WO2002043153A1 - Method for manufacturing semiconductor wafer - Google Patents

Method for manufacturing semiconductor wafer Download PDF

Info

Publication number
WO2002043153A1
WO2002043153A1 PCT/JP2001/010216 JP0110216W WO0243153A1 WO 2002043153 A1 WO2002043153 A1 WO 2002043153A1 JP 0110216 W JP0110216 W JP 0110216W WO 0243153 A1 WO0243153 A1 WO 0243153A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wafer
silicon single
single crystal
manufacturing
Prior art date
Application number
PCT/JP2001/010216
Other languages
French (fr)
Japanese (ja)
Inventor
Wei Feig Qu
Masanori Kimura
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Publication of WO2002043153A1 publication Critical patent/WO2002043153A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN

Definitions

  • the present invention relates to a method for manufacturing a semiconductor wafer having a silicon layer having lattice distortion. Itoda Background technology
  • a strained silicon layer (hereinafter, referred to as a strained Si layer) in which a tensile strain is inherent in a silicon single crystal having a normal lattice constant (about 5.43 angstroms) is used as, for example, an n-channel MOS transistor.
  • a strained Si layer in which a tensile strain is inherent in a silicon single crystal having a normal lattice constant (about 5.43 angstroms) is used as, for example, an n-channel MOS transistor.
  • a method of manufacturing a semiconductor wafer having such a strained Si layer is described in, for example, Japanese Patent Application Laid-Open No. Hei 9-18999 / Japanese Patent Application Laid-Open No. Hei 11-234440. .
  • a strained Si layer is formed by epitaxially growing a Si layer on a SiGe layer having a larger lattice constant than Si, and a sufficiently relaxed Si layer is formed. Generating strain in the Si layer using the Ge layer, and preventing dislocations from propagating during the growth of the strained Si layer so as not to generate dislocations in the Si Ge layer. It was to solve the problem.
  • a semiconductor wafer described in Japanese Patent Application Laid-Open No. 9-180999 has a strained Si layer ZSi Ge layer / Ge layer / Si layer ZS io two layer ZS i in order from the wafer surface.
  • the manufacturing process is as follows: fabrication of SOI wafer (step 100) ⁇ epitaxial growth of Si layer (step 102) ⁇ growth of Ge layer (step 1 0 4) ⁇ S i Ge layer growth (step 1 06) ⁇ lattice relaxation heat treatment (step 1 0 8) ⁇ strained S i layer growth (step 1 10), accompanied by four epitaxy growths Was something.
  • the manufacturing process is as follows: Si wafer preparation (Step 200) ⁇ Deposition of two layers of CaF by sputtering (Step 202) ⁇ (S i G e layer growth) (step 204) ⁇ strain S i layer growth (step 206), also in this case. It involves at least two thin film growths, and C a F 2 Such a special layer was formed.
  • the present invention has been made in order to solve such a problem, and has a lattice distortion sufficient to increase the mobility of electrons, despite a relatively simple laminated structure, and a crystal.
  • a semiconductor wafer having a Si layer with few defects can be manufactured by a simple manufacturing process. It is an object of the present invention to provide a method for producing the same.
  • a first aspect of a method of manufacturing a semiconductor layer of the present invention includes: a step of epitaxially growing a SiGe layer on a surface of a first silicon single crystal layer; Bonding the surface of the SiGe layer and the surface of the second wafer through an oxide film; and reducing the thickness of the first silicon single crystal wafer bonded to the second wafer to lattice distortion. Exposing the Si layer existing therein.
  • a second aspect of the method for manufacturing a semiconductor wafer of the present invention is a step of epitaxially growing a Si Ge layer on a surface of a first silicon single crystal wafer; Forming an oxide film on at least one of the surface of the first silicon wafer and the surface of the second wafer; and supplying at least one of hydrogen ions and rare gas ions to the first silicon single crystal wafer through the SiGe layer. Injecting to form a microbubble layer, and after bonding the first silicon single crystal P.A.8 and the second P.A.8 through the oxide film, Removing the silicon single crystal layer 18.
  • the step of flattening the peeled surface of the first silicon single crystal wafer thin film which has been peeled in the peeling step and moved to the second wafer is polished or heat-treated, or a combination thereof. It is preferable to provide them.
  • the microbubble layer can be formed in a region having lattice distortion of the first silicon single crystal wafer.
  • FIG. 1 is a flowchart showing a first embodiment of the method of the present invention.
  • FIG. 2 is a flowchart showing a second embodiment of the method of the present invention.
  • FIG. 3 is a flowchart showing an example of a conventional method for manufacturing a semiconductor device.
  • FIG. 4 is a flowchart showing another example of a conventional method for manufacturing a semiconductor device.
  • FIG. 1 shows a manufacturing flow of the semiconductor layer 18 according to the first embodiment of the present invention.
  • the manufacturing flow shown in FIG. 1 is basically the same as the normal manufacturing flow for manufacturing an SOI wafer by a bonding method using two silicon wafers, and the step of growing a SiGe layer (b) ).
  • first and second Si wafers W1 and W2, which are ultimately materials of the strained Si layer are prepared [FIG. 1 (a)].
  • the Si wafer W1 is not particularly limited as long as it is single crystal silicon, and an Si wafer manufactured by the CZ method or the FZ method can be used.
  • a wafer having few crystal defects at least near the surface of the wafer to be used it is preferable to use a wafer having few crystal defects at least near the surface of the wafer to be used.
  • a DZ layer was formed near the wafer surface by heat treatment.
  • the so-called “Grown-in defects” in the single crystal were reduced (or eliminated) by adjusting the pulling conditions of the CZ method.
  • a SiGe layer 10 is formed on the surface of the first Si wafer W1 by epitaxial growth [FIG. 1 (b)].
  • a molecular beam epitaxy growth apparatus or an ultra-high vacuum chemical vapor deposition (UHV-CVD) apparatus can be used.
  • the Ge composition of the SiGe layer 10 to be formed is preferably about 10 to 40%. If it is less than 10%, a strain Si layer having a sufficient tensile strain is not formed, and if it exceeds 40%, Si Ge due to a difference in lattice constant between Si ⁇ a wafer W1 and Si Ge layer 10 is obtained. Since misfit dislocations are easily generated in the layer 10, the crystallinity of the finally formed strained Si layer is adversely affected. Further, the thickness of the SiGe layer 10 is preferably about 10 nm to 1 m.
  • the Si Ge layers 10 having different lattice constants are formed on the first Si wafer W 1 by the step (1), the first Si wafer W 1 has a thickness effect of the first Si wafer 10. No dislocation is generated on the side of the W1 side.
  • an oxide film 12 is formed on the surface of the SiGe layer 10 (FIG. 1 (c)).
  • the oxide film may be formed by a normal thermal oxidation method or deposited by a CVD method. May be. With thermal oxidation, S i G in e layer 1 0 surface chemically From Jona S i ⁇ two layers 1 2 are formed, extra G e atoms S i G e layer 1 0 repellency The Ge concentration in the output Si Ge layer 10 becomes high. Therefore, even if the Ge composition during epitaxy growth is relatively low for the purpose of suppressing the generation of misfit dislocations, the final surface can be obtained by thermally oxidizing the surface of the SiGe layer 10. It is possible to increase the tensile strain of the strain Si layer formed at the time. Further, in order to obtain sufficient tensile strain, thermal oxidation and oxide film removal may be repeatedly performed.
  • the oxide film 12 formed on the surface of the SiGe layer 10 and the second Si The surface of ⁇ ⁇ 2 is brought into close contact, and heat treatment is performed so that the bonding strength can withstand the subsequent thinning process [bonding heat treatment, Fig. 1 (d)].
  • the heat treatment conditions are not particularly limited as long as they can withstand the subsequent thinning process, but when the thinning is performed by grinding and polishing, it is about 800 to 120 hours for about 0.5 to 5 hours. It is preferable to do this.
  • the first Si wafer W1 is thinned to expose the strained Si layer 14 [FIG. 1 (e)].
  • the thickness of the strained Si layer 14 is preferably about 1 to 100 nm. If the thickness exceeds lO O nm, tensile strain due to the SiGe layer 10 may not be present. If the thickness is less than 1 nm, good device characteristics cannot be obtained and processing is difficult.
  • a method for thinning the Si layer 14 in addition to grinding and polishing, after etching by acid or alkali aqueous solution, gas-phase etching using plasma, lapping, or slicing, it is divided into two parts.
  • a polishing method can be used.
  • bonding heat treatment performed before thinning can be omitted, or bonding can be performed using an adhesive or the like.
  • FIG. 2 shows a manufacturing flow of a semiconductor device 18 according to a second embodiment of the present invention.
  • the manufacturing flow shown in FIG. 2 is basically based on ion implantation and delamination (also called hydrogen ion delamination or smart cut (registered trademark)) using two silicon wafers, and S 0 I. ⁇
  • ion implantation and delamination also called hydrogen ion delamination or smart cut (registered trademark)
  • the oxide film formed on the surface of the SiGe layer 10 By implanting at least one of hydrogen ions or rare gas ions (hydrogen ions 16 in FIG. 2 (d)) through the 12 and S i Ge layers 10, the first S i ⁇ wafer W 1 When the microbubble layer 18 is formed [Fig. 2 (d)], the position (depth) where the microbubble layer 18 is formed is determined by the energy of hydrogen ion 16 injection. In order to generate exfoliation by subsequent exfoliation heat treatment as a boundary, an implant dose of more than 1 ⁇ 10 16 / cm 2 (eg, 5 ⁇ 10 16 Z cm 2 ) is required.
  • the microbubble layer 18 is formed by the first Si layer. It is preferably formed in a region having a lattice distortion of 18 W 1 (a region of 100 nm or less from the surface of the first Si wafer W 1).
  • the oxide film 12 formed on the surface of the SiGe layer 10 is brought into close contact with the surface of the second Si wafer W2 (FIG. 2 (e)), and a heat treatment (stripping) at 500 ° C. or more is performed.
  • a heat treatment striping
  • peeling occurs in the microbubble layer 18 [FIG. 2 (f)].
  • a bonding heat treatment at a higher temperature may be performed to increase the bonding strength.
  • a method of exfoliating at room temperature without exfoliating heat treatment by exciting the implanted hydrogen ions and implanting them in a plasma state which is a kind of ion implantation delamination method, has been developed. Therefore, when this method is used, the peeling heat treatment can be omitted.
  • the surface of the strained Si layer 14 after peeling is mirror-finished but has a slight surface roughness, so it is flattened by polishing with a very small polishing allowance called Yutsu Polish (Fig. 2 (g) ].
  • a very small polishing allowance called Yutsu Polish (Fig. 2 (g) ].
  • flattening by heat treatment in an atmosphere of argon gas or hydrogen gas, or a combination of these methods can be used for flattening.
  • heat treatment conditions usually when using a resistance heating type heat treatment furnace, 1100-: 1300 ° (, heat treatment of about 0.5-5 hours is suitable, and when using a RTA (Rapid Thermal Annealing) apparatus, 1100-135 ° C,: Heat treatment is preferably performed for about 120 seconds or more.
  • RTA Rapid Thermal Annealing
  • the oxide film 12 is formed on the surface of the SiGe layer 10 of the first Si wafer A 1 has been exemplified.
  • An oxide film may be formed on the Si i wafer W2, or an oxide film may be formed on both the first and second Si wafers.
  • a high resistivity wafer having a resistivity of 100 ⁇ cm or more as the second Si wafer W2, it can be used as a semiconductor wafer for mobile communication with excellent high frequency characteristics. Can be.
  • an insulating substrate such as a quartz substrate, a sapphire substrate, a SiC substrate, or an aluminum nitride substrate can be used as the second wafer W2.
  • Source gas G e H 4, S i 2 H 6
  • Oxidation conditions 800 ° C, pyrogenic oxidation
  • Oxide film thickness 100 nm
  • Both wafers are brought into close contact at room temperature and heat treated at 100 ° C for 2 hours (oxidizing atmosphere)
  • the thickness of the first Si wafer is reduced to about 100 nm by gas-phase etching using the PAC (Plasma Assisted Chemical Etching) method.
  • PAC Pulsma Assisted Chemical Etching
  • Source gas G e H 4, S i 2 H 6
  • Oxidation conditions 800 ° C, pyrogenic oxidation 0 Oxide film thickness: 100 nm
  • H + ion implantation conditions 3 5 ke V, 8 X 1 0 16 / cm 2
  • Both wafers were brought into close contact at room temperature, and peeled off by heat treatment (nitrogen atmosphere) for 500 and 30 minutes.
  • the thickness of the outermost surface Si layer of the multilayered layer 18 after peeling is about 130 nm.
  • an Si layer having sufficient lattice distortion to enhance electron mobility and having few crystal defects is provided.
  • the effect that the semiconductor wafer having the same can be manufactured by a simple manufacturing process is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method for manufacturing a semiconductor wafer wherein a semiconductor wafer having a sufficient lattice strain to enhance electron mobility and having an Si layer of less crystal defect despite of a relatively simple laminate structure is manufactured by a simple process. This manufacturing method comprises the step of epitaxially growing an SiGe layer on the surface of a first silicon single crystal wafer, the step of coupling the surface of the SiGe layer with the surface of a second wafer with an oxide film in between, and the step of thinning off the silicon single crystal wafer coupled with the second wafer to expose the Si layer with involved lattice strain.

Description

明 半導体ゥエーハの製造方法  Akira Manufacturing method for semiconductor wafers
技術分野 Technical field
本発明は、 格子歪みを内在するシリコン層を有する半導体ゥエーハの 製造方法に関する。 糸田 背景技術  The present invention relates to a method for manufacturing a semiconductor wafer having a silicon layer having lattice distortion. Itoda Background technology
シリコン単結晶を用いた半導体デバイスの性能を向上させるための一 手法として、 シリコン単結晶中の電子の移動度を高めることが有効であ 'る。 そこで、 通常の格子定数 (約 5 . 4 3オングス トローム) を有する シリ コン単結晶に引張り歪みを内在させた歪みシリ コン層 (以下、 歪み S i層と称する。 ) を、 例えば nチャネル M O S トランジスタの活性層 に用いることによりキャリアの移動度を向上させ、 高速動作を可能にす るデバイスなどが検討されている。  As a technique for improving the performance of a semiconductor device using a silicon single crystal, it is effective to increase the mobility of electrons in the silicon single crystal. Therefore, a strained silicon layer (hereinafter, referred to as a strained Si layer) in which a tensile strain is inherent in a silicon single crystal having a normal lattice constant (about 5.43 angstroms) is used as, for example, an n-channel MOS transistor. Devices that improve carrier mobility by using it for the active layer and enable high-speed operation are being studied.
このような歪み S i層を有する半導体ゥエーハの製造方法は、 例えば. 特開平 9 - 1 8 0 9 9 9号公報ゃ特開平 1 1— 2 3 3 4 4 0号公報に記 載されている。 これらの技術はいずれも S i よりも格子定数の大きな S i G e層上に S i層をェピタキシャル成長させることにより歪み S i層 を形成するものであり、 十分に格子緩和された S i G e層を用いて S i 層に歪みを発生させること、 および、 S i G e層中に転位を発生させな いようにして歪み S i層の成長時に転位を伝播させないこと、 という 2 つの課題を解決するものであった。  A method of manufacturing a semiconductor wafer having such a strained Si layer is described in, for example, Japanese Patent Application Laid-Open No. Hei 9-18999 / Japanese Patent Application Laid-Open No. Hei 11-234440. . In each of these techniques, a strained Si layer is formed by epitaxially growing a Si layer on a SiGe layer having a larger lattice constant than Si, and a sufficiently relaxed Si layer is formed. Generating strain in the Si layer using the Ge layer, and preventing dislocations from propagating during the growth of the strained Si layer so as not to generate dislocations in the Si Ge layer. It was to solve the problem.
しかしながら、 前記 2つの方法は、 少なく とも 2回の薄膜成長プロセ ス (ェピタキシャル成長ゃスパッタ法など) を伴うものであり、 必ずし も簡便な方法とは言えなかった。 これについて下記に詳述する。 However, the above two methods involve at least two thin film growth processes (epitaxial growth—sputtering method, etc.). Was not an easy method. This will be described in detail below.
まず、 特開平 9 - 1 8 0 9 9 9号公報に記載された半導体ゥヱーハは、 ゥエーハ表面から順に、 歪み S i層 ZS i G e層/ G e層/ S i層 ZS i o2層 ZS i基板という構造を有するものであり、 その製造プロセス は、 図 3に示す様に、 S O I ゥエーハの作製 (ステップ 1 00) →S i 層ェピタキシャル成長 (ステップ 1 0 2) →G e層成長 (ステップ 1 0 4 ) → S i G e層成長 (ステップ 1 0 6 ) →格子緩和熱処理 (ステップ 1 0 8) →歪み S i層成長 (ステップ 1 1 0 ) であり、 4回ものェピタ キシャル成長を伴うものであった。 First, a semiconductor wafer described in Japanese Patent Application Laid-Open No. 9-180999 has a strained Si layer ZSi Ge layer / Ge layer / Si layer ZS io two layer ZS i in order from the wafer surface. As shown in Fig. 3, the manufacturing process is as follows: fabrication of SOI wafer (step 100) → epitaxial growth of Si layer (step 102) → growth of Ge layer (step 1 0 4) → S i Ge layer growth (step 1 06) → lattice relaxation heat treatment (step 1 0 8) → strained S i layer growth (step 1 10), accompanied by four epitaxy growths Was something.
また、 特開平 1 1— 2 3 3 44 0号公報に記載された半導体ゥヱーハ は、 ゥェーハ表面から順に、 歪み S i層/ C a F2層/ (S i G e層) / S i基板という構造を有するものであり、 その製造プロセスは、 図 4 に示す様に、 S i ゥエーハ用意 (ステップ 2 0 0) →C a F2層のスパ ッタ法による堆積 (ステップ 20 2) → ( S i G e層成長) (ステップ 2 04 ) →歪み S i層成長 (ステップ 2 0 6 ) であり、 こちらの場合も. 少なく とも 2回の薄膜成長を伴うものであり、 また、 C a F2 といった 特殊な層を形成するものであった。 The semiconductor Uweha described in JP-A-1 1 2 3 3 44 0 Patent Publication, in order from the Weha surface, the strain S i layer / C a F 2 layer / (S i G e layer) / that S i board As shown in Fig. 4, the manufacturing process is as follows: Si wafer preparation (Step 200) → Deposition of two layers of CaF by sputtering (Step 202) → (S i G e layer growth) (step 204) → strain S i layer growth (step 206), also in this case. It involves at least two thin film growths, and C a F 2 Such a special layer was formed.
このように、 従来の方法では多くのプロセスを伴った複雑な積層構造 から構成されるものであったため、 その製造コス トが高く汎用性に欠け ていた。 発明の開示  As described above, since the conventional method is composed of a complicated laminated structure involving many processes, the manufacturing cost is high and the versatility is lacking. Disclosure of the invention
本発明は、 このような問題点を解決するためになされたものであり、 比較的単純な積層構造にもかかわらず、 電子の移動度を高めるのに十分 な格子歪みを有し、 かつ、 結晶欠陥の少ない S i層を有する半導体ゥェ ーハを簡便な製造プロセスにより製造することのできる半導体ゥヱーハ の製造方法を提供することを目的とする。 The present invention has been made in order to solve such a problem, and has a lattice distortion sufficient to increase the mobility of electrons, despite a relatively simple laminated structure, and a crystal. A semiconductor wafer having a Si layer with few defects can be manufactured by a simple manufacturing process. It is an object of the present invention to provide a method for producing the same.
上記目的を達成するため、 本発明の半導体ゥェ一八の製造方法の第 1 の態様は、 第 1のシリコン単結晶ゥエー八の表面に S i G e層をェピタ キシャル成長する工程と、 該 S i G e層の表面と第 2のゥエーハの表面 とを酸化膜を介して結合する工程と、 該第 2のゥエー八と結合された該 第 1のシリコン単結晶ゥエーハを薄膜化して格子歪みを内在する S i層 を露出させる工程と、 を有することを特徴とする。  In order to achieve the above object, a first aspect of a method of manufacturing a semiconductor layer of the present invention includes: a step of epitaxially growing a SiGe layer on a surface of a first silicon single crystal layer; Bonding the surface of the SiGe layer and the surface of the second wafer through an oxide film; and reducing the thickness of the first silicon single crystal wafer bonded to the second wafer to lattice distortion. Exposing the Si layer existing therein.
本発明の半導体ゥェ一八の製造方法の第 2の態様は、 第 1のシリコン 単結晶ゥェ一ハの表面に S i G e層をェピタキシャル成長する工程と、 該 S i G e層の表面または第 2のゥエーハの表面の少なくとも一方に酸 化膜を形成する工程と、 該 S i G e層を通して第 1のシリコン単結晶ゥ ェ一八に水素イオンまたは希ガスイオンの少なくとも一方を注入して微 小気泡層を形成する工程と、 該前記酸化膜を介して該第 1のシリコン単 結晶ゥエー八と第 2のゥエー八とを結合した後、 該微小気泡層で該第 1 のシリコン単結晶ゥェ一八を剥離する工程と、 を有することを特徴とす る。  A second aspect of the method for manufacturing a semiconductor wafer of the present invention is a step of epitaxially growing a Si Ge layer on a surface of a first silicon single crystal wafer; Forming an oxide film on at least one of the surface of the first silicon wafer and the surface of the second wafer; and supplying at least one of hydrogen ions and rare gas ions to the first silicon single crystal wafer through the SiGe layer. Injecting to form a microbubble layer, and after bonding the first silicon single crystal P.A.8 and the second P.A.8 through the oxide film, Removing the silicon single crystal layer 18.
上記第 2の態様において、 上記剥離する工程により剥離され上記第 2 のゥエーハに移動した上記第 1シリコン単結晶ゥエーハ薄膜の剥離面を. 研磨または熱処理、 あるいはこれらを組み合わせて平坦化する工程をさ らに設けるのが好ましい。 上記微小気泡層は、 第 1のシリコン単結晶ゥ エーハの格子歪みを有する領域に形成することができる。  In the second aspect, the step of flattening the peeled surface of the first silicon single crystal wafer thin film which has been peeled in the peeling step and moved to the second wafer is polished or heat-treated, or a combination thereof. It is preferable to provide them. The microbubble layer can be formed in a region having lattice distortion of the first silicon single crystal wafer.
上記第 1及び第 2の態様において、 上記酸化膜は上記 S i G e層の表 面に熱酸化により形成されるのが好ましい。 上記第 2のゥェ一ハとして は、 シリコン単結晶ゥエーハを用いることが好ましい。 図面の簡単な説明 図 1は、 本発明方法の第 1の実施形態を示すフローチャートである。 図 2は、 本発明方法の第 2の実施形態を示すフロ一チャートである。 図 3は、 従来の半導体ゥエー八の製造方法の一例を示すフローチヤ一 卜である。 In the first and second aspects, the oxide film is preferably formed on the surface of the SiGe layer by thermal oxidation. It is preferable to use a silicon single crystal wafer as the second wafer. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a flowchart showing a first embodiment of the method of the present invention. FIG. 2 is a flowchart showing a second embodiment of the method of the present invention. FIG. 3 is a flowchart showing an example of a conventional method for manufacturing a semiconductor device.
図 4は、 従来の半導体ゥヱ一八の製造方法の他の例を示すフローチヤ ―卜である。 発明を実施するための最良の形態  FIG. 4 is a flowchart showing another example of a conventional method for manufacturing a semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を添付図面を用いて説明するが、 本発明の 技術思想から逸脱しない限り図示例以外にも種々の変形が可能なことは いうまでもない。 - (第 1の実施の形態)  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, it goes without saying that various modifications other than the illustrated examples are possible without departing from the technical idea of the present invention. -(First embodiment)
図 1に本発明の第 1の実施の形態である半導体ゥェ一八の製造フロー を示した。 図 1に示された製造フローは、 基本的には 2枚のシリコンゥ エーハを用いて貼り合わせ法により S O Iゥエーハを製造する際の通常 の製造フローに、 S i G e層を成長する工程 (b ) を加えただけのもの である。  FIG. 1 shows a manufacturing flow of the semiconductor layer 18 according to the first embodiment of the present invention. The manufacturing flow shown in FIG. 1 is basically the same as the normal manufacturing flow for manufacturing an SOI wafer by a bonding method using two silicon wafers, and the step of growing a SiGe layer (b) ).
まず、 最終的に歪み S i層の材料となる第 1及ぴ第 2の S iゥェ一ハ W 1 , W 2を用意する 〔図 1 ( a ) 〕 。 この S i ゥエーハ W 1は、 単結 晶シリコンであれば特に限定はされず、 C Z法や F Z法で作製された S i ゥエーハを用いることができる。 ただし、 デバイスを形成する歪み S i層の品質を高めるため、 少なくとも用いるゥエーハの表面近傍には結 晶欠陥が少ないものを用いることが好ましい。 具体的には、 熱処理によ りゥェ一ハ表面近傍に D Z層を形成したゥエーハゃ、 C Z法の引き上げ 条件を調整することにより、 単結晶中のいわゆる Grown-in欠陥を低減 (あるいは消滅) させたゥェ一ハゃ、 F Zゥェ一八などが好適である。 次に、 前記第 1の S i ゥエーハ W 1の表面に S i G e層 1 0をェピ夕 キシャル成長により形成する 〔図 1 (b) 〕 。 S i G e層 1 0の形成に は、 例えば分子線ェピタキシャル成長装置や超高真空化学気相成長 (U HV— CVD) 装置などを用いることができる。 First, first and second Si wafers W1 and W2, which are ultimately materials of the strained Si layer, are prepared [FIG. 1 (a)]. The Si wafer W1 is not particularly limited as long as it is single crystal silicon, and an Si wafer manufactured by the CZ method or the FZ method can be used. However, in order to improve the quality of the strained Si layer forming the device, it is preferable to use a wafer having few crystal defects at least near the surface of the wafer to be used. Specifically, a DZ layer was formed near the wafer surface by heat treatment. The so-called “Grown-in defects” in the single crystal were reduced (or eliminated) by adjusting the pulling conditions of the CZ method. Preferred are FZZ and FZZ. Next, a SiGe layer 10 is formed on the surface of the first Si wafer W1 by epitaxial growth [FIG. 1 (b)]. For the formation of the SiGe layer 10, for example, a molecular beam epitaxy growth apparatus or an ultra-high vacuum chemical vapor deposition (UHV-CVD) apparatus can be used.
形成する S i G e層 1 0の G e組成は 1 0〜 40 %程度が好ましい。 1 0 %未満では十分な引張り歪みを有する歪み S i層が形成されず、 4 0 %を超えると S iゥエーハ W 1と S i G e層 1 0の格子定数の差異に より S i G e層 1 0にミスフイツト転位が発生しやすくなるため、 最終 的に形成される歪み S i層の結晶性に悪影響を及ぼす。 また、 S i G e 層 1 0の厚さは 1 0 nm〜 1 m程度が好ましい。 1 0 nm未満では十 分な引張り歪みを有する歪み S i層が形成されず、 Ι zmを超えると寄 生容量の増加等により歪み S i層に形成されるデバイス特性が悪化する, 尚、 上記の工程により第 1の S iゥェ一ハ W 1上に格子定数の異なる S i G e層 1 0が形成されても、 第 1の S i ゥエーハ W 1の厚み効果によ り、 第 1の S iゥェ一ハ W 1側に転位が発生することはない。  The Ge composition of the SiGe layer 10 to be formed is preferably about 10 to 40%. If it is less than 10%, a strain Si layer having a sufficient tensile strain is not formed, and if it exceeds 40%, Si Ge due to a difference in lattice constant between Si ゥ a wafer W1 and Si Ge layer 10 is obtained. Since misfit dislocations are easily generated in the layer 10, the crystallinity of the finally formed strained Si layer is adversely affected. Further, the thickness of the SiGe layer 10 is preferably about 10 nm to 1 m. If it is less than 10 nm, a strained Si layer having a sufficient tensile strain is not formed, and if it exceeds Ιzm, device characteristics formed in the strained Si layer are deteriorated due to an increase in parasitic capacitance and the like. Even if the Si Ge layers 10 having different lattice constants are formed on the first Si wafer W 1 by the step (1), the first Si wafer W 1 has a thickness effect of the first Si wafer 10. No dislocation is generated on the side of the W1 side.
次に、 S i G e層 1 0の表面に酸化膜 1 2を形成する 〔図 1 ( c ) 〕 < 酸化膜の形成は通常の熱酸化法を用いてもよいし、 C VD法により堆積 してもよい。 熱酸化法を用いると、 S i G e層 1 0表面には化学的に安 定な S i 〇2層 1 2が形成され、 余分な G e原子が S i G e層 1 0には じき出され S i G e層 1 0中の G e濃度が高くなる。 従って、 ミスフィ ッ ト転位の発生を抑制する目的でェピタキシャル成長する際の G e組成 を比較的低くした場合であっても、 S i G e層 1 0表面を熱酸化するこ とにより最終的に形成される歪み S i層の引張り歪みを高めることがで きる。 また、 十分な引張り歪みを得るために、 熱酸化と酸化膜除去を繰 り返し行ってもよい。 Next, an oxide film 12 is formed on the surface of the SiGe layer 10 (FIG. 1 (c)). <The oxide film may be formed by a normal thermal oxidation method or deposited by a CVD method. May be. With thermal oxidation, S i G in e layer 1 0 surface chemically From Jona S i 〇 two layers 1 2 are formed, extra G e atoms S i G e layer 1 0 repellency The Ge concentration in the output Si Ge layer 10 becomes high. Therefore, even if the Ge composition during epitaxy growth is relatively low for the purpose of suppressing the generation of misfit dislocations, the final surface can be obtained by thermally oxidizing the surface of the SiGe layer 10. It is possible to increase the tensile strain of the strain Si layer formed at the time. Further, in order to obtain sufficient tensile strain, thermal oxidation and oxide film removal may be repeatedly performed.
次に、 S i G e層 1 0表面に形成した酸化膜 1 2と第 2の S iゥエー Λ^2の表面を密着させ、 後の薄膜化工程に耐え得る結合強度になるよ うに熱処理を行う 〔結合熱処理、 図 1 (d) 〕 。 熱処理条件は、 後の薄 膜化工程に耐え得る条件であれば特に限定されないが、 薄膜化を研削、 研磨により行う場合には、 8 0 0〜 1 2 0 0 で0. 5〜 5時間程度行 うことが好ましい。 Next, the oxide film 12 formed on the surface of the SiGe layer 10 and the second Si The surface of Λ ^ 2 is brought into close contact, and heat treatment is performed so that the bonding strength can withstand the subsequent thinning process [bonding heat treatment, Fig. 1 (d)]. The heat treatment conditions are not particularly limited as long as they can withstand the subsequent thinning process, but when the thinning is performed by grinding and polishing, it is about 800 to 120 hours for about 0.5 to 5 hours. It is preferable to do this.
最後に第 1の S iゥェ一ハ W 1を薄膜化して歪み S i層 1 4を露出さ せる 〔図 1 ( e ) 〕 。 歪み S i層 1 4の厚さは、 1〜 1 0 0 nm程度が 好ましい。 l O O nmを超えると S i G e層 1 0による引張り歪みが内 在しなくなる恐れがあり、 1 n m未満では良好なデバイス特性が得られ ない上、 加工も困難である。  Finally, the first Si wafer W1 is thinned to expose the strained Si layer 14 [FIG. 1 (e)]. The thickness of the strained Si layer 14 is preferably about 1 to 100 nm. If the thickness exceeds lO O nm, tensile strain due to the SiGe layer 10 may not be present. If the thickness is less than 1 nm, good device characteristics cannot be obtained and processing is difficult.
S i層 1 4の薄膜化手法としては、 研削、 研磨のほか、 酸やアルカリ 水溶液を用いたゥエツ トエッチング、 プラズマを利用した気相エツチン グ、 ラッピング、 あるいは、 スライスにより 2分割にした後、 研磨する 手法などを挙げることができる。 これらの薄膜化手法によっては、 薄膜 化の前に行う結合熱処理を省略したり、 接着剤等を使用して結合するこ ともできる。  As a method for thinning the Si layer 14, in addition to grinding and polishing, after etching by acid or alkali aqueous solution, gas-phase etching using plasma, lapping, or slicing, it is divided into two parts. A polishing method can be used. Depending on these thinning methods, bonding heat treatment performed before thinning can be omitted, or bonding can be performed using an adhesive or the like.
(第 2の実施の形態)  (Second embodiment)
図 2に本発明の第 2の実施形態である半導体ゥヱ一八の製造フロ一を 示した。 図 2に示された製造フローは、 基本的には 2枚のシリコンゥェ ーハを用いて、 イオン注入剥離法 (水素イオン剥離法、 スマートカッ ト 法 (登録商標) とも呼ばれる。 ) により S 0 I ゥエーハを製造する際の 製造フローに、 S i G e層を成長する工程 (b) を加えただけのもので ある。 尚、 図 2における S i G e層の表面を酸化する工程まで 〔図 2 ( a) 〜図 2 ( c ) 〕 は、 図 1 (a) 〜図 1 ( c ) と同一工程であるの で再度の説明は省略する。  FIG. 2 shows a manufacturing flow of a semiconductor device 18 according to a second embodiment of the present invention. The manufacturing flow shown in FIG. 2 is basically based on ion implantation and delamination (also called hydrogen ion delamination or smart cut (registered trademark)) using two silicon wafers, and S 0 I.ゥ This is just a process flow for manufacturing an e-beam, with the addition of a step (b) for growing a SiGe layer. Note that up to the step of oxidizing the surface of the SiGe layer in FIG. 2 (FIGS. 2 (a) to 2 (c)) is the same step as FIGS. 1 (a) to 1 (c). The description will not be repeated.
S i G e層 1 0の表面に形成された酸化膜 1 2の表面側から、 酸化膜 1 2および S i G e層 1 0を通して水素イオンまたは希ガスイオンの少 なくとも一方 (図 2 (d) では水素イオン 1 6 ) を注入することにより , 第 1の S i ゥエーハ W 1中に微小気泡層 1 8を形成する 〔図 2 ( d) 〕 , 微小気泡層 1 8が形成される位置 (深さ) は水素イオン 1 6の注入ェ ネルギ一により決まり、 その微小気泡層 1 8を境界として後の剥離熱処 理により剥離を発生させるためには、 1 X 1 016/ c m2 を超える注入 線量 (例えば 5 X 1 016Z c m2) が必要とされる。 剥離して形成される 多層構造のゥエー八の最表面の S i層表面が確実に格子歪み (引張り歪 み) を有する様にするためには、 前記微小気泡層 1 8を第 1の S iゥェ 一八 W 1の格子歪みを有する領域 (第 1の S i ゥエーハ W 1の表面から l O O nm以下の領域) に形成することが好ましい。 The oxide film formed on the surface of the SiGe layer 10 By implanting at least one of hydrogen ions or rare gas ions (hydrogen ions 16 in FIG. 2 (d)) through the 12 and S i Ge layers 10, the first S i ゥ wafer W 1 When the microbubble layer 18 is formed [Fig. 2 (d)], the position (depth) where the microbubble layer 18 is formed is determined by the energy of hydrogen ion 16 injection. In order to generate exfoliation by subsequent exfoliation heat treatment as a boundary, an implant dose of more than 1 × 10 16 / cm 2 (eg, 5 × 10 16 Z cm 2 ) is required. In order to ensure that the outermost Si layer surface of the multilayer structure formed by peeling has a lattice strain (tensile strain), the microbubble layer 18 is formed by the first Si layer. It is preferably formed in a region having a lattice distortion of 18 W 1 (a region of 100 nm or less from the surface of the first Si wafer W 1).
次に、 S i G e層 1 0表面に形成した酸化膜 1 2と第 2の S i ゥエー ハ W2の表面を密着させ 〔図 2 (e ) 〕 、 5 0 0 °C以上の熱処理 (剥離 熱処理) を加えることにより、 前記微小気泡層 1 8で剥離を生じさせる 〔図 2 ( f ) 〕 。 その後、 必要に応じてさらに高温での結合熱処理を行 うことにより結合強度を高めてもよい。 また、 最近では、 イオン注入剥 離法の一種ではあるが、 注入される水素イオンを励起してプラズマ状態 で注入することにより剥離熱処理を行うことなく、 室温で剥離を行う方 法も開発されているので、 この方法を用いる場合には剥離熱処理を省略 することができる。  Next, the oxide film 12 formed on the surface of the SiGe layer 10 is brought into close contact with the surface of the second Si wafer W2 (FIG. 2 (e)), and a heat treatment (stripping) at 500 ° C. or more is performed. By applying heat treatment, peeling occurs in the microbubble layer 18 [FIG. 2 (f)]. Thereafter, if necessary, a bonding heat treatment at a higher temperature may be performed to increase the bonding strength. Recently, a method of exfoliating at room temperature without exfoliating heat treatment by exciting the implanted hydrogen ions and implanting them in a plasma state, which is a kind of ion implantation delamination method, has been developed. Therefore, when this method is used, the peeling heat treatment can be omitted.
剥離後の歪み S i層 1 4の表面は鏡面ではあるが若干の面粗さを有し ているので、 夕ツチポリッシュと呼ばれる研磨代の極めて少ない研磨を 行い平坦化する 〔図 2 (g) 〕 。 夕ツチポリッシュの代わりに、 ァルゴ ンガスや水素ガス雰囲気中で熱処理することにより平坦化する手法や、 これらを組み合わせて平坦化することも可能である。  The surface of the strained Si layer 14 after peeling is mirror-finished but has a slight surface roughness, so it is flattened by polishing with a very small polishing allowance called Yutsu Polish (Fig. 2 (g) ]. Instead of evening polishing, flattening by heat treatment in an atmosphere of argon gas or hydrogen gas, or a combination of these methods can be used for flattening.
熱処理条件としては、 通常 抵抗加熱式熱処理炉を用いる場合には、 1 1 0 0〜 : 1 3 0 0 ° ( 、 0. 5〜 5時間程度の熱処理が好適であり、 R T A (Rapid Thermal Annealing)装置を用いる場合には、 1 1 0 0〜 1 3 5 0 °C、 :! 〜 1 2 0秒程度の熱処理が好適である。 また、 これらを組 み合わせて熱処理を行うこともできる。 As the heat treatment conditions, usually when using a resistance heating type heat treatment furnace, 1100-: 1300 ° (, heat treatment of about 0.5-5 hours is suitable, and when using a RTA (Rapid Thermal Annealing) apparatus, 1100-135 ° C,: Heat treatment is preferably performed for about 120 seconds or more.
尚、 図 1およぴ図 2に示した実施の形態では第 1の S i ゥエーハ W 1 の S i G e層 1 0の表面に酸化膜 1 2を形成する場合を例示したが、 第 2の S i ゥエーハ W 2に酸化膜を形成してもよいし、 第 1及び第 2の S i ゥエーハ双方に酸化膜を形成してもよい。 また、 第 2の S i ゥェーハ W 2として、 抵抗率が 1 0 0 0 Ω · c m以上の高抵抗率ゥエーハを用い ることにより、 高周波特性に優れ、 移動体通信用の半導体ゥエーハとし て用いることができる。 さらに第 2のゥエーハ W 2としては、 石英基板. サファイア基板、 S i C、 窒化アルミニウム基板等の絶縁性基板を用い ることもできる。  In the embodiment shown in FIG. 1 and FIG. 2, the case where the oxide film 12 is formed on the surface of the SiGe layer 10 of the first Si wafer A 1 has been exemplified. An oxide film may be formed on the Si i wafer W2, or an oxide film may be formed on both the first and second Si wafers. In addition, by using a high resistivity wafer having a resistivity of 100 Ωcm or more as the second Si wafer W2, it can be used as a semiconductor wafer for mobile communication with excellent high frequency characteristics. Can be. Further, as the second wafer W2, an insulating substrate such as a quartz substrate, a sapphire substrate, a SiC substrate, or an aluminum nitride substrate can be used.
実施例 Example
以下に実施例をあげて本発明をさらに具体的に説明するが、 これらの 実施例は限定的に解釈すべきでないことは勿論である。  Hereinafter, the present invention will be described in more detail with reference to Examples, but it should be understood that these Examples should not be construed as limiting.
(実施例 1 : 第 1の実施の形態に対応)  (Example 1: Corresponding to the first embodiment)
図 1に示した第 1の実施の形態の手順に従って下記条件で十分な格子 歪みを有する半導体ゥエーハを製造した。  According to the procedure of the first embodiment shown in FIG. 1, a semiconductor wafer having a sufficient lattice strain was manufactured under the following conditions.
1. 使用ゥエーハ (第 1および第 2ゥエーハの用意) 〔図 1 ( a ) 〕 直径 2 0 0 m m、 p型、 結晶方位く 1 0 0 >、 l O Q ' c m  1. Used wafer (Preparation of 1st and 2nd wafers) [Fig. 1 (a)] Diameter: 200 mm, p-type, crystal orientation: 100>, l O Q 'cm
2. 第 1 ゥヱーハの表面に S i G e層成長 (UH V— C VD装置) 〔図 1 (b ) 〕  2. Growth of a SiGe layer on the surface of the first wafer (UHV-CVD equipment) [Fig. 1 (b)]
原料ガス : G e H4、 S i 2H6 Source gas: G e H 4, S i 2 H 6
成長温度 : 7 0 0 °C Growth temperature: 700 ° C
S i G e組成 : S i 0.7G β o.3 成長層厚: 1 5 0 n m S i G e composition:. S i 0 7 G β o.3 Growth layer thickness: 150 nm
3. S i G e表面酸化 〔図 1 ( c ) 〕 3. Surface oxidation of SiGe [Fig. 1 (c)]
酸化条件: 8 0 0 °C、 パイロジェニック酸化 Oxidation conditions: 800 ° C, pyrogenic oxidation
酸化膜厚: 1 0 0 n m Oxide film thickness: 100 nm
4. 結合工程 〔図 1 ( d ) 〕 4. Joining process [Fig. 1 (d)]
両ゥエーハを室温で密着させ 1 0 0 0 °C、 2時間の熱処理 (酸化性雰囲 気) Both wafers are brought into close contact at room temperature and heat treated at 100 ° C for 2 hours (oxidizing atmosphere)
5. 薄膜化 〔図 1 ( e ) 〕  5. Thinning [Fig. 1 (e)]
平面研削 : 第 1 S i ゥエーハ厚が約 2 0 ( mになるまで研削。 Surface grinding: Grind until the first S i ゥ wafer thickness is about 20 (m).
鏡面研磨: 第 1 S i ゥエーハ厚が約 4 μ mになるまで研磨。 Mirror polishing: Polishing until the first Si e wafer thickness is about 4 μm.
P AC E (Plasma Assisted Chemical Etching) 法による気相エッチ ングにより第 1 S i ゥエーハ厚が約 1 0 0 n mになるまで薄膜化 (P A C E法は第 2 5 6 5 6 1 7号特許に記載された技術) 。  The thickness of the first Si wafer is reduced to about 100 nm by gas-phase etching using the PAC (Plasma Assisted Chemical Etching) method. (The PACE method is described in Japanese Patent No. 25656617. Technology).
(実施例 2 : 第 2の実施の形態に対応)  (Example 2: corresponding to the second embodiment)
図 2に示した第 2の実施の形態の手順に従って下記条件で十分な格子 歪みを有する半導体ゥエーハを製造した。  According to the procedure of the second embodiment shown in FIG. 2, a semiconductor wafer having a sufficient lattice strain was manufactured under the following conditions.
1. 使用ゥエーハ (第 1および第 2ゥエーハの用意) 〔図 2 ( a ) 〕 直径 2 0 0 m m、 p型、 結晶方位く 1 0 0 >、 Ι Ο Ω - c m  1. Used wafer (Preparation of first and second wafers) [Fig. 2 (a)] Diameter 200 mm, p-type, crystal orientation 100>,> Ο Ω-cm
2. 第 1ゥエーハの表面に S i G e層成長 (UH V— C VD装置) 〔図 2 (b ) ]  2. Growth of a SiGe layer on the surface of the first wafer (UHV-CVD equipment) [Fig. 2 (b)]
原料ガス : G e H4、 S i 2H6 Source gas: G e H 4, S i 2 H 6
成長温度: 7 0 0 °C Growth temperature: 700 ° C
¾ l e a成: l 0.85G e ¾ lea formed:. L 0 85 G e
成長層厚: 1 2 0 n m Growth layer thickness: 120 nm
3. S i G e表面酸化 〔図 2 ( c ) 〕  3. Oxidation of SiGe surface [Fig. 2 (c)]
酸化条件: 8 0 0 °C、 パイロジヱニック酸化 0 酸化膜厚: 1 0 0 nm Oxidation conditions: 800 ° C, pyrogenic oxidation 0 Oxide film thickness: 100 nm
4. 水素イオン注入 〔図 2 (d) 〕  4. Hydrogen ion implantation [Fig. 2 (d)]
H+イオン注入条件 : 3 5 k e V、 8 X 1 016/ c m2 H + ion implantation conditions: 3 5 ke V, 8 X 1 0 16 / cm 2
5. 剥離工程 〔図 2 (e ) 及び ( f ) 〕  5. Peeling process [Fig. 2 (e) and (f)]
両ゥエーハを室温で密着させ、 5 0 0 、 3 0分の熱処理 (窒素雰囲 気) により剥離。 剥離後の多層ゥェ一八の最表面 S i層の厚さ約 1 3 0 n m。 Both wafers were brought into close contact at room temperature, and peeled off by heat treatment (nitrogen atmosphere) for 500 and 30 minutes. The thickness of the outermost surface Si layer of the multilayered layer 18 after peeling is about 130 nm.
6. 結合熱処理  6. Bonding heat treatment
8 0 0 °C、 2時間、 窒素雰囲気  800 ° C, 2 hours, nitrogen atmosphere
7. 夕ツチポリッシュ 〔図 2 ( g) 〕  7. Evening polish [Fig. 2 (g)]
研磨代約 3 0 nm 産業上の利用可能性 Polishing cost about 30 nm Industrial applicability
以上述べたごとく、 本発明によれば、 比較的単純な積層構造にもかか わらず、 電子の移動度を高めるのに十分な格子歪みを有し、 かつ、 結晶 欠陥の少ない S i層を有する半導体ゥエーハを簡便な製造プロセスによ り製造することができるという効果が達成される。  As described above, according to the present invention, despite having a relatively simple laminated structure, an Si layer having sufficient lattice distortion to enhance electron mobility and having few crystal defects is provided. The effect that the semiconductor wafer having the same can be manufactured by a simple manufacturing process is achieved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 第 1のシリコン単結晶ゥエー八の表面に S i G e層をェピタキシャ ル成長する工程と、 該 S i G e層の表面と第 2のゥエーハの表面とを酸 化膜を介して結合する工程と、 該第 2のゥエー八と結合された該第 1の シリコン単結晶ゥエーハを薄膜化して格子歪みを内在する S i層を露出 させる工程と、 を有することを特徴とする半導体ゥエーハの製造方法。1. A step of epitaxially growing a SiGe layer on the surface of the first silicon single crystal layer, and bonding the surface of the SiGe layer and the surface of the second layer via an oxide film. And a step of thinning the first silicon single crystal wafer combined with the second wafer to expose an Si layer having lattice distortion therein. Production method.
2 . 第 1のシリコン単結晶ゥェ一ハの表面に S i G e層をェピタキシャ ル成長する工程と、 該 S i G e層の表面、 または第 2のゥェ一八の表面 の少なくとも一方に酸化膜を形成する工程と、 該 S i G e層を通して第 1のシリコン単結晶ゥェ一ハに水素イオンまたは希ガスイオンの少なく とも一方を注入して微小気泡層を形成する工程と、 該酸化膜を介して該 第 1のシリコン単結晶ゥエー八と第 2のゥエー八とを結合した後、 該微 小気泡層で該第 1のシリコン単結晶ゥエーハを剥離する工程と、 を有す ることを特徴とする半導体ゥェ一八の製造方法。 2. a step of epitaxially growing a SiGe layer on the surface of the first silicon single crystal wafer; and at least one of the surface of the SiGe layer and the surface of the second wafer. Forming a microbubble layer by implanting at least one of hydrogen ions or rare gas ions into the first silicon single crystal wafer through the SiGe layer; Removing the first silicon single crystal wafer from the microbubble layer after bonding the first silicon single crystal wafer and the second silicon wafer through the oxide film. A method for manufacturing a semiconductor wafer.
3 . 前記剥離する工程により剥離され前記第 2のゥエーハに移動した前 記第 1シリコン単結晶ゥエーハ薄膜の剥離面を、 研磨または熱処理ある いはこれらを組み合わせて平坦化する工程を有することを特徴とする請 求項 2に記載された半導体ゥエーハの製造方法。  3. A step of polishing or heat-treating the peeled surface of the first silicon single-crystal wafer thin film which has been peeled and moved to the second wafer after the peeling step, or a combination thereof. The method for manufacturing a semiconductor wafer described in claim 2.
4 . 前記微小気泡層を、 前記第 1のシリコン単結晶ゥェ一八の格子歪み を有する領域に形成することを特徴とする請求項 2または請求項 3に記 載された半導体ゥエーハの製造方法。  4. The method for manufacturing a semiconductor wafer according to claim 2, wherein the microbubble layer is formed in a region having a lattice distortion of the first silicon single crystal layer. .
5 . 前記酸化膜を前記 S i G e層の表面に熱酸化により形成することを 特徴とする請求項 1から請求項 4のいずれか 1項に記載された半導体ゥ エー八の製造方法。  5. The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film is formed on the surface of the SiGe layer by thermal oxidation.
6 . 前記第 2のゥエーハとして、 シリコン単結晶ゥエーハを用いること を特徴とする請求項 1から請求項 5のいずれか 1項に記載された半導体 ゥェ一八の製造方法。 6. Using a silicon single crystal wafer as the second wafer The method for manufacturing a semiconductor device according to any one of claims 1 to 5, characterized in that:
PCT/JP2001/010216 2000-11-27 2001-11-22 Method for manufacturing semiconductor wafer WO2002043153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-358783 2000-11-27
JP2000358783A JP2002164520A (en) 2000-11-27 2000-11-27 Method for manufacturing semiconductor wafer

Publications (1)

Publication Number Publication Date
WO2002043153A1 true WO2002043153A1 (en) 2002-05-30

Family

ID=18830626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010216 WO2002043153A1 (en) 2000-11-27 2001-11-22 Method for manufacturing semiconductor wafer

Country Status (3)

Country Link
JP (1) JP2002164520A (en)
TW (1) TWI237412B (en)
WO (1) WO2002043153A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851847A1 (en) * 2003-02-28 2004-09-03 Soitec Silicon On Insulator RELAXATION OF A THIN FILM AFTER TRANSFER
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
WO2006043471A1 (en) * 2004-10-20 2006-04-27 Shin-Etsu Handotai Co., Ltd. Semiconductor wafer manufacturing method
WO2006051730A1 (en) * 2004-11-10 2006-05-18 Shin-Etsu Handotai Co., Ltd. Method for producing semiconductor wafer
US7232737B2 (en) 2005-01-19 2007-06-19 S.O.I.Tec Silicon On Insulator Technologies Treatment of a removed layer of silicon-germanium
JP2008532276A (en) * 2005-02-24 2008-08-14 エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ Thermal oxidation of SiGe layer and its applications

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602613B1 (en) 2000-01-20 2003-08-05 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
WO2002015244A2 (en) 2000-08-16 2002-02-21 Massachusetts Institute Of Technology Process for producing semiconductor article using graded expitaxial growth
US6649480B2 (en) 2000-12-04 2003-11-18 Amberwave Systems Corporation Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6703688B1 (en) 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6724008B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6723661B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
FR2827078B1 (en) * 2001-07-04 2005-02-04 Soitec Silicon On Insulator METHOD FOR REDUCING SURFACE ROUGHNESS
US6933518B2 (en) 2001-09-24 2005-08-23 Amberwave Systems Corporation RF circuits including transistors having strained material layers
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US6982474B2 (en) 2002-06-25 2006-01-03 Amberwave Systems Corporation Reacted conductive gate electrodes
KR100511656B1 (en) * 2002-08-10 2005-09-07 주식회사 실트론 Method of fabricating nano SOI wafer and nano SOI wafer fabricated by the same
WO2004019391A2 (en) 2002-08-23 2004-03-04 Amberwave Systems Corporation Semiconductor heterostructures having reduced dislocation pile-ups and related methods
JP5032743B2 (en) * 2002-09-18 2012-09-26 ソワテク Formation of relaxed useful layers from wafers without a buffer layer
JP4294935B2 (en) 2002-10-17 2009-07-15 株式会社ルネサステクノロジ Semiconductor device
US6707106B1 (en) * 2002-10-18 2004-03-16 Advanced Micro Devices, Inc. Semiconductor device with tensile strain silicon introduced by compressive material in a buried oxide layer
KR101142138B1 (en) 2003-09-10 2012-05-10 신에쯔 한도타이 가부시키가이샤 Multilayer Substrate Cleaning Method, Substrate Bonding Method, And Bonded Wafer Manufacturing Method
JP4626133B2 (en) * 2003-09-10 2011-02-02 信越半導体株式会社 Method for manufacturing bonded wafer
JP4507604B2 (en) 2004-01-16 2010-07-21 信越半導体株式会社 Method for measuring strain of bonded strained wafer
US7393733B2 (en) 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
JP5031190B2 (en) * 2005-02-02 2012-09-19 株式会社Sumco Manufacturing method of semiconductor wafer having strained Si layer
KR100744805B1 (en) * 2005-12-19 2007-08-01 매그나칩 반도체 유한회사 Semiconductor wafer and manufacturing method thereof
EP2128891B1 (en) * 2007-02-28 2015-09-02 Shin-Etsu Chemical Co., Ltd. Process for producing laminated substrate
KR100837280B1 (en) 2007-03-12 2008-06-11 삼성전자주식회사 Semiconductor devices including a getting region and methods of forming the same
JP5452590B2 (en) * 2008-06-20 2014-03-26 天錫 李 Thin film manufacturing method
JP5179401B2 (en) * 2009-02-19 2013-04-10 信越化学工業株式会社 Bonded wafer and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651439A2 (en) * 1993-10-29 1995-05-03 International Business Machines Corporation Production of substrate for tensilely strained semiconductor
JPH09180999A (en) * 1995-12-26 1997-07-11 Toshiba Corp Semiconductor device and manufacture thereof
US5882987A (en) * 1997-08-26 1999-03-16 International Business Machines Corporation Smart-cut process for the production of thin semiconductor material films
JP2001217430A (en) * 1999-11-26 2001-08-10 Toshiba Corp Method of manufacturing semiconductor substrate and semiconductor substrate manufactured thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651439A2 (en) * 1993-10-29 1995-05-03 International Business Machines Corporation Production of substrate for tensilely strained semiconductor
JPH09180999A (en) * 1995-12-26 1997-07-11 Toshiba Corp Semiconductor device and manufacture thereof
US5882987A (en) * 1997-08-26 1999-03-16 International Business Machines Corporation Smart-cut process for the production of thin semiconductor material films
JP2001217430A (en) * 1999-11-26 2001-08-10 Toshiba Corp Method of manufacturing semiconductor substrate and semiconductor substrate manufactured thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. MIZUNO ET AL.: "Electron and hole mobility enhancement in strained-si mosfet's on sige-on-insulator substrates fabricated by simox technoloy", IEEE ELECTRON DEVICE LETTERS, vol. 21, no. 5, May 2000 (2000-05-01), pages 230 - 232, XP000936896 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736988B2 (en) 2003-02-28 2010-06-15 S.O.I.Tec Silicon On Insulator Technologies Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
WO2004077552A1 (en) * 2003-02-28 2004-09-10 S.O.I.Tec Silicon On Insulator Technologies Relaxation of a thin layer after its transfer
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
FR2851847A1 (en) * 2003-02-28 2004-09-03 Soitec Silicon On Insulator RELAXATION OF A THIN FILM AFTER TRANSFER
US8173512B2 (en) 2003-02-28 2012-05-08 Soitec Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US7919393B2 (en) 2003-02-28 2011-04-05 S.O.I.Tec Silicon On Insulator Technologies Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
WO2006043471A1 (en) * 2004-10-20 2006-04-27 Shin-Etsu Handotai Co., Ltd. Semiconductor wafer manufacturing method
JP4617820B2 (en) * 2004-10-20 2011-01-26 信越半導体株式会社 Manufacturing method of semiconductor wafer
JP2006120782A (en) * 2004-10-20 2006-05-11 Shin Etsu Handotai Co Ltd Manufacturing method of semiconductor wafer
JP2006140187A (en) * 2004-11-10 2006-06-01 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer
WO2006051730A1 (en) * 2004-11-10 2006-05-18 Shin-Etsu Handotai Co., Ltd. Method for producing semiconductor wafer
US7959731B2 (en) 2004-11-10 2011-06-14 Shin-Etsu Handotai Co., Ltd. Method for producing semiconductor wafer
US7232737B2 (en) 2005-01-19 2007-06-19 S.O.I.Tec Silicon On Insulator Technologies Treatment of a removed layer of silicon-germanium
JP2008532276A (en) * 2005-02-24 2008-08-14 エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ Thermal oxidation of SiGe layer and its applications

Also Published As

Publication number Publication date
JP2002164520A (en) 2002-06-07
TWI237412B (en) 2005-08-01

Similar Documents

Publication Publication Date Title
WO2002043153A1 (en) Method for manufacturing semiconductor wafer
US6054363A (en) Method of manufacturing semiconductor article
US6992025B2 (en) Strained silicon on insulator from film transfer and relaxation by hydrogen implantation
JP4173884B2 (en) Method for manufacturing germanium-on-insulator (GeOI) type wafer
US11699615B2 (en) High resistivity semiconductor-on-insulator wafer and a method of manufacture
JP4617820B2 (en) Manufacturing method of semiconductor wafer
JP2010016390A (en) Process for producing semiconductor product using graded epitaxial growth
EP0843345A2 (en) Method of manufacturing a semiconductor article
EP0843346B1 (en) Method of manufacturing a semiconductor article
JP2008512868A (en) Method for producing defect-free high Ge content SiGe-on-insulator (SGOI) substrates using wafer bonding technology
JPH10200080A (en) Manufacturing method of semiconductor member
WO2007074550A1 (en) Process for producing soi wafer and soi wafer
KR101142138B1 (en) Multilayer Substrate Cleaning Method, Substrate Bonding Method, And Bonded Wafer Manufacturing Method
WO2006051730A1 (en) Method for producing semiconductor wafer
JP5465830B2 (en) Manufacturing method of bonded substrate
JPH10326883A (en) Substrate and manufacture thereof
JP3293767B2 (en) Semiconductor member manufacturing method
JP5031190B2 (en) Manufacturing method of semiconductor wafer having strained Si layer
JP2002118242A (en) Method for manufacturing semiconductor member
JP4649918B2 (en) Method for manufacturing bonded wafer
JP4626133B2 (en) Method for manufacturing bonded wafer
KR20070090251A (en) Formation and treatment of a sige structure
JP2001291851A (en) Method for manufacturing semiconductor member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase