JP5179401B2 - Bonded wafer and manufacturing method thereof - Google Patents

Bonded wafer and manufacturing method thereof Download PDF

Info

Publication number
JP5179401B2
JP5179401B2 JP2009036829A JP2009036829A JP5179401B2 JP 5179401 B2 JP5179401 B2 JP 5179401B2 JP 2009036829 A JP2009036829 A JP 2009036829A JP 2009036829 A JP2009036829 A JP 2009036829A JP 5179401 B2 JP5179401 B2 JP 5179401B2
Authority
JP
Japan
Prior art keywords
substrate
bonded wafer
single crystal
silicon nitride
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009036829A
Other languages
Japanese (ja)
Other versions
JP2010189234A (en
Inventor
昌次 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009036829A priority Critical patent/JP5179401B2/en
Publication of JP2010189234A publication Critical patent/JP2010189234A/en
Application granted granted Critical
Publication of JP5179401B2 publication Critical patent/JP5179401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低応力・拡散バリアー膜を備えた熱伝導部材に関する。   The present invention relates to a heat conducting member provided with a low stress / diffusion barrier film.

窒化アルミニウム(AlN)は、アルミナの10倍程度の熱伝導率を有し、半導体デバイスの絶縁性放熱基板として近年高い注目を集めている。またその熱膨張率(4.6×10−6/K程度:温度依存性は少ない)がシリコンの熱膨張係数(2.6〜4.5×10−6/K:温度依存性あり)に比較的近いことから、シリコンデバイスとの高い親和性も期待できる材料である。また高い耐熱温度や耐プラズマ性も有することから、静電チャック、ヒーターなどにも広く用いられている。 Aluminum nitride (AlN) has a thermal conductivity about 10 times that of alumina, and has recently attracted much attention as an insulating heat dissipation substrate for semiconductor devices. In addition, the coefficient of thermal expansion (about 4.6 × 10 −6 / K: less temperature dependency) is related to the coefficient of thermal expansion of silicon (2.6 to 4.5 × 10 −6 / K: temperature dependency). Since it is relatively close, it is a material that can be expected to have high affinity with silicon devices. In addition, since it has high heat resistance and plasma resistance, it is widely used for electrostatic chucks, heaters, and the like.

しかしながら、この材料には致命的な欠陥もある。それは加水分解性を有することで、半導体プロセスにおいて多用するウェットプロセスの際、基板が浸食されることである(非特許文献1参照)。またドライプロセスにおいても高温下ではその成分であるアルミニウムが拡散するという懸念も存在する。   However, this material also has fatal defects. It has hydrolyzability, and this means that the substrate is eroded during wet processes frequently used in semiconductor processes (see Non-Patent Document 1). Also in the dry process, there is a concern that the component aluminum diffuses at high temperatures.

”Hydrolysis behavior of aluminum nitride in various solutions” Journal of Materials Sciences, 35(2000), pp.2743-2748“Hydrolysis behavior of aluminum nitride in various solutions” Journal of Materials Sciences, 35 (2000), pp.2743-2748

本発明は上記現状に鑑み、耐加水分解性にすぐれ、アルミニウム成分の拡散を抑制することができ、シリコン基板との親和性が高い熱伝導部材、ならびに、それを利用した貼り合わせウェーハを提供することを目的とする。   In view of the above-mentioned present situation, the present invention provides a heat conducting member that has excellent hydrolysis resistance, can suppress diffusion of an aluminum component, and has high affinity with a silicon substrate, and a bonded wafer using the same. For the purpose.

この問題を解決するために、本発明者は以下のような作製法を考案した。
すなわち、本発明は、窒化アルミニウム基板の両面にシリコン窒化膜を堆積した熱伝導部材上に、単結晶シリコン薄膜を備えた貼り合わせウェーハである。
本発明はまた、単結晶シリコン基板の表面からイオンを注入してイオン注入層を形成する工程、前記単結晶シリコン基板と、窒化アルミニウム基板の両面にシリコン窒化膜を備えた熱伝導部材とを貼り合わせて接合体を得る工程、および、前記イオン注入層の界面を脆化し、前記単結晶シリコン基板の一部を前記熱伝導部材に転写し貼り合わせウェーハを得る工程を含む、窒化アルミニウム基板の両面にシリコン窒化膜を備えた熱伝導部材上に、単結晶シリコン薄膜を備えた貼り合わせウェーハの製造方法である
In order to solve this problem, the present inventor has devised the following production method.
That is, the present invention is a bonded wafer provided with a single crystal silicon thin film on a heat conducting member in which a silicon nitride film is deposited on both surfaces of an aluminum nitride substrate.
The present invention also includes a step of implanting ions from the surface of the single crystal silicon substrate to form an ion implantation layer, and bonding the single crystal silicon substrate and a heat conducting member having a silicon nitride film on both surfaces of the aluminum nitride substrate. Both surfaces of the aluminum nitride substrate, including a step of obtaining a bonded body together, and a step of embrittlement of an interface of the ion implantation layer to transfer a part of the single crystal silicon substrate to the heat conductive member to obtain a bonded wafer. This is a method for manufacturing a bonded wafer having a single crystal silicon thin film on a heat conducting member having a silicon nitride film .

本発明により、耐加水分解性に優れ、アルミニウム成分の拡散を抑制することができ、シリコン基板との親和性が高い熱伝導部材、ならびに、それを利用した貼り合わせウェーハを得ることができる。   According to the present invention, it is possible to obtain a heat conductive member that is excellent in hydrolysis resistance, can suppress diffusion of an aluminum component, and has high affinity with a silicon substrate, and a bonded wafer using the heat conductive member.

本発明にかかる熱伝導部材の模式図である。It is a schematic diagram of the heat conductive member concerning this invention. 本発明にかかる貼り合わせウェーハの製造工程の一態様を示す模式的工程図である。It is typical process drawing which shows the one aspect | mode of the manufacturing process of the bonded wafer concerning this invention.

以下に本発明を図1に基づいて詳細に説明する。
本発明にかかる熱伝導部材1は、AlN基板2の両面に、CVD法等でシリコン窒化膜3(SiN)を形成したものである。シリコン窒化膜3(SiN)を形成したことにより、耐薬品性が向上し、かつ高温プロセス中におけるAlN基板からのアルミやその他の不純物金属の拡散を防止することができる。
シリコン窒化膜3(SiN)としては、ストイキオメトリックなシリコン窒化膜(Si)、該ストイキオメトリック組成に比べてシリコンリッチなシリコン窒化膜(SRN)のいずれも用いることができる。
Hereinafter, the present invention will be described in detail with reference to FIG.
A heat conducting member 1 according to the present invention is obtained by forming silicon nitride films 3 (SiN) on both surfaces of an AlN substrate 2 by a CVD method or the like. By forming the silicon nitride film 3 (SiN), the chemical resistance can be improved and the diffusion of aluminum and other impurity metals from the AlN substrate during the high temperature process can be prevented.
As the silicon nitride film 3 (SiN), either a stoichiometric silicon nitride film (Si 3 N 4 ) or a silicon rich silicon nitride film (SRN) compared to the stoichiometric composition can be used.

比較的工程が低温(800℃以下)の場合は通常のストイキオメトリックなシリコン窒化膜(Si)でも充分役割を果たすことは可能である。
しかしながら、通常のストイキオメトリックなシリコン窒化膜(Si)は、非常に硬い材質であるので(ヤング率=290GPa−300GPa)、そのままAlN上に堆積し、半導体加工工程で昇温、降温を繰り返すと、熱膨張率の違いからクラック等の欠陥が入るなどの問題が生じる場合がある。そこで、窒化膜3として通常のストイキオメトリックなシリコン窒化膜(Si)よりもシリコン成分が多いシリコンリッチなシリコン窒化膜(SRN: Silicon rich nitride)を用いることにより、ヤング率を下げ(例えば、Sensors and Actuators A, 35(1992), pp.153−159を参照)、基板応力に柔軟なものとし、且つ薬品等に対する耐性も保持することに成功した。
When the process is relatively low temperature (800 ° C. or lower), a normal stoichiometric silicon nitride film (Si 3 N 4 ) can play a sufficient role.
However, since a normal stoichiometric silicon nitride film (Si 3 N 4 ) is a very hard material (Young's modulus = 290 GPa-300 GPa), it is deposited on AlN as it is, and the temperature is increased and decreased in the semiconductor processing step. Repeating may cause problems such as cracks and other defects due to differences in thermal expansion coefficient. Therefore, by using a silicon rich silicon nitride film (SRN: Silicon rich nitride) having more silicon components than a normal stoichiometric silicon nitride film (Si 3 N 4 ) as the nitride film 3, the Young's modulus is reduced ( For example, see Sensors and Actuators A, 35 (1992), pp. 153-159) and succeeded in making the substrate flexible and maintaining resistance to chemicals.

ストイキオメトリックなシリコン窒化膜(Si)は屈折率が波長l=633nmにおいてほぼ2.0となるのに対して、SRNは過剰なシリコンにより屈折率が2.0を超え2.5以下となるので判別が容易である。屈折率のより好ましい上限は、2.35、さらに好ましい上限は、2.3である。屈折率が2.5を超えると、低周波プラズマCVDなどの特殊な方法を採用する必要があり、コスト的に困難となる場合がある。
屈折率の測定方法としては、実施例においては光干渉式膜厚測定装置等を用いている。ただし、波長l=633nmHeNeレーザーを用いたエリプソメトリー法やキセノン短アークランプを用いた分光エリプソメトリー法を採用することもできる。
The stoichiometric silicon nitride film (Si 3 N 4 ) has a refractive index of approximately 2.0 at a wavelength l = 633 nm, whereas SRN has a refractive index of over 2.0 and 2.5 due to excess silicon. Since it becomes the following, discrimination is easy. A more preferable upper limit of the refractive index is 2.35, and a further preferable upper limit is 2.3. If the refractive index exceeds 2.5, a special method such as low-frequency plasma CVD needs to be employed, which may be difficult in terms of cost.
As a method for measuring the refractive index, an optical interference type film thickness measuring device or the like is used in the embodiments. However, an ellipsometry method using a wavelength l = 633 nm HeNe laser or a spectroscopic ellipsometry method using a xenon short arc lamp may be employed.

本明細書で「シリコンリッチ」とは化学量論比が1.33未満のものを意味する。
SRNの具体的な組成としては、例えば、N/Si比でSi3N4(屈折率2.0)の場合、1.33であるのに対して、屈折率が2.3のSRNは0.8という報告がある。
As used herein, “silicon rich” means that the stoichiometric ratio is less than 1.33.
As a specific composition of the SRN, for example, in the case of Si3N4 (refractive index 2.0) in the N / Si ratio, it is 1.33, whereas the SRN having a refractive index of 2.3 is 0.8. There is a report.

ストイキオメトリックなシリコン窒化膜(Si)、SRNのいずれもLPCVD[Low Pressure CVD]法を呼ばれる方法で堆積する方法が一般的であり、原料ガスである、SiHCl、NHガスの組成を変えることで膜の組成を変えることが容易にできる。通常の堆積温度は800℃程度である。またウェーハ両面に膜が形成されるので、反りは通常、発生しないという特徴がある。
もう一方の方法として、PECVD[Plasma Enhanced CVD]法があり、これはウェーハの片面にしか膜が形成されないことから裏表のプロセスを二回繰り返す必要があることと、堆積温度が400℃前後と低いので、焼き締めと呼ばれる1000℃前後の高温処理を行う必要があり、LPCVD法よりも不便ではあるが、実行可能である。
A stoichiometric silicon nitride film (Si 3 N 4 ) and SRN are generally deposited by a method called LPCVD [Low Pressure CVD] method, and SiH 2 Cl 2 and NH 3 which are source gases are generally used. The composition of the film can be easily changed by changing the composition of the gas. The normal deposition temperature is about 800 ° C. Further, since films are formed on both surfaces of the wafer, there is a characteristic that warpage does not normally occur.
As another method, there is a PECVD [Plasma Enhanced CVD] method, in which a film is formed only on one side of a wafer, so that it is necessary to repeat the process of the front and back twice, and the deposition temperature is as low as around 400 ° C. Therefore, it is necessary to perform a high-temperature treatment at about 1000 ° C. called baking, and it is feasible although it is inconvenient than the LPCVD method.

シリコン窒化膜3の厚さは、50nm〜500nmであることが好ましい。50nm未満であると、耐加水分解性に劣る場合があり、500nmを超えると、熱プロセスにより窒化アルミニウムの膨張に追従できずクラック等の欠陥が入る場合がある。
窒化アルミニウム基板の厚さは、用途にもよるが、半導体デバイス素子に用いる場合、通常のシリコンウェハプロセスとの親和性を考慮し、400μm〜800μmであり、口径は、100mm〜200mmのものを採用することができる。
The thickness of the silicon nitride film 3 is preferably 50 nm to 500 nm. If it is less than 50 nm, the hydrolysis resistance may be inferior, and if it exceeds 500 nm, the thermal process may not follow the expansion of aluminum nitride, and defects such as cracks may be introduced.
The thickness of the aluminum nitride substrate depends on the application, but when used for a semiconductor device element, it is 400 μm to 800 μm in consideration of the affinity with a normal silicon wafer process, and the diameter is 100 mm to 200 mm. can do.

本発明にかかる熱伝導部材1は、高い耐熱温度や耐プラズマ性を有することから、単独でヒーター、静電チャック等に好適に採用することができるが、シリコン薄膜、特に、単結晶シリコン薄膜を積層したSOI貼り合わせ構造とすることで、熱を多く発生するパワーデバイス等の半導体の支持部材にも適応が期待される。
本明細書において、半導体支持部材とは、半導体と化学的に接着しているか、接着していないかを問わず、半導体と接触する部材であれば全て含まれる。半導体支持部材は、半導体の加工工程において、半導体と接触する部材として特に好適に用いることができる。このような半導体支持部材としては、たとえば、静電チャック、プリント配線回路の基板等が挙げられる。
熱伝導部材1は、窒化アルミニウム基板の両面をシリコン窒化膜で被覆して得られたものであるので、シリコン窒化膜が、拡散防止膜、耐薬品侵食膜の働きを担っており、通常のフッ酸水溶液等を用いたエッチング等のウェットプロセス、または、900℃以上の高温アニーリング等のドライプロセスを伴う半導体工程(CMOS工程)に投入可能となる。この熱伝導部材1をハンドル基板とし、後述するドナー基板と貼り合わせることで、高い放熱性を有する貼り合わせウェーハが実現可能となる。
Since the heat conducting member 1 according to the present invention has a high heat-resistant temperature and plasma resistance, it can be suitably used alone for a heater, an electrostatic chuck, etc., but a silicon thin film, particularly a single crystal silicon thin film is used. The stacked SOI bonding structure is expected to be applied to semiconductor support members such as power devices that generate a lot of heat.
In the present specification, the semiconductor support member includes all members that are in contact with a semiconductor regardless of whether or not the semiconductor support member is chemically bonded to the semiconductor. The semiconductor support member can be particularly preferably used as a member in contact with the semiconductor in the semiconductor processing step. Examples of such a semiconductor support member include an electrostatic chuck and a printed circuit board.
Since the heat conducting member 1 is obtained by coating both surfaces of an aluminum nitride substrate with a silicon nitride film, the silicon nitride film functions as a diffusion prevention film and a chemical erosion resistant film. It can be put into a semiconductor process (CMOS process) involving a wet process such as etching using an acid aqueous solution or the like, or a dry process such as high-temperature annealing at 900 ° C. or higher. By using the heat conductive member 1 as a handle substrate and bonding to a donor substrate described later, a bonded wafer having high heat dissipation can be realized.

図2に本発明にかかる貼り合わせウェーハの製造工程の一例を示す。
まずドナー基板4として、例えば、シリコンウェーハ5もしくは酸化膜9付きシリコンウェーハ5(以下、区別しない限り単にシリコンウェーハ5と称する)を用意し、片側の面11からイオンを注入してイオン注入層7を形成する。
イオン注入層7は、シリコンウェーハ5中に形成する。この際、ドナー基板4の表面11から所望の深さにイオン注入層7を形成できるような注入エネルギーで、所定の線量の水素イオン(H)または水素分子イオン(H )を注入する。このときの条件として、例えば注入エネルギーは50〜100keVとできる。
FIG. 2 shows an example of a manufacturing process of a bonded wafer according to the present invention.
First, as the donor substrate 4, for example, a silicon wafer 5 or a silicon wafer 5 with an oxide film 9 (hereinafter simply referred to as a silicon wafer 5 unless otherwise distinguished) is prepared, and ions are implanted from one surface 11 to form an ion implantation layer 7. Form.
The ion implantation layer 7 is formed in the silicon wafer 5. At this time, a predetermined dose of hydrogen ions (H + ) or hydrogen molecular ions (H 2 + ) is implanted with an implantation energy that can form the ion implantation layer 7 at a desired depth from the surface 11 of the donor substrate 4. . As a condition at this time, for example, the implantation energy can be set to 50 to 100 keV.

前記ドナー基板4に注入する水素イオン(H)のドーズ量は、1.0×1016atom/cm〜1.0×1017atom/cmであることが好ましい。1.0×1016atom/cm未満であると、界面の脆化が起こらない場合があり、1.0×1017atom/cmを超えると、貼り合せ後の熱処理中に気泡となり転写不良となる場合がある。より好ましいドーズ量は、5.0×1016atom/cmである。
注入イオンとして水素分子イオン(H )を用いる場合、そのドーズ量は5.0×1015atoms/cm〜5.0×1016atoms/cmであることが好ましい。5.0×1015atoms/cm未満であると、界面の脆化が起こらない場合があり、5.0×1016atoms/cmを超えると、貼り合せ後の熱処理中に気泡となり転写不良となる場合がある。より好ましいドーズ量は、2.5×1016atom/cmである。
また、ドナー基板4がその周囲にあらかじめ数nm〜500nm程度のシリコン酸化膜9等の絶縁膜を形成したものである場合、それを通して水素イオンまたは水素分子イオンの注入を行えば、注入イオンのチャネリングを抑制する効果が得られる。
The dose of hydrogen ions (H + ) implanted into the donor substrate 4 is preferably 1.0 × 10 16 atoms / cm 2 to 1.0 × 10 17 atoms / cm 2 . If it is less than 1.0 × 10 16 atoms / cm 2 , the interface may not be embrittled. If it exceeds 1.0 × 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective. A more preferable dose amount is 5.0 × 10 16 atoms / cm 2 .
When hydrogen molecular ions (H 2 + ) are used as implanted ions, the dose is preferably 5.0 × 10 15 atoms / cm 2 to 5.0 × 10 16 atoms / cm 2 . If it is less than 5.0 × 10 15 atoms / cm 2 , embrittlement of the interface may not occur, and if it exceeds 5.0 × 10 16 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective. A more preferable dose amount is 2.5 × 10 16 atoms / cm 2 .
If the donor substrate 4 has an insulating film such as a silicon oxide film 9 having a thickness of several nanometers to 500 nm formed around it in advance, if hydrogen ions or hydrogen molecular ions are implanted therethrough, channeling of the implanted ions is performed. The effect which suppresses is acquired.

次に、ドナー基板4と熱伝導部材1との貼り合わせに先立ち、ドナー基板4の前記イオン注入した表面11及び/又は熱伝導部材3の貼り合わせ面6を活性化処理することもできる。表面活性化処理の方法としては、プラズマ処理、オゾン処理等が挙げられる。
プラズマで処理をする場合、真空チャンバ中にRCA洗浄等の洗浄をしたドナー基板4及び/又は熱伝導部材1を載置し、プラズマ用ガスを減圧下で導入した後、100W程度の高周波プラズマに5〜10秒程度さらし、表面をプラズマ処理する。プラズマ用ガスとしては、シリコンウェーハを処理する場合、表面を酸化する場合には酸素ガスのプラズマ、酸化しない場合には水素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。熱伝導部材1を処理する場合はいずれのガスでもよい。
プラズマで処理することにより、ドナー基板4及び/又は熱伝導部材1の貼り合わせ面6の有機物が酸化して除去され、さらに表面のOH基が増加し、活性化する。処理はシリコンウェーハ5のイオン注入した表面11、および、熱伝導部材1の貼り合わせ面の両方について行うのがより好ましいが、いずれか一方だけ行ってもよい。
オゾンで処理をする場合は、大気を導入したチャンバ中にRCA洗浄等の洗浄をしたシリコンウェーハ5及び/又は熱伝導部材1を載置し、窒素ガス、アルゴンガス等のプラズマ用ガスを導入した後、高周波プラズマを発生させ、大気中の酸素をオゾンに変換することで、表面をオゾン処理する。プラズマ処理とオゾン処理とはどちらか一方又は両方行うことができる。
ドナー基板4の表面活性化処理を行う表面は、イオン注入を行った表面11であることが好ましい。
Next, prior to the bonding of the donor substrate 4 and the heat conducting member 1, the ion-implanted surface 11 of the donor substrate 4 and / or the bonding surface 6 of the heat conducting member 3 can be activated. Examples of the surface activation treatment include plasma treatment and ozone treatment.
When processing with plasma, the donor substrate 4 and / or the heat conduction member 1 cleaned by RCA cleaning or the like is placed in a vacuum chamber, the plasma gas is introduced under reduced pressure, and then the high-frequency plasma of about 100 W is applied. The surface is exposed to plasma for about 5 to 10 seconds. As a plasma gas, when processing a silicon wafer, when oxidizing the surface, plasma of oxygen gas, when not oxidizing, hydrogen gas, argon gas, or a mixed gas thereof or a mixed gas of hydrogen gas and helium gas Can be used. Any gas may be used when the heat conducting member 1 is processed.
By treating with plasma, organic substances on the bonding surface 6 of the donor substrate 4 and / or the heat conducting member 1 are oxidized and removed, and the OH groups on the surface are increased and activated. The treatment is more preferably performed on both the ion-implanted surface 11 of the silicon wafer 5 and the bonding surface of the heat conducting member 1, but only one of them may be performed.
When processing with ozone, the silicon wafer 5 and / or the heat conducting member 1 cleaned by RCA cleaning or the like was placed in a chamber into which air was introduced, and a plasma gas such as nitrogen gas or argon gas was introduced. Then, the surface is subjected to ozone treatment by generating high-frequency plasma and converting atmospheric oxygen into ozone. Either or both of plasma treatment and ozone treatment can be performed.
The surface of the donor substrate 4 on which the surface activation process is performed is preferably the surface 11 on which ion implantation has been performed.

前記熱伝導部材1の貼り合わせ面6とドナー基板4のイオンを注入した表面11との貼り合せの前に、前記熱伝導部材1のシリコン窒化膜の貼り合わせ面6を化学機械研磨等を用いて研磨し、平滑度をRMSで0.5nm以下とする工程が必須である。かかる工程を含むことで、表面活性化と面粗さ低減により、相乗的に貼り合わせ強度を高めることになる。なお、0.5nmを超えると、貼り合わせそのものが進行しない場合がある。
上記RMSは、AFM画像をもとに測定し得られた値である。
Prior to bonding between the bonding surface 6 of the heat conducting member 1 and the surface 11 into which the ions of the donor substrate 4 are implanted, the silicon nitride film bonding surface 6 of the heat conducting member 1 is subjected to chemical mechanical polishing or the like. And polishing to make the smoothness 0.5 nm or less by RMS is essential. By including such a step, the bonding strength is synergistically increased by surface activation and surface roughness reduction. If the thickness exceeds 0.5 nm, the bonding itself may not proceed.
The RMS is a value obtained by measurement based on the AFM image.

次に、このドナー基板4のイオンを注入した表面11および熱伝導部材1のプラズマ及び/又はオゾンで処理をした表面6を接合面として貼り合わせて、接合体13を得る。   Next, the bonded body 13 is obtained by bonding the surface 11 into which ions of the donor substrate 4 are implanted and the surface 6 of the heat conducting member 1 treated with plasma and / or ozone as bonding surfaces.

次いで、接合体13に好ましくは150℃以上400℃以下の熱処理を施し、結合強度を高めることができる。好ましい温度を150℃以上とする理由は、150℃未満では結合強度が上がらない為で、400℃以下とする理由は、400℃を超えると貼り合わせた基板が破損する可能性が出るためである。より好ましい温度上限は、350℃である。
熱処理時間としては、温度にもある程度依存するが12時間〜72時間が好ましい。
Next, the bonded body 13 is preferably subjected to a heat treatment of 150 ° C. or more and 400 ° C. or less to increase the bond strength. The reason why the preferable temperature is 150 ° C. or higher is that the bond strength does not increase when the temperature is lower than 150 ° C., and the reason why the temperature is 400 ° C. or lower is that if the temperature exceeds 400 ° C., the bonded substrate may be damaged. . A more preferable upper temperature limit is 350 ° C.
The heat treatment time is preferably 12 hours to 72 hours depending on the temperature to some extent.

上記熱処理工程の後、ドナー基板4のイオン注入層7の界面近傍を脆化し、ドナー基板4の一部(15、17)を熱伝導部材1に転写する薄膜転写を行う。
脆化の工程は、例えば、機械的衝撃を与えて剥離を行う工程を含んでいてもよい。
イオン注入層7の界面近傍に機械的衝撃を与えるためには、例えばガスや液体等の流体のジェットを接合したウェーハの側面から連続的または断続的に吹き付ければよいが、衝撃により機械的剥離が生じる方法であれば特に限定はされない。
転写される薄膜の厚さは、イオン注入の際のエネルギーによって変えることもできるが、通常、100nm〜1000nmとすることができる。
上記剥離工程により、熱伝導部材1上にシリコンウェーハ5の一部(15、17)が形成された貼り合わせウェーハ19が得られる。
After the heat treatment step, thin film transfer is performed in which the vicinity of the interface of the ion implantation layer 7 of the donor substrate 4 is embrittled and a part (15, 17) of the donor substrate 4 is transferred to the heat conducting member 1.
The embrittlement process may include, for example, a process of peeling by applying a mechanical impact.
In order to give a mechanical impact to the vicinity of the interface of the ion implantation layer 7, for example, a jet of fluid such as gas or liquid may be sprayed continuously or intermittently from the side surface of the wafer. There is no particular limitation as long as it is a method in which the above occurs.
Although the thickness of the thin film to be transferred can be changed depending on the energy at the time of ion implantation, it can usually be set to 100 nm to 1000 nm.
By the peeling process, a bonded wafer 19 in which a part (15, 17) of the silicon wafer 5 is formed on the heat conducting member 1 is obtained.

(参考例1)
口径150mm、厚さ600μmのAlNの基板にストイキオメトリックなシリコン窒化膜(Si:屈折率=2.0)200nmを両面に堆積したものと、屈折率が2.25となるSRN200nmを両面に堆積したものとを用意した。
両者を300℃から800℃まで昇温、降温(2℃/分)を繰り返すプロセスを10回繰り返し、表面のクラック等を1000倍率の光学顕微鏡下で観察したが、クラック等は観察されなかった。
(Reference Example 1)
A 150 nm diameter, 600 μm thick AlN substrate with a stoichiometric silicon nitride film (Si 3 N 4 : refractive index = 2.0) of 200 nm deposited on both sides and an SRN of 200 nm with a refractive index of 2.25 Prepared on both sides.
The process of raising and lowering the temperature from 300 ° C. to 800 ° C. and repeating the temperature reduction (2 ° C./min) was repeated 10 times, and surface cracks and the like were observed under an optical microscope of 1000 magnifications, but no cracks were observed.

(参考例2)
口径150mm、厚さ600μmのAlNの基板にストイキオメトリックなシリコン窒化膜(Si:屈折率=2.0)500nmを両面に堆積したものと、屈折率が2.25となるSRN500nmを両面に堆積したものとを用意した。
両者を300℃から1000℃まで昇温、降温(2℃/分)を繰り返すプロセスを10回繰り返し、表面のクラック等を1000倍率の光学顕微鏡下で観察したところ、Siの方は、クラックが観察されたが、SRNの方は観察されなかった。
(Reference Example 2)
A 150 nm diameter, 600 μm thick AlN substrate with a stoichiometric silicon nitride film (Si 3 N 4 : refractive index = 2.0) of 500 nm deposited on both sides and an SRN of 500 nm with a refractive index of 2.25 Prepared on both sides.
The process of repeatedly raising and lowering both temperatures from 300 ° C. to 1000 ° C. and lowering the temperature (2 ° C./min) was repeated 10 times, and surface cracks and the like were observed under an optical microscope with a magnification of 1000. Si 3 N 4 Cracks were observed, but SRN was not observed.

(参考例3)
口径150mm、厚さ600μmのAlNの基板にストイキオメトリックなシリコン窒化膜(Si:屈折率=2.0)200nmを両面に堆積したものと、屈折率が2.25となるSRN200nmを両面に堆積したものとを用意した。
両者に半導体洗浄で一般的な洗浄法であるRCA洗浄、または、HF洗浄(10%)のいずれかを施したが、いずれも洗浄表面の状態に変化は観察されなかった。一方、シリコン窒化膜が被覆されていないベアのAlNはRCA洗浄、または、HF洗浄のいずれかを施したもの双方を集光灯下で観察したところ、表面粗さの増加に起因する曇りの増加が目視で観察され、加水分解が進行していることがわかった。
(Reference Example 3)
A 150 nm diameter, 600 μm thick AlN substrate with a stoichiometric silicon nitride film (Si 3 N 4 : refractive index = 2.0) of 200 nm deposited on both sides and an SRN of 200 nm with a refractive index of 2.25 Prepared on both sides.
Both were subjected to either RCA cleaning, which is a general cleaning method for semiconductor cleaning, or HF cleaning (10%), but no change was observed in the state of the cleaning surface. On the other hand, when the bare AlN not coated with the silicon nitride film was observed under a condenser lamp under both RCA cleaning and HF cleaning, an increase in haze due to an increase in surface roughness was observed. Was visually observed, and it was found that hydrolysis was progressing.

AlNの基板(口径150mm、東芝マテリアル社製)にストイキオメトリックなシリコン窒化膜(Si: 屈折率=2.0) 200nm堆積してなる熱伝導部材と、屈折率が2.25となるSRN200nmを基板の両面に堆積してなる熱伝導部材とをハンドル基板として用意した。
また、それとは別に単結晶シリコン基板(口径150mm、信越半導体社製)の表面に酸化膜を100nm成長させた後、水素イオンをドーズ量
8.0×1016atom/cmで注入してドナー基板を準備した。
熱伝導部材の片方の面を二乗平均粗さ[RMS]が0.25nmになるまで鏡面研磨し、研磨面上に、上記単結晶シリコン基板(ドナー基板)の表面活性化処理した面を貼り合せて接合体を得た。
得られた接合体に、250℃の熱処理を施し、水素イオン注入界面に機械的衝撃を与え、単結晶シリコンの薄膜転写を行った。
得られた貼り合わせウェーハについて、窒素雰囲気下で300℃から800℃まで昇温、降温(2℃/分)を繰り返すプロセスを10回繰り返し、1000倍率の光学顕微鏡下で表面観察したが、クラック等は観察されなかった。
A stoichiometric silicon nitride film (Si 3 N 4 : refractive index = 2.0) on an AlN substrate (150 mm diameter, manufactured by Toshiba Materials), a heat conduction member formed by depositing 200 nm, and a refractive index of 2.25 A heat conductive member formed by depositing SRN 200 nm on both sides of the substrate was prepared as a handle substrate.
Separately, after an oxide film is grown to a thickness of 100 nm on the surface of a single crystal silicon substrate (diameter 150 mm, manufactured by Shin-Etsu Semiconductor Co., Ltd.), hydrogen ions are implanted at a dose of 8.0 × 10 16 atoms / cm 2. A substrate was prepared.
One surface of the heat conduction member is mirror-polished until the root mean square roughness [RMS] is 0.25 nm, and the surface activated surface of the single crystal silicon substrate (donor substrate) is bonded onto the polished surface. To obtain a joined body.
The obtained bonded body was subjected to a heat treatment at 250 ° C., and a mechanical impact was applied to the hydrogen ion implanted interface to transfer a thin film of single crystal silicon.
The obtained bonded wafer was repeatedly subjected to a process of repeatedly raising and lowering the temperature from 300 ° C. to 800 ° C. under a nitrogen atmosphere (2 ° C./min) 10 times, and the surface was observed under an optical microscope of 1000 magnifications. Was not observed.

AlNの基板(口径150mm、東芝マテリアル社製)にストイキオメトリックなシリコン窒化膜(Si: 屈折率=2.0) 200nm堆積してなる熱伝導部材と、屈折率が2.25となるSRN200nmを基板の両面に堆積してなる熱伝導部材とをハンドル基板として用意した。
また、それとは別に単結晶シリコン基板(口径150mm)の表面に酸化膜を100nm成長させた後、水素イオンをドーズ量8.0×1016atom/cmで注入してドナー基板を準備した。
ついで、熱伝導部材の片方の面を二乗平均粗さ[RMS]が0.25nmになるまで鏡面研磨し、研磨面上に、上記単結晶シリコン基板(ドナー基板)の表面活性化処理した面を貼り合せて接合体を得た。
得られた接合体に、250℃の熱処理を施し、水素イオン注入界面に機械的衝撃を与え、単結晶シリコンの薄膜転写を行った。
得られた貼り合わせウェーハについて、窒素雰囲気下で300℃から1000℃まで昇温、降温(2℃/分)を繰り返すプロセスを10回繰り返し、表面のクラック等を1000倍率の光学顕微鏡下で観察したところ、Siを堆積した基板は周縁部に微小なクラック(2〜10μm程度)が観察されたが、SRNを堆積した基板ではクラック等は観察されなかった。
A stoichiometric silicon nitride film (Si 3 N 4 : refractive index = 2.0) on an AlN substrate (150 mm diameter, manufactured by Toshiba Materials), a heat conduction member formed by depositing 200 nm, and a refractive index of 2.25 A heat conductive member formed by depositing SRN 200 nm on both sides of the substrate was prepared as a handle substrate.
Separately, an oxide film was grown to a thickness of 100 nm on the surface of a single crystal silicon substrate (diameter 150 mm), and then a hydrogen ion was implanted at a dose of 8.0 × 10 16 atoms / cm 2 to prepare a donor substrate.
Next, one surface of the heat conducting member is mirror-polished until the root mean square roughness [RMS] is 0.25 nm, and the surface of the single crystal silicon substrate (donor substrate) is subjected to surface activation treatment on the polished surface. A bonded body was obtained by bonding.
The obtained bonded body was subjected to a heat treatment at 250 ° C., and a mechanical impact was applied to the hydrogen ion implanted interface to transfer a thin film of single crystal silicon.
About the obtained bonded wafer, the process of repeating the temperature increase from 300 ° C. to 1000 ° C. and the temperature decrease (2 ° C./min) in a nitrogen atmosphere was repeated 10 times, and surface cracks and the like were observed under an optical microscope of 1000 magnifications. However, although microcracks (about 2 to 10 μm) were observed at the periphery of the substrate on which Si 3 N 4 was deposited, no cracks or the like were observed on the substrate on which SRN was deposited.

AlNの基板(口径150mm、東芝マテリアル社製)にストイキオメトリックなシリコン窒化膜(Si: 屈折率=2.0) 200nm堆積してなる熱伝導部材と、屈折率が2.25となるSRN200nmを基板の両面に堆積してなる熱伝導部材とをハンドル基板として用意した。
また、それとは別に単結晶シリコン基板(口径150mm、信越半導体社製)の表面に酸化膜を100nm成長させた後、水素イオンをドーズ量
8.0×1016atom/cmで注入してドナー基板を準備した。
ついで、熱伝導部材の片方の面を二乗平均粗さ[RMS]が0.25nmになるまで鏡面研磨し、研磨面上に、上記単結晶シリコン基板(ドナー基板)の表面活性化処理した面を貼り合せて接合体を得た。
得られた接合体に、250℃の熱処理を施し、水素イオン注入界面に機械的衝撃を与え、単結晶シリコンの薄膜転写を行った。
得られた貼り合わせウェーハについて、窒素雰囲気下で950℃、1時間の高温アニールを行い、その表面をHF溶液に接触させ、そのHF溶液を誘導結合プラズマ質量分析計[ICP−MS]で質量分析したところ、熱伝導部材のSiN膜表面におけるAlの濃度は、ストイキオメトリックなシリコン窒化膜、SRNともに5×1010atoms/cm以下であり、AlN内部のAlは殆ど拡散していないことが判明した。
A stoichiometric silicon nitride film (Si 3 N 4 : refractive index = 2.0) on an AlN substrate (150 mm diameter, manufactured by Toshiba Materials), a heat conduction member formed by depositing 200 nm, and a refractive index of 2.25 A heat conductive member formed by depositing SRN 200 nm on both sides of the substrate was prepared as a handle substrate.
Separately, after an oxide film is grown to a thickness of 100 nm on the surface of a single crystal silicon substrate (diameter 150 mm, manufactured by Shin-Etsu Semiconductor Co., Ltd.), hydrogen ions are implanted at a dose of 8.0 × 10 16 atoms / cm 2. A substrate was prepared.
Next, one surface of the heat conducting member is mirror-polished until the root mean square roughness [RMS] is 0.25 nm, and the surface of the single crystal silicon substrate (donor substrate) is subjected to surface activation treatment on the polished surface. A bonded body was obtained by bonding.
The obtained bonded body was subjected to a heat treatment at 250 ° C., and a mechanical impact was applied to the hydrogen ion implanted interface to transfer a thin film of single crystal silicon.
The obtained bonded wafer is subjected to high-temperature annealing at 950 ° C. for 1 hour in a nitrogen atmosphere, the surface is brought into contact with an HF solution, and the HF solution is subjected to mass spectrometry using an inductively coupled plasma mass spectrometer [ICP-MS]. As a result, the Al concentration on the surface of the SiN film of the heat conducting member is 5 × 10 10 atoms / cm 2 or less for both the stoichiometric silicon nitride film and the SRN, and Al inside the AlN is hardly diffused. found.

1 熱伝導部材
2 窒化アルミニウム
3 窒化珪素
4 ドナー基板
5 シリコン基板
6 貼り合わせ面
7 イオン注入層
9 シリコン酸化膜
11 イオン注入した表面
13 接合体
15、17 ドナー基板の一部
19 貼り合わせウェーハ
1 Thermal Conductive Member 2 Aluminum Nitride 3 Silicon Nitride 4 Donor Substrate 5 Silicon Substrate 6 Bonding Surface 7 Ion Implanted Layer 9 Silicon Oxide Film 11 Ion Implanted Surface 13 Joint 15 and 17 Part of Donor Substrate 19 Bonded Wafer

Claims (8)

窒化アルミニウム基板の両面にシリコン窒化膜を備えた熱伝導部材上に、単結晶シリコン薄膜を備えた貼り合わせウェーハ A bonded wafer comprising a single crystal silicon thin film on a heat conducting member comprising silicon nitride films on both sides of an aluminum nitride substrate. 前記シリコン窒化膜が、ストイキオメトリック組成に比べてシリコンリッチであり、且つ屈折率が波長l=633nmにおいて2.0を超えることを特徴とする請求項1に記載の貼り合わせウェーハ2. The bonded wafer according to claim 1, wherein the silicon nitride film is silicon rich as compared to a stoichiometric composition and has a refractive index exceeding 2.0 at a wavelength l = 633 nm. 前記シリコン窒化膜が、ストイキオメトリック(Si)であることを特徴とする請求項1に記載の貼り合わせウェーハThe bonded wafer according to claim 1, wherein the silicon nitride film is stoichiometric (Si 3 N 4 ). 前記熱伝導部材が、半導体支持部材である請求項1ないし3のいずれかに記載の貼り合わせウェーハThe bonded wafer according to claim 1 , wherein the heat conducting member is a semiconductor support member. 単結晶シリコン基板の表面からイオンを注入してイオン注入層を形成する工程、
前記単結晶シリコン基板と、窒化アルミニウム基板の両面にシリコン窒化膜を備えた熱伝導部材とを貼り合わせて接合体を得る工程、および、
前記イオン注入層の界面を脆化し、前記単結晶シリコン基板の一部を前記熱伝導部材に転写し貼り合わせウェーハを得る工程を含む、窒化アルミニウム基板の両面にシリコン窒化膜を備えた熱伝導部材上に、単結晶シリコン薄膜を備えた貼り合わせウェーハの製造方法。
A step of implanting ions from the surface of the single crystal silicon substrate to form an ion implantation layer;
Bonding the single crystal silicon substrate and a heat conductive member having a silicon nitride film on both sides of an aluminum nitride substrate to obtain a bonded body; and
A heat conductive member comprising silicon nitride films on both surfaces of an aluminum nitride substrate, the method including embrittlement of an interface of the ion implantation layer and transferring a part of the single crystal silicon substrate to the heat conductive member to obtain a bonded wafer. A method for manufacturing a bonded wafer provided with a single crystal silicon thin film on top .
前記接合体を得る工程に先立ち、前記単結晶シリコン基板の貼り合わせ面となる、前記熱伝導部材のシリコン窒化膜表面を研磨し、平滑度を二乗平均粗さ(RMS)で0.5nm以下とする工程を含むことを特徴とする請求項に記載の貼り合わせウェーハの製造方法。 Prior to the step of obtaining the joined body, the surface of the silicon nitride film of the heat conducting member, which becomes the bonding surface of the single crystal silicon substrate, is polished, and the smoothness is 0.5 nm or less in terms of root mean square roughness (RMS). The method for producing a bonded wafer according to claim 5 , comprising a step of: 前記接合体を得る工程に先立ち、前記熱伝導部材の表面、または、前記イオンを注入した単結晶シリコン基板の前記表面の少なくとも一方の面に表面活性化処理を施す工程を含むことを特徴とする請求項に記載の貼り合わせウェーハの製造方法。 Prior to the step of obtaining the joined body, the method includes a step of performing a surface activation process on the surface of the heat conducting member or at least one of the surfaces of the single crystal silicon substrate into which the ions have been implanted. The manufacturing method of the bonded wafer of Claim 5 . 前記接合体に400℃以下の熱処理を加え、結合強度を高めることを特徴とする請求項ないしに記載の貼り合わせウェーハの製造方法。 The heat treatment of 400 ° C. or less to the bonded body addition method for producing a bonded wafer according to claim 5 to 7, characterized in that to increase the bonding strength.
JP2009036829A 2009-02-19 2009-02-19 Bonded wafer and manufacturing method thereof Active JP5179401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036829A JP5179401B2 (en) 2009-02-19 2009-02-19 Bonded wafer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036829A JP5179401B2 (en) 2009-02-19 2009-02-19 Bonded wafer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010189234A JP2010189234A (en) 2010-09-02
JP5179401B2 true JP5179401B2 (en) 2013-04-10

Family

ID=42815711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036829A Active JP5179401B2 (en) 2009-02-19 2009-02-19 Bonded wafer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5179401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187898B2 (en) * 2007-12-21 2012-05-29 Canon Kabushiki Kaisha Method for manufacturing liquid discharge head
WO2013168707A1 (en) * 2012-05-08 2013-11-14 信越化学工業株式会社 Heat dissipation substrate and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186478A (en) * 1984-03-07 1985-09-21 株式会社東芝 Manufacture of nitride sintered body
JP4049841B2 (en) * 1996-12-27 2008-02-20 Azエレクトロニックマテリアルズ株式会社 Method for forming silicon nitride thin film
JPH11145438A (en) * 1997-11-13 1999-05-28 Shin Etsu Handotai Co Ltd Method of manufacturing soi wafer and soi wafer manufactured by the method
JP2002164520A (en) * 2000-11-27 2002-06-07 Shin Etsu Handotai Co Ltd Method for manufacturing semiconductor wafer
FR2834123B1 (en) * 2001-12-21 2005-02-04 Soitec Silicon On Insulator SEMICONDUCTOR THIN FILM DELIVERY METHOD AND METHOD FOR OBTAINING A DONOR WAFER FOR SUCH A DELAYING METHOD

Also Published As

Publication number Publication date
JP2010189234A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP6070954B2 (en) Semiconductor substrate on glass having stiffening layer and manufacturing process thereof
US8183128B2 (en) Method of reducing roughness of a thick insulating layer
JP5864481B2 (en) Low temperature bonding method
CN101419911B (en) SOI substrats with fine concealed insulating layer
TWI595561B (en) Method of manufacturing hybrid substrate and hybrid substrate
KR20060126629A (en) Surface finishing of soi substrates using an epi process
JP2008021971A (en) Method of directly bonding two substrates used for electronics, optics, or optoelectronics
JP5572085B2 (en) Manufacturing method of SOI wafer
JP2010135764A (en) Method for manufacturing silicon thin-film transfer insulating wafer
US20030089950A1 (en) Bonding of silicon and silicon-germanium to insulating substrates
JP4577382B2 (en) Manufacturing method of bonded wafer
CN101188190B (en) SOQ substrate and method of manufacturing SOQ substrate
US20080014713A1 (en) Treatment for bonding interface stabilization
FR2913528A1 (en) PROCESS FOR PRODUCING A SUBSTRATE HAVING A BONE OXIDE LAYER FOR PRODUCING ELECTRONIC OR SIMILAR COMPONENTS
JPWO2014017368A1 (en) SOS substrate manufacturing method and SOS substrate
JP5518205B2 (en) Method for producing a multilayer film comprising at least one ultrathin layer of crystalline silicon
JP5179401B2 (en) Bonded wafer and manufacturing method thereof
JP4619949B2 (en) Method for improving the surface roughness of a wafer
JP4694372B2 (en) Method for improving the surface roughness of a wafer
TW201005883A (en) Method for manufacturing soi wafer
JP5643488B2 (en) Manufacturing method of SOI wafer having low stress film
JP2020526918A (en) Manufacturing method of semiconductor structure on insulator
Zhu et al. Formation of silicon on plasma synthesized SiOxNy and reaction mechanism
KR20090043109A (en) Methode of manufacturing the thin layer of single-crystal gaas on silicon substrate by ion-cut and wafer bonding technique
JP2010278339A (en) Method of manufacturing stuck soi substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150