WO2001065900A1 - Liquid cooling device for cooling electronic device - Google Patents

Liquid cooling device for cooling electronic device Download PDF

Info

Publication number
WO2001065900A1
WO2001065900A1 PCT/JP2001/001491 JP0101491W WO0165900A1 WO 2001065900 A1 WO2001065900 A1 WO 2001065900A1 JP 0101491 W JP0101491 W JP 0101491W WO 0165900 A1 WO0165900 A1 WO 0165900A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heat exchanger
cooling device
air heat
cooling
Prior art date
Application number
PCT/JP2001/001491
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichiro Kawano
Akihide Takehara
Taro Kishibe
Yukio Honda
Miyuki Furuya
Yoshifumi Shimogaki
Yasufumi Ikkai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2001065900A1 publication Critical patent/WO2001065900A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a liquid cooling device used to cool electronic components that are high heat generation products.
  • the conventional MPU cooling device is an air-cooling type cooling device shown in Fig. 9, in which a heat transfer body 117 having a plurality of fins is provided on the surface of MPU 116, and air cooling is performed so as to face these fins. Fan 1 1 8 was provided.
  • a heat transfer body 117 having a plurality of fins is provided on the surface of MPU 116, and air cooling is performed so as to face these fins.
  • Fan 1 1 8 was provided.
  • the heat generated by the MPU has also increased, and it has become impossible to sufficiently cool the air-cooled cooling device using a fan.
  • a heat transfer plate connected to the MPU is provided with a cooling plate, and a cooling liquid is caused to flow through this passage to cool the plate.
  • a cooling liquid is caused to flow through this passage to cool the plate.
  • a plurality of fins are provided in a radiator for cooling the coolant, and an air-cooling fan is provided to face the fins. But it is easy to radiate heat.
  • the cooling system requires two modes, one for driving the pump to recirculate the cooling liquid and the other for driving the air-cooling fan, which increases the space for the cooling system. Therefore, the size of the cooling device becomes larger than that of the cooling device of the standard size, and the cooling device cannot be mounted on the standardized electronic device.
  • the present invention has been made in view of the above problems, and has as its object to provide a space-saving and highly safe cooling device. Disclosure of the invention
  • the present invention relates to an electronic component that is a high heat generation product, a heat transfer member attached to the electronic component, and a liquid connected to the heat transfer member and having a cooling liquid circulation passage therein.
  • a liquid-cooling system for electronic components that uses a single motor as a power source, with a pump drive that circulates the cooling liquid and a fan drive attached to the liquid-air heat exchanger that has a single air heat exchanger. Yes, the pump drive for circulating the cooling liquid and the fan drive attached to the liquid-to-air heat exchanger use a single motor as a power source, thus saving space.
  • the cooling performance is excellent because the circulation path of the cooling liquid of the liquid-air heat exchanger passes through the inside of the heat transfer body.
  • the liquid-to-air heat exchanger is integrated with the heat transfer element by using a part of the liquid-to-air heat exchanger as a heat transfer element. And the heat transfer element are integrated into a single package, so that the liquid-to-air heat exchanger and the heat transfer element are not disassembled, and leakage of the coolant can be prevented.
  • the liquid-air heat exchanger and the heat transfer element are connected to each other by a cooling liquid passage pipe, so that the liquid-air heat exchange and the heat transfer element are arranged at an interval. be able to.
  • the material of the cooling liquid passage pipe is resin, it is easy to bend, and the liquid-to-air heat exchanger and the heat transfer body can be freely arranged.
  • the liquid cooling device for electronic components in which the pump section is embedded in the liquid-air heat exchanger is characterized in that the cooling liquid passes through the liquid-air heat exchanger.
  • a simple configuration can be achieved by passing through the pump section.
  • the motor is a one-night, one-night mode, and a motor is provided.
  • each of the fan and the pump is changed to a different rotational speed by a transmission between the motor output shaft and the pump rotary shaft or between the motor output shaft and the fan rotary shaft. Therefore, each of the fan and the pump can be driven at the most efficient rotation speed, and the cooling efficiency can be maximized.
  • the liquid-air heat exchanger is provided with a radiating fin, and the fan is disposed so as to face the radiating fin, so that the heat radiation is excellent.
  • the cooling unit and the pump unit are integrated,
  • the distance between the pump and motor should be shorter than the length of the fins in the liquid-air heat exchanger, and the pump should be placed between the fins and the fan in the liquid-air heat exchanger. This makes it possible to shorten the rotation shaft connecting the liquid-air heat exchanger.
  • FIG. 1 is a conceptual diagram of the present invention
  • FIG. 2 is a diagram showing Embodiment 1 of the present invention
  • FIG. 3 is a cross-sectional view of an integrated body of the liquid-air heat exchanger and the heat transfer body of FIG.
  • FIG. 4 is a detailed view of the fan and motor of FIG. 2
  • FIG. 5 is a diagram showing Embodiment 2 of the present invention
  • FIG. 6 is a diagram showing Embodiment 3 of the present invention
  • FIG. FIG. 8 is a cross-sectional view of an integrated liquid-air heat exchanger
  • FIG. 8 is a diagram showing a fourth embodiment of the present invention
  • FIG. 9 is a diagram showing a conventional cooling device for electronic components.
  • Fig. 1 shows the basic concept of the present invention.
  • the liquid cooling device according to the present invention includes a heat transfer body 2 attached to an electronic component MPU 1, which is a high heat generation product, and a liquid-air heat exchange 3, and a pump that circulates the cooling liquid by a single motor 4 5.
  • the configuration is such that a fan 6 that cools the liquid-air heat exchanger with air is driven.
  • the feature of the present invention is that the pump 5 and the fan 6 are driven by a single motor 4.
  • the liquid cooling device for electronic components of Example 1 shown in FIG. 2 heats the MPU 11 disposed on the substrate 20 and a part of the liquid-to-air heat exchanger attached to the MPU 11.
  • the liquid-to-air heat exchanger and the heat transfer element are integrated into a single body of the liquid-to-air heat exchanger and the heat transfer element.
  • An air-cooling fan 16 for forcibly air-cooling the integral body 18 with the transfer body, and a pump 15 driven by a driving motor inside the fan are provided.
  • the cooling liquid is circulated by the pump 15 through the cooling liquid circulation passage 17 in the unitary body 18.
  • the A-B cross section in the integrated body 18 of the liquid-air heat exchanger and the heat transfer body meanders in order to increase the heat transfer efficiency as shown in Fig. 2. Is set up.
  • the motor 14 used in this embodiment is a key-to-evening motor, which includes a magnet 21, a stay 22, and a coil 23.
  • a fan 16 is installed in this mode.
  • the motor is arranged in the fan in this example, the motor may be arranged in the pump and the fan may be driven by the output shaft.
  • the heat transfer body and the liquid-air heat exchanger are separate units, and the heat transfer body and the liquid-air heat exchange must be connected by a circulation passage such as a tube. For this reason, there has been a problem that if the accuracy of the assembly is poor, or if a large impact is received, the coolant may leak from the circulation passage and the joint thereof.
  • the coolant pump drive and the air-cooling fan drive use a single motor as a power source, space can be saved.
  • liquid-to-air heat exchanger and the heat transfer element are in a single package, the assembly of the liquid-to-air heat exchanger and the heat transfer element is not displaced, and leakage of the coolant can be prevented. it can.
  • the pump 15 is installed independently on the integral body 18 of the liquid-to-air heat exchanger and the heat transfer body. If it is buried and installed in 18, it will be possible to make it even more compact.
  • multiple fans and pumps may be driven for a single motor.
  • a plurality of the liquid cooling devices may be provided in the computer.
  • the liquid cooling apparatus for electronic components heats the MPU 21 disposed on the substrate 30 and a part of the liquid-air heat exchanger attached to the MPU 21.
  • the liquid-to-air heat exchanger and the heat transfer element are integrated into one body by using the liquid-to-air heat exchanger and the heat transfer element.
  • the cooling liquid is circulated by the pump 25 through the cooling liquid circulation passage 27 in the integrated body 28 of the air heat exchanger and the heat transfer element.
  • the transmission 35 between the motor output shaft 29 and the pump rotation shaft allows the rotation speed of the fan 26 and the pump 25 to be different from each other. Can be driven at the most efficient rotational speed, and the cooling efficiency can be maximized.
  • the transmission 35 is provided between the motor output shaft and the pump rotation shaft.
  • the same effect can be obtained by providing a transmission between the motor output shaft and the fan rotation shaft.
  • the liquid cooling device for electronic components includes an MPU 41 disposed on a substrate 49, a heat transfer member 42 mounted on the MPU 41, and a liquid-air heat exchange. And a pump 45 driven by a drive motor 44 in the fan for forced air cooling of the liquid-to-air heat exchanger.
  • the cooling liquid is circulated by the pump 45 through the circulation passage 47 of the heat exchanger 43, the connection pipe 48, and the circulation passage 50 of the heat transfer member 42.
  • the heat transfer member 42 and the liquid-air heat transfer 43 are separate, and the liquid-air heat transfer 43 and the heat transfer member 42 are spaced apart from each other.
  • a cooling operation can be performed. If the space between the liquid-air heat exchange 4 3 and the heat transfer body 42 is wide, the cooling efficiency is excellent.
  • a connecting pipe 48 connecting the heat transfer body 42 and the liquid-air heat exchange 43 is made of a deformable material such as resin such as Shiridani vinyl. By using it, it is easy to bend, and the positional relationship between the heat transfer body 42 and the liquid-air heat exchanger 43 can be set freely, and the degree of freedom in designing is widened.
  • the pump 45 is disposed so as to be embedded in a part of the liquid-to-air heat exchanger 43, but since the fan 46 and the pump 45 are driven to rotate by the same motor 44, a motor is provided. 44 and pump 45 are connected by a rotating shaft 50.
  • the cooling liquid radiates heat when passing through the liquid-air heat exchanger 51.
  • the circulation passage in the liquid-air heat exchanger 43 has two series of circulation passages as shown in Fig. 7. It is in.
  • a pump 45 is connected to the entrances 52 and 53 of the circulation passage 47. By the operation of the pump 45, the cooling liquid circulates through the liquid-air heat exchanger 43, the connecting pipe 48, and the heat transfer member 42, and the heat absorbed by the heat transfer member 42 is connected to the connection pipe. Heat is radiated by the liquid-air heat exchanger 43 via the pump 48.
  • silicone grease having high thermal conductivity is applied between the joints to prevent heat transfer by air bubbles. It is fixed to.
  • the liquid cooling apparatus for electronic components includes an MPU 61 disposed on a substrate 69, a heat transfer body 62 mounted on the MPU 61, and a liquid-air heat exchange.
  • the cooling liquid is circulated through the passage 67 by the pump 65.
  • the fan drive motor 64 and the pump 65 are structurally integrated, and the pump 65 is driven using the power of the fan drive motor 64.
  • the parts for manufacturing the fan drive motor 64 and the pump 65 can be shared, thereby reducing the number of parts required for manufacturing. It is possible.
  • this configuration makes it possible to shorten the distance between the center of the fan rotation shaft and the center of the pump rotation shaft, and when transmitting the power of the motor 64 to the fan 66 and the pump 65 using the output shaft.
  • the motor 4 can transmit power accurately without causing shaft runout.
  • the cooling liquid pump drive and the air cooling fan drive use a single motor as a power source, so that space can be saved. Furthermore, by using a part of the liquid-to-air heat exchanger as a heat transfer body, it is possible to perform cooling with high cooling efficiency and high safety in a small space.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A liquid cooling device for cooling an electronic device comprises an MPU (1) as an object to be cooled, a heat sink (2) attached to the MPU (1), and a liquid-air heat exchanger connected with the heat sink (2) and having a channel in which cooling liquid circulates. For space saving, the liquid cooling device includes a single motor for driving the fan attached to a pump for circulating cooling liquid, and the liquid-air heat exchanger.

Description

明細書  Specification
電子部品の液体冷却装置 技術分野  Liquid cooling equipment for electronic components
本発明は、 高熱発生物である電子部品を冷却するために用いる液体冷却装置に 関する。 背景技術  The present invention relates to a liquid cooling device used to cool electronic components that are high heat generation products. Background art
従来の M P Uの冷却装置は、 図 9に示す空冷式の冷却装置であり、 MP U 1 1 6の表面に複数のフィンを有する熱伝達体 1 1 7を設け、 このフィンに対向する ように空冷ファン 1 1 8を設けていた。 しかし、 近年、 M P Uの処理スピードが' 速まるにつれ、 M P Uが発生する発熱も大きくなり、 ファンによる空冷式冷却装 置では充分冷却できなくなつている。  The conventional MPU cooling device is an air-cooling type cooling device shown in Fig. 9, in which a heat transfer body 117 having a plurality of fins is provided on the surface of MPU 116, and air cooling is performed so as to face these fins. Fan 1 1 8 was provided. However, in recent years, as the processing speed of the MPU has increased, the heat generated by the MPU has also increased, and it has become impossible to sufficiently cool the air-cooled cooling device using a fan.
そこで、 特閧平 1 0— 2 1 3 3 7 0号に示すように、 M P Uに連結した熱伝達 板に冷却用 を設け、この通路に冷却液を流し冷却するものが考えられている。 さらに、 特開平 1 0— 2 1 3 3 7 0号に示す冷却装置は、 冷却液を冷却する放熱 部に複数のフィンを設け、 このフィンに対向するように空冷ファンを設け、 放熱 部の熱が放熱しやすくしている。  Therefore, as shown in Japanese Patent Application No. 110-213330, a heat transfer plate connected to the MPU is provided with a cooling plate, and a cooling liquid is caused to flow through this passage to cool the plate. Further, in the cooling device disclosed in Japanese Patent Application Laid-Open No. H10-213330, a plurality of fins are provided in a radiator for cooling the coolant, and an air-cooling fan is provided to face the fins. But it is easy to radiate heat.
しかし、 このような冷却装置にもいくつかの課題がある。  However, such cooling devices also have some problems.
冷却装置には、 冷却液を還流させるポンプ駆動用モー夕と、 空冷ファンを駆動す る空冷ファン用モー夕の二つを必要とし、 冷却装置のスペースが大きくなる。 よ つて、 規格ィ匕した大きさの冷却装置より大きくなつてしまい、 規格化されている 電子機器に取り付けられない。 The cooling system requires two modes, one for driving the pump to recirculate the cooling liquid and the other for driving the air-cooling fan, which increases the space for the cooling system. Therefore, the size of the cooling device becomes larger than that of the cooling device of the standard size, and the cooling device cannot be mounted on the standardized electronic device.
本件発明はこのような課題に鑑み、 省スペース且つ、 安全性の高い冷却装置を 提供することを目的とする。 発明の開示  The present invention has been made in view of the above problems, and has as its object to provide a space-saving and highly safe cooling device. Disclosure of the invention
本件発明は、 高熱発生物である電子部品と、 この電子部品に取り付けられた熱 伝達体と、 この熱伝達体と連結し内部に冷却用液体の循環用通路を有する液体 一空気熱交換器とを備え、 冷却用液体を循環するボンプ駆動と液体一空気熱交 換器に取付けられたファン駆動とを単一のモー夕を動力源とする電子部品の液体 冷却装置であり、 冷却用液体を循環するポンプ駆動と液体一空気熱交換器に取 付けられたファン駆動とを単一のモー夕を動力源とするため省スペースを可能と する。 The present invention relates to an electronic component that is a high heat generation product, a heat transfer member attached to the electronic component, and a liquid connected to the heat transfer member and having a cooling liquid circulation passage therein. A liquid-cooling system for electronic components that uses a single motor as a power source, with a pump drive that circulates the cooling liquid and a fan drive attached to the liquid-air heat exchanger that has a single air heat exchanger. Yes, the pump drive for circulating the cooling liquid and the fan drive attached to the liquid-to-air heat exchanger use a single motor as a power source, thus saving space.
更に、 本件発明は、 熱伝達体の内部を液体一空気熱交換器の冷却用液体の循 環通路が通過することにより冷却性が優れる。  Further, in the present invention, the cooling performance is excellent because the circulation path of the cooling liquid of the liquid-air heat exchanger passes through the inside of the heat transfer body.
更に、 本件発明は、 液体一空気熱交換器の一部を熱伝達体とすることで、 液 体一空気熱交換器と熱伝達体とが一体となり、 液体一空気熱交換器と熱伝達体 とがひとつのパッケージとなるため、 液体一空気熱交換器と熱伝達体との組付 けがずれることがなく、 冷却液の漏れを防止することができる。  Further, in the present invention, the liquid-to-air heat exchanger is integrated with the heat transfer element by using a part of the liquid-to-air heat exchanger as a heat transfer element. And the heat transfer element are integrated into a single package, so that the liquid-to-air heat exchanger and the heat transfer element are not disassembled, and leakage of the coolant can be prevented.
更に、 本発明の電子部品の冷却装置は、 液体—空気熱交換器と熱伝達体は冷却 用液体通路パイプにより連結することで、 液体一空気熱交 と熱伝達体の間隔 をおいて配置することができる。  Further, in the electronic component cooling device of the present invention, the liquid-air heat exchanger and the heat transfer element are connected to each other by a cooling liquid passage pipe, so that the liquid-air heat exchange and the heat transfer element are arranged at an interval. be able to.
更に、 本発明の電子部品の冷却装置は、 冷却用液体通路パイプの材質は樹脂で あるため、 曲がりやすく、 液体一空気熱交換器と熱伝達体とを自由に配置するこ とができる。  Furthermore, in the electronic component cooling device of the present invention, since the material of the cooling liquid passage pipe is resin, it is easy to bend, and the liquid-to-air heat exchanger and the heat transfer body can be freely arranged.
更に、 本発明の電子部品の冷却装置は、 ポンプ部を液体—空気熱交換器中に埋 設した電子部品の液体冷却装置は、 冷却用液体が液体—空気熱交換器を通過する 途中、 前記ポンプ部を経由することで簡単な構成とすることができる。  Further, in the cooling device for electronic components of the present invention, the liquid cooling device for electronic components in which the pump section is embedded in the liquid-air heat exchanger is characterized in that the cooling liquid passes through the liquid-air heat exchanger. A simple configuration can be achieved by passing through the pump section.
更に、 本件発明は、 モー夕はァゥ夕一口一夕型モー夕であり、 このモー夕のァ ウタ一口一夕にファンを設けることで、 小型化が可能になる。  Further, according to the present invention, the motor is a one-night, one-night mode, and a motor is provided.
更に、 本件発明は、 モー夕出力軸とポンプ回転軸との間、 もしくは、 モー夕出 力軸とファン回転軸との間の変速装置により、 ファンとボンプの各々の回転数を 異なる回転数にすることができるため、 ファンとポンプの各々において最も効率 のよい回転数で駆動でき、 冷却効率を最大化できる。  Further, according to the present invention, the rotational speed of each of the fan and the pump is changed to a different rotational speed by a transmission between the motor output shaft and the pump rotary shaft or between the motor output shaft and the fan rotary shaft. Therefore, each of the fan and the pump can be driven at the most efficient rotation speed, and the cooling efficiency can be maximized.
更に、 本件発明は、 液体一空気熱交換器は放熱フィンを備え、 この放熱フィ ンに対向するようにファンを配設することで、 放熱性が優れる。  Further, according to the present invention, the liquid-air heat exchanger is provided with a radiating fin, and the fan is disposed so as to face the radiating fin, so that the heat radiation is excellent.
更に、 本件発明の液体冷却装置は、 モ一夕部とポンプ部が一体としたり、 ボン プ部とモー夕部の間隔は、 液体一空気熱交換器は放熱フィンの長さよりも短く したり、 ポンプ部は、 液体一空気熱交換器の放熱フィンとファン部との間に配 置することで、液体—空気熱交換器とを連結する回転軸を短くすることができる。 図面の簡単な説明 Further, in the liquid cooling device of the present invention, the cooling unit and the pump unit are integrated, The distance between the pump and motor should be shorter than the length of the fins in the liquid-air heat exchanger, and the pump should be placed between the fins and the fan in the liquid-air heat exchanger. This makes it possible to shorten the rotation shaft connecting the liquid-air heat exchanger. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本願発明の概念図、 第 2図は本願発明の実施例 1を示す図、 第 3図 は第 2図の液体—空気熱交換器と熱伝達体の一体物の断面図、 第 4図は第 2図の ファンおよびモー夕詳細図、 第 5図は本願発明の実施例 2を示す図、 第 6図は本 願発明の実施例 3を示す図、 第 7図は図 6の液体—空気熱交換器の一体物の断面 図、 第 8図は本願発明の実施例 4を示す図、 第 9図は従来の電子部品の冷却装置 を示す図。 発明を実施するための最良の形態  FIG. 1 is a conceptual diagram of the present invention, FIG. 2 is a diagram showing Embodiment 1 of the present invention, FIG. 3 is a cross-sectional view of an integrated body of the liquid-air heat exchanger and the heat transfer body of FIG. FIG. 4 is a detailed view of the fan and motor of FIG. 2, FIG. 5 is a diagram showing Embodiment 2 of the present invention, FIG. 6 is a diagram showing Embodiment 3 of the present invention, and FIG. FIG. 8 is a cross-sectional view of an integrated liquid-air heat exchanger, FIG. 8 is a diagram showing a fourth embodiment of the present invention, and FIG. 9 is a diagram showing a conventional cooling device for electronic components. BEST MODE FOR CARRYING OUT THE INVENTION
灘例 1 )  Nada example 1)
図 1に本願発明の基本概念を示す。 本願発明の液体冷却装置は、 高熱発生物で ある電子部品 M P U 1に取り付けられた熱伝達体 2と液体—空気熱交 3を備 えており、 単一のモー夕 4により冷却液を循環するポンプ 5、 液体一空気熱交 換器を空冷するファン 6が駆動される構成である。  Fig. 1 shows the basic concept of the present invention. The liquid cooling device according to the present invention includes a heat transfer body 2 attached to an electronic component MPU 1, which is a high heat generation product, and a liquid-air heat exchange 3, and a pump that circulates the cooling liquid by a single motor 4 5. The configuration is such that a fan 6 that cools the liquid-air heat exchanger with air is driven.
本願発明の特徴は、 単一のモ一夕 4により、 ポンプ 5およびファン 6を駆動す ることである。  The feature of the present invention is that the pump 5 and the fan 6 are driven by a single motor 4.
図 2に示される実施例 1の電子部品の液体冷却装置は、 基板 2 0上に配置され た M P U 1 1と、 この M P U 1 1に取り付けられた、 液体一空気熱交換器の一 部を熱伝達体とすることで、 液体一空気熱交換器と熱伝達体とがー体となった 液体一空気熱交換器と熱伝達体との一体物 1 8と、 液体一空気熱交換器と熱伝 達体との一体物 1 8を強制空冷するための空冷ファン 1 6と、 このファン内の駆 動モー夕により駆動されるポンプ 1 5とを備え、 この液体一空気熱交換器と熱 伝達体との一体物 1 8内の冷却用液体の循環通路 1 7をポンプ 1 5により冷却用 液体が循環される。  The liquid cooling device for electronic components of Example 1 shown in FIG. 2 heats the MPU 11 disposed on the substrate 20 and a part of the liquid-to-air heat exchanger attached to the MPU 11. The liquid-to-air heat exchanger and the heat transfer element are integrated into a single body of the liquid-to-air heat exchanger and the heat transfer element. An air-cooling fan 16 for forcibly air-cooling the integral body 18 with the transfer body, and a pump 15 driven by a driving motor inside the fan are provided. The cooling liquid is circulated by the pump 15 through the cooling liquid circulation passage 17 in the unitary body 18.
M P U 1 1と液体一空気熱交換器と熱伝達体との一体物 1 8の間は、 気泡に よる熱の伝達を防止するため、 接合間に高い熱伝導性を持ったシリコングリース 等が塗られ、 M P U 1 1と液体一空気熱交換器と熱伝達体との一体物 1 8は固 定されている。 Air bubbles between the MPU 1 1 and the integrated unit 1 8 of the liquid-air heat exchanger and heat transfer element In order to prevent heat transfer, silicon grease with high thermal conductivity is applied between the joints, and the MPU 11 and the liquid-to-air heat exchanger and the heat transfer element 18 are fixed. ing.
液体一空気熱交換器と熱伝達体との一体物 1 8内の A— B断面は、 図 2に示 されるように熱伝達効率を上げるため、 蛇行して冷却用液体の循環通路 1 7が設 けられている。  The A-B cross section in the integrated body 18 of the liquid-air heat exchanger and the heat transfer body meanders in order to increase the heat transfer efficiency as shown in Fig. 2. Is set up.
図 4に示されるように、 この実施例で用いられているモー夕 1 4はァゥ夕一口 —夕型モータであり、 マグネット 2 1、 ステ一夕 2 2、 コイル 2 3を備える。 こ のモー夕のァゥ夕一口一夕 2 4にファン 1 6を設けている。  As shown in FIG. 4, the motor 14 used in this embodiment is a key-to-evening motor, which includes a magnet 21, a stay 22, and a coil 23. A fan 16 is installed in this mode.
この ^例ではファン内にモー夕を配置しているが、ポンプ内にモータを配置し、 その出力軸によりファンを駆動してもよい。 Although the motor is arranged in the fan in this example, the motor may be arranged in the pump and the fan may be driven by the output shaft.
従来の電子部品冷却装置では、 熱伝達体と、 液体一空気熱交換器とが別体と なっており、 熱伝達体と液体—空気熱交 とがチューブなどの循環通路により 結合されなければならないため、 組立ての精度が悪いと、 また、 大きな衝撃を受 けると、 循環通路およびその結合部から冷却液が漏れる可能性があるという課題 があった。 しかし、 本実施例では、 冷却液ポンプ駆動と空冷ファン駆動とを 単一のモー夕を動力源とするため、 省スペース化が可能となる。  In a conventional electronic component cooling device, the heat transfer body and the liquid-air heat exchanger are separate units, and the heat transfer body and the liquid-air heat exchange must be connected by a circulation passage such as a tube. For this reason, there has been a problem that if the accuracy of the assembly is poor, or if a large impact is received, the coolant may leak from the circulation passage and the joint thereof. However, in this embodiment, since the coolant pump drive and the air-cooling fan drive use a single motor as a power source, space can be saved.
更に、 液体一空気熱交換器と熱伝達体とがひとつのパッケージとなるため、 液体一空気熱交換器と熱伝達体との組付けがずれることがなく、 冷却液の漏れ を防止することができる。  Furthermore, since the liquid-to-air heat exchanger and the heat transfer element are in a single package, the assembly of the liquid-to-air heat exchanger and the heat transfer element is not displaced, and leakage of the coolant can be prevented. it can.
本実施例では、 ポンプ 1 5が液体一空気熱交換器と熱伝達体との一体物 1 8 上に独立して設置されているが、 液体一空気熱交換器と熱伝達体との一体物 1 8内に埋設して設置すれば、 さらに小型ィ匕が可能となる。  In the present embodiment, the pump 15 is installed independently on the integral body 18 of the liquid-to-air heat exchanger and the heat transfer body. If it is buried and installed in 18, it will be possible to make it even more compact.
さらに、 単一のモー夕に対して、 複数のファンとポンプを駆動してもよい。 さらに、 コンピュータ内にこの液体冷却装置を複数設置してもよい。  Further, multiple fans and pumps may be driven for a single motor. Further, a plurality of the liquid cooling devices may be provided in the computer.
液体一空気熱交換器と熱伝達体との一体物 1 8内の蛇行した循環通路 1 7に 冷却液を循環させることにより、 液体一空気熱交換器と熱伝達体との一体物 1 8の細部まで熱を伝達させることができるため、 効率よく MP U l 1を冷却する ことができる。 (実施例 2 ) By circulating the coolant through the meandering circulation passage 17 in the liquid-to-air heat exchanger 18 and the heat transfer element 18, the liquid-to-air heat exchanger and heat transfer element 18 Since heat can be transmitted to details, MP U1 can be cooled efficiently. (Example 2)
図 5に示される実施例 2の電子部品の液体冷却装置は、 基板 3 0上に配置され た M P U 2 1と、 この M P U 2 1に取り付けられた、 液体一空気熱交換器の一 部を熱伝達体とすることで、 液体一空気熱交換器と熱伝達体とがー体となった 液体一空気熱交換器と熱伝達体との一体物 2 8と、 この液体一空気熱交換器と 熱伝達体との一体物 2 8を強制空冷するための空冷ファン 2 6と、 このファン内 の駆動モー夕 2 4により変速装置 3 5を介して駆動されるポンプ 2 5とを備え、 この液体一空気熱交換器と熱伝達体との一体物 2 8内の冷却用液体の循環通路 2 7をポンプ 2 5により冷却用液体が循環される。  The liquid cooling apparatus for electronic components according to the second embodiment shown in FIG. 5 heats the MPU 21 disposed on the substrate 30 and a part of the liquid-air heat exchanger attached to the MPU 21. The liquid-to-air heat exchanger and the heat transfer element are integrated into one body by using the liquid-to-air heat exchanger and the heat transfer element. An air-cooling fan 26 for forcibly air-cooling the integrated body 28 with the heat transfer body, and a pump 25 driven by a drive motor 24 through a transmission 35 in the fan, and the liquid The cooling liquid is circulated by the pump 25 through the cooling liquid circulation passage 27 in the integrated body 28 of the air heat exchanger and the heat transfer element.
モー夕出力軸 2 9とポンプ回転軸との間の変速装置 3 5により、 ファン 2 6と ポンプ 2 5の各々の回転数を異なる回転数にすることができるため、 ファン 2 6 とポンプ 2 5の各々において最も効率のよい回転数で駆動でき、 冷却効率を最大 化できる。 この実施例では、 モー夕出力軸とポンプ回転軸の間に変速装置 3 5を 設けているが、 モ一夕出力軸とファン回転軸の間に変速装置を設けても同じ効果 がある。 議例 3 )  The transmission 35 between the motor output shaft 29 and the pump rotation shaft allows the rotation speed of the fan 26 and the pump 25 to be different from each other. Can be driven at the most efficient rotational speed, and the cooling efficiency can be maximized. In this embodiment, the transmission 35 is provided between the motor output shaft and the pump rotation shaft. However, the same effect can be obtained by providing a transmission between the motor output shaft and the fan rotation shaft. Proposition 3)
図 6に示される実施例 3の電子部品の液体冷却装置は、 基板 4 9上に配置され た M P U 4 1と、 この M P U 4 1に取り付けられた熱伝達体 4 2と、 液体一空 気熱交換器 4 3と、 液体一空気熱交換器を強制空冷するための空冷フアン 4 6 と、 このファン内の駆動モー夕 4 4により駆動されるポンプ 4 5とを備え、 冷却 用液体の液体—空気熱交換器 4 3の循環通路 4 7と、 連結パイプ 4 8と、 熱伝達 体 4 2の循環通路 5 0とをポンプ 4 5により冷却用液体が循環される。  The liquid cooling device for electronic components according to the third embodiment shown in FIG. 6 includes an MPU 41 disposed on a substrate 49, a heat transfer member 42 mounted on the MPU 41, and a liquid-air heat exchange. And a pump 45 driven by a drive motor 44 in the fan for forced air cooling of the liquid-to-air heat exchanger. The cooling liquid is circulated by the pump 45 through the circulation passage 47 of the heat exchanger 43, the connection pipe 48, and the circulation passage 50 of the heat transfer member 42.
実施例 3は、 熱伝達体 4 2と液体—空気熱交 4 3とが別体になっており、 液体—空気熱交 «4 3と熱伝達体 4 2との間隔を離れた位置において、 冷却動 作を行うことができる。 液体一空気熱交 « 4 3と熱伝達体 4 2との間隔が開い ていると、 冷却効率が優れる。 また、 熱伝達体 4 2と液体一空気熱交 ί«4 3と をつなぐ連結パイプ 4 8を、 塩ィ匕ビニールのような樹脂である変形可能な材質を 用いることで、 曲がりやすく、 熱伝達体 4 2と液体—空気熱交換器 4 3の位置関 係を自由に設定でき、 設計の際の自由度が広がる。 In the third embodiment, the heat transfer member 42 and the liquid-air heat transfer 43 are separate, and the liquid-air heat transfer 43 and the heat transfer member 42 are spaced apart from each other. A cooling operation can be performed. If the space between the liquid-air heat exchange 4 3 and the heat transfer body 42 is wide, the cooling efficiency is excellent. In addition, a connecting pipe 48 connecting the heat transfer body 42 and the liquid-air heat exchange 43 is made of a deformable material such as resin such as Shiridani vinyl. By using it, it is easy to bend, and the positional relationship between the heat transfer body 42 and the liquid-air heat exchanger 43 can be set freely, and the degree of freedom in designing is widened.
また、 ポンプ 4 5は、 液体一空気熱交換器 4 3の一部に埋め込まれる状態で配 設されいるが、ファン 4 6とポンプ 4 5を同一のモー夕 4 4で回転駆動するため、 モータ 4 4とポンプ 4 5を回転軸 5 0により連結している。  Further, the pump 45 is disposed so as to be embedded in a part of the liquid-to-air heat exchanger 43, but since the fan 46 and the pump 45 are driven to rotate by the same motor 44, a motor is provided. 44 and pump 45 are connected by a rotating shaft 50.
冷却用液体は液体—空気熱交換器 5 1を通過する時に放熱するわけであるが、 液体一空気熱交換器 4 3内の循環通路は、 図 7に示すよう、 一連の循環通路が 2 箇所にある。循環通路 4 7の出入り口 5 2、 5 3には、 ポンプ 4 5を連結してい る。 このポンプ 4 5の働きにより、 冷却用液体は、 液体—空気熱交換器 4 3、 連 結パイプ 4 8、 熱伝達体 4 2を循環し、 熱伝達体 4 2で吸収した熱を、 連結パイ プ 4 8を経由して、 液体—空気熱交換器 4 3にて放熱する。  The cooling liquid radiates heat when passing through the liquid-air heat exchanger 51. The circulation passage in the liquid-air heat exchanger 43 has two series of circulation passages as shown in Fig. 7. It is in. A pump 45 is connected to the entrances 52 and 53 of the circulation passage 47. By the operation of the pump 45, the cooling liquid circulates through the liquid-air heat exchanger 43, the connecting pipe 48, and the heat transfer member 42, and the heat absorbed by the heat transfer member 42 is connected to the connection pipe. Heat is radiated by the liquid-air heat exchanger 43 via the pump 48.
なお、 M P U 4 1と熱伝達体 4 3の間は、気泡による熱め伝達を防止するため、 接合間に高い熱伝導性を持ったシリコングリース等が塗られ、 熱伝達体 4 3は MPU4 1に固定されている。  In addition, between the MPU 41 and the heat transfer member 43, silicone grease having high thermal conductivity is applied between the joints to prevent heat transfer by air bubbles. It is fixed to.
(細列 4 ) (Narrow row 4)
図 8に示される実施例 4の電子部品の液体冷却装置は、 基板 6 9上に配置され た M P U 6 1と、 この M P U 6 1に取り付けられた熱伝達体 6 2と、 液体一空 気熱交換器 6 3と、 液体一空気熱交換器を強制空冷するための空冷ファン 6 6 と、 このファン内の駆動モ一夕 6 4と一体化されたポンプ 6 5とを備え、 冷却用 液体の循環通路 6 7をポンプ 6 5により冷却用液体が循環される。  The liquid cooling apparatus for electronic components according to the fourth embodiment shown in FIG. 8 includes an MPU 61 disposed on a substrate 69, a heat transfer body 62 mounted on the MPU 61, and a liquid-air heat exchange. A cooling device for cooling the liquid-to-air heat exchanger, and a pump 65 integrated with a drive module 64 in this fan to circulate the cooling liquid. The cooling liquid is circulated through the passage 67 by the pump 65.
ファン駆動用モー夕 6 4とポンプ 6 5とは構造的に一体ィ匕されており、 ポンプ 6 5はファン駆動用モ一夕 6 4の動力を用いて駆動される。  The fan drive motor 64 and the pump 65 are structurally integrated, and the pump 65 is driven using the power of the fan drive motor 64.
ファン駆動用モー夕 6 4とポンプ 6 5とを一体化することにより、 ファン駆動 用モー夕 6 4とポンプ 6 5を製造する際の部品を共有することで、 製造時の部品 点数の削減が可能である。  By integrating the fan drive motor 64 and the pump 65, the parts for manufacturing the fan drive motor 64 and the pump 65 can be shared, thereby reducing the number of parts required for manufacturing. It is possible.
更に、 この構成によりファン回転軸の中心とポンプ回転軸の中心間の距離を短 くすることができ、 モー夕 6 4の動力をファン 6 6及びポンプ 6 5に出力軸を用 いて伝達する際に、モー夕 4が軸振れを起こすことなく正確に動力を伝達できる。 産業上の利用の可能性 Furthermore, this configuration makes it possible to shorten the distance between the center of the fan rotation shaft and the center of the pump rotation shaft, and when transmitting the power of the motor 64 to the fan 66 and the pump 65 using the output shaft. In addition, the motor 4 can transmit power accurately without causing shaft runout. Industrial applicability
本件発明の電子部品の液体冷却装置は、 冷却液ポンプ駆動と空冷ファン駆動と を単一のモー夕を動力源とするため、 省スペース化が可能となる。 さらに、 液体 一空気熱交換器の一部を熱伝達体とすることで、 省スペースで冷却効率の高く、 且つ、 安全性の高い冷却することができる。  In the liquid cooling device for electronic components according to the present invention, the cooling liquid pump drive and the air cooling fan drive use a single motor as a power source, so that space can be saved. Furthermore, by using a part of the liquid-to-air heat exchanger as a heat transfer body, it is possible to perform cooling with high cooling efficiency and high safety in a small space.

Claims

請求の範囲 The scope of the claims
1 ·高熱発生物である電子部品と、 この電子部品に取り付けられた熱伝達体と、 この熱伝達体と連結し内部に冷却用液体の循環用通路を有する液体一空気熱交 換器とを備え、 冷却用液体を循環するポンプ部のポンプ駆動と液体一空気熱交 換器に取付けられたファン部のファン駆動は、 単一のモー夕を動力源とする電子 部品の液体冷却装置。 An electronic component that is a high heat product, a heat transfer member attached to the electronic component, and a liquid-to-air heat exchanger connected to the heat transfer member and having a cooling liquid circulation passage therein. A liquid cooling system for electronic components that uses a single motor as a power source. The pump drive of the pump section that circulates the cooling liquid and the fan drive of the fan section attached to the liquid-air heat exchanger are provided.
2 ·熱伝達体の内部を液体一空気熱交換器の冷却用液体の循環通路が通過する 請求の範囲第 1記載の電子部品の液体冷却装置。  2. The liquid cooling device for electronic components according to claim 1, wherein a cooling liquid circulation passage of the liquid-to-air heat exchanger passes through the inside of the heat transfer body.
3 ·液体一空気熱交換器の一部が熱伝達体となる請求の範囲第 1記載の電子部 品の液体冷却装置。  3. The liquid cooling device for electronic components according to claim 1, wherein a part of the liquid-to-air heat exchanger is a heat transfer body.
4 ·液体—空気熱交換器と熱伝達体は連結パイプにより連結している請求の範囲 第 1 載の液体冷却装置。  4. The liquid cooling device according to claim 1, wherein the liquid-air heat exchanger and the heat transfer body are connected by a connecting pipe.
5 ·連結パイプの材質は樹脂である請求の範囲第 4記載の電子部品の液体冷却装 置。  5. The liquid cooling device for electronic components according to claim 4, wherein the material of the connecting pipe is resin.
6 'ポンプ部を液体一空気熱交換器中に埋設した電子部品の液体冷却装置は、 冷 却用液体が液体一空気熱交 «を通過する途中、 前記ポンプ部を経由する請求の 範囲第 1記載の液体冷却装置。  A liquid cooling device for electronic components having a 6 'pump section embedded in a liquid-to-air heat exchanger, wherein the cooling liquid passes through the pump section while passing through the liquid-to-air heat exchanger. The liquid cooling device as described in the above.
7 ·モー夕はアウター口一夕型モ一夕であり、 このモ一夕のアウターロー夕にフ アンを設けた請求の範囲第 1記載の電子部品の液体冷却装置。 7. The liquid cooling device for electronic parts according to claim 1, wherein the motor is an outer opening type module, and a fan is provided in the outer row of the module.
8 ·モ一夕出力軸とポンプ回転軸との間、 もしくは、 モー夕出力軸とファン回転 軸との間に変速装置を設けた請求の範囲第 1記載の電子部品の液体冷却装置。 9 ·液体一空気熱交換器は放熱フィンを備え、 この放熱フィンに対向するよう にファンを配設した請求の範囲第 1記載の電子部品の液体冷却装置。 8. The liquid cooling device for electronic parts according to claim 1, wherein a transmission is provided between the motor output shaft and the pump rotation shaft or between the motor output shaft and the fan rotation shaft. 9. The liquid cooling device for electronic components according to claim 1, wherein the liquid-to-air heat exchanger includes a radiation fin, and a fan is provided so as to face the radiation fin.
1 0 'モー夕部とポンプ部が一体となった請求の範囲第 1記載の電子部品の液体 冷却装置。  10. The liquid cooling device for electronic components according to claim 1, wherein the motor section and the pump section are integrated.
1 1 ·ポンプ部は、 液体一空気熱交換器の放熱フィンとファン部との間に配置 した請求の範囲第 9記載の電子部品の液体冷却装置。  10. The liquid cooling device for electronic components according to claim 9, wherein the pump unit is disposed between the radiating fins of the liquid-to-air heat exchanger and the fan unit.
PCT/JP2001/001491 2000-02-29 2001-02-28 Liquid cooling device for cooling electronic device WO2001065900A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-53028 2000-02-29
JP2000053028 2000-02-29
JP2000-104666 2000-04-06
JP2000104666A JP2001320187A (en) 2000-02-29 2000-04-06 Liquid type cooler for electronic part

Publications (1)

Publication Number Publication Date
WO2001065900A1 true WO2001065900A1 (en) 2001-09-07

Family

ID=26586341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001491 WO2001065900A1 (en) 2000-02-29 2001-02-28 Liquid cooling device for cooling electronic device

Country Status (2)

Country Link
JP (1) JP2001320187A (en)
WO (1) WO2001065900A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714412B1 (en) 2002-09-13 2004-03-30 International Business Machines Corporation Scalable coolant conditioning unit with integral plate heat exchanger/expansion tank and method of use
US6763880B1 (en) * 2003-06-26 2004-07-20 Evserv Tech Corporation Liquid cooled radiation module for servers
US7466550B2 (en) * 2006-11-03 2008-12-16 Xigmatek Co., Ltd Integrated heat dissipating assembly
US8035972B2 (en) 2009-07-31 2011-10-11 Oracle America, Inc. Method and apparatus for liquid cooling computer equipment
US8746330B2 (en) 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
US9057567B2 (en) 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
US9496200B2 (en) 2011-07-27 2016-11-15 Coolit Systems, Inc. Modular heat-transfer systems
US9943014B2 (en) 2013-03-15 2018-04-10 Coolit Systems, Inc. Manifolded heat exchangers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems
US11994350B2 (en) 2021-02-07 2024-05-28 Coolit Systems, Inc. Fluid heat exchange systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314910A (en) * 2002-04-24 2003-11-06 Matsushita Electric Ind Co Ltd Semiconductor device cooling apparatus and controlling method therefor
DE10243026B3 (en) * 2002-09-13 2004-06-03 Oliver Laing Device for local cooling or heating of an object
JP4559361B2 (en) * 2003-05-30 2010-10-06 パナソニック株式会社 Projection display
DE10332096B4 (en) * 2003-07-15 2005-12-08 Fujitsu Siemens Computers Gmbh Cooling arrangement for cooling a heat-generating component
JP2005168134A (en) * 2003-12-01 2005-06-23 Toshiba Corp Liquid-cooled type power converter
JP2011222692A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Cooling device and electronic device
US9301421B2 (en) 2013-11-21 2016-03-29 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Closed loop liquid cooling system for electronic packages
CN105263301B (en) * 2015-11-12 2017-12-19 深圳市研派科技有限公司 A kind of liquid cooling heat radiation system and its liquid radiating row

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287654A (en) * 1986-06-06 1987-12-14 Mitsubishi Electric Corp Semiconductor stacking device
JPH04286192A (en) * 1991-03-14 1992-10-12 Mitsubishi Electric Corp Pressure ventilating fan
JPH0832263A (en) * 1994-07-20 1996-02-02 Fujitsu Ltd Cooling structure for package of heating element
JPH10326986A (en) * 1997-05-23 1998-12-08 Nippon Keiki Seisakusho:Kk Fan motor
JP2000036554A (en) * 1998-07-17 2000-02-02 Tosui Kikaku:Kk Heat sink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287654A (en) * 1986-06-06 1987-12-14 Mitsubishi Electric Corp Semiconductor stacking device
JPH04286192A (en) * 1991-03-14 1992-10-12 Mitsubishi Electric Corp Pressure ventilating fan
JPH0832263A (en) * 1994-07-20 1996-02-02 Fujitsu Ltd Cooling structure for package of heating element
JPH10326986A (en) * 1997-05-23 1998-12-08 Nippon Keiki Seisakusho:Kk Fan motor
JP2000036554A (en) * 1998-07-17 2000-02-02 Tosui Kikaku:Kk Heat sink

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714412B1 (en) 2002-09-13 2004-03-30 International Business Machines Corporation Scalable coolant conditioning unit with integral plate heat exchanger/expansion tank and method of use
US6763880B1 (en) * 2003-06-26 2004-07-20 Evserv Tech Corporation Liquid cooled radiation module for servers
US7466550B2 (en) * 2006-11-03 2008-12-16 Xigmatek Co., Ltd Integrated heat dissipating assembly
US8746330B2 (en) 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
US9057567B2 (en) 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
US9453691B2 (en) 2007-08-09 2016-09-27 Coolit Systems, Inc. Fluid heat exchange systems
US9603284B2 (en) 2007-08-09 2017-03-21 Coolit Systems, Inc. Fluid heat exchanger configured to provide a split flow
US10274266B2 (en) 2007-08-09 2019-04-30 CoolIT Systems, Inc Fluid heat exchange sytems
US8035972B2 (en) 2009-07-31 2011-10-11 Oracle America, Inc. Method and apparatus for liquid cooling computer equipment
US9496200B2 (en) 2011-07-27 2016-11-15 Coolit Systems, Inc. Modular heat-transfer systems
US10820450B2 (en) 2011-07-27 2020-10-27 Coolit Systems, Inc. Modular heat-transfer systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US11714432B2 (en) 2011-08-11 2023-08-01 Coolit Systems, Inc. Flow-path controllers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US9943014B2 (en) 2013-03-15 2018-04-10 Coolit Systems, Inc. Manifolded heat exchangers and related systems
US11661936B2 (en) 2013-03-15 2023-05-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11725890B2 (en) 2019-04-25 2023-08-15 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11994350B2 (en) 2021-02-07 2024-05-28 Coolit Systems, Inc. Fluid heat exchange systems
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems

Also Published As

Publication number Publication date
JP2001320187A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
WO2001065900A1 (en) Liquid cooling device for cooling electronic device
KR100677624B1 (en) Liquid cooling system and electric appliances adopting the same
US6999316B2 (en) Liquid cooling system
JP3979143B2 (en) Cooling device for information processing equipment
US6763880B1 (en) Liquid cooled radiation module for servers
US6234240B1 (en) Fanless cooling system for computer
KR101454326B1 (en) Pump for water cooler
US7694721B2 (en) Miniature liquid cooling device having an integral pump
EP1519645B1 (en) Liquid cooling module
JP4132680B2 (en) Electronic equipment cooling device
US5794687A (en) Forced air cooling apparatus for semiconductor chips
KR101011084B1 (en) Heat absorption member, cooling device, and electronic apparatus
US20090154104A1 (en) Cooling Device and Electronic Apparatus Using the Same
US20070103869A1 (en) Integrated liquid cooling system
KR20070083157A (en) Composite heat-dissipating module
US20040070942A1 (en) Electronic apparatus
WO2020253723A1 (en) Heat dissipation assembly and electronic device
JPH06266474A (en) Electronic apparatus equipment and lap top electronic apparatus equipment
JP2006234255A (en) Radiator and liquid cooling system comprising the same
US7292438B2 (en) Liquid-cooling heat dissipation module
US20220272866A1 (en) Water cooler assembly and system
CN100372108C (en) Radiating moudle of electronic device
KR100939992B1 (en) Cooling Apparatus, and Electric-Electronic Equipment with the Cooling Apparatus
CN206833355U (en) Air-cooling and liquid-cooling combined radiator
KR20120002299U (en) Heat dissipation device with multiple heat conducting pipes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase