JPH03273121A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPH03273121A
JPH03273121A JP2072029A JP7202990A JPH03273121A JP H03273121 A JPH03273121 A JP H03273121A JP 2072029 A JP2072029 A JP 2072029A JP 7202990 A JP7202990 A JP 7202990A JP H03273121 A JPH03273121 A JP H03273121A
Authority
JP
Japan
Prior art keywords
temperature
thermopile
output
eardrum
thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2072029A
Other languages
Japanese (ja)
Inventor
Minoru Koide
小出 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2072029A priority Critical patent/JPH03273121A/en
Publication of JPH03273121A publication Critical patent/JPH03273121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To measure the temperature of an eardrum with high accuracy with being affected by neither the sensitivity variation of a thermopile nor various characteristics of an electric circuit by providing a temperature control means which controls the temperature of the thermopile according to the output of the thermopile. CONSTITUTION:The temperature of an eardrum 20 can be measured by using an equation T=(GaVp/sigma.K+To<4>)<1/4>. Here, sigma is the emissivity of the eardrum 20, K the sensitivity of the thermopile 11, T temperature of the eardrum 20, To the temperature of the thermopile 11, Vp the output voltage of the thermopile 11, and Ga the gain. Then the temperature To is controlled with the voltage Vp. For example, the output of the thermopile 11 is inputted to an amplifier 11, whose output is used for temperature adjustment control wherein a heater 14 nearby the thermopile 11 is heated, thereby performing feedback control so that the output Vp of the thermopile 11 comes to '0'. Then the temperature To can be calculated by a thermistor, etc., nearby the thermopile 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鼓膜から輻射される赤外線を利用して鼓膜源を
測定する放射体温計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation thermometer that measures the eardrum source using infrared rays radiated from the eardrum.

〔従来の技術〕[Conventional technology]

体温は生理状態を反映する重要なバロメータであり、水
銀体温計や電子体温計がしばしば使用されている。又近
年ではより医学的に重要な体温計測を行うため、鼓膜源
が体温調節中枢である「視床下部の温度」をよく反映す
る、との医学的定見に基づき、赤外線温度計測技術によ
り鼓膜源を非接触で測定する赤外線体温計が実用化され
ている。
Body temperature is an important barometer that reflects physiological conditions, and mercury thermometers and electronic thermometers are often used. In addition, in recent years, in order to measure body temperature, which is more medically important, infrared temperature measurement technology has been used to measure the eardrum source, based on the medical opinion that the tympanic membrane source reflects the temperature of the hypothalamus, which is the thermoregulatory center. An infrared thermometer that measures temperature without contact has been put into practical use.

(たとえばUSP−4602642) 〔発明が解決しようとする課題〕 しかしながら水銀体温計や電子体温計では測定に10分
なし・し20分もの時間を要し、連続測定も又不可能で
ある。また従来の発明である赤外線体温計(USP−4
602642)は赤外線温度計測技術を用いているため
郡1定時間は大幅に改善されたものの、赤外線検出素子
(−例としてサーモパイル)の感度や信号処理系の感度
の変動により測定精度が左右されるという欠点を有する
。以下を図を用いてその説明を行う。
(For example, USP-4602642) [Problems to be Solved by the Invention] However, mercury thermometers and electronic thermometers require 10 to 20 minutes for measurement, and continuous measurement is also impossible. In addition, a conventional invention, an infrared thermometer (USP-4
602642) uses infrared temperature measurement technology, which greatly improves the time required for group 1, but measurement accuracy is affected by fluctuations in the sensitivity of the infrared detection element (for example, a thermopile) and the sensitivity of the signal processing system. It has the following drawback. The following will be explained using figures.

第2図はUSP−4602642に示された赤外線体温
計のブロックダイヤグラムである。第2図に於て21は
サーモパイルであり、!膜32からの赤外線の輻射量に
応じた電圧■、を出力する。
FIG. 2 is a block diagram of an infrared thermometer shown in USP-4602642. In Figure 2, 21 is a thermopile! A voltage (2) corresponding to the amount of infrared radiation from the film 32 is output.

22は増幅器であり微弱なサーモパイル21の出力電圧
■、を所定の大きさに増幅する。25はサーミスタであ
りヒータ24、サーモパイル21とともに熱伝導性の良
い材質で作られたブロック26の中に収納される。26
は抵抗−電圧変換回路でありサーミスタ25の抵抗を電
圧に変換する。
Reference numeral 22 denotes an amplifier which amplifies the weak output voltage (2) of the thermopile 21 to a predetermined magnitude. A thermistor 25 is housed together with the heater 24 and the thermopile 21 in a block 26 made of a material with good thermal conductivity. 26
is a resistance-voltage conversion circuit that converts the resistance of the thermistor 25 into voltage.

29&工温度演算回路Aであり、サーミスタ25の抵抗
を温度に換算する。即ちサー□スタ25のB定数をB。
29 & temperature calculation circuit A, which converts the resistance of the thermistor 25 into temperature. That is, the B constant of the sensor 25 is B.

、温度Tnの時の抵抗値をRnとすれば、サーミスタの
温度がToの時の抵抗値Rtは(1)式の如くなる。
, the resistance value Rt when the temperature of the thermistor is To is expressed by equation (1).

1 Rt =Rn exp [Bo ()コ   −・−・
−・−+13o  Tn (1)式より Bo 、  B n、 T nはサーミスタ25の特性
値としてあらかじめ与えられているのでRtを知ること
によってToが算出される。このためには例えばUSP
−4464067等の方法を使うことが出来る。この様
にして得られたサーミスタ25の温度(即ちサーモパイ
ルの温度)Toは後述する温度演算回路B60に入力さ
れる。
1 Rt = Rn exp [Bo () ko -・-・
-.-+13o Tn From equation (1), since Bo, Bn, and Tn are given in advance as characteristic values of the thermistor 25, To is calculated by knowing Rt. For this, for example, USP
-4464067 and other methods can be used. The temperature of the thermistor 25 (that is, the temperature of the thermopile) To obtained in this manner is input to a temperature calculation circuit B60, which will be described later.

27は差動電力増幅器であり抵抗−電圧変換回路23の
出力と基準電圧発生回路28の出力の差に応じた電圧を
出力し、ヒータ24を加熱する。
A differential power amplifier 27 outputs a voltage corresponding to the difference between the output of the resistance-voltage conversion circuit 23 and the output of the reference voltage generation circuit 28 to heat the heater 24.

即ち、ヒータ24、サーミスタ25、差動電力増幅器2
7によってフィードバック制御ル−プが構成され、ブロ
ック26の温度、すなわちブーモノζイル21の温度は
T。の一定値に維持される。
That is, the heater 24, thermistor 25, differential power amplifier 2
7 constitutes a feedback control loop, and the temperature of the block 26, that is, the temperature of the boolean ζ coil 21 is T. is maintained at a constant value.

60は温度演算回路Bであり増幅器22により増幅され
たサーモパイル21の出力G a V pと、前述の如
く一定値T。に維持されているブーモノ〈イル21の温
度T0から鼓膜源T’を算出し、表示手段61にて表示
する。
60 is a temperature calculation circuit B which outputs the output G a V p of the thermopile 21 amplified by the amplifier 22 and the constant value T as described above. The tympanic membrane source T' is calculated from the temperature T0 of the boolean 21 maintained at , and is displayed on the display means 61.

以上を式を用いて詳述すると、 サーモパイルの出力■pは、 Vp=σ・K・(T’−14)    ・・・・・・・
・・(3)の如くステファン−ボルツマンの法則によっ
て導き出される。
To explain the above in detail using a formula, the output ■p of the thermopile is Vp=σ・K・(T'-14) ・・・・・・・・・
...is derived from the Stefan-Boltzmann law as shown in (3).

但し σ:鼓膜の放射率 に:サーモパイルの感度 T:鼓膜の温度 To:サーモパイルの温度 増幅器22の利得をGaとすると温度演算回路B30の
入力には aVp なる電圧が入力される。温度演算回路B30は次の(4
)式に基づいて鼓膜源Tを算出する。
However, σ: Emissivity of the eardrum: Sensitivity of the thermopile T: Temperature of the eardrum To: Temperature of the thermopile When the gain of the amplifier 22 is Ga, a voltage aVp is input to the input of the temperature calculation circuit B30. The temperature calculation circuit B30 performs the following (4
) The tympanic membrane source T is calculated based on the formula.

前述した様に、US P−4602642に於てはサー
モパイルの温度T0をヒータ24とサーミスタ25を用
いて一定の温度に保つ工夫がなされてはいるものの増幅
器22の利得G a 、サーモパイル21の感度にの変
動に対しては考慮されておらず、これらの変動が直ちに
測定精度の低下につながる。また(4)式は4乗根を解
くアルゴリズムを必要としシステムの複雑さを招来する
As mentioned above, in US Pat. No. 4,602,642, the temperature T0 of the thermopile is kept constant using the heater 24 and thermistor 25, but the gain G a of the amplifier 22 and the sensitivity of the thermopile 21 These fluctuations immediately lead to a decrease in measurement accuracy. Furthermore, equation (4) requires an algorithm to solve the fourth root, which increases the complexity of the system.

本発明の目的はかかる欠点を克服し、赤外線温度測定技
術の優れた応答速度を活かしつつ、かつ赤外検出素子(
サーモパイル)の感度変動や電気回路の緒特性等の影響
を受けない高精度の鼓膜源測定装置(放射体温計)を提
供するものである。
The purpose of the present invention is to overcome such drawbacks, take advantage of the excellent response speed of infrared temperature measurement technology, and use an infrared detection element (
The present invention provides a highly accurate tympanic membrane source measurement device (radiation thermometer) that is not affected by sensitivity fluctuations of thermopiles or electrical circuit characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

前記問題点を解決するため本発明は次の様な構成として
いる。即ち、耳道内に挿入したサーモパイルによって鼓
膜から輻射される赤外線を計測し体温を算出する体温測
定手段に於て、サーモパイルの出力に応じてサーモパイ
ルの温度を制御する温度調節手段を設けたことを特徴と
する。
In order to solve the above problems, the present invention has the following configuration. That is, the body temperature measurement means for calculating body temperature by measuring infrared rays radiated from the eardrum by a thermopile inserted into the auditory canal is characterized by being provided with a temperature adjustment means for controlling the temperature of the thermopile according to the output of the thermopile. shall be.

〔作用〕 本発明によれば本構成による鼓膜源の測定は以下の様に
して可能である。即ち(4)式に於て、サーモパイルの
温度T。はサーモパイルの出力電圧vpによって制御さ
れる。−例としてサーモパイルの出力を増幅器に入力し
、その出力でサーモパイルに近接したヒータを加熱する
温度調節制御を行うと、サーモパイルの出力VpがOに
なる様にフィードバック制御が行われるので前記の(4
)式は次の(5)式の如くになる。
[Function] According to the present invention, the measurement of the tympanic membrane source with this configuration is possible in the following manner. That is, in equation (4), the temperature T of the thermopile. is controlled by the thermopile output voltage vp. - For example, if the output of the thermopile is input to an amplifier and the output is used to control the temperature to heat a heater close to the thermopile, feedback control is performed so that the output Vp of the thermopile becomes O.
) is as shown in the following equation (5).

即ちサーモパイルの温度T。が直ちに鼓膜温TT−ゾ□ 二T。      ・・・・・・・・・(5)を与える
。温度T。はサーモパイルに近接したサーミスタ等の温
度検出素子によって算出することが出来るので鼓膜基の
測定が可能とtlる。
That is, the temperature T of the thermopile. Immediately the eardrum temperature TT-zo□ 2T.・・・・・・・・・(5) is given. Temperature T. Since it can be calculated using a temperature detection element such as a thermistor close to the thermopile, it is possible to measure the base of the tympanic membrane.

〔実施例〕〔Example〕

以下本発明の一実施例を図面に基づいて詳述する。 An embodiment of the present invention will be described below in detail with reference to the drawings.

第1図は本発明による放射体温計のブロックダイヤグラ
ムである。第1図に於て11はサーモパイルであり鼓膜
20からの赤外線の輻射量に応じた電圧Vpを出力する
。12は増幅器であり微弱にサーモパイル11の出力電
圧vpを所定の大きさに増幅する。16は差動電力増幅
器で、増幅器12の出力Vaと基準電圧Vb(本実施例
ではVb=Oと設定されている。)の差に比例した出力
v0はヒータ14に加えられる。15はサーミスタであ
りヒータ14、サーモパイル11とともに熱伝導性の良
い材質で作られたブロック16の中に収納される。17
は温度演算回路でありサーミスタの抵抗Rtからブロッ
ク16の温度、即ちサーモパイル11の温度T。を算出
し表示手段18によって表示する。
FIG. 1 is a block diagram of a radiation thermometer according to the present invention. In FIG. 1, a thermopile 11 outputs a voltage Vp corresponding to the amount of infrared radiation from the eardrum 20. An amplifier 12 slightly amplifies the output voltage vp of the thermopile 11 to a predetermined magnitude. 16 is a differential power amplifier, and an output v0 proportional to the difference between the output Va of the amplifier 12 and the reference voltage Vb (in this embodiment, Vb=O is set) is applied to the heater 14. A thermistor 15 is housed together with the heater 14 and the thermopile 11 in a block 16 made of a material with good thermal conductivity. 17
is a temperature calculation circuit which calculates the temperature of the block 16, that is, the temperature T of the thermopile 11 from the resistance Rt of the thermistor. is calculated and displayed by the display means 18.

次に動作の詳細を式を用いて詳述する。サーモパイル1
1の出力電圧■、は(3)式の如く表せる。
Next, details of the operation will be explained using equations. thermopile 1
The output voltage (■) of 1 can be expressed as in equation (3).

vp=σ・K (T’  To’ )     −−−
(31一方サーモパイル11の温度T。は、ヒータ14
に印加される電力をP1周囲温度をTaとすれば To = T a + P・α       ・・・・
・・・・・(6)α:比例定数 と表わすことが出来る。ヒータ14に印加される電力P
は、差動電力増幅器13の出力電圧V。の二乗に比例す
るので増幅器12の利得をGa、差動電力増幅器16の
利得をGbとすればP=β・vo2         
 ・・・・・・・・・(7)β:比例定数 =β・c、b (Va  Vb )2 ここで Vb = Oと設定されているので、P:β、
G乙Gハ4       ・・・・・・・・・(8)と
kる。(6)〜(8)式、及び(3)式よりと表せる。
vp=σ・K (T'To' ) ---
(Temperature T of thermopile 11 is 31. Temperature T of thermopile 11 is
If the power applied to P1 is the ambient temperature Ta, then To = Ta + P・α...
...(6) α: Can be expressed as a constant of proportionality. Electric power P applied to heater 14
is the output voltage V of the differential power amplifier 13. Therefore, if the gain of the amplifier 12 is Ga and the gain of the differential power amplifier 16 is Gb, then P=β・vo2
・・・・・・・・・(7) β: Constant of proportionality = β・c, b (Va Vb)2 Here, since Vb = O, P: β,
G O G H 4 ・・・・・・・・・(8) and k. It can be expressed from equations (6) to (8) and equation (3).

増幅器12と差動電力増幅器16の利得Ga、Gbを十
分大きくすることによって とすることが出来るので(9)式は(5)式の如くkる
This can be achieved by sufficiently increasing the gains Ga and Gb of the amplifier 12 and the differential power amplifier 16, so equation (9) becomes k as shown in equation (5).

’r = T、             ・・・・・
・・・・(5)Toはサーミスタ15により検出可能で
ある。
'r = T, ...
(5) To can be detected by the thermistor 15.

即ち、サーミスタ150B定数をB。、温度Tnの時の
抵抗値をRnとすれば、サーミスタの温度がT。の時の
抵抗値Rtは(101式の如くなる。
That is, the thermistor 150B constant is B. , the resistance value at temperature Tn is Rn, then the temperature of the thermistor is T. The resistance value Rt at the time is as shown in equation 101.

11     ・・・・・・・・・α0Rt=Rnex
p[Bo(、;  T、)](t1式より とたりB。、Rn、Tnを知ることによってT。
11 ・・・・・・α0Rt=Rnex
p[Bo(,;T,)](T from the t1 formula, and by knowing B., Rn, and Tn.

が算出される。この具体的方法は例えばUSP−446
4067に記述されている。
is calculated. This specific method is, for example, USP-446
4067.

以上の如くして鼓膜基Tが測定される。The tympanic membrane base T is measured as described above.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らか々よ5に本発明によれば、鼓膜基T
はサーモパイルの感度にや増幅器の利得Ga、Gb等の
変動の影響を受げkい高精度の測定が可能となる。即ち
(9)式に於て、利得G a 、 G b、感度K及び
他の比例定数α、β、室温Ta等は全て2つの増幅器の
利得Ga、Gbを十分大きくすることによって無視出来
る程度に減少する。また、かくして鼓膜基はサーミスタ
の温度T。と同一となり、Toはサーミスタの抵抗−温
度換算によって知ることが可能であり、サーミスタの確
立された品質水準と相まって信頼性が高(、実現のため
のコストも安い。
From the above explanation, it is clear that according to the present invention, the tympanic membrane base T
This enables highly accurate measurement, which is not affected by the sensitivity of the thermopile or variations in the gains Ga, Gb of the amplifier, etc. That is, in equation (9), the gains Ga, Gb, sensitivity K, other proportionality constants α, β, room temperature Ta, etc. can all be made negligible by making the gains Ga and Gb of the two amplifiers sufficiently large. Decrease. Also, the base of the tympanic membrane is at the temperature T of the thermistor. is the same, and To can be determined by converting the resistance of the thermistor to temperature, and coupled with the established quality standards of thermistors, the reliability is high (and the cost of implementation is low).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のブロックダイヤグラムであり、第2図
は従来例のブロックダイヤグラムである。 11・・・・・・サーモパイル、12・・・・・・増幅
器、16・・・・・・差動電力増幅器、14・・・・・
・ヒータ、15・・・・・・サーミスタ、16・・・・
・・ブロック、17・・・・・・温度演算回路、18・
・・・・・表示手段、20・・・・・・鼓M、21・・
・・・・サーモパイル、22・・・・・・増幅器、26
・・・・・・抵抗−電圧変換回路、24・・・・・・ヒ
ータ、25・・・・・・サーミスタ、26・・・・・・
ブロック、27・・・・・・差動電力増幅器、28・・
・・・・基準電圧発生回路、29・・・・・・温度演算
回路A、60・・・・・・温度演算回路B、61・・・
・・・表示手段、32・・・・・・鼓膜。
FIG. 1 is a block diagram of the present invention, and FIG. 2 is a block diagram of a conventional example. 11...Thermopile, 12...Amplifier, 16...Differential power amplifier, 14...
・Heater, 15... Thermistor, 16...
...Block, 17...Temperature calculation circuit, 18.
... Display means, 20 ... Drum M, 21 ...
...Thermopile, 22 ...Amplifier, 26
...Resistance-voltage conversion circuit, 24 ... Heater, 25 ... Thermistor, 26 ...
Block, 27...Differential power amplifier, 28...
... Reference voltage generation circuit, 29 ... Temperature calculation circuit A, 60 ... Temperature calculation circuit B, 61 ...
...display means, 32... eardrum.

Claims (1)

【特許請求の範囲】[Claims] 耳道内に挿入したサーモパイルによつて鼓膜から輻射さ
れる赤外線を計測し体温を算出する体温測定手段に於て
、サーモパイルの出力に応じてサーモパイルの温度を制
御する温度調節手段を設けたことを特徴とする放射体温
計。
A body temperature measuring means for calculating body temperature by measuring infrared rays radiated from the eardrum by a thermopile inserted into the auditory canal, characterized by being provided with a temperature adjustment means for controlling the temperature of the thermopile according to the output of the thermopile. Radiation thermometer.
JP2072029A 1990-03-23 1990-03-23 Radiation thermometer Pending JPH03273121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072029A JPH03273121A (en) 1990-03-23 1990-03-23 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072029A JPH03273121A (en) 1990-03-23 1990-03-23 Radiation thermometer

Publications (1)

Publication Number Publication Date
JPH03273121A true JPH03273121A (en) 1991-12-04

Family

ID=13477579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072029A Pending JPH03273121A (en) 1990-03-23 1990-03-23 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPH03273121A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058940A1 (en) * 1998-05-08 1999-11-18 Kazuhito Sakano Radiation thermometer
WO2000004353A1 (en) * 1998-07-14 2000-01-27 Kazuhito Sakano Radiation thermometer
WO2000035339A1 (en) * 1998-12-15 2000-06-22 Citizen Watch Co., Ltd. Radiation clinical thermometer
JP2002214045A (en) * 2001-01-12 2002-07-31 Bio Ekoonetto:Kk Infrared ray clinical thermometer
US6626835B1 (en) 1999-09-03 2003-09-30 Braun Gmbh Infrared sensor stabilizable in temperature, and infrared thermometer with a sensor of this type
US6886978B2 (en) * 2001-06-18 2005-05-03 Omron Corporation Electronic clinical thermometer
US7014358B2 (en) * 2001-02-19 2006-03-21 Braun Gmbh Radiation thermometer comprising a heated measuring tip
JP2007505300A (en) * 2003-09-09 2007-03-08 ブラウン ゲーエムベーハー Heatable infrared sensor and infrared thermometer with infrared sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058940A1 (en) * 1998-05-08 1999-11-18 Kazuhito Sakano Radiation thermometer
WO2000004353A1 (en) * 1998-07-14 2000-01-27 Kazuhito Sakano Radiation thermometer
WO2000035339A1 (en) * 1998-12-15 2000-06-22 Citizen Watch Co., Ltd. Radiation clinical thermometer
US6626835B1 (en) 1999-09-03 2003-09-30 Braun Gmbh Infrared sensor stabilizable in temperature, and infrared thermometer with a sensor of this type
JP2002214045A (en) * 2001-01-12 2002-07-31 Bio Ekoonetto:Kk Infrared ray clinical thermometer
JP4621363B2 (en) * 2001-01-12 2011-01-26 株式会社バイオエコーネット Infrared thermometer
US7014358B2 (en) * 2001-02-19 2006-03-21 Braun Gmbh Radiation thermometer comprising a heated measuring tip
US6886978B2 (en) * 2001-06-18 2005-05-03 Omron Corporation Electronic clinical thermometer
JP2007505300A (en) * 2003-09-09 2007-03-08 ブラウン ゲーエムベーハー Heatable infrared sensor and infrared thermometer with infrared sensor

Similar Documents

Publication Publication Date Title
US5159936A (en) Noncontact infrared tympanic thermometer
US5150969A (en) System and method for temperature determination and calibration in a biomedical probe
JPH0328728A (en) Instrument and method of measuring electromagnetic radiation
US5178464A (en) Balance infrared thermometer and method for measuring temperature
GB1412449A (en) Radiometry
WO1999015866A1 (en) Radiation thermometer and method for adjusting the same
JPH09257587A (en) Non-contact type temperature meter
JP2603004B2 (en) Temperature measuring device and method for providing temperature signal
JPH03273121A (en) Radiation thermometer
JP3873528B2 (en) Radiation thermometer
JPH0666639A (en) Infrared thermometer
JPS5852529A (en) Temperature compensating method of thermopile
JP4771193B2 (en) Ear thermometer temperature correction device
Fraden The Development of Thermoscan® Instant Thermometer.
CN111780875A (en) Test method and test circuit for response temperature drift signal of uncooled infrared detector
Freire et al. Dynamic response of a feedback thermoresistive electrical substitution pyranometer
JPH0561573B2 (en)
JP3733846B2 (en) Correction system control method, thermometer and correction device
JP3166565B2 (en) Infrared detection circuit
KR100252938B1 (en) A temperature compensation of thermometer
JPH03251729A (en) Thermometric device
JPH036530U (en)
JPH0375531A (en) Clinical thermometer using infared-ray sensor
JP3175775B2 (en) Temperature measurement method of radiation thermometer and radiation thermometer
JPS5814617Y2 (en) Cooling temperature control circuit for small cooler