖機制御の異常が発生すれば、その異常を直ちに検出することができて、運転者がその異常を全く気付かずに運転を続けてしまうという事態を回避することができる。
【0040】
しかも、触媒早期暖機制御の異常診断に用いる下流側酸素センサ24は、空燃比制御のために設置されているセンサを利用すれば良いため、触媒温度センサ等の新たなセンサを設ける必要がなく、低コスト化の要求を満たしながら、エンジン運転中に触媒早期暖機制御の異常診断を自動的に行うことができる。
【0041】
更に、本実施形態では、触媒22が劣化していると、触媒22の劣化を触媒早期暖機制御の異常と誤って判定する可能性があることを考慮して、触媒早期暖機制御中に下流側酸素センサ24の出力を用いて異常診断(暖機前異常診断)を行った後、触媒早期暖機制御終了後に、再び下流側酸素センサ24の出力を用いて異常診断(暖機後異常診断)を行い、暖機前異常診断で異常有りと診断された場合に暖機後異常診断で再び異常有りと診断されるか否かで、触媒22の劣化と触媒早期暖機制御の異常とを判別するようにしたので、触媒22の劣化を触媒早期暖機制御の異常と誤って判定することを未然に防止することができて、異常診断の信頼性を向上することができると共に、触媒22の劣化も検出することができる。
【0042】
尚、本実施形態では、排気管21に触媒22を1個のみ設置したが、複数個の触媒を設置した構成のものにも本発明を適用することができる。この場合は、複数個の触媒のうちの特定の触媒の下流側のセンサの出力を用いて触媒早期暖機制御の異常診断を行うようにすれば良い。
【0043】
また、触媒22の下流側のセンサは、酸素センサに限定されず、空燃比センサ、HC等のガス成分濃度を検出するガスセンサを用いるようにしても良い。また、触媒早期暖機制御は、点火時期の遅角に限定されず、公知の様々な触媒早期暖機制御システムに本発明を適用して実施できる。
【0044】
また、本実施形態では、下流側酸素センサ24の出力変化量積算値を用いて異常診断するようにしたが、下流側酸素センサ24の出力のリッチ/リーンの反転周期を用いて異常診断するようにしても良く、また、下流側酸素センサ24の出力を用いて触媒22の活性時期(暖機終了時期)を判定し、触媒22の活性時期が正常時よりも遅いか否かで、異常の有無を診断するようにしても良い等、異常診断方法は種々変更して実施しても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すエンジン制御システム全体の概略構成図
【図2】触媒早期暖機制御ルーチンの処理の流れを示すフローチャート
【図3】異常診断ルーチンの処理の流れを示すフローチャート
【図4】暖機前異常診断ルーチンの処理の流れを示すフローチャート
【図5】異常診断の処理方法を説明するためのタイムチャート
【図6】下流側酸素センサの出力波形の一例を示すタイムチャート
【符号の説明】
11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、20…燃料噴射弁、21…排気管、22…触媒、23…上流側空燃比センサ、24…下流側酸素センサ(排出ガス成分検出手段)、27…ECU(触媒早期暖機制御手段,異常診断手段,第1の異常診断手段,第2の異常診断手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abnormality diagnosis device for an early catalyst warm-up control system for an internal combustion engine that diagnoses the presence or absence of an abnormality in an early catalyst warm-up control system that promotes warm-up of an exhaust gas purification catalyst for an internal combustion engine.
[0002]
[Prior art]
Recent automobiles are equipped with a catalyst such as a three-way catalyst to purify exhaust gas, but this catalyst has a low exhaust gas purification rate until it is warmed up to the activation temperature after the engine is started. Until the catalyst is warmed up to the activation temperature after the engine is started, the catalyst early warm-up control is executed by ignition timing retardation control or the like to increase the exhaust heat amount and warm the catalyst in a short time.
[0003]
[Problems to be solved by the invention]
If the catalyst early warm-up control system described above is operating normally, exhaust emissions after engine startup can be reduced considerably. However, if the catalyst early warm-up control system operates abnormally, the catalyst warms up to the activation temperature. It takes a long time to be used, and the exhaust emission becomes worse accordingly. Therefore, if the operation of the early catalyst warm-up control system becomes abnormal, it is desirable to detect it early so that repairs etc. can be performed early. A method for automatically diagnosing whether or not it is functioning properly has not been developed, so even if the operation of the early catalyst warm-up control system becomes abnormal, the driver continues to operate without notice of the abnormality at all. There is a problem that it ends up.
[0004]
The present invention has been made in view of such circumstances, and therefore the object thereof is an internal combustion engine having a function of automatically diagnosing the presence or absence of an abnormality in the catalyst early warm-up control system during operation of the internal combustion engine. An object of the present invention is to provide an abnormality diagnosis device for a catalyst early warm-up control system.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an abnormality diagnosis device for a catalyst early warm-up control system for an internal combustion engine according to claim 1 of the present invention comprises catalyst early warm-up control means for promoting warm-up of a catalyst for exhaust gas purification, An abnormality diagnosis means for diagnosing whether or not the catalyst early warm-up control means is operating normally; and an exhaust gas component detection means for detecting an exhaust gas component downstream of the catalyst, the abnormality diagnosis means The presence / absence of abnormality of the catalyst early warm-up control means is diagnosed based on the exhaust gas component detected by the exhaust gas component detection means.
[0006]
Since the purification rate of the exhaust gas passing through the catalyst changes according to the progress of the catalyst warm-up (activity level), the exhaust gas component detection means on the downstream side of the catalyst depends on the progress of the catalyst warm-up. The flowing exhaust gas component (for example, oxygen concentration, air-fuel ratio, etc.) changes, and the detection value of the exhaust gas component detection means on the downstream side of the catalyst changes accordingly. From this relationship, it is determined whether the progress of catalyst warm-up is normal or delayed based on the exhaust gas component detected by the exhaust gas component detection means on the downstream side of the catalyst during early catalyst warm-up control. If it is determined that the catalyst warm-up is delayed, it is diagnosed that the catalyst early warm-up control means is abnormal. In this case, the exhaust gas component detection means on the downstream side of the catalyst only needs to use a sensor installed for air-fuel ratio control, so there is no need to provide a new sensor such as a catalyst temperature sensor, thereby reducing costs. While satisfying the requirements, abnormality diagnosis of the catalyst early warm-up control means can be automatically performed during operation of the internal combustion engine.
[0007]
By the way, if the catalyst is used for a long period of time, the purification characteristics deteriorate, so even if the catalyst warm-up progress during the early catalyst warm-up control is normal, The purification rate of the exhaust gas passing therethrough is lower than usual. For this reason, when the catalyst is deteriorated and when the warm-up of the catalyst is delayed, the behavior of the exhaust gas purification rate during the early catalyst warm-up control (the detected value of the exhaust gas component detecting means downstream of the catalyst) In some cases, it may be difficult to distinguish between the two only from the detection value of the exhaust gas component detection means on the downstream side of the catalyst during the early catalyst warm-up control.
[0008]
In view of this point, in the invention according to claim 1 , the abnormality diagnosis means is based on the exhaust gas component detected by the exhaust gas component detection means during the catalyst early warm-up control by the catalyst early warm-up control means. First abnormality diagnosing means for temporarily detecting an abnormality corresponding to either an abnormality of the catalyst early warm-up control means or deterioration of the catalyst, and detected by the exhaust gas component detection means after completion of the catalyst early warm-up control. Second abnormality diagnosis means for detecting deterioration of the catalyst based on the exhaust gas component to be detected, the result of provisional detection by the first abnormality diagnosis means and the deterioration of the catalyst by the second abnormality diagnosis means. on the basis of the detection result so that diagnoses whether the catalyst early warm-up control means is operating normally. Thereby, the diagnostic accuracy of abnormality of the catalyst early warm-up control means can be improved.
[0009]
Further, as in claim 2 , detection of abnormality of the catalyst early warm-up control means by the first abnormality diagnosis means or provisional detection result of deterioration of the catalyst and detection of deterioration of the catalyst by the second abnormality diagnosis means. It is preferable to discriminate between the abnormality of the catalyst early warm-up control means and the deterioration of the catalyst based on the result. Thereby, it is possible to detect the deterioration of the catalyst in addition to the abnormality of the catalyst early warm-up control means.
[0010]
In this case, as in claim 3 , the exhaust gas component detecting means may be one that detects either the oxygen concentration of the exhaust gas or the air-fuel ratio of the exhaust gas as the exhaust gas component downstream of the catalyst. In this way, oxygen sensors and air-fuel ratio sensors, which are representative sensors installed for air-fuel ratio control, can be used as the exhaust gas component detection means, and the present invention is easily applied.
[0011]
By the way, even if the progress of the warm-up of the catalyst during the early catalyst warm-up control is delayed, after the early catalyst warm-up control is completed, the warm-up of the catalyst has progressed to some extent, so the catalyst must be deteriorated. In this case, the exhaust gas purification rate is high.
[0012]
Therefore, as in claim 4 , the first abnormality diagnosis means temporarily detects an abnormality corresponding to either the abnormality of the catalyst early warm-up control means or the deterioration of the catalyst, and the second abnormality diagnosis means. When the deterioration of the catalyst is detected by the above, it is preferable to finally diagnose the deterioration of the catalyst. In this way, it is possible to prevent the deterioration of the catalyst from being erroneously determined as an abnormality of the catalyst early warm-up control means, thereby improving the reliability of the abnormality diagnosis and also the deterioration of the catalyst. Can be detected.
[0013]
Further, as in claim 5 , the first abnormality diagnosis means temporarily detects an abnormality corresponding to either an abnormality of the catalyst early warm-up control means or a deterioration of the catalyst, and the second abnormality diagnosis means When the deterioration of the catalyst is not detected by the above, it is preferable to finally diagnose the abnormality of the catalyst early warm-up control means. Thereby, the abnormality of the catalyst early warm-up control means can be detected with high accuracy.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. A throttle valve 15 and a throttle opening sensor 16 for detecting the throttle opening are provided on the downstream side of the air flow meter 14.
[0015]
Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. .
[0016]
On the other hand, a catalyst 22 such as a three-way catalyst for reducing CO, HC, NOx and the like in the exhaust gas is installed in the middle of the exhaust pipe 21 of the engine 11. Sensors 23 and 24 (exhaust gas component detection means) for detecting any of gas component concentration such as oxygen concentration of exhaust gas, air-fuel ratio, and rich / lean are installed on the upstream side and downstream side of the catalyst 22, respectively. ing. In the present embodiment, an air-fuel ratio sensor (A / F sensor) that outputs a linear air-fuel ratio signal corresponding to the air-fuel ratio of the exhaust gas is used as the upstream sensor 23, and the downstream sensor 24 is an empty air-fuel ratio sensor. An oxygen sensor whose output voltage is inverted depending on whether the fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio is used. Further, a water temperature sensor 25 for detecting the coolant temperature and a crank angle sensor 26 for detecting the engine rotation speed are attached to the cylinder block of the engine 11.
[0017]
These various sensor outputs are input to an engine control circuit (hereinafter referred to as “ECU”) 27. The ECU 27 is mainly composed of a microcomputer, and executes air-fuel ratio control routines (not shown) stored in a built-in ROM (storage medium), and performs an upstream air-fuel ratio sensor 23 and a downstream oxygen sensor. Based on the output of the sensor 24, the air-fuel ratio of the exhaust gas is controlled. Specifically, the air-fuel ratio (fuel injection amount) is feedback controlled so that the air-fuel ratio of the exhaust gas upstream of the catalyst 22 matches the target air-fuel ratio based on the output of the upstream air-fuel ratio sensor 23, and further the catalyst The sub-feedback control for correcting the target air-fuel ratio upstream of the catalyst 22 based on the output of the downstream oxygen sensor 24 is performed so that the air-fuel ratio downstream of 22 is matched with the control target value (for example, near the theoretical air-fuel ratio).
[0018]
Further, the ECU 27 performs a catalyst early warm-up control routine shown in FIG. 2 for each predetermined crank angle after an ignition switch (not shown) is turned on, and serves as a catalyst early warm-up control means for performing catalyst early warm-up control. Fulfill. When this routine is started, first, at step 101, it is determined whether or not a catalyst early warm-up control execution condition is satisfied. The conditions for executing the catalyst early warm-up control include, for example, that the catalyst 22 is before warm-up (before activation), and is in an operation state in which ignition timing retarding control can be performed (for example, during idle operation). When all these conditions are satisfied, the catalyst early warm-up control execution condition is satisfied. Whether or not the catalyst 22 has been warmed up is determined by the elapsed time after starting and the coolant temperature, or by determining the intake air amount integrated value or the fuel injection amount integrated value after starting. In short, what is necessary is just to determine whether or not the catalyst 22 is warming up using a parameter related to the total amount of heat applied to the catalyst 22 after startup.
[0019]
When the catalyst early warm-up control execution condition is satisfied, the routine proceeds to step 102 where ignition timing retard control is executed to increase the amount of exhaust heat and promote the warm-up of the catalyst 22. Thereafter, when the conditions for executing the catalyst early warm-up control are no longer satisfied, the routine proceeds to step 103, where the catalyst early warm-up control is terminated and the routine proceeds to normal ignition timing control.
[0020]
Further, the ECU 27 executes the abnormality diagnosis routines shown in FIGS. 3 and 4 stored in the ROM, and diagnoses whether there is an abnormality in the early catalyst warm-up control and whether the catalyst 22 has deteriorated.
[0021]
Here, the diagnosis method will be schematically described. During the early catalyst warm-up control, the purification rate of the exhaust gas that passes through the catalyst 22 changes according to the progress (activity) of the catalyst 22 warm-up. The air-fuel ratio of the exhaust gas flowing around the downstream oxygen sensor 24 changes, and the output of the downstream oxygen sensor 24 changes accordingly. From this relationship, during the early catalyst warm-up control, it is possible to determine whether the warm-up progress of the catalyst 22 is normal or delayed based on the output of the downstream oxygen sensor 24 (see FIG. 5). ) If it is determined that the warm-up of the catalyst 22 is delayed, it is diagnosed as an abnormality in the early catalyst warm-up control.
[0022]
By the way, since the purification characteristics of the catalyst 22 deteriorate as the service period becomes longer, the catalyst 22 is deteriorated even if the warming-up progress of the catalyst 22 during the early catalyst warm-up control is normal. The purification rate of the exhaust gas passing through the catalyst 22 becomes lower than usual. For this reason, when the catalyst 22 is deteriorated and when the warm-up of the catalyst 22 is delayed, the behavior of the exhaust gas purification rate during the early catalyst warm-up control (the behavior of the output of the downstream oxygen sensor 24). Are similar, and it becomes difficult to distinguish between them only from the output of the downstream oxygen sensor 24 during the early catalyst warm-up control.
[0023]
Therefore, in this embodiment, when the warming up of the catalyst 22 has progressed to some extent during the early catalyst warm-up control, the progress of warming up (activation) of the catalyst 22 is determined using the output of the downstream oxygen sensor 24. An abnormality diagnosis is performed as to whether or not there is a delay (hereinafter, this abnormality diagnosis is referred to as “pre-warm-up abnormality diagnosis”). Further, after the catalyst early warm-up control is completed, the catalyst 22 At the time when it can be determined that the warm-up is completed, an abnormality diagnosis is performed again using the output of the downstream oxygen sensor 24 (hereinafter, this abnormality diagnosis is referred to as “abnormal diagnosis after warm-up”). Based on the result of the after-machine abnormality diagnosis, the abnormality of the early catalyst warm-up control and the deterioration of the catalyst 22 are discriminated.
[0024]
That is, even if the progress of the warm-up of the catalyst 22 during the early catalyst warm-up control is delayed, after the early catalyst warm-up control is completed, the warm-up of the catalyst 22 has progressed to some extent until then, so the catalyst 22 is deteriorated. If not, the exhaust gas purification rate is high. Therefore, when it is diagnosed that there is an abnormality in the abnormality diagnosis before warm-up, the deterioration of the catalyst 22 and the abnormality in the early catalyst warm-up control are determined by whether or not the abnormality diagnosis is again performed in the abnormality diagnosis after warm-up. Can be determined.
[0025]
The abnormality diagnosis routine shown in FIG. 3 for executing the abnormality diagnosis described above is started every predetermined time (for example, every 50 msec) after the ignition switch (not shown) is turned on, and serves as an abnormality diagnosis means in the claims. Fulfill. When this routine is started, first, at step 201, it is determined whether or not the pre-warmup abnormality diagnosis has been completed. If the pre-warmup abnormality diagnosis has not been completed, the routine proceeds to step 202, where the warm-up process of FIG. A pre-abnormality diagnosis routine is executed to determine abnormality / normality. When it is determined that the abnormality is detected in this pre-warm-up abnormality diagnosis, it means that either the catalyst early warm-up control abnormality or the catalyst 22 is deteriorated. Note that the pre-warm-up abnormality diagnosis routine of FIG. 4 executed in step 202 serves as the first abnormality diagnosis means in the claims.
[0026]
Then, in the next step 203, it is determined whether or not the abnormality diagnosis after warm-up has been completed. If the abnormality diagnosis after warm-up has not been completed, the process proceeds to step 204, and the abnormality diagnosis routine before warm-up in FIG. After the warm-up abnormality diagnosis routine for performing abnormality diagnosis by the same processing method is executed, abnormality / normality is determined again at a time when it can be determined that the warm-up of the catalyst 22 is completed even when the catalyst early warm-up control is abnormal. If the abnormality diagnosis after warm-up is determined to be abnormal again, it means that the catalyst 22 has deteriorated, and if it is determined to be normal, it means that the catalyst 22 has not deteriorated. The abnormality diagnosis routine after warm-up executed in step 204 serves as a second abnormality diagnosis means in the claims.
[0027]
Thereafter, the process proceeds to step 205, where it is determined whether or not an abnormality is determined in the abnormality diagnosis after warm-up. If the abnormality diagnosis is determined in the abnormality diagnosis after warm-up, the process proceeds to step 207 and the catalyst 22 is deteriorated. If it is determined that there is, a warning lamp (not shown) is turned on to warn the driver, and an abnormal code indicating catalyst deterioration is stored in the backup RAM (not shown) of the ECU 27, and this routine is terminated. .
[0028]
On the other hand, when it is determined that the abnormality is normal (no deterioration of the catalyst 22) in the abnormality diagnosis after warm-up, the process proceeds to step 206, where it is determined whether the abnormality diagnosis before warm-up is determined as abnormal. If it is determined in the pre-machine abnormality diagnosis that there is an abnormality, the process proceeds to step 208, where it is determined that the catalyst early warm-up control is abnormal, and a warning lamp (not shown) is lit to warn the driver. Then, the abnormality code indicating the abnormality of the early catalyst warm-up control is stored in the backup RAM (not shown) of the ECU 27, and this routine is terminated.
[0029]
On the other hand, when it is determined as normal by the abnormality diagnosis before warm-up, it is determined that the early catalyst warm-up control is normally performed and the catalyst 22 is not deteriorated, and this routine is terminated.
[0030]
Next, an abnormality diagnosis method will be described with reference to the time chart of FIG. After the engine 11 is started at time t1, air-fuel ratio feedback control is started at time t2. During the air-fuel ratio feedback control, the air-fuel ratio upstream of the catalyst 22 (the output af of the air-fuel ratio sensor 23) is periodically reversed to rich / lean, so that the exhaust gas purification is performed when the catalyst 22 is unwarmed or deteriorated. When the rate is low, the output sox of the oxygen sensor 24 on the downstream side of the catalyst 22 fluctuates relatively greatly according to the reverse of rich / lean of the air-fuel ratio on the upstream side of the catalyst 22. When the warm-up progresses to some extent and the exhaust gas purification rate increases to some extent, the fluctuation of the output sox of the downstream oxygen sensor 24 becomes small.
[0031]
Therefore, in the present embodiment, when the intake air amount integrated value sg after startup becomes equal to or greater than the predetermined value sga during the catalyst early warm-up control (when the catalyst early warm-up control is normally performed, At a time when it is determined that the fluctuation of the output sox of the downstream oxygen sensor 24 is reduced to a certain extent), the downstream oxygen sensor 24 detects the fluctuation of the air-fuel ratio upstream of the catalyst 22 (the output af of the air-fuel ratio sensor 23). A process for determining the degree of fluctuation of the output sox is started. In this process, the change amount Δsox (see FIG. 6) of the output sox of the downstream oxygen sensor 24 per calculation cycle (for example, 50 msec) is calculated and integrated to calculate the output change amount integrated value of the downstream oxygen sensor 24. While obtaining ΣΔsox, the change amount Δaf of the output af of the upstream air-fuel ratio sensor 23 per calculation cycle (for example, 50 msec) is calculated, integrated, and the output change amount integrated value ΣΔaf of the upstream air-fuel ratio sensor 23 is integrated. Ask. After this integration process is performed until a predetermined time (for example, 30 seconds) elapses, the ratio ΣΔaf / ΣΔsox between the output change integrated value ΣΔaf of the upstream air-fuel ratio sensor 23 and the output change integrated value ΣΔsox of the downstream oxygen sensor 24 Is calculated as an abnormality diagnosis parameter, and abnormality / normality is determined by whether or not the abnormality diagnosis parameter ΣΔaf / ΣΔsox is smaller than a predetermined determination value.
[0032]
Next, the processing contents of the pre-warm-up abnormality diagnosis routine of FIG. When this routine is started, first, in steps 301 and 302, it is determined whether or not the pre-warmup abnormality diagnosis execution condition is satisfied. The pre-warm-up abnormality diagnosis execution conditions are: (1) the intake air amount integrated value sg after the start is equal to or greater than the predetermined value sga [Step 301], and (2) the cooling water temperature detected by the water temperature sensor 25 is the predetermined temperature kthw. (For example, 20 ° C.) [Step 302]. That is, when the intake air amount integrated value sg after the start is less than the predetermined value sga or the cooling water temperature is equal to or lower than the predetermined temperature kthw, the temperature of the catalyst 22 is still low, and normal / abnormal catalyst early warm-up control is not performed. Since it is difficult to distinguish, the pre-warm-up abnormality diagnosis execution condition is not satisfied, and this routine is terminated without performing the subsequent processing.
[0033]
On the other hand, when the intake air amount integrated value sg after the start is equal to or greater than the predetermined value sga and the cooling water temperature exceeds the predetermined temperature kthw, the warm-up control of the catalyst 22 proceeds to some extent and the early catalyst warm-up control is performed. Therefore, the pre-warm-up abnormality diagnosis execution condition is satisfied, and the pre-warm-up abnormality diagnosis process after step 303 is executed as follows. First, in step 303, the previous output af (i-1) is subtracted from the current output af (i) of the upstream air-fuel ratio sensor 23, and the upstream air-fuel ratio sensor 23 per calculation cycle (for example, 50 msec) is subtracted. An output change amount Δaf is obtained. Then, in the next step 304, the previous output sox (i-1) is subtracted from the current output sox (i) of the downstream oxygen sensor 24, and the downstream oxygen sensor 24 per calculation cycle (for example, 50 msec) is subtracted. An output change amount Δsox is obtained.
[0034]
Thereafter, the process proceeds to step 305, where the output change amount Δaf of the upstream air-fuel ratio sensor 23 is integrated to obtain the integrated value ΣΔaf, and in the next step 306, the output change amount Δsox of the downstream oxygen sensor 24 is integrated. The integrated value ΣΔsox is obtained. Thereafter, the process proceeds to step 307, where the intake air amount g detected by the air flow meter 14 is integrated to obtain an intake air amount integrated value sg after starting.
[0035]
Thereafter, the process proceeds to step 308, where it is determined whether or not a predetermined time (for example, 30 sec) has elapsed since the start of the warm-up abnormality diagnosis process, and the above-described integration process is repeated until the predetermined time elapses. Then, when the predetermined time has elapsed, the routine proceeds to step 309, where the output change amount integrated value ΣΔaf of the upstream air-fuel ratio sensor 23 is divided by the output change amount integrated value ΣΔsox of the downstream oxygen sensor 24, and the abnormality diagnosis parameter sp is set. Ask.
sp = ΣΔaf / ΣΔsox
[0036]
Thereafter, the process proceeds to step 310, where the abnormality diagnosis parameter sp is compared with a predetermined determination value. If the abnormality diagnosis parameter sp is smaller than the determination value, the process proceeds to step 311 where it is determined that there is an abnormality and the abnormality diagnosis parameter sp is the determination value. If so, the process proceeds to step 312 and is determined to be normal. At this time, the determination value may be a fixed value for simplification of the arithmetic processing, but may be calculated by a map or the like according to the intake air amount integrated value sg after starting.
[0037]
When it is determined as abnormal in the pre-warm-up abnormality diagnosis routine of FIG. 4 described above, it means that either the catalyst early warm-up control abnormality or the catalyst 22 has deteriorated.
[0038]
The pre-warm-up abnormality diagnosis routine started in step 204 of FIG. 3 is the pre-warm-up abnormality diagnosis of FIG. 4 except that the judgment values are different in steps 301, 302, and 310 of the pre-warm-up abnormality diagnosis routine of FIG. Same as routine. The conditions for executing the abnormality diagnosis after warm-up are: (1) the intake air amount integrated value sg after starting is greater than or equal to a predetermined value that can be determined to end the warm-up of the catalyst 22 even when the catalyst early warm-up control is abnormal; 2) The cooling water temperature detected by the water temperature sensor 25 exceeds a predetermined temperature (for example, 80 ° C.) at which the warming of the catalyst 22 can be determined to end even when the catalyst early warming control is abnormal. When both 1 ▼ and 2) are satisfied, the post-warm-up abnormality diagnosis execution condition is satisfied, and the post-warm-up abnormality diagnosis is executed. If the abnormality diagnosis after the warm-up is determined to be abnormal again, it means that the catalyst 22 has deteriorated. If the abnormality diagnosis after the warm-up is determined to be normal, the catalyst 22 has deteriorated. Means not.
[0039]
In the present embodiment described above, the downstream oxygen sensor 24 is taken into consideration that the output of the oxygen sensor 24 downstream of the catalyst 22 changes in accordance with the progress of warming up of the catalyst 22 during the early catalyst warm-up control. Is used to diagnose whether there is an abnormality in the early catalyst warm-up control, so if an abnormality occurs in the early catalyst warm-up control during engine operation, the abnormality can be immediately detected and It is possible to avoid a situation where a person continues driving without noticing the abnormality at all.
[0040]
In addition, since the downstream oxygen sensor 24 used for the abnormality diagnosis of the catalyst early warm-up control may use a sensor installed for air-fuel ratio control, there is no need to provide a new sensor such as a catalyst temperature sensor. Thus, the abnormality diagnosis of the early catalyst warm-up control can be automatically performed during engine operation while satisfying the demand for cost reduction.
[0041]
Furthermore, in the present embodiment, considering that there is a possibility that the deterioration of the catalyst 22 may be erroneously determined as an abnormality in the catalyst early warm-up control when the catalyst 22 is degraded, the catalyst early warm-up control is performed. After performing abnormality diagnosis (pre-warm-up abnormality diagnosis) using the output of the downstream oxygen sensor 24, after completion of the early catalyst warm-up control, abnormality diagnosis (after warm-up abnormality) is performed again using the output of the downstream oxygen sensor 24. Diagnosis), and when it is diagnosed that there is an abnormality in the abnormality diagnosis before warming up, the deterioration of the catalyst 22 and the abnormality in the early catalyst warm-up control are determined depending on whether or not the abnormality diagnosis after the warming up is diagnosed again. Therefore, it is possible to prevent the deterioration of the catalyst 22 from being erroneously determined as an abnormality in the early catalyst warm-up control, thereby improving the reliability of the abnormality diagnosis and the catalyst. 22 degradation can also be detected.
[0042]
In the present embodiment, only one catalyst 22 is installed in the exhaust pipe 21, but the present invention can also be applied to a configuration in which a plurality of catalysts are installed. In this case, the abnormality diagnosis of the early catalyst warm-up control may be performed using the output of the sensor downstream of the specific catalyst among the plurality of catalysts.
[0043]
Further, the sensor on the downstream side of the catalyst 22 is not limited to the oxygen sensor, and an air-fuel ratio sensor, a gas sensor that detects the gas component concentration such as HC, may be used. Further, the catalyst early warm-up control is not limited to the retard of the ignition timing, and can be implemented by applying the present invention to various known catalyst early warm-up control systems.
[0044]
In this embodiment, the abnormality diagnosis is performed using the output change amount integrated value of the downstream oxygen sensor 24. However, the abnormality diagnosis is performed using the rich / lean inversion cycle of the output of the downstream oxygen sensor 24. Alternatively, the activation timing of the catalyst 22 (warming-up completion timing) is determined using the output of the downstream oxygen sensor 24, and whether or not the activation timing of the catalyst 22 is later than normal is abnormal. The abnormality diagnosis method may be implemented with various changes such as the presence / absence diagnosis.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment of the present invention. FIG. 2 is a flowchart showing a process flow of a catalyst early warm-up control routine. FIG. 3 is a process flow of an abnormality diagnosis routine. Flowchart [FIG. 4] Flowchart showing a flow of processing of an abnormality diagnosis routine before warm-up [FIG. 5] Time chart for explaining a processing method of abnormality diagnosis [FIG. 6] Time showing an example of an output waveform of a downstream oxygen sensor Chart [Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 20 ... Fuel injection valve, 21 ... Exhaust pipe, 22 ... Catalyst, 23 ... Upstream air-fuel ratio sensor, 24 ... Downstream oxygen sensor (exhaust gas) Component detection means), 27... ECU (catalyst early warm-up control means, abnormality diagnosis means, first abnormality diagnosis means, second abnormality diagnosis means).

Claims (5)

内燃機関の排気通路に配設された排出ガス浄化用の触媒と、前記触媒の暖機を促進する触媒早期暖機制御手段と、前記触媒早期暖機制御手段が正常に動作しているか否かを診断する異常診断手段とを備えた内燃機関の触媒早期暖機制御システムの異常診断装置において、
前記触媒の下流側の排出ガス成分を検出する排出ガス成分検出手段を備え、
前記異常診断手段は、前記触媒早期暖機制御手段による触媒早期暖機制御中に前記排出ガス成分検出手段により検出される排出ガス成分に基づいて前記触媒早期暖機制御手段の異常又は前記触媒の劣化のいずれかに該当する異常を仮検出する第1の異常診断手段と、触媒早期暖機制御終了後に前記排出ガス成分検出手段により検出される排出ガス成分に基づいて前記触媒の劣化を検出する第2の異常診断手段とを備え、前記第1の異常診断手段による仮検出の結果と前記第2の異常診断手段による前記触媒の劣化の検出結果とに基づいて前記触媒早期暖機制御手段が正常に動作しているか否かを診断することを特徴とする内燃機関の触媒早期暖機制御システムの異常診断装置。
Exhaust gas purifying catalyst disposed in the exhaust passage of the internal combustion engine, catalyst early warm-up control means for promoting warm-up of the catalyst, and whether the catalyst early warm-up control means is operating normally In an abnormality diagnosis device for an early catalyst warm-up control system for an internal combustion engine, comprising an abnormality diagnosis means for diagnosing
An exhaust gas component detecting means for detecting an exhaust gas component downstream of the catalyst;
The abnormality diagnosis unit is configured to detect an abnormality in the catalyst early warm-up control unit based on an exhaust gas component detected by the exhaust gas component detection unit during the catalyst early warm-up control by the catalyst early warm-up control unit, or First abnormality diagnosis means for tentatively detecting an abnormality corresponding to any of the deteriorations, and deterioration of the catalyst based on exhaust gas components detected by the exhaust gas component detection means after completion of catalyst early warm-up control A second abnormality diagnosing means, and the catalyst early warm-up control means based on the result of provisional detection by the first abnormality diagnosing means and the result of detection of deterioration of the catalyst by the second abnormality diagnosing means. abnormality diagnosis apparatus for fast catalyst warm-up control system of the internal combustion engine you characterized in that diagnoses whether operating normally.
前記異常診断手段は、前記第1の異常診断手段による前記触媒早期暖機制御手段の異常又は前記触媒の劣化の仮検出結果と前記第2の異常診断手段による前記触媒の劣化の検出結果とに基づいて前記触媒早期暖機制御手段の異常と前記触媒の劣化とを判別することを特徴とする請求項に記載の内燃機関の触媒早期暖機制御システムの異常診断装置。The abnormality diagnosing means includes an abnormality of the catalyst early warm-up control means by the first abnormality diagnosing means or a provisional detection result of catalyst deterioration and a result of detection of the catalyst deterioration by the second abnormality diagnosing means. 2. The abnormality diagnosis device for an early catalyst warm-up control system for an internal combustion engine according to claim 1 , wherein an abnormality of the early catalyst warm-up control unit and deterioration of the catalyst are discriminated on the basis of the abnormality. 前記排出ガス成分検出手段は、前記触媒の下流側の排出ガス成分として、排出ガスの酸素濃度又は排出ガスの空燃比のいずれかを検出することを特徴とする請求項1又は2に記載の内燃機関の触媒早期暖機制御システムの異常診断装置。The internal combustion engine according to claim 1 or 2 , wherein the exhaust gas component detection means detects either the oxygen concentration of the exhaust gas or the air-fuel ratio of the exhaust gas as the exhaust gas component downstream of the catalyst. Abnormality diagnosis device for engine early catalyst warm-up control system. 前記異常診断手段は、前記第1の異常診断手段によって前記触媒早期暖機制御手段の異常又は前記触媒の劣化のいずれかに該当する異常を仮検出し、且つ、前記第2の異常診断手段によって前記触媒の劣化を検出した場合に、最終的に前記触媒の劣化と診断することを特徴とする請求項又はに記載の内燃機関の触媒早期暖機制御システムの異常診断装置。The abnormality diagnosis means temporarily detects an abnormality corresponding to either the abnormality of the catalyst early warm-up control means or the deterioration of the catalyst by the first abnormality diagnosis means, and the second abnormality diagnosis means when detecting deterioration of the catalyst, the abnormality diagnosis apparatus for fast catalyst warm-up control system for an internal combustion engine according to claim 1 or 2, characterized in that the diagnosis finally deterioration of the catalyst. 前記異常診断手段は、前記第1の異常診断手段によって前記触媒早期暖機制御手段の異常又は前記触媒の劣化のいずれかに該当する異常を仮検出し、且つ、前記第2の異常診断手段によって前記触媒の劣化を検出しない場合に、最終的に前記触媒早期暖機制御手段の異常と診断することを特徴とする請求項又はに記載の内燃機関の触媒早期暖機制御システムの異常診断装置。The abnormality diagnosis means temporarily detects an abnormality corresponding to either the abnormality of the catalyst early warm-up control means or the deterioration of the catalyst by the first abnormality diagnosis means, and the second abnormality diagnosis means The abnormality diagnosis of the catalyst early warm-up control system for an internal combustion engine according to claim 1 or 2 , wherein when the deterioration of the catalyst is not detected, an abnormality of the catalyst early warm-up control means is finally diagnosed. apparatus.
JP2001318240A 2001-10-16 2001-10-16 Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine Expired - Fee Related JP3855720B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001318240A JP3855720B2 (en) 2001-10-16 2001-10-16 Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
US10/270,270 US6898927B2 (en) 2001-10-16 2002-10-15 Emission control system with catalyst warm-up speeding control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001318240A JP3855720B2 (en) 2001-10-16 2001-10-16 Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003120382A JP2003120382A (en) 2003-04-23
JP3855720B2 true JP3855720B2 (en) 2006-12-13

Family

ID=19135984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001318240A Expired - Fee Related JP3855720B2 (en) 2001-10-16 2001-10-16 Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP3855720B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148081B2 (en) 2003-09-24 2008-09-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP4193670B2 (en) 2003-10-17 2008-12-10 トヨタ自動車株式会社 Control device for internal combustion engine
CN100404834C (en) * 2004-10-06 2008-07-23 株式会社电装 Engine control system
US8171781B2 (en) 2008-06-11 2012-05-08 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for NOx catalyst
CN103261604B (en) 2010-12-15 2014-11-12 丰田自动车株式会社 Device for detecting malfunction in electrically heated catalyst
JP2012162994A (en) * 2011-02-03 2012-08-30 Toyota Motor Corp System for determining deterioration of exhaust emission control device
JP2019085915A (en) * 2017-11-06 2019-06-06 株式会社デンソー Control device and control method for exhaust emission control system for vehicle

Also Published As

Publication number Publication date
JP2003120382A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3684854B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4475271B2 (en) NOx sensor abnormality diagnosis device and abnormality diagnosis method
JP4350931B2 (en) Vehicle abnormality diagnosis apparatus and abnormality diagnosis method
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
WO2009141918A1 (en) NOx SENSOR ABNORMALITY DIAGNOSING APPARATUS AND ABNORMALITY DIAGNOSING METHOD
JP2004003430A (en) Diagnostic apparatus for engine
US6082101A (en) Exhaust gas purifier for engines
JP2009257236A (en) Detector for abnormal air-fuel ratio variation between cylinders of multiple cylinder internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
US6883307B2 (en) Diagnosis apparatus for internal combustion engine
JP2006057587A (en) Malfunction diagnosing device for air/fuel ratio sensor
US6484493B2 (en) Exhaust emission control device for internal combustion engine
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4893292B2 (en) Control device for internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2006177371A (en) Internal combustion engine control device
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP4453061B2 (en) Control device for internal combustion engine
JP2008038720A (en) Abnormality diagnosis device for downstream side oxygen sensor of exhaust emission control system
JP4882958B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees