WO2000004353A1 - Radiation thermometer - Google Patents

Radiation thermometer Download PDF

Info

Publication number
WO2000004353A1
WO2000004353A1 PCT/JP1998/003138 JP9803138W WO0004353A1 WO 2000004353 A1 WO2000004353 A1 WO 2000004353A1 JP 9803138 W JP9803138 W JP 9803138W WO 0004353 A1 WO0004353 A1 WO 0004353A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
radiation thermometer
thermopile
self
heating element
Prior art date
Application number
PCT/JP1998/003138
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Sakano
Original Assignee
Kazuhito Sakano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhito Sakano filed Critical Kazuhito Sakano
Priority to PCT/JP1998/003138 priority Critical patent/WO2000004353A1/en
Priority to AU81296/98A priority patent/AU8129698A/en
Publication of WO2000004353A1 publication Critical patent/WO2000004353A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/049Casings for tympanic thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables

Definitions

  • the present invention relates to a radiation thermometer, and more particularly, to a radiation thermometer that detects infrared rays radiated from a measurement target with a thermopile and measures the temperature of the measurement target in a non-contact manner.
  • thermometer has been used to detect infrared rays emitted from an object to be measured and to measure the temperature of the object without contact.
  • thermometers emit more radiation from the eardrum and surrounding tissues than contact-type thermometers such as the sublingual thermometer that measures the temperature in the oral cavity and the axillary thermometer that measures the temperature in the axilla for reasons of hygiene and convenience.
  • contact-type thermometers such as the sublingual thermometer that measures the temperature in the oral cavity and the axillary thermometer that measures the temperature in the axilla for reasons of hygiene and convenience.
  • the demand for non-contact thermometers that measure body temperature by detecting infrared rays is increasing.
  • the tympanic membrane Since the tympanic membrane is located deep in the human body and is less susceptible to the external environment, it can measure body temperature more accurately than other parts of the human body such as the oral cavity and axilla. One.
  • Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured.
  • a pyroelectric sensor is a sensor that detects, as an output, a change in surface charge of a pyroelectric body due to a temperature change when absorbing infrared energy radiated from a measurement object. Impatience In order to output only when the temperature of the pyroelectric body changes, the electric sensor outputs the continuous output by intermittently cutting off the incident infrared rays by shoving.
  • a thermopile sensor is a sensor in which thermocouples are deposited using integrated circuit technology, and a continuous output for the temperature difference between the hot junction and the cold junction is obtained by a large number of directly connected thermocouples. .
  • thermometer using a thermopile will be described as an example of a conventional radiation thermometer as a non-contact temperature sensor for detecting infrared radiation emitted from an object to be measured.
  • thermometer using a thermopile there is, for example, a temperature measuring device disclosed in Japanese Patent Application Laid-Open No. Sho 61-117424. Such a temperature detector will be described with reference to FIGS. 5 to 7.
  • the temperature detecting device includes a probe unit 21, a chopper unit 22, and a charging unit (not shown).
  • the probe unit 21 has a structure that can be grasped with the hand of the operator when performing temperature measurement on a patient. That is, at the time of temperature measurement, the user grasps the handle 23 provided on the probe unit 21 and handles the probe unit 21. Further, the probe unit 21 is mechanically matched with the chopper unit 22, and the electronic mechanisms inside the probe unit 21 and the chopper unit 22 are the same as those of the first embodiment. As shown in Fig. 5, they are electrically connected by cord 24.
  • the probe unit 21 is provided with a head portion 25 protruding from the front end of the handle 23 in the shape of a "K", as shown in Fig. 6, and a head portion 25
  • the probe 26 is attached to the tip of.
  • the probe 26 is covered with a plastic disposable temperature cover 27 for hygienic reasons at the time of temperature measurement and inserted into the patient's ear canal.
  • the insides of the head portion 25 and the probe 26 have the structure shown in FIG. That is, a cylindrical metal housing 28 having excellent thermal conductivity is provided inside the head portion 25 and the probe 26, and an infrared ray is detected inside the metal housing 28 to generate an electromotive force.
  • a thermopile 29 is provided inside the metal housing 28 .
  • a heater section 31 for controlling the temperature of the metal housing 28 to a set temperature (for example, a temperature near body temperature of 36.6 ° C.) is provided.
  • the temperature control section 31 is controlled by a temperature control circuit (not shown).
  • a temperature control circuit has a thermistor, a heating resistor, an amplifier and the like.
  • thermopile 29 and the waveguide 30 are arranged so as to be in thermal contact with each other, the temperature of the metal housing 28 must be controlled to the set temperature in the heater 31. Thus, the metal housing 28, thermopile 29 and waveguide 30 are maintained at the same set temperature.
  • the chopper unit 22 is rectangular and box-shaped as shown in FIG.
  • a handle 23 is placed in a concave portion formed on the upper surface of the chopper unit 22.
  • the head portion 25 and the probe 26 can be accommodated in a receiving portion communicating with the concave portion.
  • a thermometer 27 is arranged on the upper surface of the chopper unit 22 and a liquid crystal display 32 for displaying the measured body temperature and the like is also installed.
  • the electronic circuit for calculating the body temperature based on the data detected by the probe unit 21 and the error of the thermopile 29 due to the temperature change of the measurement environment are reduced.
  • a chopper evening geter is provided inside the chopper unit 22.
  • the chopper unit 22 is charged by a charging unit (not shown).
  • the body temperature is measured by such a thermometer as follows.
  • thermopile 29 As shown in Fig. 6, at the time of temperature measurement, the probe 26 is inserted into the patient's ear canal, and infrared radiation radiated from the eardrum and surrounding tissue is detected from the waveguide 30 into the thermopile 29. I do.
  • the thermopile 29 generates an electromotive force according to the amount of incident infrared light, and the output signal is sent to the microcomputer inside the tiller unit 22.
  • thermopile 29 the output of the thermopile 29 is V
  • T the temperature of the object to be measured
  • thermopile 29 the temperature of the thermopile 29 is ⁇ . Then, the output V of the thermopile 29 is given by Stephan-Boltzmann's law.
  • V k (T 4 — T. 4 ) k is a constant (1)
  • the temperature T of the thermopile 29 It is expressed as As mentioned above, the temperature T of the thermopile 29.
  • the temperature can be controlled to the set temperature by the night section 31. Therefore, from (1), the output V of the thermopile 29 and the temperature T of the thermopile 29 are obtained.
  • Data is sent to a microcomputer provided inside the chopper's unit 22. Based on the data, a fourth root calculation is performed by the microcomputer to obtain the patient's body temperature T. .
  • the temperature detector disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 611-117422 is caused by the fact that the probe 26 removes heat from the ear canal by controlling the probe 26 to the set temperature.
  • the temperature of the ear canal was prevented from lowering, and as a result, the measurement error due to the temperature change of the ear canal was reduced.
  • the temperature detector disclosed in Japanese Patent Application Laid-Open No. 61-114742 controls the temperature of the thermopile 29 to a set temperature, thereby allowing the temperature of the thermopile to change with the temperature change of the measurement environment.
  • the measurement error caused by the output change of 29 was able to be reduced.
  • thermometer has the above advantages as exemplified in the temperature measuring device disclosed in Japanese Patent Application Laid-Open No. 61-114,222, it has the following problems. I got it.
  • the conventional radiation thermometer uses a thermometer such as a thermistor to set the probe and thermopile to the set temperature.
  • a thermometer such as a thermistor to set the probe and thermopile to the set temperature.
  • a complicated temperature control circuit was required. Therefore, the cost increase due to the increase in the number of parts was inevitable.
  • thermopile errors due to temperature changes in the measurement environment were increased, but also the complexity of optimizing the thermopile with a chopper was obtained.
  • the electronic components of the circuit board built into the radiation thermometer cause temperature drift. In some cases, a measurement error may occur due to this.
  • the conventional radiation thermometer sets the probe and thermopile to the set temperature as described above.
  • the temperature control circuit had to be complicated, and there was also a problem in durability against impacts such as dropping.
  • the present invention which is provided to solve the above-described problems, provides a radiation thermometer that detects infrared rays emitted from a measurement target and measures the temperature of the measurement target, and maintains a required portion at a required temperature.
  • the radiation thermometer has a self-control positive temperature coefficient heating element.
  • the self-regulating positive temperature coefficient heating element has the property that the electrical resistance of the heating element increases as the temperature of the heating element rises when energized, so the current is suppressed and the heating element reaches the set temperature. Is maintained.
  • a radiation thermometer that detects infrared radiation emitted from the measurement target and measures the temperature of the measurement target has a self-control type positive temperature coefficient heating element that maintains the required temperature at the required temperature, so that the required location is required.
  • a complicated temperature control circuit including a temperature measuring element such as a thermistor is not required to maintain the temperature. Therefore, it is possible to provide an inexpensive and durable radiation thermometer with improved measurement accuracy and a reduced number of parts.
  • the self-regulating positive temperature coefficient heating element does not rise above the set temperature as described above, especially when the radiation thermometer according to the present invention is a thermometer, burns due to overheating can be prevented. Can be prevented. Therefore, a highly safe thermometer can be provided.
  • the present invention provided to solve the above-mentioned problem is directed to a self-control that maintains all required parts at a set temperature in a radiation thermometer that detects infrared radiation emitted from a measurement target and measures the temperature of the measurement target.
  • a radiation thermometer characterized by having a positive temperature coefficient heating element.
  • the components that make up the radiation thermometer include the temperature of the measurement environment and the heat generated by the components themselves (CPU, etc.).
  • each component is in various temperatures due to the effects of heat-generating electronic components. Therefore, conventionally, in order to maintain a required portion of the radiation thermometer at a set temperature, a heating device, a temperature measuring element, and a temperature control circuit were required for each component.
  • a radiation thermometer that detects infrared radiation emitted from the measurement target and measures the temperature of the measurement target has a self-regulating positive temperature coefficient heating element that maintains all required parts at a set temperature, so that all required parts are maintained. It is not necessary to provide a heating device, a temperature measuring element, and a temperature control circuit for each required part when maintaining the required temperature at the set temperature, and all of the required parts are maintained at the set temperature with one self-control positive temperature coefficient heating element. can do. Therefore, it is possible to provide an inexpensive and durable radiation thermometer with improved measurement accuracy and a reduced number of parts.
  • the required part can be selected from at least one of a thermopile, a nozzle, and a printed circuit board.
  • a thermopile can be controlled to the set temperature, so that measurement errors caused by changes in the output of the thermopile due to temperature changes in the measurement environment can be reduced.
  • the nozzle when the nozzle is selected as the required part, the nozzle can be controlled to the set temperature. Therefore, particularly when the radiation thermometer according to the present invention is an ear thermometer, the nozzle is connected to the ear hole. It is possible to prevent the temperature of the ear canal from lowering due to the deprivation of heat, and as a result, it is possible to reduce the measurement error due to the temperature change of the ear canal.
  • the circuit board when a printed circuit board is selected as the required part, the circuit board can be controlled to the set temperature, so that the circuit can be controlled even in a low-temperature measurement environment, for example, in a measurement environment at 0 ° C to 1 ° C.
  • the electronic components on the substrate can be prevented from causing a temperature drift, and measurement errors can be reduced.
  • thermopile and printed circuit board can be attached to a board that houses them together.
  • a self-controlling positive temperature coefficient heating element can be attached to the board.
  • the temperature of the substrate can be controlled.
  • the self-controlling positive temperature coefficient heating element used in the radiation thermometer according to the present invention is preferably planar. If the self-control type positive temperature coefficient heating element is planar, it can be attached regardless of the shape of each required part, such as winding it around the required part or attaching it.
  • a planar self-control type positive temperature coefficient heating element to the printed circuit board of the radiation thermometer according to the present invention.
  • the printed circuit board can be efficiently heated.
  • a planar self-control type positive temperature coefficient heating element on the printed circuit board of the radiation thermometer according to the present invention.
  • the printed circuit board can be heated more efficiently.
  • the printed circuit board of the radiation thermometer according to the present invention is formed of a planar self-control type positive temperature coefficient heating element.
  • the printed circuit board is made of a planar self-control type positive temperature coefficient heating element, the printed circuit board can be heated more efficiently.
  • the radiation thermometer according to the present invention is an ear thermometer
  • a required portion of the radiation thermometer is maintained at a temperature near body temperature.
  • the noise when the output is amplified also becomes lower. Therefore, the measurement error can be reduced as the temperature of the thermopile is closer to the body temperature.
  • the temperature of the nozzle is closer to the body temperature
  • the temperature of the ear canal can be prevented from lowering due to the nozzle taking away heat from the ear canal, and as a result, the measurement error due to the temperature change of the ear canal can be reduced.
  • temperature drift can be prevented, and thus measurement errors can be reduced.
  • FIG. 1 is a partially cutaway perspective view of a radiation thermometer according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an infrared detector in the radiation thermometer according to one embodiment of the present invention.
  • FIG. 3 is a resistance-temperature characteristic graph of a positive temperature coefficient heating element in the radiation thermometer according to one embodiment of the present invention.
  • FIG. 4 is a block circuit diagram showing a radiation thermometer according to one embodiment of the present invention.
  • FIG. 5 is a plan view showing a conventional temperature detector.
  • FIG. 6 is an explanatory diagram showing a temperature detection state in a conventional temperature detection device.
  • FIG. 7 is a cross-sectional view of an infrared detector in a conventional temperature detector. Explanation of reference numerals
  • the radiation thermometer is an ear thermometer.
  • a main body case 1 As shown in FIG. 1, a main body case 1, an infrared detection section 2 and a temperature measurement circuit section 3 housed in the main body case 1. It is composed of The infrared detecting section 2 has a waveguide 4 and a thermopile 5, and the temperature measuring circuit section 3 has a printed circuit board 6, a switch 7, and a liquid crystal temperature display 8.
  • the infrared detecting section 2 and the temperature measuring circuit section 3 are incorporated and fixed in a plate-shaped hybrid board 9 as shown in FIG.
  • the hybrid board 9 has a shape with a thin tip in accordance with the shape and the location of the waveguide 4, the circuit pile 5, the printed circuit board 6, and the like.
  • the nozzle 10 at the tip of the main body case 1 inserted into the ear canal is formed so as to become thinner toward the tip so as not to be inserted deeply into the ear canal, so that the user can use it safely.
  • the infrared detecting section 2 is disposed at the tip of the main body case 1 and detects infrared rays incident from a hole provided at the tip of the nozzle 10.
  • the infrared detecting section 2 is installed in a thermopile 5 for detecting infrared rays radiated from the eardrum and in the nozzle 10 at the tip of the main body case 1 and radiated from the eardrum. And a waveguide 4 for efficiently transmitting weak infrared light.
  • planar self-control type positive temperature coefficient heating elements 11 and 12 are attached to the surfaces of the thermopile 5 and the waveguide 4, and the inner surface of the nozzle 10 is As shown in FIG. 2, a planar self-control positive temperature coefficient heating element 13 is attached.
  • a planar self-control positive temperature coefficient heating element 14 is also attached to the printed circuit board 6.
  • a planar self-control type positive temperature coefficient heating element that can be attached regardless of the shape of each required component is used.
  • Conductive wires are connected to the planar self-control type positive temperature coefficient heating elements 11 to 14 so that a constant current can flow.
  • the self-controlled positive temperature coefficient heating element By controlling the flow, the infrared detector 2 and the nozzle 10 are controlled to a set temperature near the body temperature, for example, 32 ° C.
  • the self-control type positive temperature coefficient heating elements 11 to 14 will be described. As shown in the resistance-temperature characteristic graph of Fig. 3, the self-control type positive temperature coefficient heating elements 11 to 14 increase the electrical resistance of the heating element as the temperature of the heating element rises when energized. It is a heating element with characteristics. In particular, the self-control positive temperature coefficient heating elements 11 to 14 have the property that the electrical resistance increases rapidly at a certain temperature. Generally, when a current is passed through a resistor, it generates heat.However, the self-control type positive temperature coefficient heating element 11 to 14 rapidly increases its electrical resistance at a certain temperature as described above. The positive temperature coefficient heating elements 11 to 14 are maintained at a constant temperature.
  • the self-control type positive temperature coefficient heating elements 11 to 14 are heating elements that can control the heating temperature by themselves. Therefore, by attaching the self-control type positive temperature coefficient heating elements 11 to 14 to required portions such as the thermopile 5, the required portions such as the thermopile 5 can be maintained at a set temperature, for example, 32 ° C.
  • the self-control type positive temperature coefficient heating elements 11 to 14 are directly attached to the required parts such as the thermopile 5, the required parts such as the Can be maintained at the set temperature.
  • the self-control type positive temperature coefficient heating elements 11 to 14 are not heated above the set temperature, the radiation according to the present embodiment using the self-control type positive temperature coefficient heating elements 11 to 14 is performed. Thermometers are safe with no danger of overheating.
  • the measurement error can be reduced as the temperature of the thermopile 5 is set closer to the body temperature.
  • the temperature of the nozzle 10 is closer to the body temperature, the temperature of the ear canal can be prevented from lowering due to the nozzle 10 taking heat from the ear canal. Can be reduced.
  • maintaining the electronic components in the thermometer at a temperature near body temperature prevents temperature drift. Therefore, the measurement error can be reduced.
  • the temperature measurement circuit section has a printed circuit board 6 in which a temperature measurement circuit is incorporated, a switch 7 directly attached to the print board 6, and a liquid crystal temperature display 8.
  • the printed circuit board 6 is connected to the thermopile 5. Further, the switch 7 and the liquid crystal temperature indicator 8 are exposed to the outside of the main body case 1 through holes provided in the main body case 1 respectively. When switch 7 is pressed, the body temperature measurement starts, and the LCD temperature display 8 displays the measured body temperature digitally.
  • the printed circuit board 6 is fitted into the hybrid board 9, and as shown in FIGS. 1 and 2, the upper and lower surfaces of the printed circuit board 6 are provided with planar self-control type positive temperature coefficient heating elements 14 respectively. Affixed.
  • thermopile 5, the waveguide 4, the nozzle 10 and the printed circuit board 6 are each maintained at a set temperature.
  • the self-regulating positive temperature coefficient heating elements 11 to 14 are attached to them, but the method of attaching the self-controlling positive temperature coefficient heating elements to these required parts is not limited to the above. . That is, for example, in FIG. 1, the entire hybrid board 9 in which the thermopile 5, the printed circuit board 6, and the like are incorporated may be wound with one planar self-controlling positive temperature coefficient heating element. As for the printed circuit board 6, a planar self-control type positive temperature coefficient heating element may be printed on the printed circuit board 6.
  • the board itself other than the electronic components of the printed board 6 may be formed of a planar self-control type positive temperature coefficient heating element.
  • a planar self-control type positive temperature coefficient heating element on the printed circuit board 6, and by forming the substrate itself with a planar self-control type positive temperature coefficient heating element, heat can be efficiently supplied to electronic components. Can be transmitted.
  • thermopile 5 provided in the radiation thermometer outputs a voltage depending on the amount of infrared rays radiated from the eardrum and the temperature of the thermopile 5. That is, the thermopile 5 outputs a voltage corresponding to the difference between the temperature of the measurement target and the temperature of the thermopile 5.
  • the operational amplifier 15 connected to the thermopile 5 amplifies the small voltage output from the thermopile 5 to a predetermined magnitude.
  • the microcomputer 16 has an A / D converter built in, and the microcomputer 16 performs arithmetic processing based on the output signal from the operational amplifier 15 and outputs the temperature value output of the measurement target to the liquid crystal temperature display 8. send.
  • the liquid crystal temperature display 8 digitally displays the temperature of the object to be measured.
  • the planar self-control positive temperature coefficient heating elements 11 to 14 are attached to the inner surface of the nozzle 10, the waveguide 4, the thermopile 5, and the printed circuit board 6, respectively. Have been.
  • the drive IC 17 supplies a predetermined current to the self-controlling positive temperature coefficient heating elements 11 to 14 in accordance with the heating command signal from the microcomputer 16.
  • a heating command signal is sent from the microcomputer 16 to the drive IC 17 by the user pressing the switch 7 before the start of the temperature measurement, and the heating command signal is sent in accordance with the heating command signal.
  • a predetermined current flows through the self-control type positive temperature coefficient heating elements 11 to 14 to heat a predetermined portion. For this reason, at the start of temperature measurement, the predetermined part has risen to the set temperature.
  • microcomputer 16 receives the amplified output signal of thermopile 5 from operational amplifier 15 and self- The arithmetic processing is performed based on the temperature of the thermopile 5 preset by the control type positive temperature coefficient heating elements 11 to 14. The temperature of the eardrum detected by the microphone mouth computer 16 is recognized by being displayed on the liquid crystal temperature display 8.
  • the radiation thermometer according to the present embodiment includes the thermopile 5, the waveguide 4, the nozzle 10, the printed circuit board 6, and the planar self-control type positive temperature coefficient heating elements 11 to 14.
  • the drive IC 17 can be integrated into one without requiring a temperature control circuit for each required part. Therefore, according to the radiation thermometer according to the present embodiment, it is possible to provide an inexpensive and durable radiation thermometer that has improved measurement accuracy, has a small number of components, and has a small number of components.
  • the printed circuit board 6 is maintained at the set temperature by the sheet-shaped self-control type positive temperature coefficient heating element 14, so that the measurement error can be obtained even in a low-temperature measurement environment. Can be reduced.

Abstract

A radiation thermometer that detects infrared rays emitted from an object with a thermopile to effect a non-contact measurement of the temperature of the object. The thermometer enables accurate temperature measurement, has a less number of components, is produced at a low cost, and has an excellent durability. The thermometer comprises self-controlled positive temperature coefficient heating elements (11, 12, 13, 14) for maintaining required portions such as a thermopile (5), a wave guide (4) and a printed circuit board (6) at predetermined temperatures. When currents are passed through the heating elements, their resistances sharply increase at certain temperatures. Therefore the flows of currents are controlled and the heating elements are maintained at predetermined temperatures. In this way, the required portions such as the thermopile (5) can be maintained at predetermined temperatures, for example at 32 °C.

Description

明細書  Specification
放射温度計 Radiation thermometer
技術分野 本発明は放射温度計に関し、 詳しくは測定対象から放射される赤外線をサーモ パイルにて検知して測定対象の温度を非接触で測定する放射温度計に関するもの である。 TECHNICAL FIELD The present invention relates to a radiation thermometer, and more particularly, to a radiation thermometer that detects infrared rays radiated from a measurement target with a thermopile and measures the temperature of the measurement target in a non-contact manner.
背景技術 従来から、 放射温度計を用ることにより測定対象から放射される赤外線を検知 して測定対象の温度を非接触で測定することが行われている。 例えば体温計では 近年、 衛生上及び利便上の理由から口腔内の温度を測定する舌下型体温計や腋窩 の温度を測定する腋窩型体温計等の接触型体温計よりも、 鼓膜や周辺組織から放 射される赤外線を検知することで体温を測定する非接触型体温計の需要が増大し つつある。 2. Description of the Related Art Conventionally, a radiation thermometer has been used to detect infrared rays emitted from an object to be measured and to measure the temperature of the object without contact. For example, in recent years, thermometers emit more radiation from the eardrum and surrounding tissues than contact-type thermometers such as the sublingual thermometer that measures the temperature in the oral cavity and the axillary thermometer that measures the temperature in the axilla for reasons of hygiene and convenience. The demand for non-contact thermometers that measure body temperature by detecting infrared rays is increasing.
鼓膜は人体の深部に位置し外部環境の影響を受けにくいため、 口腔内や腋窩等 の人体の他の部位に比べて体温を正確に測定できることも非接触型体温計が注目 されている理由の一つである。  Since the tympanic membrane is located deep in the human body and is less susceptible to the external environment, it can measure body temperature more accurately than other parts of the human body such as the oral cavity and axilla. One.
非接触型体温計には、 一般に測定対象から放射される赤外線を検知するための 非接触型温度センサとして、 焦電型センサ又はサーモパイルセンサが使用されて いる。 焦電型センサは測定対象から放射される赤外線エネルギを吸収したときの 温度変化による焦電体の表面電荷の変化を出力として検出するセンサである。 焦 電型センサは焦電体の温度が変化したときのみに出力を出すため、 入射赤外線を チヨッビングして断続的に遮断し連続的な出力を取り出している。 一方、 サ一モ パイルセンサは熱電対を集積回路技術を用いて堆積し、 直接接続された多数の熱 電対により、 温接点と冷接点との温度差に対する連続的な出力を取り出すセンサ である。 Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured. A pyroelectric sensor is a sensor that detects, as an output, a change in surface charge of a pyroelectric body due to a temperature change when absorbing infrared energy radiated from a measurement object. Impatience In order to output only when the temperature of the pyroelectric body changes, the electric sensor outputs the continuous output by intermittently cutting off the incident infrared rays by shoving. On the other hand, a thermopile sensor is a sensor in which thermocouples are deposited using integrated circuit technology, and a continuous output for the temperature difference between the hot junction and the cold junction is obtained by a large number of directly connected thermocouples. .
以下、 従来の放射温度計を、 測定対象から放射される赤外線を検知するための 非接触型温度センサとして、 サ一モパイルを使用した非接触型体温計を例に説明 する。  Hereinafter, a non-contact thermometer using a thermopile will be described as an example of a conventional radiation thermometer as a non-contact temperature sensor for detecting infrared radiation emitted from an object to be measured.
サーモパイルを使用した従来の非接触型体温計としては例えば、 特開昭 6 1 - 1 1 7 4 2 2号に示された検温装置がある。 かかる検温装置を第 5図乃至第 7図 を参照して説明する。  As a conventional non-contact type thermometer using a thermopile, there is, for example, a temperature measuring device disclosed in Japanese Patent Application Laid-Open No. Sho 61-117424. Such a temperature detector will be described with reference to FIGS. 5 to 7.
かかる検温装置は第 5図に示すように、 プローブ'ュニット 2 1とチョッパー · ユニット 2 2、 及び図示しない充電ユニットからなる。 プローブ 'ユニット 2 1 は患者に対し検温を行う際、 ォペレ一夕の手で握られる構造のものである。 すな わち、 検温の際に使用者はプローブ 'ユニット 2 1に設けられたハンドル 2 3を 握ってプローブ · ュニッ ト 2 1を取り扱う。 また、 プローブ · ュニヅ ト 2 1はチ ョッパ一 .ュニット 2 2と機械的に合致するようになっており、 プローブ ·ュニ ヅ ト 2 1とチョッパー ·ユニット 2 2の内部の電子機構は、 第 5図に示すように コード 2 4により電気的に接続されている。  As shown in FIG. 5, the temperature detecting device includes a probe unit 21, a chopper unit 22, and a charging unit (not shown). The probe unit 21 has a structure that can be grasped with the hand of the operator when performing temperature measurement on a patient. That is, at the time of temperature measurement, the user grasps the handle 23 provided on the probe unit 21 and handles the probe unit 21. Further, the probe unit 21 is mechanically matched with the chopper unit 22, and the electronic mechanisms inside the probe unit 21 and the chopper unit 22 are the same as those of the first embodiment. As shown in Fig. 5, they are electrically connected by cord 24.
プローブ ·ユニット 2 1の先端には第 6図に示すように、 ハンドル 2 3の先端 から 「く」 の字状に曲がって突出したへッド部 2 5が設けられ、 へッド部 2 5の 先端にはプローブ 2 6が取り付けてある。 プローブ 2 6は検温の際に衛生上の理 由からプラスチックの使い捨て検温カバ一 2 7が被せられ、 患者の耳孔に挿入さ れる。  As shown in Fig. 6, the probe unit 21 is provided with a head portion 25 protruding from the front end of the handle 23 in the shape of a "K", as shown in Fig. 6, and a head portion 25 The probe 26 is attached to the tip of. The probe 26 is covered with a plastic disposable temperature cover 27 for hygienic reasons at the time of temperature measurement and inserted into the patient's ear canal.
かかるへッド部 2 5及びプローブ 2 6の内部は第 6図に示す構造になっている。 すなわち、 ヘッド部 2 5及びプローブ 2 6の内部には、 熱伝導性に優れた円筒状 の金属ハウジング 2 8が設けられ、 金属ハウジング 2 8の内部には赤外線を検出 して起電力を発生するサーモパイル 2 9が設けられている。 また、 金属ハウジン グ 2 8の内部にはサ一モパイル 2 9に赤外線を導入するための導波管 3 0と、 金 属ハウジング 2 8の温度を設定温度 (例えば体温近傍の温度 3 6 . 6 °C) にコン トロールするためのヒー夕部 3 1とが設けられている。 ヒ一夕部 3 1は図示しな い温度制御回路により制御される。 かかる温度制御回路はサーミス夕、 加熱抵抗、 増幅器などを有するものである。 The insides of the head portion 25 and the probe 26 have the structure shown in FIG. That is, a cylindrical metal housing 28 having excellent thermal conductivity is provided inside the head portion 25 and the probe 26, and an infrared ray is detected inside the metal housing 28 to generate an electromotive force. A thermopile 29 is provided. Further, inside the metal housing 28, a waveguide 30 for introducing infrared rays to the thermopile 29 and a gold A heater section 31 for controlling the temperature of the metal housing 28 to a set temperature (for example, a temperature near body temperature of 36.6 ° C.) is provided. The temperature control section 31 is controlled by a temperature control circuit (not shown). Such a temperature control circuit has a thermistor, a heating resistor, an amplifier and the like.
上記金属ハウジング 2 8、 サーモパイル 2 9及び導波管 3 0は熱的に接触する ように配置されているため、 ヒ一夕部 3 1にて金属ハウジング 2 8の温度を設定 温度にコントロールすることで、 上記金属ハウジング 2 8、 サ一モパイル 2 9及 び導波管 3 0は同一の設定温度に維持される。  Since the metal housing 28, the thermopile 29 and the waveguide 30 are arranged so as to be in thermal contact with each other, the temperature of the metal housing 28 must be controlled to the set temperature in the heater 31. Thus, the metal housing 28, thermopile 29 and waveguide 30 are maintained at the same set temperature.
チョッパー · ュニヅ ト 2 2は第 4図に示すように矩形でボックス形状のもので ある。 チョッパー ·ュニッ ト 2 2の上面に形成された凹部にはハンドル 2 3が置 かれ、 へッド部 2 5及びプローブ 2 6はこの凹部と連通する受け部に納めること ができるようになつている。 また、 チョッパー 'ユニット 2 2の上面には検温力 バ一2 7が配置され、 測定した体温等を表示するための液晶ディスプレイ 3 2も 設置されている。 チョッパー ·ュニット 2 2の内部には、 プローブ ·ュニット 2 1にて検出されたデ一夕に基づき体温を演算等するための電子回路及び測定環境 の温度変化に伴うサーモパイル 2 9の誤差を減少させるためのチョッパー夕一ゲ ットが設けられている。 チョッパー · ュニット 2 2は図示しない充電ュニヅ卜に より充電される。  The chopper unit 22 is rectangular and box-shaped as shown in FIG. A handle 23 is placed in a concave portion formed on the upper surface of the chopper unit 22. The head portion 25 and the probe 26 can be accommodated in a receiving portion communicating with the concave portion. . Further, a thermometer 27 is arranged on the upper surface of the chopper unit 22 and a liquid crystal display 32 for displaying the measured body temperature and the like is also installed. Inside the chopper unit 22, the electronic circuit for calculating the body temperature based on the data detected by the probe unit 21 and the error of the thermopile 29 due to the temperature change of the measurement environment are reduced. A chopper evening geter is provided. The chopper unit 22 is charged by a charging unit (not shown).
かかる検温装置により体温は以下のように測定される。  The body temperature is measured by such a thermometer as follows.
第 6図に示すように、 検温の際にはプローブ 2 6を患者の耳孔に挿入して、 鼓 膜及び周辺組織から放射される赤外線を導波管 3 0からサーモパイル 2 9に取り 込んで検知する。 サーモパイル 2 9は入射する赤外線の量に応じた起電力を発生 し、 出力された信号はチヨヅパ一 'ユニット 2 2内部のマイクロコンピュー夕に 送られる。  As shown in Fig. 6, at the time of temperature measurement, the probe 26 is inserted into the patient's ear canal, and infrared radiation radiated from the eardrum and surrounding tissue is detected from the waveguide 30 into the thermopile 29. I do. The thermopile 29 generates an electromotive force according to the amount of incident infrared light, and the output signal is sent to the microcomputer inside the tiller unit 22.
ここで、 サ一モパイル 2 9の出力を V、 測定対象の温度 (体温) を T、 サーモ パイル 2 9の温度を Τ。 とすると、 サーモパイル 2 9の出力 Vはステフアンーボ ルツマンの法則により、  Here, the output of the thermopile 29 is V, the temperature of the object to be measured (body temperature) is T, and the temperature of the thermopile 29 is Τ. Then, the output V of the thermopile 29 is given by Stephan-Boltzmann's law.
V = k ( T 4— T。4 ) kは定数 ( 1 ) V = k (T 4 — T. 4 ) k is a constant (1)
と表される。 上述したように、 サ一モパイル 2 9の温度 T。はヒ一夕部 3 1により設定温度に コントロールすることができる。 従って ( 1 ) より、 サ一モパイル 2 9の出力 V 及びサ一モパイル 2 9の温度 T。のデータをチョッパー 'ユニット 2 2内部に設け られたマイクロコンピュー夕に送り、 かかるデ一夕に基づきマイクロコンピュー 夕にて 4乗根演算が行われることで患者の体温 Tを知ることができる。 It is expressed as As mentioned above, the temperature T of the thermopile 29. The temperature can be controlled to the set temperature by the night section 31. Therefore, from (1), the output V of the thermopile 29 and the temperature T of the thermopile 29 are obtained. Data is sent to a microcomputer provided inside the chopper's unit 22. Based on the data, a fourth root calculation is performed by the microcomputer to obtain the patient's body temperature T. .
以上の特開昭 6 1 - 1 1 7 4 2 2号に示された検温装置は、 プローブ 2 6を設 定温度にコントロールすることにより、 プローブ 2 6が耳孔の熱を奪うことに起 因する耳孔の温度低下を防止することができ、 その結果として耳孔の温度変化に よる測定誤差を減少させることができた。  The temperature detector disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 611-117422 is caused by the fact that the probe 26 removes heat from the ear canal by controlling the probe 26 to the set temperature. The temperature of the ear canal was prevented from lowering, and as a result, the measurement error due to the temperature change of the ear canal was reduced.
また、 以上の特開昭 6 1 - 1 1 7 4 2 2号に示された検温装置は、 サ一モパイ ル 2 9を設定温度にコントロールすることにより、 測定環境の温度変化に伴うサ —モパイル 2 9の出力変化に起因する測定誤差を減少させることができた。  In addition, the temperature detector disclosed in Japanese Patent Application Laid-Open No. 61-114742 controls the temperature of the thermopile 29 to a set temperature, thereby allowing the temperature of the thermopile to change with the temperature change of the measurement environment. The measurement error caused by the output change of 29 was able to be reduced.
しかしながら従来の放射温度計は、 特開昭 6 1 - 1 1 7 4 2 2号に示された検 温装置に例示されるように上記の利点を有していたものの、 以下に示す問題があ つた。  However, although the conventional radiation thermometer has the above advantages as exemplified in the temperature measuring device disclosed in Japanese Patent Application Laid-Open No. 61-114,222, it has the following problems. I got it.
特閧昭 6 1 - 1 1 7 4 2 2号に示された検温装置に例示されるように、 従来の 放射温度計はプローブ及びサーモパイルを設定温度にするためにサーミス夕等の 測温素子を含む複雑な温度制御回路が必要であった。 従って、 部品点数の増加に よるコスト高は避けられなかった。  As shown in the temperature detector shown in No. 6-11, the conventional radiation thermometer uses a thermometer such as a thermistor to set the probe and thermopile to the set temperature. A complicated temperature control circuit was required. Therefore, the cost increase due to the increase in the number of parts was inevitable.
また、 測定環境の温度変化に伴うサーモパイルの誤差を減少させるためにチヨ ッパーターゲットが必要であった。 このためコスト高だけでなく、 サーモパイル をチョッパー夕一ゲットにより適正化させる煩雑さを有していた。  In addition, a chopper target was required to reduce thermopile errors due to temperature changes in the measurement environment. For this reason, not only was the cost increased, but also the complexity of optimizing the thermopile with a chopper was obtained.
加えて、 従来の放射温度計は低温の測定環境、 例えば 0 °C〜1 0 °Cでの測定環 境下では、 放射温度計に内蔵されている回路基板の電子部品が温度ドリフトを起 こしてしまうことによって測定誤差が生じる場合があった。 一方、 かかる電子部 品の温度ドリフトを防止するためには補正回路等を備え付けることが必要であり、 測定精度を向上させるためにはこのような回路の複雑化は避けられず、 結果とし て部品点数の増加によるコスト高を招いていた。  In addition, in the conventional radiation thermometer, in a low-temperature measurement environment, for example, in a measurement environment at 0 ° C to 10 ° C, the electronic components of the circuit board built into the radiation thermometer cause temperature drift. In some cases, a measurement error may occur due to this. On the other hand, it is necessary to provide a correction circuit and the like in order to prevent the temperature drift of such electronic components, and in order to improve the measurement accuracy, such a circuit is inevitably complicated. The increase in points has led to higher costs.
さらに従来の放射温度計は上記のようにプローブ及びサ一モパイルを設定温度 にするために温度制御回路は複雑にする必要があつたため、 落下等による衝撃に 対する耐久性にも問題があった。 Furthermore, the conventional radiation thermometer sets the probe and thermopile to the set temperature as described above. In order to achieve this, the temperature control circuit had to be complicated, and there was also a problem in durability against impacts such as dropping.
本発明は上記従来技術における問題点を解決し、 測定精度の向上を図り、 かつ 部品点数の少ない、 安価で耐久性のある放射温度計を提供することを目的とする。  SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in the prior art, improve the measurement accuracy, and provide an inexpensive and durable radiation thermometer with a small number of parts.
発明の開示 以上の課題を解決するため提供する本願発明は、 測定対象から放射される赤外 線を検知して測定対象の温度を測定する放射温度計において、 所要部位を所要温 度に維持する自己制御型正温度係数発熱体を有することを特徴とする放射温度計 である。 DISCLOSURE OF THE INVENTION The present invention, which is provided to solve the above-described problems, provides a radiation thermometer that detects infrared rays emitted from a measurement target and measures the temperature of the measurement target, and maintains a required portion at a required temperature. The radiation thermometer has a self-control positive temperature coefficient heating element.
自己制御型正温度係数発熱体は通電することにより、 発熱体の温度が上昇する に伴って発熱体の電気抵抗が増大する性質を有しているため、 電流が抑制され発 熱体は設定温度に維持される。  The self-regulating positive temperature coefficient heating element has the property that the electrical resistance of the heating element increases as the temperature of the heating element rises when energized, so the current is suppressed and the heating element reaches the set temperature. Is maintained.
従って、 測定対象から放射される赤外線を検知して測定対象の温度を測定する 放射温度計において、 所要部位を所要温度に維持する自己制御型正温度係数発熱 体を有することにより、 所要部位を所要温度に維持するためにサーミス夕等の測 温素子を含む複雑な温度制御回路は不要になる。従って、 測定精度の向上を図り、 かつ部品点数の少ない、 安価で耐久性のある放射温度計を提供することができる。 また、 自己制御型正温度係数発熱体は上述のように発熱体自体が設定温度以上 には上昇しないため、特に本願発明にかかる放射温度計が体温計である場合には、 オーバ一ヒートによる火傷を防止することができる。 従って、 安全性の高い体温 計を提供することができる。  Therefore, a radiation thermometer that detects infrared radiation emitted from the measurement target and measures the temperature of the measurement target has a self-control type positive temperature coefficient heating element that maintains the required temperature at the required temperature, so that the required location is required. A complicated temperature control circuit including a temperature measuring element such as a thermistor is not required to maintain the temperature. Therefore, it is possible to provide an inexpensive and durable radiation thermometer with improved measurement accuracy and a reduced number of parts. In addition, since the self-regulating positive temperature coefficient heating element does not rise above the set temperature as described above, especially when the radiation thermometer according to the present invention is a thermometer, burns due to overheating can be prevented. Can be prevented. Therefore, a highly safe thermometer can be provided.
また、 以上の課題を解決するため提供する本願発明は、 測定対象から放射され る赤外線を検知して測定対象の温度を測定する放射温度計において、 所要部位全 部を設定温度に維持する自己制御型正温度係数発熱体を有することを特徴とする 放射温度計である。  In addition, the present invention provided to solve the above-mentioned problem is directed to a self-control that maintains all required parts at a set temperature in a radiation thermometer that detects infrared radiation emitted from a measurement target and measures the temperature of the measurement target. A radiation thermometer characterized by having a positive temperature coefficient heating element.
放射温度計を構成する各部品は、 測定環境の温度、 部品自体の発熱 (C P U等 の発熱電子部品の場合) などの影響により、 一般に各部品ごとに様々な温度状態 となっている。 従って、 従来、 放射温度計の所要部位を設定温度に維持する場合 には部品ごとに加熱装置、 測温素子、 温度制御回路が必要であった。 The components that make up the radiation thermometer include the temperature of the measurement environment and the heat generated by the components themselves (CPU, etc.). In general, each component is in various temperatures due to the effects of heat-generating electronic components. Therefore, conventionally, in order to maintain a required portion of the radiation thermometer at a set temperature, a heating device, a temperature measuring element, and a temperature control circuit were required for each component.
そこで、 測定対象から放射される赤外線を検知して測定対象の温度を測定する 放射温度計において、 所要部位全部を設定温度に維持する自己制御型正温度係数 発熱体を有することにより、 所要部位全部を設定温度に維持する場合に所要部位 ごとに加熱装置、 測温素子、 温度制御回路を設けることを必要とせず、 さらに 1 の自己制御型正温度係数発熱体で所要部位全部を設定温度に維持することができ る。 従って、 測定精度の向上を図り、 かつ部品点数の少ない、 安価で耐久性のあ る放射温度計を提供することができる。  Therefore, a radiation thermometer that detects infrared radiation emitted from the measurement target and measures the temperature of the measurement target has a self-regulating positive temperature coefficient heating element that maintains all required parts at a set temperature, so that all required parts are maintained. It is not necessary to provide a heating device, a temperature measuring element, and a temperature control circuit for each required part when maintaining the required temperature at the set temperature, and all of the required parts are maintained at the set temperature with one self-control positive temperature coefficient heating element. can do. Therefore, it is possible to provide an inexpensive and durable radiation thermometer with improved measurement accuracy and a reduced number of parts.
以上に記載した本願発明にかかる放射温度計では、 所要部位をサ一モパイル、 ノズル、 プリント基板のうち、 少なくとも 1つ以上から選択することができる。 所要部位としてサーモパイルを選択した場合には、 サーモパイルを設定温度に コントロールすることができるため、 測定環境の温度変化に伴うサ一モパイルの 出力変化に起因する測定誤差を減少させることができる。  In the radiation thermometer according to the present invention described above, the required part can be selected from at least one of a thermopile, a nozzle, and a printed circuit board. When a thermopile is selected as the required part, the thermopile can be controlled to the set temperature, so that measurement errors caused by changes in the output of the thermopile due to temperature changes in the measurement environment can be reduced.
また、 所要部位としてノズルを選択した場合には、 ノズルを設定温度にコント 口ールすることができるため、 特に本願発明にかかる放射温度計が耳式体温計で ある場合には、 ノズルが耳孔の熱を奪うことに起因する耳孔の温度低下を防止す ることができ、 その結果として耳孔の温度変化による測定誤差を減少させること ができる。  In addition, when the nozzle is selected as the required part, the nozzle can be controlled to the set temperature. Therefore, particularly when the radiation thermometer according to the present invention is an ear thermometer, the nozzle is connected to the ear hole. It is possible to prevent the temperature of the ear canal from lowering due to the deprivation of heat, and as a result, it is possible to reduce the measurement error due to the temperature change of the ear canal.
さらに、 所要部位としてプリント基板を選択した場合には、 プリント基板を設 定温度にコントロールすることができるため、 低温の測定環境、 例えば 0 °C〜 1 o °cでの測定環境下でも、 回路基板の電子部品が温度ドリフトを起こすことを防 止することができ、 測定誤差を減少させることができる。  Furthermore, when a printed circuit board is selected as the required part, the circuit board can be controlled to the set temperature, so that the circuit can be controlled even in a low-temperature measurement environment, for example, in a measurement environment at 0 ° C to 1 ° C. The electronic components on the substrate can be prevented from causing a temperature drift, and measurement errors can be reduced.
上記サ一モパイルとプリント基板は、 これらを一体に収納するボードに取り付 けることができる。  The above-mentioned thermopile and printed circuit board can be attached to a board that houses them together.
このようにサーモパイルとプリント基板とを備えたボ一ドを使用することによ り、 ボードに自己制御型正温度係数発熱体を取り付けることができるため、 ボ一 ドを介してサ一モパイルとプリント基板の温度をコントロールすることができる。 また、 本発明にかかる放射温度計に使用する自己制御型正温度係数発熱体は面 状であることが好ましい。 自己制御型正温度係数発熱体が面状であれば、 所要部 位に巻き付ける、 貼付する等、 各所要部品の形状にかかわらず取り付けることが できる。 By using a board having a thermopile and a printed circuit board in this way, a self-controlling positive temperature coefficient heating element can be attached to the board. The temperature of the substrate can be controlled. The self-controlling positive temperature coefficient heating element used in the radiation thermometer according to the present invention is preferably planar. If the self-control type positive temperature coefficient heating element is planar, it can be attached regardless of the shape of each required part, such as winding it around the required part or attaching it.
また、 本発明にかかる放射温度計のプリント基板には面状の自己制御型正温度 係数発熱体を貼付することが好ましい。 プリント基板に面状の自己制御型正温度 係数発熱体を貼付することにより、 プリント基板を効率よく加熱することができ る。  Further, it is preferable to attach a planar self-control type positive temperature coefficient heating element to the printed circuit board of the radiation thermometer according to the present invention. By attaching a planar self-control type positive temperature coefficient heating element to a printed circuit board, the printed circuit board can be efficiently heated.
また、 本発明にかかる放射温度計のプリント基板には面状の自己制御型正温度 係数発熱体を印刷することが好ましい。 プリント基板に面状の自己制御型正温度 係数発熱体を印刷することにより、 さらにプリン卜基板を効率よく加熱すること ができる。  Further, it is preferable to print a planar self-control type positive temperature coefficient heating element on the printed circuit board of the radiation thermometer according to the present invention. By printing a planar self-control positive temperature coefficient heating element on a printed circuit board, the printed circuit board can be heated more efficiently.
また、 本発明にかかる放射温度計のプリント基板の基板は面状の自己制御型正 温度係数発熱体からなるものであることが好ましい。 プリント基板の基板を面状 の自己制御型正温度係数発熱体からなるものとすることにより、 さらにプリント 基板を効率よく加熱することができる。  Further, it is preferable that the printed circuit board of the radiation thermometer according to the present invention is formed of a planar self-control type positive temperature coefficient heating element. When the printed circuit board is made of a planar self-control type positive temperature coefficient heating element, the printed circuit board can be heated more efficiently.
また、 本発明にかかる放射温度計が耳式体温計の場合には、 放射温度計の所要 部位は体温近傍の温度に維持されることが好ましい。 例えば、 サ一モパイルの温 度は測定対象の温度の近傍であるほど出力は小になるため、 かかる出力を増幅し た場合のノイズも小になる。 従って、 サ一モパイルの温度は体温に近いほど測定 誤差を減少させることができる。 また、 ノズルの温度も体温に近いほどノズルが 耳孔の熱を奪うことに起因する耳孔の温度低下を防止することができ、 その結果 として耳孔の温度変化による測定誤差を減少させることができる。 さらに体温計 内の電子部品も体温近傍の温度に維持することにより、 温度ドリフトを防止する ことができるため、 測定誤差を減少させることができる。  Further, when the radiation thermometer according to the present invention is an ear thermometer, it is preferable that a required portion of the radiation thermometer is maintained at a temperature near body temperature. For example, since the output of the thermopile becomes lower as the temperature is closer to the temperature of the object to be measured, the noise when the output is amplified also becomes lower. Therefore, the measurement error can be reduced as the temperature of the thermopile is closer to the body temperature. Also, as the temperature of the nozzle is closer to the body temperature, the temperature of the ear canal can be prevented from lowering due to the nozzle taking away heat from the ear canal, and as a result, the measurement error due to the temperature change of the ear canal can be reduced. Further, by maintaining the electronic components in the thermometer at a temperature near the body temperature, temperature drift can be prevented, and thus measurement errors can be reduced.
図面の簡単な説明 第 1図は本発明の一実施の形態にかかる放射温度計の部分切り欠き斜視図であ る BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a partially cutaway perspective view of a radiation thermometer according to an embodiment of the present invention.
第 2図は本発明の一実施の形態にかかる放射温度計における赤外線検出部の断 面図である。  FIG. 2 is a cross-sectional view of an infrared detector in the radiation thermometer according to one embodiment of the present invention.
第 3図は本発明の一実施の形態にかかる放射温度計における正温度係数発熱体 の抵抗一温度特性グラフである。  FIG. 3 is a resistance-temperature characteristic graph of a positive temperature coefficient heating element in the radiation thermometer according to one embodiment of the present invention.
第 4図は本発明の一実施の形態にかかる放射温度計を示すブロック回路図であ る  FIG. 4 is a block circuit diagram showing a radiation thermometer according to one embodiment of the present invention.
第 5図は従来の検温装置を示す平面図である。  FIG. 5 is a plan view showing a conventional temperature detector.
第 6図は従来の検温装置における検温状態を示す説明図である。  FIG. 6 is an explanatory diagram showing a temperature detection state in a conventional temperature detection device.
第 7図は従来の検温装置における赤外線検出部の断面図である。 符号の説明  FIG. 7 is a cross-sectional view of an infrared detector in a conventional temperature detector. Explanation of reference numerals
1 本体ケース 1 Main unit case
2 赤外線検出部 2 Infrared detector
3 温度測定回路部 3 Temperature measurement circuit
4 Four
5 サ一モパイル 5 Thermopiles
6 プリント基板 6 Printed circuit board
7 スィツチ 7 Switch
8 液晶温度表示器 8 LCD temperature display
9 ハイブリッドボ一ド 9 Hybrid board
1 0 ノズル  1 0 nozzle
1 1 4 自己制御型正温度係数発熱体 1 1 4 Self-control type positive temperature coefficient heating element
1 5 オペアンプ 1 5 Operational amplifier
1 6 マイクロコンピュー夕 1 6 Microcomputer
1 7 ドライブ I C 発明を実施するための最良の形態 以下、 本発明の一実施の形態を図面を参照して説明する。 1 7 Drive IC BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
本発明の一実施の形態にかかる放射温度計は耳式体温計であり、 第 1図に示す ように、 本体ケース 1と、 本体ケース 1に収納された赤外線検出部 2及び温度測 定回路部 3とから構成されている。 赤外線検出部 2は導波管 4とサーモパイル 5とを有し、 温度測定回路部 3はブリント基板 6、 スィッチ 7、 液晶温度表示器 8を有している。  The radiation thermometer according to one embodiment of the present invention is an ear thermometer. As shown in FIG. 1, a main body case 1, an infrared detection section 2 and a temperature measurement circuit section 3 housed in the main body case 1. It is composed of The infrared detecting section 2 has a waveguide 4 and a thermopile 5, and the temperature measuring circuit section 3 has a printed circuit board 6, a switch 7, and a liquid crystal temperature display 8.
これら赤外線検出部 2と温度測定回路部 3は図 1に示すように板状のハイブリ ッドボ一ド 9に組み込まれ、 固定されている。 かかるハイプリッドボ一ド 9は導 波管 4、 サー乇パイル 5、 プリント基板 6等の形状と配置場所に合わせて先端が 細くなつた形状をしている。  The infrared detecting section 2 and the temperature measuring circuit section 3 are incorporated and fixed in a plate-shaped hybrid board 9 as shown in FIG. The hybrid board 9 has a shape with a thin tip in accordance with the shape and the location of the waveguide 4, the circuit pile 5, the printed circuit board 6, and the like.
耳孔に挿入される本体ケース 1先端のノズル 1 0は、 耳孔に深く挿入されない ように先端に行くほど細くなるように形成されているため、 使用者は安全に使用 することができる。 また、 赤外線検出部 2は本体ケース 1内の先端に配置され、 ノズル 1 0の先端に設けられた孔より入射する赤外線を検出する。  The nozzle 10 at the tip of the main body case 1 inserted into the ear canal is formed so as to become thinner toward the tip so as not to be inserted deeply into the ear canal, so that the user can use it safely. Further, the infrared detecting section 2 is disposed at the tip of the main body case 1 and detects infrared rays incident from a hole provided at the tip of the nozzle 10.
赤外線検出部 2は第 1図及び第 2図に示すように、 鼓膜から放射される赤外線 を検出するサ一モパイル 5と、 本体ケース 1先端のノズル 1 0内に設置され、 鼓 膜から放射される微弱な赤外線を効率よく伝搬させるための導波管 4を有してい る。 サーモパイル 5及び導波管 4の表面には第 1図に示すように面状の自己制御 型正温度係数発熱体 1 1, 1 2が取り付けられており、 また、 ノズル 1 0の内面 にも第 2図に示すように面状の自己制御型正温度係数発熱体 1 3が取り付けられ ている。 なお、 後述するがプリント基板 6にも面状の自己制御型正温度係数発熱 体 1 4が取り付けられている。 このように本実施の形態では、 各所要部品の形状 にかかわらず取り付けることができる面状の自己制御型正温度係数発熱体を使用 している。  As shown in FIGS. 1 and 2, the infrared detecting section 2 is installed in a thermopile 5 for detecting infrared rays radiated from the eardrum and in the nozzle 10 at the tip of the main body case 1 and radiated from the eardrum. And a waveguide 4 for efficiently transmitting weak infrared light. As shown in Fig. 1, planar self-control type positive temperature coefficient heating elements 11 and 12 are attached to the surfaces of the thermopile 5 and the waveguide 4, and the inner surface of the nozzle 10 is As shown in FIG. 2, a planar self-control positive temperature coefficient heating element 13 is attached. As will be described later, a planar self-control positive temperature coefficient heating element 14 is also attached to the printed circuit board 6. As described above, in the present embodiment, a planar self-control type positive temperature coefficient heating element that can be attached regardless of the shape of each required component is used.
かかる面状の自己制御型正温度係数発熱体 1 1〜1 4には導線が接続され、 一 定電流を流すことができる。 かかる自己制御型正温度係数発熱体 1 1〜1 4に電 流を流すことにより赤外線検出部 2及びノズル 1 0を体温近傍の設定温度、 例え ば 3 2 °Cに制御する。 Conductive wires are connected to the planar self-control type positive temperature coefficient heating elements 11 to 14 so that a constant current can flow. The self-controlled positive temperature coefficient heating element By controlling the flow, the infrared detector 2 and the nozzle 10 are controlled to a set temperature near the body temperature, for example, 32 ° C.
ここで、 自己制御型正温度係数発熱体 1 1〜 1 4について説明する。 自己制御 型正温度係数発熱体 1 1〜 1 4は第 3図の抵抗一温度特性グラフに示すように、 通電した場合、 発熱体の温度が上昇するに伴って発熱体の電気抵抗が増大する性 質を有する発熱体である。 特に自己制御型正温度係数発熱体 1 1〜 1 4はある温 度で急激に電気抵抗が増加する性質を有している。 一般に抵抗体に電流を流すと 発熱するが、 自己制御型正温度係数発熱体 1 1〜1 4は前記のようにある温度で 急激に電気抵抗が増加するため、 流れる電流が制御され自己制御型正温度係数発 熱体 1 1〜 1 4は一定温度に維持される。  Here, the self-control type positive temperature coefficient heating elements 11 to 14 will be described. As shown in the resistance-temperature characteristic graph of Fig. 3, the self-control type positive temperature coefficient heating elements 11 to 14 increase the electrical resistance of the heating element as the temperature of the heating element rises when energized. It is a heating element with characteristics. In particular, the self-control positive temperature coefficient heating elements 11 to 14 have the property that the electrical resistance increases rapidly at a certain temperature. Generally, when a current is passed through a resistor, it generates heat.However, the self-control type positive temperature coefficient heating element 11 to 14 rapidly increases its electrical resistance at a certain temperature as described above. The positive temperature coefficient heating elements 11 to 14 are maintained at a constant temperature.
すなわち、 自己制御型正温度係数発熱体 1 1〜1 4は自分自身で発熱温度を制 御することができる発熱体である。 従って自己制御型正温度係数発熱体 1 1〜 1 4をサーモパイル 5等の所要部位に取り付けることにより、 サーモパイル 5等の 所要部位を設定温度、 例えば 3 2 °Cに維持することができる。  That is, the self-control type positive temperature coefficient heating elements 11 to 14 are heating elements that can control the heating temperature by themselves. Therefore, by attaching the self-control type positive temperature coefficient heating elements 11 to 14 to required portions such as the thermopile 5, the required portions such as the thermopile 5 can be maintained at a set temperature, for example, 32 ° C.
本実施の形態にかかる放射温度計では自己制御型正温度係数発熱体 1 1〜1 4 が直接サーモパイル 5等の所要部位に取り付けられているので、 極めて短時間に サ一モパイル 5等の所要部位を設定温度に維持することができる。 また、 自己制 御型正温度係数発熱体 1 1〜 1 4は設定温度以上には加熱されないため、 自己制 御型正温度係数発熱体 1 1〜 1 4を使用した本実施の形態にかかる放射温度計は オーバーヒートの危険もなく安全性が高い。  In the radiation thermometer according to the present embodiment, since the self-control type positive temperature coefficient heating elements 11 to 14 are directly attached to the required parts such as the thermopile 5, the required parts such as the Can be maintained at the set temperature. In addition, since the self-control type positive temperature coefficient heating elements 11 to 14 are not heated above the set temperature, the radiation according to the present embodiment using the self-control type positive temperature coefficient heating elements 11 to 14 is performed. Thermometers are safe with no danger of overheating.
また、 このように所要部位を体温近傍の設定温度に維持することにより、 以下 の効果が得られる。 サ一モパイル 5の温度は測定対象の温度の近傍であるほど出 力は小になるため、 かかる出力を増幅した場合のノイズも小になる。 加えて、 後 述するマイクロコンピュー夕 1 6のデジタル分解能の向上を図ることができる。 従って、 サーモパイル 5の温度を体温に近い温度に設定するほど測定誤差を減少 させることができる。 また、 ノズル 1 0の温度も体温に近いほどノズル 1 0が耳 孔の熱を奪うことに起因する耳孔の温度低下を防止することができ、 その結果と して耳孔の温度変化による測定誤差を減少させることができる。 さらに体温計内 の電子部品も体温近傍の温度に維持することにより、 温度ドリフトを防止するこ とができるため、 測定誤差を減少させることができる。 By maintaining the required temperature at the set temperature near the body temperature, the following effects can be obtained. As the temperature of the thermopile 5 becomes closer to the temperature of the object to be measured, the output becomes smaller, so that the noise when the output is amplified becomes smaller. In addition, the digital resolution of the microcomputer 16 described later can be improved. Therefore, the measurement error can be reduced as the temperature of the thermopile 5 is set closer to the body temperature. In addition, as the temperature of the nozzle 10 is closer to the body temperature, the temperature of the ear canal can be prevented from lowering due to the nozzle 10 taking heat from the ear canal. Can be reduced. In addition, maintaining the electronic components in the thermometer at a temperature near body temperature prevents temperature drift. Therefore, the measurement error can be reduced.
温度測定回路部は、 温度測定回路が組み込まれているプリント基板 6と、 プリ ント基板 6に直接取り付けられたスィツチ 7及び液晶温度表示器 8とを有してい る。 プリント基板 6はサ一モパイル 5と接続されている。 また、 スィッチ 7及び 液晶温度表示器 8は本体ケース 1に設けられた孔よりそれそれ本体ケース 1の外 部に露呈している。 スィッチ 7を押すと体温測定が開始され、 液晶温度表示器 8 は測定された体温をデジ夕ル表示する。  The temperature measurement circuit section has a printed circuit board 6 in which a temperature measurement circuit is incorporated, a switch 7 directly attached to the print board 6, and a liquid crystal temperature display 8. The printed circuit board 6 is connected to the thermopile 5. Further, the switch 7 and the liquid crystal temperature indicator 8 are exposed to the outside of the main body case 1 through holes provided in the main body case 1 respectively. When switch 7 is pressed, the body temperature measurement starts, and the LCD temperature display 8 displays the measured body temperature digitally.
また、 プリント基板 6はハイブリッドボード 9に嵌め込まれ、 第 1図及び第 2 図に示すようにプリント基板 6の上面、 下面にはそれそれ面状の自己制御型正温 度係数発熱体 1 4が貼付されている。  Further, the printed circuit board 6 is fitted into the hybrid board 9, and as shown in FIGS. 1 and 2, the upper and lower surfaces of the printed circuit board 6 are provided with planar self-control type positive temperature coefficient heating elements 14 respectively. Affixed.
なお、 本実施の形態にかかる放射温度計では第 1図及び第 2図に示すようにサ —モパイル 5、 導波管 4、 ノズル 1 0、 プリント基板 6のそれそれを設定温度に 維持するために面状の自己制御型正温度係数発熱体 1 1〜1 4をそれそれに貼付 したが、 自己制御型正温度係数発熱体のこれら所要部位への取り付け方法は以上 に示したものに限られない。 すなわち、 例えば第 1図においてサーモパイル 5、 プリント基板 6等が組み込まれたハイプリッドボード 9全体を 1の面状の自己制 御型正温度係数発熱体で巻いてもよい。 また、 プリント基板 6については面状の 自己制御型正温度係数発熱体をプリント基板 6に印刷してもよい。 さらに、 プリ ント基板 6の電子部品以外の基板自体を面状の自己制御型正温度係数発熱体で形 成してもよい。 特に面状の自己制御型正温度係数発熱体をプリント基板 6に印刷 すること、 また、 基板自体を面状の自己制御型正温度係数発熱体で形成すること により、 電子部品へ効率よく熱を伝達することができる。  In the radiation thermometer according to the present embodiment, as shown in FIGS. 1 and 2, the thermopile 5, the waveguide 4, the nozzle 10 and the printed circuit board 6 are each maintained at a set temperature. The self-regulating positive temperature coefficient heating elements 11 to 14 are attached to them, but the method of attaching the self-controlling positive temperature coefficient heating elements to these required parts is not limited to the above. . That is, for example, in FIG. 1, the entire hybrid board 9 in which the thermopile 5, the printed circuit board 6, and the like are incorporated may be wound with one planar self-controlling positive temperature coefficient heating element. As for the printed circuit board 6, a planar self-control type positive temperature coefficient heating element may be printed on the printed circuit board 6. Further, the board itself other than the electronic components of the printed board 6 may be formed of a planar self-control type positive temperature coefficient heating element. In particular, by printing a planar self-control type positive temperature coefficient heating element on the printed circuit board 6, and by forming the substrate itself with a planar self-control type positive temperature coefficient heating element, heat can be efficiently supplied to electronic components. Can be transmitted.
次に、 以上に示した放射温度計により、 どのように体温が測定されるかを第 4 図のブロック回路図を参照して説明する。  Next, how the body temperature is measured by the radiation thermometer described above will be described with reference to the block circuit diagram of FIG.
第 4図において、 放射温度計に備えられているサーモパイル 5は鼓膜から放射 される赤外線量及びサ一モパイル 5の温度に依存する電圧を出力する。すなわち、 サ一モパイル 5は測定対象の温度とサーモパイル 5の温度との差に応じた電圧を 出力する。 サーモパイル 5に接続されたオペアンプ 1 5は、 サ一モパイル 5から 出力される微小電圧を所定の大きさに増幅する。 オペアンプ 1 5に接続されたマ ィクロコンピュー夕 1 6には A D変換機が内蔵され、 かかるマイクロコンビユー 夕 1 6はオペアンプ 1 5からの出力信号に基づき演算処理を行い、 液晶温度表示 器 8に測定対象の温度値出力を送る。 液晶温度表示器 8は測定対象の温度をデジ タル表示する。 In FIG. 4, the thermopile 5 provided in the radiation thermometer outputs a voltage depending on the amount of infrared rays radiated from the eardrum and the temperature of the thermopile 5. That is, the thermopile 5 outputs a voltage corresponding to the difference between the temperature of the measurement target and the temperature of the thermopile 5. The operational amplifier 15 connected to the thermopile 5 amplifies the small voltage output from the thermopile 5 to a predetermined magnitude. Connected to operational amplifiers 15 The microcomputer 16 has an A / D converter built in, and the microcomputer 16 performs arithmetic processing based on the output signal from the operational amplifier 15 and outputs the temperature value output of the measurement target to the liquid crystal temperature display 8. send. The liquid crystal temperature display 8 digitally displays the temperature of the object to be measured.
面状の自己制御型正温度係数発熱体 1 1〜 1 4は第 1図及び第 2図に示すよう に、 それそれノズル 1 0の内面、 導波管 4、 サーモパイル 5、 プリント基板 6に 取り付けられている。 ドライブ I C 1 7はマイクロコンピュー夕 1 6からの加熱 命令信号に従い、 それそれの自己制御型正温度係数発熱体 1 1〜 1 4に所定の電 流を流す。  As shown in FIGS. 1 and 2, the planar self-control positive temperature coefficient heating elements 11 to 14 are attached to the inner surface of the nozzle 10, the waveguide 4, the thermopile 5, and the printed circuit board 6, respectively. Have been. The drive IC 17 supplies a predetermined current to the self-controlling positive temperature coefficient heating elements 11 to 14 in accordance with the heating command signal from the microcomputer 16.
本実施の形態にかかる放射温度計では、 温度測定開始前に使用者がスィツチ 7 を押すことによりマイクロコンピュ一夕 1 6からドライブ I C 1 7に加熱命令信 号が送られ、 かかる加熱命令信号に従い自己制御型正温度係数発熱体 1 1〜 1 4 に所定の電流が流れ所定部位は加熱される。 そのため、 温度測定開始時には所定 部位は設定温度まで上昇している。  In the radiation thermometer according to the present embodiment, a heating command signal is sent from the microcomputer 16 to the drive IC 17 by the user pressing the switch 7 before the start of the temperature measurement, and the heating command signal is sent in accordance with the heating command signal. A predetermined current flows through the self-control type positive temperature coefficient heating elements 11 to 14 to heat a predetermined portion. For this reason, at the start of temperature measurement, the predetermined part has risen to the set temperature.
その後、 使用者がスィッチ 7を押し、 温度測定開始の命令がマイクロコンピュ 一夕 1 6に伝達されると、 マイクロコンピュー夕 1 6はオペアンプ 1 5からのサ ーモパイル 5の増幅出力信号と、 自己制御型正温度係数発熱体 1 1〜 1 4により あらかじめ設定されたサーモパイル 5の温度とに基づき演算処理を行う。 マイク 口コンピュータ 1 6により検出された鼓膜の温度は液晶温度表示器 8により表示 されることで認知される。  Then, when the user presses switch 7 and the command to start temperature measurement is transmitted to microcomputer 16, microcomputer 16 receives the amplified output signal of thermopile 5 from operational amplifier 15 and self- The arithmetic processing is performed based on the temperature of the thermopile 5 preset by the control type positive temperature coefficient heating elements 11 to 14. The temperature of the eardrum detected by the microphone mouth computer 16 is recognized by being displayed on the liquid crystal temperature display 8.
以上述べたように本実施の形態にかかる放射温度計はサーモパイル 5、 導波管 4、 ノズル 1 0、 プリント基板 6のそれそれに面状の自己制御型正温度係数発熱 体 1 1〜 1 4を取り付けていることにより、 所要部位ごとに温度制御回路を必要 とせず、 ドライブ I C 1 7に一本化することができる。 従って、 本実施の形態に かかる放射温度計によれば、 測定精度の向上を図り、 かつ部品点数の少ない、 安 価で耐久性のある放射温度計を提供することができる。  As described above, the radiation thermometer according to the present embodiment includes the thermopile 5, the waveguide 4, the nozzle 10, the printed circuit board 6, and the planar self-control type positive temperature coefficient heating elements 11 to 14. By mounting, the drive IC 17 can be integrated into one without requiring a temperature control circuit for each required part. Therefore, according to the radiation thermometer according to the present embodiment, it is possible to provide an inexpensive and durable radiation thermometer that has improved measurement accuracy, has a small number of components, and has a small number of components.
また、 本実施の形態にかかる放射温度計は、 面状の自己制御型正温度係数発熱 体 1 4により、 プリント基板 6を設定温度に維持しているので、 特に低温の測定 環境下でも測定誤差を減少させることができる。  Further, in the radiation thermometer according to the present embodiment, the printed circuit board 6 is maintained at the set temperature by the sheet-shaped self-control type positive temperature coefficient heating element 14, so that the measurement error can be obtained even in a low-temperature measurement environment. Can be reduced.

Claims

請求の範囲  The scope of the claims
I . 測定対象から放射される赤外線を検知して測定対象の温度を測定する放射温 度計において、 所要部位を所要温度に維持する自己制御型正温度係数発熱体を有 することを特徴とする放射温度計。 I. A radiation thermometer that detects infrared radiation emitted from a measurement target and measures the temperature of the measurement target, characterized in that it has a self-regulating positive temperature coefficient heating element that maintains required parts at the required temperature. Radiation thermometer.
2 . 測定対象から放射される赤外線を検知して測定対象の温度を測定する放射温 度計において、 所要部位全部を設定温度に維持する自己制御型正温度係数発熱体 を有することを特徴とする放射温度計。  2. A radiation thermometer that measures the temperature of a measurement target by detecting infrared radiation emitted from the measurement target, characterized by having a self-regulating positive temperature coefficient heating element that maintains all required parts at a set temperature. Radiation thermometer.
3 . 所要部位が、 サ一モパイル、 ノズル、 プリント基板のうち、 少なくとも 1つ 以上から選択されてなることを特徴とする請求項 1に記載の放射温度計。  3. The radiation thermometer according to claim 1, wherein the required part is selected from at least one of a thermopile, a nozzle, and a printed circuit board.
4 . 所要部位が、 サーモパイル、 ノズル、 プリント基板のうち、 少なくとも 1つ 以上から選択されてなることを特徴とする請求項 2に記載の放射温度計。  4. The radiation thermometer according to claim 2, wherein the required part is selected from at least one of a thermopile, a nozzle, and a printed circuit board.
5 . サーモパイルとプリント基板とを備えたボードを有することを特徴とする請 求項 3又は 4に記載の放射温度計。  5. The radiation thermometer according to claim 3 or 4, further comprising a board having a thermopile and a printed circuit board.
6 . 自己制御型正温度係数発熱体が面状形状であることを特徴とする請求項 1乃 至 4に記載の放射温度計。  6. The radiation thermometer according to claim 1, wherein the self-control type positive temperature coefficient heating element has a planar shape.
7 . 自己制御型正温度係数発熱体が面状形状であることを特徴とする請求項 5に 記載の放射温度計。  7. The radiation thermometer according to claim 5, wherein the self-control type positive temperature coefficient heating element has a planar shape.
8 . 面状の自己制御型正温度係数発熱体を貼付したプリント基板を有することを 特徴とする請求項 6に記載の放射温度計。  8. The radiation thermometer according to claim 6, comprising a printed circuit board to which a planar self-control type positive temperature coefficient heating element is attached.
9 . 面状の自己制御型正温度係数発熱体を貼付したプリント基板を有することを 特徴とする請求項 7に記載の放射温度計。  9. The radiation thermometer according to claim 7, comprising a printed circuit board to which a planar self-control type positive temperature coefficient heating element is attached.
1 0 . 面状の自己制御型正温度係数発熱体を印刷したプリント基板を有すること を特徴とする請求項 6に記載の放射温度計。  10. The radiation thermometer according to claim 6, further comprising a printed circuit board on which a planar self-control type positive temperature coefficient heating element is printed.
I I . 面状の自己制御型正温度係数発熱体を印刷したプリント基板を有すること を特徴とする請求項 7に記載の放射温度計。  8. The radiation thermometer according to claim 7, further comprising a printed circuit board on which a planar self-control type positive temperature coefficient heating element is printed.
1 2 . 基板が面状の自己制御型正温度係数発熱体からなるプリント基板を有する ことを特徴とする請求項 6に記載の放射温度計。 12. The radiation thermometer according to claim 6, wherein the substrate has a printed circuit board made of a planar self-control type positive temperature coefficient heating element.
13. 基板が面状の自己制御型正温度係数発熱体からなるプリント基板を有する ことを特徴とする請求項 7に記載の放射温度計。 13. The radiation thermometer according to claim 7, wherein the substrate has a printed circuit board made of a planar self-control type positive temperature coefficient heating element.
14. 所要温度が、 体温近傍の温度であることを特徴とする請求項 1乃至 4に記 載の放射温度計。  14. The radiation thermometer according to claim 1, wherein the required temperature is a temperature near a body temperature.
15. 所要温度が、 体温近傍の温度であることを特徴とする請求項 5に記載の放 射温度計。  15. The radiation thermometer according to claim 5, wherein the required temperature is a temperature near a body temperature.
16. 所要温度が、 体温近傍の温度であることを特徴とする請求項 6に記載の放 射温度計。  16. The radiation thermometer according to claim 6, wherein the required temperature is a temperature near a body temperature.
17. 所要温度が、 体温近傍の温度であることを特徴とする請求項 7乃至 13に 記載の放射温度計。  17. The radiation thermometer according to claim 7, wherein the required temperature is a temperature near a body temperature.
PCT/JP1998/003138 1998-07-14 1998-07-14 Radiation thermometer WO2000004353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1998/003138 WO2000004353A1 (en) 1998-07-14 1998-07-14 Radiation thermometer
AU81296/98A AU8129698A (en) 1998-07-14 1998-07-14 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003138 WO2000004353A1 (en) 1998-07-14 1998-07-14 Radiation thermometer

Publications (1)

Publication Number Publication Date
WO2000004353A1 true WO2000004353A1 (en) 2000-01-27

Family

ID=14208611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003138 WO2000004353A1 (en) 1998-07-14 1998-07-14 Radiation thermometer

Country Status (2)

Country Link
AU (1) AU8129698A (en)
WO (1) WO2000004353A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055975A1 (en) * 2000-12-27 2002-07-18 Kazuhito Sakano Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer
FR2827956A1 (en) * 2001-07-25 2003-01-31 Min Ying Chen Clinical thermometer stabilization method involves pre-heating surrounding temperature of thermometer to specific temperature and providing compensational temperature to maintain surrounding temperature
WO2003016845A1 (en) * 2001-08-10 2003-02-27 Kazuhito Sakano Physical quantity measuring method, temperature measuring method by infrared thermometer, physical quantity measuring device, and infrared thermometer
JP2012507007A (en) * 2008-10-23 2012-03-22 カズ ヨーロッパ エスエー Non-contact medical thermometer with stray radiation shield
CN110186572A (en) * 2019-05-31 2019-08-30 安徽汉诺医疗科技有限公司 A kind of ear thermometer with pre- heat function of popping one's head in

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273121A (en) * 1990-03-23 1991-12-04 Citizen Watch Co Ltd Radiation thermometer
JPH0528617B2 (en) * 1988-09-15 1993-04-26 Temupu Suteitsuku Corp
JPH073363B2 (en) * 1989-05-02 1995-01-18 株式会社トクヤマ How to detect heat rays
JPH09257584A (en) * 1996-03-27 1997-10-03 Nissan Motor Co Ltd Thermal type infrared ray detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528617B2 (en) * 1988-09-15 1993-04-26 Temupu Suteitsuku Corp
JPH073363B2 (en) * 1989-05-02 1995-01-18 株式会社トクヤマ How to detect heat rays
JPH03273121A (en) * 1990-03-23 1991-12-04 Citizen Watch Co Ltd Radiation thermometer
JPH09257584A (en) * 1996-03-27 1997-10-03 Nissan Motor Co Ltd Thermal type infrared ray detecting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055975A1 (en) * 2000-12-27 2002-07-18 Kazuhito Sakano Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer
FR2827956A1 (en) * 2001-07-25 2003-01-31 Min Ying Chen Clinical thermometer stabilization method involves pre-heating surrounding temperature of thermometer to specific temperature and providing compensational temperature to maintain surrounding temperature
WO2003016845A1 (en) * 2001-08-10 2003-02-27 Kazuhito Sakano Physical quantity measuring method, temperature measuring method by infrared thermometer, physical quantity measuring device, and infrared thermometer
JP2012507007A (en) * 2008-10-23 2012-03-22 カズ ヨーロッパ エスエー Non-contact medical thermometer with stray radiation shield
EP2347233A4 (en) * 2008-10-23 2017-12-20 KAZ Europe SA Non-contact medical thermometer with stray radiation shielding
CN110186572A (en) * 2019-05-31 2019-08-30 安徽汉诺医疗科技有限公司 A kind of ear thermometer with pre- heat function of popping one's head in

Also Published As

Publication number Publication date
AU8129698A (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US6694174B2 (en) Infrared thermometer with heatable probe tip and protective cover
US4602642A (en) Method and apparatus for measuring internal body temperature utilizing infrared emissions
US5017018A (en) Clinical thermometer
US4790324A (en) Method and apparatus for measuring internal body temperature utilizing infrared emissions
US9404813B2 (en) Systems and methods for determining patient temperature
CA1326967C (en) Infrared clinical thermometer
JP2704672B2 (en) Infrared thermometer using calibration mapping
US6220750B1 (en) Non-invasive temperature measurement method and apparatus
US7841767B2 (en) Thermal tympanic thermometer
US5626139A (en) Tympanic thermometer
EP1857795B1 (en) Tympanic thermometer
KR100882032B1 (en) Infrared thermometer and probe cover thetefor
JPH04504367A (en) ear temperature detection device
JP2002507904A (en) Environmental and perfusion normalized temperature detectors
WO1996008994A9 (en) Tympanic thermometer
WO2000004353A1 (en) Radiation thermometer
JPH06142063A (en) Radiation clinical thermometer
JP3346583B2 (en) Infrared sensor and radiation thermometer
JP2013066565A (en) Body water measuring instrument and method of controlling the same
JP3855407B2 (en) Radiation thermometer
WO1999058940A1 (en) Radiation thermometer
JPH11155817A (en) Case for housing radiation thermometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09743679

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA