WO1999016223A1 - Modulator/demodulator and modulation/demodulation method - Google Patents

Modulator/demodulator and modulation/demodulation method Download PDF

Info

Publication number
WO1999016223A1
WO1999016223A1 PCT/JP1998/004147 JP9804147W WO9916223A1 WO 1999016223 A1 WO1999016223 A1 WO 1999016223A1 JP 9804147 W JP9804147 W JP 9804147W WO 9916223 A1 WO9916223 A1 WO 9916223A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
synchronization
period
correction
Prior art date
Application number
PCT/JP1998/004147
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Hayashi
Ippei Kanno
Mikihiro Ouchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO1999016223A1 publication Critical patent/WO1999016223A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to a modulation / demodulation device and method, and more particularly, to a modulation / demodulation device and method used in a digital satellite broadcasting system.
  • the modulation device and method described in this conventional document make it possible to transmit two data streams independently. That is, error correction is performed independently on the low-layer signal and the high-layer signal, and the low-layer signal and the high-layer signal are collected by an appropriate number of buckets to form a frame having a fixed total number of packets. I do.
  • the conventional modulation device performs BP SK (Binary Phase Shift Keying) or QP SK (Quaternary Phase Shift Keying) on the lower layer signal, and applies the higher layer signal to the lower layer signal. Is subjected to 8 P SK (8 phase shift keying) and transmitted by time division multiplexing.
  • the conventional modulation device transmits the frame synchronization signal and a transmission multiplexing configuration control (TMCC) signal indicating a division of each layer in the frame and a modulation mode of each layer to the lowest C / N (carrier wave). Power / noise power) and transmit with BP SK, which enables stable reception.
  • TMCC transmission multiplexing configuration control
  • FIG. 77 is a block diagram showing a configuration of a conventional modulation device.
  • FIG. 78 is a diagram showing the structure of a communication frame output from a conventional demodulation device.
  • FIG. 79 is a diagram illustrating mapping of BPSK, QPSK, and 8PSK to a code arrangement.
  • FIG. 80 is a diagram showing a data structure and a frame structure of an MPEG in a conventional modulation device and method.
  • the conventional modulation device includes a frame synchronization signal / TMCC signal generation unit 1001, a TS packet synthesis unit 1002, a TMCC error correction coding unit 1003, a first error correction coding unit 1004, A frame synchronization signal / TMCC signal including an error correction coding unit 1005, a BPSK mapping unit 1006, a BPSK / QP SK mapping unit 1007, an 8P SK mapping unit 1008, and a multiplexing / quadrature modulation unit 1009.
  • the generation unit 1001 generates a frame synchronization signal / TMCC signal based on the input TMCC information.
  • the frame synchronization signal / TMCC signal is subjected to error correction coding in TMCC error correction coding section 1003, and then input to BPSK mapping section 1006.
  • BP SK mapping section 1006 maps the input frame synchronization signal and TMCC signal to the BP SK code arrangement shown in FIG. 79 (a), and outputs the result to multiplexing / quadrature modulation section 1009.
  • the TS packet combining unit 1002 combines a plurality of input MPEG-TS packets (FIG. 80 (a)), and is composed of a group of low-layer signal packets and a group of high-layer signal packets. A frame with a fixed number of packets (Fig. 80 (b)) is generated. In this frame, the packet group of the low-layer signal is subjected to error correction coding in the first error correction coding unit 1004, and is then input to the BP SK / QP SK mapping unit 1007.
  • the BPSK / QPSK mapping section 1007 maps the input lower-layer signal to the BP SK code arrangement shown in FIG. 79 (a) or the QPSK code arrangement shown in FIG.
  • the packet group of the high-layer signal is subjected to error correction coding in the second error correction coding section 1005, and then input to the 8PSK matching section 1008.
  • the 8PSK mapping unit 1008 converts the input high-layer signal
  • multiplexing / quadrature modulation section 1009 time-division multiplexes the signals input from each mapping section in the arrangement shown in FIG. 78 to generate a communication frame, and then performs quadrature modulation and outputs the result to the demodulation device .
  • the multiplexing / quadrature modulation section 1009 includes a frame synchronization signal and a TMCC signal to which BP SK has been applied, a packet group of a higher layer signal to which 8P SK has been applied, and a BPSK or QP SK.
  • time-division multiplexing is performed in units of bucket groups of the low-layer signals subjected to, and a communication frame is generated.
  • FIG. 81 is a block diagram showing a configuration of a conventional demodulation device.
  • a conventional demodulator includes a quadrature detector 1101 and a PSK demodulator 1
  • a BER (Bit Error Rate) detection unit 1103 a TMCC decoder 1104, an error correction unit 1105, and a video decoder 1106.
  • the communication frame transmitted from the modulation device is input to quadrature detection section 1101.
  • the quadrature detection unit 1101 performs quadrature detection on each signal in the input communication frame by the internal local oscillator and digitizes the signals.
  • 81 Output to demodulation unit 1102 and TMC C decoder 1104.
  • the demodulation unit 1102 performs frequency correction and phase correction assuming that all signals of the input communication frame have been subjected to 8PSK, and performs demodulation into I and Q signals.
  • the TMC C decoder 1104 detects the frame synchronization signal to which BPSK has been applied in this state, recognizes the beginning of the communication frame, and simultaneously It detects at which phase of the phase the phase SK demodulation section 1102 is in phase synchronization.
  • the TMCC decoder 1104 detects the TMCC signal following the frame synchronization signal to identify the configuration of the phase modulation applied to each hierarchical signal, and detects the TMCC signal on the demodulator side in the phase error detection for phase correction. Switch the phase reference to the one corresponding to each phase modulation.
  • the demodulation unit 1102 remaps the demodulated I and Q signals based on the phase information indicating which phase of the eight phases was synchronized, and converts them into absolute phase I and Q signals. And outputs it to the error correction unit 1105 at the subsequent stage.
  • the error correction unit 1105 has two independent error correction circuits, and decodes the signal demodulated by the demodulation unit 1102 in packets. After sorting and error correction, the order of the packets rearranged on the time axis for time division multiplex transmission is restored, and this output is output to the video decoder 1106.
  • the 8 ⁇ 1 detection unit 1103 performs trellis encoding again on a signal obtained by performing trellis decoding on the demodulated 8 PSK signal to which trellis encoding, which is a type of error correction encoding, is performed.
  • the BER of the higher layer signal is monitored by comparing with the demodulated 8 PSK signal. As a result, if it is determined that the quality of the decoded video of the higher hierarchy is lower than the allowable value, the BER detector 1103 outputs a video signal of the lower hierarchy that is highly resistant to the quality deterioration of the transmission path.
  • the signal is controlled by the video decoder 1106 as described above.
  • the conventional modulation and demodulation apparatus and method allow the user to continue viewing the service even if the quality of the transmission path deteriorates due to rainfall during reception.
  • error correction is performed independently on the low-layer signal and the high-layer signal, and BPSK or QPSK with low transmission efficiency but high transmission reliability is applied to the low-layer signal.
  • Transmission efficiency is high but transmission reliability is high for high layer signals Are applied, and they are transmitted by time division multiplexing.
  • the above-mentioned conventional demodulator first, all the signals of the input communication frame are regarded as signals to which 8PSK has been applied, and the frequency correction and the phase correction are performed. After carrier synchronization, the TMCC signal is decoded, the phase modulation configuration applied to each hierarchical signal is identified, demodulated for each signal, and the BER is detected to reduce the quality of the transmission path. On the other hand, a low-hierarchy signal with high tolerance can be selected.
  • an object of the present invention is to provide a modulation and demodulation apparatus and method capable of performing stable and high-speed carrier synchronization even when an operation such as turning on the power of the demodulation apparatus or selecting a channel is performed at a low C / N. It is to provide. Disclosure of the invention
  • a first aspect is a modulation device that generates a predetermined fixed-length communication frame by performing phase modulation with different transmission efficiency for each layer of the data on a plurality of data to be communicated.
  • Phase modulation means for performing a phase modulation corresponding to the contents of each of the plurality of data to generate a modulation signal
  • Signal generating means for generating a carrier synchronization auxiliary signal that has been subjected to phase modulation using phase modulation with the smallest number of phases (hereinafter referred to as minimum phase modulation) among a plurality of phase modulations applied to data;
  • Multiplexing means for time-division multiplexing the modulation signal and the carrier synchronization auxiliary signal so that the carrier synchronization auxiliary signal is dispersed at equal time intervals within the communication frame.
  • the signal for assisting carrier synchronization in the demodulator is modulated by strong minimum phase modulation for a low C / N state, and dispersed and inserted into a packet. Output communication frame.
  • the demodulator even in the low C / N state, high-speed and stable carrier synchronization can be performed using the carrier synchronization auxiliary signal dispersed in the bucket.
  • the second aspect is characterized in that, in the first aspect, the carrier synchronization auxiliary signal is time-division multiplexed continuously for two or more symbols.
  • the second aspect specifies a typical time-division multiplexing form of the carrier synchronization auxiliary signal in the first aspect.
  • the carrier synchronization auxiliary signal is a phase modulation signal applied to a modulation signal serving as a next packet with respect to a time division multiplexed position in a communication frame. Is characterized by superimposing information for identifying.
  • a signal for assisting carrier synchronization in a demodulation device in which information defining the modulation scheme of the next packet is superimposed is reduced.
  • the communication frame is modulated by the minimum phase modulation that is strong against the C / N state, and the communication frame that is dispersedly inserted in the packet is output.
  • a fourth aspect is the third aspect, further comprising a differential encoding unit that performs differential encoding on an input signal and outputs the result.
  • the signal generation means generates a carrier synchronization auxiliary signal obtained by performing a minimum phase modulation among a plurality of phase modulations performed on the signal after the differential encoding in the differential encoding means. It is characterized by the following.
  • the fifth aspect is a modulation method for generating a predetermined fixed-length communication frame by performing phase modulation with different transmission efficiency for each layer of the data on a plurality of data to be communicated. So,
  • a carrier synchronization auxiliary signal that has been subjected to phase modulation using the phase modulation with the smallest number of phases (hereinafter referred to as the minimum phase modulation) among the plurality of phase modulations performed overnight is generated.
  • the minimum phase modulation A carrier synchronization auxiliary signal that has been subjected to phase modulation using the phase modulation with the smallest number of phases (hereinafter referred to as the minimum phase modulation) among the plurality of phase modulations performed overnight is generated.
  • a signal that assists carrier synchronization during demodulation operation is modulated by strong minimum phase modulation for a low C / N state, and dispersed in a packet. Construct the inserted communication frame. As a result, at the time of demodulation operation, even in a low C / N state, high-speed and stable carrier synchronization can be performed using the carrier synchronization auxiliary signal dispersed in the bucket.
  • a sixth aspect is characterized in that in the fifth aspect, the carrier synchronization auxiliary signal is time-division multiplexed continuously for two or more symbols.
  • the sixth aspect specifies a typical time-division multiplexing form of the carrier synchronization auxiliary signal in the fifth aspect.
  • the carrier synchronization auxiliary signal is a phase modulation signal applied to a modulation signal serving as a next packet with respect to a time division multiplexed position in a communication frame. Is characterized by superimposing information for identifying.
  • a signal for assisting carrier synchronization in which information defining a modulation scheme of the next bucket is superimposed It modulates by the strong minimum phase modulation for the low C / N state, and outputs the communication frame dispersedly inserted in the packet.
  • the carrier synchronization auxiliary signal dispersed in the packet even in the low C / N state
  • Carrier synchronization can be performed at high speed and stably using the main signal subjected to signal and minimum phase modulation.
  • the carrier synchronization auxiliary signal is obtained by performing a minimum phase modulation of a plurality of phase modulations performed on the signal after differential encoding on the signal after the differential encoding. It is characterized by being generated by
  • a signal for assisting carrier synchronization in which information defining a modulation scheme of the next bucket is superimposed is differentially encoded. Is generated after applying. As a result, the modulation method information can be decoded even when the carrier is not synchronized during the demodulation operation.
  • the ninth aspect is that a carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation having the smallest number of phases in a communication frame (hereinafter referred to as minimum phase modulation) together with a plurality of phase-modulated signals is transmitted at equal time intervals.
  • minimum phase modulation a carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation having the smallest number of phases in a communication frame
  • Frequency correction means for detecting a frequency error in a predetermined signal period in a communication frame and correcting a frequency deviation
  • Phase correction means for detecting a phase error during a predetermined signal period in a communication frame and correcting a phase shift
  • Frame synchronization detection means for receiving an output signal of either the frequency correction means or the phase correction means and detecting a synchronization signal of the communication frame using delay detection to detect a frame head position;
  • Timing for detecting at least the period of the carrier synchronization auxiliary signal (hereinafter referred to as a synchronization signal period) in the period in which the minimum phase modulation is performed based on the frame head position detected by the frame synchronization detection means, and providing the synchronization signal period
  • a synchronization signal period the period of the carrier synchronization auxiliary signal in the period in which the minimum phase modulation is performed based on the frame head position detected by the frame synchronization detection means
  • the frequency correction means and the phase correction means perform a correction operation according to the minimum phase modulation during a synchronization signal period given by the evening imaging signal.
  • the frequency correction and the phase correction are performed using the minimum phase-modulated signal including the carrier synchronization auxiliary signal dispersedly arranged in the bucket. Carrier recovery) enables fast and stable carrier synchronization even in the low C / N state.
  • the output signal of any one of the frequency correction means and the phase correction means is input, and a frequency pull-in state is detected to determine whether or not the frequency is a frequency at which the phase correction means is pseudo-synchronized.
  • phase correction reset means for initializing the phase correction means is further provided.
  • the frequency pull-in detection means is provided, and the frequency correction is performed by the frequency correction means up to a frequency at which the phase correction means is not pseudo-synchronized. Initialize and restart the means. This makes it possible to avoid pseudo-synchronization in the phase correction unit in the frequency pull-in process by the frequency correction unit.
  • the eleventh aspect is the ninth aspect, wherein the output signal of the phase correction means is input, and a phase synchronization detection means for detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal;
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • Pseudo-synchronization determining means for determining whether or not pseudo-synchronization is performed based on detection results of the phase synchronization detecting means and the error correction detecting means;
  • the apparatus further comprises phase correction reset means for initializing the phase correction means.
  • phase correction means is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase correction means in the frequency pull-in process by the frequency correction means.
  • a first phase synchronization detecting means for inputting an output signal of the phase correction means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal
  • Second phase synchronization detection means for receiving an output signal of the phase correction means and detecting a state of phase synchronization during a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • Pseudo-synchronization determining means for determining whether or not to perform pseudo-synchronization based on detection results of the first phase synchronization detecting means and the second phase synchronization detecting means
  • the apparatus further comprises phase correction reset means for initializing the phase correction means.
  • phase correction means is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase complementing means in the frequency pull-in process by the frequency correcting means.
  • a phase synchronization detecting means for receiving an output signal of the phase correcting means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • the method further comprises frequency step means for stepwise changing the frequency input to the phase correction means.
  • the ninth aspect detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the possibility of error correction of the TMCC signal are performed. To determine whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the frequency of the frequency correcting means is controlled so that the phase correcting means can perform normal synchronization. This makes it possible to avoid pseudo-synchronization in the phase correction means in the frequency pull-in process by the frequency correction means.
  • the first phase synchronization detection means receives the output signal of the phase correction means and detects a state of phase synchronization during a period of the carrier synchronization auxiliary signal
  • Second phase synchronization detection means for receiving an output signal of the phase correction means and detecting a state of phase synchronization during a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • Pseudo-synchronization determining means for determining whether or not to perform pseudo-synchronization based on detection results of the first phase synchronization detecting means and the second phase synchronization detecting means
  • the method further comprises frequency step means for stepwise changing the frequency input to the phase correction means.
  • the ninth aspect detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal are performed. Then, based on the detection result, it is determined whether the synchronization is normal. In the case of pseudo synchronization, the frequency of the frequency correction means is controlled so that the phase correction means can perform normal synchronization. As a result, the frequency correction means In the wave number pull-in process, etc., it becomes possible to avoid pseudo synchronization in the phase correction means.
  • an output signal of either the frequency correction means or the phase correction means is input, and a frequency pull-in state is detected to determine whether or not the frequency is a frequency at which the phase correction means is pseudo-synchronous.
  • Frequency pull-in detection means for determining whether
  • phase correction reset means for initializing the phase correction means is further provided.
  • an output signal of either the frequency correction means or the phase correction means is input, and a frequency pull-in state is detected to determine whether or not the frequency is such that the phase correction means is in a pseudo-synchronous state.
  • Frequency pull-in detection means for determining whether
  • phase correction reset means for initializing the phase correction means is further provided.
  • the 13th and 14th stations are further provided with frequency pull-in detection means, and the phase correction means is not pseudo-synchronized in the frequency correction means After the frequency has been corrected to the frequency, initialize the phase correction means and restart the operation. This makes it possible to avoid pseudo-synchronization in the phase correction means in the frequency pull-in process by the frequency correction means.
  • the frame synchronization determination means for receiving an output signal of the phase correction means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal
  • C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal
  • phase synchronization Based on the detection result of the frame synchronization determination means and C / N detection means, and the timing signal, there is phase synchronization, and the C / N is higher than a predetermined threshold. Further comprises a gate signal generating means for generating a gate signal for giving the entire period of the communication frame, and in other cases, a gate signal generating means for generating a gate signal for giving a synchronous signal period.
  • a gate signal generating means for generating a gate signal for giving the entire period of the communication frame, and in other cases, a gate signal generating means for generating a gate signal for giving a synchronous signal period.
  • the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the signal level is at a lower level, the phase error is corrected assuming that the maximum phase modulation is also performed for the main signal period of the communication frame. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
  • a frame synchronization determining means for inputting an output signal of the phase correction f stage and detecting phase synchronization in the phase correcting means
  • C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
  • the phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation in accordance with a period given by the gate signal.
  • the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected, and the C / N state and the C / N state are detected.
  • phase correction is performed using the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period that are minimum phase-modulated according to the reference phase corresponding to the phase modulation method according to the demodulation mode signal.
  • the phase correction is performed also in the modulation period of the main signal other than the period.
  • a frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit
  • C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
  • Demodulation mode that switches the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period providing means.
  • Demodulation mode switching means for outputting a signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal that gives the period of the signal subjected to the minimum phase modulation is
  • the gate signal that gives the entire period of the communication frame is
  • a gate signal generation means for generating a gate signal for giving a synchronization signal period
  • the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period.
  • the phase error is detected by the phase modulation method according to the demodulation mode signal, and then the correction operation is performed according to the period given by the gate signal.
  • the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected, and the C / N is determined in advance.
  • phase error is corrected assuming that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame, and the phase modulation method according to the demodulation mode signal is supported.
  • phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are initially phase-modulated at the initial state, and phase correction is also performed during the main signal modulation period other than the period. .
  • carrier synchronization can be performed quickly and stably even in the low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced, thereby improving the reception performance.
  • the frame synchronization determination means for receiving an output signal of the phase correction means and detecting phase synchronization in the phase correction means
  • BER detection means Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate.
  • a gate that gives the entire period of the communication frame
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period otherwise, wherein the phase correction means performs minimum phase modulation during a synchronization signal period provided by the timing signal. Then, after detecting the phase error, detecting the phase error due to the phase modulation having the largest number of phases in the communication frame during the period other than the synchronization signal period, the correction operation is performed according to the period given by the gate signal.
  • the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal
  • the C / N is at a predetermined level
  • the phase error is corrected assuming that the maximum phase modulation is also performed for the main signal period.
  • carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
  • a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means
  • TMCC signal transmission control signal
  • C / N carrier power / noise power
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal that gives the period of the signal subjected to the minimum phase modulation is
  • a synchronization signal period is added.
  • a gate signal generating means for generating a gate signal for detecting a phase error by a phase modulation method according to a demodulation mode signal, and performing a correcting operation according to a period given by the gate signal. I do.
  • the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal
  • the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period which are minimum phase modulated in the initial state, are used.
  • the phase correction is performed also in the main signal modulation period other than the period.
  • a frame synchronization determining means for receiving an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means
  • BER detection means Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate.
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • Demodulation mode for switching the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period giving means.
  • Demodulation mode switching means for outputting a signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • the gate signal that gives the entire period of the communication frame is
  • a gate signal generation means for generating a gate signal for giving a synchronization signal period
  • the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period. Detecting the phase error and, if the error correction has been completed, detecting the phase error by the phase modulation method according to the demodulation mode signal, and then performing the correction operation according to the period given by the gate signal.
  • the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal.
  • the phase is corrected using the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after the phase synchronization, the phase is corrected even during the main signal modulation period other than the period. Make corrections.
  • carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance. .
  • an output signal of the phase correction means is input, a frame synchronization determination means for detecting phase synchronization in the phase correction means, and an output signal of the phase correction means.
  • C / N detection means for inputting and detecting the state of C / N (carrier power / noise power) of the received signal;
  • a gate that gives the entire period of the communication frame
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period otherwise, wherein the phase correction means performs minimum phase modulation in a synchronization signal period provided by the timing signal.
  • a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means
  • C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
  • the phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
  • a frame synchronization determination unit that inputs an output signal of the phase correction unit and detects phase synchronization in the phase correction unit
  • C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase synchronization is performed and the error correction is completed;
  • the phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
  • a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means
  • C / N detection means for inputting the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • Demodulation mode that switches the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period providing means.
  • Demodulation module that outputs signals Mode switching means
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • the gate signal that gives the entire period of the communication frame is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period when there is no phase synchronization
  • the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period.
  • the phase error is detected and the error correction is completed, the phase error is detected by the phase modulation method according to the demodulation mode signal, and then the correction operation is performed according to the period given by the gate signal.
  • an output signal of the phase correction means is input, and frame synchronization determination means for detecting phase synchronization in the phase correction means, C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • Demodulation mode for switching the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period giving means.
  • Demodulation mode switching means for outputting a signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal that gives the period of the signal subjected to the minimum phase modulation is
  • the gate signal that gives the entire period of the communication frame is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period when there is no phase synchronization
  • the phase correction means detects a phase difference due to the minimum phase modulation during a synchronization signal period provided by the timing signal, and performs communication during periods other than the synchronization signal period.
  • the phase error due to phase modulation with the largest number of phases is detected, and if the error correction has been completed, the phase error due to the phase modulation method according to the demodulation mode signal is detected, and then, according to the period given by the gate signal In a twenty-eighth aspect, a correction operation is performed.
  • a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means And the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction is measured, and the state of C / N (carrier power / noise power) is determined based on the bit error rate.
  • BER detection means for detecting,
  • a gate that gives the entire period of the communication frame
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period otherwise, wherein the phase correction means performs minimum phase modulation in a synchronization signal period provided by the timing signal.
  • the frame synchronization determination means receives the output signal of the phase correction means and detects phase synchronization in the phase correction means.
  • BER detection means Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate.
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
  • the phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
  • an output signal of the phase correction means is input, and frame synchronization determination means for detecting phase synchronization in the phase correction means,
  • BER detection means Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate.
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • a phase correction method is performed based on the signal output from the signal period providing means and the timing signal.
  • Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the stage according to the phase modulation method;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • a gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
  • the phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
  • a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means
  • TMCC signal transmission control signal
  • C / N carrier power / noise power
  • Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • the gate signal that gives the entire period of the communication frame is
  • a gate signal generation means for generating a gate signal for giving a synchronization signal period
  • the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period.
  • the phase error is detected by the phase modulation method according to the demodulation mode signal, and then the correction operation is performed according to the period given by the gate signal.
  • the second aspect is the phase correction means according to the first, first, third, and fifteenth aspects.
  • BER detection means Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power Z noise power) based on the bit error rate.
  • a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period
  • Demodulation mode for switching the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period giving means.
  • Demodulation mode switching means for outputting a signal;
  • the gate signal that gives the entire period of the communication frame is
  • the gate signal giving the period of the signal subjected to the minimum phase modulation is
  • the gate signal that gives the entire period of the communication frame is
  • the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period.
  • the correction operation is performed according to the period given by the gate signal.
  • the 23rd to 32nd aspects are combinations of the 10th to 16th aspects and the 17th to 22nd aspects, respectively.
  • the 23rd to 32nd stations can carry out carrier synchronization stably at high speed even in the low C / N state, respectively, and in the frequency pull-in process by the frequency correction means, etc. Pseudo-synchronization can be avoided, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance.
  • the frame synchronization detection means includes: a delay detection means for delay-detecting the signal;
  • One or more phase identification means for identifying the transmitted signal from the differentially detected phase modulated signal
  • Matching means for performing pattern matching between the output of one or more phase identification means and the frame synchronization signal
  • One or more of the phase discrimination means has a phase discrimination area corresponding to the phase modulation for transmitting the frame synchronization signal, and the two or more phase discrimination areas are provided in parallel with different phase rotations.
  • the matching means is characterized in that pattern matching is performed on each output of the phase identification means having different phase rotation amounts in the phase identification area.
  • the frame synchronization detection means includes: a delay detection means for delay-detecting the signal; A plurality of phase rotation means for applying a predetermined number of types of phase rotation to the differential detection signal; a phase identification means for performing phase identification for each output of the plurality of phase rotation means; an output of the phase identification means; and a frame synchronization signal.
  • Matching means for performing pattern matching of
  • the phase discrimination means has a phase discrimination region corresponding to the phase modulation in which the frame synchronization signal is transmitted, and discriminates a signal transmitted with respect to each phase modulation signal to which a different phase rotation is given by delay detection.
  • the matching means performs pattern matching on each output of the phase identification means.
  • a thirty-fifth aspect is the ninth to thirty-second aspect, wherein the frame synchronization detection means includes: a delay detection means for delay-detecting the signal;
  • Phase identification means for identifying a signal transmitted from the differentially detected phase modulation signal, identification phase rotation means for rotating the identification phase of the phase identification means,
  • a matching means for comparing the output of the phase identification means and the pattern of the frame synchronization signal
  • the phase identification means has a phase identification area corresponding to the phase modulation for transmitting the frame synchronization signal, and the phase rotation means determines the phase of the phase identification area in the phase identification means until the matching means detects the frame synchronization signal. It is characterized by rotating.
  • the frame synchronization detection means includes: a delay detection means for delay-detecting the signal;
  • Phase rotation means for performing phase rotation on the differential detection signal
  • Phase identification means for receiving an output of the phase rotation means and identifying a signal transmitted from the differentially detected phase modulation signal
  • a matching means for comparing the output of the phase identification means and the pattern of the frame synchronization signal The phase rotation unit rotates the phase until the frame synchronization signal is detected by the matching unit.
  • the 33rd to 36th aspects show typical configurations of the ninth to 32nd frame synchronization detecting means.
  • the input frequency error is large, it is possible to eliminate the malfunction of frame synchronization detection by delay detection and perform carrier synchronization.
  • the output signal of the frequency correction means is input, the bandwidth of the output signal is limited, and then the bandwidth limitation filter output to the phase correction means is further performed.
  • the frame synchronization detecting means is characterized by inputting an output signal of either the frequency correcting means or the band limiting filter or the phase correcting means, and detecting a frame head position.
  • the thirty-seventh aspect is the ninth to thirty-sixth aspects in which a band limiting filter for spectrally shaping the phase modulation signal output by the frequency correction means is further added to the configuration. is there. Therefore, the effects of the 37th phase are the same as the effects of the 9th to 36th phases, respectively.
  • Information detecting means for detecting a period of a signal subjected to minimum phase modulation based on the information, and outputting a signal giving the minimum phase modulation period to the timing generating means;
  • the timing generation means generates a timing signal that gives a minimum phase modulation period in addition to the synchronization signal period.
  • the carrier synchronization auxiliary distributed in a bucket performs frequency correction and phase correction (regeneration of carrier wave) using the main signal that has been subjected to minimum phase modulation in addition to the minimum phase modulation signal including the signal.
  • carrier synchronization can be performed quickly and stably even in a low C / N state.
  • the frequency step means sets the frequency fg at which the pseudo-synchronization occurs as a step unit, and alternates the frequency in the order of positive and negative. Shift to increase. As a result, even in the case of the pseudo synchronization, the normal synchronization can be finally performed by repeating the above step operation.
  • a carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation having the smallest number of phases in a communication frame (hereinafter referred to as minimum phase modulation) together with a plurality of phase-modulated signals is an equal time interval.
  • the frequency correction and the phase correction are performed by using the minimum phase-modulated signal including the carrier synchronization auxiliary signal dispersedly arranged in the bucket.
  • correction carrier recovery
  • carrier synchronization can be performed quickly and stably even in a low C / N state.
  • the malfunction of frame synchronization detection by delay detection is eliminated.
  • Carrier synchronization can be performed.
  • the method further includes the step of initializing the phase correction operation.
  • the frequency lock-in state is detected, and the frequency correction is performed up to the frequency at which the phase correction operation is not pseudo-synchronized in the frequency correction operation. After that, the phase correction operation is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
  • TMC C signal transmission control signal
  • the method further includes the step of initializing the phase correction operation.
  • phase correction operation is initialized and restarted. This makes it possible to avoid quasi-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
  • TMCC signal transmission control signal
  • the method further includes the step of initializing the phase correction operation.
  • phase correction operation is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
  • a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal
  • TMC C signal transmission control signal
  • the method further includes the step of stepwise changing the frequency at which the phase correction operation is performed.
  • the forty-fourth aspect detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the possibility of error correction of the TMCC signal are performed. It is determined from the result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the frequency of the frequency correction operation is controlled so that the normal synchronization can be performed by the phase correction operation. This makes it possible to avoid pseudo-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
  • a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal
  • TMC C signal transmission control signal
  • the method further includes the step of stepwise changing the frequency at which the phase correction operation is performed.
  • the forty-fourth aspect detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal are performed. Then, it is determined whether or not the synchronization is normal based on the detection result.
  • the frequency of the frequency correction operation is controlled so that normal synchronization can be performed by the phase correction operation. This makes it possible to avoid quasi-synchronization in the phase correction operation in the frequency pull-in process or the like by the frequency correction operation.
  • a step of detecting a frequency pull-in state to determine whether or not the frequency is a frequency at which pseudo synchronization occurs
  • the method further includes the step of initializing the phase correction operation.
  • a step of detecting a frequency pull-in state to determine whether or not the frequency is a frequency at which pseudo synchronization occurs in the forty-fifth aspect, a step of detecting a frequency pull-in state to determine whether or not the frequency is a frequency at which pseudo synchronization occurs
  • the method further includes the step of initializing the phase correction operation.
  • the frequency pull-in state is further detected, and the phase correction operation is not pseudo-synchronized in the frequency correction operation.
  • Phase correction after frequency correction up to frequency Initialize T / JP operation and restart. This makes it possible to avoid quasi-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
  • a step of detecting a state of phase synchronization in the forty-eighth aspect, a step of detecting a state of phase synchronization;
  • the phase error due to modulation is detected, and the number of phases is largest in the communication frame during periods other than the synchronization signal period of the communication frame.
  • the phase correction operation is performed throughout the communication frame. And performing the following.
  • the C / N state during phase synchronization during the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the level is the same level, the phase error is corrected assuming that the maximum phase modulation is also performed for the main signal period of the communication frame. As a result, carrier synchronization can be performed quickly and stably even in the low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
  • a step of detecting a state of phase synchronization in the forty-ninth aspect, a step of detecting a state of phase synchronization
  • TMC C signal transmission control signal
  • phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and the predetermined second threshold value, the C / N is not used during the period other than the period during which phase modulation with the largest number of phases is performed in the communication frame. Detect the phase error due to the corresponding phase modulation, When the C / N is lower than the second threshold value, detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed, and then performing a phase correction operation. Further prepare.
  • the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected, and the C / N state and the C / N state are detected.
  • phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after phase synchronization. Performs phase correction in the modulation period of the main signal other than the period.
  • a step of detecting a state of phase synchronization in the forty-fifth aspect, a step of detecting a state of phase synchronization
  • TMC C signal transmission control signal
  • phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed.
  • phase error due to minimum phase modulation is reduced during the synchronization signal period. Detecting and detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period of the communication frame, and then performing a phase correction operation.
  • the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the level is higher than that, the phase error is corrected assuming that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame, and the phase modulation method according to the demodulation mode signal is used. According to the corresponding reference phase, phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after the phase synchronization, the modulation period of the main signal other than the period Also, the phase correction is performed. This enables fast and stable carrier synchronization even in the low C / N state, and reduces the influence of the phase jitter of the demodulated signal during the main signal period, thereby improving the reception performance. .
  • phase error due to minimum phase modulation is detected during the synchronization signal period, and the phase error within the communication frame is not included during the period other than the communication frame synchronization signal period. Performing a phase correction operation after detecting a phase error due to the largest number of phase modulations.
  • the C / N state when the phase is synchronized in the minimum phase modulation signal period is based on the bit error rate of the TMCC signal. If the detected C / N is at a predetermined level, it is assumed that maximum phase modulation has been performed even for the main signal period of the communication frame, and the phase error is corrected. Do. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
  • TMC C signal transmission control signal
  • phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the C / N is between the first threshold value and the predetermined second threshold value, the C / N is not used during the period other than the period during which phase modulation with the largest number of phases is performed in the communication frame.
  • the phase error due to the corresponding phase modulation is detected. If the C / N is lower than the second threshold value, the phase error due to the minimum phase modulation is detected during the synchronization signal period and the period where the minimum phase modulation is performed. Performing a phase correction operation after the above.
  • the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal
  • the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period that are minimum phase-modulated in the initial state are used.
  • the phase correction is performed also in the modulation period of the main signal other than the period. This allows fast and stable carrier synchronization even in the low C / N state, and reduces the effect of demodulated signal phase jitter during the main signal period. However, the reception performance can be improved.
  • a step of detecting a state of phase synchronization in the forty-fifth aspect, a step of detecting a state of phase synchronization
  • TMC C signal transmission control signal
  • phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is The phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when C / N is lower than the second threshold value, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed.
  • phase synchronization is performed and error correction is not completed, and C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
  • the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal
  • the phase error is corrected assuming that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame
  • the demodulation mode signal is Corresponding to the phase modulation method
  • phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after the phase homogenization period, even during the main signal modulation period other than this period. Perform phase correction.
  • the carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal in the main signal period can be reduced to improve the reception performance. it can.
  • a step of detecting a state of phase synchronization is provided.
  • a step of detecting a state of phase synchronization is provided;
  • TMC C signal transmission control signal
  • phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period. If the C / N is between the first threshold value and a predetermined second threshold value, the period during which phase modulation with the largest number of phases is performed in the communication frame is performed. The phase error due to the corresponding phase modulation is detected in periods other than the above, and if the C / N is lower than the second threshold value, the minimum phase modulation is applied during the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting the phase error. In a fifty-sixth aspect, the steps of detecting the state of phase synchronization in the fourth, fourth, and fourth aspects;
  • Detecting the C / N (carrier power / noise power) state of the received signal; and performing phase synchronization and error correction, and the C / N (C / N) is determined based on a predetermined first threshold. If / N is high, the phase error due to the corresponding phase modulation is detected during the entire communication frame, and the C / N is between the first threshold and the second predetermined threshold. In the communication frame, the phase error due to the corresponding phase modulation is detected in a period other than the period in which the phase modulation with the largest number of phases is performed, and if the C / N is lower than the second threshold value, the synchronization is detected. Performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the signal period and the period in which the minimum phase modulation is performed.
  • a step of detecting a state of phase synchronization in the forty-first, fourth, fourth, and fourth aspects, a step of detecting a state of phase synchronization
  • TMC C signal transmission control signal
  • phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed.
  • phase error due to minimum phase modulation is reduced during the synchronization signal period. Detecting and detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period of the communication frame, and then performing a phase correction operation.
  • Detecting the C / N (carrier power / noise power) state of the received signal; and performing phase synchronization and error correction, and the C / N (C / N) is determined based on a predetermined first threshold. If / N is high, the phase error due to the corresponding phase modulation is detected during the entire communication frame, and if C / N is between the first threshold value and a predetermined second threshold value. In a communication frame, a phase error due to the corresponding phase modulation is detected in a period other than a period in which phase modulation having the largest number of phases is performed (hereinafter, referred to as a maximum phase modulation), and the second threshold is set to C. If / N is low, performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed;
  • phase synchronization is performed and error correction is not completed and the C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
  • a step of detecting a state of phase synchronization is provided.
  • phase error due to minimum phase modulation is detected during the synchronization signal period, and the synchronization signal period of the communication frame is detected. Otherwise, after detecting a phase error due to the phase modulation having the largest number of phases in the communication frame, performing a phase correction operation.
  • the 60th phase is a step of detecting the state of phase synchronization in the 41st, 43rd, 45th, and 47th aspects;
  • TMC C signal transmission control signal
  • phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the C / N is between the first threshold value and the predetermined second threshold value, the C / N is not used during the period other than the period during which phase modulation with the largest number of phases is performed in the communication frame.
  • the phase error due to the corresponding phase modulation is detected. If the C / N is lower than the second threshold value, the phase error due to the minimum phase modulation is detected during the synchronization signal period and the period where the minimum phase modulation is performed. Performing a phase correction operation after the above.
  • phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. If the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame is performed. The phase error due to the corresponding phase modulation is detected in the period other than the period in which the signal is applied, and if the C / N is lower than the second threshold value, the synchronization signal period and the period in which the minimum phase modulation is performed Performing a phase correction operation after detecting a phase error due to the minimum phase modulation in.
  • a step of detecting a state of phase synchronization in the 41st, 43rd, 45th, and 47th aspects, a step of detecting a state of phase synchronization
  • TMC C signal transmission control signal
  • phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed.
  • phase synchronization is performed and error correction is not completed and the C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
  • a step of detecting a state of phase synchronization Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate.
  • phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period.
  • the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed.
  • phase synchronization is performed and error correction is not completed and the C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
  • the 54th to 63rd aspects are combinations of the 41st to 47th aspects and the 48th to 53rd aspects, respectively. Therefore, the 54th to 63rd stations can carry out carrier synchronization stably at high speed even in the low C / N state, and in the frequency pull-in process by the frequency correction operation, etc. Pseudo-synchronization can be avoided, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance.
  • a sixty-fourth aspect is the phase in which, in the forty-fourth to sixty-third aspects, the carrier synchronization auxiliary signal is applied to a modulated signal that is the next bucket with respect to a position where time division multiplexing is performed in a communication frame. If the information identifying the modulation is superimposed,
  • the period of the signal subjected to the minimum phase modulation is detected, and A signal providing a phase modulation period is output to a step of generating a timing signal, and the step of generating a timing signal is characterized by generating a timing signal providing a minimum phase modulation period in addition to the synchronization signal period.
  • the carrier synchronization auxiliary signal distributed and arranged in a bucket is used. Performs frequency correction and phase correction (carrier recovery) using the minimum phase modulated signal as well as the minimum phase modulated main signal. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state.
  • the step of changing the frequency stepwise includes the step of setting the frequency fg at which the pseudo-synchronization occurs to It is shifted so that it increases in the order of positive and negative.
  • the normal synchronization can be finally performed by repeating the above step operation.
  • FIG. 1 is a block diagram showing a configuration of a modulation device according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a communication frame generated in the modulation device according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of the configuration of the multiplexing / quadrature modulation section 19 of FIG. 1.
  • FIG. 4 is a block diagram showing the configuration of the demodulation device according to the first embodiment of the present invention.
  • ⁇ FIG. 5 is a flowchart showing an operation performed by the demodulation device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a signal detected by the frame synchronization detection unit 35 and a timing signal generated by the timing generation unit 36.
  • FIG. 7 is a block diagram illustrating a configuration of the first embodiment of the frame synchronization detection unit 35.
  • FIG. 8 is a block diagram illustrating a configuration of the second embodiment of the frame synchronization detection unit 35.
  • FIG. 9 is a block diagram illustrating a configuration of the frame synchronization detection unit 35 according to the third embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of the fourth embodiment of the frame synchronization detection unit 35.
  • FIG. 11 is a block diagram illustrating a configuration of the fifth embodiment of the frame synchronization detection unit 35.
  • FIG. FIG. 7 is a diagram illustrating a phase relationship in frame synchronization detection.
  • FIG. 13 is a diagram illustrating a phase relationship in frame synchronization detection.
  • FIG. 14 is a diagram illustrating a frequency shift in frequency correction.
  • FIG. 15 is a diagram illustrating a phase relationship in frame synchronization detection.
  • FIG. 16 is a diagram illustrating a phase relationship in frame synchronization detection.
  • FIG. 17 is a block diagram illustrating a more detailed configuration of the frequency correction unit 32.
  • FIG. 18 is a block diagram showing a more detailed configuration of the phase correction unit 34.
  • FIG. 19 is a diagram for explaining a phase shift in the phase correction.
  • FIG. 20 is a diagram for explaining pseudo synchronization generated in the phase correction unit 34.
  • FIG. 21 is a diagram for explaining the pseudo synchronization that occurs in the phase correction unit 34.
  • FIG. 22 is a block diagram illustrating a configuration of a demodulation device according to the second embodiment of the present invention.
  • FIG. 23 is a flowchart showing the operation performed by the demodulation device according to the second embodiment of the present invention.
  • FIG. 24 is a block diagram showing a more detailed configuration of the frequency pull-in determination unit 42. is there.
  • FIG. 25 is a block diagram illustrating an example of a more detailed configuration of the phase correction unit 34A.
  • FIG. 26 is a block diagram illustrating an example of a more detailed configuration of the phase correction unit 34A.
  • FIG. 27 is a block diagram illustrating a configuration of a demodulation device according to the third embodiment of the present invention.
  • FIG. 28 is a flowchart showing the operation performed by the demodulation device according to the third embodiment of the present invention.
  • FIG. 29 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the first embodiment.
  • FIG. 30 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the second embodiment.
  • FIG. 31 is a diagram illustrating an example of a threshold value set in the phase synchronization determination section 437 of the phase synchronization detection section 43.
  • FIG. 32 is a diagram for explaining the operation principle of the pseudo synchronization determination performed by the pseudo synchronization determination unit 45 in FIG.
  • FIG. 33 is a block diagram illustrating a configuration of a demodulation device according to the fourth embodiment of the present invention.
  • FIG. 34 is a diagram illustrating another timing signal generated by the timing generation unit 36.
  • FIG. 35 is a diagram for explaining the operation principle of the pseudo-synchronization determination performed by the pseudo-synchronization determination unit 45 in FIG.
  • FIG. 36 is a block diagram illustrating a configuration of a demodulation device according to the fifth embodiment of the present invention.
  • FIG. 37 is a flowchart showing the operation performed by the demodulation device according to the fifth embodiment of the present invention.
  • FIG. 38 is a block diagram illustrating an example of a configuration of the pseudo-synchronization determination unit 45 in FIG.
  • FIG. 39 is a block diagram showing the configuration of the frequency step section 46.
  • FIG. 40 is a diagram showing each signal waveform in the frequency step section 46.
  • FIG. 41 is a diagram for explaining the operation principle of the frequency step.
  • FIG. 42 is a block diagram showing a configuration of the demodulation device according to the sixth embodiment of the present invention.
  • FIG. 43 is a block diagram showing a configuration of the demodulation device according to the seventh embodiment of the present invention.
  • FIG. 44 is a flowchart showing the operation performed by the demodulation device according to the seventh embodiment of the present invention.
  • FIG. 45 is a block diagram showing a configuration of the demodulation device according to the eighth embodiment of the present invention.
  • FIG. 46 is a diagram for explaining the phase jitter.
  • FIG. 47 is a diagram illustrating the relationship between the phase jitter and C / N.
  • FIG. 48 is a block diagram showing the configuration of the demodulation device according to the ninth embodiment of the present invention.
  • FIG. 49 is a flowchart showing the operation performed by the demodulation device according to the ninth embodiment of the present invention.
  • FIG. 50 is a block diagram showing a configuration of frame synchronization determination section 47.
  • FIG. 51 is a block diagram illustrating a configuration of the C / N detection unit 48.
  • FIG. 52 is a block diagram showing a configuration of the gate signal selection unit 49.
  • FIG. 53 is a block diagram illustrating a configuration of the phase error detection unit 341 of the phase correction unit 34B.
  • FIG. 54 is a diagram for explaining the phase error detection operation performed by the phase error detection unit 341 of the phase correction unit 34B.
  • FIG. 55 is a block diagram showing a configuration of a demodulation device according to the tenth embodiment of the present invention. It is.
  • FIG. 56 is a flowchart showing the operation performed by the demodulation device according to the tenth embodiment of the present invention.
  • FIG. 57 is a block diagram illustrating a configuration of the C / N detection unit 48A.
  • FIG. 58 is a block diagram illustrating a configuration of the gate signal selection unit 49A.
  • FIG. 59 is a diagram illustrating each timing signal input to the demodulation mode switching unit 50 and the demodulation mode signal output.
  • FIG. 60 is a block diagram illustrating a configuration of the phase error detection unit 341 of the phase correction unit 34C.
  • FIG. 61 is a diagram illustrating a phase error detection operation performed by the phase error detection unit 341 of the phase correction unit 34C.
  • FIG. 62 is a block diagram illustrating a configuration of the demodulation device according to the first embodiment of the present invention.
  • FIG. 63 is a flowchart showing the operation performed by the demodulation device according to the first embodiment of the present invention.
  • FIG. 64 is a block diagram illustrating a configuration of the gate signal selection unit 49B.
  • FIG. 65 is a block diagram illustrating a configuration of the demodulation mode switching unit 5OA.
  • FIG. 66 is a block diagram showing a configuration of the demodulation device according to the 12th embodiment of the present invention.
  • FIG. 67 is a block diagram illustrating the configuration of the BER detection unit 51.
  • FIG. 68 is a diagram illustrating the relationship between C / N and the bit error rate.
  • FIG. 69 is a block diagram showing a configuration of the demodulation device according to the thirteenth embodiment of the present invention.
  • FIG. 70 is a block diagram showing a configuration of the BER detection unit 51A.
  • FIG. 71 is a block diagram showing a configuration of the demodulation device according to the fourteenth embodiment of the present invention.
  • FIG. 72 is a block diagram illustrating a configuration of another modulation device according to an embodiment of the present invention.
  • FIG. 73 is a diagram illustrating an example of a communication frame generated in another modulation device according to an embodiment of the present invention.
  • FIG. 74 is a block diagram illustrating a configuration of another demodulation device according to an embodiment of the present invention.
  • FIG. 75 is a block diagram showing a configuration of the carrier synchronization auxiliary signal decoder 52.
  • FIG. 76 is a diagram showing a timing signal generated by the evening generating unit 36A.
  • FIG. FIG. 2 is a block diagram illustrating a configuration of the device.
  • FIG. 78 is a diagram illustrating an example of a communication frame generated in a conventional modulation device.
  • FIG. 79 is a diagram illustrating mapping of BPSK, QPSK, and 8PSK to a code arrangement.
  • FIG. 80 is a diagram showing a data structure and a frame structure of MPEG in the conventional modulation device and method.
  • FIG. 81 is a block diagram showing a configuration of a conventional demodulation device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention enables high-speed and stable carrier synchronization even in a low C / N state by using a BPSK including a carrier synchronization auxiliary signal dispersedly arranged in a packet among time-division multiplexed phase modulated signals. Modulation and demodulation apparatus and method.
  • FIG. 1 is a block diagram showing a configuration of a modulation device according to an embodiment of the present invention, corresponding to claims 1 to 3 and 6 to 8.
  • a modulation device includes a frame synchronization signal / TMCC signal generation unit 11, a TS packet synthesis unit 12, a TMCC error correction encoding unit 13, a first error correction code Synchronization section 14, second error correction coding section 15, first BPSK mapping section 16, BPSK / QPSK mapping section 17, 8PSK mapping section 18, multiplexing / quadrature modulation section 19, and synchronization.
  • An auxiliary signal generation unit 20 and a second BPSK mapping unit 21 are provided.
  • FIG. 2 is a diagram showing an example of a communication frame generated in the modulation device according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of the configuration of the multiplexing / quadrature modulation unit 19 in FIG.
  • the frame synchronization signal / TMCC signal generation unit 11 generates a frame synchronization signal / TMCC signal based on the input TMCC information.
  • the frame synchronization signal / TMCC signal is subjected to error correction coding in the TMCC error correction coding unit 13, and then input to the BPSK mapping unit 16.
  • the BP SK mapping section 16 maps the input frame synchronization signal and TMCC signal to the BP SK code arrangement (see FIG. 79 (a)), and outputs it to the multiplexing / quadrature modulation section 19.
  • the TS bucket synthesizing unit 12 synthesizes a plurality of input MPEG-TS packets (see FIG. 80 (a)), and is composed of a packet group of a lower layer signal and a packet group of a higher layer signal. Generate a frame with a fixed number of packets (see Fig. 80 (b)). In this frame, the packet group of the low-layer signal is subjected to error correction coding in the first error correction coding unit 14 and then input to the BP SK / QP SK mapping unit 17.
  • the BPSK / QPSK mapping unit 17 converts the input low-layer signal into a BPSK code arrangement (see FIG. 79 (a)) or a QPSK code. This is mapped to the constellation (see Fig.
  • the packet group of the high-layer signal is input to the 8PSK mapping section 18 after being subjected to error correction coding in the second error correction coding section 15.
  • the 8PSK mapping section 18 maps the input high-layer signal to a code arrangement of 8PSK (see FIG. 79 (c)), and outputs it to the multiplexing / quadrature modulation section 19.
  • the synchronization auxiliary signal generation unit 20 generates a signal (hereinafter, abbreviated as a carrier synchronization auxiliary signal) for assisting carrier synchronization in a demodulation device described later.
  • the second BPSK mapping section 21 receives the carrier synchronization auxiliary signal generated by the synchronization auxiliary signal generation section 20 and maps it into the BP SK code arrangement (see FIG. 79 (a)). / Output to quadrature modulator 19.
  • the reason why the BPSK is mapped to the carrier synchronization auxiliary signal in this way is to enable the demodulation device to reproduce the carrier by using the BPSK portion of the plurality of time-division multiplexed phase modulations.
  • the multiplexing / orthogonal modulation unit 19 generates a communication frame by time-division multiplexing each signal input from each mapping unit in the arrangement shown in FIG. 2, and then performs quadrature modulation to output.
  • the multiplexing / orthogonal modulation unit 19 generates a communication frame by time-division multiplexing each signal input from each mapping unit in the arrangement shown in FIG. 2, and then performs quadrature modulation to output.
  • the multiplexing / quadrature modulation unit 19 includes a frame synchronization signal and a TMCC signal to which BPS has been applied, a bucket group of higher-layer signals to which 8PSK has been applied, and a BPSK or Time-division multiplexing is performed in units of packet groups of low-layer signals to which QPSK has been applied, and the carrier synchronization auxiliary signal subjected to BPSK modulation is dispersed in a packet that is the minimum unit at which the modulation method is switched.
  • the communication frame is generated by performing time division multiplexing (insertion).
  • a gate signal for controlling insertion timing of each signal is generated from an output signal of a frame counter for counting the number of symbols of one frame. It can be done by switching each switch.
  • the carrier synchronization auxiliary signal is inserted continuously for two or more symbols so as to enable delay detection. Also, in order to improve the demodulation characteristics, it is preferable that the insertion period of the carrier synchronization auxiliary signal be as short as possible, specifically, about 200 symbols or less.
  • the signal that assists the carrier synchronization in the demodulation device is modulated by the BPSK that is strong against the low C / N state, and dispersed in the packet. And output the communication frame inserted.
  • the first embodiment is a basic demodulator
  • the second to eighth embodiments are demodulators that avoid pseudo-synchronization with respect to the first embodiment.
  • the 14th to 14th embodiments are demodulation devices in which the phase noise is further reduced as compared with the first embodiment.
  • FIG. 4 is a block diagram showing a configuration of a demodulation device according to a first embodiment of the present invention, which corresponds to claims 9, 37, and 40.
  • the demodulator according to the first embodiment includes a quadrature detector 31, a frequency corrector 32, a band limiting filter 33, a phase corrector 34, and a frame synchronization detector 3. 5, a timing generation section 36, a first error correction section 37, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
  • the frequency correction unit 3 2 includes a frequency error detection unit 3 2 1 and a frequency error holding unit 3 2, a numerically controlled oscillator 3 2 3, and a complex multiplier 3 2 4.
  • the phase correction section 34 includes a phase error detection section 341, a phase error holding section 342, a numerical control oscillation section 3443, and a complex multiplication section 3444.
  • signal lines indicated by bold lines and “/ 2” indicate signal lines of signals expressed in a complex manner (hereinafter, the same applies to each drawing).
  • the quadrature detector 31 demodulates each PSK modulated signal in the input communication frame by quadrature detection using a local oscillation signal of a fixed frequency, and equalizes the in-phase component (I) and the quadrature component (Q) of the low-frequency signal. Is output.
  • the frequency correction unit 32 receives the signal output from the quadrature detection unit 31 and receives a frequency shift due to a frequency shift of a frequency converter (not shown) in the satellite antenna from the timing generation unit 36. Correct based on the timing signal.
  • the frequency error detector 3221 receives the signal output from the band limiting filter 33, detects the frequency error by performing delay detection.
  • the frequency error holding unit 3222 averages the frequency errors in the BPSK period among the frequency errors detected by the frequency error detection unit 321, according to the output signal from the timing generation unit 36.
  • the numerical control oscillator 322 performs a numerical operation on the averaged signal output from the frequency error holding unit 322 and outputs an oscillation signal.
  • the complex multiplication unit 3 2 4 performs complex multiplication of the signal output from the quadrature detection unit 3 1 and the signal output from the numerical control oscillation unit 3 2 3 to cancel the frequency error.
  • the band limiting filter 33 inputs the signal output from the frequency correction unit 32 and performs spectrum shaping of each PSK signal.
  • the signal output by 3 is input, and the BPSK-modulated frame synchronization signal, that is, the head of the communication frame, is detected by differential detection.
  • the timing generation unit 36 determines the period of the frame synchronization signal / TMCC signal within one communication frame and the carrier synchronization auxiliary signal based on the information at the head of the frame detected by the frame synchronization detection unit 35. A period is detected, and a timing signal (gate signal) corresponding to the period is generated.
  • the phase corrector 34 receives the signal output from the band-limiting filter 33 and corrects the phase shift based on the evening timing signal received from the evening timing generator 36.
  • the phase error detector 341 receives the signal output from the band limiting filter 33 via the complex multiplier 344, and detects a phase difference from a predetermined reference phase.
  • the phase error holding unit 342 averages the phase error in the BPSK period among the phase errors detected by the phase error detection unit 341 according to the output signal from the timing generation unit 36.
  • the numerically controlled oscillator 343 performs a numerical operation on the averaged signal output from the phase error holder 342 and outputs an oscillated signal.
  • the complex multiplication unit 344 performs a complex multiplication of the signal output from the band limiting filter 33 and the signal output from the numerical control oscillation unit 343 to cancel the phase error.
  • the first error correction section 37 receives the signal output from the phase correction section 34 and converts the main signal, which has been individually error-correction-coded into a high-layer packet group and a low-layer packet group in the modulation device, into a packet. Performs error correction in units and restores the order of packets rearranged on the time axis for time division multiplex transmission. This output is output to the video decoder 40.
  • Second error correction section 38 receives the signal output from phase correction section 34 and performs error correction on the TMCC signal that has been error-correction-coded in the modulation device. This output is output to the TMCC decoder 40.
  • the TMCC decoder 40 detects TMCC information indicating the division of each layer in the frame and the modulation mode of each layer.
  • the BER measurement unit 41 re-trellis the signal obtained by performing trellis decoding on the demodulated 8 PSK signal that has been subjected to trellis coding, which is a type of error correction coding, and demodulates the signal. 8 Monitor BER of higher layer signal by comparing with PSK signal. As a result, if it is determined that the quality of the decoded video of the higher layer is lower than the allowable value, the BER measurement unit 41 outputs a lower-layer video signal having high resistance to the quality deterioration of the transmission path. To control the video decoder 40 Next, the operation performed by the demodulation device according to the first embodiment will be described in detail along the processing flow with reference to FIGS. 5 to 19 further.
  • FIG. 5 is a flowchart illustrating an operation performed by the demodulation device according to the first embodiment.
  • FIG. 6 is a diagram showing a signal detected by the frame synchronization detection unit 35 and a timing signal generated by the timing generation unit 36.
  • FIGS. 7 to 11 are block diagrams showing the configuration of each embodiment of the frame synchronization detection unit 35.
  • FIG. FIGS. 12 to 16 are diagrams illustrating the phase relationship in each embodiment of the frame synchronization detection unit 35.
  • FIG. FIG. 17 is a block diagram showing a more detailed configuration of the frequency correction unit 32.
  • FIG. 18 is a block diagram showing a more detailed configuration of the phase correction unit 34. As shown in FIG.
  • the demodulation device first detects a frame synchronization signal in frame synchronization detection section 35 for a signal input to quadrature detection section 31 via a tuner (not shown) ( Step S101).
  • the head of the communication frame that is, the head of the frame synchronization signal / TMC C signal can be detected.
  • the frame synchronization detection unit 35 that realizes such detection of the head of the frame, five embodiments having a specific configuration can be considered. Hereinafter, these five embodiments will be described in order.
  • FIG. 7 is a block diagram illustrating a configuration of the first embodiment of the frame synchronization detection unit 35 according to claim 33.
  • the first embodiment includes a delay detection unit 351, a phase identification unit 352, and a collation unit 3553.
  • the delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before.
  • the phase identification unit 352 identifies the phase of the signal output from the delay detection unit 351 and decodes the data.
  • the phase discrimination section 352 outputs the output signal of the delay detection section 351, as shown in FIG. If the phase is between -90 degrees and 90 degrees or less (A region), "0" is output, and 90 degrees or more and 180 degrees or less or -180 degrees or more -90 degrees or less (B It operates to output “1” when it is in the area.
  • the matching section 353 compares the signal output from the phase identifying section 352 with a predetermined frame synchronization signal, and detects the start position of the frame.
  • the reference signal referred to in the matching section 353 is obtained by differentially decoding the frame synchronization signal.
  • the output of the delay detector 351 when there is a frequency shift in the phase modulation signal input to the delay detector 351, the output of the delay detector 351 must have a phase shift as shown in FIG. (X in the figure). In addition, when the C / N is low, the result is as shown in FIG. 15. In the phase identification method of the first embodiment, a phase error occurs.
  • the second embodiment corresponds to this.
  • FIG. 8 is a block diagram illustrating a configuration of the second embodiment of the frame synchronization detecting unit 35 according to claim 33.
  • the second embodiment includes a delay detection unit 351, first to third phase identification units 352a to 352c, and a matching unit 353.
  • the delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before.
  • the first to third phase discriminating sections 3552a to 3552c discriminate the phases of the signals output from the delay detecting section 3551, respectively.
  • each of the first to third phase discriminating sections 352 a to 352 c has a phase discriminating area of 180 degrees as shown in FIG. Each has a different phase rotation.
  • the first phase discriminating section 35 2 a sets the phase of the output signal of the delay detecting section 35 1 to 90 degrees or more and 90 degrees or less (A region).
  • the second phase discriminating section 352b changes the phase of the output signal of the delay detecting section 351 to ( If it is above (90 + a) degrees and below (90 +) degrees (area A), "0” is output, and above (90 + a) degrees and below 180 degrees or above-180 degrees It operates to output “1” when it is below ( ⁇ 9 0 + a) degrees (area B). Further, as shown in FIG. 13 (b), the second phase discriminating section 352b changes the phase of the output signal of the delay detecting section 351 to ( If it is above (90 + a) degrees and below (90 +) degrees (area A), "0” is output, and above (90 + a) degrees and below 180 degrees or above-180 degrees It operates to output “1” when it is below ( ⁇ 9 0 + a) degrees (area B). Further, as shown in FIG.
  • the third phase discriminating section 352c determines that the phase of the output signal of the delay detecting section 351 is more than (—90—H) degrees (90— “0” is output if the angle is below (H) degrees (A area), and (90 ° -H) degrees or more and 180 ° or less or 180 ° degrees or more and ( ⁇ 90—H) degrees or less (B It operates to output “1” when it is in the area.
  • the matching section 353 performs matching between each signal output by the first to third phase identifying sections 352 a to 352 c and a predetermined frame synchronization signal. The start position of the frame is detected for any one of the matched signals.
  • the reference signal referred to in the matching section 353 is obtained by differentially decoding the frame synchronization signal.
  • the phase identification is performed by applying a phase rotation to the coordinate axes in the phase identification unit, that is, by applying different phase rotations to the phase identification regions.
  • a method is also conceivable in which the phase discrimination unit does not perform phase rotation, and performs phase rotation on the output of the delay detection unit 351, to discriminate phases.
  • the third embodiment corresponds to this.
  • FIG. 9 is a block diagram showing a configuration of a third embodiment of the frame synchronization detecting section 35, corresponding to claim 34.
  • the third embodiment is different from the delay detection section 351, the first to third phase rotation sections 354a to 354c, the three phase identification sections 352, and the matching section 353. Is provided.
  • the delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before.
  • the first to third phase rotation units 354a to 354c receive the signals output from the delay detection unit 351 and apply different phase rotations to the signals to output the signals.
  • 3 phase identification sections 3 5 2 Inputs the signals output by the first to third phase rotation units 354a to 354c, identifies the signals by the reference phase in the same phase identification area, and decodes the data.
  • the matching section 353 compares each signal output from the three phase identification sections 352 with a predetermined frame synchronization signal, and determines a frame for any one signal that matches the frame synchronization signal. Detects the start position of.
  • phase detection of the output of the delay detection 35 1 is equivalently the same as that shown in FIG. 13, and the same effect as that of the second embodiment can be obtained.
  • the signals subjected to the three types of phase rotation are collated. However, if the collation can be performed using the signals subjected to the more types of phase rotation, the delay may be reduced. The accuracy of frame synchronization by detection can be improved.
  • FIG. 10 is a block diagram illustrating a configuration of a fourth embodiment of the frame synchronization detecting unit 35 according to claim 35.
  • the fourth embodiment includes a delay detection unit 351, a phase identification unit 352, a phase rotation unit 365, and a collation unit 353.
  • the delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before.
  • the phase identification unit 352 identifies the phase of the signal output from the delay detection unit 351, and decodes the data.
  • the frame synchronization signal to be detected is a BPSK modulation signal
  • phase identification section 352 has a phase identification area of 180 degrees (see FIG. 12).
  • the matching section 353 compares the signal output from the phase identifying section 352 with a predetermined frame synchronization signal, and detects the start position of the frame.
  • the reference signal referred to in matching section 353 is a signal obtained by differentially decoding the frame synchronization signal.
  • the discrimination phase rotation unit 3555 performs phase rotation on the phase discrimination unit 352, and changes the rotation phase until the frame synchronization detection is obtained in the matching unit 353.
  • the phase identification is performed by applying a phase rotation to the coordinate axes in the phase identification unit, that is, by applying different phase rotations to the phase identification regions.
  • the phase discrimination unit does not perform phase rotation, and performs phase rotation on the output of the delay detection unit 351, thereby discriminating the phase.
  • the fifth embodiment corresponds to this.
  • FIG. 11 is a block diagram showing a configuration of a fifth embodiment of the frame synchronization detecting unit 35 according to claim 36.
  • the fifth embodiment includes a delay detection unit 351, a phase rotation unit 354, a phase identification unit 352, and a collation unit 3553.
  • the delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before.
  • the phase rotation unit 354 receives the signal output from the delay detection unit 351 and performs phase rotation to output the signal. Here, the phase rotation section 354 changes its rotation phase until the collation section 353 obtains frame synchronization detection.
  • the phase identification unit 352 identifies the phase of the signal output from the phase rotation unit 354 and decodes the data.
  • the collation unit 353 compares the signal output from the phase identification unit 352 with a predetermined frame synchronization signal, and detects the head position of the frame.
  • phase detection of the output of the delay detection 35 1 is equivalently the same as that shown in FIG. 16, and the same effect as that of the fourth embodiment can be obtained.
  • the frame synchronization detection unit 35 of the first to fifth embodiments uses delay detection, if the frequency correction unit 32 or later is used, the installation position is the same as the frequency correction unit 32. There is no particular limitation as long as the output is the output of the band limiting filter 33 or the output of the phase correction unit 34. As will be described later, since the delay detection is also used in the frequency correction unit 32, the delay detection unit 35 1 of the frame synchronization detection unit 35 is shared with the delay detection unit of the frequency correction unit 32. This makes it possible to reduce the circuit scale.
  • the frame start signal detected by frame synchronization detecting section 35 is Are input to the timing generation unit 36.
  • the timing generation unit 36 detects the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in one communication frame based on the frame head signal detected by the frame synchronization detection unit 35.
  • a BPSK timing signal corresponding to the period as shown in (c) is generated (step S102).
  • the BP SK timing signal according to only the period of the carrier synchronization auxiliary signal as shown in FIG. 6D can obviously provide the useful effects of the present invention.
  • the insertion interval and the insertion width (the number of symbols) of the BPSK-modulated carrier synchronization auxiliary signal are important to reproduce the carrier in the BPSK period.
  • the longer the interval is the longer the holding state of the frequency correction unit 32 and the phase correction unit 34 is, and if any frequency error remains, the phase rotation of the modulation signal occurs between them.
  • the pull-in phase may differ by 180 degrees, or even out of synchronization.
  • the number of inserted symbols at least two symbols are required because frequency error detection in the frequency correction unit 32 uses delay detection, detects the phase shift between one symbol and uses it as the frequency error. .
  • the carrier synchronization auxiliary signal is continuously inserted for two or more symbols and the insertion interval is set to about 200 symbols or less.
  • the timing generation section 36 sends the generated BPSK timing signal (FIG. 6 (c) or FIG. 6 (d)) to the frequency error holding section 322 of the frequency correction section 32 and the phase error holding section 342 of the phase correction section 34. Output each (see Figure 4). Next, the operation of the frequency correction unit 32 will be described with reference to FIG.
  • a frequency correction unit 32 includes a frequency error detection unit 321 including a delay detection unit 321a and a phase error detection unit 321b, a switching unit 322a, and a constant generation unit.
  • Frequency error holding section 322 including section 322b, adder 322c, and delay section 322d; adder 323a, delay section 323b, cosine wave generation section 323c, and sign wave generation section 323d.
  • a complex multiplying unit 324 is a complex multiplying unit 324.
  • the signal output from the quadrature detector 31 is output to the complex multiplier 324 and the band-limited filter.
  • the signal 33 is input to the delay detection section 321 a of the frequency error detection section 321 via 33.
  • the phase error detection unit 32 lb detects the phase difference from the X mark when there is a frequency shift as the frequency error with the Hata mark when there is no frequency shift as the reference on the receiving side. I do. Since the processing is performed in the rectangular coordinate system, the phase difference is originally calculated by arct an (y / x) .However, in a simplified manner, the amount proportional to the frequency error is Alternatively, the error Ay of the orthogonal component of the differential detection signal may be output as a frequency error.
  • the frequency error detected by the phase error detection unit 321b is input to a loop filter composed of the adder 322c and the delay unit 322d via the switching unit 322a, and the frequency error is averaged.
  • the frequency error holding unit 322 averages the frequency errors obtained only during the period of the frame synchronization signal / TMC C signal and the period of the carrier synchronization auxiliary signal in which BP SK modulation is performed within one communication frame.
  • the switching unit 322a is switched using the timing signal output from the evening generation unit 36.
  • the switching section 322a inputs the frequency error output from the phase error detection section 321b during the period of the BP SK modulation signal of the timing signal (Hi level period in FIG. 6 (c) or (d)) to the loop filter. During other periods, switching is performed so that “constant 0” generated by the constant generator 322b is input to the loop filter.
  • the output signal of the frequency error holding unit 322 controls the numerical operation oscillating unit (NCO) 323, and the complex multiplication unit 324 cancels the frequency error by the oscillating signal obtained therefrom.
  • the frequency error is corrected (step S103).
  • the input signal of the frequency error detection unit 321 is the output signal of the band limiting filter 33, but since the frequency error detection unit 321 uses delay detection, the signal after the complex multiplication unit 324 In other words, there is no particular limitation as long as it is an output signal of the complex multiplication unit 324, an output signal of the band limiting filter 33, or an output signal of the phase correction unit 34.
  • phase correction unit 34 Next, the operation of the phase correction unit 34 will be described with reference to FIG.
  • the phase correction unit 34 includes a phase error detection unit 341, a switching unit 342a, a constant generation unit 342b, adders 342c and 342e, a delay unit 342d, and a holding unit.
  • Phase error holding section 3 4 2 composed of 3 4 2 f and amplifier 3 4 2 g, and adder 3 4
  • Numerically controlled oscillator 3 4 3 consisting of 3 a, delay section 3 4 3 b, cosine wave generator 3 4 3 c and sine wave generator 3 4 3 d, and complex multiplier 3 4 4 .
  • the output signal of the band-limiting filter 33 is in phase with the output signal of the numerically controlled oscillator 3443, although the frequency error has been canceled by the frequency corrector 32. Therefore, the output of the complex multiplier 344 contains a phase error.
  • the output of the complex multiplier 344 including the phase error is input to the phase error detector 341. As shown in Fig. 19, the phase error detection by the phase error detector 341 detects the phase difference between the received signal X with a phase shift ⁇ and the reference phase on the receiving side indicated by ⁇ . I do.
  • phase error is originally calculated by arctan (Q / I), but is simplified to an amount proportional to the phase error.
  • BPSK the error ⁇ Q of the orthogonal component may be output as the phase error.
  • the signal is input to the loop filter composed of the adders 3 4 2 c and 3 4 2 e, the delay section 3 4 2 d and the amplifier 3 4 2 g via the 4 2 f, and the phase error signal is averaged.
  • the loop filter in the phase error holding unit 342 is divided into a direct system that enters the adder 342 e via the amplifier 342 g, and a direct system that enters the adder 342 c and the delay unit 342 d.
  • the direct system is used to correct phase errors
  • the integral system is used to correct small frequency shifts that could not be removed by the frequency correction unit 32.
  • the amplifier 342g determines the direct system and the integral system gain distribution.
  • the phase error holding section 3 4 2 is used to average the phase error obtained only during the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in which BPSK modulation is performed in one communication frame.
  • the timing signal output from the timing generation unit 36 the switching of the switching unit 342a and the control of the holding unit 342 are performed. This switching and control is performed during the period of the BPSK modulation signal of the timing signal.
  • the phase error output from the phase error detector 341 is input to the loop filter.
  • the output signal of the phase error detector 341 is input to the adder 342c, and during the other periods, the constant generator 342b
  • the switching section 3 4 2a is switched so that “constant 0” is input.
  • the output signal of the phase error detector 341 is output to the adder 342 e via the amplifier 342 g.
  • the holding unit 342 f is controlled so as to hold the output signal of the phase error detection unit 341 in the previous BPSK modulation signal period and output the signal to the adder 342 e.
  • the output signal of the phase error holding unit 342 controls the numerical operation oscillating unit (NCO) 343, and the complex signal 344 cancels the phase error by the oscillating signal obtained therefrom.
  • NCO numerical operation oscillating unit
  • the processing shifts to the steady demodulation processing (step S105).
  • the steady demodulation processing here is a demodulation operation after the phase correction unit 34 is phase-synchronized.
  • the numerical control oscillation means 3 2 That is, the oscillation frequency of 3 is not changed, and the phase synchronization in the phase correction unit 34 is not lost. For example, once the phase is synchronized, until the phase synchronization is lost for some reason, the updating of the coefficient of the frequency error holding unit 322 of the frequency correction unit 32, the reduction of the loop gain (lowering the sensitivity), etc.
  • step S103 the operation of the frequency correction unit 32
  • step S104 the operation of the phase correction unit 34
  • time-division multiplexing Carrier recovery is performed using the BP SK that includes the carrier synchronization auxiliary signal dispersedly arranged in the bucket among the phase modulated signals, so that carrier synchronization can be performed quickly and stably even in a low C / N state. it can.
  • carrier synchronization can be performed without erroneous operation of frame synchronization detection by delay detection.
  • the demodulation device avoids a malfunction due to pseudo synchronization in the phase correction unit 34 in the demodulation device according to the first embodiment. Therefore, pseudo-synchronization in the case where the phase is corrected using the carrier synchronization auxiliary signal modulated by BPSK will be described first.
  • Pseudo synchronization means that the insertion period of the carrier synchronization auxiliary signal in the modulator is constant (see Fig. 2), and the input frequency error to the phase correction unit 34 is 180 degrees xm (phase of the insertion period of the carrier synchronization auxiliary signal). (m is an arbitrary integer other than 0.) If the rotation frequency is used, the phase correction unit 34 cannot identify the original phase error in the carrier synchronization auxiliary signal cycle, and synchronizes with a different phase. is there.
  • phase error detection in the phase correction unit 34 It is not possible to detect a phase change in the carrier synchronization auxiliary signal insertion cycle ((2) in the figure). In this case, only a phase error of angle? Is detected at each time ((2) and (2) in the figure). (B in the figure).
  • the phase correction unit 34 simulates carrier synchronization despite the presence of a frequency error, and shifts to a steady demodulation operation. Will be stable.
  • the frequency of the pseudo synchronization is as shown in the following equation (2).
  • pseudo-synchronization can be performed at each frequency as shown in FIG.
  • FIG. 22 is a block diagram showing a configuration of the demodulation device according to the second embodiment of the present invention, which corresponds to claims 10, 37, and 41.
  • the demodulation device according to the second embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34 A, a frame synchronization detection unit 35, a timing generation section 36, a frequency pull-in detection section 42, a first error correction section 37, a second error correction section 38, a video decoder 39, and a TMCC decoder 40. , BER measuring unit 41.
  • FIG. 23 is a flowchart showing the operation performed by the demodulation device according to the second embodiment.
  • the demodulation device according to the second embodiment is different from the demodulation device according to the first embodiment in that a frequency pull-in detection unit 42 that detects a frequency pull-in state in the frequency correction unit 32
  • the phase correction unit 34 is replaced with the phase correction unit 34A.
  • the rest of the configuration of the demodulation device according to the second embodiment is the same as the configuration of the demodulation device according to the above-described first embodiment. Omitted.
  • Steps in FIG. 23 that perform the same processing as in FIG. 5 are assigned the same step numbers, and descriptions thereof are omitted.
  • FIG. 24 is a diagram showing a more detailed configuration of the frequency pull-in detector 42 of FIG. FIG.
  • the frequency pull-in detection unit 42 includes a frequency error detection unit 4 21 composed of a delay detection unit 4 21 a and a phase error detection unit 4 21 b, a switching unit 4 22, Integrator 4 2 4 consisting of constant generator 4 2 3, adder 4 2 4 a, delay 4 2 4 b, switch 4 2 4 c, constant generator 4 2 4 d, and evening It comprises a generator 425, an absolute value generator 427, and a frequency pull-in determiner 426.
  • the signal output from the band-limiting filter 33 is input to the delay detection unit 421a.
  • the delay detection unit 4 2 1a performs complex multiplication of the current n-phase PSK modulation signal and the complex conjugate signal of the n-phase PSK modulation signal one symbol before, as in the other delay detection units, and performs delay detection. Calculate the output.
  • the equation for calculating the delay detection output is as shown in the above equation (1).
  • the phase error detection unit 4221b detects the phase difference from the X mark when there is a frequency shift as a frequency error with the mark when there is no frequency shift as a reference on the receiving side. (See Figure 14).
  • the frequency error detected by the phase error detection section 421b is input to the adder 424a via the switching section 422, and the frequency error is averaged every predetermined period.
  • the timing generation unit 36 The switching section 422 is switched using the output timing signal (FIG. 6 (c) or (d)).
  • the switching section 422 integrates the frequency error output from the phase error detection section 421 b during the period of the BPSK modulation signal of the timing signal (the Hi level period in FIG. 6C or 6D).
  • the timing generation section 425 generates a timing pulse having a constant period, and controls the switching section 424c.
  • the integrator 4 2 4 connects the input of the power calculator 4 2 a to the feedback output of the delay 4 2 4 b or the constant generator 4 in accordance with the timing pulse generated by the timing generator 4 2 5.
  • an averaged frequency error for each fixed period is output.
  • the averaged frequency error output from the integration unit 424 is converted to a positive value by the absolute value conversion unit 427, and then output to the frequency pull-in determination unit 426.
  • the frequency pull-in determination unit 426 inputs the positive value averaged frequency error output from the absolute value averaging unit 427, and when the timing generation unit 425 generates a timing pulse, the averaged frequency error is determined in advance. The frequency pull-in is determined based on whether it is below the threshold (step S201).
  • the frequency pull-in determination unit 426 performs frequency pull-in, that is, the frequency correction unit 32 performs pseudo-synchronization in the phase correction unit 34. Judgment is made that the frequency has been corrected to a frequency that does not occur, and a signal for resetting the phase correction unit 34 is output so that the phase correction unit 34 is operated again.
  • the threshold value in the frequency pull-in determination unit 426 may be set in advance so that the phase correction unit 34 can determine whether or not the frequency correction unit 32 has corrected the frequency up to a frequency at which the pseudo-sync is not performed.
  • the frequency of the pseudo-synchronization is as shown in the above equation (2).
  • the symbol frequency is 2 OMbaud and the period is 207 symbols
  • the threshold value in the frequency pull-in determining unit 426 it is desirable to set the following frequency Di 1 represented by the following formula (3).
  • phase correction unit 34A Next, the operation of the phase correction unit 34A will be described with reference to FIG.
  • FIG. 25 is a block diagram showing an example of a more detailed configuration of the phase correction unit 34A.
  • the phase correction unit 34 A further includes a switching unit 34 2 h and a constant generation unit 34 2 i in the phase error holding unit 34 2 in the configuration of the phase correction unit 34. This is an additional configuration.
  • FIG. 25 components denoted by the same reference numerals as in FIG. 18 are components that perform the same operations, and thus description thereof will be omitted.
  • the reset signal output from the frequency pull-in determination unit 4 26 is input to the holding unit 3 42 f of the phase error holding unit 3 42 and the switching unit 3 42 h.
  • the holding unit 342 initializes the phase error signal in the direct system based on the reset signal.
  • the switching section 342 h switches the phase signal in the integration system by switching the feedback signal to the adder 342 c to “constant 0” output from the constant generation section 342 i based on the reset signal. Initialize the error signal.
  • phase correction unit 34 A the frequency error corrected to the frequency at which the pseudo-synchronization does not occur for the phase error signal input to the phase error holding unit 342 after the reset operation.
  • New phase correction is performed on the output signal of the correction unit 32 (step S202). After that, the processing shifts to the steady demodulation processing (step S105).
  • a switching section 343e and a constant generation section 344f are provided, and the switching section 324h and the constant generation section 344 are provided. Operations similar to 2 i may be performed in parallel. Performing the reset operation in parallel in this manner enables more reliable initialization.
  • the demodulation device includes the frequency pull-in detection unit 42, and the frequency correction unit 32 performs frequency correction up to a frequency at which the phase correction unit 34A is not pseudo-synchronized. After that, reset the phase corrector 34A and restart it.
  • the frequency pull-in detection unit 42 uses delay detection, if the frequency correction unit 32 or later is used, the installation position is the frequency correction unit There is no particular limitation as long as it is the output of 32, the output of the band limiting filter 33, or the output of the complementary portion 34A.
  • the frequency error detection section 4 21 of the frequency pull-in detection section 4 2 has the same function as the frequency error detection section 3 2 1 of the frequency correction section 3 2. It is also possible to share. If shared, the circuit scale can be reduced.
  • the demodulation device according to the third embodiment of the present invention like the second embodiment described above, has the same function as the second embodiment described above, except that the demodulation device according to the first embodiment malfunctions due to pseudo synchronization in the phase correction unit 34. Avoid it.
  • FIG. 27 is a block diagram showing the configuration of the demodulation device according to the third embodiment of the present invention, corresponding to claims 11, 37, and 42.
  • the demodulation device according to the third embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34 A, a frame synchronization detection unit 35, evening timing generation section 36, phase synchronization detection section 43, error correction detection section 44, pseudo synchronization determination section 45, first error correction section 37, and second error It includes a correction unit 38, a video decoder 39, a TMCC decoder 40, and a BER measurement unit 41.
  • FIG. 28 is a flowchart illustrating an operation performed by the demodulation device according to the third embodiment.
  • the demodulation device according to the third embodiment is different from the demodulation device according to the first embodiment in that the phase synchronization detection unit 43, the error correction detection unit 44, and the pseudo synchronization determination unit 4 5 is further added, and the phase correction unit 34 is replaced with a phase correction unit 34A.
  • the other configuration of the demodulation device according to the third embodiment is the same as the configuration of the demodulation device according to the first and second embodiments, and the components are denoted by the same reference numerals. The description is omitted.
  • steps in FIG. 28 that perform the same processing as in FIG. 5 are assigned the same step numbers, and descriptions thereof are omitted.
  • phase synchronization detector 43 First, the operation of the phase synchronization detector 43 will be described.
  • the signal input via the tuner (not shown) is subjected to frequency correction and phase correction as described in the first embodiment (step S301), and then sent to the phase synchronization detector 43. Is entered.
  • the phase synchronization detecting section 43 detects the phase synchronization / phase asynchronism only for the period of the BPSK modulated carrier synchronization auxiliary signal with respect to the input corrected signal.
  • phase synchronization detecting section 43 two embodiments having specific configurations can be considered. Hereinafter, these two embodiments will be described in order.
  • FIG. 29 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the first embodiment.
  • the phase synchronization detection unit 43 includes the phase error detection unit 431, and the absolute value generation unit 431.
  • the signal output from the phase correction unit 34 A is input to the phase error detection unit 43 1.
  • the phase error detection unit 431 uses the symbol ⁇ when there is no phase shift as a reference on the receiving side, and uses the phase difference from the X mark when there is a phase shift as the phase error ⁇ [degree]. (See Figure 19).
  • the phase error ⁇ detected by the phase error detecting section 431 is converted into a positive value I ⁇ I by the absolute value converting section 432.
  • the phase error I ⁇ I output from the absolute value conversion unit 4 32 is input to the adder 4 35 a via the switching unit 4 33, and the phase error I ⁇ ⁇ I Are averaged.
  • the switching unit 4 uses the timing signal (Fig. 6 (d)) output by the timing generation unit 36. 3 Perform switching of 3.
  • the switching unit 433 converts the phase error I ⁇ I output from the absolute value conversion unit 432 during the period of the BPSK modulated signal of the evening signal (Hi level period in FIG. 6D) into the integration unit 4. In the other period, switching is performed so that “constant 0” generated by the constant generator 4 3 4 is input to the integrator 4 3 5.
  • the timing generator 436 generates a timing pulse having a constant period, and controls the switch 435 c.
  • the integrator 435 generates the input of the adder 435 a from the feedback output of the delay 435 b or the constant generator 435 d according to the timing pulse generated by the timing generator 435. By switching to any one of the constants “0”, the averaged phase error I ⁇ I for each fixed period is output.
  • the phase synchronization determination section 437 inputs the averaged phase error output from the integration section 435, and when the timing generation section 436 generates a timing pulse, the averaged phase error is a predetermined threshold. The phase synchronization is determined based on whether the value is below the value (step S302).
  • phase synchronization determination section 437 determines that phase synchronization has been achieved, and compares the result with the pseudo synchronization determination section 45. Output to
  • the threshold value in the phase synchronization determination section 437 can be set arbitrarily according to the purpose of use or characteristics of the demodulation device. For example, when the phase synchronization is completely out of sync (pseudo- When synchronization is not performed), the phase rotation remains as shown in Fig. 31 (a) and the symbols exist with the same probability over the entire 360 degrees. After conversion to a positive value (first quadrant) in 32, the phase error may be set to 45 degrees, which is the average value of the phase error, or lower (Fig. 31 (b)).
  • FIG. 30 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the second embodiment.
  • the phase synchronization detecting section 43 adds the absolute value converting sections 4 32 A and 43 2 B, the comparing section 4 38, the switching section 4 33, and the constant generating section 4 3 4 to the addition.
  • Integrator 4 3 5 consisting of the unit 4 3 5 a, delay 4 3 5 b, switching 4 3 5 c, constant generator 4 3 5 d, evening timing generator 4 3 6, and phase synchronization And a judgment unit 437.
  • the I (in-phase) component signal is input to the absolute value conversion section 4 32 A, and the Q (quadrature) component signal is input to the 4 32 B.
  • the absolute value conversion unit 432A converts the input I component signal into a positive value I I I.
  • the absolute value conversion section 4 3 2 B converts the input Q component signal into a positive value I Q I.
  • the comparison unit 438 inputs the value III converted by the absolute value conversion unit 432A and the value
  • the signal is input to the adder 4 3 5 a via 3 3, and is averaged every certain period.
  • the evening timing signal (FIG. 6 (d)) output from the timing generation unit 36 is used.
  • Switching unit 4 3 3 is switched. This switching unit
  • the timing generator 436 generates a timing pulse having a constant period, and controls the switching unit 435c.
  • the integrator 4 35 sends the input of the adder 4 35 a to the delay 4 3 5 according to the timing pulse generated by the timing generator 4 36.
  • phase synchronization determination section 437 inputs the averaged comparison value output from the integration section 435, and when the timing generation section 436 generates a timing pulse, the averaged comparison value is determined in advance. The phase synchronization is determined based on whether the value falls below the threshold value (step S302). So Then, as a result of this determination, if the averaged comparison value falls below a predetermined threshold, the phase synchronization determination section 437 determines that phase synchronization has been achieved, and compares the result with the pseudo synchronization determination section 4. Output for 5
  • the threshold value in the phase synchronization determination section 437 can be set arbitrarily according to the purpose of use or characteristics of the demodulation device. For example, when the phase synchronization is completely out of sync (pseudo- (When not synchronized), the phase rotation remains as shown in Fig. 31 (a), and the symbols exist with the same probability over the entire 360 degrees, so that iII> IQI Since the probability of entering the region is 1/2, it is sufficient to set it to a majority or less than the number of integrations performed by the integration unit 435 (Fig. 31 (b)).
  • the error correction detection unit 44 inputs a signal indicating that error correction cannot be performed and a signal indicating that the error remains, which are output by the second error correction unit 38 in the process of error correction. Then, the error correction detection unit 44 detects whether or not correct error correction has been performed on the TMCC signal (step S303), and sends the result of this detection to the pseudo synchronization determination unit 45. Output.
  • the detection result of the phase synchronization detection unit 43 and the detection result of the error correction detection unit 44 are input to the pseudo synchronization determination unit 45.
  • the pseudo-synchronization determination section 45 first determines whether or not phase synchronization has been achieved based on the determination result of the phase-lock detection section 43. If the phase synchronization is established in this determination, the pseudo-synchronization determination section 45 next determines whether the phase synchronization is normal synchronization or pseudo-synchronization from the determination result of the error correction section 44.
  • the phase synchronization detector 43 can reliably determine the phase asynchronism.However, since the phase synchronization is determined only during the period of the carrier synchronization auxiliary signal, whether the synchronization is normal even if the phase synchronization is achieved. It cannot be determined whether it is pseudo-synchronous. For example, If the received signal has a frequency shift of 180 degrees in phase at the insertion interval of the carrier synchronization auxiliary signal, the phase synchronization judgment only during the period of the carrier synchronization auxiliary signal is as shown in FIG.
  • pseudo-synchronization As shown in (a), it is determined that synchronization is apparent (ie, pseudo-synchronization).
  • the output signal of the phase corrector 34A during the TMCC signal period has a large phase rotation as shown in FIG. 32 (b) (arrow in the figure).
  • Bit errors that cannot be corrected by the error correction unit 38 are included. Therefore, pseudo-synchronization can be determined by detecting whether or not the second error correction unit 38 has been able to correct the error with respect to the TMC C signal normally.
  • the pseudo-synchronization determination unit 45 determines phase synchronization / asynchronization based on the detection result of the phase synchronization detection unit 43, and determines normal synchronization / pseudo-synchronization based on the detection result of the error correction detection unit 44. I have. This determination method is shown in Table 1 below.
  • the pseudo-synchronization determination unit 45 determines that the synchronization is normal, the pseudo-synchronization determination unit 45 proceeds to the steady demodulation processing as it is (step S105) and determines that the synchronization is pseudo-synchronization.
  • a signal for resetting the phase correction operation is output to the phase correction section 34A (step S304).
  • This reset signal can be arbitrarily set, for example, a pulse signal sufficient to operate the phase correction unit 34A.
  • the phase correction section 34 The reset operation performed by A is the same as that described in the second embodiment, and the description here is omitted, but the purpose of instructing the reset operation is different from each other.
  • the reset operation is performed as an initialization operation for starting the phase correction operation after the frequency correction is normally performed, and the reset operation is performed in the third embodiment. Is an instruction for a reset operation to re-perform the complementation when the normal synchronization is not performed as a final result.
  • the demodulation device detects the phase synchronization during the period of the carrier synchronization auxiliary signal, and detects whether the TMCC signal is error-correctable. It is determined whether or not it is synchronous. Then, in the case of the pseudo synchronization, the phase correction unit 34A is reset and restarted.
  • phase error detecting section 431 included therein is different from the phase error detecting section 341 included in the phase correcting section 34A. Since they have similar functions, it is possible to share both phase error detectors. If shared, the circuit scale can be reduced.
  • the demodulation device according to the fourth embodiment of the present invention is the same as the second and third embodiments described above, except that in the demodulation device according to the first embodiment, the pseudo synchronization in the phase correction unit 34 is used. This avoids a malfunction caused by the above.
  • FIG. 33 is a block diagram showing a configuration of a demodulation device according to a fourth embodiment of the present invention, corresponding to claims 12, 37, and 43.
  • the demodulation device according to the fourth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34 A, a frame synchronization detection unit 3 5 and timing generator 3 6 A first phase synchronization detection unit 43A, a second phase synchronization detection unit 43B, a pseudo synchronization determination unit 45, a first error correction unit 37, a second error correction unit 38, and a video decoding unit.
  • the demodulation device according to the fourth embodiment is different from the demodulation device according to the first embodiment in that a first phase synchronization detection unit 43A and a second phase synchronization detection unit 43B are provided.
  • This is a configuration in which a pseudo-synchronization determination unit 45 is further added, and the phase correction unit 34 is replaced with a phase correction unit 34A.
  • the phase synchronization detection unit 43 is The configuration is such that the error correction detection unit 44 is replaced by the second phase synchronization detection unit 43B in the first phase synchronization detection unit 43A.
  • the rest of the configuration of the demodulator according to the fourth embodiment is the same as the configuration of the demodulator according to the first to third embodiments, and the same reference numerals are given to the components. The description is omitted.
  • processing steps performed by the demodulation device according to the fourth embodiment are the same as the processing steps shown in FIG. 28 in the third embodiment, and thus description thereof will be omitted.
  • the timing generator 36 Based on the frame start signal detected by the frame synchronization detector 35, the timing generator 36 generates a timing signal for the period of the frame synchronization signal / TMC signal and the period of the carrier synchronization auxiliary signal (FIG. 6 (c) ) And a timing signal only during the period of the carrier synchronization auxiliary signal (see Fig. 6 (d)), and a timing signal only during the period of the frame synchronization signal / TMCC signal (Fig. 34). .
  • the timing signal only during the period of the frame synchronization signal / TMCC signal is output to the second phase synchronization detection unit 43B.
  • the first phase synchronization detecting section 43A and the second phase synchronization detecting section 43B have the same configuration as that described in the third embodiment (FIG. 29 or 30).
  • First phase synchronization In the detection unit 43A, a timing signal only during the period of the carrier synchronization auxiliary signal is used to control the switching unit 433, and the synchronization / asynchronization of the phase during the period is performed on the signal after the frequency correction and the phase correction. Detection is performed (FIG. 28, step S302).
  • a timing signal only during the period of the frame synchronization signal / TMCC signal is used to control the switching section 433, and the signal after frequency correction and phase correction is used. Detection of phase synchronization / asynchronization in the period is performed (FIG. 28, step S303).
  • the first phase synchronization detecting section 43A and the second phase synchronization detecting section 43B output a detection result indicating whether or not phase synchronization has been achieved to the pseudo synchronization determining section 45, respectively.
  • the pseudo-synchronization determination unit 45 makes a determination shown in Table 2 below based on the detection results of the first phase-lock detection unit 43A and the second phase-lock detection unit 43B, and it is normal synchronization. If it is determined that the phase is correct, the process proceeds to the normal demodulation process (FIG. 28, step S105). Is output (FIG. 28, step S304).
  • the reason for the above determination is the same as that in the above-described second error correction section 38, that is, in the first phase synchronization detection section 43A, the period of the carrier synchronization auxiliary signal is Since phase synchronization is detected, apparent synchronization is achieved as shown in Fig. 35 (a) even during pseudo synchronization, while the second phase synchronization detector 43B has Since the phase synchronization is detected during the period of the frame synchronization signal / TMCC signal, the phase is largely rotated during pseudo-synchronization as shown in Fig. 35 (b) (arrow in the figure), and the phase homology is established. It is because it can be judged that there is not. Therefore, by detecting this phase asynchronism, it is possible to determine that it is pseudo-synchronous.
  • the demodulation device performs detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal. Judge from the detection result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the phase correction unit 34A is reset and restarted.
  • the phase error detecting section 431 included in the first and second phase synchronization detecting sections 43A and 43B, performs phase correction. Since it has the same function as the phase error detection section 341 included in the section 34A, both phase error detection sections can be shared. If shared, the circuit scale can be reduced.
  • the demodulation device according to the fifth embodiment of the present invention is similar to the second to fourth embodiments described above, except that the demodulation device according to the first embodiment employs a pseudo-synchronization in the phase correction unit 34. This is to avoid malfunction. However, while the demodulation devices according to the second to fourth embodiments control the phase correction unit, the demodulation device according to the fifth embodiment can detect the pseudo-synchronous frequency. (As described above, which is uniquely determined by the symbol frequency and the insertion period of the carrier synchronization auxiliary signal), and controls the frequency correction unit.
  • FIG. 36 is a block diagram showing a configuration of a demodulation device according to a fifth embodiment of the present invention, corresponding to claims 13, 37, 39, 44, and 65.
  • the demodulator according to the fifth embodiment includes a quadrature detection unit 31, a frequency correction unit 32 A, a band limiting filter 33, a phase correction unit 34, and a frame synchronization detection unit.
  • a timing generation unit 36 a phase synchronization detection unit 43, an error correction detection unit 44, a pseudo synchronization determination unit 45, a frequency step unit 46, and a first error correction unit 3 7, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
  • FIG. 37 is a flowchart showing the operation performed by the demodulation device according to the fifth embodiment.
  • the demodulation device according to the fifth embodiment is different from the demodulation device according to the first embodiment in that the phase synchronization detection unit 43, the error correction detection unit 44, and the pseudo synchronization determination unit 4 5 and a frequency step unit 46 are further added, and the frequency correction unit 32 is replaced with a frequency correction unit 32 A. Further, the frequency correction unit 32 is different from the demodulation device according to the third embodiment. The configuration is such that 32 is replaced with a frequency correction section 32 A, the phase correction section 34 A is returned to the phase correction section 34, and a frequency step section 46 is further added.
  • the rest of the configuration of the demodulation device according to the fifth embodiment is the same as the configuration of the demodulation device according to the first and third embodiments, and the components are denoted by the same reference numerals. The description is omitted.
  • steps for performing the same processing as in FIGS. 5 and 28 are denoted by the same step numbers, and description thereof will be omitted.
  • the pseudo synchronization determination unit 45 determines whether the phase synchronization is normal synchronization or pseudo synchronization based on the detection result of the phase synchronization detection unit 43 and the detection result of the error correction detection unit 44. to decide. Then, as a result of performing the above-described determination, the pseudo-synchronization determination unit 45 directly proceeds to the normal demodulation processing when it is determined that the synchronization is normal (step S105), and when the pseudo-synchronization is determined. Outputs a signal that causes the frequency step section 46 to perform a step operation (the signal form is the same as the above-described reset signal) (step S401).
  • FIG. 38 is a block diagram illustrating an example of the configuration of the pseudo-synchronization determination section 45.
  • the pseudo-synchronization determination unit 45 includes a logical sum (0 R) circuit 451, a counter 452, and a pulse output unit 453.
  • the pseudo synchronization determination unit 45 inputs the detection result of the phase synchronization detection unit 43 to the input terminal of the counter 45, and inputs the detection result of the error correction detection unit 44 to one terminal of the OR circuit 45 1. I do.
  • the counter 452 counts the period during which the detection result of the phase synchronization detector 43 is Hi, and clears the counted value when the output of the OR circuit 451 becomes Hi.
  • the pulse output section 453 determines whether or not the count value output from the counter 452 has reached a predetermined value, and outputs a pulse signal indicating a step operation when the count value has reached a predetermined value. The pulse signal is fed back to the other terminal of the R circuit 451, and the count value of the counter 452 is cleared simultaneously with the output of the pulse signal.
  • FIG. 39 is a block diagram showing an example of the configuration of the frequency step section 46.
  • FIG. 40 is a diagram showing signal waveforms generated by the frequency step unit 46.
  • Figure 41 shows the FIG. 7 is a diagram showing the operation principle of a wave number step unit 46.
  • the frequency step unit 46 includes a control signal generation unit 461 composed of an exclusive OR (X ⁇ R) circuit 46 1 a, a delay unit 46 lb, and a logical product (AND) circuit 461 c. It includes a constant generation unit 462, a second constant generation unit 463, a switching unit 464, an integration unit 465, a negative encoding unit 466, and a switching unit 467.
  • the pulse signal (FIG. 40 (a)) output from the pseudo-synchronization determination unit 45 is input to the XOR circuit 461a and the AND circuit 461c, respectively.
  • the XOR circuit 461a performs an exclusive OR operation on the pulse signal and a signal that is fed back via the delay unit 461b, and generates and outputs a control signal B (FIG. 40 (c)).
  • the AND circuit 461c calculates the logical product of the pulse signal and the control signal B, generates and outputs the control signal A (FIG. 40 (b)).
  • the switching unit 464 generates a constant Fg generated by the first constant generation unit 462 when the control signal A is at the Hi level (a numerical value in which the oscillation frequency of the numerical control oscillation unit 323 changes by the pseudo-synchronous frequency interval (fg)).
  • Integrator 465 performs cumulative addition of the input numerical values and outputs the result.
  • the switching unit 467 outputs the signal output from the integrating unit 465 as it is when the control signal B is at the Hi level, and the negative encoding unit 466 outputs the signal output from the integrating unit 465 when the control signal B is at the L0 level. And then switch to output.
  • the frequency step section 46 sets the frequency signal shown in FIG. 40 (d), that is, + Fg, -Fg, + 2Fg, -2Fg,. Are output in order.
  • FIG. 41 shows the case where the frequency f g is 48.3 kHz and the frequency is 96.6 kHz and the pseudo synchronization is performed.
  • the frequency interval fg at which pseudo synchronization occurs is determined from the symbol frequency and the insertion period of the carrier synchronization auxiliary signal. Can be. In other words, it can be said that the pseudo synchronization occurs at the frequency of the normal synchronization frequency ⁇ ⁇ ⁇ fg (m is an integer other than 0). Therefore, based on the frequency fg, + F g, -F g, +2 F g, -2 F g,... Are calculated by the frequency step unit 46, and the frequency correction unit 32A is calculated based on the calculated value.
  • the frequency of the phase synchronization in the phase correction unit 34 is forcibly shifted in the frequency correction unit 32A.
  • the operation of the frequency correction unit 32A will be described with reference to FIG.
  • the frequency correction unit 32A includes a frequency error detection unit 321, a frequency error holding unit 322, an adder 325, a numerically controlled oscillation unit 323, and a complex multiplication unit 324.
  • the frequency correction unit 32A has a configuration in which an adder 325 is further added to the frequency correction unit 32 of FIG.
  • the output signal of frequency error holding section 322 and the frequency step control signal output from frequency step section 46 are input to adder 325.
  • the adder 325 forcibly shifts the oscillation frequency of the numerical operation oscillator (NCO) 323 by adding both the input signals. Thereafter, phase correction is performed again at the shifted frequency (steps S401 and S104).
  • the demodulation device performs detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the presence or absence of a bit error during the period of the frame synchronization signal / TMCC signal. Then, it is determined from the detection result whether or not the synchronization is normal.
  • the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34 can perform normal synchronization.
  • the demodulation device according to the sixth embodiment of the present invention is similar to the second to fifth embodiments described above, except that the demodulation device according to the first embodiment employs a pseudo-synchronization in the phase correction unit 34. This is to avoid malfunction.
  • the demodulation devices according to the second to fourth embodiments control the phase correction unit
  • the demodulation device according to the sixth embodiment has the same configuration as the fifth embodiment.
  • the frequency correction unit is controlled by using the fact that the frequency of the pseudo synchronization is known (as described above, it is uniquely determined by the symbol frequency and the insertion period of the carrier synchronization auxiliary signal).
  • FIG. 42 is a block diagram showing a configuration of a demodulation device according to a sixth embodiment of the present invention, corresponding to claims 14, 37, 39, 45, and 65.
  • the demodulation device according to the sixth embodiment includes a quadrature detection unit 31, a frequency correction unit 32 A, a band limiting filter 33, a phase correction unit 34, and a frame synchronization detection unit. 35, a timing generation unit 36, a first phase synchronization detection unit 43A, a second phase synchronization detection unit 43B, a pseudo synchronization determination unit 45, and a frequency step unit 46. , A first error correction unit 37, a second error correction unit 38, a video decoder 39, a TMCC decoder 40, and a BER measurement unit 41.
  • the demodulation device according to the sixth embodiment is different from the demodulation device according to the first embodiment in that a first phase synchronization detection unit 43 A and a second phase synchronization detection unit 4 3B, a pseudo-synchronization determination unit 45 and a frequency step unit 46 are further added, and the frequency correction unit 32 is replaced by a frequency correction unit 32A. Also, the demodulation according to the fourth embodiment is performed. In the device, the frequency correction unit 32 is replaced with the frequency correction unit 32A, the phase correction unit 34A is returned to the phase correction unit 34, and the frequency step unit 46 is added.
  • the processing steps performed by the demodulation device according to the sixth embodiment are the same as the processing steps shown in FIG. 37 in the fifth embodiment, and a description thereof will be omitted. A portion in which the demodulation device performs an operation different from that of the demodulation device according to the fourth embodiment will be described.
  • the pseudo synchronization determination unit 45 determines whether the phase synchronization is normal synchronization or not. Determine if they are synchronized. Then, as a result of performing the above-described determination, the pseudo-synchronization determination unit 45 proceeds to the normal demodulation processing if it is determined that the synchronization is normal (step S105). A signal for causing the frequency step section 46 to perform the step operation (the signal form is the same as the reset signal described above) is output (step S401).
  • the frequency step unit 46 performs the frequency signal shown in FIG. Fg, -F g, +2 F g, -2 F g, ... are output in order. Then, the frequency step unit 46 inputs the output frequency step control signal to the adder 325 of the frequency correction unit 32A.
  • the adder 325 adds the input frequency step control signal to the output signal of the frequency error holding unit 322 to forcibly shift the oscillation frequency of the numerical calculation oscillator (NCO) 323. Thereafter, phase correction is performed again at the shifted frequency (steps S401 and S104).
  • the demodulation device provides a carrier synchronization assist Detection of phase synchronization in the signal period and detection of phase synchronization in the frame synchronization signal / TMCC signal period are performed, and it is determined from the detection result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34 can perform normal synchronization.
  • the demodulation device according to the seventh embodiment of the present invention is the same as the second to sixth embodiments described above, except that the demodulation device according to the first embodiment employs a pseudo synchronization in the phase correction unit 34. This is to avoid malfunction.
  • the demodulation device according to the seventh embodiment controls the phase correction unit performed in the second embodiment and controls the frequency correction unit performed in the fifth embodiment.
  • FIG. 43 is a block diagram showing a configuration of a demodulation device according to a seventh embodiment of the present invention, which corresponds to claims 15, 37, 39, 46, and 65.
  • the demodulation device according to the seventh embodiment includes a quadrature detection unit 31, a frequency correction unit 32A, a band limiting filter 33, a phase correction unit 34A, a frame synchronization detection Unit 35, evening-imaging generation unit 36, frequency lock-in detection unit 42, phase synchronization detection unit 43, error correction detection unit 44, pseudo-synchronization determination unit 45, and frequency step unit 4 6, a first error correction section 37, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
  • the demodulation device according to the seventh embodiment has a configuration in which the demodulation device according to the second embodiment and the demodulation device according to the fifth embodiment are combined. Accordingly, the configuration of the demodulation device according to the seventh embodiment is the same as the configuration of the demodulation devices according to the second and fifth embodiments, and the same reference numerals are given and the description thereof will be omitted. Abbreviate.
  • the demodulator first detects a frame synchronization signal in the frame synchronization detection unit 35 for a signal input to the quadrature detection unit 31 via a tuner (not shown) (step S101).
  • the frame head signal detected by the frame synchronization detection unit 35 is input to the timing generation unit 36.
  • the demodulation device based on the frame head signal detected by the frame synchronization detection unit 35 in the timing generation unit 36, the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in one communication frame Is detected, and a BP SK evening timing signal corresponding to the period as shown in FIG. 6 (c) is generated (step S102).
  • a BPSK timing signal corresponding only to the period of the carrier synchronization auxiliary signal as shown in FIG. 6D may be used.
  • the BPSK timing signal (FIG. 6 (c)) is output to the frequency correction unit 32A, the phase correction unit 34A, and the frequency pull-in detection unit 42. Further, a signal giving the period of the carrier synchronization auxiliary signal shown in FIG. 6 (d) is output to the phase synchronization detection unit 43.
  • the demodulation device sets the period of the BP SK timing signal in the frequency correction unit 32A.
  • the frequency error is corrected for (step S103).
  • the frequency pull-in detection unit 42 calculates an average frequency error for the frequency-corrected signal, and determines the frequency pull-in state (step S201). If the demodulation device determines in step S201 that the frequency has not been pulled, the process returns to step S103 to perform the frequency error correction process again, while determining that the frequency has been pulled. In this case, after resetting the phase correction operation for the phase correction unit 34A (step S304), a new phase error correction process is performed (step S104).
  • the demodulation device The pseudo-synchronization determination unit 45 detects the phase synchronization state during the carrier synchronization auxiliary signal period detected by the phase synchronization detection unit 43 and the detection result of whether the TMCC signal can correct the error detected by the error correction detection unit 44. Then, it is determined whether the current state is normal synchronization, pseudo synchronization, or asynchronous (steps S302, S303). If the demodulation device determines that the state is asynchronous in steps S302 and S303, the demodulator returns to step S104 to perform the phase error correction process again, and the state becomes pseudo.
  • step S401 the oscillation frequency in the frequency correction unit 34A is stepped by the frequency step unit 46 (step S401), and then the process returns to step S104 to return to the phase error. Perform correction processing.
  • the demodulation device determines that the state is normal synchronization in the above-mentioned steps S302 and S303, it shifts to a steady demodulation process as it is (step S105).
  • the demodulation device is provided with the frequency pull-in detection unit 42, and the frequency correction unit 32A includes a frequency correction unit 34A up to a frequency at which the phase correction unit 34A does not simulate.
  • the frequency correction is performed, reset the phase corrector 34 A and restart it.
  • phase synchronization is detected during the period of the carrier synchronization auxiliary signal, and the presence / absence of a bit error is detected during the period of the frame synchronization signal / TMCC signal. From the detection result, it is determined whether or not normal synchronization is performed.
  • the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34A can perform normal synchronization.
  • the demodulation device according to the eighth embodiment of the present invention is the same as the second to seventh embodiments described above, except that the demodulation device according to the first embodiment employs pseudo-synchronization in the phase correction unit 34. This is to avoid malfunction.
  • the demodulation device according to the eighth embodiment includes the control of the phase correction unit performed in the second embodiment and the control of the frequency correction performed in the sixth embodiment. It controls the number correction unit.
  • FIG. 45 is a block diagram showing a configuration of a demodulation device according to an eighth embodiment of the present invention, corresponding to claims 16, 37, 39, 47, and 65.
  • the demodulation device according to the eighth embodiment includes a quadrature detection unit 31, a frequency correction unit 32A, a band limiting filter 33, a phase correction unit 34A, a frame synchronization detection Section 35, evening-imaging section 36, frequency pull-in detecting section 42, first phase-locking detecting section 43A, second phase-locking detecting section 43B, and pseudo-sync determining section 45, a frequency step section 46, a first error correction section 37, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
  • a quadrature detection unit 31 a frequency correction unit 32A, a band limiting filter 33, a phase correction unit 34A, a frame synchronization detection Section 35, evening-imaging section 36, frequency pull-in
  • the demodulation device according to the eighth embodiment has a configuration in which the demodulation device according to the second embodiment and the demodulation device according to the sixth embodiment are combined. Therefore, the configuration of the demodulation device according to the eighth embodiment is the same as the configuration of the demodulation devices according to the second and sixth embodiments, and the same reference numerals are given and the description is omitted.
  • the processing steps performed by the demodulation device according to the eighth embodiment are basically the same as those of the demodulation device according to the seventh embodiment, and the flowchart is omitted. explain.
  • the demodulation device first detects a frame synchronization signal in a frame synchronization detection unit 35 for a signal input to the quadrature detection unit 31 via a tuner (not shown) (step S101).
  • the frame head signal detected by the frame synchronization detection unit 35 is input to the timing generation unit 36.
  • the demodulation device in the timing generation section 36, based on the frame head signal detected by the frame synchronization detection section 35, detects the period of the frame synchronization signal / TMCC signal in one communication frame and the carrier synchronization auxiliary signal. The period is detected, and the BPSK evening image corresponding to the period is detected as shown in Fig. 6 (c).
  • a signaling signal is generated (step S102).
  • the BPSK timing signal according to only the period of the carrier synchronization auxiliary signal as shown in FIG. 6 (d) may be used.
  • the BPSK timing signal (FIG. 6 (c)) is output to the frequency correction unit 32A, the phase correction unit 34A, and the frequency pull-in detection unit 42.
  • a signal giving the period of the carrier synchronization auxiliary signal shown in FIG. 6 (d) is sent to the first phase synchronization detection unit 43A, and the frame synchronization shown in FIG. 34 is sent to the second phase synchronization detection unit 43B.
  • a signal giving a signal / TMCC signal period is output.
  • the frequency correction unit 32A corrects the frequency error for the period of the BP SK timing signal (step S103). Then, in the demodulation device, the frequency pull-in detection unit 42 calculates an average frequency error for the frequency-corrected signal, and determines the frequency pull-in state (step S201). If the demodulation device determines in step S201 that the frequency has not been locked, the process returns to step S103 to perform the frequency error correction process again. If it is determined, the phase correction operation is reset for the phase correction unit 34A (step S304), and then a new phase error correction process is performed (step S104).
  • the demodulation device determines, in the pseudo synchronization determination unit 45, the phase synchronization state of the carrier synchronization auxiliary signal period detected by the first phase synchronization detection unit 43A, Based on the phase synchronization state of the T MCC signal period detected by the second phase synchronization detection unit 43B, it is determined whether the current state is normal synchronization, pseudo synchronization, or asynchronous (step S302, S 303). If the demodulator determines in step S302 or S303 that the state is asynchronous, the demodulator returns to step S104 and corrects the phase error again, and the state becomes pseudo-synchronous.
  • step S401 If it is determined that there is, the oscillation frequency in the frequency correction unit 34A is stepped by the frequency step unit 46 (step S401), and the process returns to the step S104 to correct the phase error again.
  • the demodulator If it is determined in steps S302 and S303 that the state is normal synchronization, the process directly proceeds to a steady demodulation process (step S105).
  • the demodulation device includes the frequency pull-in detection unit 42, and the frequency correction unit 32A up to the frequency at which the phase correction unit 34A is not pseudo-synchronized. After the frequency correction is performed, reset the phase corrector 34 A and restart it. Further, phase synchronization is detected during the period of the carrier synchronization auxiliary signal, and phase synchronization is detected during the period of the frame synchronization signal / TMCC signal. From the detection result, it is determined whether the synchronization is normal or not. In the case of the pseudo synchronization, the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34A can perform normal synchronization. This makes it possible to avoid false synchronization in the phase corrector 34A during the frequency pull-in process by the frequency corrector 32A.
  • the demodulation device improves the reception performance by reducing the effect of phase jitter caused by phase noise in the demodulation device according to the first embodiment. .
  • phase jitter of the demodulated signal in the case where the phase is corrected using the frame synchronization signal / TMCC signal and the carrier synchronization auxiliary signal which are BPSK modulated will be described first.
  • the communication frame input to the demodulator that is, the phase modulation signal
  • the communication frame transmitted from the modulation device includes a frame synchronization signal / TMCC signal and a carrier synchronization auxiliary signal which are subjected to BPSK modulation in a dispersed manner. Therefore, in order to perform carrier synchronization during the period of this signal in the demodulation device, as described in the first embodiment, the frequency correction unit 32 and the frequency correction unit 32 are used.
  • the phase corrector 34 operates only during the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period.
  • phase jitter is corrected during the period in which the phase correction unit 34 operates, but is not corrected during other periods.
  • phase jitter is corrected during the period of the main signal (high-layer signal and low-layer signal) modulated by BPSK, QPSK, and 8 ⁇ SK other than the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period. Instead, the phase jitter remains in the demodulated signal.
  • the C / N is low as shown in FIG. 47 (in the figure, the shaded circles correspond, and the smaller the circle, the higher the C / N and the higher the C / N If the phase error remains, the output signal of the phase correction unit 34 exceeds the phase boundary (shown by a dotted line in the figure) for identifying each code point, that is, if a code error occurs. It will happen.
  • FIG. 48 is a block diagram showing a configuration of a demodulation device according to a ninth embodiment of the present invention, corresponding to claims 17, 37, and 48.
  • the demodulation device according to the ninth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34B, a frame synchronization detection unit 35, and a timing generation unit.
  • FIG. 49 is a flowchart showing an operation performed by the demodulation device according to the ninth embodiment.
  • the demodulation device according to the ninth embodiment is different from the demodulation device according to the first embodiment in that a frame synchronization determination unit 47, a C / N detection unit 48, a gate signal selection unit 49 And the phase correction unit 34 is replaced with a phase correction unit 34B.
  • the rest of the configuration of the demodulation device according to the ninth embodiment is the same as the configuration of the demodulation device according to the above-described first embodiment. Omitted.
  • FIG. 50 is a block diagram showing a configuration of the frame synchronization determination section 47.
  • the frame synchronization determination section 47 includes a phase identification section 471, and a collation section 472.
  • the signal input through the tuner (not shown) is subjected to the frequency correction and the phase correction as described in the first embodiment (steps S103, S104), and then the phase correction is performed.
  • the phase identification unit 471 identifies the phase of the input signal.
  • the collating unit 353 compares the signal identified by the phase identifying unit 471 with a predetermined frame synchronization signal, detects whether or not frame synchronization has been achieved, and uses the result as a gate signal. Output to the selection section 49 (Step S501).
  • FIG. 51 is a block diagram showing the configuration of the C / N detection unit 48, which detects C / N equivalently based on a phase error.
  • the C / N detection unit 48 includes a phase error detection unit 481, an absolute value conversion unit 482, a switching unit 483, a constant generation unit 4884, and an adder 4 8 5 a, delay section 4 8 5 b, switching section 4 8 5 c, constant generating section 4 85 d, integrating section 4 85, timing generating section 4 86, C / N high level And a judgment unit 487.
  • a signal input via a tuner (not shown) is subjected to frequency correction and phase correction as described in the first embodiment (steps S103, S104).
  • the signal is input from the phase correction unit 34 B to the phase error detection unit 48 1.
  • the phase error detector 481 uses the symbol ⁇ when there is no phase shift as a reference on the receiving side, and uses the phase difference from the X when there is a frequency shift as the phase error ⁇ [degree]. (See Figure 19).
  • the phase error ⁇ detected by the phase error detector 481 is converted to a positive value I ⁇ I by the absolute value converter 482.
  • the phase error I ⁇ I output from the absolute value conversion unit 482 is input to the adder 485 a via the switching unit 483, and the phase error I ⁇ ⁇ I Are averaged.
  • the timing signal (FIG. 6 (d)) output by the timing generation unit 36 is used.
  • the switching unit 483 integrates the phase error I ⁇ I output by the absolute value conversion unit 482 during the period of the BPSK modulation signal of the timing signal (the Hi level period in FIG. 6D).
  • the C / N high level judgment unit 487 inputs the averaged phase error output from the integrator 485, and when the timing generator 486 generates a timing pulse, the averaged phase error is It is determined whether the C / N is high or low depending on whether the value falls below a predetermined threshold value (step S502). Then, as a result of this determination, if the averaged phase error falls below a predetermined threshold, the C / N high level determination unit 487 determines that C / N is high, and uses the result to select the gate signal. Output to part 49.
  • the threshold value in the C / N high level determination section 487 is used for the phase correction section 34 B by using a modulation method having a large number of phases for the phase correction when the C / N is low. It must be determined so that the phase error detection unit 341 does not output incorrect phase error information.
  • the distance D between n-phase PSK codes is represented by the following equation (4), where A is the amplitude of the n-phase PSK signal.
  • the phase error detection unit 341 is considered not to output erroneous phase error information.
  • C / N at this time is expressed by the following equation (5).
  • the C / N high level threshold determines whether or not to perform phase correction during the 8PSK period. Therefore, in the above equation (5), 8.3 dB obtained by substituting the inter-symbol distance of 8PSK into the n-phase PSK intersymbol distance D is a measure of the C / N high level threshold.
  • the C / N detection unit 48 in FIG. 51 obtains the C / N equivalently by converting the phase error into an absolute value, and the C / N high level determination unit 487 corresponding to 8.3 dB is used.
  • the code point of 8PSK is 1/2 of the angle difference between adjacent phase discrimination boundaries (dotted lines in Fig. 47), that is, 11.25 [degrees].
  • FIG. 52 is a block diagram showing a configuration of gate signal selecting section 49.
  • the gate signal selection unit 49 includes an AND circuit 491, a constant generation unit 492, and a switching unit 493.
  • the switching unit 493 includes a timing signal (FIG. 6 (c) or (d)) in the BPSK modulation signal period, which is an output signal of the timing generation unit 36, and “constant 1 (Hi level)” generated by the constant generation unit 492. And switches the output based on the signal indicated by the AND circuit 491.
  • switching section 493 determines that the determination result output from frame synchronization determination section 47 is “with synchronization” and the detection result output from C / N detection section 48 is “C / N is high”.
  • a constant 1 is output, ie, a gate signal instructing the execution of the phase correction operation during the entire communication frame period. If the result is other than that, the output signal of the timing generation unit 36 is output. That is, switching is performed so as to output a gate signal (FIG. 6 (c) or (d)) for instructing execution of the phase correction operation only in the BP SK period (step S504).
  • This gate signal is output to the phase error holding unit 342 of the phase correction unit 34B. Next, the operation of the phase correction unit 34B will be described.
  • This phase corrector 34B differs from the phase corrector 34 of the demodulator according to the first embodiment only in the configuration of the phase error detector 341. Therefore, the operation of the phase error detection unit 341 will be described below with reference to FIGS. 53 and 54.
  • FIG. 53 is a block diagram showing a configuration of the phase error detection unit 341.
  • the phase error detection section 341 includes a BPSK phase error detection section 341a, an 8PSK phase error detection section 341b, and a switching section 341d.
  • FIG. 54 is a diagram for explaining phase error detection performed by the BPSK phase error detection section 341a and the 8PSK phase error detection section 341b.
  • the output of the complex multiplier 344 including the phase error is input to both the BPSK phase error detector 341a and the 8PSK phase error detector 341b.
  • the BPSK phase error detector 34la detects the phase error with respect to the BPSK modulation axis (0 degree, 180 degrees) (Fig. 54 (a)).
  • Timing unit 341 d The timing signal period (BPSK modulation period) is output from the BPSK phase error detector 341a using the timing signal output from the analog signal generator 36. The phase error detected by the BPSK phase error detector 34a is used. Error detection unit 341 b Switches to output the detected phase error to phase error holding unit 342.
  • phase error holding unit 342 The operation after the phase error holding unit 342 is the same as that described in the first embodiment, except that the timing generation unit 36 outputs a signal for controlling the switching unit 342a and the holding unit 342f.
  • the gate signal output by the gate signal selector 49 is used instead of the timing signal (gate signal) to be output (see FIG. 48).
  • the phase correction unit 34B can perform the phase correction based on the C / N state according to the timing signal and the gate signal (Step S505).
  • the contents are shown in Table 3 below.
  • BPSK synchronization signal period refers to both the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period (when the timing signal in FIG. 6 (c) is used), or the carrier.
  • the figure shows only the synchronization auxiliary signal period (when the timing signal in Fig. 6 (d) above is used).
  • the demodulation device determines the C / N state when phase synchronization is performed in the BP SK modulation signal period based on the phase error in the carrier synchronization auxiliary signal period. If the detected C / N is at a predetermined level, The phase error is corrected assuming that 8 PSK modulation is also performed for the main signal period of the system.
  • carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
  • phase error detecting section 48 1 in the C / N detecting section 48 has the same function as the phase error detecting section 3 41 of the phase correcting section 34 B, both phase error detecting sections are used. It is possible to share. If they are shared, the circuit scale can be reduced. Since the frame synchronization determination section 47 is an example of a method of determining phase synchronization, the phase synchronization detection section 43 described in the third embodiment is used instead of the frame synchronization determination section 47. The same effect can be obtained.
  • the demodulation device according to the tenth embodiment of the present invention, similar to the ninth embodiment described above, reduces the influence of phase jitter caused by phase noise in the demodulation device according to the first embodiment. This improves the reception performance.
  • FIG. 55 is a block diagram showing a configuration of the demodulation device according to the tenth embodiment of the present invention, corresponding to claims 18, 37, and 49.
  • the demodulator according to the tenth embodiment includes a quadrature detector 31, a frequency corrector 32, a band limit filter 33, a phase corrector 34 C, and a frame synchronization.
  • Detection unit 35 Timing generation unit 36, Error correction detection unit 44, Frame synchronization judgment unit 47, C / N detection unit 48A, Gate signal selection unit 49A, Demodulation mode It includes a switching unit 50, a first error correction unit 37, a second error correction unit 38, a video decoder 39, a TMCC decoder 40, and a BER measurement unit 41.
  • FIG. 56 is a flowchart showing the operation performed by the demodulation device according to the tenth embodiment. It is.
  • the demodulation device according to the tenth embodiment is different from the demodulation device according to the first embodiment in that an error correction detection unit 44, a frame synchronization determination unit 47, and a C / N A detection unit 48 A, a gate signal selection unit 49 A, and a demodulation mode switching unit 50 are further added, and the phase correction unit 34 is replaced with a phase correction unit 34 C.
  • An error correction detector 44 and a demodulation mode switching unit 50 are further added to the demodulator according to the embodiment, and the C / N detector 48 is replaced with a C / N detector 48 A, and a gate signal selector. 49 is replaced by a gate signal selection unit 49 A.
  • the rest of the configuration of the demodulation device according to the tenth embodiment is the same as the configuration of the demodulation devices according to the first and ninth embodiments, and the same reference numerals are given to the components. The description is omitted.
  • Steps in FIG. 56 that perform the same processing as in FIG. 5 and FIG. 49 are assigned the same step numbers, and descriptions thereof are omitted.
  • the error correction detection unit 44 inputs a signal indicating that error correction cannot be performed and a signal indicating that the error remains, which are output by the second error correction unit 38 in the process of error correction. Then, the error correction detection unit 44 detects whether or not correct error correction has been performed on the TMCC signal, and outputs the result of this detection to the gate signal selection unit 49A (step S6). 0 1) ⁇
  • FIG. 57 is a block diagram showing the configuration of the C / N detection unit 48A, which detects C / N equivalently based on a phase error.
  • the C / N detection unit 48 A is composed of a phase error detection unit 481, an absolute value conversion unit 482, a switching unit 483, a constant generation unit 4884, and an adder. 48.5a, delay section 48.5b, switching section 48.5c, constant generation section 48.5d, integration section 485, timing generation section 486, and high C / N ratio It has a level judgment section 487 and a C / N low level judgment section 488.
  • the C / N detection unit 48A has a configuration obtained by further adding a C / N low level determination unit 488 to the configuration of the C / N detection unit 48 of the ninth embodiment.
  • the C / N high-level determination unit 487 inputs the averaged phase error output from the integration unit 485, and when the timing generation unit 486 generates a timing pulse, the averaged phase error is the first predetermined value. It is determined whether the C / N is high depending on whether the value is below the threshold (step S502). Then, as a result of this determination, if the averaged phase error falls below a predetermined first threshold, C / N high level determination section 487 determines that C / N is high and gates the result. Outputs to signal selector 49A.
  • the C / N low-level determination unit 488 inputs the averaged phase error output from the integration unit 485, and when the timing generation unit 486 generates a timing pulse, the averaged phase error is set to a second predetermined value. It is determined whether the C / N is low based on whether or not the threshold is exceeded (step S602). Then, as a result of this determination, if the averaged phase error exceeds a predetermined second threshold value, C / N high level determination section 488 determines that C / N is low, and gates the result. Outputs to signal selector 49A.
  • the first threshold value in the C / N high level determination unit 487 may be determined using 11.25 [degrees] as a guide as described above.
  • the C / N low level threshold value determines whether or not to perform the phase correction only in the BP SK period. Therefore, in the above equation (5), 3 dB obtained by substituting the inter-symbol distance of QP SK into the inter-symbol distance D of n-phase P SK is a measure of the C / N low level threshold.
  • the threshold in the C / N low-level decision unit 488 corresponding to this 3 dB is 1/2 of the angle difference between adjacent phase identification boundaries at the code point of QPSK, that is, 22.5 [degrees]. Become.
  • the output of the C / N detector 48A is as shown in Table 4 below. [Table 4] C / N high level C / N low level
  • gate signal selecting section 49 # Next, the operation of gate signal selecting section 49 # will be described with reference to FIG.
  • FIG. 58 is a block diagram showing a configuration of gate signal selecting section 49A.
  • the gate signal selection unit 49A includes AND circuits 491 and 495, a constant generation unit 492, switching units 493 and 494, and OR circuits 496 and 497.
  • the switching unit 493 includes a timing signal that provides both the BPSK modulation period and the QPSK modulation period of the main signal input from the TMCC decoder 40 via the OR circuit 497, and a “constant 1” generated by the constant generation unit 492. Is input, and the output is switched based on the determination result output from the C / N high level determination unit 487.
  • the switching section 494 receives the timing signal of the main signal input from the TMCC decoder 40 during the BP SK modulation period and the signal output by the switching section 493, and determines whether the C / N low level determination section 488 outputs the signal. Switch output based on results.
  • switching sections 493 and 494 output “constant 1” when the C / N determination is “high”, that is, a gate signal instructing execution of the phase correction operation during the entire communication frame period (step If the C / N judgment is “medium”, the timing signal of the QPSK and BP SK modulation period of the main signal is set (step S603), and if the C / N judgment is “low”, the main signal is set. Switch to output the timing signal (step S504) of the BPSK modulation period.
  • the determination result output from the frame synchronization determination unit 47 and the detection result output from the error correction detection unit 44 are input to the AND circuit 491.
  • the output of the AND circuit 49 1 is output to the AND circuit 49 together with the signal output from the switching unit 494. Entered in 5.
  • the OR circuit 496 receives the output of the AND circuit 495 and the BPSK timing signal output by the timing generator 36. Therefore, the output signal of the switching unit 494 is output as a gate signal only when the phase is synchronized by the AND circuits 495 and 495 and the OR circuit 496 and the TMCC is correctly corrected.
  • the BPSK timing signal (Fig. 6 (c) or (d)) is output as a gate signal.
  • This gate signal is output to the phase error holding unit 342 of the phase correction unit 34C.
  • FIG. 59 is a diagram showing each timing signal input to the demodulation mode switching unit 50 and the demodulation mode signal output.
  • the demodulation mode switching unit 50 receives the timing signal (FIG. 59 (b)) of the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period from the timing generation unit 36, and the main signal QPSK timing signal (FIG. 59) from the TMCC decoder 40. (c)), and the main signal BPSK timing signal (Fig. 59 (d)). Based on these timing signals, the demodulation mode switching unit 50 performs a first demodulation mode signal (FIG. 59 (e)) indicating the period of the BPSK modulation signal and a second demodulation mode signal indicating the period of the QPSK modulation signal. A demodulation mode signal (FIG. 59 (f)) is generated and output to the phase error detector 341.
  • the first and second demodulation mode signals are used to switch the demodulation mode of the phase error detection section 341.
  • phase correction unit 34C Next, the operation of the phase correction unit 34C will be described.
  • the phase correction unit 34C differs from the phase correction unit 34 of the demodulation device according to the first embodiment only in the configuration of the phase error detection unit 341. Therefore, the operation of the phase error detection unit 341 will be described below with reference to FIGS. 60 and 61.
  • FIG. 60 is a block diagram illustrating a configuration of the phase error detection unit 341.
  • the phase error detection section 341 includes a BP SK phase error detection section 341 a and a QP SK It includes a phase error detection section 341b, an 8 PSK phase error detection section 341c, and switching sections 341d and 341e.
  • FIG. 61 is a diagram for explaining the phase error detection performed by the BPSK phase error detection unit 341a, the QPSK phase error detection unit 34lb, and the 8PSK phase error detection unit 341c.
  • the output of the complex multiplication unit 344 including the phase error is input to each of the BPSK phase error detection unit 341a, the QPSK phase error detection unit 341b, and the 8PSK phase error detection unit 341c.
  • the BPSK phase error detector 341a detects a phase error with respect to the BPSK modulation axis (0 degree, 180 degrees) (FIG. 61 (a)).
  • the QPSK phase error detection section 341b detects a phase error with respect to the QPSK modulation axis (45 degrees, 135 degrees, 225 degrees, 315 degrees) (FIG. 61 (b)).
  • the 8PSK phase error detection unit 341c detects the phase error with respect to the 8PSK modulation axis (0, 45, 90, 135, 180, 225, 270, 315 degrees) (Fig. 61 (c)). .
  • the switching unit 341 d uses the second demodulation mode signal (see FIG. 59 (d)) output from the demodulation mode switching unit 50 to determine the phase detected by the QPSK phase error detection unit 341 b during the Hi signal period. The error is switched to output the phase error detected by the 8PSK phase error detection unit 341c to the switching unit 341e during the other periods.
  • the switching unit 341 e uses the first demodulation mode signal (see FIG.
  • the demodulation mode of the phase error detector 341 is switched in the order of priority of BPSK> QPSK> 8PSK.
  • phase error holding unit 342 The operation after the phase error holding unit 342 is the same as that described in the first embodiment, except that the timing generation unit 36 outputs a signal for controlling the switching unit 342a and the holding unit 342f.
  • the gate signal output by the gate signal selector 49A is used instead of the output timing signal (gate signal) (see FIG. 55). This allows the phase correction unit 34C to perform phase correction based on the C / N state in accordance with the first and second demodulation mode signals and the gate signal (step S505).
  • BPSK synchronization signal period refers to both the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period (when the timing signal in FIG. 6 (c) is used), or the carrier.
  • the figure shows only the synchronization auxiliary signal period (when the timing signal in Fig. 6 (d) above is used).
  • the demodulation device determines the C / N state when the phase is synchronized in the BP SK modulation signal period based on the phase error in the carrier synchronization auxiliary signal period.
  • the phase is corrected using the synchronization auxiliary signal period, and after the phase synchronization, the phase correction is also performed during the modulation period of the main signal other than the period.
  • the phase error detector 481 of the C / N detector 48A has the same function as the phase error detector 341 of the phase corrector 34C, so that both phase error detectors must be shared. Is possible. If they are shared, the circuit scale can be reduced. Further, since the frame synchronization determination unit 47 is an example of a method of determining phase synchronization, the same effect can be obtained even if the phase synchronization detection unit 43 described in the third embodiment is used instead of the frame synchronization determination unit 47. Is obtained.
  • the demodulation device according to the eleventh embodiment of the present invention is the same as the ninth and tenth embodiments described above, except that the demodulation device according to the first embodiment has a phase jitter caused by phase noise. Is reduced to improve the reception performance.
  • the demodulation device for reducing the influence of the above-described phase jitter and improving the reception performance will be described.
  • FIG. 62 is a block diagram corresponding to Claims 19, 37, and 50, showing the configuration of the demodulation device according to the eleventh embodiment of the present invention.
  • the demodulation device according to the first embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, Timing generator
  • an error correction detection unit 44 an error correction detection unit 44, a frame synchronization determination unit 47, a (/? ⁇ Detection unit 48A, a gate signal selection unit 49B, a demodulation mode switching unit 5OA, and a first error correction unit 37 , A second error correction unit 38, a video decoder 39, and a TMCC decoder
  • FIG. 63 is a flowchart showing the operation performed by the demodulation device according to the first embodiment.
  • the demodulation device As shown in FIG. 62, the demodulation device according to the eleventh embodiment The demodulator according to the embodiment further includes an error correction detection unit 44, a frame synchronization determination unit 47, a C / N detection unit 48A, a gate signal selection unit 49B, and a demodulation mode switching unit 5OA, and a phase correction unit 34 is added.
  • the gate signal selection unit 49A is replaced with the gate signal selection unit 49B
  • the demodulation mode switching unit 50 is replaced with the demodulation mode.
  • the configuration of the demodulation device according to the first embodiment is the same as that of the demodulation devices according to the first and ninth to tenth embodiments. The same reference numerals are given to the components and the description is omitted.
  • steps for performing the same processing as in FIGS. 5, 49 and 56 are denoted by the same step numbers, and description thereof is omitted.
  • FIG. 64 is a block diagram showing a configuration of gate signal selecting section 49B.
  • the gate signal selection section 49 B includes AND circuits 491, 491 a, 495, constant generation sections 492, 492 a, switching sections 493, 494, 499, and an OR circuit 496, 497 and a NOT circuit 498.
  • the operation up to the output of the OR circuit 496 is as described in the tenth embodiment.
  • the AND circuits 491, 495 and the OR circuit 496 achieve the phase synchronization and the TMCC
  • the output signal of the switching section 494 is output as a gate signal only when is correctly corrected, otherwise, the BPSK timing signal (FIG. 6 (c) or (d)) is output as a gate signal as before. Is done.
  • the AND circuit 49 la includes a signal (inverse logic) of the determination result output from the C / N high-level determination unit 487, the determination result output from the frame synchronization determination unit 47, and the detection result output from the error correction detection unit 44. (The logical value is inverted by the NOT circuit 498).
  • the switching unit 499 controls the period of the frame synchronization signal / TMCC signal and the carrier. The timing signal of the period auxiliary signal period and the “constant 1” generated by the constant generator 492a are input, and the output is switched based on the output of the AND circuit 491a.
  • the switching unit 499 outputs the “constant 1” generated by the constant generation unit 492a when the phase synchronization is obtained, the TMCC is not correctly corrected, and the C / N state is high. Otherwise, switching is performed so that the signal output from the OR circuit 496 is output as a gate signal (step S701). As a result, even when the TMCC is not correctly corrected, that is, when the signal representing the timing of the main signal generated from the TMCC decoder 40 is not reliable, the phase synchronization can be achieved and the high C / N state can be achieved. If, “constant 1” instructing execution of the phase correction operation is output as a gate signal during the entire period of the communication frame (step S702). In the case of the low C / N state, a signal in the BP SK period is output as a gate signal (step S703).
  • This gate signal is output to the phase error holding unit 342 of the phase correction unit 34C.
  • FIG. 65 is a block diagram showing a configuration of the demodulation mode switching unit 5OA.
  • the demodulation mode switching unit 5 OA includes AND circuits 501 to 503 and an OR circuit 504.
  • the AND circuit 501 inputs the determination result output from the frame synchronization determination unit 47 and the detection result output from the error correction detection unit 44.
  • the AND circuit 502 inputs the main signal BP SK timing signal (see FIG. 59 (d)) and the output of the AND circuit 501.
  • the AND circuit 503 receives the main signal QPSK timing signal (see FIG. 59 (c)) and the output of the AND circuit 501, and outputs the logic result as a second demodulation mode signal.
  • the R circuit 504 inputs the timing signal (see Fig. 59 (b)) of the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period and the output of the AND circuit 502, and performs the first demodulation on the logical result.
  • the gate signal selection unit 49B and the demodulation mode switching unit 50A allow the If the TMCC signal is correctly corrected by controlling the phase corrector 34C, and before the phase correction corresponding to each modulation method of the main signal, synchronization is achieved and the C / N state is high. Then, as described in the ninth embodiment, the period of the main signal is regarded as 8 PSK, and the phase is corrected (steps S704 and S601). After that, in the same manner as described in the tenth embodiment, phase correction is performed corresponding to each modulation method (steps S502 to S505, S602 to S603).
  • BPSK synchronization signal period means the period of both the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period (when the timing signal in FIG. 6 (c) is used). Alternatively, it shows only the carrier synchronization auxiliary signal period (when the timing signal in Fig. 6 (d) above is used).
  • the demodulation device uses the C / N state when the phase is synchronized in the BPSK modulation signal period based on the phase error in the carrier synchronization auxiliary signal period. If the detected C / N is at a predetermined level, The phase error is corrected by assuming that 8 PSK modulation is performed during the entire frame period, and the BPSK is recovered in the initial carrier wave recovery according to the reference phases corresponding to the multiple phase modulation methods provided in the phase error detection unit 341. The phase correction is performed using the modulated frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period, and after the phase synchronization, the phase correction is also performed in the modulation period of the main signal other than the period.
  • the demodulator according to the twelfth embodiment of the present invention is the same as the ninth to eleventh embodiments, except that the demodulator according to the first embodiment has a phase jitter caused by phase noise. Is reduced to improve the reception performance.
  • FIG. 66 is a block diagram showing a configuration of a demodulation device according to a twelfth embodiment of the present invention, corresponding to claims 20, 37, and 51.
  • the demodulation device according to the twelfth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, Generating section 36, frame synchronization determining section 47, BER detecting section 51, gate signal selecting section 49, first error correcting section 37, second error correcting section 38, video decoder 39, TMCC It includes a decoder 40 and a BER measurement unit 41.
  • the demodulation device according to the twelfth embodiment is different from the demodulation device according to the first embodiment in that a frame synchronization determination unit 47, a BER detection unit 51, and a gate signal selection unit 49 are provided.
  • the configuration is such that the phase correction unit 34 is replaced with a phase correction unit 34C.
  • a ⁇ ? ⁇ Detection unit 48 is provided in the demodulation device according to the ninth embodiment. This is a configuration in which the BER detector 51 is replaced.
  • the other configuration of the demodulation device according to the twelfth embodiment is the same as the configuration of the demodulation device according to the first and ninth embodiments, and the same reference numerals are assigned to the components. The description is omitted.
  • the processing steps performed by the demodulation device according to the twelfth embodiment are the same as the processing steps shown in FIG. 49 in the ninth embodiment, and a description thereof will not be repeated.
  • FIG. 67 is a block diagram illustrating a configuration of the BER detection unit 51.
  • the BER detection unit 51 includes an error correction re-encoding unit 511, a comparison unit 512, and a C / N high level determination unit 513.
  • the error correction re-encoding unit 511 receives the error-corrected TMCC signal output from the second error correction unit 38. Then, the error correction re-encoding unit 511 re-encodes the input error-corrected TMCC signal based on the frame synchronization signal / TMCC signal period timing signal. Comparing section 512 receives the re-encoded TMCC signal output from error-correcting re-encoding section 511 and the uncorrected signal output from phase correcting section 34C.
  • the comparing section 512 extracts the period of the TMCC signal from the signal output by the phase correction section 34C based on the timing signal of the frame synchronization signal / TMCC signal period, The bit error rate is calculated by comparing the signal and the re-encoded TMCC signal.
  • C / N high level determination section 513 receives the bit error rate output from comparison section 512, and determines whether the C / N is high or low depending on whether the bit error rate falls below a predetermined threshold. Judge (see FIG. 49, step S502). If the bit error rate falls below a predetermined threshold as a result of this determination, C / N high level determination section 513 determines that C / N is high, and determines the result as a gate signal selection section.
  • a threshold value will be calculated for the value 11.25 deg used in the ninth embodiment.
  • the C / N at 11.25 deg is 8.3 dB from the above equation (5).
  • the relationship between the C / N and the bit error rate in BPSK modulation is generally known to be as shown in FIG. 68, so the bit error rate at 8.3 dB from FIG. When reading a, 1 X 1 0- 4 is obtained. Therefore, the threshold may be set to measure the 1 X 1 0- 4.
  • the demodulation device detects the C / N state when phase synchronization is performed during the BPSK modulation signal period based on the bit error rate of the TMCC signal. If the C / N is at a predetermined level, the phase error is corrected on the assumption that the 8 PSK modulation is also performed for the main signal period of the communication frame.
  • carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
  • the demodulation device according to the thirteenth embodiment of the present invention is the same as the ninth to twelfth embodiments, except that the demodulation device according to the first embodiment has a phase jitter caused by phase noise. The effect of the evening is reduced to improve the reception performance.
  • FIG. 69 shows a thirteenth embodiment of the present invention corresponding to claims 21, 37, 52.
  • FIG. 3 is a block diagram illustrating a configuration of the demodulation device.
  • the demodulation device according to the thirteenth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, A generation unit 36, an error correction detection unit 44, a frame synchronization determination unit 47, a BER detection unit 51A, a gate signal selection unit 49A, a demodulation mode switching unit 50, a first error correction unit 37, It includes a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
  • the demodulation device according to the thirteenth embodiment is different from the demodulation device according to the first embodiment in that an error correction detection unit 44, a frame synchronization determination unit 47, and a BER detection unit 51A And a gate signal selection unit 49A and a demodulation mode switching unit 50, and the phase correction unit 34 is replaced with a phase correction unit 34C.
  • the demodulation device according to the tenth embodiment thus, the configuration is such that the C / N detection unit 48A is replaced by the BER detection unit 51A.
  • the rest of the configuration of the demodulation device according to the thirteenth embodiment is the same as that of the demodulation devices according to the first and tenth embodiments, and the same reference numerals are given to the components. The description is omitted.
  • processing steps performed by the demodulation device according to the thirteenth embodiment are the same as the processing steps shown in FIG. 56 in the tenth embodiment, and thus description thereof will be omitted.
  • FIG. 70 is a block diagram illustrating a configuration of the BER detection unit 51A.
  • BER detection section 51A includes error correction and re-encoding section 5 11, comparison section 512, C / N high level determination section 513, and C / N low level determination section 514. .
  • the error correction re-encoding unit 511 receives the error-corrected TMCC signal output from the second error correction unit 38. Then, the error correction re-encoding unit 5111 receives the input error correction based on the timing signal in the frame synchronization signal / TMCC signal period. Re-encoding is performed on the TMCC signal after the correction. Comparing section 512 receives the re-encoded TMCC signal output from error-correcting re-encoding section 511 and the uncorrected signal output from phase correcting section 34C.
  • comparing section 512 extracts the period of the TMCC signal from the signal output from phase correcting section 34C based on the timing signal of the frame synchronization signal / TMCC signal period, and extracts the error-corrected TMCC signal.
  • the bit error rate is calculated by comparing the signal and the re-encoded TMCC signal.
  • C / N high level determination section 513 receives the bit error rate output from comparison section 512, and has a high C / N depending on whether or not the bit error rate falls below a predetermined first threshold value. (See FIG. 56, step S502).
  • C / N low-level determining section 514 receives the bit error rate output from comparing section 512, and determines whether the bit error rate exceeds a predetermined second threshold value. Is determined (see FIG. 56, step S602). If the bit error rate falls below a predetermined first threshold value as a result of this determination, the C / N high-level determination unit 513 determines that C / N is high, and determines the result as a gate signal. Output to selection section 49A, and if the bit error rate exceeds a second predetermined threshold, C / N low level determination section 514 determines that C / N is low and determines the result. Output to gate signal selector 49A.
  • high-level determination unit 513 may be the 1 X 10- 4 as described above.
  • the first threshold value, a 1 X 10- 4 the second threshold may be set to a guide 2. 3 X 10.
  • the demodulation device detects the C / N state when phase synchronization is performed during the BP SK modulation signal period based on the bit error rate of the TMC C signal.
  • the phase is corrected using the BP SK modulated frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period in the initial carrier recovery, and the corresponding period after the phase synchronization
  • the phase correction is also performed during the modulation period of the main signal other than.
  • carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal subjected to BPSK, QP SK and 8P SK modulation is reduced. As a result, the reception performance can be improved.
  • the demodulation device according to the fourteenth embodiment of the present invention is similar to the ninth to thirteenth embodiments described above, except that in the demodulation device according to the first embodiment, phase demodulation caused by phase noise is reduced. The effect is reduced to improve the reception performance.
  • FIG. 71 is a block diagram showing a configuration of a demodulation device according to a fourteenth embodiment of the present invention, which corresponds to claims 22, 37, and 53.
  • the demodulation device according to the fourteenth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, Evening generator
  • the demodulator according to the fourteenth embodiment is different from the demodulator according to the first embodiment in that an error correction detector 44, a frame synchronization determiner 47, and a BER detector 51A are provided.
  • the configuration is such that a gate signal selection unit 49B and a demodulation mode switching unit 5OA are further added, and the phase correction unit 34 is replaced with a phase correction unit 34C.
  • the demodulation device according to the embodiment has a configuration in which the C / N detection unit 48A is replaced with a BER detection unit 51A.
  • the rest of the configuration of the demodulation device according to the fourteenth embodiment is the same as the configuration of the demodulation device according to the first and eleventh embodiments, and the same reference numerals are used for the components. The description is omitted here.
  • processing steps performed by the demodulation device according to the fourteenth embodiment are the same as the processing steps shown in FIG. 63 in the above-described first embodiment, and thus description thereof will be omitted.
  • the demodulation device detects the C / N state when the phase is synchronized during the BPSK modulation signal period based on the bit error rate of the TMCC signal.
  • the C / N is at a predetermined level, it is assumed that 8 PSK modulation is performed during the entire period of the communication frame, and the phase error is corrected.
  • the phase is corrected using the BPSK-modulated frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period in the initial carrier recovery, and after the phase homology period, the phase correction is performed.
  • the phase correction is also performed during the modulation period of the main signal other than the period.
  • the demodulators according to the ninth to fourteenth embodiments even after steady demodulation, the state of C / N is monitored, and the target of phase correction is determined based on the C / N detection result. It is needless to say that by changing the value, the effect of the phase jitter of the demodulated signal can be reduced and the receiving performance can be improved.
  • the demodulation devices according to the second to eighth embodiments have the purpose of avoiding pseudo-synchronization with respect to the demodulation device according to the first embodiment.
  • the demodulation devices according to the ninth to fourteenth embodiments have been individually described for the purpose of reducing the influence of the phase jitter on the basic demodulation device according to the first embodiment.
  • BP SK, QP SK, and 8 P SK are described as the modulation schemes for performing time division multiplexing.
  • the modulation scheme of the carrier synchronization auxiliary signal is time division multiplexed. If the phase modulation having the smallest number of phases n among the n-phase phase modulations, the same effect as described above can be obtained in other modulation methods.
  • the frame synchronization determination unit 47 described in the ninth embodiment Is applied to the phase synchronization detection unit 43 in the third, fifth, and seventh embodiments, and to the first phase synchronization detection unit 43A in the fourth, sixth, and eighth embodiments, respectively. It is possible to simplify the circuit.
  • the modulation / demodulation device which dispersively inserts the BPSK modulated carrier synchronization auxiliary signal into the communication frame and corrects the frequency and phase using this carrier synchronization auxiliary signal. And the method was explained.
  • the main signal includes a low-layer signal, that is, a signal subjected to BPSK modulation (see FIG. 2). Therefore, if the lower hierarchical signal, which is the main signal of the BPSK modulation, is also used for the initial carrier recovery, synchronization can be performed at higher speed and more stably.
  • the BP SK modulated low-layer signal is also used to carry A modulation and demodulation device and method capable of transmitting and reproducing waves will be described.
  • FIG. 72 is a block diagram showing a configuration of another modulation device according to an embodiment of the present invention, which corresponds to claims 3, 4, 7, and 8.
  • another modulation device includes a frame synchronization signal / TMCC signal generation unit 11, a TS packet synthesis unit 12, a TMCC error correction encoding unit 13, A first error correction coding unit 14, a second error correction coding unit 15, a first BPSK mapping unit 16, a BPSK / QPSK mapping unit 17, and a 8 PSK mapping unit 18; A multiplexing / quadrature modulation unit 19, a synchronization auxiliary signal generation unit 22, a differential encoding unit 23, and a second BPSK mapping unit 21.
  • FIG. 73 is a diagram illustrating an example of a communication frame generated in another modulation device according to an embodiment of the present invention.
  • the other modulation apparatus further includes a differential encoding section 23 in addition to the above-mentioned modulation apparatus (see FIG. 1), and a synchronization auxiliary signal generation section 20 is added to the synchronization auxiliary signal generation section 2.
  • the configuration is replaced with 2.
  • the synchronization auxiliary signal generator 22 generates the carrier synchronization auxiliary signal as described above. At this time, based on the input TMCC information, the synchronization auxiliary signal generation unit 22 transmits information defining the modulation scheme to be applied to the packet next to the position where the carrier synchronization auxiliary signal is inserted, as shown in FIG. Superimpose.
  • the differential encoding unit 23 receives the carrier synchronization auxiliary signal on which the modulation scheme information is superimposed, and performs differential encoding on the modulation scheme information so that the demodulation apparatus can decode the modulation scheme information even when the carrier is not synchronized. Is applied. Then, a carrier synchronization complement in which the differentially encoded modulation scheme information is superimposed.
  • the auxiliary signal is input to the second BP SK matting unit 21.
  • the carrier synchronization auxiliary signal after differential encoding is decoded by a demodulation device described later, the result is as follows.
  • the carrier synchronization auxiliary signal after differential encoding has no consecutive 1's or 0's, so that the carrier does not rise in the modulated wave, and the same pattern every 2 bits after differential decoding. Since the signal appears seven times, reliability can be improved by using a majority decision in the demodulator.
  • a demodulation device A signal that assists carrier synchronization, superimposed with information that defines the modulation scheme for the next packet, is modulated by BPSK, which is strong against low C / N conditions, and is distributed and inserted into the packet. Is output.
  • FIG. 74 is a block diagram showing a configuration of another demodulation device according to an embodiment of the present invention, which corresponds to claims 38 and 64.
  • another demodulation device according to an embodiment of the present invention includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34, and a frame.
  • another demodulation device further includes a carrier synchronization auxiliary signal decoder 52 added to the demodulation device according to the first embodiment, and a timing generation unit 36
  • a carrier synchronization auxiliary signal decoder 52 added to the demodulation device according to the first embodiment
  • a timing generation unit 36 This is a configuration in which the generator 36A is replaced.
  • the other configuration of the other demodulator according to the embodiment is the same as the configuration of the demodulator according to the first embodiment, and the components are denoted by the same reference numerals and the description thereof will be omitted. Omitted.
  • FIG. 75 is a block diagram showing a configuration of the carrier synchronization auxiliary signal decoder 52.
  • the carrier synchronization auxiliary signal decoder 52 includes a delay detection section 521, a phase identification section 522, a BPSK synchronization auxiliary signal pattern matching section 523, and a main signal BP SK gate generation section 524.
  • the delay detection unit 521 receives the signal from the band limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before.
  • the phase identification section 522 identifies the phase of the signal output from the delay detection section 521 and decodes the data.
  • the BP SK synchronization auxiliary signal pattern matching unit 523 detects the position of the carrier synchronization auxiliary signal from the signal output from the phase identification unit 522, extracts the modulation method information superimposed on the carrier synchronization auxiliary signal, and extracts the main signal BP SK Output to the gate generation unit 524.
  • the main signal BP SK gate generation section 524 generates a timing signal (gate signal) for giving a period of the main signal whose modulation scheme is BP SK, based on the input modulation scheme information (FIG. 76 (c)).
  • This timing signal is output to the timing generator 36A.
  • the timing generation unit 36A first detects the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in one communication frame based on the frame head signal detected by the frame synchronization detection unit 35. An auxiliary signal BPSK timing signal corresponding to the period as shown in FIG. 76 (b) is generated. Next, the timing generation section 36A generates the generated BP SK timing signal (FIG. 76 (b)) and the main signal BP SK timing signal output by the carrier synchronization auxiliary signal decoder 52 (FIG. 76 (c)). Based on the above, all BPSK timing signals (FIG. 76 (d)) giving the period during which the BPSK modulation is performed in the communication frame are generated.
  • This all BP SK timing signal is output to the frequency correction unit 32 and the phase correction unit 34, and correction is performed according to the signal.
  • the carrier signal is also re-used using the main signal that has been subjected to BP SK modulation. Do raw.
  • the configurations of the carrier synchronization auxiliary signal decoder 52 and the timing generator 36A are used in the demodulation device according to the first embodiment.
  • the configurations of the carrier synchronization auxiliary signal decoder 52 and the timing generation unit 36A can be used in the demodulation devices according to the second to fourteenth embodiments. The effect can be achieved.
  • the TMCC decoder 4 it is also possible to obtain the information on the modulation method of the main signal obtained from 0 from the carrier synchronization auxiliary signal decoder 52.
  • the frequency of the local oscillation signal in the quadrature detection unit 31 can be changed by the output of the frequency error holding unit 3 22 of the frequency correction unit 32, It goes without saying that the same effect can be obtained even if the frequency error is corrected by the quadrature detection unit 31 instead of the complex multiplication unit 3 2 4 of the frequency correction unit 32 of FIG. Industrial applicability
  • the present invention relates to a modulation / demodulation device capable of performing stable and high-speed carrier synchronization even in a digital satellite broadcasting system, even when the demodulation device is turned on or a channel is selected at a low C / N. It can be used as a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A modulator/demodulator and a method by which carrier synchronization of time division multiplex n-phase PSK modulated signals is performed stably at high speed by means of a demodulator when the C/N is low. The modulator performs time division multiplexing so as to insert BPSK-modulate carrier-synchronization auxiliary signals (or carrier-synchronization auxiliary signals upon which the differentially encoded number-of-phases information of the PSK-modulated wave of the next packet is superposed) into each packet in the cycle of the packets which are the minimum units where the modulating systems change. The demodulator performs carrier reproduction by extracting the BPSK-modulated carrier-synchronization auxiliary signals (and BPSK-modulated main signals).

Description

明細書 変調 ·復調装置および方法 技術分野  Description Modulation and demodulation device and method
本発明は、 変調 ·復調装置および方法に関し、 より特定的には、 ディジタル衛 星放送システムに使用される変調 ·復調装置および方法に関する。 背景技術  The present invention relates to a modulation / demodulation device and method, and more particularly, to a modulation / demodulation device and method used in a digital satellite broadcasting system. Background art
従来から、 ディジ夕ル衛星放送システムに使用される変調装置および方法とし て、 加藤 ·橋本署の文献 「衛星 I SDB伝送方式の検討」 映像情報メディア学会 技術報告, BCS'97- 12(Mar.l997) (以下、 従来の文献という) に記載されたものが 知られている。  Conventionally, as a modulator and a method used in a digital satellite broadcasting system, a paper by Kato and Hashimoto, “Study of Satellite I SDB Transmission Method,” ITE Technical Report, BCS'97-12 (Mar. l997) (hereinafter referred to as conventional literature) is known.
この従来の文献に記載されている変調装置および方法では、 2つのデ一タスト リームを独立に伝送することを可能としている。 すなわち、 低階層信号と高階層 信号とに対してそれぞれ独立に誤り訂正を施し、 低階層信号と高階層信号とを適 当なバケツ ト数ずつ集めて総パケヅト数を一定値とするフレームを構成する。 こ こで、 従来の変調装置は、 低階層信号には BP SK (2相位相変調; Binary Pha se Shift Keying)または QP SK (4相位相変調; Quaternary Phase Shift Key ing)を施し、 高階層信号には 8 P SK (8相位相変調; 8Phase Shift Keying) を施して時分割多重にて伝送する。 また、 従来の変調装置は、 フレーム同期信号 とフレーム内の各階層の区切りおよび各階層の変調モードを示す伝送多重制御 ( TMC C ; Transmission Multiplexing Configuration Control)信号とを、 最も 低い C/N (搬送波電力/雑音電力) でも安定受信することができる BP SKを 施して伝送する。  The modulation device and method described in this conventional document make it possible to transmit two data streams independently. That is, error correction is performed independently on the low-layer signal and the high-layer signal, and the low-layer signal and the high-layer signal are collected by an appropriate number of buckets to form a frame having a fixed total number of packets. I do. Here, the conventional modulation device performs BP SK (Binary Phase Shift Keying) or QP SK (Quaternary Phase Shift Keying) on the lower layer signal, and applies the higher layer signal to the lower layer signal. Is subjected to 8 P SK (8 phase shift keying) and transmitted by time division multiplexing. In addition, the conventional modulation device transmits the frame synchronization signal and a transmission multiplexing configuration control (TMCC) signal indicating a division of each layer in the frame and a modulation mode of each layer to the lowest C / N (carrier wave). Power / noise power) and transmit with BP SK, which enables stable reception.
以下、 この従来の変調装置および方法を、 図 77〜図 80を用いて簡単に説明 する。 図 77は、 従来の変調装置の構成を示すブロック図である。 図 78は、 従 来の復調装置から出力される通信フレームの構造を示す図である。 図 79は、 B PSK, QP SKおよび 8 P SKの符号配置へのマッピングを示す図である。 図 80は、 従来の変調装置および方法における MP EGのデ一夕構造、 およびフレ ーム構造を示す図である。 The conventional modulation device and method will be briefly described below with reference to FIGS. I do. FIG. 77 is a block diagram showing a configuration of a conventional modulation device. FIG. 78 is a diagram showing the structure of a communication frame output from a conventional demodulation device. FIG. 79 is a diagram illustrating mapping of BPSK, QPSK, and 8PSK to a code arrangement. FIG. 80 is a diagram showing a data structure and a frame structure of an MPEG in a conventional modulation device and method.
図 77において、 従来の変調装置は、 フレーム同期信号/ TMCC信号生成部 1001と、 T Sパケット合成部 1002と、 TMCC誤り訂正符号化部 100 3と、 第 1の誤り訂正符号化部 1004と、 第 2の誤り訂正符号化部 1005と 、 BPSKマッピング部 1006と、 B P S K/QP S Kマッピング部 1007 と、 8 P SKマッピング部 1008と、 多重化/直交変調部 1 009とを備える フレーム同期信号/ TMCC信号生成部 100 1は、 入力する TMCC情報に 基づいてフレーム同期信号/ TMCC信号を生成する。 このフレーム同期信号/ TMCC信号は、 TMCC誤り訂正符号化部 1003において誤り訂正符号化が された後、 BP SKマッピング部 1006に入力される。 BP SKマッピング部 1006は、 入力するフレーム同期信号および TMCC信号を、 図 79 (a) に 示す BP SKの符号配置にマッピングし、 多重化/直交変調部 1009へ出力す る。  In FIG. 77, the conventional modulation device includes a frame synchronization signal / TMCC signal generation unit 1001, a TS packet synthesis unit 1002, a TMCC error correction coding unit 1003, a first error correction coding unit 1004, A frame synchronization signal / TMCC signal including an error correction coding unit 1005, a BPSK mapping unit 1006, a BPSK / QP SK mapping unit 1007, an 8P SK mapping unit 1008, and a multiplexing / quadrature modulation unit 1009. The generation unit 1001 generates a frame synchronization signal / TMCC signal based on the input TMCC information. The frame synchronization signal / TMCC signal is subjected to error correction coding in TMCC error correction coding section 1003, and then input to BPSK mapping section 1006. BP SK mapping section 1006 maps the input frame synchronization signal and TMCC signal to the BP SK code arrangement shown in FIG. 79 (a), and outputs the result to multiplexing / quadrature modulation section 1009.
T Sパケッ ト合成部 1002は、 入力する複数の MP EG— T Sパケッ ト (図 80 (a) ) を合成して、 低階層信号のパケット群と高階層信号のパケッ ト群か ら構成され、 総パケット数が一定値となるフレーム (図 80 (b) ) を生成する 。 このフレームの内、 低階層信号のパケッ ト群は、 第 1の誤り訂正符号化部 10 04において誤り訂正符号化がされた後、 BP SK/QP SKマッピング部 10 07に入力される。 BPSK/QPSKマッピング部 1007は、 入力する低階 層信号を、 図 79 (a) に示す BP SKの符号配置、 もしくは図 79 (b) に示 す QPSKの符号配置にマッピングし、 多重化/直交変調部 1009へ出力する 。 一方、 上記フレームの内、 高階層信号のパケット群は、 第 2の誤り訂正符号化 部 1005において誤り訂正符号化がされた後、 8PSKマツビング部 1008 に入力される。 8PSKマッピング部 1008は、 入力する高階層信号を、 図 7The TS packet combining unit 1002 combines a plurality of input MPEG-TS packets (FIG. 80 (a)), and is composed of a group of low-layer signal packets and a group of high-layer signal packets. A frame with a fixed number of packets (Fig. 80 (b)) is generated. In this frame, the packet group of the low-layer signal is subjected to error correction coding in the first error correction coding unit 1004, and is then input to the BP SK / QP SK mapping unit 1007. The BPSK / QPSK mapping section 1007 maps the input lower-layer signal to the BP SK code arrangement shown in FIG. 79 (a) or the QPSK code arrangement shown in FIG. 79 (b), and performs multiplexing / orthogonality. Output to modulation section 1009 . On the other hand, among the above-mentioned frames, the packet group of the high-layer signal is subjected to error correction coding in the second error correction coding section 1005, and then input to the 8PSK matching section 1008. The 8PSK mapping unit 1008 converts the input high-layer signal
9 (c) に示す 8 PSKの符号配置にマッピングし、 多重化/直交変調部 100 9へ出力する。 9 is mapped to the 8 PSK code arrangement shown in (c) and output to the multiplexing / orthogonal modulation section 1009.
そして、 多重化/直交変調部 1009は、 各マッピング部から入力された各信 号を、 図 78に示す並びで時分割多重して通信フレームを生成した後、 直交変調 を行い復調装置へ出力する。 ここで、 図 78でわかるように、 多重化/直交変調 部 1009は、 BP SKが施されたフレーム同期信号および TMCC信号、 8P S Kが施された高階層信号のパケット群、 および B P S Kまたは QP S Kが施さ れた低階層信号のバケツト群を単位として時分割多重を行い通信フレームを生成 する。  Then, multiplexing / quadrature modulation section 1009 time-division multiplexes the signals input from each mapping section in the arrangement shown in FIG. 78 to generate a communication frame, and then performs quadrature modulation and outputs the result to the demodulation device . Here, as can be seen from FIG. 78, the multiplexing / quadrature modulation section 1009 includes a frame synchronization signal and a TMCC signal to which BP SK has been applied, a packet group of a higher layer signal to which 8P SK has been applied, and a BPSK or QP SK Then, time-division multiplexing is performed in units of bucket groups of the low-layer signals subjected to, and a communication frame is generated.
次に、 上記従来の変調装置において生成された通信フレームを入力して復調す る復調装置を、 図 81を用いて説明する。 図 81は、 従来の復調装置の構成を示 すプロック図である。  Next, a demodulation device for inputting and demodulating a communication frame generated by the conventional modulation device will be described with reference to FIG. FIG. 81 is a block diagram showing a configuration of a conventional demodulation device.
図 81において、 従来の復調装置は、 直交検波部 1101と、 P S K復調部 1 In FIG. 81, a conventional demodulator includes a quadrature detector 1101 and a PSK demodulator 1
102と、 BER(Bit Error Rate)検出部 1103と、 TMCCデコーダ 1 104と、 誤り訂正部 1105と、 ビデオデコーダ 1106とを備える。 102, a BER (Bit Error Rate) detection unit 1103, a TMCC decoder 1104, an error correction unit 1105, and a video decoder 1106.
変調装置から送信される通信フレームは、 直交検波部 1101に入力される。 直交検波部 1101は、 入力された通信フレーム内の各信号を内部の局部発振器 により直交検波してデジタル化し、 ?81(復調部1102および TMC Cデコ一 ダ 1104へ出力する。  The communication frame transmitted from the modulation device is input to quadrature detection section 1101. The quadrature detection unit 1101 performs quadrature detection on each signal in the input communication frame by the internal local oscillator and digitizes the signals. 81 (Output to demodulation unit 1102 and TMC C decoder 1104.
まず、 卩8 復調部1102は、 入力する通信フレームの各信号がすべて 8 P SKが施された信号とみなして周波数補正および位相補正を行い、 I, Q信号へ の復調を行う。 ここで、 TMC Cデコーダ 1104は、 この状態で BPSKが施 されたフレーム同期信号を検出し、 通信フレームの先頭を認識すると同時に、 8 相の位相のうちどの位相で P SK復調部 1102が位相同期しているかを検出す る。 また、 TMCCデコーダ 1104は、 フレーム同期信号に後続する TMCC 信号を検出することにより各階層信号に施されている位相変調の構成を識別して 、 位相補正のための位相誤差検出における復調装置側の位相基準を各位相変調に 対応するものに切り替える。 First, the demodulation unit 1102 performs frequency correction and phase correction assuming that all signals of the input communication frame have been subjected to 8PSK, and performs demodulation into I and Q signals. Here, the TMC C decoder 1104 detects the frame synchronization signal to which BPSK has been applied in this state, recognizes the beginning of the communication frame, and simultaneously It detects at which phase of the phase the phase SK demodulation section 1102 is in phase synchronization. Further, the TMCC decoder 1104 detects the TMCC signal following the frame synchronization signal to identify the configuration of the phase modulation applied to each hierarchical signal, and detects the TMCC signal on the demodulator side in the phase error detection for phase correction. Switch the phase reference to the one corresponding to each phase modulation.
そして、 ?31<復調部1102は、 復調した I, Q信号が 8相の位相のうちど の位相に位相同期したかという位相情報をもとにマッピングし直し、 絶対位相化 した I, Q信号に変換して後段の誤り訂正部 1105へ出力する。  And? 31 <The demodulation unit 1102 remaps the demodulated I and Q signals based on the phase information indicating which phase of the eight phases was synchronized, and converts them into absolute phase I and Q signals. And outputs it to the error correction unit 1105 at the subsequent stage.
誤り訂正部 1105は、 独立に 2系統の誤り訂正回路を有しており、 復号した 丁1^( (:信号に基づぃて?31<復調部1102で復調された信号をパケッ ト単位 で振り分けて誤り訂正を施した後、 時分割多重伝送のために時間軸上で並び替え たパケッ トの順番を元に戻す作業を行う。 この出力は、 ビデオデコーダ 1106 へ出力される。  The error correction unit 1105 has two independent error correction circuits, and decodes the signal demodulated by the demodulation unit 1102 in packets. After sorting and error correction, the order of the packets rearranged on the time axis for time division multiplex transmission is restored, and this output is output to the video decoder 1106.
8£1検出部1 103は、 誤り訂正符号化の一種であるトレリス符号化が施さ れいる復調した 8 P S K信号に対し、 トレリス復号を行って得た信号に再度トレ リス符号化を施して、 復調した 8 P S K信号と比較することにより高階層信号の BERをモニタする。 その結果、 高階層の復号映像の品質が許容値を下回ったと 判断された場合には、 BER検出部 1 103は、 伝送路の品質劣化に対して高耐 性の低階層の映像信号を出力するようにビデオデコーダ 1106に信号を制御す る。  The 8 × 1 detection unit 1103 performs trellis encoding again on a signal obtained by performing trellis decoding on the demodulated 8 PSK signal to which trellis encoding, which is a type of error correction encoding, is performed. The BER of the higher layer signal is monitored by comparing with the demodulated 8 PSK signal. As a result, if it is determined that the quality of the decoded video of the higher hierarchy is lower than the allowable value, the BER detector 1103 outputs a video signal of the lower hierarchy that is highly resistant to the quality deterioration of the transmission path. The signal is controlled by the video decoder 1106 as described above.
以上のような処理により、 従来の変調,復調装置および方法では、 受信中に降 雨等により伝送路の品質が劣化してもサービスの視聴を継続できるようにしてい る。  With the above-described processing, the conventional modulation and demodulation apparatus and method allow the user to continue viewing the service even if the quality of the transmission path deteriorates due to rainfall during reception.
上述したように、 上記従来の変調装置では、 低階層信号と高階層信号とに対し てそれぞれ独立に誤り訂正を施し、 低階層信号には伝送効率は低いが伝送信頼性 が高い B P S Kまたは Q P S Kを、 高階層信号には伝送効率は高いが伝送信頼性 が低い 8 P S Kをそれぞれ施し、 それらを時分割多重にて送信している。 As described above, in the above-described conventional modulation device, error correction is performed independently on the low-layer signal and the high-layer signal, and BPSK or QPSK with low transmission efficiency but high transmission reliability is applied to the low-layer signal. Transmission efficiency is high but transmission reliability is high for high layer signals Are applied, and they are transmitted by time division multiplexing.
これに対し、 上記従来の復調装置においては、 まず、 入力する通信フレームの 各信号をすベて 8 P S Kが施された信号とみなして周波数補正および位相補正を 行う。 そして、 キャリア同期ができた後は T M C C信号を復号して各階層信号に 施された位相変調の構成を識別して各信号ごとに復調すると共に、 B E Rを検出 することで伝送路の品質劣化に対して高耐性の低階層の信号を選択できるように している。  On the other hand, in the above-mentioned conventional demodulator, first, all the signals of the input communication frame are regarded as signals to which 8PSK has been applied, and the frequency correction and the phase correction are performed. After carrier synchronization, the TMCC signal is decoded, the phase modulation configuration applied to each hierarchical signal is identified, demodulated for each signal, and the BER is detected to reduce the quality of the transmission path. On the other hand, a low-hierarchy signal with high tolerance can be selected.
しかしながら、 上記従来の復調装置では、 8 P S Kによる復調 (周波数補正お よび位相補正) ができない低 C / N時に電源投入やチャンネル選択等の動作を行 つた場合、 キャリア同期ができない、 すなわち、 サービスの視聴ができないとい う問題があった。  However, in the above-mentioned conventional demodulator, when power is turned on or channel selection is performed at low C / N where demodulation (frequency correction and phase correction) using 8PSK cannot be performed, carrier synchronization cannot be performed. There was a problem that they could not watch.
それ故、 本発明の目的は、 低 C/N時において復調装置の電源投入やチャンネ ル選択等の動作を行っても、 安定かつ高速にキヤリア同期を行うことができる変 調 ·復調装置および方法を提供することである。 発明の開示  Therefore, an object of the present invention is to provide a modulation and demodulation apparatus and method capable of performing stable and high-speed carrier synchronization even when an operation such as turning on the power of the demodulation apparatus or selecting a channel is performed at a low C / N. It is to provide. Disclosure of the invention
第 1の局面は、 通信対象である複数のデータに対し、 当該データの各階層毎に 異なった伝送効率の位相変調を施して予め定めた固定長の通信フレームを生成す る変調装置であって、  A first aspect is a modulation device that generates a predetermined fixed-length communication frame by performing phase modulation with different transmission efficiency for each layer of the data on a plurality of data to be communicated. ,
複数のデータの各々に対し、 デ一夕内容に対応する位相変調を施して変調信号 を生成する位相変調手段と、  Phase modulation means for performing a phase modulation corresponding to the contents of each of the plurality of data to generate a modulation signal,
データに施した複数の位相変調の内の位相数が最も少ない位相変調 (以下、 最 小位相変調という) を用いて位相変調を施したキヤリア同期補助信号を生成する 信号生成手段と、  Signal generating means for generating a carrier synchronization auxiliary signal that has been subjected to phase modulation using phase modulation with the smallest number of phases (hereinafter referred to as minimum phase modulation) among a plurality of phase modulations applied to data;
キャリア同期補助信号が、 通信フレーム内で等時間間隔に分散するように、 変 調信号およびキヤリア同期補助信号を時分割多重する多重化手段とを備える。 上記のように、 第 1の局面によれば、 復調装置においてキャリア同期を補助す る信号を、 低 C/N状態に対して強い最小位相変調により変調し、 パケッ ト内に 分散して挿入した通信フレームを出力する。 これにより、 復調装置において、 低 C/N状態においてもバケツ ト内に分散させたキヤリア同期補助信号を用いて高 速かつ安定にキヤリア同期を行うことができる。 Multiplexing means for time-division multiplexing the modulation signal and the carrier synchronization auxiliary signal so that the carrier synchronization auxiliary signal is dispersed at equal time intervals within the communication frame. As described above, according to the first aspect, the signal for assisting carrier synchronization in the demodulator is modulated by strong minimum phase modulation for a low C / N state, and dispersed and inserted into a packet. Output communication frame. As a result, in the demodulator, even in the low C / N state, high-speed and stable carrier synchronization can be performed using the carrier synchronization auxiliary signal dispersed in the bucket.
第 2の局面は、 第 1の局面において、 キャリア同期補助信号は、 2シンボル以 上連続させて時分割多重化されることを特徴とする。  The second aspect is characterized in that, in the first aspect, the carrier synchronization auxiliary signal is time-division multiplexed continuously for two or more symbols.
上記のように、 第 2の局面は、 第 1の局面におけるキャリア同期補助信号の典 型的な時分割多重形態を特定したものである。  As described above, the second aspect specifies a typical time-division multiplexing form of the carrier synchronization auxiliary signal in the first aspect.
第 3の局面は、 第 1および第 2の局面において、 キャリア同期補助信号は、 通 信フレーム内の時分割多重される位置に対して次のパケッ トとなる変調信号に施 されている位相変調を識別する情報を重畳することを特徴とする。  In a third aspect, in the first and second aspects, the carrier synchronization auxiliary signal is a phase modulation signal applied to a modulation signal serving as a next packet with respect to a time division multiplexed position in a communication frame. Is characterized by superimposing information for identifying.
上記のように、 第 3の局面によれば、 第 1および第 2の局面において、 次のパ ケッ トの変調方式を定義する情報を重畳した復調装置においてキヤリア同期を補 助する信号を、 低 C/N状態に対して強い最小位相変調により変調し、 パケッ ト 内に分散して挿入した通信フレームを出力する。 これにより、 復調装置において 、 低 C/N状態においてもパケヅト内に分散させたキャリア同期補助信号および 最小位相変調が施された主信号を用いて高速かつ安定にキヤリァ同期を行うこと ができる。  As described above, according to the third aspect, in the first and second aspects, a signal for assisting carrier synchronization in a demodulation device in which information defining the modulation scheme of the next packet is superimposed is reduced. The communication frame is modulated by the minimum phase modulation that is strong against the C / N state, and the communication frame that is dispersedly inserted in the packet is output. As a result, in the demodulator, even in the low C / N state, carrier synchronization can be performed at high speed and stably using the carrier synchronization auxiliary signal dispersed in the packet and the main signal subjected to the minimum phase modulation.
第 4の局面は、 第 3の局面において、 入力する信号に対し差動符号化を施して 出力する差動符号化手段をさらに備え、  A fourth aspect is the third aspect, further comprising a differential encoding unit that performs differential encoding on an input signal and outputs the result.
信号生成手段は、 差動符号化手段において差動符号化された後の信号に対し、 デ一夕に施した複数の位相変調の内の最小位相変調を施したキヤリア同期補助信 号を生成することを特徴とする。  The signal generation means generates a carrier synchronization auxiliary signal obtained by performing a minimum phase modulation among a plurality of phase modulations performed on the signal after the differential encoding in the differential encoding means. It is characterized by the following.
上記のように、 第 4の局面によれば、 第 3の局面において、 次のパケットの変 調方式を定義する情報を重畳した復調装置においてキヤリア同期を補助する信号 を、 差動符号化を施した後に生成する。 これにより、 復調装置においてキャリア 同期がされていない状態でも変調方式情報を復号することができる。 As described above, according to the fourth aspect, in the third aspect, a signal for assisting carrier synchronization in a demodulation device on which information defining a modulation scheme of a next packet is superimposed. Is generated after differential encoding is performed. As a result, the modulation method information can be decoded even in a state where the carrier is not synchronized in the demodulation device.
第 5の局面は、 通信対象である複数のデータに対し、 当該デ一夕の各階層毎に 異なつた伝送効率の位相変調を施して予め定めた固定長の通信フレームを生成す る変調方法であって、  The fifth aspect is a modulation method for generating a predetermined fixed-length communication frame by performing phase modulation with different transmission efficiency for each layer of the data on a plurality of data to be communicated. So,
デ一夕に施した複数の位相変調の内の位相数が最も少ない位相変調 (以下、 最 小位相変調という) を用いて位相変調を施したキヤリア同期補助信号を生成し、 当該キヤリァ同期補助信号が通信フレーム内で等時間間隔に分散するように時分 割多重することを特徴とする。  A carrier synchronization auxiliary signal that has been subjected to phase modulation using the phase modulation with the smallest number of phases (hereinafter referred to as the minimum phase modulation) among the plurality of phase modulations performed overnight is generated. Are time-division multiplexed so that they are distributed at equal time intervals within a communication frame.
上記のように、 第 5の局面によれば、 復調動作の際においてキャリア同期を補 助する信号を、 低 C/N状態に対して強い最小位相変調により変調し、 パケッ ト 内に分散して挿入した通信フレームを構築する。 これにより、 復調動作の際にお いて、 低 C/N状態においてもバケツト内に分散させたキャリア同期補助信号を 用いて高速かつ安定にキヤリア同期を行うことができる。  As described above, according to the fifth aspect, a signal that assists carrier synchronization during demodulation operation is modulated by strong minimum phase modulation for a low C / N state, and dispersed in a packet. Construct the inserted communication frame. As a result, at the time of demodulation operation, even in a low C / N state, high-speed and stable carrier synchronization can be performed using the carrier synchronization auxiliary signal dispersed in the bucket.
第 6の局面は、 第 5の局面において、 キャリア同期補助信号は、 2シンボル以 上連続させて時分割多重化されることを特徴とする。  A sixth aspect is characterized in that in the fifth aspect, the carrier synchronization auxiliary signal is time-division multiplexed continuously for two or more symbols.
上記のように、 第 6の局面は、 第 5の局面におけるキャリア同期補助信号の典 型的な時分割多重形態を特定したものである。  As described above, the sixth aspect specifies a typical time-division multiplexing form of the carrier synchronization auxiliary signal in the fifth aspect.
第 7の局面は、 第 5および第 6の局面において、 キャリア同期補助信号は、 通 信フレーム内の時分割多重される位置に対して次のパケッ トとなる変調信号に施 されている位相変調を識別する情報を重畳することを特徴とする。  According to a seventh aspect, in the fifth and sixth aspects, the carrier synchronization auxiliary signal is a phase modulation signal applied to a modulation signal serving as a next packet with respect to a time division multiplexed position in a communication frame. Is characterized by superimposing information for identifying.
上記のように、 第 7の局面によれば、 第 5および第 6の局面において、 復調動 作の際において次のバケツ 卜の変調方式を定義する情報を重畳したキヤリア同期 を補助する信号を、 低 C /N状態に対して強い最小位相変調により変調し、 パケ ット内に分散して挿入した通信フレームを出力する。 これにより、 復調動作の際 において、 低 C/N状態においてもパケット内に分散させたキャリア同期補助信 号および最小位相変調が施された主信号を用いて高速かつ安定にキヤリァ同期を 行うことができる。 As described above, according to the seventh aspect, in the fifth and sixth aspects, at the time of demodulation operation, a signal for assisting carrier synchronization in which information defining a modulation scheme of the next bucket is superimposed, It modulates by the strong minimum phase modulation for the low C / N state, and outputs the communication frame dispersedly inserted in the packet. As a result, in the demodulation operation, the carrier synchronization auxiliary signal dispersed in the packet even in the low C / N state Carrier synchronization can be performed at high speed and stably using the main signal subjected to signal and minimum phase modulation.
第 8の局面は、 第 7の局面において、 キャリア同期補助信号は、 差動符号化さ れた後の信号に対し、 デ一夕に施した複数の位相変調の内の最小位相変調を施す ことにより生成されることを特徴とする。  In an eighth aspect, in the seventh aspect, the carrier synchronization auxiliary signal is obtained by performing a minimum phase modulation of a plurality of phase modulations performed on the signal after differential encoding on the signal after the differential encoding. It is characterized by being generated by
上記のように、 第 8の局面によれば、 第 7の局面において、 復調動作の際にお いて次のバケツトの変調方式を定義する情報を重畳したキヤリア同期を補助する 信号を差動符号化を施した後に生成する。 これにより、 復調動作の際においてキ ャリア同期がされていない状態でも変調方式情報を復号することができる。 第 9の局面は、 複数の位相変調信号と共に、 通信フレーム内において位相数が 最も少ない位相変調 (以下、 最小位相変調という) を用いて位相変調を施された キヤリア同期補助信号が等時間間隔に分散するように、 時分割多重された当該通 信フレームを受信する復調装置であって、  As described above, according to the eighth aspect, in the seventh aspect, in the demodulation operation, a signal for assisting carrier synchronization in which information defining a modulation scheme of the next bucket is superimposed is differentially encoded. Is generated after applying. As a result, the modulation method information can be decoded even when the carrier is not synchronized during the demodulation operation. The ninth aspect is that a carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation having the smallest number of phases in a communication frame (hereinafter referred to as minimum phase modulation) together with a plurality of phase-modulated signals is transmitted at equal time intervals. A demodulator that receives the communication frame time-division multiplexed so as to be dispersed,
通信フレーム内の予め定めた信号期間の周波数誤差を検出して周波数ずれの補 正を行う周波数補正手段と、  Frequency correction means for detecting a frequency error in a predetermined signal period in a communication frame and correcting a frequency deviation,
通信フレーム内の予め定めた信号期間の位相誤差を検出して位相ずれの補正を 行う位相補正手段と、  Phase correction means for detecting a phase error during a predetermined signal period in a communication frame and correcting a phase shift;
周波数補正手段、 もしくは位相補正手段のいずれかの出力信号を入力し、 遅延 検波を用いて通信フレームの同期信号を検出することでフレーム先頭位置を検出 するフレーム同期検出手段と、  Frame synchronization detection means for receiving an output signal of either the frequency correction means or the phase correction means and detecting a synchronization signal of the communication frame using delay detection to detect a frame head position;
フレーム同期検出手段で検出したフレーム先頭位置に基づいて、 最小位相変調 が施された期間のうち少なくともキャリア同期補助信号の期間 (以下、 同期信号 期間という) を検出し、 当該同期信号期間を与えるタイミング信号を生成する夕 ィミング生成手段とを備え、  Timing for detecting at least the period of the carrier synchronization auxiliary signal (hereinafter referred to as a synchronization signal period) in the period in which the minimum phase modulation is performed based on the frame head position detected by the frame synchronization detection means, and providing the synchronization signal period And a evening generating means for generating a signal.
周波数補正手段および位相補正手段は、 夕イミング信号が与える同期信号期間 において、 最小位相変調に従った補正動作を行うことを特徴とする。 上記のように、 第 9の局面によれば、 時分割多重される位相変調信号のうち、 バケツト内に分散配置されたキヤリャ同期補助信号を含む最小位相変調信号を用 いて周波数補正および位相補正 (搬送波再生) を行うことにより、 低 C/N状態 においても高速かつ安定にキヤリァ同期を行うことができる。 The frequency correction means and the phase correction means perform a correction operation according to the minimum phase modulation during a synchronization signal period given by the evening imaging signal. As described above, according to the ninth aspect, of the time-division multiplexed phase-modulated signals, the frequency correction and the phase correction are performed using the minimum phase-modulated signal including the carrier synchronization auxiliary signal dispersedly arranged in the bucket. Carrier recovery) enables fast and stable carrier synchronization even in the low C / N state.
第 1 0の局面は、 第 9の局面において、 周波数補正手段、 もしくは位相補正手 段のいずれかの出力信号を入力し、 周波数引き込み状態を検出して位相補正手段 が擬似同期する周波数か否かを判断する周波数引き込み検出手段と、  In a tenth aspect, in the ninth aspect, the output signal of any one of the frequency correction means and the phase correction means is input, and a frequency pull-in state is detected to determine whether or not the frequency is a frequency at which the phase correction means is pseudo-synchronized. Frequency pull-in detection means for determining
周波数引き込み検出手段の判断の結果、 位相補正手段が擬似同期しない周波数 にまで周波数補正手段における周波数補正が完了した場合は、 位相補正手段を初 期化する位相補正リセット手段とをさらに備えることを特徴とする。  As a result of the determination by the frequency pull-in detection means, when the frequency correction by the frequency correction means is completed to a frequency at which the phase correction means does not perform pseudo-synchronization, phase correction reset means for initializing the phase correction means is further provided. And
上記のように、 第 1 0の局面によれば、 第 9の局面において、 周波数引き込み 検出手段を設け、 周波数補正手段において位相補正手段が疑似同期しない周波数 まで周波数補正が行われてから、 位相補正手段を初期化して再動作させる。 これ により、 周波数補正手段による周波数引き込み過程等において、 位相補正手段に おける疑似同期の回避が可能になる。  As described above, according to the tenth aspect, in the ninth aspect, the frequency pull-in detection means is provided, and the frequency correction is performed by the frequency correction means up to a frequency at which the phase correction means is not pseudo-synchronized. Initialize and restart the means. This makes it possible to avoid pseudo-synchronization in the phase correction unit in the frequency pull-in process by the frequency correction unit.
第 1 1の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 キ ャリァ同期補助信号の期間における位相同期の状態を検出する位相同期検出手段 と、  The eleventh aspect is the ninth aspect, wherein the output signal of the phase correction means is input, and a phase synchronization detection means for detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期検出手段と誤り訂正検出手段との検出結果から擬似同期か否かを判定 する擬似同期判定手段と、  Pseudo-synchronization determining means for determining whether or not pseudo-synchronization is performed based on detection results of the phase synchronization detecting means and the error correction detecting means;
疑似同期判定手段の判定の結果、 疑似同期である場合は、 位相補正手段を初期 化する位相補正リセット手段とをさらに備えることを特徴とする。  If the result of the determination by the pseudo-synchronization determining means is pseudo-synchronization, the apparatus further comprises phase correction reset means for initializing the phase correction means.
上記のように、 第 1 1の局面によれば、 第 9の局面において、 キャリア同期補 助信号の期間における位相同期の検出と、 T M C C信号の誤り訂正の可否の検出 とを行い、 当該検出結果から正常同期であるか否かを判断する。 そして、 疑似同 期の場合には、 位相補正手段を初期化して再動作させる。 これにより、 周波数補 正手段による周波数引き込み過程等において、 位相補正手段における疑似同期の 回避が可能になる。 As described above, according to the eleventh aspect, in the ninth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the possibility of error correction of the TMCC signal are performed. Is performed, and it is determined whether or not the synchronization is normal based on the detection result. Then, in the case of the pseudo synchronization, the phase correction means is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase correction means in the frequency pull-in process by the frequency correction means.
第 1 2の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 キ ャリァ同期補助信号の期間における位相同期の状態を検出する第 1の位相同期検 出手段と、  In a twelfth aspect, in the ninth aspect, a first phase synchronization detecting means for inputting an output signal of the phase correction means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
位相補正手段の出力信号を入力し、 フレーム同期信号に含まれる伝送制御信号 ( T M C C信号) の期間における位相同期の状態を検出する第 2の位相同期検出 手段と、  Second phase synchronization detection means for receiving an output signal of the phase correction means and detecting a state of phase synchronization during a transmission control signal (TMC C signal) included in the frame synchronization signal;
第 1の位相同期検出手段と第 2の位相同期検出手段との検出結果から擬似同期 か否かを判定する擬似同期判定手段と、  Pseudo-synchronization determining means for determining whether or not to perform pseudo-synchronization based on detection results of the first phase synchronization detecting means and the second phase synchronization detecting means,
疑似同期判定手段の判定の結果、 疑似同期である場合は、 位相補正手段を初期 化する位相補正リセット手段とをさらに備えることを特徴とする。  If the result of the determination by the pseudo-synchronization determining means is pseudo-synchronization, the apparatus further comprises phase correction reset means for initializing the phase correction means.
上記のように、 第 1 2の局面によれば、 第 9の局面において、 キャリア同期補 助信号の期間における位相同期の検出と、 フレーム同期信号/ T M C C信号の期 間における位相同期の検出とを行い、 当該検出結果から正常同期であるか否かを 判断する。 そして、 疑似同期の場合には、 位相補正手段を初期化して再動作させ る。 これにより、 周波数補正手段による周波数引き込み過程等において、 位相補 正手段における疑似同期の回避が可能になる。  As described above, according to the twelfth aspect, in the ninth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal are performed. Then, based on the detection result, it is determined whether the synchronization is normal. Then, in the case of the pseudo synchronization, the phase correction means is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase complementing means in the frequency pull-in process by the frequency correcting means.
第 1 3の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 キ ャリァ同期補助信号の期間における位相同期の状態を検出する位相同期検出手段 と、  According to a thirteenth aspect, in the ninth aspect, a phase synchronization detecting means for receiving an output signal of the phase correcting means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期検出手段と誤り訂正検出手段との検出結果から擬似同期か否かを判定 する擬似同期判定手段と、 Judgment of pseudo-synchronization based on detection results of phase synchronization detection means and error correction detection means Pseudo synchronization determination means,
疑似同期判定手段の判定の結果、 疑似同期である場合は、 位相補正手段へ入力 する周波数を段階的に変化させる周波数ステップ手段とをさらに備えることを特 徴とする。  If the result of the determination by the pseudo-synchronization determining means is pseudo-synchronization, the method further comprises frequency step means for stepwise changing the frequency input to the phase correction means.
上記のように、 第 1 3の局面によれば、 第 9の局面において、 キャリア同期補 助信号の期間における位相同期の検出と、 T M C C信号の誤り訂正の可否の検出 とを行い、 当該検出結果から正常同期であるか否かを判断する。 そして、 疑似同 期の場合には、 周波数補正手段の周波数を制御して位相補正手段で正常同期でき るようにする。 これにより、 周波数補正手段による周波数引き込み過程等におい て、 位相補正手段における疑似同期の回避が可能になる。  As described above, according to the thirteenth aspect, in the ninth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the possibility of error correction of the TMCC signal are performed. To determine whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the frequency of the frequency correcting means is controlled so that the phase correcting means can perform normal synchronization. This makes it possible to avoid pseudo-synchronization in the phase correction means in the frequency pull-in process by the frequency correction means.
第 1 4の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 キ ャリア同期補助信号の期間における位相同期の状態を検出する第 1の位相同期検 出手段と、  In a fourteenth aspect, in the ninth aspect, the first phase synchronization detection means receives the output signal of the phase correction means and detects a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
位相補正手段の出力信号を入力し、 フレーム同期信号に含まれる伝送制御信号 ( T M C C信号) の期間における位相同期の状態を検出する第 2の位相同期検出 手段と、  Second phase synchronization detection means for receiving an output signal of the phase correction means and detecting a state of phase synchronization during a transmission control signal (TMC C signal) included in the frame synchronization signal;
第 1の位相同期検出手段と第 2の位相同期検出手段との検出結果から擬似同期 か否かを判定する擬似同期判定手段と、  Pseudo-synchronization determining means for determining whether or not to perform pseudo-synchronization based on detection results of the first phase synchronization detecting means and the second phase synchronization detecting means,
疑似同期判定手段の判定の結果、 疑似同期である場合は、 位相補正手段へ入力 する周波数を段階的に変化させる周波数ステップ手段とをさらに備えることを特 徴とする。  If the result of the determination by the pseudo-synchronization determining means is pseudo-synchronization, the method further comprises frequency step means for stepwise changing the frequency input to the phase correction means.
上記のように、 第 1 4の局面によれば、 第 9の局面において、 キャリア同期補 助信号の期間における位相同期の検出と、 フレーム同期信号/ T M C C信号の期 間における位相同期の検出とを行い、 当該検出結果から正常同期であるか否かを 判断する。 そして、 疑似同期の場合には、 周波数補正手段の周波数を制御して位 相補正手段で正常同期できるようにする。 これにより、 周波数補正手段による周 波数引き込み過程等において、 位相補正手段における疑似同期の回避が可能にな る。 As described above, according to the fourteenth aspect, in the ninth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal are performed. Then, based on the detection result, it is determined whether the synchronization is normal. In the case of pseudo synchronization, the frequency of the frequency correction means is controlled so that the phase correction means can perform normal synchronization. As a result, the frequency correction means In the wave number pull-in process, etc., it becomes possible to avoid pseudo synchronization in the phase correction means.
第 1 5の局面は、 第 1 3の局面において、 周波数補正手段、 もしくは位相補正 手段のいずれかの出力信号を入力し、 周波数引き込み状態を検出して位相補正手 段が擬似同期する周波数か否かを判断する周波数引き込み検出手段と、  According to a fifteenth aspect, in the thirteenth aspect, an output signal of either the frequency correction means or the phase correction means is input, and a frequency pull-in state is detected to determine whether or not the frequency is a frequency at which the phase correction means is pseudo-synchronous. Frequency pull-in detection means for determining whether
周波数引き込み検出手段の判断の結果、 位相補正手段が擬似同期しない周波数 にまで周波数補正手段における周波数補正が完了した場合は、 位相補正手段を初 期化する位相補正リセット手段とをさらに備えることを特徴とする。  As a result of the determination by the frequency pull-in detection means, when the frequency correction by the frequency correction means is completed to a frequency at which the phase correction means does not perform pseudo-synchronization, phase correction reset means for initializing the phase correction means is further provided. And
第 1 6の局面は、 第 1 4の局面において、 周波数補正手段、 もしくは位相補正 手段のいずれかの出力信号を入力し、 周波数引き込み状態を検出して位相補正手 段が擬似同期する周波数か否かを判断する周波数引き込み検出手段と、  In a sixteenth aspect, in the fourteenth aspect, an output signal of either the frequency correction means or the phase correction means is input, and a frequency pull-in state is detected to determine whether or not the frequency is such that the phase correction means is in a pseudo-synchronous state. Frequency pull-in detection means for determining whether
周波数引き込み検出手段の判断の結果、 位相補正手段が擬似同期しない周波数 にまで周波数補正手段における周波数補正が完了した場合は、 位相補正手段を初 期化する位相補正リセット手段とをさらに備えることを特徴とする。  As a result of the determination by the frequency pull-in detection means, when the frequency correction by the frequency correction means is completed to a frequency at which the phase correction means does not perform pseudo-synchronization, phase correction reset means for initializing the phase correction means is further provided. And
上記のように、 第 1 5および第 1 6の局面によれば、 第 1 3および第 1 4の局 面において、 さらに周波数引き込み検出手段を設け、 周波数補正手段において位 相補正手段が疑似同期しない周波数まで周波数補正が行われてから、 位相補正手 段を初期化して再動作させる。 これにより、 周波数補正手段による周波数引き込 み過程等において、 位相補正手段における疑似同期の回避が可能になる。  As described above, according to the 15th and 16th aspects, the 13th and 14th stations are further provided with frequency pull-in detection means, and the phase correction means is not pseudo-synchronized in the frequency correction means After the frequency has been corrected to the frequency, initialize the phase correction means and restart the operation. This makes it possible to avoid pseudo-synchronization in the phase correction means in the frequency pull-in process by the frequency correction means.
第 1 7の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 キ ャリア同期補助信号の期間における位相同期の状態を検出するフレーム同期判定 手段と、  In a seventeenth aspect, in the ninth aspect, the frame synchronization determination means for receiving an output signal of the phase correction means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、  C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
フレーム同期判定手段と C/N検出手段との検出結果、 およびタイミング信号 に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合 は、 通信フレームの全期間を与えるゲート信号を生成し、 それ以外の場合は、 同 期信号期間を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、 位相補正手段は、 タイミング信号が与える同期信号期間では最小位相変調によ る位相誤差を検出し、 同期信号期間以外では通信フレーム内において位相数が最 も多い位相変調による位相誤差を検出した後、 ゲ一ト信号が与える期間に従って 補正動作を行うことを特徴とする。 Based on the detection result of the frame synchronization determination means and C / N detection means, and the timing signal, there is phase synchronization, and the C / N is higher than a predetermined threshold. Further comprises a gate signal generating means for generating a gate signal for giving the entire period of the communication frame, and in other cases, a gate signal generating means for generating a gate signal for giving a synchronous signal period. During the synchronization signal period, the phase error due to the minimum phase modulation is detected. Outside the synchronization signal period, after detecting the phase error due to the phase modulation having the largest number of phases in the communication frame, correction is performed according to the period given by the gate signal. The operation is performed.
上記のように、 第 1 7の局面によれば、 第 9の局面において、 最小位相変調信 号期間で位相同期がされているときの C /N状態を検出し、 当該 C/Nが予め定 めたレベルである場合、 通信フレームの主信号期間に対しても最大位相変調がさ れているとみなして位相誤差の補正を行う。 これにより、 低 C/N状態において も高速かつ安定にキヤリア同期を行うことができると共に、 復調信号の位相ジッ 夕の影響を軽減して受信性能を向上することができる。  As described above, according to the seventeenth aspect, in the ninth aspect, the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the signal level is at a lower level, the phase error is corrected assuming that the maximum phase modulation is also performed for the main signal period of the communication frame. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
第 1 8の局面は、 第 9の局面において、 位相補正 f段の出力信号を入力し、 位 相補正手段における位相同期を検出するフレーム同期判定手段と、  In an eighteenth aspect, in the ninth aspect, a frame synchronization determining means for inputting an output signal of the phase correction f stage and detecting phase synchronization in the phase correcting means,
位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、  C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
信号期間付与手段が出力する信号とタイミング信号とに基づいて、 位相補正手 段における復調方式を、 位相変調方式に対応して切り替える復調モード信号を出 力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
フレーム同期判定手段、 C /N検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the C / N detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、 If there is phase synchronization and error correction is completed, If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 同期信号期間を与 えるゲート信号を生成するゲート信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
位相補正手段は、 復調モ一ド信号に従った位相変調方式による位相誤差を検出 し、 ゲ一ト信号が与える期間に従って補正動作を行うことを特徴とする。  The phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation in accordance with a period given by the gate signal.
上記のように、 第 1 8の局面によれば、 第 9の局面において、 最小位相変調信 号期間で位相同期がされているときの C /N状態を検出し、 当該 C/N状態およ び復調モ一ド信号に従った位相変調方式に対応する基準位相に従って、 初期の状 態では最小位相変調されるフレーム同期信号/ T M C C信号期間およびキヤリァ 同期補助信号期間を用いて位相補正を行い、 位相同期後は当該期間以外の主信号 の変調期間においても位相補正を行う。 これにより、 低 C/N状態においても高 速かつ安定にキヤリア同期を行うことができると共に、 主信号の期間における復 調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することができる。 第 1 9の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 位 相補正手段における位相同期を検出するフレーム同期判定手段と、  As described above, according to the eighteenth aspect, in the ninth aspect, the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected, and the C / N state and the C / N state are detected. In the initial state, phase correction is performed using the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period that are minimum phase-modulated according to the reference phase corresponding to the phase modulation method according to the demodulation mode signal. After the phase synchronization, the phase correction is performed also in the modulation period of the main signal other than the period. As a result, carrier synchronization can be performed rapidly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal during the main signal period can be reduced to improve the reception performance. it can. In a ninth aspect, in the ninth aspect, a frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、  C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、 フレーム同期判定手段および誤り訂正検出手段の検出結果、 並びに信号期間付 与手段が出力する信号とタイミング信号とに基づいて、 位相補正手段における復 調方式を、 位相変調方式に対応して切り替える復調モード信号を出力する復調モ ード切替手段と、 In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period; Demodulation mode that switches the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period providing means. Demodulation mode switching means for outputting a signal;
フレーム同期判定手段、 C7N検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the C7N detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold value, the gate signal that gives the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 同期信号期間を与 えるゲ一ト信号を生成し、  If C / N is lower than the second predetermined threshold, a gate signal giving a synchronization signal period is generated,
位相同期がない場合は、 同期信号期間を与えるゲート信号を生成するゲ一ト 信号生成手段とをさらに備え、  When there is no phase synchronization, further comprising a gate signal generation means for generating a gate signal for giving a synchronization signal period;
位相補正手段は、 誤り訂正が完了していない場合、 タイミング信号が与える同 期信号期間では最小位相変調による位相差を検出し、 同期信号期間以外では通信 フレーム内において位相数が最も多い位相変調による位相誤差を検出し、 誤り訂 正が完了している場合、 復調モード信号に従った位相変調方式による位相誤差を 検出した後、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする 上記のように、 第 1 9の局面によれば、 第 9の局面において、 最小位相変調信 号期間で位相同期がされているときの C /N状態を検出し、 当該 C/Nが予め定 めたレベルである場合、 通信フレームの内、 同期信号期間以外の全期間において 最大位相変調がされているとみなして位相誤差の補正を行うと共に、 復調モード 信号に従った位相変調方式に対応する基準位相に従って、 初期の状態では最小位 相変調されるフレーム同期信号/ T M C C信号期間およびキヤリア同期補助信号 期間を用いて位相補正を行い、 当該期間以外の主信号の変調期間においても位相 補正を行う。 これにより、 低 C/N状態においても高速かつ安定にキャリア同期 を行うことができると共に、 主信号の期間における復調信号の位相ジッ夕の影響 を軽減して、 受信性能を向上することができる。 If the error correction is not completed, the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period. When the phase error is detected and the error correction is completed, the phase error is detected by the phase modulation method according to the demodulation mode signal, and then the correction operation is performed according to the period given by the gate signal. As described above, according to the nineteenth aspect, in the ninth aspect, the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the level is the highest level, the phase error is corrected assuming that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame, and the phase modulation method according to the demodulation mode signal is supported. According to the reference phase, phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are initially phase-modulated at the initial state, and phase correction is also performed during the main signal modulation period other than the period. . As a result, carrier synchronization can be performed quickly and stably even in the low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced, thereby improving the reception performance.
第 2 0の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 位 相補正手段における位相同期を検出するフレーム同期判定手段と、  In a twentieth aspect, in the ninth aspect, the frame synchronization determination means for receiving an output signal of the phase correction means and detecting phase synchronization in the phase correction means,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. BER detection means,
フレーム同期判定手段と B E R検出手段との検出結果、 およびタイミング信号 に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合 は、 通信フレームの全期間を与えるゲート信号を生成し、 それ以外の場合は、 同 期信号期間を与えるゲート信号を生成するゲ一ト信号生成手段とをさらに備え、 位相補正手段は、 タイミング信号が与える同期信号期間では最小位相変調によ る位相誤差を検出し、 同期信号期間以外では通信フレーム内において位相数が最 も多い位相変調による位相誤差を検出した後、 ゲート信号が与える期間に従って 補正動作を行うことを特徴とする。  If there is phase synchronization based on the detection result of the frame synchronization determination means and BER detection means and the timing signal, and the C / N is higher than a predetermined threshold, a gate that gives the entire period of the communication frame And a gate signal generating means for generating a gate signal for providing a synchronization signal period otherwise, wherein the phase correction means performs minimum phase modulation during a synchronization signal period provided by the timing signal. Then, after detecting the phase error, detecting the phase error due to the phase modulation having the largest number of phases in the communication frame during the period other than the synchronization signal period, the correction operation is performed according to the period given by the gate signal.
上記のように、 第 2 0の局面によれば、 第 9の局面において、 最小位相変調信 号期間で位相同期がされているときの C / N状態を T M C C信号のビット誤り率 に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレームの 主信号期間に対しても最大位相変調がされているとみなして位相誤差の補正を行 う。 これにより、 低 C/N状態においても高速かつ安定にキャリア同期を行うこ とができると共に、 復調信号の位相ジッ夕の影響を軽減して受信性能を向上する ことができる。 As described above, according to the 20th aspect, in the ninth aspect, the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal However, if the C / N is at a predetermined level, The phase error is corrected assuming that the maximum phase modulation is also performed for the main signal period. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
第 2 1の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 位 相補正手段における位相同期を検出するフレーム同期判定手段と、  In a twelfth aspect, in the ninth aspect, a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビッ ト誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate BER detection means;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
信号期間付与手段が出力する信号とタイミング信号とに基づいて、 位相補正手 段における復調方式を、 位相変調方式に対応して切り替える復調モード信号を出 力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
フレーム同期判定手段、 B E R検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the B ER detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold value, the gate signal that gives the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 同期信号期間を与 えるゲート信号を生成するゲート信号生成手段とをさらに備え、 位相補正手段は、 復調モード信号に従った位相変調方式による位相誤差を検出 し、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする。 Unless phase synchronization is performed and error correction is completed, a synchronization signal period is added. And a gate signal generating means for generating a gate signal for detecting a phase error by a phase modulation method according to a demodulation mode signal, and performing a correcting operation according to a period given by the gate signal. I do.
上記のように、 第 2 1の局面によれば、 第 9の局面において、 最小位相変調信 号期間で位相同期がされているときの C/N状態を T M C C信号のビット誤り率 に基づいて検出し、 当該 C/N状態および復調モ一ド信号に従った位相変調方式 に対応する基準位相に従って、 初期の状態では最小位相変調されるフレーム同期 信号/ T M C C信号期間およびキヤリア同期補助信号期間を用いて位相補正を行 い、 位相同期後は当該期間以外の主信号の変調期間においても位相補正を行う。 これにより、 低 C /N状態においても高速かつ安定にキヤリア同期を行うことが できると共に、 主信号の期間における復調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することができる。  As described above, according to the twenty-first aspect, in the ninth aspect, the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal According to the C / N state and the reference phase corresponding to the phase modulation method according to the demodulation mode signal, the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period, which are minimum phase modulated in the initial state, are used. After the phase synchronization, the phase correction is performed also in the main signal modulation period other than the period. As a result, carrier synchronization can be performed quickly and stably even in the low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced, thereby improving the reception performance.
第 2 2の局面は、 第 9の局面において、 位相補正手段の出力信号を入力し、 位 相補正手段における位相同期を検出するフレーム同期判定手段と、  In a twelfth aspect, in the ninth aspect, a frame synchronization determining means for receiving an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ヅ ト誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. BER detection means,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
フレーム同期判定手段および誤り訂正検出手段の検出結果、 並びに信号期間付 与手段が出力する信号とタイミング信号とに基づいて、 位相補正手段における復 調方式を、 位相変調方式に対応して切り替える復調モード信号を出力する復調モ ード切替手段と、  Demodulation mode for switching the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period giving means. Demodulation mode switching means for outputting a signal;
フレーム同期判定手段、 B E R検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、 Detection results of the frame synchronization determination means, the BER detection means and the error correction detection means, Based on the signal and the timing signal output by the signal period giving means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 同期信号期間を与 えるゲート信号を生成し、  If C / N is lower than the second predetermined threshold, a gate signal giving a synchronization signal period is generated,
位相同期がない場合は、 同期信号期間を与えるゲート信号を生成するゲート 信号生成手段とをさらに備え、  When there is no phase synchronization, further comprising a gate signal generation means for generating a gate signal for giving a synchronization signal period;
位相補正手段は、 誤り訂正が完了していない場合、 タイミング信号が与える同 期信号期間では最小位相変調による位相差を検出し、 同期信号期間以外では通信 フレーム内において位相数が最も多い位相変調による位相誤差を検出し、 誤り訂 正が完了している場合、 復調モード信号に従った位相変調方式による位相誤差を 検出した後、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする 上記のように、 第 2 2の局面によれば、 第 9の局面において、 最小位相変調信 号期間で位相同期がされているときの C/N状態を T M C C信号のビヅ ト誤り率 に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレームの 内、 同期信号期間以外の全期間において最大位相変調がされているとみなして位 相誤差の補正を行うと共に、 復調モード信号に従った位相変調方式に対応する基 準位相に従って、 初期の状態では最小位相変調されるフレーム同期信号/ T M C C信号期間およびキヤリア同期補助信号期間を用いて位相補正を行い、 位相同期 後は当該期間以外の主信号の変調期間においても位相補正を行う。 これにより、 低 C/N状態においても高速かつ安定にキヤリァ同期を行うことができると共に 、 主信号の期間における復調信号の位相ジッ夕の影響を軽減して、 受信性能を向 上することができる。 If the error correction is not completed, the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period. Detecting the phase error and, if the error correction has been completed, detecting the phase error by the phase modulation method according to the demodulation mode signal, and then performing the correction operation according to the period given by the gate signal. As described above, according to the second aspect, in the ninth aspect, the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal. However, if the C / N is at a predetermined level, it is assumed that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame, and the phase error is corrected. , The groups corresponding to the phase modulation method in accordance with the demodulation mode signal In accordance with the quasi-phase, the phase is corrected using the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after the phase synchronization, the phase is corrected even during the main signal modulation period other than the period. Make corrections. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance. .
第 2 3の局面は、 第 1 0〜第 1 6の局面において、 位相補正手段の出力信号を 入力し、 位相補正手段における位相同期を検出するフレーム同期判定手段と、 位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、  According to a twenty-third aspect, in the tenth to sixteenth aspects, an output signal of the phase correction means is input, a frame synchronization determination means for detecting phase synchronization in the phase correction means, and an output signal of the phase correction means. C / N detection means for inputting and detecting the state of C / N (carrier power / noise power) of the received signal;
フレーム同期判定手段と CZN検出手段との検出結果、 およびタイミング信号 に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合 は、 通信フレームの全期間を与えるゲート信号を生成し、 それ以外の場合は、 同 期信号期間を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、 位相補正手段は、 タイミング信号が与える同期信号期間では最小位相変調によ る位相誤差を検出し、 同期信号期間以外では通信フレーム内において位相数が最 も多い位相変調による位相誤差を検出した後、 ゲ一ト信号が与える期間に従って 補正動作を行うことを特徴とする。  Based on the detection result of the frame synchronization judgment means and CZN detection means, and based on the timing signal, if there is phase synchronization and the C / N is higher than a predetermined threshold, a gate that gives the entire period of the communication frame And a gate signal generating means for generating a gate signal for providing a synchronization signal period otherwise, wherein the phase correction means performs minimum phase modulation in a synchronization signal period provided by the timing signal. After detecting a phase error and detecting a phase error due to phase modulation having the largest number of phases in a communication frame during a period other than the synchronization signal period, a correction operation is performed according to a period given by the gate signal.
第 2 4の局面は、 第 1 0, 第 1 2 , 第 1 4および第 1 6の局面において、 位相 補正手段の出力信号を入力し、 位相補正手段における位相同期を検出するフレー ム同期判定手段と、  In a twenty-fourth aspect, in the tenth, the twenty-second, the fourteenth, and the sixteenth aspect, a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means When,
位相補正手段の出力信号を入力し、 受信信号の C /N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、  C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、 In the communication frame, a signal giving the period of each phase modulation signal other than the synchronization signal period Signal period giving means for outputting a signal,
信号期間付与手段が出力する信号とタイミング信号とに基づいて、 位相補正手 段における復調方式を、 位相変調方式に対応して切り替える復調モード信号を出 力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
フレーム同期判定手段、 C /N検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the C / N detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 同期信号期間を与 えるゲート信号を生成するゲート信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
位相補正手段は、 復調モ一ド信号に従った位相変調方式による位相誤差を検出 し、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする。  The phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
第 2 5の局面は、 第 1 1 , 第 1 3および第 1 5の局面において、 位相補正手段 の出力信号を入力し、 位相補正手段における位相同期を検出するフレーム同期判 定手段と、  According to a twenty-fifth aspect, in the eleventh, thirteenth, and fifteenth aspects, a frame synchronization determination unit that inputs an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、  C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
信号期間付与手段が出力する信号とタイミング信号とに基づいて、 位相補正手 段における復調方式を、 位相変調方式に対応して切り替える復調モード信号を出 力する復調モ一ド切替手段と、 A demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output by the signal period providing means and the timing signal. A demodulation mode switching means,
フレーム同期判定手段、 C/N検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the C / N detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 同期信号期間を与 えるゲート信号を生成するゲ一ト信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase synchronization is performed and the error correction is completed;
位相補正手段は、 復調モード信号に従った位相変調方式による位相誤差を検出 し、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする。  The phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
第 2 6の局面は、 第 1 0 , 第 1 2 , 第 1 4および第 1 6の局面において、 位相 補正手段の出力信号を入力し、 位相補正手段における位相同期を検出するフレー ム同期判定手段と、  According to a twenty-sixth aspect, in the tenth, the twelve-fourth, the fourteenth and the sixteenth aspect, a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means When,
位相補正手段の出力信号を入力し、 受信信号の C /N (搬送波電力/雑音電力 ) の状態を検出する C /N検出手段と、  C / N detection means for inputting the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
フレーム同期判定手段および誤り訂正検出手段の検出結果、 並びに信号期間付 与手段が出力する信号とタイミング信号とに基づいて、 位相補正手段における復 調方式を、 位相変調方式に対応して切り替える復調モード信号を出力する復調モ ード切替手段と、 Demodulation mode that switches the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period providing means. Demodulation module that outputs signals Mode switching means,
フレーム同期判定手段、 C/N検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the C / N detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 同期信号期間を与 えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving a synchronization signal period is generated,
位相同期がない場合は、 同期信号期間を与えるゲ一ト信号を生成するゲート 信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period when there is no phase synchronization;
位相補正手段は、 誤り訂正が完了していない場合、 タイミング信号が与える同 期信号期間では最小位相変調による位相差を検出し、 同期信号期間以外では通信 フレーム内において位相数が最も多い位相変調による位相誤差を検出し、 誤り訂 正が完了している場合、 復調モード信号に従った位相変調方式による位相誤差を 検出した後、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする 第 2 7の局面は、 第 1 1 , 第 1 3および第 1 5の局面において、 位相補正手段 の出力信号を入力し、 位相補正手段における位相同期を検出するフレーム同期判 定手段と、 位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音電力 ) の状態を検出する C/N検出手段と、 If the error correction is not completed, the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period. When the phase error is detected and the error correction is completed, the phase error is detected by the phase modulation method according to the demodulation mode signal, and then the correction operation is performed according to the period given by the gate signal. According to a seventh aspect, in the eleventh, the thirteenth, and the fifteenth aspect, an output signal of the phase correction means is input, and frame synchronization determination means for detecting phase synchronization in the phase correction means, C / N detection means for receiving the output signal of the phase correction means and detecting the state of C / N (carrier power / noise power) of the received signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
フレーム同期判定手段および誤り訂正検出手段の検出結果、 並びに信号期間付 与手段が出力する信号とタイミング信号とに基づいて、 位相補正手段における復 調方式を、 位相変調方式に対応して切り替える復調モード信号を出力する復調モ ード切替手段と、  Demodulation mode for switching the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period giving means. Demodulation mode switching means for outputting a signal;
フレーム同期判定手段、 C/N検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the C / N detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold value, the gate signal that gives the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 同期信号期間を与 えるゲート信号を生成し、  If C / N is lower than the second predetermined threshold, a gate signal giving a synchronization signal period is generated,
位相同期がない場合は、 同期信号期間を与えるゲ一ト信号を生成するゲート 信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period when there is no phase synchronization;
位相補正手段は、 誤り訂正が完了していない場合、 タイミング信号が与える同 期信号期間では最小位相変調による位相差を検出し、 同期信号期間以外では通信 フレーム内において位相数が最も多い位相変調による位相誤差を検出し、 誤り訂 正が完了している場合、 復調モード信号に従った位相変調方式による位相誤差を 検出した後、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする 第 2 8の局面は、 第 1 0〜第 1 6の局面において、 位相補正手段の出力信号を 入力し、 位相補正手段における位相同期を検出するフレーム同期判定手段と、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、 If the error correction is not completed, the phase correction means detects a phase difference due to the minimum phase modulation during a synchronization signal period provided by the timing signal, and performs communication during periods other than the synchronization signal period. In the frame, the phase error due to phase modulation with the largest number of phases is detected, and if the error correction has been completed, the phase error due to the phase modulation method according to the demodulation mode signal is detected, and then, according to the period given by the gate signal In a twenty-eighth aspect, a correction operation is performed. In the tenth to sixteenth aspects, a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means And the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction is measured, and the state of C / N (carrier power / noise power) is determined based on the bit error rate. BER detection means for detecting,
フレーム同期判定手段と B E R検出手段との検出結果、 およびタイミング信号 に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C /Nが高い場合 は、 通信フレームの全期間を与えるゲート信号を生成し、 それ以外の場合は、 同 期信号期間を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、 位相補正手段は、 タイミング信号が与える同期信号期間では最小位相変調によ る位相誤差を検出し、 同期信号期間以外では通信フレーム内において位相数が最 も多い位相変調による位相誤差を検出した後、 ゲート信号が与える期間に従って 補正動作を行うことを特徴とする。  If there is phase synchronization based on the detection result of the frame synchronization determination means and BER detection means and the timing signal, and the C / N is higher than a predetermined threshold, a gate that gives the entire period of the communication frame And a gate signal generating means for generating a gate signal for providing a synchronization signal period otherwise, wherein the phase correction means performs minimum phase modulation in a synchronization signal period provided by the timing signal. After detecting a phase error and detecting a phase error due to phase modulation having the largest number of phases in a communication frame during a period other than the synchronization signal period, a correction operation is performed according to a period given by a gate signal.
第 2 9の局面は、 第 1 0 , 第 1 2 , 第 1 4および第 1 6の局面において、 位相 補正手段の出力信号を入力し、 位相補正手段における位相同期を検出するフレー ム同期判定手段と、  In a twentieth aspect, in the tenth, twenty-second, fourteenth, and sixteenth aspects, the frame synchronization determination means receives the output signal of the phase correction means and detects phase synchronization in the phase correction means. When,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. BER detection means,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、 In the communication frame, a signal giving the period of each phase modulation signal other than the synchronization signal period Signal period giving means for outputting a signal,
信号期間付与手段が出力する信号とタイミング信号とに基づいて、 位相補正手 段における復調方式を、 位相変調方式に対応して切り替える復調モード信号を出 力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output from the signal period providing means and the timing signal;
フレーム同期判定手段、 B E R検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the B ER detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 同期信号期間を与 えるゲート信号を生成するゲート信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
位相補正手段は、 復調モード信号に従った位相変調方式による位相誤差を検出 し、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする。  The phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
第 3 0の局面は、 第 1 1 , 第 1 3および第 1 5の局面において、 位相補正手段 の出力信号を入力し、 位相補正手段における位相同期を検出するフレーム同期判 定手段と、  In a thirtieth aspect, in the eleventh, thirteenth, and fifteenth aspects, an output signal of the phase correction means is input, and frame synchronization determination means for detecting phase synchronization in the phase correction means,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. BER detection means,
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
信号期間付与手段が出力する信号とタイミング信号とに基づいて、 位相補正手 段における復調方式を、 位相変調方式に対応して切り替える復調モード信号を出 力する復調モ一ド切替手段と、 A phase correction method is performed based on the signal output from the signal period providing means and the timing signal. Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the stage according to the phase modulation method;
フレーム同期判定手段、 B E R検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the B ER detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 同期信号期間を与 えるゲート信号を生成するゲート信号生成手段とをさらに備え、  A gate signal generating means for generating a gate signal for providing a synchronization signal period except when the phase is synchronized and the error correction is completed;
位相補正手段は、 復調モード信号に従った位相変調方式による位相誤差を検出 し、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする。  The phase correction means detects a phase error by a phase modulation method according to a demodulation mode signal, and performs a correction operation according to a period given by a gate signal.
第 3 1の局面は、 第 1 0 , 第 1 2 , 第 1 4および第 1 6の局面において、 位相 補正手段の出力信号を入力し、 位相補正手段における位相同期を検出するフレー ム同期判定手段と、  According to a thirty-first aspect, in the tenth, the twelfth, the fourteenth and the sixteenth aspect, a frame synchronization determining means for inputting an output signal of the phase correcting means and detecting phase synchronization in the phase correcting means When,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ッ ト誤り率を測定し、 当該ビッ ト誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate BER detection means;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
フレーム同期判定手段および誤り訂正検出手段の検出結果、 並びに信号期間付 与手段が出力する信号とタイミング信号とに基づいて、 位相補正手段における復 調方式を、 位相変調方式に対応して切り替える復調モ一ド信号を出力する復調モ ード切替手段と、 Detection result of frame synchronization judgment means and error correction detection means, and signal period Demodulation mode switching means for outputting a demodulation mode signal for switching the demodulation method in the phase correction means in accordance with the phase modulation method based on the signal output by the applying means and the timing signal;
フレーム同期判定手段、 B E R検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the B ER detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 同期信号期間を与 えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving a synchronization signal period is generated,
位相同期がない場合は、 同期信号期間を与えるゲート信号を生成するゲート 信号生成手段とをさらに備え、  When there is no phase synchronization, further comprising a gate signal generation means for generating a gate signal for giving a synchronization signal period;
位相補正手段は、 誤り訂正が完了していない場合、 タイミング信号が与える同 期信号期間では最小位相変調による位相差を検出し、 同期信号期間以外では通信 フレーム内において位相数が最も多い位相変調による位相誤差を検出し、 誤り訂 正が完了している場合、 復調モード信号に従った位相変調方式による位相誤差を 検出した後、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする 第 3 2の局面は、 第 1 1, 第 1 3および第 1 5の局面において、 位相補正手段 の出力信号を入力し、 位相補正手段における位相同期を検出するフレーム同期判 定手段と、 If the error correction is not completed, the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period. When the phase error is detected and the error correction is completed, the phase error is detected by the phase modulation method according to the demodulation mode signal, and then the correction operation is performed according to the period given by the gate signal. The second aspect is the phase correction means according to the first, first, third, and fifteenth aspects. Frame synchronization determining means for inputting the output signal of
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力 Z雑音電 力) の状態を検出する B E R検出手段と、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power Z noise power) based on the bit error rate. BER detection means,
通信フレームにおいて、 同期信号期間以外の各位相変調信号の期間を与える信 号を出力する信号期間付与手段と、  In the communication frame, a signal period giving means for outputting a signal giving a period of each phase modulation signal other than the synchronization signal period;
フレーム同期判定手段および誤り訂正検出手段の検出結果、 並びに信号期間付 与手段が出力する信号とタイミング信号とに基づいて、 位相補正手段における復 調方式を、 位相変調方式に対応して切り替える復調モード信号を出力する復調モ ード切替手段と、  Demodulation mode for switching the demodulation method in the phase correction means according to the phase modulation method based on the detection results of the frame synchronization determination means and the error correction detection means, and the signal and the timing signal output by the signal period giving means. Demodulation mode switching means for outputting a signal;
フレーム同期判定手段、 B E R検出手段および誤り訂正検出手段の検出結果、 並びに信号期間付与手段が出力する信号とタイミング信号に基づき、  Based on the detection results of the frame synchronization determining means, the B ER detecting means and the error correction detecting means, and the signal and the timing signal output by the signal period providing means,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 最小位相変調が施 されている信号の期間を与えるゲート信号を、  If the C / N is lower than the second predetermined threshold, the gate signal giving the period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 最小位相変調期間および予め定めた変調信号期間を与 えるゲート信号を生成し、  Otherwise, generate a gate signal that provides a minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 通信フレームの全 期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, the gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 同期信号期間を与 えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving a synchronization signal period is generated,
位相同期がない場合は、 同期信号期間を与えるゲート信号を生成するゲート 信号生成手段とをさらに備え、 If there is no phase synchronization, a gate that generates a gate signal that gives the synchronization signal period Signal generation means,
位相補正手段は、 誤り訂正が完了していない場合、 タイミング信号が与える同 期信号期間では最小位相変調による位相差を検出し、 同期信号期間以外では通信 フレーム内において位相数が最も多い位相変調による位相誤差を検出し、 誤り訂 正が完了している場合、 復調モ一ド信号に従った位相変調方式による位相誤差を 検出した後、 ゲート信号が与える期間に従って補正動作を行うことを特徴とする 上記のように、 第 2 3〜第 3 2の局面は、 第 1 0〜第 1 6の局面と第 1 7〜第 2 2の局面とをそれぞれ組み合わせたものである。 従って、 第 2 3〜第 3 2の局 面は、 それぞれ低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 周波数補正手段による周波数引き込み過程等において、 位相補 正手段における疑似同期の回避が可能になり、 かつ、 主信号の期間における復調 信号の位相ジッ夕の影響を軽減して、 受信性能を向上することができる。  If the error correction is not completed, the phase correction means detects the phase difference due to the minimum phase modulation during the synchronization signal period given by the timing signal, and uses the phase modulation having the largest number of phases in the communication frame during periods other than the synchronization signal period. When the phase error is detected and the error correction is completed, after detecting the phase error by the phase modulation method according to the demodulation mode signal, the correction operation is performed according to the period given by the gate signal. As described above, the 23rd to 32nd aspects are combinations of the 10th to 16th aspects and the 17th to 22nd aspects, respectively. Therefore, the 23rd to 32nd stations can carry out carrier synchronization stably at high speed even in the low C / N state, respectively, and in the frequency pull-in process by the frequency correction means, etc. Pseudo-synchronization can be avoided, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance.
第 3 3の局面は、 第 9〜第 3 2の局面において、 フレーム同期検出手段は、 信号を遅延検波する遅延検波手段と、  According to a third aspect, in the ninth to thirty-second aspects, the frame synchronization detection means includes: a delay detection means for delay-detecting the signal;
遅延検波された位相変調信号から、 伝送された信号を識別する 1または 2以上 の位相識別手段と、  One or more phase identification means for identifying the transmitted signal from the differentially detected phase modulated signal;
1または 2以上の位相識別手段の出力とフレーム同期信号とのパターン照合を 行う照合手段とを備え、  Matching means for performing pattern matching between the output of one or more phase identification means and the frame synchronization signal,
1または 2以上の位相識別手段は、 フレーム同期信号を伝送する位相変調に対 応した位相識別領域をそれぞれ有し、 2以上の当該位相識別領域はそれぞれ異な つた位相回転を施して並列に設置し、  One or more of the phase discrimination means has a phase discrimination area corresponding to the phase modulation for transmitting the frame synchronization signal, and the two or more phase discrimination areas are provided in parallel with different phase rotations. ,
照合手段は、 位相識別領域の位相回転量が異なる位相識別手段のそれぞれの出 力に対してパターン照合を行うことを特徴とする。  The matching means is characterized in that pattern matching is performed on each output of the phase identification means having different phase rotation amounts in the phase identification area.
第 3 4の局面は、 第 9〜第 3 2の局面において、 フレーム同期検出手段は、 信号を遅延検波する遅延検波手段と、 遅延検波信号に予め定めた数種類の位相回転を与える複数の位相回転手段と、 複数の位相回転手段のそれぞれの出力に対し、 位相識別を行う位相識別手段と 位相識別手段の出力とフレーム同期信号とのパターン照合を行う照合手段とを 備え、 In a thirty-fourth aspect, in the ninth to thirty-second aspects, the frame synchronization detection means includes: a delay detection means for delay-detecting the signal; A plurality of phase rotation means for applying a predetermined number of types of phase rotation to the differential detection signal; a phase identification means for performing phase identification for each output of the plurality of phase rotation means; an output of the phase identification means; and a frame synchronization signal. Matching means for performing pattern matching of
位相識別手段は、 フレーム同期信号が伝送される位相変調に対応する位相識別 領域を有し、 遅延検波されて異なった位相回転が与えられたそれぞれの位相変調 信号に対し伝送された信号を識別し、  The phase discrimination means has a phase discrimination region corresponding to the phase modulation in which the frame synchronization signal is transmitted, and discriminates a signal transmitted with respect to each phase modulation signal to which a different phase rotation is given by delay detection. ,
照合手段は、 位相識別手段のそれぞれの出力に対してパターン照合を行うこと を特徴とする。  The matching means performs pattern matching on each output of the phase identification means.
第 3 5の局面は、 第 9〜第 3 2の局面において、 フレーム同期検出手段は、 信号を遅延検波する遅延検波手段と、  A thirty-fifth aspect is the ninth to thirty-second aspect, wherein the frame synchronization detection means includes: a delay detection means for delay-detecting the signal;
遅延検波された位相変調信号から伝送された信号を識別する位相識別手段と、 位相識別手段の識別位相を回転する識別位相回転手段と、  Phase identification means for identifying a signal transmitted from the differentially detected phase modulation signal, identification phase rotation means for rotating the identification phase of the phase identification means,
位相識別手段の出力とフレーム同期信号のパターン照合を行う照合手段とを備 え、  A matching means for comparing the output of the phase identification means and the pattern of the frame synchronization signal,
位相識別手段は、 フレーム同期信号を伝送する位相変調に対応した位相識別領 域を有し、 位相回転手段は照合手段によりフレーム同期信号を検出するまで、 位 相識別手段における位相識別領域の位相を回転させることを特徴とする。  The phase identification means has a phase identification area corresponding to the phase modulation for transmitting the frame synchronization signal, and the phase rotation means determines the phase of the phase identification area in the phase identification means until the matching means detects the frame synchronization signal. It is characterized by rotating.
第 3 6の局面は、 第 9〜第 3 2の局面において、 フレーム同期検出手段は、 信号を遅延検波する遅延検波手段と、  According to a sixth aspect, in the ninth to thirty-second aspects, the frame synchronization detection means includes: a delay detection means for delay-detecting the signal;
遅延検波信号に位相回転を与える位相回転手段と、  Phase rotation means for performing phase rotation on the differential detection signal,
位相回転手段の出力を入力して遅延検波された位相変調信号から伝送された信 号を識別する位相識別手段と、  Phase identification means for receiving an output of the phase rotation means and identifying a signal transmitted from the differentially detected phase modulation signal;
位相識別手段の出力とフレーム同期信号のパターン照合を行う照合手段とを備 え、 照合手段によりフレーム同期信号を検出するまで、 位相回転手段の位相を回転 させることを特徴とする。 A matching means for comparing the output of the phase identification means and the pattern of the frame synchronization signal, The phase rotation unit rotates the phase until the frame synchronization signal is detected by the matching unit.
上記のように、 第 3 3〜第 3 6の局面は、 第 9〜第 3 2におけるフレーム同期 検出手段の典型的な構成を示したものである。 これにより、 入力周波数誤差が大 きいときでも、 遅延検波によるフレーム同期検出の誤動作を無くしてキヤリア同 期を行うことができる。  As described above, the 33rd to 36th aspects show typical configurations of the ninth to 32nd frame synchronization detecting means. Thus, even when the input frequency error is large, it is possible to eliminate the malfunction of frame synchronization detection by delay detection and perform carrier synchronization.
第 3 7の局面は、 第 9〜第 3 6の局面において、 周波数補正手段の出力信号を 入力し、 当該出力信号の帯域制限を行った後、 位相補正手段へ出力する帯域制限 フィル夕をさらに備え、  According to a thirty-seventh aspect, in the ninth to the thirty-sixth aspects, the output signal of the frequency correction means is input, the bandwidth of the output signal is limited, and then the bandwidth limitation filter output to the phase correction means is further performed. Prepared,
フレーム同期検出手段は、 周波数補正手段、 または帯域制限フィル夕、 もしく は位相補正手段のいずれかの出力信号を入力し、 フレーム先頭位置を検出するこ とを特徴とする。  The frame synchronization detecting means is characterized by inputting an output signal of either the frequency correcting means or the band limiting filter or the phase correcting means, and detecting a frame head position.
上記のように、 第 3 7の局面は、 第 9〜第 3 6の局面において、 周波数補正手 段が出力する位相変調信号をスぺクトル整形する帯域制限フィル夕をさらに構成 に加えたものである。 従って、 第 3 7の局面の効果は、 それぞれ第 9〜第 3 6の 局面の効果と同様である。  As described above, the thirty-seventh aspect is the ninth to thirty-sixth aspects in which a band limiting filter for spectrally shaping the phase modulation signal output by the frequency correction means is further added to the configuration. is there. Therefore, the effects of the 37th phase are the same as the effects of the 9th to 36th phases, respectively.
第 3 8の局面は、 第 9〜第 3 7の局面において、 キャリア同期補助信号が、 通 信フレーム内の時分割多重される位置に対して次のバケツトとなる変調信号に施 されている位相変調を識別する情報を重畳している場合、  In a thirty-eighth aspect, in the ninth to thirty-seventh aspects, the phase in which the carrier synchronization auxiliary signal is applied to the modulated signal serving as the next bucket with respect to the time-division multiplexed position in the communication frame. If the information identifying the modulation is superimposed,
情報に基づいて最小位相変調が施されている信号の期間を検出し、 当該最小位 相変調期間を与える信号をタイミング生成手段へ出力する情報検出手段をさらに 備え、  Information detecting means for detecting a period of a signal subjected to minimum phase modulation based on the information, and outputting a signal giving the minimum phase modulation period to the timing generating means;
タイミング生成手段は、 同期信号期間に加え、 最小位相変調期間を与えるタイ ミング信号を生成することを特徴とする。  The timing generation means generates a timing signal that gives a minimum phase modulation period in addition to the synchronization signal period.
上記のように、 第 3 8の局面によれば、 第 9〜第 3 7の局面において、 時分割 多重される位相変調信号のうち、 バケツト内に分散配置されたキヤリャ同期補助 信号を含む最小位相変調信号に加え、 最小位相変調がなされている主信号をも用 いて周波数補正および位相補正 (搬送波再生) を行う。 これにより、 低 C/N状 態においても高速かつ安定にキヤリア同期を行うことができる。 As described above, according to the thirty-eighth aspect, in the ninth to thirty-seventh aspects, of the phase-modulated signals to be time-division multiplexed, the carrier synchronization auxiliary distributed in a bucket is provided. Performs frequency correction and phase correction (regeneration of carrier wave) using the main signal that has been subjected to minimum phase modulation in addition to the minimum phase modulation signal including the signal. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state.
第 3 9の局面は、 第 1 3〜第 1 6の局面において、 周波数ステップ手段は、 疑 似同期が発生する周波数を f g [ H z ] とした場合、 (— 1 ) n1 n x f g [ H z ] ( n = l , 2, ···) に基づいて位相補正手段に入力する周波数を段階的に ずらすことを特徴とする。 In a ninth aspect, in the thirteenth to sixteenth aspects, when the frequency at which the pseudo-synchronization occurs is fg [Hz], the frequency step means obtains (— 1) n1 nxfg [H z] (n = l, 2,...), and the frequency input to the phase correction means is shifted stepwise.
上記のように、 第 3 9の局面によれば、 第 1 3〜第 1 6の局面において、 周波 数ステップ手段は、 疑似同期が発生する周波数 f gをステップ単位として、 周波 数を正負交互に順に大きくするようにずらす。 これにより、 疑似同期である場合 であっても上記ステップ動作を繰り返すことで、 最終的に正常同期を行うことが できる。  As described above, according to the thirty-ninth aspect, in the thirteenth to sixteenth aspects, the frequency step means sets the frequency fg at which the pseudo-synchronization occurs as a step unit, and alternates the frequency in the order of positive and negative. Shift to increase. As a result, even in the case of the pseudo synchronization, the normal synchronization can be finally performed by repeating the above step operation.
第 4 0の局面は、 複数の位相変調信号と共に、 通信フレーム内において位相数 が最も少ない位相変調 (以下、 最小位相変調という) を用いて位相変調を施され たキヤリア同期補助信号が等時間間隔に分散するように、 時分割多重された当該 通信フレームの復調方法であって、  In the 40th aspect, a carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation having the smallest number of phases in a communication frame (hereinafter referred to as minimum phase modulation) together with a plurality of phase-modulated signals is an equal time interval. A demodulation method of the communication frame time-division multiplexed so that
通信フレームの同期信号を検出することで、 最小位相変調が施された期間のう ち少なくともキャリア同期補助信号の期間 (以下、 同期信号期間という) を検出 するステップと、  Detecting a synchronization signal of the communication frame to detect at least a period of the carrier synchronization auxiliary signal (hereinafter referred to as a synchronization signal period) in the period in which the minimum phase modulation is performed;
同期信号期間において、 最小位相変調に従った周波数および位相の補正動作を 行うステップとを備える。  Performing a frequency and phase correction operation according to the minimum phase modulation during the synchronization signal period.
上記のように、 第 4 0の局面によれば、 時分割多重される位相変調信号のうち 、 バケツ ト内に分散配置されたキヤリャ同期補助信号を含む最小位相変調信号を 用いて周波数補正および位相補正 (搬送波再生) を行うことにより、 低 C/N状 態においても高速かつ安定にキャリア同期を行うことができる。 また、 入力周波 数誤差が大きいときでも、 遅延検波によるフレーム同期検出の誤動作を無くして キヤリア同期を行うことができる。 As described above, according to the 40th aspect, of the phase-modulated signals to be time-division multiplexed, the frequency correction and the phase correction are performed by using the minimum phase-modulated signal including the carrier synchronization auxiliary signal dispersedly arranged in the bucket. By performing correction (carrier recovery), carrier synchronization can be performed quickly and stably even in a low C / N state. In addition, even when the input frequency error is large, the malfunction of frame synchronization detection by delay detection is eliminated. Carrier synchronization can be performed.
第 4 1の局面は、 第 4 0の局面において、 周波数引き込み状態を検出して、 擬 似同期が発生する周波数か否かを判定するステップと、  In a forty-first aspect, in the forty-fourth aspect, a step of detecting a frequency pull-in state to determine whether or not the frequency is a frequency at which pseudo synchronization occurs,
判定するステップにおける判断の結果、 疑似同期が発生しない周波数である場 合は、 位相補正動作を初期化するステップとをさらに備える。  If the result of the determination in the determining step is that the frequency does not cause pseudo-synchronization, the method further includes the step of initializing the phase correction operation.
上記のように、 第 4 1の局面によれば、 第 4 0の局面において、 周波数引き込 み状態の検出を行い、 周波数補正動作において位相補正動作が疑似同期しない周 波数まで周波数補正が行われてから、 位相補正動作を初期化して再動作させる。 これにより、 周波数補正動作による周波数引き込み過程等において、 位相補正動 作における疑似同期の回避が可能になる。  As described above, according to the forty-first aspect, in the forty-fourth aspect, the frequency lock-in state is detected, and the frequency correction is performed up to the frequency at which the phase correction operation is not pseudo-synchronized in the frequency correction operation. After that, the phase correction operation is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
第 4 2の局面は、 第 4 0の局面において、 キャリア同期補助信号の期間におけ る位相同期の状態を検出するステップと、  In a forty-second aspect, in the forty-fourth aspect, a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
キヤリァ同期補助信号期間の位相同期状態と T M C C信号期間の誤り訂正状態 とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on the phase synchronization state during the carrier synchronization auxiliary signal period and the error correction state during the TMCC signal period;
判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正動作 を初期化するステップとをさらに備える。  If the result of determination in the determining step is pseudo-synchronization, the method further includes the step of initializing the phase correction operation.
上記のように、 第 4 2の局面によれば、 第 4 0の局面において、 キャリア同期 補助信号の期間における位相同期の検出と、 T M C C信号の誤り訂正の可否の検 出とを行い、 当該検出結果から正常同期であるか否かを判断する。 そして、 疑似 同期の場合には、 位相補正動作を初期化して再動作させる。 これにより、 周波数 補正動作による周波数引き込み過程等において、 位相補正動作における疑似同期 の回避が可能になる。  As described above, according to the forty-second aspect, in the forty-fourth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the error correction of the TMCC signal are performed. It is determined from the result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the phase correction operation is initialized and restarted. This makes it possible to avoid quasi-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
第 4 3の局面は、 第 4 0の局面において、 キャリア同期補助信号の期間におけ る位相同期の状態を検出するステップと、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の期間における位 相同期の状態を検出するステップと、 In a forty-third aspect, in the forty-fifth aspect, a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal, Detecting a phase synchronization state during a transmission control signal (TMCC signal) included in the frame synchronization signal;
キヤリァ同期補助信号期間の位相同期状態と T M C C信号期間の位相同期状態 とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on the phase synchronization state during the carrier synchronization auxiliary signal period and the phase synchronization state during the T MCC signal period;
判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正動作 を初期化するステップとをさらに備える。  If the result of determination in the determining step is pseudo-synchronization, the method further includes the step of initializing the phase correction operation.
上記のように、 第 4 3の局面によれば、 第 4 0の局面において、 キャリア同期 補助信号の期間における位相同期の検出と、 フレーム同期信号/ T M C C信号の 期間における位相同期の検出とを行い、 当該検出結果から正常同期であるか否か を判断する。 そして、 疑似同期の場合には、 位相補正動作を初期化して再動作さ せる。 これにより、 周波数補正動作による周波数引き込み過程等において、 位相 補正動作における疑似同期の回避が可能になる。  As described above, according to the forty-third aspect, in the forty-fourth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal are performed. Then, it is determined whether or not the synchronization is normal based on the detection result. Then, in the case of pseudo-synchronization, the phase correction operation is initialized and restarted. This makes it possible to avoid pseudo-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation.
第 4 4の局面は、 第 4 0の局面において、 キャリア同期補助信号の期間におけ る位相同期の状態を検出するステップと、  In a forty-fourth aspect, in the forty-fourth aspect, a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
キヤリァ同期補助信号期間の位相同期状態と T M C C信号期間の誤り訂正状態 とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on the phase synchronization state during the carrier synchronization auxiliary signal period and the error correction state during the TMCC signal period;
判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正動作 を行わせる周波数を段階的に変化させるステップとをさらに備える。  If the result of determination in the determining step is pseudo-synchronization, the method further includes the step of stepwise changing the frequency at which the phase correction operation is performed.
上記のように、 第 4 4の局面によれば、 第 4 0の局面において、 キャリア同期 補助信号の期間における位相同期の検出と、 T M C C信号の誤り訂正の可否の検 出とを行い、 当該検出結果から正常同期であるか否かを判断する。 そして、 疑似 同期の場合には、 周波数補正動作の周波数を制御して位相補正動作で正常同期で きるようにする。 これにより、 周波数補正動作による周波数引き込み過程等にお いて、 位相補正動作における疑似同期の回避が可能になる。 第 4 5の局面は、 第 4 0の局面において、 キャリア同期補助信号の期間におけ る位相同期の状態を検出するステップと、 As described above, according to the forty-fourth aspect, in the forty-fourth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the possibility of error correction of the TMCC signal are performed. It is determined from the result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the frequency of the frequency correction operation is controlled so that the normal synchronization can be performed by the phase correction operation. This makes it possible to avoid pseudo-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation. In a forty-fifth aspect, in the forty-fourth aspect, a step of detecting a state of phase synchronization in a period of the carrier synchronization auxiliary signal,
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の期間における位 相同期の状態を検出するステップと、  Detecting a phase synchronization state during a transmission control signal (TMC C signal) included in the frame synchronization signal;
キヤリァ同期補助信号期間の位相同期状態と T M C C信号期間の位相同期状態 とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on the phase synchronization state during the carrier synchronization auxiliary signal period and the phase synchronization state during the T MCC signal period;
判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正動作 を行わせる周波数を段階的に変化させるステップとをさらに備える。  If the result of determination in the determining step is pseudo-synchronization, the method further includes the step of stepwise changing the frequency at which the phase correction operation is performed.
上記のように、 第 4 5の局面によれば、 第 4 0の局面において、 キャリア同期 補助信号の期間における位相同期の検出と、 フレーム同期信号/ T M C C信号の 期間における位相同期の検出とを行い、 当該検出結果から正常同期であるか否か を判断する。 そして、 疑似同期の場合には、 周波数補正動作の周波数を制御して 位相補正動作で正常同期できるようにする。 これにより、 周波数補正動作による 周波数引き込み過程等において、 位相補正動作における疑似同期の回避が可能に なる。  As described above, according to the forty-fifth aspect, in the forty-fourth aspect, detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal are performed. Then, it is determined whether or not the synchronization is normal based on the detection result. In the case of pseudo synchronization, the frequency of the frequency correction operation is controlled so that normal synchronization can be performed by the phase correction operation. This makes it possible to avoid quasi-synchronization in the phase correction operation in the frequency pull-in process or the like by the frequency correction operation.
第 4 6の局面は、 第 4 4の局面において、 周波数引き込み状態を検出して、 擬 似同期が発生する周波数か否かを判定するステップと、  In a forty-sixth aspect, in the forty-fourth aspect, a step of detecting a frequency pull-in state to determine whether or not the frequency is a frequency at which pseudo synchronization occurs,
判定するステップにおける判断の結果、 疑似同期が発生しない周波数である場 合は、 位相補正動作を初期化するステップとをさらに備える。  If the result of the determination in the determining step is that the frequency does not cause pseudo-synchronization, the method further includes the step of initializing the phase correction operation.
第 4 7の局面は、 第 4 5の局面において、 周波数引き込み状態を検出して、 擬 似同期が発生する周波数か否かを判定するステップと、  In a forty-seventh aspect, in the forty-fifth aspect, a step of detecting a frequency pull-in state to determine whether or not the frequency is a frequency at which pseudo synchronization occurs,
判定するステップにおける判断の結果、 疑似同期が発生しない周波数である場 合は、 位相補正動作を初期化するステップとをさらに備える。  If the result of the determination in the determining step is that the frequency does not cause pseudo-synchronization, the method further includes the step of initializing the phase correction operation.
上記のように、 第 4 6および第 4 7の局面によれば、 第 4 4および第 4 5の局 面において、 さらに周波数引き込み状態の検出を行い、 周波数補正動作において 位相補正動作が疑似同期しない周波数まで周波数補正が行われてから、 位相補正 T/JP 動作を初期化して再動作させる。 これにより、 周波数補正動作による周波数引き 込み過程等において、 位相補正動作における疑似同期の回避が可能になる。 第 4 8の局面は、 第 4 0の局面において、 位相同期の状態を検出するステップ と、 As described above, according to the forty-sixth and forty-seventh aspects, in the forty-fourth and forty-fifth stations, the frequency pull-in state is further detected, and the phase correction operation is not pseudo-synchronized in the frequency correction operation. Phase correction after frequency correction up to frequency Initialize T / JP operation and restart. This makes it possible to avoid quasi-synchronization in the phase correction operation in the frequency pull-in process by the frequency correction operation. In a forty-eighth aspect, in the forty-eighth aspect, a step of detecting a state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 予め定めたしきい値に対し C /Nが高い場合、 同期信 号期間では最小位相変調による位相誤差を検出し、 通信フレームの同期信号期間 以外では通信フレーム内にぉレ、て位相数が最も多 、位相変調による位相誤差を検 出した後、 通信フレームの全期間で位相補正動作を行うステップとをさらに備え る。  There is a step of detecting the C / N (carrier power / noise power) state of the received signal and phase synchronization, and if the C / N is higher than a predetermined threshold, the minimum phase in the synchronization signal period The phase error due to modulation is detected, and the number of phases is largest in the communication frame during periods other than the synchronization signal period of the communication frame.After detecting the phase error due to phase modulation, the phase correction operation is performed throughout the communication frame. And performing the following.
上記のように、 第 4 8の局面によれば、 第 4 0の局面において、 最小位相変調 信号期間で位相同期がされているときの C/N状態を検出し、 当該 C/Nが予め 定めたレベルである場合、 通信フレームの主信号期間に対しても最大位相変調が されているとみなして位相誤差の補正を行う。 これにより、 低 C/N状態におい ても高速かつ安定にキヤリア同期を行うことができると共に、 復調信号の位相ジ ッ夕の影響を軽減して受信性能を向上することができる。  As described above, according to the forty-eighth aspect, in the forty-fourth aspect, the C / N state during phase synchronization during the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the level is the same level, the phase error is corrected assuming that the maximum phase modulation is also performed for the main signal period of the communication frame. As a result, carrier synchronization can be performed quickly and stably even in the low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
第 4 9の局面は、 第 4 0の局面において、 位相同期の状態を検出するステップ と、  In a forty-ninth aspect, in the forty-ninth aspect, a step of detecting a state of phase synchronization,
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 が施された期間以外の期間において対応する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変 調が施された期間において最小位相変調による位相誤差を検出した後、 位相補正 動作を行うステップとをさらに備える。 If phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and the predetermined second threshold value, the C / N is not used during the period other than the period during which phase modulation with the largest number of phases is performed in the communication frame. Detect the phase error due to the corresponding phase modulation, When the C / N is lower than the second threshold value, detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed, and then performing a phase correction operation. Further prepare.
上記のように、 第 4 9の局面によれば、 第 4 0の局面において、 最小位相変調 信号期間で位相同期がされているときの C/N状態を検出し、 当該 C/N状態お よび復調モード信号に従った位相変調方式に対応する基準位相に従って、 初期の 状態では最小位相変調されるフレーム同期信号/ T M C C信号期間およびキヤリ ァ同期補助信号期間を用いて位相補正を行い、 位相同期後は当該期間以外の主信 号の変調期間においても位相補正を行う。 これにより、 低 C/N状態においても 高速かつ安定にキヤリァ同期を行うことができると共に、 主信号の期間における 復調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することができる。 第 5 0の局面は、 第 4 0の局面において、 位相同期の状態を検出するステップ と、  As described above, according to the forty-ninth aspect, in the forty-ninth aspect, the C / N state when phase synchronization is performed in the minimum phase modulation signal period is detected, and the C / N state and the C / N state are detected. According to the reference phase corresponding to the phase modulation method according to the demodulation mode signal, phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after phase synchronization. Performs phase correction in the modulation period of the main signal other than the period. As a result, carrier synchronization can be performed quickly and stably even in the low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance. In a fiftyth aspect, in the forty-fifth aspect, a step of detecting a state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応する位相 変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変調が施された期間において最小位相変調による位 相誤差を検出した後、 位相補正動作を行うステップと、  If phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting a phase error due to phase modulation;
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 第 1のしき い値に対し C /Nが高い場合、 同期信号期間では最小位相変調による位相誤差を 検出し、 通信フレームの同期信号期間以外では通信フレーム内における最大位相 変調による位相誤差を検出した後、 位相補正動作を行うステツプとをさらに備え る If there is phase synchronization and error correction has not been completed, and C / N is higher than the first threshold, the phase error due to minimum phase modulation is reduced during the synchronization signal period. Detecting and detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period of the communication frame, and then performing a phase correction operation.
上記のように、 第 5 0の局面によれば、 第 4 0の局面において、 最小位相変調 信号期間で位相同期がされているときの C/N状態を検出し、 当該 C/Nが予め 定めたレベルである場合、 通信フレームの内、 同期信号期間以外の全期間におい て最大位相変調がされているとみなして位相誤差の補正を行うと共に、 復調モ一 ド信号に従った位相変調方式に対応する基準位相に従って、 初期の状態では最小 位相変調されるフレーム同期信号/ T M C C信号期間およびキャリア同期補助信 号期間を用いて位相補正を行い、 位相同期後は当該期間以外の主信号の変調期間 においても位相補正を行う。 これにより、 低 C/N状態においても高速かつ安定 にキャリア同期を行うことができると共に、 主信号の期間における復調信号の位 相ジッ夕の影響を軽減して、 受信性能を向上することができる。  As described above, according to the 50th aspect, in the 40th aspect, the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected, and the C / N is determined in advance. If the level is higher than that, the phase error is corrected assuming that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame, and the phase modulation method according to the demodulation mode signal is used. According to the corresponding reference phase, phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after the phase synchronization, the modulation period of the main signal other than the period Also, the phase correction is performed. This enables fast and stable carrier synchronization even in the low C / N state, and reduces the influence of the phase jitter of the demodulated signal during the main signal period, thereby improving the reception performance. .
第 5 1の局面は、 第 4 0の局面において、 位相同期の状態を検出するステップ と、  In a fifty-first aspect, in the forty-fifth aspect, a step of detecting a state of phase synchronization;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. Steps and
位相同期があり、 かつ、 予め定めたしきい値に対し C /Nが高い場合、 同期信 号期間では最小位相変調による位相誤差を検出し、 通信フレームの同期信号期間 以外では通信フレーム内において位相数が最も多い位相変調による位相誤差を検 出した後、 位相補正動作を行うステップとをさらに備える。  If there is phase synchronization and C / N is higher than a predetermined threshold, the phase error due to minimum phase modulation is detected during the synchronization signal period, and the phase error within the communication frame is not included during the period other than the communication frame synchronization signal period. Performing a phase correction operation after detecting a phase error due to the largest number of phase modulations.
上記のように、 第 5 1の局面によれば、 第 4 0の局面において、 最小位相変調 信号期間で位相同期がされているときの C/N状態を T M C C信号のビッ ト誤り 率に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレーム の主信号期間に対しても最大位相変調がされているとみなして位相誤差の補正を 行う。 これにより、 低 C/N状態においても高速かつ安定にキャリア同期を行う ことができると共に、 復調信号の位相ジッ夕の影響を軽減して受信性能を向上す ることができる。 As described above, according to the fifty-first aspect, in the forty-fifth aspect, the C / N state when the phase is synchronized in the minimum phase modulation signal period is based on the bit error rate of the TMCC signal. If the detected C / N is at a predetermined level, it is assumed that maximum phase modulation has been performed even for the main signal period of the communication frame, and the phase error is corrected. Do. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
第 5 2の局面は、 第 4 0の局面において、 位相同期の状態を検出するステップ と、  In a fifty-second aspect, in the forty-fifth aspect, a step of detecting a state of phase synchronization;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. Steps and
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 が施された期間以外の期間において対応する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変 調が施された期間において最小位相変調による位相誤差を検出した後、 位相補正 動作を行うステップとをさらに備える。  If phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and the predetermined second threshold value, the C / N is not used during the period other than the period during which phase modulation with the largest number of phases is performed in the communication frame. The phase error due to the corresponding phase modulation is detected.If the C / N is lower than the second threshold value, the phase error due to the minimum phase modulation is detected during the synchronization signal period and the period where the minimum phase modulation is performed. Performing a phase correction operation after the above.
上記のように、 第 5 2の局面によれば、 第 4 0の局面において、 最小位相変調 信号期間で位相同期がされているときの C/N状態を T M C C信号のビット誤り 率に基づいて検出し、 当該 C/N状態および復調モード信号に従った位相変調方 式に対応する基準位相に従って、 初期の状態では最小位相変調されるフレーム同 期信号/ T M C C信号期間およびキヤリア同期補助信号期間を用いて位相補正を 行い、 位相同期後は当該期間以外の主信号の変調期間においても位相補正を行う 。 これにより、 低 C/N状態においても高速かつ安定にキャリア同期を行うこと ができると共に、 主信号の期間における復調信号の位相ジッ夕の影響を軽減して 、 受信性能を向上することができる。 As described above, according to the 52nd aspect, in the 40th aspect, the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal According to the reference phase corresponding to the phase modulation method according to the C / N state and the demodulation mode signal, the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period that are minimum phase-modulated in the initial state are used. After the phase synchronization, the phase correction is performed also in the modulation period of the main signal other than the period. This allows fast and stable carrier synchronization even in the low C / N state, and reduces the effect of demodulated signal phase jitter during the main signal period. However, the reception performance can be improved.
第 5 3の局面は、 第 4 0の局面において、 位相同期の状態を検出するステップ と、  In a fifty-third aspect, in the forty-fifth aspect, a step of detecting a state of phase synchronization;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. Steps and
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応する位相 変調による位相誤差を検出し、 当該第 2のしきい値に対し C /Nが低い場合は、 同期信号期間および最小位相変調が施された期間において最小位相変調による位 相誤差を検出した後、 位相補正動作を行うステップと、  If phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is The phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when C / N is lower than the second threshold value, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting a phase error due to phase modulation;
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 第 1のしき い値に対し C /Nが高い場合、 同期信号期間では最小位相変調による位相誤差を 検出し、 通信フレームの同期信号期間以外では通信フレーム内における最大位相 変調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備え る。  If phase synchronization is performed and error correction is not completed, and C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
上記のように、 第 5 3の局面によれば、 第 4 0の局面において、 最小位相変調 信号期間で位相同期がされているときの C /N状態を T M C C信号のビット誤り 率に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレーム の内、 同期信号期間以外の全期間において最大位相変調がされているとみなして 位相誤差の補正を行うと共に、 復調モード信号に従った位相変調方式に対応する 基準位相に従って、 初期の状態では最小位相変調されるフレーム同期信号/ T M C C信号期間およびキヤリァ同期補助信号期間を用いて位相補正を行い、 位相同 期後は当該期間以外の主信号の変調期間においても位相補正を行う。 これにより 、 低 C/N状態においても高速かつ安定にキヤリァ同期を行うことができると共 に、 主信号の期間における復調信号の位相ジッ夕の影響を軽減して、 受信性能を 向上することができる。 As described above, according to the 53rd aspect, in the 40th aspect, the C / N state when phase synchronization is performed during the minimum phase modulation signal period is detected based on the bit error rate of the TMCC signal However, if the C / N is at a predetermined level, the phase error is corrected assuming that the maximum phase modulation is performed in all periods other than the synchronization signal period in the communication frame, and the demodulation mode signal is Corresponding to the phase modulation method According to the reference phase, phase correction is performed using the frame synchronization signal / TMCC signal period and carrier synchronization auxiliary signal period that are minimum phase modulated in the initial state, and after the phase homogenization period, even during the main signal modulation period other than this period. Perform phase correction. As a result, the carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal in the main signal period can be reduced to improve the reception performance. it can.
第 5 4の局面は、 第 4 1〜第 4 7の局面において、 位相同期の状態を検出する ステップと、  In a fifty-fourth aspect, in the fourth to seventh aspects, a step of detecting a state of phase synchronization is provided,
受信信号の C /N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 予め定めたしきい値に対し C /Nが高い場合、 同期信 号期間では最小位柑変調による位相誤差を検出し、 通信フレームの同期信号期間 以外では通信フレーム内において位相数が最も多い位相変調による位相誤差を検 出した後、 位相補正動作を行うステップとをさらに備える。  There is a step of detecting the C / N (carrier power / noise power) state of the received signal, and there is phase synchronization, and if the C / N is higher than a predetermined threshold, it is the lowest in the synchronization signal period. Performing a phase correction operation after detecting a phase error due to the modulation and detecting a phase error due to the phase modulation having the largest number of phases in the communication frame other than the synchronization signal period of the communication frame.
第 5 5の局面は、 第 4 1, 第 4 3, 第 4 5および第 4 7の局面において、 位相 同期の状態を検出するステップと、  In a fifty-fifth aspect, in the forty-first, fourth, fourth, and fifth aspects, a step of detecting a state of phase synchronization is provided;
受信信号の C /N (搬送波電力/雑音電力) の状態を検出するステップと、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C /Nである場合、 通信フレーム内にぉレ、て位相数が最も多い位相変調 が施された期間以外の期間において対応する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C /Nが低い場合は、 同期信号期間および最小位相変 調が施された期間において最小位相変調による位相誤差を検出した後、 位相補正 動作を行うステップとをさらに備える。 第 5 6の局面は、 第 4 2, 第 4 4および第 4 6の局面において、 位相同期の状 態を検出するステップと、 If phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period. If the C / N is between the first threshold value and a predetermined second threshold value, the period during which phase modulation with the largest number of phases is performed in the communication frame is performed. The phase error due to the corresponding phase modulation is detected in periods other than the above, and if the C / N is lower than the second threshold value, the minimum phase modulation is applied during the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting the phase error. In a fifty-sixth aspect, the steps of detecting the state of phase synchronization in the fourth, fourth, and fourth aspects;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 が施された期間以外の期間において対応する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C / Nが低い場合は、 同期信号期間および最小位相変 調が施された期間において最小位相変調による位相誤差を検出した後、 位相補正 動作を行うステップとをさらに備える。  Detecting the C / N (carrier power / noise power) state of the received signal; and performing phase synchronization and error correction, and the C / N (C / N) is determined based on a predetermined first threshold. If / N is high, the phase error due to the corresponding phase modulation is detected during the entire communication frame, and the C / N is between the first threshold and the second predetermined threshold. In the communication frame, the phase error due to the corresponding phase modulation is detected in a period other than the period in which the phase modulation with the largest number of phases is performed, and if the C / N is lower than the second threshold value, the synchronization is detected. Performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the signal period and the period in which the minimum phase modulation is performed.
第 5 7の局面は、 第 4 1, 第 4 3 , 第 4 5および第 4 7の局面において、 位相 同期の状態を検出するステップと、  In a fifty-seventh aspect, in the forty-first, fourth, fourth, and fourth aspects, a step of detecting a state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応する位相 変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変調が施された期間において最小位相変調による位 相誤差を検出した後、 位相補正動作を行うステップと、  If phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting a phase error due to phase modulation;
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 第 1のしき い値に対し C/Nが高い場合、 同期信号期間では最小位相変調による位相誤差を 検出し、 通信フレームの同期信号期間以外では通信フレーム内における最大位相 変調による位相誤差を検出した後、 位相補正動作を行うステツプとをさらに備え る。 If there is phase synchronization and error correction has not been completed and the C / N is higher than the first threshold, the phase error due to minimum phase modulation is reduced during the synchronization signal period. Detecting and detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period of the communication frame, and then performing a phase correction operation.
第 5 8の局面は、 第 4 2 , 第 4 4および第 4 6の局面において、 位相同期の状 態を検出するステップと、  In the fifty-eighth aspect, in the fourth, fourth and sixth aspects, a step of detecting a state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C /Nである場合、 通信フレーム内において位相数が最も多い位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応する位相 変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変調が施された期間において最小位相変調による位 相誤差を検出した後、 位相補正動作を行うステップと、  Detecting the C / N (carrier power / noise power) state of the received signal; and performing phase synchronization and error correction, and the C / N (C / N) is determined based on a predetermined first threshold. If / N is high, the phase error due to the corresponding phase modulation is detected during the entire communication frame, and if C / N is between the first threshold value and a predetermined second threshold value. In a communication frame, a phase error due to the corresponding phase modulation is detected in a period other than a period in which phase modulation having the largest number of phases is performed (hereinafter, referred to as a maximum phase modulation), and the second threshold is set to C. If / N is low, performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed;
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 第 1のしき い値に対し C/Nが高い場合、 同期信号期間では最小位相変調による位相誤差を 検出し、 通信フレームの同期信号期間以外では通信フレーム内における最大位相 変調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備え る。  If phase synchronization is performed and error correction is not completed and the C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
第 5 9の局面は、 第 4 1〜第 4 7の局面において、 位相同期の状態を検出する ステップと、  In a ninth aspect, in the fourth to fourth aspects, a step of detecting a state of phase synchronization is provided;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ヅト誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. Steps and
位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合、 同期信 号期間では最小位相変調による位相誤差を検出し、 通信フレームの同期信号期間 以外では通信フレーム内において位相数が最も多い位相変調による位相誤差を検 出した後、 位相補正動作を行うステップとをさらに備える。 If there is phase synchronization and C / N is higher than a predetermined threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the synchronization signal period of the communication frame is detected. Otherwise, after detecting a phase error due to the phase modulation having the largest number of phases in the communication frame, performing a phase correction operation.
第 6 0の局面は、 第 4 1 , 第 4 3 , 第 4 5および第 4 7の局面において、 位相 同期の状態を検出するステップと、  The 60th phase is a step of detecting the state of phase synchronization in the 41st, 43rd, 45th, and 47th aspects;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビッ ト誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate Steps to
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C /Nである場合、 通信フレーム内において位相数が最も多い位相変調 が施された期間以外の期間において対応する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変 調が施された期間において最小位相変調による位相誤差を検出した後、 位相補正 動作を行うステップとをさらに備える。  If phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and the predetermined second threshold value, the C / N is not used during the period other than the period during which phase modulation with the largest number of phases is performed in the communication frame. The phase error due to the corresponding phase modulation is detected.If the C / N is lower than the second threshold value, the phase error due to the minimum phase modulation is detected during the synchronization signal period and the period where the minimum phase modulation is performed. Performing a phase correction operation after the above.
第 6 1の局面は、 第 4 2 , 第 4 4および第 4 6の局面において、 位相同期の状 態を検出するステップと、  In a sixty-first aspect, in the forty-second, fourth and sixth aspects, a step of detecting a state of phase synchronization;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビッ ト誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate Steps to
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C /Nである場合、 通信フレーム内において位相数が最も多い位相変調 が施された期間以外の期間において対応する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変 調が施された期間において最小位相変調による位相誤差を検出した後、 位相補正 動作を行うステップとをさらに備える。 If phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. If the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame is performed. The phase error due to the corresponding phase modulation is detected in the period other than the period in which the signal is applied, and if the C / N is lower than the second threshold value, the synchronization signal period and the period in which the minimum phase modulation is performed Performing a phase correction operation after detecting a phase error due to the minimum phase modulation in.
第 6 2の局面は、 第 4 1 , 第 4 3, 第 4 5および第 4 7の局面において、 位相 同期の状態を検出するステップと、  In a 62nd aspect, in the 41st, 43rd, 45th, and 47th aspects, a step of detecting a state of phase synchronization;
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、  Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. Steps and
フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処理の 訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応する位相 変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変調が施された期間において最小位相変調による位 相誤差を検出した後、 位相補正動作を行うステツプと、  If phase synchronization is performed and error correction is completed, and C / N is higher than the first predetermined threshold, a phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting a phase error due to phase modulation;
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 第 1のしき い値に対し C/Nが高い場合、 同期信号期間では最小位相変調による位相誤差を 検出し、 通信フレームの同期信号期間以外では通信フレーム内における最大位相 変調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備え る。  If phase synchronization is performed and error correction is not completed and the C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
第 6 3の局面は、 第 4 2, 第 4 4および第 4 6の局面において、 位相同期の状 態を検出するステップと、 フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前のビ ット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑音電 力) の状態を検出するステップと、 In a sixth aspect, in the fourth, the fourth and the sixth aspects, a step of detecting a state of phase synchronization; Measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detects the state of C / N (carrier power / noise power) based on the bit error rate. Steps and
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 通信フレームの全期間において対応する位相 変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしきい値 との間の C/Nである場合、 通信フレーム内において位相数が最も多い位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応する位相 変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 同期信号期間および最小位相変調が施された期間において最小位相変調による位 相誤差を検出した後、 位相補正動作を行うステツプと、  If phase synchronization is achieved and error correction is completed, and if the C / N is higher than the first predetermined threshold value, the phase error due to the corresponding phase modulation is detected in the entire communication frame period. However, if the C / N is between the first threshold value and a predetermined second threshold value, the phase modulation having the largest number of phases in the communication frame (hereinafter referred to as the maximum phase modulation) is A phase error due to the corresponding phase modulation is detected in a period other than the period in which the modulation is performed, and when the C / N is lower than the second threshold, the minimum value is obtained in the synchronization signal period and the period in which the minimum phase modulation is performed. Performing a phase correction operation after detecting a phase error due to phase modulation;
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 第 1のしき い値に対し C/Nが高い場合、 同期信号期間では最小位相変調による位相誤差を 検出し、 通信フレームの同期信号期間以外では通信フレーム内における最大位相 変調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備え る。  If phase synchronization is performed and error correction is not completed and the C / N is higher than the first threshold, a phase error due to minimum phase modulation is detected during the synchronization signal period, and the communication frame And performing a phase correction operation after detecting a phase error due to maximum phase modulation in the communication frame during a period other than the synchronization signal period.
上記のように、 第 5 4〜第 6 3の局面は、 第 4 1〜第 4 7の局面と第 4 8〜第 5 3の局面とをそれぞれ組み合わせたものである。 従って、 第 5 4〜第 6 3の局 面は、 それぞれ低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 周波数補正動作による周波数引き込み過程等において、 位相補 正動作における疑似同期の回避が可能になり、 かつ、 主信号の期間における復調 信号の位相ジッ夕の影響を軽減して、 受信性能を向上することができる。  As described above, the 54th to 63rd aspects are combinations of the 41st to 47th aspects and the 48th to 53rd aspects, respectively. Therefore, the 54th to 63rd stations can carry out carrier synchronization stably at high speed even in the low C / N state, and in the frequency pull-in process by the frequency correction operation, etc. Pseudo-synchronization can be avoided, and the effect of the phase jitter of the demodulated signal during the period of the main signal can be reduced to improve the reception performance.
第 6 4の局面は、 第 4 0〜第 6 3の局面において、 キャリア同期補助信号が、 通信フレーム内の時分割多重される位置に対して次のバケツトとなる変調信号に 施されている位相変調を識別する情報を重畳している場合、  A sixty-fourth aspect is the phase in which, in the forty-fourth to sixty-third aspects, the carrier synchronization auxiliary signal is applied to a modulated signal that is the next bucket with respect to a position where time division multiplexing is performed in a communication frame. If the information identifying the modulation is superimposed,
情報に基づいて最小位相変調が施されている信号の期間を検出し、 当該最小位 相変調期間を与える信号をタイミング信号を生成するステップへ出力し、 タイミ ング信号を生成するステップは、 同期信号期間に加え、 最小位相変調期間を与え るタイミング信号を生成することを特徴とする。 Based on the information, the period of the signal subjected to the minimum phase modulation is detected, and A signal providing a phase modulation period is output to a step of generating a timing signal, and the step of generating a timing signal is characterized by generating a timing signal providing a minimum phase modulation period in addition to the synchronization signal period.
上記のように、 第 6 4の局面によれば、 第 4 0〜第 6 3の局面において、 時分 割多重される位相変調信号のうち、 バケツト内に分散配置されたキヤリャ同期補 助信号を含む最小位相変調信号に加え、 最小位相変調がなされている主信号をも 用いて周波数補正および位相補正 (搬送波再生) を行う。 これにより、 低 C/N 状態においても高速かつ安定にキヤリア同期を行うことができる。  As described above, according to the sixty-fourth aspect, in the forty-fourth to sixty-third aspects, among the phase-modulated signals to be time-division multiplexed, the carrier synchronization auxiliary signal distributed and arranged in a bucket is used. Performs frequency correction and phase correction (carrier recovery) using the minimum phase modulated signal as well as the minimum phase modulated main signal. As a result, carrier synchronization can be performed quickly and stably even in a low C / N state.
第 6 5の局面は、 第 4 4〜第 4 7の局面において、 周波数を段階的に変化させ るステップは、 疑似同期が発生する周波数を f g [ H z ] とした場合、 (— 1 ) π_ ' x n x f g [ H z ] ( n = 1 , 2, ···) に基づいて位相補正動作を行う周波 数を段階的にずらすことを特徴とする。 In the sixty-fifth aspect, in the fourth to the forty-seventh aspects, the step of changing the frequency stepwise is as follows: when the frequency at which the pseudo-synchronization occurs is fg [Hz], (— 1) π _ 'xnxfg [H z] (n = 1, 2, · · · ·) The frequency at which the phase correction operation is performed is shifted stepwise.
上記のように、 第 6 5の局面によれば、 第 4 4〜第 4 7の局面において、 周波 数を段階的に変化させるステップは、 疑似同期が発生する周波数 f gをステップ 単位として、 周波数を正負交互に順に大きくするようにずらす。 これにより、 疑 似同期である場合であっても上記ステップ動作を繰り返すことで、 最終的に正常 同期を行うことができる。 図面の簡単な説明  As described above, according to the 65th aspect, in the 44th to 47th aspects, the step of changing the frequency stepwise includes the step of setting the frequency fg at which the pseudo-synchronization occurs to It is shifted so that it increases in the order of positive and negative. Thus, even in the case of the pseudo synchronization, the normal synchronization can be finally performed by repeating the above step operation. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係る変調装置の構成を示すプロック図である。 図 2は、 本発明の一実施形態に係る変調装置において生成される通信フレーム の一例を示した図である。  FIG. 1 is a block diagram showing a configuration of a modulation device according to one embodiment of the present invention. FIG. 2 is a diagram showing an example of a communication frame generated in the modulation device according to one embodiment of the present invention.
図 3は、 図 1の多重化/直交変調部 1 9の構成の一例を示すプロック図である 図 4は、 本発明の第 1の実施形態に係る復調装置の構成を示すプロック図であ る ο 図 5は、 本発明の第 1の実施形態に係る復調装置が行う動作を示すフローチヤ ートである。 FIG. 3 is a block diagram showing an example of the configuration of the multiplexing / quadrature modulation section 19 of FIG. 1. FIG. 4 is a block diagram showing the configuration of the demodulation device according to the first embodiment of the present invention. ο FIG. 5 is a flowchart showing an operation performed by the demodulation device according to the first embodiment of the present invention.
図 6は、 フレーム同期検出部 3 5が検出する信号およびタイミング生成部 3 6 が生成するタイミング信号を示す図である。  FIG. 6 is a diagram showing a signal detected by the frame synchronization detection unit 35 and a timing signal generated by the timing generation unit 36.
図 7は、 フレーム同期検出部 3 5の実施例 1の構成を示すブロック図である。 図 8は、 フレーム同期検出部 3 5の実施例 2の構成を示すブロック図である。 図 9は、 フレーム同期検出部 3 5の実施例 3の構成を示すブロック図である。 図 1 0は、 フレーム同期検出部 3 5の実施例 4の構成を示すブロック図である 図 1 1は、 フレーム同期検出部 3 5の実施例 5の構成を示すブロック図である 図 1 2は、 フレーム同期検出における位相関係を説明する図である。  FIG. 7 is a block diagram illustrating a configuration of the first embodiment of the frame synchronization detection unit 35. FIG. 8 is a block diagram illustrating a configuration of the second embodiment of the frame synchronization detection unit 35. FIG. 9 is a block diagram illustrating a configuration of the frame synchronization detection unit 35 according to the third embodiment. FIG. 10 is a block diagram illustrating a configuration of the fourth embodiment of the frame synchronization detection unit 35. FIG. 11 is a block diagram illustrating a configuration of the fifth embodiment of the frame synchronization detection unit 35. FIG. FIG. 7 is a diagram illustrating a phase relationship in frame synchronization detection.
図 1 3は、 フレーム同期検出における位相関係を説明する図である。  FIG. 13 is a diagram illustrating a phase relationship in frame synchronization detection.
図 1 4は、 周波数補正における周波数ずれを説明する図である。  FIG. 14 is a diagram illustrating a frequency shift in frequency correction.
図 1 5は、 フレーム同期検出における位相関係を説明する図である。  FIG. 15 is a diagram illustrating a phase relationship in frame synchronization detection.
図 1 6は、 フレーム同期検出における位相関係を説明する図である。  FIG. 16 is a diagram illustrating a phase relationship in frame synchronization detection.
図 1 7は、 周波数補正部 3 2のさらに詳細な構成を示すブロック図である。 図 1 8は、 位相補正部 3 4のさらに詳細な構成を示すブロック図である。 図 1 9は、 位相補正における位相ずれを説明する図である。  FIG. 17 is a block diagram illustrating a more detailed configuration of the frequency correction unit 32. FIG. 18 is a block diagram showing a more detailed configuration of the phase correction unit 34. FIG. 19 is a diagram for explaining a phase shift in the phase correction.
図 2 0は、 位相補正部 3 4で生じる疑似同期を説明する図である。  FIG. 20 is a diagram for explaining pseudo synchronization generated in the phase correction unit 34.
図 2 1は、 位相補正部 3 4で生じる疑似同期を説明する図である。  FIG. 21 is a diagram for explaining the pseudo synchronization that occurs in the phase correction unit 34.
図 2 2は、 本発明の第 2の実施形態に係る復調装置の構成を示すブロック図で ある。  FIG. 22 is a block diagram illustrating a configuration of a demodulation device according to the second embodiment of the present invention.
図 2 3は、 本発明の第 2の実施形態に係る復調装置が行う動作を示すフローチ ヤートである。  FIG. 23 is a flowchart showing the operation performed by the demodulation device according to the second embodiment of the present invention.
図 2 4は、 周波数引き込み判定部 4 2のさらに詳細な構成を示すブロック図で ある。 FIG. 24 is a block diagram showing a more detailed configuration of the frequency pull-in determination unit 42. is there.
図 2 5は、 位相補正部 3 4 Aのさらに詳細な構成の一例を示すブロック図であ る  FIG. 25 is a block diagram illustrating an example of a more detailed configuration of the phase correction unit 34A.
図 2 6は、 位相補正部 3 4 Aのさらに詳細な構成の一例を示すブロック図であ る。  FIG. 26 is a block diagram illustrating an example of a more detailed configuration of the phase correction unit 34A.
図 2 7は、 本発明の第 3の実施形態に係る復調装置の構成を示すブロック図で め 。  FIG. 27 is a block diagram illustrating a configuration of a demodulation device according to the third embodiment of the present invention.
図 2 8は、 本発明の第 3の実施形態に係る復調装置が行う動作を示すフローチ ヤートである。  FIG. 28 is a flowchart showing the operation performed by the demodulation device according to the third embodiment of the present invention.
図 2 9は、 位相同期検出部 4 3の実施例 1の構成を示すブロック図である。 図 3 0は、 位相同期検出部 4 3の実施例 2の構成を示すプロック図である。 図 3 1は、 位相同期検出部 4 3の位相同期判定部 4 3 7において設定するしき い値の一例を説明する図である。  FIG. 29 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the first embodiment. FIG. 30 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the second embodiment. FIG. 31 is a diagram illustrating an example of a threshold value set in the phase synchronization determination section 437 of the phase synchronization detection section 43.
図 3 2は、 図 2 7の疑似同期判定部 4 5で行う疑似同期判定の動作原理を説明 する図である。  FIG. 32 is a diagram for explaining the operation principle of the pseudo synchronization determination performed by the pseudo synchronization determination unit 45 in FIG.
図 3 3は、 本発明の第 4の実施形態に係る復調装置の構成を示すブロック図で ある。  FIG. 33 is a block diagram illustrating a configuration of a demodulation device according to the fourth embodiment of the present invention.
図 3 4は、 タイミング生成部 3 6が生成する他のタイミング信号を示す図であ る。  FIG. 34 is a diagram illustrating another timing signal generated by the timing generation unit 36.
図 3 5は、 図 3 3の疑似同期判定部 4 5で行う疑似同期判定の動作原理を説明 する図である。  FIG. 35 is a diagram for explaining the operation principle of the pseudo-synchronization determination performed by the pseudo-synchronization determination unit 45 in FIG.
図 3 6は、 本発明の第 5の実施形態に係る復調装置の構成を示すブロック図で ある。  FIG. 36 is a block diagram illustrating a configuration of a demodulation device according to the fifth embodiment of the present invention.
図 3 7は、 本発明の第 5の実施形態に係る復調装置が行う動作を示すフローチ ャ一トである。  FIG. 37 is a flowchart showing the operation performed by the demodulation device according to the fifth embodiment of the present invention.
図 3 8は、 図 3 6の疑似同期判定部 4 5の構成の一例を示すブロック図である 図 3 9は、 周波数ステップ部 4 6の構成を示すブロック図である。 FIG. 38 is a block diagram illustrating an example of a configuration of the pseudo-synchronization determination unit 45 in FIG. FIG. 39 is a block diagram showing the configuration of the frequency step section 46.
図 4 0は、 周波数ステップ部 4 6における各信号波形を示す図である。  FIG. 40 is a diagram showing each signal waveform in the frequency step section 46.
図 4 1は、 周波数ステップの動作原理を説明する図である。  FIG. 41 is a diagram for explaining the operation principle of the frequency step.
図 4 2は、 本発明の第 6の実施形態に係る復調装置の構成を示すブロック図で め 。  FIG. 42 is a block diagram showing a configuration of the demodulation device according to the sixth embodiment of the present invention.
図 4 3は、 本発明の第 7の実施形態に係る復調装置の構成を示すブロック図で ある。  FIG. 43 is a block diagram showing a configuration of the demodulation device according to the seventh embodiment of the present invention.
図 4 4は、 本発明の第 7の実施形態に係る復調装置が行う動作を示すフローチ ャ一トである。  FIG. 44 is a flowchart showing the operation performed by the demodulation device according to the seventh embodiment of the present invention.
図 4 5は、 本発明の第 8の実施形態に係る復調装置の構成を示すブロック図で ある。  FIG. 45 is a block diagram showing a configuration of the demodulation device according to the eighth embodiment of the present invention.
図 4 6は、 位相ジッ夕を説明する図である。  FIG. 46 is a diagram for explaining the phase jitter.
図 4 7は、 位相ジッ夕と C /Nとの関係を説明する図である。  FIG. 47 is a diagram illustrating the relationship between the phase jitter and C / N.
図 4 8は、 本発明の第 9の実施形態に係る復調装置の構成を示すブロック図で ある。  FIG. 48 is a block diagram showing the configuration of the demodulation device according to the ninth embodiment of the present invention.
図 4 9は、 本発明の第 9の実施形態に係る復調装置が行う動作を示すフローチ ヤー卜である。  FIG. 49 is a flowchart showing the operation performed by the demodulation device according to the ninth embodiment of the present invention.
図 5 0は、 フレーム同期判定部 4 7の構成を示すプロック図である。  FIG. 50 is a block diagram showing a configuration of frame synchronization determination section 47.
図 5 1は、 C/N検出部 4 8の構成を示すブロック図である。  FIG. 51 is a block diagram illustrating a configuration of the C / N detection unit 48.
図 5 2は、 ゲート信号選択部 4 9の構成を示すブロック図である。  FIG. 52 is a block diagram showing a configuration of the gate signal selection unit 49.
図 5 3は、 位相補正部 3 4 Bの位相誤差検出部 3 4 1の構成を示すプロック図 である。  FIG. 53 is a block diagram illustrating a configuration of the phase error detection unit 341 of the phase correction unit 34B.
図 5 4は、 位相補正部 3 4 Bの位相誤差検出部 3 4 1が行う位相誤差検出動作 を説明する図である。  FIG. 54 is a diagram for explaining the phase error detection operation performed by the phase error detection unit 341 of the phase correction unit 34B.
図 5 5は、 本発明の第 1 0の実施形態に係る復調装置の構成を示すブロック図 である。 FIG. 55 is a block diagram showing a configuration of a demodulation device according to the tenth embodiment of the present invention. It is.
図 5 6は、 本発明の第 1 0の実施形態に係る復調装置が行う動作を示すフロー チャートである。  FIG. 56 is a flowchart showing the operation performed by the demodulation device according to the tenth embodiment of the present invention.
図 5 7は、 C/N検出部 4 8 Aの構成を示すブロック図である。  FIG. 57 is a block diagram illustrating a configuration of the C / N detection unit 48A.
図 5 8は、 ゲート信号選択部 4 9 Aの構成を示すブロック図である。  FIG. 58 is a block diagram illustrating a configuration of the gate signal selection unit 49A.
図 5 9は、 復調モード切替部 5 0が入力する各タイミング信号と出力する復調 モード信号とを示す図である。  FIG. 59 is a diagram illustrating each timing signal input to the demodulation mode switching unit 50 and the demodulation mode signal output.
図 6 0は、 位相補正部 3 4 Cの位相誤差検出部 3 4 1の構成を示すプロック図 である。  FIG. 60 is a block diagram illustrating a configuration of the phase error detection unit 341 of the phase correction unit 34C.
図 6 1は、 位相補正部 3 4 Cの位相誤差検出部 3 4 1が行う位相誤差検出動作 を説明する図である。  FIG. 61 is a diagram illustrating a phase error detection operation performed by the phase error detection unit 341 of the phase correction unit 34C.
図 6 2は、 本発明の第 1 1の実施形態に係る復調装置の構成を示すブロック図 である。  FIG. 62 is a block diagram illustrating a configuration of the demodulation device according to the first embodiment of the present invention.
図 6 3は、 本発明の第 1 1の実施形態に係る復調装置が行う動作を示すフロー チヤ一トである。  FIG. 63 is a flowchart showing the operation performed by the demodulation device according to the first embodiment of the present invention.
図 6 4は、 ゲート信号選択部 4 9 Bの構成を示すプロック図である。  FIG. 64 is a block diagram illustrating a configuration of the gate signal selection unit 49B.
図 6 5は、 復調モード切替部 5 O Aの構成を示すブロック図である。  FIG. 65 is a block diagram illustrating a configuration of the demodulation mode switching unit 5OA.
図 6 6は、 本発明の第 1 2の実施形態に係る復調装置の構成を示すブロック図 である。  FIG. 66 is a block diagram showing a configuration of the demodulation device according to the 12th embodiment of the present invention.
図 6 7は、 B E R検出部 5 1の構成を示すプロック図である。  FIG. 67 is a block diagram illustrating the configuration of the BER detection unit 51.
図 6 8は、 C/Nとビット誤り率との関係を示す図である。  FIG. 68 is a diagram illustrating the relationship between C / N and the bit error rate.
図 6 9は、 本発明の第 1 3の実施形態に係る復調装置の構成を示すブロック図 である。  FIG. 69 is a block diagram showing a configuration of the demodulation device according to the thirteenth embodiment of the present invention.
図 7 0は、 B E R検出部 5 1 Aの構成を示すブロック図である。  FIG. 70 is a block diagram showing a configuration of the BER detection unit 51A.
図 7 1は、 本発明の第 1 4の実施形態に係る復調装置の構成を示すブロック図 である。 図 7 2は、 本発明の一実施形態に係る他の変調装置の構成を示すブロック図で あ 。 FIG. 71 is a block diagram showing a configuration of the demodulation device according to the fourteenth embodiment of the present invention. FIG. 72 is a block diagram illustrating a configuration of another modulation device according to an embodiment of the present invention.
図 7 3は、 本発明の一実施形態に係る他の変調装置において生成される通信フ レームの一例を示した図である。  FIG. 73 is a diagram illustrating an example of a communication frame generated in another modulation device according to an embodiment of the present invention.
図 7 4は、 本発明の一実施形態に係る他の復調装置の構成を示すブロック図で ある。  FIG. 74 is a block diagram illustrating a configuration of another demodulation device according to an embodiment of the present invention.
図 7 5は、 キヤリア同期補助信号デコーダ 5 2の構成を示すブロック図である 図 7 6は、 夕イミング生成部 3 6 Aが生成するタイミング信号を示す図である 図 7 7は、 従来の変調装置の構成を示すブロック図である。  FIG. 75 is a block diagram showing a configuration of the carrier synchronization auxiliary signal decoder 52. FIG. 76 is a diagram showing a timing signal generated by the evening generating unit 36A. FIG. FIG. 2 is a block diagram illustrating a configuration of the device.
図 7 8は、 従来の変調装置において生成される通信フレームの一例を示した図 である。  FIG. 78 is a diagram illustrating an example of a communication frame generated in a conventional modulation device.
図 7 9は、 B P S K , Q P S Kおよび 8 P S Kの符号配置へのマッピングを示 す図である。  FIG. 79 is a diagram illustrating mapping of BPSK, QPSK, and 8PSK to a code arrangement.
図 8 0は、 従来の変調装置および方法における M P E Gのデ一夕構造、 および フレーム構造を示す図である。  FIG. 80 is a diagram showing a data structure and a frame structure of MPEG in the conventional modulation device and method.
図 8 1は、 従来の復調装置の構成を示すブロック図である。 発明を実施するための最良の形態  FIG. 81 is a block diagram showing a configuration of a conventional demodulation device. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 時分割多重される位相変調信号のうち、 パケット内に分散配置され たキヤリャ同期補助信号を含む B P S Kを用いて、 低 C/N状態においても高速 かつ安定なキヤリア同期を可能とする変調 ·復調装置および方法である。  The present invention enables high-speed and stable carrier synchronization even in a low C / N state by using a BPSK including a carrier synchronization auxiliary signal dispersedly arranged in a packet among time-division multiplexed phase modulated signals. Modulation and demodulation apparatus and method.
以下、 本発明の各実施形態について、 変調装置および方法 (送信系) と復調装 置および方法 (受信系) とを順に説明する。 ( 1 ) 送信系 Hereinafter, a modulation device and method (transmission system) and a demodulation device and method (reception system) will be described in order for each embodiment of the present invention. (1) Transmission system
図 1は、 請求項 1〜3, 6〜 8に対応する、 本発明の一実施形態に係る変調装 置の構成を示すブロック図である。 図 1において、 本発明の一実施形態に係る変 調装置は、 フレーム同期信号/ TMCC信号生成部 11と、 TSパケット合成部 12と、 TMCC誤り訂正符号化部 13と、 第 1の誤り訂正符号化部 14と、 第 2の誤り訂正符号化部 15と、 第 1の BPS Kマッピング部 16と、 BPSK/ QPSKマッピング部 17と、 8PSKマッピング部 18と、 多重化/直交変調 部 19と、 同期補助信号生成部 20と、 第 2の BP SKマッピング部 21とを備 える。  FIG. 1 is a block diagram showing a configuration of a modulation device according to an embodiment of the present invention, corresponding to claims 1 to 3 and 6 to 8. In FIG. 1, a modulation device according to one embodiment of the present invention includes a frame synchronization signal / TMCC signal generation unit 11, a TS packet synthesis unit 12, a TMCC error correction encoding unit 13, a first error correction code Synchronization section 14, second error correction coding section 15, first BPSK mapping section 16, BPSK / QPSK mapping section 17, 8PSK mapping section 18, multiplexing / quadrature modulation section 19, and synchronization. An auxiliary signal generation unit 20 and a second BPSK mapping unit 21 are provided.
図 2は、 本発明の一実施形態に係る変調装置において生成される通信フレーム の一例を示した図である。 図 3は、 図 1の多重化/直交変調部 19の構成の一例 を示すプロック図である。  FIG. 2 is a diagram showing an example of a communication frame generated in the modulation device according to one embodiment of the present invention. FIG. 3 is a block diagram showing an example of the configuration of the multiplexing / quadrature modulation unit 19 in FIG.
以下、 本発明の一実施形態に係る変調装置が行う動作を説明する。  Hereinafter, an operation performed by the modulation device according to the embodiment of the present invention will be described.
フレーム同期信号/ TMCC信号生成部 11は、 入力する TMCC情報に基づ いてフレーム同期信号/ TMCC信号を生成する。 このフレーム同期信号/ TM CC信号は、 TMCC誤り訂正符号化部 13において誤り訂正符号化がされた後 、 BPSKマッピング部 16に入力される。 BP SKマッピング部 16は、 入力 するフレーム同期信号および TMCC信号を、 BP SKの符号配置にマッピング し (図 79 (a) を参照) 、 多重化/直交変調部 19へ出力する。  The frame synchronization signal / TMCC signal generation unit 11 generates a frame synchronization signal / TMCC signal based on the input TMCC information. The frame synchronization signal / TMCC signal is subjected to error correction coding in the TMCC error correction coding unit 13, and then input to the BPSK mapping unit 16. The BP SK mapping section 16 maps the input frame synchronization signal and TMCC signal to the BP SK code arrangement (see FIG. 79 (a)), and outputs it to the multiplexing / quadrature modulation section 19.
TSバケツト合成部 12は、 入力する複数の MPEG— T Sパケヅト (図 80 (a) を参照) を合成して、 低階層信号のパケッ ト群と高階層信号のバケツ ト群 とから構成され、 総パケット数が一定値となるフレーム (図 80 (b) を参照) を生成する。 このフレームの内、 低階層信号のパケット群は、 第 1の誤り訂正符 号化部 14において誤り訂正符号化がされた後、 BP SK/QP SKマッピング 部 17に入力される。 BPSK/QPSKマッピング部 17は、 入力する低階層 信号を、 BPSKの符号配置 (図 79 (a) を参照) 、 もしくは QPSKの符号 配置 (図 79 (b) を参照) にマッピングし、 多重化ノ直交変調部 19へ出力す る。 一方、 上記フレームの内、 高階層信号のパケット群は、 第 2の誤り訂正符号 化部 15において誤り訂正符号化がされた後、 8PSKマッピング部 18に入力 される。 8 PSKマッピング部 18は、 入力する高階層信号を、 8PSKの符号 配置にマッピングし (図 79 (c) を参照) 、 多重化/直交変調部 19へ出力す る。 The TS bucket synthesizing unit 12 synthesizes a plurality of input MPEG-TS packets (see FIG. 80 (a)), and is composed of a packet group of a lower layer signal and a packet group of a higher layer signal. Generate a frame with a fixed number of packets (see Fig. 80 (b)). In this frame, the packet group of the low-layer signal is subjected to error correction coding in the first error correction coding unit 14 and then input to the BP SK / QP SK mapping unit 17. The BPSK / QPSK mapping unit 17 converts the input low-layer signal into a BPSK code arrangement (see FIG. 79 (a)) or a QPSK code. This is mapped to the constellation (see Fig. 79 (b)) and output to the multiplexing quadrature modulation unit 19. On the other hand, among the above-mentioned frames, the packet group of the high-layer signal is input to the 8PSK mapping section 18 after being subjected to error correction coding in the second error correction coding section 15. The 8PSK mapping section 18 maps the input high-layer signal to a code arrangement of 8PSK (see FIG. 79 (c)), and outputs it to the multiplexing / quadrature modulation section 19.
同期補助信号生成部 20は、 後述する復調装置においてキャリア同期を補助す るための信号 (以下、 キャリア同期補助信号と略す) を生成する。 第 2の BPS Kマッピング部 2 1は、 同期補助信号生成部 20が生成したキャリア同期補助信 号を入力し、 BP SKの符号配置にマッピングした後 (図 79 (a) を参照) 、 多重化/直交変調部 19へ出力する。  The synchronization auxiliary signal generation unit 20 generates a signal (hereinafter, abbreviated as a carrier synchronization auxiliary signal) for assisting carrier synchronization in a demodulation device described later. The second BPSK mapping section 21 receives the carrier synchronization auxiliary signal generated by the synchronization auxiliary signal generation section 20 and maps it into the BP SK code arrangement (see FIG. 79 (a)). / Output to quadrature modulator 19.
このように、 キャリア同期補助信号に BPS Kのマッピングを施すのは、 復調 装置が時分割多重された複数の位相変調のうち B P S Kの部分によつて搬送波再 生ができるようにするためである。  The reason why the BPSK is mapped to the carrier synchronization auxiliary signal in this way is to enable the demodulation device to reproduce the carrier by using the BPSK portion of the plurality of time-division multiplexed phase modulations.
そして、 多重化/直交変調部 19は、 各マッピング部から入力した各信号を、 図 2に示す並びで時分割多重して通信フレームを生成した後、 直交変調を行い出 力する。 ここで、 図 2でわかるように、 多重化/直交変調部 19は、 BP S が 施されたフレーム同期信号および TMCC信号、 8 P SKが施された高階層信号 のバケツト群、 および BPS Kまたは QPSKが施された低階層信号のパケヅ ト 群を単位として時分割多重を行うとともに、 BP SK変調されたキヤリア同期補 助信号が、 変調方式が切り替わる最小単位であるパケッ ト内に分散するように時 分割多重 (挿入) を行って、 通信フレームを生成する。  Then, the multiplexing / orthogonal modulation unit 19 generates a communication frame by time-division multiplexing each signal input from each mapping unit in the arrangement shown in FIG. 2, and then performs quadrature modulation to output. Here, as can be seen in FIG. 2, the multiplexing / quadrature modulation unit 19 includes a frame synchronization signal and a TMCC signal to which BPS has been applied, a bucket group of higher-layer signals to which 8PSK has been applied, and a BPSK or Time-division multiplexing is performed in units of packet groups of low-layer signals to which QPSK has been applied, and the carrier synchronization auxiliary signal subjected to BPSK modulation is dispersed in a packet that is the minimum unit at which the modulation method is switched. The communication frame is generated by performing time division multiplexing (insertion).
この時分割多重は、 例えば、 図 3に示すような回路を用いて、 1フレームのシ ンボル数をカウン卜するフレームカウン夕の出力信号から各信号の挿入タイミン グを制御するゲート信号を生成し、 各々のスィツチを切り換えることで行えばよ い なお、 後述する復調装置において説明するが、 キャリア同期補助信号は、 遅延 検波が可能となるように 2シンボル以上連続して挿入する。 また、 復調特性を向 上させるために、 キャリア同期補助信号の挿入周期をできるだけ短く、 具体的に は 2 0 0シンボル程度、 若しくはそれ以下にするのが好ましい。 In this time division multiplexing, for example, using a circuit as shown in FIG. 3, a gate signal for controlling insertion timing of each signal is generated from an output signal of a frame counter for counting the number of symbols of one frame. It can be done by switching each switch. As will be described in the demodulation device described later, the carrier synchronization auxiliary signal is inserted continuously for two or more symbols so as to enable delay detection. Also, in order to improve the demodulation characteristics, it is preferable that the insertion period of the carrier synchronization auxiliary signal be as short as possible, specifically, about 200 symbols or less.
以上のように、 本発明の一実施形態に係る変調装置によれば、 復調装置におい てキヤリァ同期を補助する信号を、 低 C/N状態に対して強い B P S Kにより変 調し、 パケット内に分散して挿入した通信フレームを出力する。  As described above, according to the modulation device of one embodiment of the present invention, the signal that assists the carrier synchronization in the demodulation device is modulated by the BPSK that is strong against the low C / N state, and dispersed in the packet. And output the communication frame inserted.
これにより、 復調装置において、 低 C/N状態においてもパケット内に分散さ せた B P S Kのキヤリァ同期補助信号を用いて高速かつ安定にキヤリァ同期を行 うことができる。  As a result, in the demodulator, even in the low C / N state, carrier synchronization can be performed at high speed and stably using the BPSK carrier synchronization auxiliary signal dispersed in the packet.
( 2 ) 受信系 (2) Reception system
次に、 上述した本発明の一実施形態に係る変調装置において生成された通信フ レームを復調する復調装置および方法を、 以下順に説明する。  Next, a demodulation device and method for demodulating a communication frame generated by the modulation device according to the embodiment of the present invention described above will be sequentially described below.
なお、 以下の説明において、 第 1の実施形態が基本となる復調装置であり、 第 2〜第 8の実施形態は、 第 1の実施形態に対しさらに擬似同期を回避した復調装 置、 第 9〜第 1 4の実施形態は、 第 1の実施形態に対しさらに位相雑音を低減し た復調装置である。  In the following description, the first embodiment is a basic demodulator, and the second to eighth embodiments are demodulators that avoid pseudo-synchronization with respect to the first embodiment. The 14th to 14th embodiments are demodulation devices in which the phase noise is further reduced as compared with the first embodiment.
(第 1の実施形態)  (First Embodiment)
図 4は、 請求項 9 , 3 7, 4 0に対応する、 本発明の第 1の実施形態に係る復 調装置の構成を示すブロック図である。 図 4において、 第 1の実施形態に係る復 調装置は、 直交検波部 3 1と、 周波数補正部 3 2と、 帯域制限フィル夕 3 3と、 位相補正部 3 4と、 フレーム同期検出部 3 5と、 タイミング生成部 3 6と、 第 1 の誤り訂正部 3 7と、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1とを備える。  FIG. 4 is a block diagram showing a configuration of a demodulation device according to a first embodiment of the present invention, which corresponds to claims 9, 37, and 40. In FIG. 4, the demodulator according to the first embodiment includes a quadrature detector 31, a frequency corrector 32, a band limiting filter 33, a phase corrector 34, and a frame synchronization detector 3. 5, a timing generation section 36, a first error correction section 37, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41. .
また、 周波数補正部 3 2は、 周波数誤差検出部 3 2 1と、 周波数誤差保持部 3 2 2と、 数値制御発振部 3 2 3と、 複素乗算部 3 2 4とを備える。 位相補正部 3 4は、 位相誤差検出部 3 4 1と、 位相誤差保持部 3 4 2と、 数値制御発振部 3 4 3と、 複素乗算部 3 4 4とを備える。 In addition, the frequency correction unit 3 2 includes a frequency error detection unit 3 2 1 and a frequency error holding unit 3 2, a numerically controlled oscillator 3 2 3, and a complex multiplier 3 2 4. The phase correction section 34 includes a phase error detection section 341, a phase error holding section 342, a numerical control oscillation section 3443, and a complex multiplication section 3444.
なお、 図 4において、 太線かつ "/ 2 " で示している信号線は、 複素表現され る信号の信号線を示している (以下、 各図面において同様とする) 。  In FIG. 4, signal lines indicated by bold lines and “/ 2” indicate signal lines of signals expressed in a complex manner (hereinafter, the same applies to each drawing).
まず、 第 1の実施形態に係る復調装置の概略を説明する。  First, an outline of the demodulation device according to the first embodiment will be described.
直交検波部 3 1は、 入力する通信フレーム内の各 P S K変調信号を固定周波数 の局部発振信号を用いて直交検波により復調し、 同相成分 ( I ) , 直交成分 (Q ) の等化低域信号を出力する。 周波数補正部 3 2は、 直交検波部 3 1が出力する 信号を入力し、 衛星アンテナにおける周波数変換器 (図示せず) 等の周波数ずれ に起因する周波数ずれを、 タイミング生成部 3 6から受ける夕ィミング信号に基 づいて補正する。  The quadrature detector 31 demodulates each PSK modulated signal in the input communication frame by quadrature detection using a local oscillation signal of a fixed frequency, and equalizes the in-phase component (I) and the quadrature component (Q) of the low-frequency signal. Is output. The frequency correction unit 32 receives the signal output from the quadrature detection unit 31 and receives a frequency shift due to a frequency shift of a frequency converter (not shown) in the satellite antenna from the timing generation unit 36. Correct based on the timing signal.
この周波数補正部 3 2の各構成について簡単に説明する。 周波数誤差検出部 3 2 1は、 帯域制限フィル夕 3 3が出力する信号を入力し、 遅延検波を行って周波 数誤差を検出する。 周波数誤差保持部 3 2 2は、 タイミング生成部 3 6からの出 力信号に従って、 周波数誤差検出部 3 2 1が検出した周波数誤差のうち B P S K 期間における周波数誤差の平均化を行う。 数値制御発振部 3 2 3は、 周波数誤差 保持部 3 2 2が出力する平均化信号に対し、 数値演算を行い発振信号を出力する 。 複素乗算部 3 2 4は、 直交検波部 3 1が出力する信号と数値制御発振部 3 2 3 が出力する信号とを複素乗算して周波数誤差を打ち消す。  Each configuration of the frequency correction unit 32 will be briefly described. The frequency error detector 3221 receives the signal output from the band limiting filter 33, detects the frequency error by performing delay detection. The frequency error holding unit 3222 averages the frequency errors in the BPSK period among the frequency errors detected by the frequency error detection unit 321, according to the output signal from the timing generation unit 36. The numerical control oscillator 322 performs a numerical operation on the averaged signal output from the frequency error holding unit 322 and outputs an oscillation signal. The complex multiplication unit 3 2 4 performs complex multiplication of the signal output from the quadrature detection unit 3 1 and the signal output from the numerical control oscillation unit 3 2 3 to cancel the frequency error.
帯域制限フィル夕 3 3は、 周波数補正部 3 2が出力する信号を入力し、 各 P S K信号のスペクトル整形を行う。 フレーム同期検出部 3 5は、 帯域制限フィル夕 The band limiting filter 33 inputs the signal output from the frequency correction unit 32 and performs spectrum shaping of each PSK signal. The frame synchronization detector 35
3 3が出力する信号を入力し、 遅延検波によって B P S K変調されたフレーム同 期信号、 すなわち通信フレームの先頭を検出する。 タイミング生成部 3 6は、 フ レーム同期検出部 3 5で検出されたフレーム先頭の情報に基づいて、 1通信フレ ーム内のフレーム同期信号/ T M C C信号の期間およびキヤリア同期補助信号の 期間を検出し、 その期間に応じたタイミング信号 (ゲート信号) を生成する。 位 相補正部 3 4は、 帯域制限フィル夕 3 3が出力する信号を入力し、 その位相ずれ を夕イミング生成部 3 6から受ける夕イミング信号に基づいて補正する。 33 The signal output by 3 is input, and the BPSK-modulated frame synchronization signal, that is, the head of the communication frame, is detected by differential detection. The timing generation unit 36 determines the period of the frame synchronization signal / TMCC signal within one communication frame and the carrier synchronization auxiliary signal based on the information at the head of the frame detected by the frame synchronization detection unit 35. A period is detected, and a timing signal (gate signal) corresponding to the period is generated. The phase corrector 34 receives the signal output from the band-limiting filter 33 and corrects the phase shift based on the evening timing signal received from the evening timing generator 36.
この位相補正部 3 4の各構成について簡単に説明する。 位相誤差検出部 3 4 1 は、 帯域制限フィル夕 3 3が出力する信号を複素乗算部 3 4 4を介して入力し、 予め定めた基準位相に対する位相差を検出する。 位相誤差保持部 3 4 2は、 タイ ミング生成部 3 6からの出力信号に従って、 位相誤差検出部 3 4 1が検出した位 相誤差のうち B P S K期間における位相誤差の平均化を行う。 数値制御発振部 3 4 3は、 位相誤差保持部 3 4 2が出力する平均化信号に対し、 数値演算を行い発 振信号を出力する。 複素乗算部 3 4 4は、 帯域制限フィル夕 3 3が出力する信号 と数値制御発振部 3 4 3が出力する信号とを複素乗算して位相誤差を打ち消す。 第 1の誤り訂正部 3 7は、 位相補正部 3 4から出力される信号を入力し、 変調 装置において高階層パケット群および低階層パケット群に個別に誤り訂正符号化 された主信号を、 パケット単位で誤り訂正を施し、 また時分割多重伝送のために 時間軸上で並び替えたパケットの順番を元に戻す作業を行う。 この出力は、 ビデ ォデコーダ 4 0へ出力される。 第 2の誤り訂正部 3 8は、 位相補正部 3 4から出 力される信号を入力し、 変調装置において誤り訂正符号化された T M C C信号の 誤り訂正を施す。 この出力は、 T M C Cデコーダ 4 0に出力される。 T M C Cデ コーダ 4 0は、 フレーム内の各階層の区切りと各階層の変調モードを表す T M C C情報を検出する。 B E R測定部 4 1は、 誤り訂正符号化の一種であるトレリス 符号化が施されいる復調した 8 P S K信号に対し、 トレリス復号を行って得た信 号に再度トレリス符号化を施して、 復調した 8 P S K信号と比較することにより 高階層信号の B E Rをモニタする。 その結果、 高階層の復号映像の品質が許容値 を下回ったと判断された場合には、 B E R測定部 4 1は、 伝送路の品質劣化に対 して高耐性の低階層の映像信号を出力するようにビデオデコーダ 4 0を制御する 次に、 第 1の実施形態に係る復調装置が行う動作を、 処理の流れに沿って図 5 〜図 1 9をさらに参照して詳細に説明する。 Each configuration of the phase correction unit 34 will be briefly described. The phase error detector 341 receives the signal output from the band limiting filter 33 via the complex multiplier 344, and detects a phase difference from a predetermined reference phase. The phase error holding unit 342 averages the phase error in the BPSK period among the phase errors detected by the phase error detection unit 341 according to the output signal from the timing generation unit 36. The numerically controlled oscillator 343 performs a numerical operation on the averaged signal output from the phase error holder 342 and outputs an oscillated signal. The complex multiplication unit 344 performs a complex multiplication of the signal output from the band limiting filter 33 and the signal output from the numerical control oscillation unit 343 to cancel the phase error. The first error correction section 37 receives the signal output from the phase correction section 34 and converts the main signal, which has been individually error-correction-coded into a high-layer packet group and a low-layer packet group in the modulation device, into a packet. Performs error correction in units and restores the order of packets rearranged on the time axis for time division multiplex transmission. This output is output to the video decoder 40. Second error correction section 38 receives the signal output from phase correction section 34 and performs error correction on the TMCC signal that has been error-correction-coded in the modulation device. This output is output to the TMCC decoder 40. The TMCC decoder 40 detects TMCC information indicating the division of each layer in the frame and the modulation mode of each layer. The BER measurement unit 41 re-trellis the signal obtained by performing trellis decoding on the demodulated 8 PSK signal that has been subjected to trellis coding, which is a type of error correction coding, and demodulates the signal. 8 Monitor BER of higher layer signal by comparing with PSK signal. As a result, if it is determined that the quality of the decoded video of the higher layer is lower than the allowable value, the BER measurement unit 41 outputs a lower-layer video signal having high resistance to the quality deterioration of the transmission path. To control the video decoder 40 Next, the operation performed by the demodulation device according to the first embodiment will be described in detail along the processing flow with reference to FIGS. 5 to 19 further.
図 5は、 第 1の実施形態に係る復調装置が行う動作を示すフローチャートであ る。 図 6は、 フレーム同期検出部 3 5が検出する信号およびタイミング生成部 3 6が生成するタイミング信号を示す図である。 図 7〜図 1 1は、 フレーム同期検 出部 3 5の各実施例の構成を示すプロヅク図である。 図 1 2〜図 1 6は、 フレー ム同期検出部 3 5の各実施例における位相関係を説明する図である。 図 1 7は、 周波数補正部 3 2のさらに詳細な構成を示すプロック図である。 図 1 8は、 位相 補正部 3 4のさらに詳細な構成を示すプロック図である。  FIG. 5 is a flowchart illustrating an operation performed by the demodulation device according to the first embodiment. FIG. 6 is a diagram showing a signal detected by the frame synchronization detection unit 35 and a timing signal generated by the timing generation unit 36. FIGS. 7 to 11 are block diagrams showing the configuration of each embodiment of the frame synchronization detection unit 35. FIG. FIGS. 12 to 16 are diagrams illustrating the phase relationship in each embodiment of the frame synchronization detection unit 35. FIG. FIG. 17 is a block diagram showing a more detailed configuration of the frequency correction unit 32. As shown in FIG. FIG. 18 is a block diagram showing a more detailed configuration of the phase correction unit 34. As shown in FIG.
図 5を参照して、 復調装置は、 チューナ (図示せず) を介して直交検波部 3 1 に入力される信号に対し、 まずフレーム同期検出部 3 5においてフレーム同期信 号の検出を行う (ステップ S 1 0 1 ) 。 この検出により、 図 6 ( b ) に示すよう に、 通信フレームの先頭、 すなわちフレーム同期信号/ T M C C信号の先頭を検 出することができる。  Referring to FIG. 5, the demodulation device first detects a frame synchronization signal in frame synchronization detection section 35 for a signal input to quadrature detection section 31 via a tuner (not shown) ( Step S101). By this detection, as shown in FIG. 6 (b), the head of the communication frame, that is, the head of the frame synchronization signal / TMC C signal can be detected.
ここで、 このようなフレーム先頭の検出を実現するフレーム同期検出部 3 5と しては、 具体的な構成の実施例が 5つ考えられる。 以下、 これらの 5つの実施例 を順に説明する。  Here, as the frame synchronization detection unit 35 that realizes such detection of the head of the frame, five embodiments having a specific configuration can be considered. Hereinafter, these five embodiments will be described in order.
(フレーム同期検出部 3 5の実施例 1 )  (Example 1 of frame synchronization detection section 35)
図 7は、 請求項 3 3に対応する、 フレーム同期検出部 3 5の実施例 1の構成を 示すブロック図である。 図 7において、 実施例 1は、 遅延検波部 3 5 1と、 位相 識別部 3 5 2と、 照合部 3 5 3とを備える。  FIG. 7 is a block diagram illustrating a configuration of the first embodiment of the frame synchronization detection unit 35 according to claim 33. In FIG. 7, the first embodiment includes a delay detection unit 351, a phase identification unit 352, and a collation unit 3553.
遅延検波部 3 5 1は、 帯域制限フィル夕 3 3からの信号を入力し、 現在の位相 変調信号と 1シンボル前の位相変調信号の複素共役信号との複素乗算を行う。 位 相識別部 3 5 2は、 遅延検波部 3 5 1が出力する信号の位相を識別してデータを 復号する。 ここで、 位相識別部 3 5 2は、 検出対象であるフレーム同期信号が B P S K変調信号であるため、 図 1 2に示すように、 遅延検波部 3 5 1の出力信号 の位相が— 9 0度以上 9 0度以下 (A領域) にある場合は 「0」 を出力し、 9 0 度以上 1 8 0度以下若しくは— 1 8 0度以上— 9 0度以下 (B領域) にある場合 は 「1」 を出力するように動作する。 照合部 3 5 3は、 位相識別部 3 5 2が出力 する信号と予め定まっているフレーム同期信号との照合を行い、 フレームの先頭 位置を検出する。 ここで、 照合部 3 5 3において参照する基準信号は、 フレーム 同期信号を差動復号したものになる。 The delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before. The phase identification unit 352 identifies the phase of the signal output from the delay detection unit 351 and decodes the data. Here, since the frame synchronization signal to be detected is a BPSK modulation signal, the phase discrimination section 352 outputs the output signal of the delay detection section 351, as shown in FIG. If the phase is between -90 degrees and 90 degrees or less (A region), "0" is output, and 90 degrees or more and 180 degrees or less or -180 degrees or more -90 degrees or less (B It operates to output “1” when it is in the area. The matching section 353 compares the signal output from the phase identifying section 352 with a predetermined frame synchronization signal, and detects the start position of the frame. Here, the reference signal referred to in the matching section 353 is obtained by differentially decoding the frame synchronization signal.
(フレーム同期検出部 3 5の実施例 2 )  (Embodiment 2 of the frame synchronization detector 35)
上記実施例 1において、 遅延検波部 3 5 1に入力される位相変調信号に周波数 ずれが存在する場合、 遅延検波部 3 5 1の出力は、 図 1 4に示すように位相ずれ が存在することになる (図中 X印) 。 また、 それに加え低 C/N時では図 1 5に 示すようになり、 上記実施例 1の位相識別方法では位相誤りが発生する。  In the first embodiment, when there is a frequency shift in the phase modulation signal input to the delay detector 351, the output of the delay detector 351 must have a phase shift as shown in FIG. (X in the figure). In addition, when the C / N is low, the result is as shown in FIG. 15. In the phase identification method of the first embodiment, a phase error occurs.
そこで、 実施例 2は、 これに対応したものである。  Therefore, the second embodiment corresponds to this.
図 8は、 請求項 3 3に対応する、 フレーム同期検出部 3 5の実施例 2の構成を 示すブロック図である。 図 8において、 実施例 2は、 遅延検波部 3 5 1と、 第 1 〜第 3の位相識別部 3 5 2 a〜3 5 2 cと、 照合部 3 5 3とを備える。  FIG. 8 is a block diagram illustrating a configuration of the second embodiment of the frame synchronization detecting unit 35 according to claim 33. In FIG. 8, the second embodiment includes a delay detection unit 351, first to third phase identification units 352a to 352c, and a matching unit 353.
遅延検波部 3 5 1は、 帯域制限フィル夕 3 3からの信号を入力し、 現在の位相 変調信号と 1シンボル前の位相変調信号の複素共役信号との複素乗算を行う。 第 1〜第 3の位相識別部 3 5 2 a〜3 5 2 cは、 遅延検波部 3 5 1が出力する信号 の位相をそれぞれ識別してデ一夕を復号する。 ここで、 第 1〜第 3の位相識別部 3 5 2 a〜 3 5 2 cは、 図 1 3に示すように、 それぞれ 1 8 0度の位相識別領域 を有し、 またその位相識別領域にそれぞれ異なつた位相回転が施されている。 例えば、 第 1の位相識別部 3 5 2 aは、 図 1 3 ( a ) に示すように遅延検波部 3 5 1の出力信号の位相が一 9 0度以上 9 0度以下 (A領域) にある場合は 「0 」 を出力し、 9 0度以上 1 8 0度以下若しくは一 1 8 0度以上— 9 0度以下 (B 領域) にある場合は 「 1」 を出力するように動作する。 また、 第 2の位相識別部 3 5 2 bは、 図 1 3 ( b ) に示すように遅延検波部 3 5 1の出力信号の位相が ( — 9 0 + a) 度以上 (9 0 + ) 度以下 (A領域) にある場合は 「0」 を出力し 、 (9 0 +a) 度以上 1 8 0度以下若しくは— 1 8 0度以上 (—9 0 + a) 度以 下 (B領域) にある場合は 「1」 を出力するように動作する。 また、 第 3の位相 識別部 3 5 2 cは、 図 1 3 (c) に示すように遅延検波部 3 5 1の出力信号の位 相が (—9 0—ひ) 度以上 (9 0—ひ) 度以下 (A領域) にある場合は 「0」 を 出力し、 (9 0—ひ) 度以上 1 8 0度以下若しくは一 1 8 0度以上 (― 9 0—ひ ) 度以下 (B領域) にある場合は 「1」 を出力するように動作する。 照合部 3 5 3は、 第 1〜第 3の位相識別部 3 5 2 a〜3 5 2 cが出力する各信号と予め定ま つているフレーム同期信号との照合をそれぞれ行い、 フレーム同期信号と一致し たいずれか一つの信号に関してフレームの先頭位置を検出する。 ここで、 照合部 3 5 3において参照する基準信号は、 フレーム同期信号を差動復号したものにな o The delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before. The first to third phase discriminating sections 3552a to 3552c discriminate the phases of the signals output from the delay detecting section 3551, respectively. Here, each of the first to third phase discriminating sections 352 a to 352 c has a phase discriminating area of 180 degrees as shown in FIG. Each has a different phase rotation. For example, as shown in FIG. 13 (a), the first phase discriminating section 35 2 a sets the phase of the output signal of the delay detecting section 35 1 to 90 degrees or more and 90 degrees or less (A region). It operates to output “0” in some cases, and to output “1” when it is in the range of 90 ° to 180 ° or 180 ° to 90 ° or less (B region). Further, as shown in FIG. 13 (b), the second phase discriminating section 352b changes the phase of the output signal of the delay detecting section 351 to ( If it is above (90 + a) degrees and below (90 +) degrees (area A), "0" is output, and above (90 + a) degrees and below 180 degrees or above-180 degrees It operates to output “1” when it is below (−9 0 + a) degrees (area B). Further, as shown in FIG. 13 (c), the third phase discriminating section 352c determines that the phase of the output signal of the delay detecting section 351 is more than (—90—H) degrees (90— “0” is output if the angle is below (H) degrees (A area), and (90 ° -H) degrees or more and 180 ° or less or 180 ° degrees or more and (−90—H) degrees or less (B It operates to output “1” when it is in the area. The matching section 353 performs matching between each signal output by the first to third phase identifying sections 352 a to 352 c and a predetermined frame synchronization signal. The start position of the frame is detected for any one of the matched signals. Here, the reference signal referred to in the matching section 353 is obtained by differentially decoding the frame synchronization signal.
(フレーム同期検出部 3 5の実施例 3)  (Embodiment 3 of the frame synchronization detector 35)
上記実施例 2においては、 位相識別部における座標軸に位相回転を施す、 つま り位相識別領域にそれぞれ異なった位相回転を施して位相識別を行った。 しかし 、 位相識別部は位相回転を施さず、 遅延検波部 3 5 1の出力に位相回転を施して 位相識別する方法も考えられる。  In the second embodiment, the phase identification is performed by applying a phase rotation to the coordinate axes in the phase identification unit, that is, by applying different phase rotations to the phase identification regions. However, a method is also conceivable in which the phase discrimination unit does not perform phase rotation, and performs phase rotation on the output of the delay detection unit 351, to discriminate phases.
そこで、 実施例 3は、 これに対応したものである。  Therefore, the third embodiment corresponds to this.
図 9は、 請求項 34に対応する、 フレーム同期検出部 3 5の実施例 3の構成を 示すブロック図である。 図 9において、 実施例 3は、 遅延検波部 3 5 1と、 第 1 〜第 3の位相回転部 3 54 a〜 3 54 cと、 3つの位相識別部 3 52と、 照合部 3 5 3とを備える。  FIG. 9 is a block diagram showing a configuration of a third embodiment of the frame synchronization detecting section 35, corresponding to claim 34. In FIG. 9, the third embodiment is different from the delay detection section 351, the first to third phase rotation sections 354a to 354c, the three phase identification sections 352, and the matching section 353. Is provided.
遅延検波部 3 5 1は、 帯域制限フィル夕 3 3からの信号を入力し、 現在の位相 変調信号と 1シンボル前の位相変調信号の複素共役信号との複素乗算を行う。 第 1〜第 3の位相回転部 3 54 a〜 3 54 cは、 遅延検波部 3 5 1が出力する信号 を入力し、 それぞれ異なる位相回転を施して出力する。 3つの位相識別部 3 5 2 は、 第 1〜第 3の位相回転部 3 5 4 a〜3 5 4 cが出力する信号をそれぞれ入力 し、 同じ位相識別領域の基準位相によって識別しデ一夕を復号する。 照合部 3 5 3は、 3つの位相識別部 3 5 2が出力する各信号と予め定まっているフレーム同 期信号との照合をそれぞれ行い、 フレーム同期信号と一致したいずれか一つの信 号に関してフレームの先頭位置を検出する。 The delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before. The first to third phase rotation units 354a to 354c receive the signals output from the delay detection unit 351 and apply different phase rotations to the signals to output the signals. 3 phase identification sections 3 5 2 Inputs the signals output by the first to third phase rotation units 354a to 354c, identifies the signals by the reference phase in the same phase identification area, and decodes the data. The matching section 353 compares each signal output from the three phase identification sections 352 with a predetermined frame synchronization signal, and determines a frame for any one signal that matches the frame synchronization signal. Detects the start position of.
以上により、 遅延検波 3 5 1の出力の位相識別は、 等価的に図 1 3で示すもの と同様になり、 上記実施例 2と同様の効果が得られる。  As described above, the phase detection of the output of the delay detection 35 1 is equivalently the same as that shown in FIG. 13, and the same effect as that of the second embodiment can be obtained.
なお、 上記実施例 2 , 3の説明では、 3種類の位相回転を施した信号を照合す るようにしたが、 もっと多くの種類の位相回転を施した信号を用いて照合を行え ば、 遅延検波によるフレーム同期の精度を向上することができる。  In the description of the second and third embodiments, the signals subjected to the three types of phase rotation are collated. However, if the collation can be performed using the signals subjected to the more types of phase rotation, the delay may be reduced. The accuracy of frame synchronization by detection can be improved.
(フレーム同期検出部 3 5の実施例 4 )  (Embodiment 4 of frame synchronization detection section 35)
図 1 0は、 請求項 3 5に対応する、 フレーム同期検出部 3 5の実施例 4の構成 を示すブロック図である。 図 1 0において、 実施例 4は、 遅延検波部 3 5 1と、 位相識別部 3 5 2と、 位相回転部 3 5 5と、 照合部 3 5 3とを備える。  FIG. 10 is a block diagram illustrating a configuration of a fourth embodiment of the frame synchronization detecting unit 35 according to claim 35. In FIG. 10, the fourth embodiment includes a delay detection unit 351, a phase identification unit 352, a phase rotation unit 365, and a collation unit 353.
遅延検波部 3 5 1は、 帯域制限フィル夕 3 3からの信号を入力し、 現在の位相 変調信号と 1シンボル前の位相変調信号の複素共役信号との複素乗算を行う。 位 相識別部 3 5 2は、 遅延検波部 3 5 1が出力する信号の位相を識別してデ一夕を 復号する。 ここで、 位相識別部 3 5 2は、 検出対象であるフレーム同期信号が B P S K変調信号であるため、 1 8 0度の位相識別領域を有している (図 1 2を参 照) 。 照合部 3 5 3は、 位相識別部 3 5 2が出力する信号と予め定まっているフ レーム同期信号との照合を行い、 フレームの先頭位置を検出する。 ここで、 照合 部 3 5 3において参照する基準信号は、 フレーム同期信号を差動復号したものに なる。 識別位相回転部 3 5 5は、 図 1 6に示すように、 位相識別部 3 5 2に位相 回転を施し、 照合部 3 5 3においてフレーム同期検出が得られるまで、 その回転 位相を変化させる。  The delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before. The phase identification unit 352 identifies the phase of the signal output from the delay detection unit 351, and decodes the data. Here, since the frame synchronization signal to be detected is a BPSK modulation signal, phase identification section 352 has a phase identification area of 180 degrees (see FIG. 12). The matching section 353 compares the signal output from the phase identifying section 352 with a predetermined frame synchronization signal, and detects the start position of the frame. Here, the reference signal referred to in matching section 353 is a signal obtained by differentially decoding the frame synchronization signal. As shown in FIG. 16, the discrimination phase rotation unit 3555 performs phase rotation on the phase discrimination unit 352, and changes the rotation phase until the frame synchronization detection is obtained in the matching unit 353.
(フレーム同期検出部 3 5の実施例 5 ) 上記実施例 4においては、 位相識別部における座標軸に位相回転を施す、 つま り位相識別領域にそれぞれ異なった位相回転を施して位相識別を行った。 しかし 、 位相識別部は位相回転を施さず、 遅延検波部 3 5 1の出力に位相回転を施して 位相識別する方法も考えられる。 (Embodiment 5 of the frame synchronization detector 35) In the fourth embodiment, the phase identification is performed by applying a phase rotation to the coordinate axes in the phase identification unit, that is, by applying different phase rotations to the phase identification regions. However, a method is also conceivable in which the phase discrimination unit does not perform phase rotation, and performs phase rotation on the output of the delay detection unit 351, thereby discriminating the phase.
そこで、 実施例 5は、 これに対応したものである。  Therefore, the fifth embodiment corresponds to this.
図 1 1は、 請求項 3 6に対応する、 フレーム同期検出部 3 5の実施例 5の構成 を示すブロック図である。 図 1 1において、 実施例 5は、 遅延検波部 3 5 1と、 位相回転部 3 5 4と、 位相識別部 3 5 2と、 照合部 3 5 3とを備える。  FIG. 11 is a block diagram showing a configuration of a fifth embodiment of the frame synchronization detecting unit 35 according to claim 36. In FIG. 11, the fifth embodiment includes a delay detection unit 351, a phase rotation unit 354, a phase identification unit 352, and a collation unit 3553.
遅延検波部 3 5 1は、 帯域制限フィル夕 3 3からの信号を入力し、 現在の位相 変調信号と 1シンボル前の位相変調信号の複素共役信号との複素乗算を行う。 位 相回転部 3 5 4は、 遅延検波部 3 5 1が出力する信号を入力し、 位相回転を施し て出力する。 ここで、 位相回転部 3 5 4は、 照合部 3 5 3においてフレーム同期 検出が得られるまで、 その回転位相を変化させる。 位相識別部 3 5 2は、 位相回 転部 3 5 4が出力する信号の位相を識別してデ一夕を復号する。 照合部 3 5 3は 、 位相識別部 3 5 2が出力する信号と予め定まっているフレーム同期信号との照 合を行い、 フレームの先頭位置を検出する。  The delay detection unit 351 receives the signal from the band-limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before. The phase rotation unit 354 receives the signal output from the delay detection unit 351 and performs phase rotation to output the signal. Here, the phase rotation section 354 changes its rotation phase until the collation section 353 obtains frame synchronization detection. The phase identification unit 352 identifies the phase of the signal output from the phase rotation unit 354 and decodes the data. The collation unit 353 compares the signal output from the phase identification unit 352 with a predetermined frame synchronization signal, and detects the head position of the frame.
以上により、 遅延検波 3 5 1の出力の位相識別は、 等価的に図 1 6で示すもの と同様になり、 上記実施例 4と同様の効果が得られる。  As described above, the phase detection of the output of the delay detection 35 1 is equivalently the same as that shown in FIG. 16, and the same effect as that of the fourth embodiment can be obtained.
なお、 上記実施例 1〜実施例 5のフレーム同期検出部 3 5は、 遅延検波を用い ているため、 周波数補正部 3 2以降であれば、 その設置位置としては、 周波数補 正部 3 2の出力、 帯域制限フィルタ 3 3の出力、 または位相補正部 3 4の出力で あれば、 特に制限するものではない。 また、 後述するが、 周波数補正部 3 2にお いても遅延検波を用いているので、 フレーム同期検出部 3 5における遅延検波部 3 5 1を周波数補正部 3 2の遅延検波部と共用化することにより、 回路規模の削 減が可能になる。  Since the frame synchronization detection unit 35 of the first to fifth embodiments uses delay detection, if the frequency correction unit 32 or later is used, the installation position is the same as the frequency correction unit 32. There is no particular limitation as long as the output is the output of the band limiting filter 33 or the output of the phase correction unit 34. As will be described later, since the delay detection is also used in the frequency correction unit 32, the delay detection unit 35 1 of the frame synchronization detection unit 35 is shared with the delay detection unit of the frequency correction unit 32. This makes it possible to reduce the circuit scale.
再び図 5を参照して、 フレーム同期検出部 3 5が検出したフレーム先頭信号は 、 タイミング生成部 36に入力される。 タイミング生成部 36は、 フレーム同期 検出部 35で検出されたフレーム先頭信号に基づいて、 1通信フレーム内のフレ —ム同期信号/ TMCC信号の期間およびキヤリア同期補助信号の期間を検出し 、 図 6 (c) に示すような当該期間に応じた BPSKタイミング信号を生成する (ステップ S 102) 。 Referring again to FIG. 5, the frame start signal detected by frame synchronization detecting section 35 is Are input to the timing generation unit 36. The timing generation unit 36 detects the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in one communication frame based on the frame head signal detected by the frame synchronization detection unit 35. A BPSK timing signal corresponding to the period as shown in (c) is generated (step S102).
なお、 図 6 (d) に示すようなキャリア同期補助信号の期間のみに応じた BP SKタイミング信号であっても、 本発明の有用な効果を奏することはもちろん可 能である。  It should be noted that the BP SK timing signal according to only the period of the carrier synchronization auxiliary signal as shown in FIG. 6D can obviously provide the useful effects of the present invention.
ここで、 第 1の実施形態に係る復調装置において、 BPSK期間で搬送波再生 するためには、 BPS K変調されたキヤリァ同期補助信号の挿入間隔および挿入 幅 (シンボル数) が重要になる。 挿入間隔に関しては、 その間隔が広くなるほど 周波数補正部 32および位相補正部 34の保持状態が長くなり、 少しでも周波数 誤差が残留していれば、 その間で変調信号の位相回転が起こるため、 各 BPSK 期間で同期引き込み位相が 180度異なったり、 さらには同期不能になったりす る。 また、 挿入シンボル数に関しては、 周波数補正部 32における周波数誤差検 出では遅延検波を用い、 1シンボル間の位相ずれを検出してそれを周波数誤差と しているため、 最低 2シンボルは必要になる。  Here, in the demodulation device according to the first embodiment, the insertion interval and the insertion width (the number of symbols) of the BPSK-modulated carrier synchronization auxiliary signal are important to reproduce the carrier in the BPSK period. Regarding the insertion interval, the longer the interval is, the longer the holding state of the frequency correction unit 32 and the phase correction unit 34 is, and if any frequency error remains, the phase rotation of the modulation signal occurs between them. Depending on the period, the pull-in phase may differ by 180 degrees, or even out of synchronization. Regarding the number of inserted symbols, at least two symbols are required because frequency error detection in the frequency correction unit 32 uses delay detection, detects the phase shift between one symbol and uses it as the frequency error. .
従って、 上述したように、 変調装置において、 キャリア同期補助信号は、 2シ ンボル以上連続して挿入し、 挿入間隔は 200シンボル程度、 若しくはそれ以下 にするのが好ましいのである。  Therefore, as described above, in the modulation device, it is preferable that the carrier synchronization auxiliary signal is continuously inserted for two or more symbols and the insertion interval is set to about 200 symbols or less.
そして、 タイミング生成部 36は、 生成した BPSKタイミング信号 (図 6 ( c) または図 6 (d) ) を、 周波数補正部 32の周波数誤差保持部 322および 位相補正部 34の位相誤差保持部 342へそれぞれ出力する (図 4を参照) 。 次に、 図 17を参照して、 周波数補正部 32の動作を説明する。  Then, the timing generation section 36 sends the generated BPSK timing signal (FIG. 6 (c) or FIG. 6 (d)) to the frequency error holding section 322 of the frequency correction section 32 and the phase error holding section 342 of the phase correction section 34. Output each (see Figure 4). Next, the operation of the frequency correction unit 32 will be described with reference to FIG.
図 17において、 周波数補正部 32は、 遅延検波部 32 1 aと位相誤差検出部 321 bとで構成される周波数誤差検出部 321と、 切替部 322 aと定数発生 部 322 bと加算器 322 cと遅延部 322 dとで構成される周波数誤差保持部 322と、 加算器 323 aと遅延部 323 bとコサイン波発生部 323 cとサイ ン波発生部 323 dとで構成される数値制御発振部 323と、 複素乗算部 324 とを備える。 In FIG. 17, a frequency correction unit 32 includes a frequency error detection unit 321 including a delay detection unit 321a and a phase error detection unit 321b, a switching unit 322a, and a constant generation unit. Frequency error holding section 322 including section 322b, adder 322c, and delay section 322d; adder 323a, delay section 323b, cosine wave generation section 323c, and sign wave generation section 323d. And a complex multiplying unit 324.
直交検波部 31が出力する信号は、 複素乗算部 324および帯域制限フィル夕 The signal output from the quadrature detector 31 is output to the complex multiplier 324 and the band-limited filter.
33を介して、 周波数誤差検出部 32 1の遅延検波部 32 1 aに入力される。 遅 延検波部 321 aは、 現在の n相 PSK変調信号 (η=2 ' , 22 , 23 ···、 以 下同じ) と、 その 1シンボル前の η相 P SK変調信号の複素共役信号との複素乗 算を行い、 遅延検波出力を算出する。 The signal 33 is input to the delay detection section 321 a of the frequency error detection section 321 via 33. Delay detection unit 321 a, the current n-phase PSK modulation signal (η = 2 ', 2 2 , 2 3 ···, following the same) and the complex conjugate of the one-symbol preceding eta phase P SK-modulated signal Performs complex multiplication with the signal to calculate differential detection output.
この遅延検波出力の算出式を、 下記式 ( 1) に示す。  The equation for calculating the delay detection output is shown in the following equation (1).
遅延検波出力二 ex p(j ( 2 ττ/η · (D 1 )+ 2 ττ · Δ f · t 1 )) - e x p ( - j ( 2 ττ/η - (D 0)+ 27T - Af - t O))  Delay detection output 2 ex p (j (2 ττ / η · (D 1) + 2 ττ · Δf · t 1))-exp (-j (2 ττ / η-(D 0) + 27T-Af-t O))
= e x p ( ( 2 π/τι ' (D l— D 0)+2TT ' 厶 f ' T s))  = e x p ((2 π / τι '(D l— D 0) + 2TT' mm f 'T s))
.... ( i)  .... (i)
D 1 : n相 P SK変調信号の現在のシンボルの位相状態(0〜(! l-l)) D 1: Phase state of current symbol of n-phase PSK modulation signal (0 to (! L-l))
D O : n相 P SK変調信号の 1シンボル前の位相状態(0〜(! 1-1))  D O: Phase status of one symbol before the n-phase PSK modulation signal (0 to (! 1-1))
Δΐ :等価低域信号の周波数ずれ [Hz]  Δΐ: Frequency shift of equivalent low-frequency signal [Hz]
t 1 :現在の時刻 [t]  t 1: current time [t]
t 0 : 1シンボル前の時刻 [t ]  t 0: time before one symbol [t]
T s : シンボル周期 [t ]  T s: Symbol period [t]
BPSKの場合、 上記式 ( 1) により周波数ずれが無ければ遅延検波出力の位 相状態は、 図 14中の ·印に示すように 7Γ · η (η=0〜1) にある。 しかし、 周波数ずれ△:£"があると、 X印に示すように 2ΤΓ · Δί1 · T s ( = 6>) 分、 位相 が ·印よりずれることになる。 In the case of BPSK, if there is no frequency shift according to the above equation (1), the phase state of the differential detection output is 7Γ · η (η = 0 to 1) as indicated by the symbol in FIG. However, if there is a frequency shift △: £ ", the phase is shifted from the mark by 2 · · Δί 1 · T s (= 6>) as shown by the X mark.
そこで、 位相誤差検出部 32 l bでは、 周波数ずれが無い場合の秦印を受信側 の基準として、 周波数ずれのある場合の X印との位相差を周波数誤差として検出 する。 なお、 直交座標系で処理しているので、 位相差を検出するには本来 a r c t an (y/x) により算出することになるが、 簡略化して周波数誤差と比例す る量として、 BPSKの場合、 遅延検波信号のうち直交成分の誤差 Ayを周波数 誤差として出力してもよい。 Therefore, the phase error detection unit 32 lb detects the phase difference from the X mark when there is a frequency shift as the frequency error with the Hata mark when there is no frequency shift as the reference on the receiving side. I do. Since the processing is performed in the rectangular coordinate system, the phase difference is originally calculated by arct an (y / x) .However, in a simplified manner, the amount proportional to the frequency error is Alternatively, the error Ay of the orthogonal component of the differential detection signal may be output as a frequency error.
この位相誤差検出部 321 bで検出した周波数誤差は、 切替部 322 aを介し て加算器 322 cおよび遅延部 322 dからなるループフィル夕に入力され、 周 波数誤差の平均化がなされる。 ここで、 周波数誤差保持部 322は、 1通信フレ —ム内の BP SK変調がされているフレーム同期信号/ TMC C信号の期間およ びキヤリア同期補助信号の期間のみに得られる周波数誤差に関して平均化を行う ため、 夕ィミング生成部 36が出力するタイミング信号を用いて切替部 322 a の切換えを行う。 この切替部 322 aは、 タイミング信号の BP SK変調信号の 期間 (図 6 (c) または (d) において Hiレベル期間) に位相誤差検出部 32 1 bが出力する周波数誤差をループフィル夕に入力し、 それ以外の期間には、 定 数発生部 322 bが発生する 「定数 0」 をループフィル夕に入力するように切替 えを行 。  The frequency error detected by the phase error detection unit 321b is input to a loop filter composed of the adder 322c and the delay unit 322d via the switching unit 322a, and the frequency error is averaged. Here, the frequency error holding unit 322 averages the frequency errors obtained only during the period of the frame synchronization signal / TMC C signal and the period of the carrier synchronization auxiliary signal in which BP SK modulation is performed within one communication frame. In order to perform the conversion, the switching unit 322a is switched using the timing signal output from the evening generation unit 36. The switching section 322a inputs the frequency error output from the phase error detection section 321b during the period of the BP SK modulation signal of the timing signal (Hi level period in FIG. 6 (c) or (d)) to the loop filter. During other periods, switching is performed so that “constant 0” generated by the constant generator 322b is input to the loop filter.
そして、 周波数誤差保持部 322の出力信号は、 数値演算発振部 (NCO) 3 23を制御し、 そこで得られる発振信号により、 複素乗算部 324で周波数誤差 が打ち消される。 これにより、 周波数誤差が補正される (ステップ S 103) 。 なお、 上記説明では、 周波数誤差検出部 321の入力信号は、 帯域制限フィル 夕 33の出力信号としていたが、 周波数誤差検出部 321は遅延検波を用いてい るため、 複素乗算部 324の以降の信号であれば、 つまり複素乗算部 324の出 力信号、 帯域制限フィル夕 33の出力信号、 または位相補正部 34の出力信号で あれば特に制限するものではない。  Then, the output signal of the frequency error holding unit 322 controls the numerical operation oscillating unit (NCO) 323, and the complex multiplication unit 324 cancels the frequency error by the oscillating signal obtained therefrom. As a result, the frequency error is corrected (step S103). In the above description, the input signal of the frequency error detection unit 321 is the output signal of the band limiting filter 33, but since the frequency error detection unit 321 uses delay detection, the signal after the complex multiplication unit 324 In other words, there is no particular limitation as long as it is an output signal of the complex multiplication unit 324, an output signal of the band limiting filter 33, or an output signal of the phase correction unit 34.
次に、 図 18を参照して、 位相補正部 34の動作を説明する。  Next, the operation of the phase correction unit 34 will be described with reference to FIG.
図 18において、 位相補正部 34は、 位相誤差検出部 341と、 切替部 342 aと定数発生部 342 bと加算器 342 c, 342 eと遅延部 342 dと保持部 3 4 2 f と増幅器 3 4 2 gとで構成される位相誤差保持部 3 4 2と、 加算器 3 4In FIG. 18, the phase correction unit 34 includes a phase error detection unit 341, a switching unit 342a, a constant generation unit 342b, adders 342c and 342e, a delay unit 342d, and a holding unit. Phase error holding section 3 4 2 composed of 3 4 2 f and amplifier 3 4 2 g, and adder 3 4
3 aと遅延部 3 4 3 bとコサイン波発生部 3 4 3 cとサイン波発生部 3 4 3 dと で構成される数値制御発振部 3 4 3と、 複素乗算部 3 4 4とを備える。 Numerically controlled oscillator 3 4 3 consisting of 3 a, delay section 3 4 3 b, cosine wave generator 3 4 3 c and sine wave generator 3 4 3 d, and complex multiplier 3 4 4 .
位相補正部 3 4の動作初期の時点では、 帯域制限フィル夕 3 3の出力信号は、 周波数補正部 3 2で周波数誤差は打ち消されたものの、 数値制御発振部 3 4 3の 出力信号とは位相が異なっているため、 複素乗算部 3 4 4の出力は位相誤差を含 んでいる。 位相誤差を含んだ複素乗算部 3 4 4の出力は、 位相誤差検出部 3 4 1 に入力される。 位相誤差検出部 3 4 1における位相誤差検出は、 図 1 9に示すよ うに、 〇印で示した受信側の基準位相に対し、 位相ずれ Δ Φがある受信信号 X印 との位相差を検出する。 なお、 直交座標系 ( I , Q平面) で処理しているので、 位相誤差を検出するには本来 a r c t a n ( Q/ I ) により算出することになる が、 簡略化して位相誤差と比例する量として、 B P S Kの場合、 直交成分の誤差 Δ Qを位相誤差として出力してもよい。  At the initial stage of the operation of the phase corrector 34, the output signal of the band-limiting filter 33 is in phase with the output signal of the numerically controlled oscillator 3443, although the frequency error has been canceled by the frequency corrector 32. Therefore, the output of the complex multiplier 344 contains a phase error. The output of the complex multiplier 344 including the phase error is input to the phase error detector 341. As shown in Fig. 19, the phase error detection by the phase error detector 341 detects the phase difference between the received signal X with a phase shift ΔΦ and the reference phase on the receiving side indicated by 〇. I do. In addition, since processing is performed in the rectangular coordinate system (I, Q planes), the phase error is originally calculated by arctan (Q / I), but is simplified to an amount proportional to the phase error. , BPSK, the error ΔQ of the orthogonal component may be output as the phase error.
位相誤差検出部 3 4 1で検出した位相誤差は、 切換部 3 4 2 aおよび保持部 3 The phase error detected by the phase error detection unit 3 41
4 2 f を介して加算器 3 4 2 c , 3 4 2 e、 遅延部 3 4 2 dおよび増幅器 3 4 2 gからなるループフィル夕に入力され、 位相誤差信号の平均化がなされる。 位相 誤差保持部 3 4 2におけるループフィル夕は、 増幅部 3 4 2 gを介して加算器 3 4 2 eに入る直接系と、 加算器 3 4 2 cおよび遅延部 3 4 2 dを介して入る積分 系からなり、 直接系は位相誤差の補正のため用い、 積分系は周波数補正部 3 2で 取り除けなかった小さい周波数ずれを補正するために用いる。 増幅器 3 4 2 gは 、 直接系と積分系の利得配分を決定する。 The signal is input to the loop filter composed of the adders 3 4 2 c and 3 4 2 e, the delay section 3 4 2 d and the amplifier 3 4 2 g via the 4 2 f, and the phase error signal is averaged. The loop filter in the phase error holding unit 342 is divided into a direct system that enters the adder 342 e via the amplifier 342 g, and a direct system that enters the adder 342 c and the delay unit 342 d. The direct system is used to correct phase errors, and the integral system is used to correct small frequency shifts that could not be removed by the frequency correction unit 32. The amplifier 342g determines the direct system and the integral system gain distribution.
ここで、 位相誤差保持部 3 4 2は、 1通信フレーム内の B P S K変調がされて いるフレーム同期信号/ T M C C信号の期間およびキヤリア同期補助信号の期間 のみに得られる位相誤差に関して平均化を行うため、 タイミング生成部 3 6が出 力するタイミング信号を用いて切替部 3 4 2 aの切換えおよび保持部 3 4 2 の 制御を行う。 この切替えおよび制御は、 タイミング信号の B P S K変調信号の期 間 (図 6 ( c ) または (d ) において H iレベル期間) に、 位相誤差検出部 3 4 1が出力する位相誤差をループフィル夕に入力するように行う。 Here, the phase error holding section 3 4 2 is used to average the phase error obtained only during the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in which BPSK modulation is performed in one communication frame. Using the timing signal output from the timing generation unit 36, the switching of the switching unit 342a and the control of the holding unit 342 are performed. This switching and control is performed during the period of the BPSK modulation signal of the timing signal. During this period (the Hi level period in FIG. 6 (c) or (d)), the phase error output from the phase error detector 341 is input to the loop filter.
ループフィル夕の積分系においては、 B P S K変調信号期間は、 位相誤差検出 部 3 4 1の出力信号を加算器 3 4 2 cに入力し、 それ以外の期間には、 定数発生 部 3 4 2 bが発生する 「定数 0」 を入力するように切替部 3 4 2 aを切替える。 また、 ループフィル夕の直接系においては、 B P S K変調信号期間は、 位相誤差 検出部 3 4 1の出力信号を増幅器 3 4 2 gを介して加算器 3 4 2 eに出力し、 そ れ以外の期間には、 以前の B P S K変調信号期間の位相誤差検出部 3 4 1の出力 信号を保持して加算器 3 4 2 eに出力するように保持部 3 4 2 f を制御する。 そして、 位相誤差保持部 3 4 2の出力信号は、 数値演算発振部 (N C O ) 3 4 3を制御し、 そこで得られる発振信号により、 複素乗算器 3 4 4で位相誤差が打 ち消される。 これにより、 位相誤差が補正される (ステップ S 1 0 4 ) 。 その後 、 定常の復調処理に移行する (ステップ S 1 0 5 ) 。  In the loop-fill integration system, during the BPSK modulation signal period, the output signal of the phase error detector 341 is input to the adder 342c, and during the other periods, the constant generator 342b The switching section 3 4 2a is switched so that “constant 0” is input. In the direct system of the loop filter, during the BPSK modulation signal period, the output signal of the phase error detector 341 is output to the adder 342 e via the amplifier 342 g. During the period, the holding unit 342 f is controlled so as to hold the output signal of the phase error detection unit 341 in the previous BPSK modulation signal period and output the signal to the adder 342 e. Then, the output signal of the phase error holding unit 342 controls the numerical operation oscillating unit (NCO) 343, and the complex signal 344 cancels the phase error by the oscillating signal obtained therefrom. As a result, the phase error is corrected (Step S104). After that, the processing shifts to the steady demodulation processing (step S105).
ここでの定常の復調処理とは、 位相補正部 3 4が位相同期した後の復調動作の ことであり、 雑音等の影響で周波数補正部 3 2における周波数誤差の変動により 数値制御発振手段 3 2 3の発振周波数が変化して、 位相補正部 3 4における位相 同期を外さないようにすることである。 例えば、 一度位相同期した後、 何らかの 原因で位相同期が外れるまでは、 周波数補正部 3 2の周波数誤差保持部 3 2 2の 係数更新を停止したり、 ループゲインを下げる (感度を下げる) 等の処理を行う なお、 図 5のフローチャートにおいては、 周波数補正部 3 2の動作 (ステップ S 1 0 3 ) と位相補正部 3 4の動作 (ステップ S 1 0 4 ) とをそれぞれ個別のス テツプで記載したが、 ステップ S 1 0 3において位相補正部 3 4が動作していて も何ら問題はない (以下、 各実施形態におけるステップ S 1 0 3の処理において も同様) 。  The steady demodulation processing here is a demodulation operation after the phase correction unit 34 is phase-synchronized. The numerical control oscillation means 3 2 That is, the oscillation frequency of 3 is not changed, and the phase synchronization in the phase correction unit 34 is not lost. For example, once the phase is synchronized, until the phase synchronization is lost for some reason, the updating of the coefficient of the frequency error holding unit 322 of the frequency correction unit 32, the reduction of the loop gain (lowering the sensitivity), etc. In the flowchart of FIG. 5, the operation of the frequency correction unit 32 (step S103) and the operation of the phase correction unit 34 (step S104) are described in separate steps. However, there is no problem even if the phase correction unit 34 operates in step S103 (hereinafter, the same applies to the processing in step S103 in each embodiment).
以上のように、 本発明の第 1の実施形態に係る復調装置によれば、 時分割多重 される位相変調信号のうち、 バケツト内に分散配置されたキヤリャ同期補助信号 を含む BP SKを用いて搬送波再生を行うことにより、 低 C/N状態においても 高速かつ安定にキヤリァ同期を行うことができる。 As described above, according to the demodulation device according to the first embodiment of the present invention, time-division multiplexing Carrier recovery is performed using the BP SK that includes the carrier synchronization auxiliary signal dispersedly arranged in the bucket among the phase modulated signals, so that carrier synchronization can be performed quickly and stably even in a low C / N state. it can.
また、 入力周波数誤差が大きいときでも、 遅延検波によるフレーム同期検出の 誤動作を無くしてキヤリア同期を行うことができる。  In addition, even when the input frequency error is large, carrier synchronization can be performed without erroneous operation of frame synchronization detection by delay detection.
(第 2の実施形態)  (Second embodiment)
本発明の第 2の実施形態に係る復調装置は、 上記第 1の実施形態に係る復調装 置において、 位相補正部 34での疑似同期による誤動作を回避するものである。 そこで、 BPS K変調されたキヤリァ同期補助信号を用いて位相補正する場合 の疑似同期について、 まず説明する。  The demodulation device according to the second embodiment of the present invention avoids a malfunction due to pseudo synchronization in the phase correction unit 34 in the demodulation device according to the first embodiment. Therefore, pseudo-synchronization in the case where the phase is corrected using the carrier synchronization auxiliary signal modulated by BPSK will be described first.
疑似同期とは、 変調装置におけるキャリア同期補助信号の挿入周期が一定で ( 図 2を参照) 、 位相補正部 34への入力周波数誤差が、 キャリア同期補助信号の 挿入周期で位相が 180度 xm (mは、 0以外の任意の整数) 回転する周波数で あった場合、 位相補正部 34がキャリア同期補助信号周期で本来の位相誤差を識 別できなくなり、 異なった位相で同期してしまうというものである。  Pseudo synchronization means that the insertion period of the carrier synchronization auxiliary signal in the modulator is constant (see Fig. 2), and the input frequency error to the phase correction unit 34 is 180 degrees xm (phase of the insertion period of the carrier synchronization auxiliary signal). (m is an arbitrary integer other than 0.) If the rotation frequency is used, the phase correction unit 34 cannot identify the original phase error in the carrier synchronization auxiliary signal cycle, and synchronizes with a different phase. is there.
例えば、 図 20に示すように、 周波数ずれによってキャリア同期補助信号挿入 周期 (図中① ②) で位相が 180度回転している場合 (図中 A)、 位相補正部 34における位相誤差検出では、 キャリア同期補助信号挿入周期 (図中① ②) での位相の変化を検出することができず、 この場合、 それぞれの時刻 (図中①, ②) で角度 ?の位相誤差を検出するだけとなる (図中 B) 。  For example, as shown in FIG. 20, when the phase is rotated by 180 degrees in the carrier synchronization auxiliary signal insertion period (① in the figure) due to a frequency shift (A in the figure), the phase error detection in the phase correction unit 34 It is not possible to detect a phase change in the carrier synchronization auxiliary signal insertion cycle ((2) in the figure). In this case, only a phase error of angle? Is detected at each time ((2) and (2) in the figure). (B in the figure).
位相補正部 34は、 このように検出された位相誤差信号に基づいて位相補正を 行うことにより、 周波数誤差があるもにもかかわらず疑似的にキヤリア同期とな り、 定常の復調動作に移行して安定してしまう。 その疑似同期となる周波数 は、 下記式 (2) に示すようになる。  By performing phase correction based on the phase error signal detected in this way, the phase correction unit 34 simulates carrier synchronization despite the presence of a frequency error, and shifts to a steady demodulation operation. Will be stable. The frequency of the pseudo synchronization is as shown in the following equation (2).
△ f= (mx l 80度) / 360度 xf sym/S ···· (2)  △ f = (mx l 80 degrees) / 360 degrees xf sym / S (2)
f s ym:シンボル周波数 (変調速度) [Hz] s :キヤリア同期補助信号挿入周期 [シンボル] fs ym: Symbol frequency (modulation speed) [Hz] s: Carrier synchronization auxiliary signal insertion cycle [symbol]
m:任意の整数 (± 1, ± 2, ± 3, ···)  m: Arbitrary integer (± 1, ± 2, ± 3, ...)
例えば、 シンボル周波数が 2 0 M b a u d、 周期が 2 0 7シンボルの場合、 図 2 1に示すように、 各周波数で疑似同期となりうる。  For example, when the symbol frequency is 20 Mbaud and the period is 207 symbols, pseudo-synchronization can be performed at each frequency as shown in FIG.
以下、 上述した疑似同期による誤動作を回避する本発明の第 2の実施形態に係 る復調装置について説明する。  Hereinafter, a demodulation device according to the second embodiment of the present invention that avoids the above-described malfunction due to pseudo synchronization will be described.
図 2 2は、 請求項 1 0 , 3 7 , 4 1に対応する、 本発明の第 2の実施形態に係 る復調装置の構成を示すブロック図である。 図 2 2において、 第 2の実施形態に 係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2と、 帯域制限フィル夕 3 3と、 位相補正部 3 4 Aと、 フレーム同期検出部 3 5と、 タイミング生成部 3 6 と、 周波数引き込み検出部 4 2と、 第 1の誤り訂正部 3 7と、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1と を備える。  FIG. 22 is a block diagram showing a configuration of the demodulation device according to the second embodiment of the present invention, which corresponds to claims 10, 37, and 41. In FIG. 22, the demodulation device according to the second embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34 A, a frame synchronization detection unit 35, a timing generation section 36, a frequency pull-in detection section 42, a first error correction section 37, a second error correction section 38, a video decoder 39, and a TMCC decoder 40. , BER measuring unit 41.
図 2 3は、 第 2の実施形態に係る復調装置が行う動作を示すフローチヤ一トで ある。  FIG. 23 is a flowchart showing the operation performed by the demodulation device according to the second embodiment.
図 2 2に示すように、 第 2の実施形態に係る復調装置は、 上記第 1の実施形態 に係る復調装置に、 周波数補正部 3 2における周波数引き込み状態を検出する周 波数引き込み検出部 4 2をさらに加え、 位相補正部 3 4を位相補正部 3 4 Aに代 えた構成である。  As shown in FIG. 22, the demodulation device according to the second embodiment is different from the demodulation device according to the first embodiment in that a frequency pull-in detection unit 42 that detects a frequency pull-in state in the frequency correction unit 32 In this configuration, the phase correction unit 34 is replaced with the phase correction unit 34A.
なお、 第 2の実施形態に係る復調装置のその他の構成は、 上記第 1の実施形態 に係る復調装置の構成と同様であり、 当該構成部分については同一の参照番号を 付してその説明を省略する。  The rest of the configuration of the demodulation device according to the second embodiment is the same as the configuration of the demodulation device according to the above-described first embodiment. Omitted.
また、 図 2 3において図 5と同一の処理を行うステップについては、 同一のス テツプ番号を付してその説明を省略する。  Steps in FIG. 23 that perform the same processing as in FIG. 5 are assigned the same step numbers, and descriptions thereof are omitted.
まず、 図 2 4を参照して、 周波数引き込み検出部 4 2の動作を説明する。 図 2 4は、 図 2 2の周波数引き込み検出部 4 2のさらに詳細な構成を示すプロ ック図である。 図 2 4において、 周波数引き込み検出部 4 2は、 遅延検波部 4 2 1 aと位相誤差検出部 4 2 1 bとで構成される周波数誤差検出部 4 2 1と、 切替 部 4 2 2と、 定数発生部 4 2 3と、 加算器 4 2 4 aと遅延部 4 2 4 bと切替部 4 2 4 cと定数発生部 4 2 4 dとで構成される積分部 4 2 4と、 夕イミング発生部 4 2 5と、 絶対値化部 4 2 7と、 周波数引き込み判定部 4 2 6とを備える。 First, the operation of the frequency pull-in detection unit 42 will be described with reference to FIG. FIG. 24 is a diagram showing a more detailed configuration of the frequency pull-in detector 42 of FIG. FIG. In FIG. 24, the frequency pull-in detection unit 42 includes a frequency error detection unit 4 21 composed of a delay detection unit 4 21 a and a phase error detection unit 4 21 b, a switching unit 4 22, Integrator 4 2 4 consisting of constant generator 4 2 3, adder 4 2 4 a, delay 4 2 4 b, switch 4 2 4 c, constant generator 4 2 4 d, and evening It comprises a generator 425, an absolute value generator 427, and a frequency pull-in determiner 426.
帯域制限フィルタ 3 3が出力する信号は、 遅延検波部 4 2 1 aに入力される。 遅延検波部 4 2 1 aは、 他の遅延検波部と同様、 現在の n相 P S K変調信号と、 その 1シンボル前の n相 P S K変調信号の複素共役信号との複素乗算を行い、 遅 延検波出力を算出する。 この遅延検波出力の算出式は、 上記式 ( 1 ) に示したと おりである。  The signal output from the band-limiting filter 33 is input to the delay detection unit 421a. The delay detection unit 4 2 1a performs complex multiplication of the current n-phase PSK modulation signal and the complex conjugate signal of the n-phase PSK modulation signal one symbol before, as in the other delay detection units, and performs delay detection. Calculate the output. The equation for calculating the delay detection output is as shown in the above equation (1).
そして、 位相誤差検出部 4 2 1 bは、 上述したように、 周波数ずれが無い場合 のき印を受信側の基準として、 周波数ずれのある場合の X印との位相差を周波数 誤差として検出する (図 1 4を参照) 。  Then, as described above, the phase error detection unit 4221b detects the phase difference from the X mark when there is a frequency shift as a frequency error with the mark when there is no frequency shift as a reference on the receiving side. (See Figure 14).
この位相誤差検出部 4 2 1 bで検出した周波数誤差は、 切替部 4 2 2を介して 加算器 4 2 4 aに入力され、 ある一定期間毎に周波数誤差の平均化がなされる。 ここで、 1通信フレーム内の B P S K変調がされているフレーム同期信号/ T M C C信号の期間およびキヤリア同期補助信号の期間における周波数補正部 3 2で の周波数引き込み検出を行うため、 タイミング生成部 3 6が出力するタイミング 信号 (図 6 ( c ) または (d ) ) を用いて切替部 4 2 2の切替えを行う。 この切 替部 4 2 2は、 タイミング信号の B P S K変調信号の期間 (図 6 ( c ) または ( d ) において H iレベル期間) に位相誤差検出部 4 2 1 bが出力する周波数誤差 を積分部 4 2 4に入力し、 それ以外の期間には、 定数発生部 4 2 3が発生する 「 定数 0」 を積分部 4 2 4に入力するように切替えを行う。 タイミング発生部 4 2 5は、 一定周期のタイミングパルスを発生し、 切替部 4 2 4 cを制御する。 積分 部 4 2 4は、 タイミング発生部 4 2 5が発生するタイミングパルスに従って、 力 Π 算器 4 2 4 aの入力を遅延部 4 2 4 bのフィードバック出力または定数発生部 4 24 dが発生する 「定数 0」 のいずれかに切替えることで、 一定期間毎の平均化 した周波数誤差を出力する。 積分部 424が出力する平均化周波数誤差は、 絶対 値化部 427において正の値に変換された後、 周波数引き込み判定部 426へ出 力される。 周波数引き込み判定部 426は、 絶対値化部 427が出力する正の値 の平均化周波数誤差を入力し、 タイミング発生部 425がタイミングパルスを発 生したとき、 当該平均化周波数誤差が予め定めたしきい値を下回るか否かによつ て周波数引き込みを判定する (ステップ S 20 1) 。 The frequency error detected by the phase error detection section 421b is input to the adder 424a via the switching section 422, and the frequency error is averaged every predetermined period. Here, in order to perform frequency pull-in detection by the frequency correction unit 32 during the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in which BPSK modulation is performed in one communication frame, the timing generation unit 36 The switching section 422 is switched using the output timing signal (FIG. 6 (c) or (d)). The switching section 422 integrates the frequency error output from the phase error detection section 421 b during the period of the BPSK modulation signal of the timing signal (the Hi level period in FIG. 6C or 6D). Input to 4 2 4, and in other periods, switch so that “constant 0” generated by constant generating section 4 2 3 is input to integrating section 4 2 4. The timing generation section 425 generates a timing pulse having a constant period, and controls the switching section 424c. The integrator 4 2 4 connects the input of the power calculator 4 2 a to the feedback output of the delay 4 2 4 b or the constant generator 4 in accordance with the timing pulse generated by the timing generator 4 2 5. By switching to one of the “constants 0” that generates 24d, an averaged frequency error for each fixed period is output. The averaged frequency error output from the integration unit 424 is converted to a positive value by the absolute value conversion unit 427, and then output to the frequency pull-in determination unit 426. The frequency pull-in determination unit 426 inputs the positive value averaged frequency error output from the absolute value averaging unit 427, and when the timing generation unit 425 generates a timing pulse, the averaged frequency error is determined in advance. The frequency pull-in is determined based on whether it is below the threshold (step S201).
そして、 この判定の結果、 平均化周波数誤差が予め定めたしきい値を下回った 場合、 周波数引き込み判定部 426は、 周波数引き込みがされた、 すなわち周波 数補正部 32が位相補正部 34において疑似同期しない周波数まで周波数補正さ れたと判断し、 位相補正部 34を再動作させるように、 位相補正部 34をリセッ トする信号を出力する。  When the averaged frequency error falls below a predetermined threshold value as a result of this determination, the frequency pull-in determination unit 426 performs frequency pull-in, that is, the frequency correction unit 32 performs pseudo-synchronization in the phase correction unit 34. Judgment is made that the frequency has been corrected to a frequency that does not occur, and a signal for resetting the phase correction unit 34 is output so that the phase correction unit 34 is operated again.
ここで、 周波数引き込み判定部 426におけるしきい値については、 位相補正 部 34が疑似同期しない周波数まで周波数補正部 32が周波数補正できたかどう かを判定できるように予め設定すればよい。 なお、 疑似同期となる周波数は、 上 記式 (2) に示したとおりである。  Here, the threshold value in the frequency pull-in determination unit 426 may be set in advance so that the phase correction unit 34 can determine whether or not the frequency correction unit 32 has corrected the frequency up to a frequency at which the pseudo-sync is not performed. The frequency of the pseudo-synchronization is as shown in the above equation (2).
例えば、 シンボル周波数が 2 OMbaud, 周期が 207シンボルである場合 、 図 21に示すように疑似同期周波数があり、 また、 それぞれの擬似同期周波数 を中心に位相補正部 34の引き込み周波数範囲が存在するため、 周波数引き込み 判定部 426におけるしきい値としては、 下記式 (3) で表す周波数 Δί1以下に 設定することが望ましい。 For example, if the symbol frequency is 2 OMbaud and the period is 207 symbols, there are pseudo-synchronous frequencies as shown in FIG. 21, and the pull-in frequency range of the phase correction unit 34 around each pseudo-synchronous frequency exists. as the threshold value in the frequency pull-in determining unit 426, it is desirable to set the following frequency Di 1 represented by the following formula (3).
△ f = 1/2 X 180度/ 360度 X f s ym/S ···· (3)  △ f = 1/2 X 180 ° / 360 ° X f s ym / S (3)
f s ym:シンボル周波数 (変調速度) [Hz]  fsym: Symbol frequency (modulation rate) [Hz]
S :キヤリア同期補助信号挿入周期 [シンボル]  S: Carrier synchronization auxiliary signal insertion cycle [symbol]
次に、 図 25を参照して、 位相補正部 34 Aの動作を説明する。  Next, the operation of the phase correction unit 34A will be described with reference to FIG.
図 25は、 位相補正部 34 Aのさらに詳細な構成の一例を示すプロック図であ る。 図 2 5に示すように、 位相補正部 3 4 Aは、 位相補正部 3 4の構成に、 位相 誤差保持部 3 4 2において切替部 3 4 2 hと定数発生部 3 4 2 iとをさらに加え た構成である。 FIG. 25 is a block diagram showing an example of a more detailed configuration of the phase correction unit 34A. You. As shown in FIG. 25, the phase correction unit 34 A further includes a switching unit 34 2 h and a constant generation unit 34 2 i in the phase error holding unit 34 2 in the configuration of the phase correction unit 34. This is an additional configuration.
なお、 図 2 5において、 図 1 8と同一の参照番号を付してある構成部分は、 同 一の動作を行う構成部分であるため、 その説明を省略する。  In FIG. 25, components denoted by the same reference numerals as in FIG. 18 are components that perform the same operations, and thus description thereof will be omitted.
周波数引き込み判定部 4 2 6が出力するリセット信号は、 位相誤差保持部 3 4 2の保持部 3 4 2 fおよび切替部 3 4 2 hに入力される。 保持部 3 4 2 は、 リ セット信号に基づいて、 直接系における位相誤差信号を初期化する。 切替部 3 4 2 hは、 リセット信号に基づいて、 加算器 3 4 2 cへのフィードバック信号を定 数発生部 3 4 2 iが出力する 「定数 0」 に切り替えることで、 積分系における位 相誤差信号を初期化する。  The reset signal output from the frequency pull-in determination unit 4 26 is input to the holding unit 3 42 f of the phase error holding unit 3 42 and the switching unit 3 42 h. The holding unit 342 initializes the phase error signal in the direct system based on the reset signal. The switching section 342 h switches the phase signal in the integration system by switching the feedback signal to the adder 342 c to “constant 0” output from the constant generation section 342 i based on the reset signal. Initialize the error signal.
これにより、 位相補正部 3 4 Aにおいて、 リセッ ト動作後に位相誤差保持部 3 4 2へ入力される位相誤差信号に対して、 すなわち、 疑似同期が発生しない周波 数にまで周波数補正がなされた周波数補正部 3 2の出力信号において、 新たに位 相補正が行われる (ステップ S 2 0 2 ) 。 その後、 定常の復調処理に移行する ( ステップ S 1 0 5 ) 。  As a result, in the phase correction unit 34 A, the frequency error corrected to the frequency at which the pseudo-synchronization does not occur for the phase error signal input to the phase error holding unit 342 after the reset operation. New phase correction is performed on the output signal of the correction unit 32 (step S202). After that, the processing shifts to the steady demodulation processing (step S105).
なお、 図 2 6に示すように、 数値制御発振部 3 4 3においても切替部 3 4 3 e と定数発生部 3 4 3 f とを設け、 上記切替部 3 4 2 hおよび定数発生部 3 4 2 i と同様の動作を並行して行ってもよい。 このように並行してリセット動作を行う ことで、 より確実に初期化を行うことができる。  As shown in FIG. 26, also in the numerically controlled oscillation section 343, a switching section 343e and a constant generation section 344f are provided, and the switching section 324h and the constant generation section 344 are provided. Operations similar to 2 i may be performed in parallel. Performing the reset operation in parallel in this manner enables more reliable initialization.
以上のように、 本発明の第 2の実施形態に係る復調装置は、 周波数引き込み検 出部 4 2を設け、 周波数補正部 3 2において位相補正部 3 4 Aが疑似同期しない 周波数まで周波数補正が行われてから、 位相補正部 3 4 Aをリセットして再動作 させる。  As described above, the demodulation device according to the second embodiment of the present invention includes the frequency pull-in detection unit 42, and the frequency correction unit 32 performs frequency correction up to a frequency at which the phase correction unit 34A is not pseudo-synchronized. After that, reset the phase corrector 34A and restart it.
これにより、 周波数補正部 3 2による周波数引き込み過程等において、 位相補 正部 3 4 Aにおける疑似同期の回避が可能になる。 なお、 第 2の実施形態に係る復調装置において、 周波数引き込み検出部 4 2は 、 遅延検波を用いているため、 周波数補正部 3 2以降であれば、 その設置位置と しては、 周波数補正部 3 2の出力、 帯域制限フィル夕 3 3の出力、 または位相補 正部 3 4 Aの出力であれば、 特に制限するものではない。 This makes it possible to avoid pseudo-synchronization in the complementary unit 34A during the frequency pull-in process by the frequency correction unit 32, and the like. In the demodulation device according to the second embodiment, since the frequency pull-in detection unit 42 uses delay detection, if the frequency correction unit 32 or later is used, the installation position is the frequency correction unit There is no particular limitation as long as it is the output of 32, the output of the band limiting filter 33, or the output of the complementary portion 34A.
また、 周波数引き込み検出部 4 2の周波数誤差検出部 4 2 1は、 周波数補正部 3 2の周波数誤差検出部 3 2 1と同様の機能を有しているので、 双方の周波数誤 差検出部を共用化することも可能である。 共用化した場合、 回路規模の削減を図 ることができる。  Further, the frequency error detection section 4 21 of the frequency pull-in detection section 4 2 has the same function as the frequency error detection section 3 2 1 of the frequency correction section 3 2. It is also possible to share. If shared, the circuit scale can be reduced.
(第 3の実施形態)  (Third embodiment)
本発明の第 3の実施形態に係る復調装置は、 上述した第 2の実施形態と同様、 上記第 1の実施形態に係る復調装置において、 位相補正部 3 4での疑似同期によ る誤動作を回避するものである。  The demodulation device according to the third embodiment of the present invention, like the second embodiment described above, has the same function as the second embodiment described above, except that the demodulation device according to the first embodiment malfunctions due to pseudo synchronization in the phase correction unit 34. Avoid it.
以下、 上述した疑似同期による誤動作を回避する本発明の第 3の実施形態に係 る復調装置について説明する。  Hereinafter, a demodulation device according to a third embodiment of the present invention that avoids the above-described malfunction due to pseudo synchronization will be described.
図 2 7は、 請求項 1 1 , 3 7 , 4 2に対応する、 本発明の第 3の実施形態に係 る復調装置の構成を示すブロック図である。 図 2 7において、 第 3の実施形態に 係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2と、 帯域制限フィル夕 3 3と、 位相補正部 3 4 Aと、 フレーム同期検出部 3 5と、 夕イミング生成部 3 6 と、 位相同期検出部 4 3と、 誤り訂正検出部 4 4と、 疑似同期判定部 4 5と、 第 1の誤り訂正部 3 7と、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1とを備える。  FIG. 27 is a block diagram showing the configuration of the demodulation device according to the third embodiment of the present invention, corresponding to claims 11, 37, and 42. In FIG. 27, the demodulation device according to the third embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34 A, a frame synchronization detection unit 35, evening timing generation section 36, phase synchronization detection section 43, error correction detection section 44, pseudo synchronization determination section 45, first error correction section 37, and second error It includes a correction unit 38, a video decoder 39, a TMCC decoder 40, and a BER measurement unit 41.
図 2 8は、 第 3の実施形態に係る復調装置が行う動作を示すフローチャートで ある。  FIG. 28 is a flowchart illustrating an operation performed by the demodulation device according to the third embodiment.
図 2 7に示すように、 第 3の実施形態に係る復調装置は、 上記第 1の実施形態 に係る復調装置に、 位相同期検出部 4 3と誤り訂正検出部 4 4と疑似同期判定部 4 5とをさらに加え、 位相補正部 3 4を位相補正部 3 4 Aに代えた構成である。 なお、 第 3の実施形態に係る復調装置のその他の構成は、 上記第 1および第 2 の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同一の 参照番号を付してその説明を省略する。 As shown in FIG. 27, the demodulation device according to the third embodiment is different from the demodulation device according to the first embodiment in that the phase synchronization detection unit 43, the error correction detection unit 44, and the pseudo synchronization determination unit 4 5 is further added, and the phase correction unit 34 is replaced with a phase correction unit 34A. The other configuration of the demodulation device according to the third embodiment is the same as the configuration of the demodulation device according to the first and second embodiments, and the components are denoted by the same reference numerals. The description is omitted.
また、 図 2 8において図 5と同一の処理を行うステップについては、 同一のス テップ番号を付してその説明を省略する。  Also, steps in FIG. 28 that perform the same processing as in FIG. 5 are assigned the same step numbers, and descriptions thereof are omitted.
まず、 位相同期検出部 4 3の動作を説明する。  First, the operation of the phase synchronization detector 43 will be described.
チューナ (図示せず) を介して入力される信号は、 上記第 1の実施形態で述べ たように周波数補正および位相補正がされた後 (ステップ S 3 0 1 ) 、 位相同期 検出部 4 3へ入力される。 位相同期検出部 4 3は、 入力される補正後の信号に対 して、 B P S K変調がされているキヤリア同期補助信号の期間のみの位相同期/ 位相非同期の検出を行う。  The signal input via the tuner (not shown) is subjected to frequency correction and phase correction as described in the first embodiment (step S301), and then sent to the phase synchronization detector 43. Is entered. The phase synchronization detecting section 43 detects the phase synchronization / phase asynchronism only for the period of the BPSK modulated carrier synchronization auxiliary signal with respect to the input corrected signal.
この位相同期検出部 4 3としては、 具体的な構成の実施例が 2つ考えられる。 以下、 これらの 2つの実施例を順に説明する。  As the phase synchronization detecting section 43, two embodiments having specific configurations can be considered. Hereinafter, these two embodiments will be described in order.
(位相同期検出部 4 3の実施例 1 )  (Embodiment 1 of phase synchronization detector 43)
図 2 9は、 位相同期検出部 4 3の実施例 1の構成を示すプロック図である。 図 FIG. 29 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the first embodiment. Figure
2 9において、 位相同期検出部 4 3は、 位相誤差検出部 4 3 1と、 絶対値化部 429, the phase synchronization detection unit 43 includes the phase error detection unit 431, and the absolute value generation unit 431.
3 2と、 切替部 4 3 3と、 定数発生部 4 3 4と、 加算器 4 3 5 aと遅延部 4 3 5 bと切替部 4 3 5 cと定数発生部 4 3 5 dとで構成される積分部 4 3 5と、 タイ ミング発生部 4 3 6と、 位相同期判定部 4 3 7とを備える。 3 2, switching section 4 3 3, constant generating section 4 3 4, adder 4 35 a, delay section 4 35 b, switching section 4 35 c, and constant generating section 4 35 d An integrating section 435, a timing generating section 436, and a phase synchronization judging section 347 are provided.
位相補正部 3 4 Aが出力する信号は、 位相誤差検出部 4 3 1に入力される。 位 相誤差検出部 4 3 1は、 上述したように、 位相ずれが無い場合の〇印を受信側の 基準として、 位相ずれのある場合の X印との位相差を位相誤差 Δ Φ [度] として 検出する (図 1 9を参照) 。 位相誤差検出部 4 3 1で検出した位相誤差 Δ Φは、 絶対値化部 4 3 2において正の値 I Δ Φ I に変換される。 そして、 絶対値化部 4 3 2が出力する位相誤差 I Δ Φ Iは、 切替部 4 3 3を介して加算器 4 3 5 aに入 力され、 ある一定期間毎に位相誤差 I Δ Φ Iの平均化がなされる。 ここで、 1通 信フレーム内の B P S K変調がされているキヤリァ同期補助信号の期間のみにお いて位相同期検出を行うため、 タイミング生成部 3 6が出力するタイミング信号 (図 6 ( d ) ) を用いて切替部 4 3 3の切替えを行う。 この切替部 4 3 3は、 夕 イミング信号の B P S K変調信号の期間 (図 6 ( d ) において H iレベル期間) に絶対値化部 4 3 2が出力する位相誤差 I Δ Φ I を積分部 4 3 5に入力し、 それ 以外の期間には、 定数発生部 4 3 4が発生する 「定数 0」 を積分部 4 3 5に入力 するように切替えを行う。 タイミング発生部 4 3 6は、 一定周期のタイミングパ ルスを発生し、 切替部 4 3 5 cを制御する。 積分部 4 3 5は、 タイミング発生部 4 3 6が発生するタイミングパルスに従って、 加算器 4 3 5 aの入力を遅延部 4 3 5 bのフィードバック出力または定数発生部 4 3 5 dが発生する 「定数 0」 の いずれかに切替えることで、 一定期間毎の平均化した位相誤差 I Δ Φ I を出力す る。 位相同期判定部 4 3 7は、 積分部 4 3 5が出力する平均化位相誤差を入力し 、 タイミング発生部 4 3 6がタイミングパルスを発生したとき、 当該平均化位相 誤差が予め定めたしきい値を下回るか否かによって位相同期を判定する (ステツ プ S 3 0 2 ) 。 そして、 この判定の結果、 平均化位相誤差が予め定めたしきい値 を下回った場合、 位相同期判定部 4 3 7は、 位相同期がとれたと判断し、 当該結 果を疑似同期判定部 4 5に対して出力する。 The signal output from the phase correction unit 34 A is input to the phase error detection unit 43 1. As described above, the phase error detection unit 431 uses the symbol 〇 when there is no phase shift as a reference on the receiving side, and uses the phase difference from the X mark when there is a phase shift as the phase error ΔΦ [degree]. (See Figure 19). The phase error ΔΦ detected by the phase error detecting section 431 is converted into a positive value IΔΦI by the absolute value converting section 432. Then, the phase error I ΔΦ I output from the absolute value conversion unit 4 32 is input to the adder 4 35 a via the switching unit 4 33, and the phase error I Δ Φ I Are averaged. Where 1 In order to perform phase synchronization detection only during the period of the carrier synchronization auxiliary signal subjected to BPSK modulation in the transmission frame, the switching unit 4 uses the timing signal (Fig. 6 (d)) output by the timing generation unit 36. 3 Perform switching of 3. The switching unit 433 converts the phase error IΔΦI output from the absolute value conversion unit 432 during the period of the BPSK modulated signal of the evening signal (Hi level period in FIG. 6D) into the integration unit 4. In the other period, switching is performed so that “constant 0” generated by the constant generator 4 3 4 is input to the integrator 4 3 5. The timing generator 436 generates a timing pulse having a constant period, and controls the switch 435 c. The integrator 435 generates the input of the adder 435 a from the feedback output of the delay 435 b or the constant generator 435 d according to the timing pulse generated by the timing generator 435. By switching to any one of the constants “0”, the averaged phase error I ΔΦ I for each fixed period is output. The phase synchronization determination section 437 inputs the averaged phase error output from the integration section 435, and when the timing generation section 436 generates a timing pulse, the averaged phase error is a predetermined threshold. The phase synchronization is determined based on whether the value is below the value (step S302). Then, as a result of this determination, if the averaged phase error falls below a predetermined threshold, the phase synchronization determination section 437 determines that phase synchronization has been achieved, and compares the result with the pseudo synchronization determination section 45. Output to
ここで、 位相同期判定部 4 3 7におけるしきい値については、 復調装置の使用 目的または特性等に応じて任意に設定することができるが、 例えば、 全く位相同 期がはずれているとき (疑似同期もしていないとき) は、 図 3 1 ( a ) に示すよ うに位相回転が残留し、 3 6 0度全体に渡ってシンボルが同じ確率で存在するこ とになるため、 絶対値化部 4 3 2において正の値 (第 1象限) 化を行った後、 そ の位相誤差の平均値となる 4 5度、 若しくはそれ以下に設定すればよい (図 3 1 ( b ) ) 。  Here, the threshold value in the phase synchronization determination section 437 can be set arbitrarily according to the purpose of use or characteristics of the demodulation device. For example, when the phase synchronization is completely out of sync (pseudo- When synchronization is not performed), the phase rotation remains as shown in Fig. 31 (a) and the symbols exist with the same probability over the entire 360 degrees. After conversion to a positive value (first quadrant) in 32, the phase error may be set to 45 degrees, which is the average value of the phase error, or lower (Fig. 31 (b)).
(位相同期検出部 4 3の実施例 2 )  (Embodiment 2 of the phase synchronization detector 43)
図 3 0は、 位相同期検出部 4 3の実施例 2の構成を示すプロック図である。 図 3 0において、 位相同期検出部 4 3は、 絶対値化部 4 3 2 A , 4 3 2 Bと、 比較 部 4 3 8と、 切替部 4 3 3と、 定数発生部 4 3 4と、 加算器 4 3 5 aと遅延部 4 3 5 bと切替部 4 3 5 cと定数発生部 4 3 5 dとで構成される積分部 4 3 5と、 夕イミング発生部 4 3 6と、 位相同期判定部 4 3 7とを備える。 FIG. 30 is a block diagram illustrating a configuration of the phase synchronization detection unit 43 according to the second embodiment. Figure In 30, the phase synchronization detecting section 43 adds the absolute value converting sections 4 32 A and 43 2 B, the comparing section 4 38, the switching section 4 33, and the constant generating section 4 3 4 to the addition. Integrator 4 3 5 consisting of the unit 4 3 5 a, delay 4 3 5 b, switching 4 3 5 c, constant generator 4 3 5 d, evening timing generator 4 3 6, and phase synchronization And a judgment unit 437.
位相補正部 3 4 Aが出力する信号は、 I (同相) 成分信号が絶対値化部 4 3 2 Aへ、 Q (直交) 成分信号が 4 3 2 Bへそれぞれ入力される。 絶対値化部 4 3 2 Aは、 入力した I成分信号を正の値 I I I に変換する。 絶対値化部 4 3 2 Bは、 入力した Q成分信号を正の値 I Q Iに変換する。 比較部 4 3 8は、 絶対値化部 4 3 2 Aが変換した値 I I I と絶対値化部 4 3 2 Bが変換した値 | Q | とを入力し 、 双方の値を比較して I I I > I Q Iの場合に比較値 「 1」 を、 I I I≤ i Q I の場合に比較値 「0」 を出力する。 比較部 4 3 8が出力する比較値は、 切替部 4 As for the signal output from the phase correction section 34 A, the I (in-phase) component signal is input to the absolute value conversion section 4 32 A, and the Q (quadrature) component signal is input to the 4 32 B. The absolute value conversion unit 432A converts the input I component signal into a positive value I I I. The absolute value conversion section 4 3 2 B converts the input Q component signal into a positive value I Q I. The comparison unit 438 inputs the value III converted by the absolute value conversion unit 432A and the value | Q | converted by the absolute value conversion unit 432B, and compares both values. Outputs comparison value “1” for IQI and comparison value “0” for III≤i QI. The comparison value output by the comparison section 4 3 8
3 3を介して加算器 4 3 5 aに入力され、 ある一定期間毎に平均化がなされる。 ここで、 1通信フレーム内の B P S K変調がされているキヤリア同期補助信号の 期間のみにおいて位相同期検出を行うため、 タイミング生成部 3 6が出力する夕 イミング信号 (図 6 ( d ) ) を用いて切替部 4 3 3の切替えを行う。 この切替部The signal is input to the adder 4 3 5 a via 3 3, and is averaged every certain period. Here, in order to perform phase synchronization detection only during the period of the carrier synchronization auxiliary signal in which BPSK modulation is performed in one communication frame, the evening timing signal (FIG. 6 (d)) output from the timing generation unit 36 is used. Switching unit 4 3 3 is switched. This switching unit
4 3 3は、 タイミング信号の B P S K変調信号の期間 (図 6 ( d ) において H i レベル期間) に比較部 4 3 8が出力する比較値を積分部 4 3 5に入力し、 それ以 外の期間には、 定数発生部 4 3 4が発生する 「定数 0」 を積分部 4 3 5に入力す るように切替えを行う。 タイミング発生部 4 3 6は、 一定周期のタイミングパル スを発生し、 切替部 4 3 5 cを制御する。 積分部 4 3 5は、 タイミング発生部 4 3 6が発生するタイミングパルスに従って、 加算器 4 3 5 aの入力を遅延部 4 3433 inputs the comparison value output by the comparison section 438 to the integration section 435 during the period of the BPSK modulation signal of the timing signal (the Hi level period in FIG. 6 (d)). During the period, switching is performed so that the “constant 0” generated by the constant generation section 434 is input to the integration section 435. The timing generator 436 generates a timing pulse having a constant period, and controls the switching unit 435c. The integrator 4 35 sends the input of the adder 4 35 a to the delay 4 3 5 according to the timing pulse generated by the timing generator 4 36.
5 bのフィードバック出力または定数発生部 4 3 5 dが発生する 「定数 0」 のい ずれかに切替えることで、 一定期間毎の平均化した比較値を出力する。 位相同期 判定部 4 3 7は、 積分部 4 3 5が出力する平均化比較値を入力し、 タイミング発 生部 4 3 6がタイミングパルスを発生したとき、 当該平均化比較値が予め定めた しきい値を下回るか否かによって位相同期を判定する (ステヅプ S 3 0 2 ) 。 そ して、 この判定の結果、 平均化比較値が予め定めたしきい値を下回った場合、 位 相同期判定部 4 3 7は、 位相同期がとれたと判断し、 当該結果を疑似同期判定部 4 5に対して出力する。 By switching to either “constant 0”, which is the feedback output of 5 b or the constant generator 4 3 5 d, an averaged comparison value for each fixed period is output. The phase synchronization determination section 437 inputs the averaged comparison value output from the integration section 435, and when the timing generation section 436 generates a timing pulse, the averaged comparison value is determined in advance. The phase synchronization is determined based on whether the value falls below the threshold value (step S302). So Then, as a result of this determination, if the averaged comparison value falls below a predetermined threshold, the phase synchronization determination section 437 determines that phase synchronization has been achieved, and compares the result with the pseudo synchronization determination section 4. Output for 5
ここで、 位相同期判定部 4 3 7におけるしきい値については、 復調装置の使用 目的または特性等に応じて任意に設定することができるが、 例えば、 全く位相同 期がはずれているとき (疑似同期もしていないとき) は、 図 3 1 ( a ) に示すよ うに位相回転が残留し、 3 6 0度全体に渡ってシンボルが同じ確率で存在するこ とになるため、 i I I > I Q Iの領域に入る確率が 1 / 2となるので、 積分部 4 3 5で行った積分回数の過半数、 若しくはそれ以下に設定すればよい (図 3 1 ( b ) ) 。  Here, the threshold value in the phase synchronization determination section 437 can be set arbitrarily according to the purpose of use or characteristics of the demodulation device. For example, when the phase synchronization is completely out of sync (pseudo- (When not synchronized), the phase rotation remains as shown in Fig. 31 (a), and the symbols exist with the same probability over the entire 360 degrees, so that iII> IQI Since the probability of entering the region is 1/2, it is sufficient to set it to a majority or less than the number of integrations performed by the integration unit 435 (Fig. 31 (b)).
次に、 誤り訂正検出部 4 4の動作について説明する。  Next, the operation of the error correction detection unit 44 will be described.
誤り訂正検出部 4 4は、 第 2の誤り訂正部 3 8が誤り訂正の過程で出力する誤 り訂正不可を表す信号および誤り残留を表す信号を入力する。 そして、 誤り訂正 検出部 4 4は、 T M C C信号に対して正しい誤り訂正が施されているか否かを検 出し (ステップ S 3 0 3 ) 、 この検出の結果を疑似同期判定部 4 5に対して出力 する。  The error correction detection unit 44 inputs a signal indicating that error correction cannot be performed and a signal indicating that the error remains, which are output by the second error correction unit 38 in the process of error correction. Then, the error correction detection unit 44 detects whether or not correct error correction has been performed on the TMCC signal (step S303), and sends the result of this detection to the pseudo synchronization determination unit 45. Output.
次に、 図 3 2を参照して、 疑似同期判定部 4 5の動作を説明する。  Next, with reference to FIG. 32, the operation of the pseudo-synchronization determination unit 45 will be described.
位相同期検出部 4 3の検出結果および誤り訂正検出部 4 4の検出結果は、 疑似 同期判定部 4 5に入力される。 疑似同期判定部 4 5は、 まず、 位相同期検出部 4 3の判定結果から位相同期がとれたか否かを判断する。 この判断で位相同期がと れている場合、 疑似同期判定部 4 5は、 次にこの位相同期が正常同期か疑似同期 かを誤り訂正部 4 4の判定結果から判断する。  The detection result of the phase synchronization detection unit 43 and the detection result of the error correction detection unit 44 are input to the pseudo synchronization determination unit 45. The pseudo-synchronization determination section 45 first determines whether or not phase synchronization has been achieved based on the determination result of the phase-lock detection section 43. If the phase synchronization is established in this determination, the pseudo-synchronization determination section 45 next determines whether the phase synchronization is normal synchronization or pseudo-synchronization from the determination result of the error correction section 44.
このように、 判断する理由は以下のようなものである。  The reasons for making such a judgment are as follows.
位相同期検出部 4 3では、 位相非同期については確実に判断できるが、 キヤリ ァ同期補助信号の期間のみで位相同期を判断しているため、 位相同期がとれてい てもその同期が正常同期なのか疑似同期なのかまでは判断できない。 例えば、 受 信信号がキヤリア同期補助信号の挿入間隔で位相が 1 8 0度回る周波数ずれを起 こしている場合、 キャリア同期補助信号の期間のみの位相同期判断では、 図 3 2The phase synchronization detector 43 can reliably determine the phase asynchronism.However, since the phase synchronization is determined only during the period of the carrier synchronization auxiliary signal, whether the synchronization is normal even if the phase synchronization is achieved. It cannot be determined whether it is pseudo-synchronous. For example, If the received signal has a frequency shift of 180 degrees in phase at the insertion interval of the carrier synchronization auxiliary signal, the phase synchronization judgment only during the period of the carrier synchronization auxiliary signal is as shown in FIG.
( a ) に示すように、 見かけ上同期がとれていると判断されてしまうのである ( すなわち、 疑似同期) 。 一方、 疑似同期の場合、 T M C C信号期間における位相 補正部 3 4 Aの出力信号は、 図 3 2 ( b ) に示すように、 大きく位相が回転して いるため (図中矢印) 、 第 2の誤り訂正部 3 8で訂正しきれないビヅ ト誤り (図 中網掛け部分) が含まれていることになる。 従って、 第 2の誤り訂正部 3 8が T M C C信号に対して正常に誤り訂正できたかどうかを検出することで、 疑似同期 であることが判断できるのである。 As shown in (a), it is determined that synchronization is apparent (ie, pseudo-synchronization). On the other hand, in the case of the pseudo-synchronization, the output signal of the phase corrector 34A during the TMCC signal period has a large phase rotation as shown in FIG. 32 (b) (arrow in the figure). Bit errors that cannot be corrected by the error correction unit 38 (shaded portions in the figure) are included. Therefore, pseudo-synchronization can be determined by detecting whether or not the second error correction unit 38 has been able to correct the error with respect to the TMC C signal normally.
このように、 疑似同期判定部 4 5は、 位相同期検出部 4 3の検出結果によって 位相の同期/非同期を判断し、 誤り訂正検出部 4 4の検出結果によって正常同期 /疑似同期を判断している。 この判断手法を下記表 1に示す。  As described above, the pseudo-synchronization determination unit 45 determines phase synchronization / asynchronization based on the detection result of the phase synchronization detection unit 43, and determines normal synchronization / pseudo-synchronization based on the detection result of the error correction detection unit 44. I have. This determination method is shown in Table 1 below.
【表 1】 【table 1】
Figure imgf000081_0001
そして、 疑似同期判定部 4 5は、 上記判定を行った結果、 正常同期であると判 断した場合はそのまま定常の復調処理に移行し (ステップ S 1 0 5 ) 、 疑似同期 であると判断した場合は位相補正部 3 4 Aに対して位相補正動作をリセットする 信号を出力する (ステップ S 3 0 4 ) 。 このリセット信号は、 例えば、 位相補正 部 3 4 Aを動作させるのに十分なパルス信号等、 任意に設定することができる。 この疑似同期判定部 4 5が出力するリセッ ト信号に基づいて、 位相補正部 3 4 Aが行うリセット動作は、 上記第 2の実施形態で述べたものと同様であり、 ここ での説明は省略するが、 リセット動作を指示する目的がそれぞれ異なる。 すなわ ち、 上記第 2の実施形態においては、 周波数補正が正常に行われた後に位相補正 動作を開始するための初期化動作としてのリセッ ト動作の指示であり、 本第 3の 実施形態においては、 最終結果として正常同期がされていない場合に再度位相補 正をやり直させるためのリセット動作の指示である。
Figure imgf000081_0001
Then, as a result of performing the above-described determination, if the pseudo-synchronization determination unit 45 determines that the synchronization is normal, the pseudo-synchronization determination unit 45 proceeds to the steady demodulation processing as it is (step S105) and determines that the synchronization is pseudo-synchronization. In this case, a signal for resetting the phase correction operation is output to the phase correction section 34A (step S304). This reset signal can be arbitrarily set, for example, a pulse signal sufficient to operate the phase correction unit 34A. Based on the reset signal output from the pseudo-synchronization determination section 45, the phase correction section 34 The reset operation performed by A is the same as that described in the second embodiment, and the description here is omitted, but the purpose of instructing the reset operation is different from each other. That is, in the second embodiment, the reset operation is performed as an initialization operation for starting the phase correction operation after the frequency correction is normally performed, and the reset operation is performed in the third embodiment. Is an instruction for a reset operation to re-perform the complementation when the normal synchronization is not performed as a final result.
以上のように、 本発明の第 3の実施形態に係る復調装置は、 キャリア同期補助 信号の期間における位相同期の検出と、 T M C C信号の誤り訂正の可否の検出と を行い、 当該検出結果から正常同期であるか否かを判断する。 そして、 疑似同期 の場合には、 位相補正部 3 4 Aをリセットして再動作させる。  As described above, the demodulation device according to the third embodiment of the present invention detects the phase synchronization during the period of the carrier synchronization auxiliary signal, and detects whether the TMCC signal is error-correctable. It is determined whether or not it is synchronous. Then, in the case of the pseudo synchronization, the phase correction unit 34A is reset and restarted.
これにより、 周波数補正部 3 2による周波数引き込み過程等において、 位相補 正部 3 4 Aにおける疑似同期の回避が可能になる。  This makes it possible to avoid pseudo-synchronization in the complementary unit 34A during the frequency pull-in process by the frequency correction unit 32, and the like.
なお、 位相同期検出部 4 3において、 上記実施例 1を用いた場合、 その中に含 まれる位相誤差検出部 4 3 1は位相補正部 3 4 Aに含まれる位相誤差検出部 3 4 1と同様の機能を有しているので、 双方の位相誤差検出部を共用化することが可 能である。 共用化した場合は、 回路規模の削減を図ることができる。  When the first embodiment is used in the phase synchronization detecting section 43, the phase error detecting section 431 included therein is different from the phase error detecting section 341 included in the phase correcting section 34A. Since they have similar functions, it is possible to share both phase error detectors. If shared, the circuit scale can be reduced.
(第 4の実施形態)  (Fourth embodiment)
本発明の第 4の実施形態に係る復調装置は、 上述した第 2および第 3の実施形 態と同様、 上記第 1の実施形態に係る復調装置において、 位相補正部 3 4での疑 似同期による誤動作を回避するものである。  The demodulation device according to the fourth embodiment of the present invention is the same as the second and third embodiments described above, except that in the demodulation device according to the first embodiment, the pseudo synchronization in the phase correction unit 34 is used. This avoids a malfunction caused by the above.
以下、 上述した疑似同期による誤動作を回避する本発明の第 4の実施形態に係 る復調装置について説明する。  Hereinafter, a demodulation device according to a fourth embodiment of the present invention which avoids the above-described malfunction due to pseudo synchronization will be described.
図 3 3は、 請求項 1 2 , 3 7, 4 3に対応する、 本発明の第 4の実施形態に係 る復調装置の構成を示すブロック図である。 図 3 3において、 第 4の実施形態に 係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2と、 帯域制限フィル夕 3 3と、 位相補正部 3 4 Aと、 フレーム同期検出部 3 5と、 タイミング生成部 3 6 と、 第 1の位相同期検出部 43 Aと、 第 2の位相同期検出部 43 Bと、 疑似同期 判定部 45と、 第 1の誤り訂正部 37と、 第 2の誤り訂正部 38と、 ビデオデコ ーダ 39と、 TMCCデコーダ 40と、 BER測定部 41とを備える。 FIG. 33 is a block diagram showing a configuration of a demodulation device according to a fourth embodiment of the present invention, corresponding to claims 12, 37, and 43. In FIG. 33, the demodulation device according to the fourth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34 A, a frame synchronization detection unit 3 5 and timing generator 3 6 A first phase synchronization detection unit 43A, a second phase synchronization detection unit 43B, a pseudo synchronization determination unit 45, a first error correction unit 37, a second error correction unit 38, and a video decoding unit. BER 39, a TMCC decoder 40, and a BER measurement unit 41.
図 33に示すように、 第 4の実施形態に係る復調装置は、 上記第 1の実施形態 に係る復調装置に、 第 1の位相同期検出部 43 Aと第 2の位相同期検出部 43 B と疑似同期判定部 45とをさらに加え、 位相補正部 34を位相補正部 34 Aに代 えた構成であり、 また、 上記第 3の実施形態に係る復調装置に対して、 位相同期 検出部 43を第 1の位相同期検出部 43Aに、 誤り訂正検出部 44を第 2の位相 同期検出部 43 Bに代えた構成となる。  As shown in FIG. 33, the demodulation device according to the fourth embodiment is different from the demodulation device according to the first embodiment in that a first phase synchronization detection unit 43A and a second phase synchronization detection unit 43B are provided. This is a configuration in which a pseudo-synchronization determination unit 45 is further added, and the phase correction unit 34 is replaced with a phase correction unit 34A. Also, in the demodulation device according to the third embodiment, the phase synchronization detection unit 43 is The configuration is such that the error correction detection unit 44 is replaced by the second phase synchronization detection unit 43B in the first phase synchronization detection unit 43A.
なお、 第 4の実施形態に係る復調装置のその他の構成は、 上記第 1〜第 3の実 施形態に係る復調装置の構成と同様であり、 当該構成部分については同一の参照 番号を付してその説明を省略する。  The rest of the configuration of the demodulator according to the fourth embodiment is the same as the configuration of the demodulator according to the first to third embodiments, and the same reference numerals are given to the components. The description is omitted.
また、 第 4の実施形態に係る復調装置が行う処理ステップは、 上記第 3の実施 形態において図 28で示した処理ステップと同様であるため、 その説明を省略す る。  In addition, the processing steps performed by the demodulation device according to the fourth embodiment are the same as the processing steps shown in FIG. 28 in the third embodiment, and thus description thereof will be omitted.
以下、 第 4の実施形態に係る復調装置が上記第 3の実施形態に係る復調装置と 異なる動作を行う部分について説明する。  Hereinafter, a portion in which the demodulation device according to the fourth embodiment performs an operation different from that of the demodulation device according to the third embodiment will be described.
まず、 タイミング生成部 36は、 フレーム同期検出部 35で検出されたフレー ム先頭信号に基づいて、 フレーム同期信号/ TMC C信号の期間およびキヤリア 同期補助信号の期間のタイミング信号 (図 6 (c) を参照) 、 およびキャリア同 期補助信号の期間のみのタイミング信号 (図 6 (d) を参照) を生成する他に、 フレーム同期信号/ TMCC信号の期間のみのタイミング信号 (図 34) を生成 する。 このフレーム同期信号/ TMCC信号の期間のみのタイミング信号は、 第 2の位相同期検出部 43 Bへ出力される。  First, based on the frame start signal detected by the frame synchronization detector 35, the timing generator 36 generates a timing signal for the period of the frame synchronization signal / TMC signal and the period of the carrier synchronization auxiliary signal (FIG. 6 (c) ) And a timing signal only during the period of the carrier synchronization auxiliary signal (see Fig. 6 (d)), and a timing signal only during the period of the frame synchronization signal / TMCC signal (Fig. 34). . The timing signal only during the period of the frame synchronization signal / TMCC signal is output to the second phase synchronization detection unit 43B.
第 1の位相同期検出部 43 Aおよび第 2の位相同期検出部 43Bは、 上記第 3 の実施形態で述べた構成 (図 29または図 30) と同様である。 第 1の位相同期 検出部 4 3 Aにおいては、 切替部 4 3 3の制御にキヤリア同期補助信号の期間の みのタイミング信号が用いられ、 周波数補正および位相補正後の信号に対し当該 期間における位相の同期/非同期の検出が行われる (図 2 8 , ステップ S 3 0 2 ) 。 第 2の位相同期検出部 4 3 Bにおいては、 切替部 4 3 3の制御にフレーム同 期信号/ T M C C信号の期間のみのタイミング信号が用いられ、 周波数補正およ び位相補正後の信号に対し当該期間における位相の同期/非同期の検出が行われ る (図 2 8 , ステップ S 3 0 3 ) 。 The first phase synchronization detecting section 43A and the second phase synchronization detecting section 43B have the same configuration as that described in the third embodiment (FIG. 29 or 30). First phase synchronization In the detection unit 43A, a timing signal only during the period of the carrier synchronization auxiliary signal is used to control the switching unit 433, and the synchronization / asynchronization of the phase during the period is performed on the signal after the frequency correction and the phase correction. Detection is performed (FIG. 28, step S302). In the second phase synchronization detection section 43B, a timing signal only during the period of the frame synchronization signal / TMCC signal is used to control the switching section 433, and the signal after frequency correction and phase correction is used. Detection of phase synchronization / asynchronization in the period is performed (FIG. 28, step S303).
そして、 第 1の位相同期検出部 4 3 Aおよび第 2の位相同期検出部 4 3 Bは、 位相同期がとれたか否かの検出結果を疑似同期判定部 4 5へそれぞれ出力する。 疑似同期判定部 4 5は、 第 1の位相同期検出部 4 3 Aおよび第 2の位相同期検 出部 4 3 Bの検出結果に基づいて、 下記表 2に示す判断を行い、 正常同期である と判断した場合はそのまま定常の復調処理に移行し (図 2 8 , ステップ S 1 0 5 ) 、 疑似同期であると判断した場合は位相補正部 3 4 Aに対して位相補正動作を リセットする信号を出力する (図 2 8 , ステップ S 3 0 4 ) 。  Then, the first phase synchronization detecting section 43A and the second phase synchronization detecting section 43B output a detection result indicating whether or not phase synchronization has been achieved to the pseudo synchronization determining section 45, respectively. The pseudo-synchronization determination unit 45 makes a determination shown in Table 2 below based on the detection results of the first phase-lock detection unit 43A and the second phase-lock detection unit 43B, and it is normal synchronization. If it is determined that the phase is correct, the process proceeds to the normal demodulation process (FIG. 28, step S105). Is output (FIG. 28, step S304).
【表 2】 [Table 2]
Figure imgf000084_0001
Figure imgf000084_0001
なお、 上記判断の理由は、 上述した第 2の誤り訂正部 3 8における場合と同様 の理由であって、 すなわち、 第 1の位相同期検出部 4 3 Aでは、 キャリア同期補 助信号の期間で位相同期を検出しているため、 疑似同期時でも図 3 5 ( a ) に示 すように見かけ上同期がとれているが、 一方、 第 2の位相同期検出部 4 3 Bでは 、 フレーム同期信号/ T M C C信号の期間で位相同期を検出しているので、 疑似 同期時では図 3 5 ( b ) に示すように大きく位相が回転し (図中矢印) 、 位相同 期が取れていないと判断できるからである。 従って、 この位相非同期を検出する ことで、 疑似同期であることが判断できるのである。 The reason for the above determination is the same as that in the above-described second error correction section 38, that is, in the first phase synchronization detection section 43A, the period of the carrier synchronization auxiliary signal is Since phase synchronization is detected, apparent synchronization is achieved as shown in Fig. 35 (a) even during pseudo synchronization, while the second phase synchronization detector 43B has Since the phase synchronization is detected during the period of the frame synchronization signal / TMCC signal, the phase is largely rotated during pseudo-synchronization as shown in Fig. 35 (b) (arrow in the figure), and the phase homology is established. It is because it can be judged that there is not. Therefore, by detecting this phase asynchronism, it is possible to determine that it is pseudo-synchronous.
以上のように、 本発明の第 4の実施形態に係る復調装置は、 キャリア同期補助 信号の期間における位相同期の検出と、 フレーム同期信号/ T M C C信号の期間 における位相同期の検出とを行い、 当該検出結果から正常同期であるか否かを判 断する。 そして、 疑似同期の場合には、 位相補正部 3 4 Aをリセットして再動作 させる。  As described above, the demodulation device according to the fourth embodiment of the present invention performs detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of phase synchronization during the period of the frame synchronization signal / TMCC signal. Judge from the detection result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the phase correction unit 34A is reset and restarted.
これにより、 周波数補正部 3 2による周波数引き込み過程等において、 位相補 正部 3 4 Aにおける疑似同期の回避が可能になる。  This makes it possible to avoid pseudo-synchronization in the complementary unit 34A during the frequency pull-in process by the frequency correction unit 32, and the like.
なお、 第 1の位相同期検出部 4 3 Aおよび第 2の位相同期検出部 4 3 Bにおい て、 上記実施例 1を用いた場合、 その中に含まれる位相誤差検出部 4 3 1は位相 補正部 3 4 Aに含まれる位相誤差検出部 3 4 1と同様の機能を有しているので、 双方の位相誤差検出部を共用化することが可能である。 共用化した場合は、 回路 規模の削減を図ることができる。  In the case where the first embodiment is used in the first phase synchronization detecting section 43A and the second phase synchronization detecting section 43B, the phase error detecting section 431, included in the first and second phase synchronization detecting sections 43A and 43B, performs phase correction. Since it has the same function as the phase error detection section 341 included in the section 34A, both phase error detection sections can be shared. If shared, the circuit scale can be reduced.
(第 5の実施形態)  (Fifth embodiment)
本発明の第 5の実施形態に係る復調装置は、 上述した第 2〜第 4の実施形態と 同様、 上記第 1の実施形態に係る復調装置において、 位相補正部 3 4での疑似同 期による誤動作を回避するものである。 ただし、 上記第 2〜第 4の実施形態に係 る復調装置が位相補正部を制御しているのに対し、 第 5の実施形態に係る復調装 置は、 疑似同期している周波数がわかっている (上述したように、 シンボル周波 数とキヤリア同期補助信号の挿入周期とによって一義的に決定される) ことを利 用して周波数補正部を制御する。  The demodulation device according to the fifth embodiment of the present invention is similar to the second to fourth embodiments described above, except that the demodulation device according to the first embodiment employs a pseudo-synchronization in the phase correction unit 34. This is to avoid malfunction. However, while the demodulation devices according to the second to fourth embodiments control the phase correction unit, the demodulation device according to the fifth embodiment can detect the pseudo-synchronous frequency. (As described above, which is uniquely determined by the symbol frequency and the insertion period of the carrier synchronization auxiliary signal), and controls the frequency correction unit.
以下、 上述した疑似同期による誤動作を回避する本発明の第 5の実施形態に係 る復調装置について説明する。 図 3 6は、 請求項 1 3, 3 7, 3 9 , 4 4 , 6 5に対応する、 本発明の第 5の 実施形態に係る復調装置の構成を示すブロック図である。 図 3 6において、 第 5 の実施形態に係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2 Aと、 帯域 制限フィル夕 3 3と、 位相補正部 3 4と、 フレーム同期検出部 3 5と、 タイミン グ生成部 3 6と、 位相同期検出部 4 3と、 誤り訂正検出部 4 4と、 疑似同期判定 部 4 5と、 周波数ステップ部 4 6と、 第 1の誤り訂正部 3 7と、 第 2の誤り訂正 部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1 とを備える。 Hereinafter, a demodulation device according to a fifth embodiment of the present invention that avoids the malfunction due to the pseudo synchronization described above will be described. FIG. 36 is a block diagram showing a configuration of a demodulation device according to a fifth embodiment of the present invention, corresponding to claims 13, 37, 39, 44, and 65. In FIG. 36, the demodulator according to the fifth embodiment includes a quadrature detection unit 31, a frequency correction unit 32 A, a band limiting filter 33, a phase correction unit 34, and a frame synchronization detection unit. 35, a timing generation unit 36, a phase synchronization detection unit 43, an error correction detection unit 44, a pseudo synchronization determination unit 45, a frequency step unit 46, and a first error correction unit 3 7, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
図 3 7は、 第 5の実施形態に係る復調装置が行う動作を示すフローチヤ一トで ある。  FIG. 37 is a flowchart showing the operation performed by the demodulation device according to the fifth embodiment.
図 3 6に示すように、 第 5の実施形態に係る復調装置は、 上記第 1の実施形態 に係る復調装置に、 位相同期検出部 4 3と誤り訂正検出部 4 4と疑似同期判定部 4 5と周波数ステップ部 4 6とをさらに加え、 周波数補正部 3 2を周波数補正部 3 2 Aに代えた構成であり、 また、 上記第 3の実施形態に係る復調装置に対して 、 周波数補正部 3 2を周波数補正部 3 2 Aに代え、 位相補正部 3 4 Aを位相補正 部 3 4に戻し、 さらに周波数ステップ部 4 6を加えた構成となる。  As shown in FIG. 36, the demodulation device according to the fifth embodiment is different from the demodulation device according to the first embodiment in that the phase synchronization detection unit 43, the error correction detection unit 44, and the pseudo synchronization determination unit 4 5 and a frequency step unit 46 are further added, and the frequency correction unit 32 is replaced with a frequency correction unit 32 A. Further, the frequency correction unit 32 is different from the demodulation device according to the third embodiment. The configuration is such that 32 is replaced with a frequency correction section 32 A, the phase correction section 34 A is returned to the phase correction section 34, and a frequency step section 46 is further added.
なお、 第 5の実施形態に係る復調装置のその他の構成は、 上記第 1および第 3 の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同一の 参照番号を付してその説明を省略する。  The rest of the configuration of the demodulation device according to the fifth embodiment is the same as the configuration of the demodulation device according to the first and third embodiments, and the components are denoted by the same reference numerals. The description is omitted.
また、 図 3 7において、 図 5および図 2 8と同一の処理を行うステップについ ては、 同一のステップ番号を付してその説明を省略する。  Also, in FIG. 37, steps for performing the same processing as in FIGS. 5 and 28 are denoted by the same step numbers, and description thereof will be omitted.
以下、 第 5の実施形態に係る復調装置が上記第 3の実施形態に係る復調装置と 異なる動作を行う部分について説明する。  Hereinafter, a portion in which the demodulation device according to the fifth embodiment performs an operation different from that of the demodulation device according to the third embodiment will be described.
まず、 疑似同期判定部 4 5の動作を説明する。  First, the operation of the pseudo synchronization determination section 45 will be described.
上述したように、 疑似同期判定部 4 5は、 位相同期検出部 4 3の検出結果と誤 り訂正検出部 4 4の検出結果とに基づいて、 位相同期が正常同期か疑似同期かを 判断する。 そして、 疑似同期判定部 4 5は、 上記判定を行った結果、 正常同期で あると判断した場合はそのまま定常の復調処理に移行し (ステップ S 1 0 5 ) 、 疑似同期であると判断した場合は周波数ステツプ部 4 6に対してステツプ動作を 行わせる信号 (信号形態としては、 上述したリセット信号と同様である) を出力 する (ステップ S 4 0 1 ) 。 As described above, the pseudo synchronization determination unit 45 determines whether the phase synchronization is normal synchronization or pseudo synchronization based on the detection result of the phase synchronization detection unit 43 and the detection result of the error correction detection unit 44. to decide. Then, as a result of performing the above-described determination, the pseudo-synchronization determination unit 45 directly proceeds to the normal demodulation processing when it is determined that the synchronization is normal (step S105), and when the pseudo-synchronization is determined. Outputs a signal that causes the frequency step section 46 to perform a step operation (the signal form is the same as the above-described reset signal) (step S401).
ここで、 疑似同期判定部 4 5において、 ステップ動作を行わせる信号を生成す る手法を図 3 8を用いて説明する。 図 3 8は、 疑似同期判定部 4 5の構成の一例 を示すブロック図である。 図 3 8において、 疑似同期判定部 4 5は、 論理和 (0 R ) 回路 4 5 1と、 カウン夕 4 5 2と、 パルス出力部 4 5 3とを備える。  Here, a method of generating a signal for performing a step operation in the pseudo synchronization determination section 45 will be described with reference to FIG. FIG. 38 is a block diagram illustrating an example of the configuration of the pseudo-synchronization determination section 45. In FIG. 38, the pseudo-synchronization determination unit 45 includes a logical sum (0 R) circuit 451, a counter 452, and a pulse output unit 453.
疑似同期判定部 4 5は、 位相同期検出部 4 3の検出結果をカウン夕 4 5 2の入 力端子に、 誤り訂正検出部 4 4の検出結果を O R回路 4 5 1の一方の端子に入力 する。 カウン夕 4 5 2は、 位相同期検出部 4 3の検出結果が H iである期間を計 数し、 O R回路 4 5 1の出力が H iとなれば計数したカウント値をクリアする。 パルス出力部 4 5 3は、 カウン夕 4 5 2が出力するカウント値が予め定めた値に 達したか否かを判断し、 達した場合にステツプ動作の指示となるパルス信号を出 力する。 また、 このパルス信号は、 〇R回路 4 5 1の他方の端子にフィードバッ ク入力され、 パルス信号の出力と同時にカウン夕 4 5 2のカウント値をクリァす る。 これにより、 正常同期である (すなわち、 位相同期が検出されてカウン夕 4 5 2が計数を開始するが、 カウント値が予め定めた値に達するまでに誤り訂正が 完了したことを検出した) 場合は、 パルス信号は出力されず、 位相同期している が疑似同期である (すなわち、 位相同期が検出されてカウン夕 4 5 2が計数を閧 始するが、 誤り訂正が完了せずカウント値が予め定めた値に達した) 場合は、 パ ルス信号が出力される。  The pseudo synchronization determination unit 45 inputs the detection result of the phase synchronization detection unit 43 to the input terminal of the counter 45, and inputs the detection result of the error correction detection unit 44 to one terminal of the OR circuit 45 1. I do. The counter 452 counts the period during which the detection result of the phase synchronization detector 43 is Hi, and clears the counted value when the output of the OR circuit 451 becomes Hi. The pulse output section 453 determines whether or not the count value output from the counter 452 has reached a predetermined value, and outputs a pulse signal indicating a step operation when the count value has reached a predetermined value. The pulse signal is fed back to the other terminal of the R circuit 451, and the count value of the counter 452 is cleared simultaneously with the output of the pulse signal. As a result, when normal synchronization is detected (that is, when phase synchronization is detected, the counter 452 starts counting, but it is detected that error correction has been completed before the count value reaches a predetermined value). In this case, no pulse signal is output, and the phase is synchronized but pseudo-synchronous (that is, the phase synchronization is detected and the counter 452 starts counting, but the error correction is not completed and the count value is increased). If the value reaches a predetermined value), a pulse signal is output.
次に、 図 3 9〜図 4 1を用いて、 周波数ステップ部 4 6の動作を説明する。 図 3 9は、 周波数ステップ部 4 6の構成の一例を示すブロック図である。 図 4 0は 、 周波数ステップ部 4 6で生成される各信号波形を示す図である。 図 4 1は、 周 波数ステップ部 46の動作原理を示す図である。 Next, the operation of the frequency step unit 46 will be described with reference to FIGS. FIG. 39 is a block diagram showing an example of the configuration of the frequency step section 46. As shown in FIG. FIG. 40 is a diagram showing signal waveforms generated by the frequency step unit 46. Figure 41 shows the FIG. 7 is a diagram showing the operation principle of a wave number step unit 46.
図 39において、 周波数ステップ部 46は、 排他的論理和 (X〇R) 回路 46 1 aと遅延部 46 lbと論理積 (AND) 回路 461 cとで構成される制御信号 生成部 461と、 第 1の定数発生部 462と、 第 2の定数発生部 463と、 切替 部 464と、 積分部 465と、 負符号化部 466と、 切替部 467とを備える。 疑似同期判定部 45が出力するパルス信号 (図 40 (a) ) は、 XOR回路 4 61 aと AND回路 461 cにそれぞれ入力される。 X OR回路 461 aは、 こ のパルス信号と遅延部 461 bを介してフィードバック入力される信号との排他 的論理和をとり、 制御信号 B (図 40 (c) ) を生成して出力する。 AND回路 461 cは、 パルス信号と制御信号 Bとの論理積をとり、 制御信号 A (図 40 ( b) ) を生成して出力する。 切替部 464は、 制御信号 Aが H iレベルのときに 第 1の定数発生部 462が発生する定数 Fg (数値制御発振部 323の発振周波 数が疑似同期周波数間隔 (f g) だけ変化する数値) を、 制御信号 Aが Loレべ ルのときに第 2の定数発生部 463が発生する 「定数 0」 を、 積分部 465へ出 力するように切替える。 積分部 465は、 入力する数値の累積加算を行い出力す る。 切替部 467は、 制御信号 Bが H iレベルのときに積分部 465が出力する 信号をそのまま、 制御信号 Bが L 0レベルのときに積分部 465が出力する信号 を負符号化部 466により負の値に変換して、 出力するように切替える。  In FIG. 39, the frequency step unit 46 includes a control signal generation unit 461 composed of an exclusive OR (X〇R) circuit 46 1 a, a delay unit 46 lb, and a logical product (AND) circuit 461 c. It includes a constant generation unit 462, a second constant generation unit 463, a switching unit 464, an integration unit 465, a negative encoding unit 466, and a switching unit 467. The pulse signal (FIG. 40 (a)) output from the pseudo-synchronization determination unit 45 is input to the XOR circuit 461a and the AND circuit 461c, respectively. The XOR circuit 461a performs an exclusive OR operation on the pulse signal and a signal that is fed back via the delay unit 461b, and generates and outputs a control signal B (FIG. 40 (c)). The AND circuit 461c calculates the logical product of the pulse signal and the control signal B, generates and outputs the control signal A (FIG. 40 (b)). The switching unit 464 generates a constant Fg generated by the first constant generation unit 462 when the control signal A is at the Hi level (a numerical value in which the oscillation frequency of the numerical control oscillation unit 323 changes by the pseudo-synchronous frequency interval (fg)). Is switched to output the “constant 0” generated by the second constant generation unit 463 when the control signal A is at the Lo level to the integration unit 465. Integrator 465 performs cumulative addition of the input numerical values and outputs the result. The switching unit 467 outputs the signal output from the integrating unit 465 as it is when the control signal B is at the Hi level, and the negative encoding unit 466 outputs the signal output from the integrating unit 465 when the control signal B is at the L0 level. And then switch to output.
よって、 周波数ステップ部 46は、 パルス信号 (図 40 (a) ) が Hiレベル になるごとに、 図 40 (d) で示す周波数信号、 すなわち、 +Fg, -Fg, + 2Fg, -2Fg, …を順に出力する。  Therefore, every time the pulse signal (FIG. 40 (a)) becomes Hi level, the frequency step section 46 sets the frequency signal shown in FIG. 40 (d), that is, + Fg, -Fg, + 2Fg, -2Fg,. Are output in order.
このような、 順序 (ステップ) で周波数を出力する理由を、 図 41を参照して 説明する。 なお、 図 41は、 周波数 f g = 48. 3 kH zであって周波数 96. 6 kH zで疑似同期している場合を示している。 The reason for outputting the frequencies in this order (step) will be described with reference to FIG. FIG. 41 shows the case where the frequency f g is 48.3 kHz and the frequency is 96.6 kHz and the pseudo synchronization is performed.
上記第 2の実施形態において説明したように、 シンボル周波数とキャリア同期 補助信号の挿入周期とから、 疑似同期が発生する周波数の間隔 f gを求めること ができる。 すなわち、 疑似同期は、 正常同期の周波数 ±πι · f g (mは、 0以外 の整数) の周波数で発生しているといえる。 従って、 この周波数 f gを元に、 周 波数ステップ部 46で + F g, -F g, + 2 F g, - 2 F g, …を算出し、 それ に基づいて周波数補正部 32 Aをその周波数が +f g, -f g, +2 f g, 一 2 f g, …と変化するように制御して、 位相補正部 34において位相同期できる周 波数に強制的にずらしてやることで、 最終的に正常な位相同期にたどりつけるの である (図 4 1) 。 As described in the second embodiment, the frequency interval fg at which pseudo synchronization occurs is determined from the symbol frequency and the insertion period of the carrier synchronization auxiliary signal. Can be. In other words, it can be said that the pseudo synchronization occurs at the frequency of the normal synchronization frequency ± πι · fg (m is an integer other than 0). Therefore, based on the frequency fg, + F g, -F g, +2 F g, -2 F g,... Are calculated by the frequency step unit 46, and the frequency correction unit 32A is calculated based on the calculated value. Is controlled to change to + fg, -fg, +2 fg, one 2 fg, ..., and forcedly shifted to a frequency that can be phase-synchronized by the phase correction unit 34, so that the normal phase This leads to synchronization (Fig. 41).
本第 5の実施形態における復調装置は、 この位相補正部 34における位相同期 の周波数を周波数補正部 32 Aにおいて強制的にずらしている。 以下、 周波数補 正部 32 Aの動作を図 36を用いて説明する。  In the demodulation device according to the fifth embodiment, the frequency of the phase synchronization in the phase correction unit 34 is forcibly shifted in the frequency correction unit 32A. Hereinafter, the operation of the frequency correction unit 32A will be described with reference to FIG.
図 36において、 周波数補正部 32 Aは、 周波数誤差検出部 32 1と、 周波数 誤差保持部 322と、 加算器 325と、 数値制御発振部 323と、 複素乗算部 3 24とを備える。  In FIG. 36, the frequency correction unit 32A includes a frequency error detection unit 321, a frequency error holding unit 322, an adder 325, a numerically controlled oscillation unit 323, and a complex multiplication unit 324.
図 36で示すように、 周波数補正部 32 Aは、 図 1 7の周波数補正部 32に加 算器 325をさらに加えた構成である。 周波数誤差保持部 322の出力信号およ び周波数ステップ部 46から出力される周波数ステップ制御信号は、 加算器 32 5に入力される。 加算器 325は、 入力される双方の信号を加算することで、 数 値演算発振部 (NCO) 323の発振周波数を強制的にずらす。 以降、 このずら した周波数において、 再び位相補正を行う (ステップ S 40 1 , S 1 04) 。 以上のように、 本発明の第 5の実施形態に係る復調装置は、 キャリア同期補助 信号の期間における位相同期の検出と、 フレーム同期信号/ TMCC信号の期間 におけるビット誤りの有無の検出とを行い、 当該検出結果から正常同期であるか 否かを判断する。 そして、 疑似同期の場合には、 周波数補正部 32 Aの周波数を 制御して位相補正部 34で正常同期できるようにする。  As shown in FIG. 36, the frequency correction unit 32A has a configuration in which an adder 325 is further added to the frequency correction unit 32 of FIG. The output signal of frequency error holding section 322 and the frequency step control signal output from frequency step section 46 are input to adder 325. The adder 325 forcibly shifts the oscillation frequency of the numerical operation oscillator (NCO) 323 by adding both the input signals. Thereafter, phase correction is performed again at the shifted frequency (steps S401 and S104). As described above, the demodulation device according to the fifth embodiment of the present invention performs detection of phase synchronization during the period of the carrier synchronization auxiliary signal and detection of the presence or absence of a bit error during the period of the frame synchronization signal / TMCC signal. Then, it is determined from the detection result whether or not the synchronization is normal. In the case of pseudo synchronization, the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34 can perform normal synchronization.
これにより、 周波数補正部 32 Aによる周波数引き込み過程等において、 位相 補正部 34における疑似同期の回避が可能になる。 (第 6の実施形態) This makes it possible to avoid quasi-synchronization in the phase correction unit 34 during the frequency pull-in process and the like by the frequency correction unit 32A. (Sixth embodiment)
本発明の第 6の実施形態に係る復調装置は、 上述した第 2〜第 5の実施形態と 同様、 上記第 1の実施形態に係る復調装置において、 位相補正部 3 4での疑似同 期による誤動作を回避するものである。 ただし、 上記第 2〜第 4の実施形態に係 る復調装置が位相補正部を制御しているのに対し、 第 6の実施形態に係る復調装 置は、 上記第 5の実施形態と同様、 疑似同期している周波数がわかっている (上 述したように、 シンボル周波数とキヤリァ同期補助信号の挿入周期とによって一 義的に決定される) ことを利用して周波数補正部を制御する。  The demodulation device according to the sixth embodiment of the present invention is similar to the second to fifth embodiments described above, except that the demodulation device according to the first embodiment employs a pseudo-synchronization in the phase correction unit 34. This is to avoid malfunction. However, while the demodulation devices according to the second to fourth embodiments control the phase correction unit, the demodulation device according to the sixth embodiment has the same configuration as the fifth embodiment. The frequency correction unit is controlled by using the fact that the frequency of the pseudo synchronization is known (as described above, it is uniquely determined by the symbol frequency and the insertion period of the carrier synchronization auxiliary signal).
以下、 上述した疑似同期による誤動作を回避する本発明の第 6の実施形態に係 る復調装置について説明する。  Hereinafter, a demodulation device according to a sixth embodiment of the present invention that avoids the above-described malfunction due to pseudo synchronization will be described.
図 4 2は、 請求項 1 4, 3 7 , 3 9 , 4 5 , 6 5に対応する、 本発明の第 6の 実施形態に係る復調装置の構成を示すブロック図である。 図 4 2において、 第 6 の実施形態に係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2 Aと、 帯域 制限フィル夕 3 3と、 位相補正部 3 4と、 フレーム同期検出部 3 5と、 タイミン グ生成部 3 6と、 第 1の位相同期検出部 4 3 Aと、 第 2の位相同期検出部 4 3 B と、 疑似同期判定部 4 5と、 周波数ステップ部 4 6と、 第 1の誤り訂正部 3 7と 、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1とを備える。  FIG. 42 is a block diagram showing a configuration of a demodulation device according to a sixth embodiment of the present invention, corresponding to claims 14, 37, 39, 45, and 65. In FIG. 42, the demodulation device according to the sixth embodiment includes a quadrature detection unit 31, a frequency correction unit 32 A, a band limiting filter 33, a phase correction unit 34, and a frame synchronization detection unit. 35, a timing generation unit 36, a first phase synchronization detection unit 43A, a second phase synchronization detection unit 43B, a pseudo synchronization determination unit 45, and a frequency step unit 46. , A first error correction unit 37, a second error correction unit 38, a video decoder 39, a TMCC decoder 40, and a BER measurement unit 41.
図 4 2に示すように、 第 6の実施形態に係る復調装置は、 上記第 1の実施形態 に係る復調装置に、 第 1の位相同期検出部 4 3 Aと第 2の位相同期検出部 4 3 B と疑似同期判定部 4 5と周波数ステップ部 4 6とをさらに加え、 周波数補正部 3 2を周波数補正部 3 2 Aに代えた構成であり、 また、 上記第 4の実施形態に係る 復調装置に対して、 周波数補正部 3 2を周波数補正部 3 2 Aに代え、 位相補正部 3 4 Aを位相補正部 3 4に戻し、 さらに周波数ステップ部 4 6を加えた構成とな る o  As shown in FIG. 42, the demodulation device according to the sixth embodiment is different from the demodulation device according to the first embodiment in that a first phase synchronization detection unit 43 A and a second phase synchronization detection unit 4 3B, a pseudo-synchronization determination unit 45 and a frequency step unit 46 are further added, and the frequency correction unit 32 is replaced by a frequency correction unit 32A. Also, the demodulation according to the fourth embodiment is performed. In the device, the frequency correction unit 32 is replaced with the frequency correction unit 32A, the phase correction unit 34A is returned to the phase correction unit 34, and the frequency step unit 46 is added.
なお、 第 6の実施形態に係る復調装置のその他の構成は、 上記第 1および第 4 の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同一の 参照番号を付してその説明を省略する。 Note that other configurations of the demodulation device according to the sixth embodiment are the same as those of the first and fourth demodulation devices. The configuration is the same as that of the demodulation device according to this embodiment, and the same components are denoted by the same reference numerals and description thereof will be omitted.
また、 第 6の実施形態に係る復調装置が行う処理ステップは、 上記第 5の実施 形態において図 37で示した処理ステップと同様であるため、 その説明を省略す 以下、 第 6の実施形態に係る復調装置が上記第 4の実施形態に係る復調装置と 異なる動作を行う部分について説明する。  The processing steps performed by the demodulation device according to the sixth embodiment are the same as the processing steps shown in FIG. 37 in the fifth embodiment, and a description thereof will be omitted. A portion in which the demodulation device performs an operation different from that of the demodulation device according to the fourth embodiment will be described.
上述したように、 疑似同期判定部 45は、 第 1の位相同期検出部 43 Aの検出 結果と第 2の位相同期検出部 43 Bの検出結果とに基づいて、 位相同期が正常同 期か疑似同期かを判断する。 そして、 疑似同期判定部 45は、 上記判定を行った 結果、 正常同期であると判断した場合はそのまま定常の復調処理に移行し (ステ ップ S 105) 、 疑似同期であると判断した場合は周波数ステップ部 46に対し てステップ動作を行わせる信号 (信号形態としては、 上述したリセット信号と同 様である) を出力する (ステップ S 401) 。  As described above, based on the detection result of the first phase synchronization detection unit 43A and the detection result of the second phase synchronization detection unit 43B, the pseudo synchronization determination unit 45 determines whether the phase synchronization is normal synchronization or not. Determine if they are synchronized. Then, as a result of performing the above-described determination, the pseudo-synchronization determination unit 45 proceeds to the normal demodulation processing if it is determined that the synchronization is normal (step S105). A signal for causing the frequency step section 46 to perform the step operation (the signal form is the same as the reset signal described above) is output (step S401).
なお、 疑似同期判定部 45において、 ステップ動作を行わせる信号を生成する 手法および疑似同期判定部 45の構成は、 上記第 5の実施形態において説明した のでここでの説明は省略する。  Note that the method of generating a signal for performing a step operation in the pseudo-synchronous determination unit 45 and the configuration of the pseudo-synchronous determination unit 45 have been described in the fifth embodiment, and a description thereof will be omitted.
周波数ステップ部 46は、 上記第 5の実施形態において説明したように、 パル ス信号 (図 40 (a) ) が H iレベルになるごとに、 図 40 (d) で示す周波数 信号、 すなわち、 +Fg, -F g, + 2 F g, - 2 F g, …を順に出力する。 そ して、 周波数ステップ部 46は、 出力する周波数ステップ制御信号を周波数補正 部 32 Aの加算器 325に入力する。 加算器 325は、 入力される周波数ステツ プ制御信号を周波数誤差保持部 322の出力信号に加算することで、 数値演算発 振部 (NCO) 323の発振周波数を強制的にずらす。 以降、 このずらした周波 数において、 再び位相補正を行う (ステップ S 40 1, S 104)。  As described in the fifth embodiment, each time the pulse signal (FIG. 40 (a)) goes to the Hi level, the frequency step unit 46 performs the frequency signal shown in FIG. Fg, -F g, +2 F g, -2 F g, ... are output in order. Then, the frequency step unit 46 inputs the output frequency step control signal to the adder 325 of the frequency correction unit 32A. The adder 325 adds the input frequency step control signal to the output signal of the frequency error holding unit 322 to forcibly shift the oscillation frequency of the numerical calculation oscillator (NCO) 323. Thereafter, phase correction is performed again at the shifted frequency (steps S401 and S104).
以上のように、 本発明の第 6の実施形態に係る復調装置は、 キャリア同期補助 信号の期間における位相同期の検出と、 フレーム同期信号/ T M C C信号の期間 における位相同期の検出とを行い、 当該検出結果から正常同期であるか否かを判 断する。 そして、 疑似同期の場合には、 周波数補正部 3 2 Aの周波数を制御して 位相補正部 3 4で正常同期できるようにする。 As described above, the demodulation device according to the sixth embodiment of the present invention provides a carrier synchronization assist Detection of phase synchronization in the signal period and detection of phase synchronization in the frame synchronization signal / TMCC signal period are performed, and it is determined from the detection result whether or not the synchronization is normal. Then, in the case of the pseudo synchronization, the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34 can perform normal synchronization.
これにより、 周波数補正部 3 2 Aによる周波数引き込み過程等において、 位相 補正部 3 4における疑似同期の回避が可能になる。  This makes it possible to avoid pseudo synchronization in the phase correction unit 34 during the frequency pull-in process by the frequency correction unit 32A.
(第 7の実施形態)  (Seventh embodiment)
本発明の第 7の実施形態に係る復調装置は、 上述した第 2〜第 6の実施形態と 同様、 上記第 1の実施形態に係る復調装置において、 位相補正部 3 4での疑似同 期による誤動作を回避するものである。 この第 7の実施形態に係る復調装置は、 上記第 2の実施形態で行う位相補正部の制御と、 上記第 5の実施形態で行う周波 数補正部の制御とを行うものである。  The demodulation device according to the seventh embodiment of the present invention is the same as the second to sixth embodiments described above, except that the demodulation device according to the first embodiment employs a pseudo synchronization in the phase correction unit 34. This is to avoid malfunction. The demodulation device according to the seventh embodiment controls the phase correction unit performed in the second embodiment and controls the frequency correction unit performed in the fifth embodiment.
以下、 上述した疑似同期による誤動作を回避する本発明の第 7の実施形態に係 る復調装置について説明する。  Hereinafter, a description will be given of a demodulation device according to a seventh embodiment of the present invention which avoids the malfunction caused by the pseudo synchronization described above.
図 4 3は、 請求項 1 5 , 3 7, 3 9 , 4 6, 6 5に対応する、 本発明の第 7の 実施形態に係る復調装置の構成を示すブロック図である。 図 4 3において、 第 7 の実施形態に係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2 Aと、 帯域 制限フィル夕 3 3と、 位相補正部 3 4 Aと、 フレーム同期検出部 3 5と、 夕イミ ング生成部 3 6と、 周波数引き込み検出部 4 2と、 位相同期検出部 4 3と、 誤り 訂正検出部 4 4と、 疑似同期判定部 4 5と、 周波数ステップ部 4 6と、 第 1の誤 り訂正部 3 7と、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデ コーダ 4 0と、 B E R測定部 4 1とを備える。  FIG. 43 is a block diagram showing a configuration of a demodulation device according to a seventh embodiment of the present invention, which corresponds to claims 15, 37, 39, 46, and 65. In FIG. 43, the demodulation device according to the seventh embodiment includes a quadrature detection unit 31, a frequency correction unit 32A, a band limiting filter 33, a phase correction unit 34A, a frame synchronization detection Unit 35, evening-imaging generation unit 36, frequency lock-in detection unit 42, phase synchronization detection unit 43, error correction detection unit 44, pseudo-synchronization determination unit 45, and frequency step unit 4 6, a first error correction section 37, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
図 4 3に示すように、 第 7の実施形態に係る復調装置は、 上記第 2の実施形態 に係る復調装置と、 上記第 5の実施形態に係る復調装置とを合成した構成となる 。 従って、 第 7の実施形態に係る復調装置の構成は、 上記第 2および第 5の実施 形態に係る復調装置の構成と同様であり、 同一の参照番号を付してその説明を省 略する。 As shown in FIG. 43, the demodulation device according to the seventh embodiment has a configuration in which the demodulation device according to the second embodiment and the demodulation device according to the fifth embodiment are combined. Accordingly, the configuration of the demodulation device according to the seventh embodiment is the same as the configuration of the demodulation devices according to the second and fifth embodiments, and the same reference numerals are given and the description thereof will be omitted. Abbreviate.
ただし、 処理ステップの順序が多少異なるので、 以下、 第 7の実施形態に係る 復調装置が行う処理ステップを、 図 44を用いて説明する。  However, since the order of the processing steps is slightly different, the processing steps performed by the demodulation device according to the seventh embodiment will be described below with reference to FIG.
復調装置は、 チューナ (図示せず) を介して直交検波部 3 1に入力される信号 に対し、 まず、 フレーム同期検出部 35においてフレーム同期信号の検出を行う (ステップ S 101) 。 フレーム同期検出部 35が検出したフレーム先頭信号は 、 タイミング生成部 36に入力される。 復調装置は、 タイミング生成部 36にお いて、 フレーム同期検出部 35で検出されたフレーム先頭信号に基づいて、 1通 信フレーム内のフレーム同期信号/ TM C C信号の期間およびキヤリァ同期補助 信号の期間を検出し、 図 6 (c) に示すような当該期間に応じた BP SK夕イミ ング信号を生成する (ステップ S 102) 。 なお、 図 6 (d) に示すようなキヤ リア同期補助信号の期間のみに応じた B P S Kタイミング信号であってもよい。 この BP SKタイミング信号 (図 6 (c) ) は、 周波数補正部 32 A, 位相補正 部 34A, 周波数引き込み検出部 42へ出力される。 また、 位相同期検出部 43 へは、 図 6 (d) に示すキャリア同期補助信号の期間を与える信号が出力される 次に、 復調装置は、 周波数補正部 32 Aにおいて、 BP SKタイミング信号の 期間について周波数誤差の補正を行う (ステップ S 103) 。 そして、 復調装置 は、 周波数引き込み検出部 42において、 周波数補正後の信号について平均化周 波数誤差を算出し、 周波数引き込み状態を判定する (ステップ S 201) 。 復調 装置は、 このステップ S 201の判定において、 周波数引き込みがされていない と判断した場合、 上記ステップ S 103に戻って再び周波数誤差の補正処理を行 い、 一方、 周波数引き込みがされていると判断した場合、 位相補正部 34 Aに対 して位相補正動作をリセットした後 (ステップ S 304) 、 新たに位相誤差の補 正処理を行う (ステップ S 104) 。  The demodulator first detects a frame synchronization signal in the frame synchronization detection unit 35 for a signal input to the quadrature detection unit 31 via a tuner (not shown) (step S101). The frame head signal detected by the frame synchronization detection unit 35 is input to the timing generation unit 36. In the demodulation device, based on the frame head signal detected by the frame synchronization detection unit 35 in the timing generation unit 36, the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in one communication frame Is detected, and a BP SK evening timing signal corresponding to the period as shown in FIG. 6 (c) is generated (step S102). Note that a BPSK timing signal corresponding only to the period of the carrier synchronization auxiliary signal as shown in FIG. 6D may be used. The BPSK timing signal (FIG. 6 (c)) is output to the frequency correction unit 32A, the phase correction unit 34A, and the frequency pull-in detection unit 42. Further, a signal giving the period of the carrier synchronization auxiliary signal shown in FIG. 6 (d) is output to the phase synchronization detection unit 43. Next, the demodulation device sets the period of the BP SK timing signal in the frequency correction unit 32A. The frequency error is corrected for (step S103). Then, in the demodulation device, the frequency pull-in detection unit 42 calculates an average frequency error for the frequency-corrected signal, and determines the frequency pull-in state (step S201). If the demodulation device determines in step S201 that the frequency has not been pulled, the process returns to step S103 to perform the frequency error correction process again, while determining that the frequency has been pulled. In this case, after resetting the phase correction operation for the phase correction unit 34A (step S304), a new phase error correction process is performed (step S104).
上記一連の周波数誤差および位相誤差の補正処理が終了すると、 復調装置は、 疑似同期判定部 4 5において、 位相同期検出部 4 3で検出したキャリア同期補助 信号期間の位相同期状態と、 誤り訂正検出部 4 4で検出した T M C C信号の誤り 訂正の可否の検出結果とに基づいて、 現状態が正常同期, 疑似同期および非同期 のいずれかであるかを判断する (ステップ S 3 0 2 , S 3 0 3 ) 。 そして、 復調 装置は、 このステップ S 3 0 2 , S 3 0 3において、 状態が非同期であると判断 した場合、 上記ステップ S 1 0 4に戻って再び位相誤差の補正処理を行い、 状態 が疑似同期であると判断した場合、 周波数ステップ部 4 6により周波数補正部 3 4 Aにおける発振周波数をステップさせた後 (ステップ S 4 0 1 ) 、 上記ステヅ プ S 1 0 4に戻って再び位相誤差の補正処理を行う。 一方、 復調装置は、 上記ス テツプ S 3 0 2 , S 3 0 3において、 状態が正常同期であると判断した場合、 そ のまま定常の復調処理に移行する (ステップ S 1 0 5 ) 。 When the above series of frequency error and phase error correction processing is completed, the demodulation device The pseudo-synchronization determination unit 45 detects the phase synchronization state during the carrier synchronization auxiliary signal period detected by the phase synchronization detection unit 43 and the detection result of whether the TMCC signal can correct the error detected by the error correction detection unit 44. Then, it is determined whether the current state is normal synchronization, pseudo synchronization, or asynchronous (steps S302, S303). If the demodulation device determines that the state is asynchronous in steps S302 and S303, the demodulator returns to step S104 to perform the phase error correction process again, and the state becomes pseudo. If synchronization is determined, the oscillation frequency in the frequency correction unit 34A is stepped by the frequency step unit 46 (step S401), and then the process returns to step S104 to return to the phase error. Perform correction processing. On the other hand, if the demodulation device determines that the state is normal synchronization in the above-mentioned steps S302 and S303, it shifts to a steady demodulation process as it is (step S105).
以上のように、 本発明の第 7の実施形態に係る復調装置は、 周波数引き込み検 出部 4 2を設け、 周波数補正部 3 2 Aにおいて位相補正部 3 4 Aが疑似同期しな い周波数まで周波数補正が行われてから、 位相補正部 3 4 Aをリセットして再動 作させる。 さらに、 キャリア同期補助信号の期間における位相同期の検出と、 フ レーム同期信号/ T M C C信号の期間におけるビッ ト誤りの有無の検出とを行い 、 当該検出結果から正常同期であるか否かを判断して、 疑似同期の場合には、 周 波数補正部 3 2 Aの周波数を制御して位相補正部 3 4 Aで正常同期できるように する。  As described above, the demodulation device according to the seventh embodiment of the present invention is provided with the frequency pull-in detection unit 42, and the frequency correction unit 32A includes a frequency correction unit 34A up to a frequency at which the phase correction unit 34A does not simulate. After the frequency correction is performed, reset the phase corrector 34 A and restart it. Further, phase synchronization is detected during the period of the carrier synchronization auxiliary signal, and the presence / absence of a bit error is detected during the period of the frame synchronization signal / TMCC signal. From the detection result, it is determined whether or not normal synchronization is performed. In the case of pseudo synchronization, the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34A can perform normal synchronization.
これにより、 周波数補正部 3 2 Aによる周波数引き込み過程等において、 位相 補正部 3 4 Aにおける疑似同期の回避が可能になる。  This makes it possible to avoid false synchronization in the phase corrector 34A during the frequency pull-in process by the frequency corrector 32A.
(第 8の実施形態)  (Eighth embodiment)
本発明の第 8の実施形態に係る復調装置は、 上述した第 2〜第 7の実施形態と 同様、 上記第 1の実施形態に係る復調装置において、 位相補正部 3 4での疑似同 期による誤動作を回避するものである。 この第 8の実施形態に係る復調装置は、 上記第 2の実施形態で行う位相補正部の制御と、 上記第 6の実施形態で行う周波 数補正部の制御とを行うものである。 The demodulation device according to the eighth embodiment of the present invention is the same as the second to seventh embodiments described above, except that the demodulation device according to the first embodiment employs pseudo-synchronization in the phase correction unit 34. This is to avoid malfunction. The demodulation device according to the eighth embodiment includes the control of the phase correction unit performed in the second embodiment and the control of the frequency correction performed in the sixth embodiment. It controls the number correction unit.
以下、 上述した疑似同期による誤動作を回避する本発明の第 8の実施形態に係 る復調装置について説明する。  Hereinafter, a demodulation device according to an eighth embodiment of the present invention that avoids the above-described malfunction due to pseudo synchronization will be described.
図 4 5は、 請求項 1 6 , 3 7 , 3 9, 4 7, 6 5に対応する、 本発明の第 8の 実施形態に係る復調装置の構成を示すブロック図である。 図 4 5において、 第 8 の実施形態に係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2 Aと、 帯域 制限フィル夕 3 3と、 位相補正部 3 4 Aと、 フレーム同期検出部 3 5と、 夕イミ ング生成部 3 6と、 周波数引き込み検出部 4 2と、 第 1の位相同期検出部 4 3 A と、 第 2の位相同期検出部 4 3 Bと、 疑似同期判定部 4 5と、 周波数ステップ部 4 6と、 第 1の誤り訂正部 3 7と、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1とを備える。  FIG. 45 is a block diagram showing a configuration of a demodulation device according to an eighth embodiment of the present invention, corresponding to claims 16, 37, 39, 47, and 65. In FIG. 45, the demodulation device according to the eighth embodiment includes a quadrature detection unit 31, a frequency correction unit 32A, a band limiting filter 33, a phase correction unit 34A, a frame synchronization detection Section 35, evening-imaging section 36, frequency pull-in detecting section 42, first phase-locking detecting section 43A, second phase-locking detecting section 43B, and pseudo-sync determining section 45, a frequency step section 46, a first error correction section 37, a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41. Prepare.
図 4 5に示すように、 第 8の実施形態に係る復調装置は、 上記第 2の実施形態 に係る復調装置と、 上記第 6の実施形態に係る復調装置とを合成した構成となる 。 従って、 第 8の実施形態に係る復調装置の構成は、 上記第 2および第 6の実施 形態に係る復調装置の構成と同様であり、 同一の参照番号を付してその説明を省 略する。  As shown in FIG. 45, the demodulation device according to the eighth embodiment has a configuration in which the demodulation device according to the second embodiment and the demodulation device according to the sixth embodiment are combined. Therefore, the configuration of the demodulation device according to the eighth embodiment is the same as the configuration of the demodulation devices according to the second and sixth embodiments, and the same reference numerals are given and the description is omitted.
また、 第 8の実施形態に係る復調装置が行う処理ステップは、 上記第 7の実施 形態に係る復調装置と基本的に同様であり、 フローチャートは省略するが、 図 4 4を参照して以下に説明する。  The processing steps performed by the demodulation device according to the eighth embodiment are basically the same as those of the demodulation device according to the seventh embodiment, and the flowchart is omitted. explain.
復調装置は、 チューナ (図示せず) を介して直交検波部 3 1に入力される信号 に対し、 まず、 フレーム同期検出部 3 5においてフレーム同期信号の検出を行う (ステップ S 1 0 1 ) 。 フレーム同期検出部 3 5が検出したフレーム先頭信号は 、 タイミング生成部 3 6に入力される。 復調装置は、 タイミング生成部 3 6にお いて、 フレーム同期検出部 3 5で検出されたフレーム先頭信号に基づいて、 1通 信フレーム内のフレーム同期信号/ T M C C信号の期間およびキヤリァ同期補助 信号の期間を検出し、 図 6 ( c ) に示すような当該期間に応じた B P S K夕イミ ング信号を生成する (ステップ S 102) 。 なお、 図 6 (d) に示すようなキヤ リア同期補助信号の期間のみに応じた BP SKタイミング信号であってもよい。 この BP S Kタイミング信号 (図 6 (c) ) は、 周波数補正部 32 A, 位相補正 部 34A, 周波数引き込み検出部 42へ出力される。 また、 第 1の位相同期検出 部 43 Aへは、 図 6 (d) に示すキャリア同期補助信号の期間を与える信号が、 第 2の位相同期検出部 43 Bへは、 図 34に示すフレーム同期信号/ TMCC信 号の期間を与える信号が出力される。 The demodulation device first detects a frame synchronization signal in a frame synchronization detection unit 35 for a signal input to the quadrature detection unit 31 via a tuner (not shown) (step S101). The frame head signal detected by the frame synchronization detection unit 35 is input to the timing generation unit 36. The demodulation device, in the timing generation section 36, based on the frame head signal detected by the frame synchronization detection section 35, detects the period of the frame synchronization signal / TMCC signal in one communication frame and the carrier synchronization auxiliary signal. The period is detected, and the BPSK evening image corresponding to the period is detected as shown in Fig. 6 (c). A signaling signal is generated (step S102). It should be noted that the BP SK timing signal according to only the period of the carrier synchronization auxiliary signal as shown in FIG. 6 (d) may be used. The BPSK timing signal (FIG. 6 (c)) is output to the frequency correction unit 32A, the phase correction unit 34A, and the frequency pull-in detection unit 42. A signal giving the period of the carrier synchronization auxiliary signal shown in FIG. 6 (d) is sent to the first phase synchronization detection unit 43A, and the frame synchronization shown in FIG. 34 is sent to the second phase synchronization detection unit 43B. A signal giving a signal / TMCC signal period is output.
次に、 復調装置は、 周波数補正部 32 Aにおいて、 BP SKタイミング信号の 期間について周波数誤差の補正を行う (ステップ S 103) 。 そして、 復調装置 は、 周波数引き込み検出部 42において、 周波数補正後の信号について平均化周 波数誤差を算出し、 周波数引き込み状態を判定する (ステップ S 201) 。 復調 装置は、 このステップ S 20 1の判定において、 周波数引き込みがされていない と判断した場合、 上記ステップ S 103に戻って再び周波数誤差の補正処理を行 い、 一方、 周波数引き込みがされていると判断した場合、 位相補正部 34 Aに対 して位相補正動作をリセットした後 (ステップ S 304) 、 新たに位相誤差の補 正処理を行う (ステップ S 104) 。  Next, in the demodulation device, the frequency correction unit 32A corrects the frequency error for the period of the BP SK timing signal (step S103). Then, in the demodulation device, the frequency pull-in detection unit 42 calculates an average frequency error for the frequency-corrected signal, and determines the frequency pull-in state (step S201). If the demodulation device determines in step S201 that the frequency has not been locked, the process returns to step S103 to perform the frequency error correction process again. If it is determined, the phase correction operation is reset for the phase correction unit 34A (step S304), and then a new phase error correction process is performed (step S104).
上記一連の周波数誤差および位相誤差の補正処理が終了すると、 復調装置は、 疑似同期判定部 45において、 第 1の位相同期検出部 43 Aで検出したキャリア 同期補助信号期間の位相同期状態と、 第 2の位相同期検出部 43 Bで検出した T MCC信号期間の位相同期状態とに基づいて、 現状態が正常同期, 疑似同期およ び非同期のいずれかであるかを判断する (ステップ S 302, S 303) 。 そし て、 復調装置は、 このステップ S 302, S 303において、 状態が非同期であ ると判断した場合、 上記ステップ S 104に戻って再び位相誤差の補正処理を行 レ、、 状態が疑似同期であると判断した場合、 周波数ステップ部 46により周波数 補正部 34 Aにおける発振周波数をステップさせた後 (ステップ S 401) 、 上 記ステップ S 104に戻って再び位相誤差の補正処理を行う。 一方、 復調装置は 、 上記ステップ S 3 0 2 , S 3 0 3において、 状態が正常同期であると判断した 場合、 そのまま定常の復調処理に移行する (ステップ S 1 0 5 ) 。 When the above-described series of frequency error and phase error correction processing is completed, the demodulation device determines, in the pseudo synchronization determination unit 45, the phase synchronization state of the carrier synchronization auxiliary signal period detected by the first phase synchronization detection unit 43A, Based on the phase synchronization state of the T MCC signal period detected by the second phase synchronization detection unit 43B, it is determined whether the current state is normal synchronization, pseudo synchronization, or asynchronous (step S302, S 303). If the demodulator determines in step S302 or S303 that the state is asynchronous, the demodulator returns to step S104 and corrects the phase error again, and the state becomes pseudo-synchronous. If it is determined that there is, the oscillation frequency in the frequency correction unit 34A is stepped by the frequency step unit 46 (step S401), and the process returns to the step S104 to correct the phase error again. On the other hand, the demodulator If it is determined in steps S302 and S303 that the state is normal synchronization, the process directly proceeds to a steady demodulation process (step S105).
以上のように、 本発明の第 8の実施形態に係る復調装置は、 周波数引き込み検 出部 4 2を設け、 周波数補正部 3 2 Aにおいて位相補正部 3 4 Aが疑似同期しな い周波数まで周波数補正が行われてから、 位相補正部 3 4 Aをリセットして再動 作させる。 さらに、 キャリア同期補助信号の期間における位相同期の検出と、 フ レーム同期信号/ T M C C信号の期間における位相同期の検出とを行い、 当該検 出結果から正常同期であるか否かを判断して、 疑似同期の場合には、 周波数補正 部 3 2 Aの周波数を制御して位相補正部 3 4 Aで正常同期できるようにする。 これにより、 周波数補正部 3 2 Aによる周波数引き込み過程等において、 位相 補正部 3 4 Aにおける疑似同期の回避が可能になる。  As described above, the demodulation device according to the eighth embodiment of the present invention includes the frequency pull-in detection unit 42, and the frequency correction unit 32A up to the frequency at which the phase correction unit 34A is not pseudo-synchronized. After the frequency correction is performed, reset the phase corrector 34 A and restart it. Further, phase synchronization is detected during the period of the carrier synchronization auxiliary signal, and phase synchronization is detected during the period of the frame synchronization signal / TMCC signal. From the detection result, it is determined whether the synchronization is normal or not. In the case of the pseudo synchronization, the frequency of the frequency correction unit 32A is controlled so that the phase correction unit 34A can perform normal synchronization. This makes it possible to avoid false synchronization in the phase corrector 34A during the frequency pull-in process by the frequency corrector 32A.
(第 9の実施形態)  (Ninth embodiment)
本発明の第 9の実施形態に係る復調装置は、 上記第 1の実施形態に係る復調装 置において、 位相雑音に起因する位相ジッ夕の影響を軽減して受信性能を向上さ せるものである。  The demodulation device according to the ninth embodiment of the present invention improves the reception performance by reducing the effect of phase jitter caused by phase noise in the demodulation device according to the first embodiment. .
そこで、 B P S K変調されるフレーム同期信号/ T M C C信号およびキヤリア 同期補助信号を用いて位相補正する場合における復調信号の位相ジッ夕について 、 まず説明する。  Therefore, the phase jitter of the demodulated signal in the case where the phase is corrected using the frame synchronization signal / TMCC signal and the carrier synchronization auxiliary signal which are BPSK modulated will be described first.
復調装置に入力される通信フレーム、 すなわち位相変調信号は、 主に衛星放送 アンテナおよびチューナーの周波数変換に用いる局部発振周波信号の位相雑音に 起因して、 図 4 6に示すように位相が微妙に変動している。 この位相の変動を位 相ジッ夕という。  As shown in Fig. 46, the communication frame input to the demodulator, that is, the phase modulation signal, has a subtle phase as shown in Fig. 46 mainly due to the phase noise of the local oscillation frequency signal used for frequency conversion of the satellite broadcast antenna and tuner. Fluctuating. This phase change is called phase jitter.
ところで、 変調装置から送信されてくる通信フレームは、 図 2に示したように 、 B P S K変調されるフレーム同期信号/ T M C C信号およびキヤリァ同期補助 信号が分散して存在する。 従って、 復調装置においてこの信号の期間でキャリア 同期を行うために、 上記第 1の実施形態で説明したように周波数補正部 3 2およ び位相補正部 34を、 フレーム同期信号/ TMCC信号期間、 およびキャリア同 期補助信号期間だけで動作させている。 As shown in FIG. 2, the communication frame transmitted from the modulation device includes a frame synchronization signal / TMCC signal and a carrier synchronization auxiliary signal which are subjected to BPSK modulation in a dispersed manner. Therefore, in order to perform carrier synchronization during the period of this signal in the demodulation device, as described in the first embodiment, the frequency correction unit 32 and the frequency correction unit 32 are used. The phase corrector 34 operates only during the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period.
これにより、 上記位相ジッ夕は、 位相補正部 34が動作する期間は補正される が、 それ以外の期間では補正されない。 つまり、 フレーム同期信号/ TMCC信 号期間、 およびキャリア同期補助信号期間以外の BPS K、 QPSKおよび 8Ρ SKで変調される主信号 (高階層信号および低階層信号) の期間では、 位相ジッ 夕が補正されずに復調信号に位相ジッ夕が残留する。  As a result, the phase jitter is corrected during the period in which the phase correction unit 34 operates, but is not corrected during other periods. In other words, phase jitter is corrected during the period of the main signal (high-layer signal and low-layer signal) modulated by BPSK, QPSK, and 8ΡSK other than the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period. Instead, the phase jitter remains in the demodulated signal.
このため、 例えば、 8 PSK変調信号においては、 図 47に示すように C/N が低い (図中、 網掛け円の部分が対応し、 円が小さいと C/Nが高く大きいと C /Nが低いことを示す) 場合、 位相ジッ夕が残留していると位相補正部 34の出 力信号は各符号点を識別する位相境界線 (図中点線で示す) を越える、 つまり、 符号誤りが生じてしまうことになる。  Therefore, for example, in the case of an 8PSK modulated signal, the C / N is low as shown in FIG. 47 (in the figure, the shaded circles correspond, and the smaller the circle, the higher the C / N and the higher the C / N If the phase error remains, the output signal of the phase correction unit 34 exceeds the phase boundary (shown by a dotted line in the figure) for identifying each code point, that is, if a code error occurs. It will happen.
以下、 上述した位相ジッ夕の影響を軽減して受信性能を向上する本発明の第 9 の実施形態に係る復調装置について説明する。  Hereinafter, a demodulation apparatus according to a ninth embodiment of the present invention that improves the reception performance by reducing the influence of the above-described phase jitter will be described.
図 48は、 請求項 17, 37, 48に対応する、 本発明の第 9の実施形態に係 る復調装置の構成を示すブロック図である。 図 48において、 第 9の実施形態に 係る復調装置は、 直交検波部 31と、 周波数補正部 32と、 帯域制限フィル夕 3 3と、 位相補正部 34Bと、 フレーム同期検出部 35と、 タイミング生成部 36 と、 フレーム同期判定部 47と、 C/N検出部48と、 ゲート信号選択部 49と 、 第 1の誤り訂正部 37と、 第 2の誤り訂正部 38と、 ビデオデコーダ 39と、 TMCCデコーダ 40と、 BER測定部 4 1とを備える。  FIG. 48 is a block diagram showing a configuration of a demodulation device according to a ninth embodiment of the present invention, corresponding to claims 17, 37, and 48. In FIG. 48, the demodulation device according to the ninth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34B, a frame synchronization detection unit 35, and a timing generation unit. Unit 36, frame synchronization determination unit 47, C / N detection unit 48, gate signal selection unit 49, first error correction unit 37, second error correction unit 38, video decoder 39, TMCC It includes a decoder 40 and a BER measurement unit 41.
図 49は、 第 9の実施形態に係る復調装置が行う動作を示すフローチャートで あ "So  FIG. 49 is a flowchart showing an operation performed by the demodulation device according to the ninth embodiment.
図 48に示すように、 第 9の実施形態に係る復調装置は、 上記第 1の実施形態 に係る復調装置に、 フレーム同期判定部 47と C/N検出部 48とゲート信号選 択部 49とをさらに加え、 位相補正部 34を位相補正部 34 Bに代えた構成であ る。 As shown in FIG. 48, the demodulation device according to the ninth embodiment is different from the demodulation device according to the first embodiment in that a frame synchronization determination unit 47, a C / N detection unit 48, a gate signal selection unit 49 And the phase correction unit 34 is replaced with a phase correction unit 34B. You.
なお、 第 9の実施形態に係る復調装置のその他の構成は、 上記第 1の実施形態 に係る復調装置の構成と同様であり、 当該構成部分については同一の参照番号を 付してその説明を省略する。  The rest of the configuration of the demodulation device according to the ninth embodiment is the same as the configuration of the demodulation device according to the above-described first embodiment. Omitted.
また、 図 4 9において図 5と同一の処理を行うステップについては、 同一のス テツプ番号を付してその説明を省略する。  Also, the steps in FIG. 49 that perform the same processing as in FIG. 5 are assigned the same step numbers, and descriptions thereof are omitted.
まず、 図 5 0を参照して、 フレーム同期判定部 4 7の動作を説明する。  First, the operation of the frame synchronization determination section 47 will be described with reference to FIG.
図 5 0は、 フレーム同期判定部 4 7の構成を示すブロック図である。 図 5 0に おいて、 フレーム同期判定部 4 7は、 位相識別部 4 7 1と、 照合部 4 7 2とを備 える。  FIG. 50 is a block diagram showing a configuration of the frame synchronization determination section 47. In FIG. 50, the frame synchronization determination section 47 includes a phase identification section 471, and a collation section 472.
チューナ (図示せず) を介して入力される信号は、 上記第 1の実施形態で述べ たように周波数補正および位相補正がされた後 (ステップ S 1 0 3、 S 1 0 4 ) 、 位相補正部 3 4 Bから位相識別部 4 7 1へ入力される。 位相識別部 4 7 1は、 入力する信号の位相を識別する。 照合部 3 5 3は、 位相識別部 4 7 1が識別した 信号について、 予め定まっているフレーム同期信号との照合を行い、 フレーム同 期ができたか否かを検出して、 その結果をゲート信号選択部 4 9へ出力する (ス テツプ S 5 0 1 ) 。  The signal input through the tuner (not shown) is subjected to the frequency correction and the phase correction as described in the first embodiment (steps S103, S104), and then the phase correction is performed. Input from the section 34B to the phase identification section 471. The phase identification unit 471 identifies the phase of the input signal. The collating unit 353 compares the signal identified by the phase identifying unit 471 with a predetermined frame synchronization signal, detects whether or not frame synchronization has been achieved, and uses the result as a gate signal. Output to the selection section 49 (Step S501).
次に、 図 5 1を参照して、 C/N検出部 4 8の動作を説明する。  Next, the operation of the C / N detector 48 will be described with reference to FIG.
図 5 1は、 C/N検出部 4 8の構成を示すブロック図であり、 位相誤差により 等価的に C/Nを検出するものである。 図 5 1において、 C/N検出部 4 8は、 位相誤差検出部 4 8 1と、 絶対値化部 4 8 2と、 切替部 4 8 3と、 定数発生部 4 8 4と、 加算器 4 8 5 aと遅延部 4 8 5 bと切替部 4 8 5 cと定数発生部 4 8 5 dとで構成される積分部 4 8 5と、 タイミング発生部 4 8 6と、 C/N高レベル 判定部 4 8 7とを備える。  FIG. 51 is a block diagram showing the configuration of the C / N detection unit 48, which detects C / N equivalently based on a phase error. In FIG. 51, the C / N detection unit 48 includes a phase error detection unit 481, an absolute value conversion unit 482, a switching unit 483, a constant generation unit 4884, and an adder 4 8 5 a, delay section 4 8 5 b, switching section 4 8 5 c, constant generating section 4 85 d, integrating section 4 85, timing generating section 4 86, C / N high level And a judgment unit 487.
チューナ (図示せず) を介して入力される信号は、 上記第 1の実施形態で述べ たように周波数補正および位相補正がされた後 (ステップ S 1 0 3、 S 1 0 4 ) 、 位相補正部 3 4 Bから位相誤差検出部 4 8 1へ入力される。 位相誤差検出部 4 8 1は、 上述したように、 位相ずれが無い場合の〇印を受信側の基準として、 周 波数ずれのある場合の X印との位相差を位相誤差 Δ Φ [度] として検出する (図 1 9を参照) 。 位相誤差検出部 4 8 1で検出した位相誤差 Δ Φは、 絶対値化部 4 8 2において正の値 I Δ Φ I に変換される。 そして、 絶対値化部 4 8 2が出力す る位相誤差 I Δ Φ Iは、 切替部 4 8 3を介して加算器 4 8 5 aに入力され、 ある 一定期間毎に位相誤差 I Δ Φ Iの平均化がなされる。 ここで、 1通信フレーム内 の B P S K変調がされているキヤリア同期補助信号の期間のみにおいて C/N検 出を行うため、 タイミング生成部 3 6が出力するタイミング信号 (図 6 ( d ) ) を用いて切替部 4 8 3の切替えを行う。 この切替部 4 8 3は、 タイミング信号の B P S K変調信号の期間 (図 6 ( d ) において H iレベル期間) に絶対値化部 4 8 2が出力する位相誤差 I Δ Φ I を積分部 4 8 5に入力し、 それ以外の期間には 、 定数発生部 4 8 4が発生する 「定数 0」 を積分部 4 8 5に入力するように切替 えを行う。 タイミング発生部 4 8 6は、 一定周期のタイミングパルスを発生し、 切替部 4 8 5 cを制御する。 積分部 4 8 5は、 タイミング発生部 4 8 6が発生す るタイミングパルスに従って、 加算器 4 8 5 aの入力を遅延部 4 8 5 bのフィー ドバック出力または定数発生部 4 8 5 dが発生する 「定数 0」 のいずれかに切替 えることで、 一定期間毎の平均化した位相誤差 I Δ Φ I を出力する。 C/N高レ ベル判定部 4 8 7は、 積分部 4 8 5が出力する平均化位相誤差を入力し、 タイミ ング発生部 4 8 6がタイミングパルスを発生したとき、 当該平均化位相誤差が予 め定めたしきい値を下回るか否かによって C /Nが高いか低いかを判定する (ス テツプ S 5 0 2 ) 。 そして、 この判定の結果、 平均化位相誤差が予め定めたしき い値を下回った場合、 C/N高レベル判定部 4 8 7は、 C /Nが高いと判断し、 当該結果をゲート信号選択部 4 9に対して出力する。 A signal input via a tuner (not shown) is subjected to frequency correction and phase correction as described in the first embodiment (steps S103, S104). The signal is input from the phase correction unit 34 B to the phase error detection unit 48 1. As described above, the phase error detector 481 uses the symbol 〇 when there is no phase shift as a reference on the receiving side, and uses the phase difference from the X when there is a frequency shift as the phase error ΔΦ [degree]. (See Figure 19). The phase error ΔΦ detected by the phase error detector 481 is converted to a positive value IΔΦI by the absolute value converter 482. Then, the phase error I ΔΦ I output from the absolute value conversion unit 482 is input to the adder 485 a via the switching unit 483, and the phase error I Δ Φ I Are averaged. Here, in order to perform C / N detection only during the period of the carrier synchronization auxiliary signal in which BPSK modulation is performed in one communication frame, the timing signal (FIG. 6 (d)) output by the timing generation unit 36 is used. To switch the switching section 4 8 3. The switching unit 483 integrates the phase error I ΔΦ I output by the absolute value conversion unit 482 during the period of the BPSK modulation signal of the timing signal (the Hi level period in FIG. 6D). 5, and in other periods, switching is performed such that “constant 0” generated by the constant generation section 484 is input to the integration section 485. The timing generating section 486 generates a timing pulse having a constant period, and controls the switching section 485c. The integrator 485 generates the input of the adder 485a according to the timing pulse generated by the timing generator 486, and generates the feedback output of the delay 485b or the constant generator 485d. By switching to any one of “constant 0”, the averaged phase error I ΔΦ I for each fixed period is output. The C / N high level judgment unit 487 inputs the averaged phase error output from the integrator 485, and when the timing generator 486 generates a timing pulse, the averaged phase error is It is determined whether the C / N is high or low depending on whether the value falls below a predetermined threshold value (step S502). Then, as a result of this determination, if the averaged phase error falls below a predetermined threshold, the C / N high level determination unit 487 determines that C / N is high, and uses the result to select the gate signal. Output to part 49.
ここで、 C/N高レベル判定部 4 8 7におけるしきい値については、 低 C/N 時に位相数の多い変調方式を位相補正に用いることにより、 位相補正部 3 4 Bに おける位相誤差検出部 341が誤った位相誤差情報を出力することがないように 、 決定しなければならない。 Here, the threshold value in the C / N high level determination section 487 is used for the phase correction section 34 B by using a modulation method having a large number of phases for the phase correction when the C / N is low. It must be determined so that the phase error detection unit 341 does not output incorrect phase error information.
例えば、 n相 P SK符号間距離 Dは、 n相 PSK信号の振幅を Aとすると、 下 記式 (4) のように示される。  For example, the distance D between n-phase PSK codes is represented by the following equation (4), where A is the amplitude of the n-phase PSK signal.
D = 2 · A . s i η (ττ/η) ···· (4)  D = 2A.s i η (ττ / η) (4)
この式 (4) に基づくと、 η相 PSK符号間距離 Dは、 BPSK変調では D = 2 Aと、 QP SK変調では D=^2 Aと、 8 P SK変調では D = 2 As i η 、κ /8) となる。 一般的に、 図 47に示すように、 雑音の実効振幅値が符号間距離 Dの 1/2以下であれば、 位相誤差検出部 341は誤った位相誤差情報を出力し ないと考えられ、 このときの C/Nは、 下記式 (5) で表される。  Based on this equation (4), the η-phase PSK inter-symbol distance D is D = 2 A for BPSK modulation, D = ^ 2 A for QP SK modulation, D = 2 As i η for 8 PSK modulation, κ / 8). Generally, as shown in FIG. 47, if the effective amplitude value of the noise is equal to or less than 1/2 of the intersymbol distance D, the phase error detection unit 341 is considered not to output erroneous phase error information. C / N at this time is expressed by the following equation (5).
C/N=20 - l og (A/ (D/2) ) [dB] ·'·· (5)  C / N = 20-l og (A / (D / 2)) [dB]
C/N高レベルのしきい値は、 8 P SK期間で位相補正を行うかどうかを決定 するものである。 そこで、 上記式 (5) において、 n相 PSK符号間距離 Dに 8 P SKの符号間距離を代入して求まる 8. 3dBが、 C/N高レベルしきい値の 目安となるものである。  The C / N high level threshold determines whether or not to perform phase correction during the 8PSK period. Therefore, in the above equation (5), 8.3 dB obtained by substituting the inter-symbol distance of 8PSK into the n-phase PSK intersymbol distance D is a measure of the C / N high level threshold.
さて、 図 51における C/N検出部 48は、 位相誤差を絶対値化して等価的に C/Nを求めているものであり、 この 8. 3 dBに相当する C/N高レベル判定 部 487におけるしきい値は、 8PSKの符号点において、 隣り合う位相識別境 界線 (図 47における点線) の角度差の 1/2、 すなわち 11. 25 [度] とな る。  The C / N detection unit 48 in FIG. 51 obtains the C / N equivalently by converting the phase error into an absolute value, and the C / N high level determination unit 487 corresponding to 8.3 dB is used. At the code point of 8PSK is 1/2 of the angle difference between adjacent phase discrimination boundaries (dotted lines in Fig. 47), that is, 11.25 [degrees].
次に、 図 52を参照して、 ゲート信号選択部 49の動作を説明する。  Next, an operation of the gate signal selection unit 49 will be described with reference to FIG.
図 52は、 ゲート信号選択部 49の構成を示すブロック図である。 図 52にお いて、 ゲート信号選択部 49は、 AND回路 491と、 定数発生部 492と、 切 替部 493とを備える。  FIG. 52 is a block diagram showing a configuration of gate signal selecting section 49. In FIG. 52, the gate signal selection unit 49 includes an AND circuit 491, a constant generation unit 492, and a switching unit 493.
AND回路 491の一方の入力端子には、 フレーム同期判定部 47が出力する 判定結果が、 他方の入力端子には、 C/N検出部 48が出力する検出結果が、 そ れぞれ入力される。 切替部 493は、 タイミング生成部 36の出力信号である B PSK変調信号期間のタイミング信号 (図 6 (c) または (d) ) と定数発生部 492が発生する 「定数 1 (Hiレベル) 」 とを入力し、 AND回路 491が指 示する信号に基づいて出力を切り替える。 ここで、 切替部 493は、 フレーム同 期判定部 47が出力する判定結果が 「同期あり」 、 かつ、 C/N検出部48が出 力する検出結果が 「C/Nが高い」 である場合に 「定数 1」 、 すなわち、 通信フ レームの全期間において位相補正動作の実施を指示するゲート信号を出力し (ス テツプ S 503) 、 それ以外の結果の場合にはタイミング生成部 36の出力信号 、 すなわち、 BP SK期間のみで位相補正動作の実施を指示するゲート信号 (図 6 (c) または (d) ) を出力する (ステップ S 504) ように切り替える。 このゲート信号は、 位相補正部 34 Bの位相誤差保持部 342へ出力される。 次に、 位相補正部 34 Bの動作を説明する。 One input terminal of the AND circuit 491 receives the determination result output by the frame synchronization determination unit 47, and the other input terminal receives the detection result output by the C / N detection unit 48. Each is entered. The switching unit 493 includes a timing signal (FIG. 6 (c) or (d)) in the BPSK modulation signal period, which is an output signal of the timing generation unit 36, and “constant 1 (Hi level)” generated by the constant generation unit 492. And switches the output based on the signal indicated by the AND circuit 491. Here, switching section 493 determines that the determination result output from frame synchronization determination section 47 is “with synchronization” and the detection result output from C / N detection section 48 is “C / N is high”. In step S503, a constant 1 is output, ie, a gate signal instructing the execution of the phase correction operation during the entire communication frame period. If the result is other than that, the output signal of the timing generation unit 36 is output. That is, switching is performed so as to output a gate signal (FIG. 6 (c) or (d)) for instructing execution of the phase correction operation only in the BP SK period (step S504). This gate signal is output to the phase error holding unit 342 of the phase correction unit 34B. Next, the operation of the phase correction unit 34B will be described.
この位相補正部 34 Bは、 上記第 1の実施形態に係る復調装置の位相補正部 3 4に対し、 位相誤差検出部 341の構成のみが異なる。 従って、 以下、 図 53お よび図 54を参照して、 位相誤差検出部 341の動作を説明する。  This phase corrector 34B differs from the phase corrector 34 of the demodulator according to the first embodiment only in the configuration of the phase error detector 341. Therefore, the operation of the phase error detection unit 341 will be described below with reference to FIGS. 53 and 54.
図 53は、 位相誤差検出部 341の構成を示すブロック図である。 図 53にお いて、 位相誤差検出部 341は、 BPS K位相誤差検出部 341 aと、 8PSK 位相誤差検出部 341 bと、 切替部 341 dとを備える。 図 54は、 B P S K位 相誤差検出部 341 aおよび 8 P SK位相誤差検出部 341 bで行う位相誤差検 出を説明する図である。  FIG. 53 is a block diagram showing a configuration of the phase error detection unit 341. In FIG. 53, the phase error detection section 341 includes a BPSK phase error detection section 341a, an 8PSK phase error detection section 341b, and a switching section 341d. FIG. 54 is a diagram for explaining phase error detection performed by the BPSK phase error detection section 341a and the 8PSK phase error detection section 341b.
位相誤差を含んだ複素乗算部 344の出力は、 BPS K位相誤差検出部 341 aおよび 8 P SK位相誤差検出部 341 bの双方に入力される。 BPSK位相誤 差検出部 34 l aは、 BPSK変調軸 (0度, 180度) に対する位相誤差を検 出する (図 54 (a) ) 。 8PSK位相誤差検出部 34 lbは、 8PSK変調軸 The output of the complex multiplier 344 including the phase error is input to both the BPSK phase error detector 341a and the 8PSK phase error detector 341b. The BPSK phase error detector 34la detects the phase error with respect to the BPSK modulation axis (0 degree, 180 degrees) (Fig. 54 (a)). 34 lb 8PSK phase error detector, 8PSK modulation axis
(0度, 45度, 90度, 135度, 180度, 225度, 270度, 315度 ) に対する位相誤差を検出する (図 54 (b) ) 。 切替部 341 dは、 タイミン グ生成部 36が出力するタイミング信号を用いて、 タイミング信号期間 (BPS K変調の期間) は、 BPSK位相誤差検出部 34 1 aが検出した位相誤差を、 そ れ以外の期間は、 8 PSK位相誤差検出部 341 b検出した位相誤差を位相誤差 保持部 342へ出力するように切り替える。 (0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 °) are detected (Fig. 54 (b)). Switching unit 341 d The timing signal period (BPSK modulation period) is output from the BPSK phase error detector 341a using the timing signal output from the analog signal generator 36. The phase error detected by the BPSK phase error detector 34a is used. Error detection unit 341 b Switches to output the detected phase error to phase error holding unit 342.
なお、 位相誤差保持部 342以降の動作は、 上記第 1の実施形態において説明 したのと同様であるが、 切換部 342 aおよび保持部 342 f を制御する信号と して、 タイミング生成部 36が出力するタイミング信号 (ゲート信号) ではなく ゲート信号選択部 49が出力するゲート信号を用いる (図 48を参照) 。  The operation after the phase error holding unit 342 is the same as that described in the first embodiment, except that the timing generation unit 36 outputs a signal for controlling the switching unit 342a and the holding unit 342f. The gate signal output by the gate signal selector 49 is used instead of the timing signal (gate signal) to be output (see FIG. 48).
これにより、 位相補正部 34 Bは、 タイミング信号およびゲート信号に従って 、 C/Nの状態に基づいた位相補正を行うことができる (ステップ S 505 ) o その内容を下記表 3に示す。  Accordingly, the phase correction unit 34B can perform the phase correction based on the C / N state according to the timing signal and the gate signal (Step S505). The contents are shown in Table 3 below.
なお、 下記表 3において 「BPSK同期信号期間」 とは、 フレーム同期信号/ TMCC信号期間およびキャリア同期補助信号期間の双方の期間 (上記図 6 (c ) のタイミング信号を用いた場合) 、 またはキャリア同期補助信号期間のみの期 間 (上記図 6 (d) のタイミング信号を用いた場合) を示している。  In Table 3 below, “BPSK synchronization signal period” refers to both the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period (when the timing signal in FIG. 6 (c) is used), or the carrier. The figure shows only the synchronization auxiliary signal period (when the timing signal in Fig. 6 (d) above is used).
【表 3】  [Table 3]
Figure imgf000103_0001
Figure imgf000103_0001
以上のように、 本発明の第 9の実施形態に係る復調装置は、 BP SK変調信号 期間で位相同期がされているときの C / N状態をキャリア同期補助信号期間の位 相誤差に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレ —ムの主信号期間に対しても 8 P S K変調がされているとみなして位相誤差の補 正を行う。 As described above, the demodulation device according to the ninth embodiment of the present invention determines the C / N state when phase synchronization is performed in the BP SK modulation signal period based on the phase error in the carrier synchronization auxiliary signal period. If the detected C / N is at a predetermined level, The phase error is corrected assuming that 8 PSK modulation is also performed for the main signal period of the system.
これにより、 低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 復調信号の位相ジッ夕の影響を軽減して受信性能を向上するこ とができる。  As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
なお、 C/N検出部 4 8における位相誤差検出部 4 8 1は位相補正部 3 4 Bの 位相誤差検出部 3 4 1と同様の機能を有しているので、 双方の位相誤差検出部を 共用化することが可能である。 共用化した場合は、 回路規模の削減を図ることが できる。 また、 フレーム同期判定部 4 7は、 位相同期を判定する方法の一例であ るため、 フレーム同期判定部 4 7の代わりに上記第 3の実施形態で述べた位相同 期検出部 4 3を用いても同様の効果が得られる。  Since the phase error detecting section 48 1 in the C / N detecting section 48 has the same function as the phase error detecting section 3 41 of the phase correcting section 34 B, both phase error detecting sections are used. It is possible to share. If they are shared, the circuit scale can be reduced. Since the frame synchronization determination section 47 is an example of a method of determining phase synchronization, the phase synchronization detection section 43 described in the third embodiment is used instead of the frame synchronization determination section 47. The same effect can be obtained.
(第 1 0の実施形態)  (10th embodiment)
本発明の第 1 0の実施形態に係る復調装置は、 上述した第 9の実施形態と同様 、 上記第 1の実施形態に係る復調装置において、 位相雑音に起因する位相ジッ夕 の影響を軽減して受信性能を向上させるものである。  The demodulation device according to the tenth embodiment of the present invention, similar to the ninth embodiment described above, reduces the influence of phase jitter caused by phase noise in the demodulation device according to the first embodiment. This improves the reception performance.
以下、 上述した位相ジッ夕の影響を軽減して受信性能を向上させる本発明の第 1 0の実施形態に係る復調装置について説明する。  Hereinafter, a demodulation device according to the tenth embodiment of the present invention that improves the reception performance by reducing the influence of the above-described phase jitter will be described.
図 5 5は、 請求項 1 8, 3 7, 4 9に対応する、 本発明の第 1 0の実施形態に 係る復調装置の構成を示すブロック図である。 図 5 5において、 第 1 0の実施形 態に係る復調装置は、 直交検波部 3 1と、 周波数補正部 3 2と、 帯域制限フィル 夕 3 3と、 位相補正部 3 4 Cと、 フレーム同期検出部 3 5と、 タイミング生成部 3 6と、 誤り訂正検出部 4 4と、 フレーム同期判定部 4 7と、 C /N検出部4 8 Aと、 ゲート信号選択部 4 9 Aと、 復調モード切替部 5 0と、 第 1の誤り訂正部 3 7と、 第 2の誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測定部 4 1とを備える。  FIG. 55 is a block diagram showing a configuration of the demodulation device according to the tenth embodiment of the present invention, corresponding to claims 18, 37, and 49. In FIG. 55, the demodulator according to the tenth embodiment includes a quadrature detector 31, a frequency corrector 32, a band limit filter 33, a phase corrector 34 C, and a frame synchronization. Detection unit 35, Timing generation unit 36, Error correction detection unit 44, Frame synchronization judgment unit 47, C / N detection unit 48A, Gate signal selection unit 49A, Demodulation mode It includes a switching unit 50, a first error correction unit 37, a second error correction unit 38, a video decoder 39, a TMCC decoder 40, and a BER measurement unit 41.
図 5 6は、 第 1 0の実施形態に係る復調装置が行う動作を示すフローチャート である。 FIG. 56 is a flowchart showing the operation performed by the demodulation device according to the tenth embodiment. It is.
図 5 5に示すように、 第 1 0の実施形態に係る復調装置は、 上記第 1の実施形 態に係る復調装置に、 誤り訂正検出部 4 4とフレーム同期判定部 4 7と C/N検 出部 4 8 Aとゲート信号選択部 4 9 Aと復調モード切替部 5 0とをさらに加え、 位相補正部 3 4を位相補正部 3 4 Cに代えた構成であり、 また、 上記第 9の実施 形態に係る復調装置に対して、 誤り訂正検出部 4 4および復調モード切替部 5 0 をさらに加え、 C/N検出部 4 8を C/N検出部 4 8 Aに、 ゲート信号選択部 4 9をゲート信号選択部 4 9 Aに代えた構成となる。  As shown in FIG. 55, the demodulation device according to the tenth embodiment is different from the demodulation device according to the first embodiment in that an error correction detection unit 44, a frame synchronization determination unit 47, and a C / N A detection unit 48 A, a gate signal selection unit 49 A, and a demodulation mode switching unit 50 are further added, and the phase correction unit 34 is replaced with a phase correction unit 34 C. An error correction detector 44 and a demodulation mode switching unit 50 are further added to the demodulator according to the embodiment, and the C / N detector 48 is replaced with a C / N detector 48 A, and a gate signal selector. 49 is replaced by a gate signal selection unit 49 A.
なお、 第 1 0の実施形態に係る復調装置のその他の構成は、 上記第 1および第 9の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同一 の参照番号を付してその説明を省略する。  The rest of the configuration of the demodulation device according to the tenth embodiment is the same as the configuration of the demodulation devices according to the first and ninth embodiments, and the same reference numerals are given to the components. The description is omitted.
また、 図 5 6において図 5および図 4 9と同一の処理を行うステップについて は、 同一のステップ番号を付してその説明を省略する。  Steps in FIG. 56 that perform the same processing as in FIG. 5 and FIG. 49 are assigned the same step numbers, and descriptions thereof are omitted.
まず、 誤り訂正検出部 4 4の動作について説明する。  First, the operation of the error correction detector 44 will be described.
誤り訂正検出部 4 4は、 第 2の誤り訂正部 3 8が誤り訂正の過程で出力する誤 り訂正不可を表す信号および誤り残留を表す信号を入力する。 そして、 誤り訂正 検出部 4 4は、 T M C C信号に対して正しい誤り訂正が施されているか否かを検 出し、 この検出の結果をゲート信号選択部 4 9 Aに対して出力する (ステップ S 6 0 1 ) ο  The error correction detection unit 44 inputs a signal indicating that error correction cannot be performed and a signal indicating that the error remains, which are output by the second error correction unit 38 in the process of error correction. Then, the error correction detection unit 44 detects whether or not correct error correction has been performed on the TMCC signal, and outputs the result of this detection to the gate signal selection unit 49A (step S6). 0 1) ο
次に、 図 5 7を参照して、 C/N検出部 4 8 Aの動作を説明する。  Next, the operation of the C / N detector 48A will be described with reference to FIG.
図 5 7は、 C/N検出部 4 8 Aの構成を示すプロック図であり、 位相誤差によ り等価的に C/Nを検出するものである。 図 5 7において、 C /N検出部4 8 A は、 位相誤差検出部 4 8 1と、 絶対値化部 4 8 2と、 切替部 4 8 3と、 定数発生 部 4 8 4と、 加算器 4 8 5 aと遅延部 4 8 5 bと切替部 4 8 5 cと定数発生部 4 8 5 dとで構成される積分部 4 8 5と、 タイミング発生部 4 8 6と、 C/N高レ ベル判定部 4 8 7と、 C/N低レベル判定部 4 8 8を備える。 図 57に示すように、 C/N検出部48Aは、 上記第 9の実施形態の C/N検 出部 48の構成に、 C/N低レベル判定部 488をさらに加えた構成である。 FIG. 57 is a block diagram showing the configuration of the C / N detection unit 48A, which detects C / N equivalently based on a phase error. In FIG. 57, the C / N detection unit 48 A is composed of a phase error detection unit 481, an absolute value conversion unit 482, a switching unit 483, a constant generation unit 4884, and an adder. 48.5a, delay section 48.5b, switching section 48.5c, constant generation section 48.5d, integration section 485, timing generation section 486, and high C / N ratio It has a level judgment section 487 and a C / N low level judgment section 488. As shown in FIG. 57, the C / N detection unit 48A has a configuration obtained by further adding a C / N low level determination unit 488 to the configuration of the C / N detection unit 48 of the ninth embodiment.
C/N高レベル判定部 487は、 積分部 485が出力する平均化位相誤差を入 力し、 タイミング発生部 486がタイミングパルスを発生したとき、 当該平均化 位相誤差が予め定めた第 1のしきい値を下回るか否かによって C/Nが高いかを 判定する (ステップ S 502) 。 そして、 この判定の結果、 平均化位相誤差が予 め定めた第 1のしきい値を下回った場合、 C/N高レベル判定部 487は、 C/ Nが高いと判断し、 当該結果をゲート信号選択部 49 Aに対して出力する。 一方 、 C/N低レベル判定部 488は、 積分部 485が出力する平均化位相誤差を入 力し、 タイミング発生部 486がタイミングパルスを発生したとき、 当該平均化 位相誤差が予め定めた第 2のしきい値を上回るか否かによって C/Nが低いかを 判定する (ステップ S 602) 。 そして、 この判定の結果、 平均化位相誤差が予 め定めた第 2のしきい値を上回った場合、 C/N高レベル判定部 488は、 C/ Nが低いと判断し、 当該結果をゲート信号選択部 49 Aに対して出力する。 ここで、 例えば、 C/N高レベル判定部 487における第 1のしきい値につい ては、 上述したように 1 1. 25 [度] を目安に決定すればよい。  The C / N high-level determination unit 487 inputs the averaged phase error output from the integration unit 485, and when the timing generation unit 486 generates a timing pulse, the averaged phase error is the first predetermined value. It is determined whether the C / N is high depending on whether the value is below the threshold (step S502). Then, as a result of this determination, if the averaged phase error falls below a predetermined first threshold, C / N high level determination section 487 determines that C / N is high and gates the result. Outputs to signal selector 49A. On the other hand, the C / N low-level determination unit 488 inputs the averaged phase error output from the integration unit 485, and when the timing generation unit 486 generates a timing pulse, the averaged phase error is set to a second predetermined value. It is determined whether the C / N is low based on whether or not the threshold is exceeded (step S602). Then, as a result of this determination, if the averaged phase error exceeds a predetermined second threshold value, C / N high level determination section 488 determines that C / N is low, and gates the result. Outputs to signal selector 49A. Here, for example, the first threshold value in the C / N high level determination unit 487 may be determined using 11.25 [degrees] as a guide as described above.
また、 C/N低レベルのしきい値は、 BP SK期間のみで位相補正を行うかど うかを決定するものである。 そこで、 上記式 (5) において、 n相 P SK符号間 距離 Dに QP SKの符号間距離を代入して求まる 3 dBが、 C/N低レベルしき い値の目安となるものである。 この 3 dBに相当する C/N低レベル判定部 48 8におけるしきい値は、 QPSKの符号点において、 隣り合う位相識別境界線の 角度差の 1/2、 すなわち、 22. 5 [度] となる。  The C / N low level threshold value determines whether or not to perform the phase correction only in the BP SK period. Therefore, in the above equation (5), 3 dB obtained by substituting the inter-symbol distance of QP SK into the inter-symbol distance D of n-phase P SK is a measure of the C / N low level threshold. The threshold in the C / N low-level decision unit 488 corresponding to this 3 dB is 1/2 of the angle difference between adjacent phase identification boundaries at the code point of QPSK, that is, 22.5 [degrees]. Become.
従って、 この場合、 C/N検出部 48 Aの出力は、 下記表 4のようになる。 【表 4】 C/N高レべ C/N低レべ Therefore, in this case, the output of the C / N detector 48A is as shown in Table 4 below. [Table 4] C / N high level C / N low level
位相誤差 C/N判定  Phase error C / N judgment
ル判定出力 ル判定出力  Judgment output
1 1. 25 deg以下 H i L o 问  1 1.25 deg or less H i L o 问
1 1. 25 deg〜  1 1.25 deg ~
22. 5 deg L o L o 中  22.5 deg L o L o Medium
22. 5 deg以上 L o H i 低  22.5 deg or more Low Hi Low
次に、 図 58を参照して、 ゲート信号選択部 49 Αの動作を説明する。 Next, the operation of gate signal selecting section 49 # will be described with reference to FIG.
図 58は、 ゲート信号選択部 49 Aの構成を示すブロック図である。 図 58に おいて、 ゲート信号選択部 49 Aは、 AND回路 491 , 495と、 定数発生部 492と、 切替部 493, 494と、 OR回路 496, 497とを備える。 切替部 493は、 OR回路 497を介して TMCCデコーダ 40から入力され る主信号の B P S K変調期間および Q P S K変調期間の双方の期間を与えるタイ ミング信号と、 定数発生部 492が発生する 「定数 1」 とを入力し、 C/N高レ ベル判定部 487が出力する判定結果に基づいて出力を切り替える。 切替部 49 4は、 TMCCデコーダ 40から入力される主信号の BP SK変調期間のタイミ ング信号と切替部 493が出力する信号とを入力し、 C/N低レベル判定部 48 8が出力する判定結果に基づいて出力を切り替える。 ここで、 切替部 493およ び 494は、 C/N判定が 「高」 である場合は 「定数 1」 すなわち、 通信フレー ムの全期間において位相補正動作の実施を指示するゲート信号を (ステップ S 5 03) 、 C/N判定が 「中」 である場合は主信号の QPSKおよび BP SK変調 期間のタイミング信号を (ステップ S 603 ) 、 C/N判定が 「低」 である場合 は主信号の BPS K変調期間のタイミング信号 (ステップ S 504) を出力する ように切り替える。  FIG. 58 is a block diagram showing a configuration of gate signal selecting section 49A. In FIG. 58, the gate signal selection unit 49A includes AND circuits 491 and 495, a constant generation unit 492, switching units 493 and 494, and OR circuits 496 and 497. The switching unit 493 includes a timing signal that provides both the BPSK modulation period and the QPSK modulation period of the main signal input from the TMCC decoder 40 via the OR circuit 497, and a “constant 1” generated by the constant generation unit 492. Is input, and the output is switched based on the determination result output from the C / N high level determination unit 487. The switching section 494 receives the timing signal of the main signal input from the TMCC decoder 40 during the BP SK modulation period and the signal output by the switching section 493, and determines whether the C / N low level determination section 488 outputs the signal. Switch output based on results. Here, switching sections 493 and 494 output “constant 1” when the C / N determination is “high”, that is, a gate signal instructing execution of the phase correction operation during the entire communication frame period (step If the C / N judgment is “medium”, the timing signal of the QPSK and BP SK modulation period of the main signal is set (step S603), and if the C / N judgment is “low”, the main signal is set. Switch to output the timing signal (step S504) of the BPSK modulation period.
一方、 AND回路 49 1には、 フレーム同期判定部 47が出力する判定結果と 誤り訂正検出部 44が出力する検出結果とが、 それぞれ入力される。 この AND 回路 49 1の出力は、 上記切替部 494が出力する信号とともに AND回路 49 5に入力される。 また、 OR回路 496は、 AND回路 495の出力とタイミン グ生成部 36が出力する BPSKタイミング信号とを入力する。 従って、 AND 回路 49 1, 495および OR回路 496によって、 位相同期がとれて、 かつ、 TMCCが正しく訂正された場合だけ、 切替部 494の出力信号がゲート信号と して出力され、 それ以外の場合には、 今までどおり BPSKタイミング信号 (図 6 (c) または (d) ) がゲート信号として出力される。 On the other hand, the determination result output from the frame synchronization determination unit 47 and the detection result output from the error correction detection unit 44 are input to the AND circuit 491. The output of the AND circuit 49 1 is output to the AND circuit 49 together with the signal output from the switching unit 494. Entered in 5. The OR circuit 496 receives the output of the AND circuit 495 and the BPSK timing signal output by the timing generator 36. Therefore, the output signal of the switching unit 494 is output as a gate signal only when the phase is synchronized by the AND circuits 495 and 495 and the OR circuit 496 and the TMCC is correctly corrected. As before, the BPSK timing signal (Fig. 6 (c) or (d)) is output as a gate signal.
このゲート信号は、 位相補正部 34 Cの位相誤差保持部 342へ出力される。 次に、 図 59を参照して、 復調モード切替部 50の動作を説明する。  This gate signal is output to the phase error holding unit 342 of the phase correction unit 34C. Next, the operation of the demodulation mode switching section 50 will be described with reference to FIG.
図 59は、 復調モード切替部 50が入力する各タイミング信号と出力する復調 モード信号とを示す図である。  FIG. 59 is a diagram showing each timing signal input to the demodulation mode switching unit 50 and the demodulation mode signal output.
復調モード切替部 50は、 タイミング生成部 36からフレーム同期信号/ TM CC信号期間およびキャリア同期補助信号期間のタイミング信号 (図 59 (b) ) と、 TMCCデコーダ 40から主信号 QPSKタイミング信号 (図 59 (c) ) , 主信号 BPSKタイミング信号 (図 59 (d) ) とを入力する。 復調モード 切替部 50は、 これらの各タイミング信号に基づいて、 BPSK変調信号の期間 を示す第 1の復調モード信号 (図 59 (e) ) と、 QP SK変調信号の期間を示 す第 2の復調モード信号 (図 59 (f ) ) とを生成し、 位相誤差検出部 341へ 出力する。  The demodulation mode switching unit 50 receives the timing signal (FIG. 59 (b)) of the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period from the timing generation unit 36, and the main signal QPSK timing signal (FIG. 59) from the TMCC decoder 40. (c)), and the main signal BPSK timing signal (Fig. 59 (d)). Based on these timing signals, the demodulation mode switching unit 50 performs a first demodulation mode signal (FIG. 59 (e)) indicating the period of the BPSK modulation signal and a second demodulation mode signal indicating the period of the QPSK modulation signal. A demodulation mode signal (FIG. 59 (f)) is generated and output to the phase error detector 341.
この第 1および第 2の復調モード信号は、 位相誤差検出部 34 1の復調モード を切り替えるのに用いられる。  The first and second demodulation mode signals are used to switch the demodulation mode of the phase error detection section 341.
次に、 位相補正部 34 Cの動作を説明する。  Next, the operation of the phase correction unit 34C will be described.
この位相補正部 34 Cは、 上記第 1の実施形態に係る復調装置の位相補正部 3 4に対し、 位相誤差検出部 341の構成のみが異なる。 従って、 以下、 図 60お よび図 61を参照して、 位相誤差検出部 341の動作を説明する。  The phase correction unit 34C differs from the phase correction unit 34 of the demodulation device according to the first embodiment only in the configuration of the phase error detection unit 341. Therefore, the operation of the phase error detection unit 341 will be described below with reference to FIGS. 60 and 61.
図 60は、 位相誤差検出部 341の構成を示すブロック図である。 図 60にお いて、 位相誤差検出部 341は、 BP S K位相誤差検出部 341 aと、 QP SK 位相誤差検出部 341 bと、 8 P S K位相誤差検出部 341 cと、 切替部 341 d, 341 eとを備える。 図 61は、 B P S K位相誤差検出部 341 a, QP S K位相誤差検出部 34 lbおよび 8PSK位相誤差検出部 341 cで行う位相誤 差検出を説明する図である。 FIG. 60 is a block diagram illustrating a configuration of the phase error detection unit 341. In FIG. 60, the phase error detection section 341 includes a BP SK phase error detection section 341 a and a QP SK It includes a phase error detection section 341b, an 8 PSK phase error detection section 341c, and switching sections 341d and 341e. FIG. 61 is a diagram for explaining the phase error detection performed by the BPSK phase error detection unit 341a, the QPSK phase error detection unit 34lb, and the 8PSK phase error detection unit 341c.
位相誤差を含んだ複素乗算部 344の出力は、 BPS K位相誤差検出部 341 a, QP SK位相誤差検出部 341 bおよび 8 P S K位相誤差検出部 341 cの 各々に入力される。 BP SK位相誤差検出部 341 aは、 BPSK変調軸 (0度 , 180度) に対する位相誤差を検出する (図 61 (a) ) 。 QPSK位相誤差 検出部 341 bは、 QP SK変調軸 (45度, 135度, 225度, 315度) に対する位相誤差を検出する (図 61 (b) )。 8PSK位相誤差検出部 341 cは、 8PSK変調軸 (0度, 45度, 90度, 135度, 180度, 225度 , 270度, 315度) に対する位相誤差を検出する (図 61 (c) ) 。 切替部 341 dは、 復調モード切替部 50が出力する第 2の復調モード信号 (図 59 ( d) を参照) を用いて、 Hi信号期間は、 QPSK位相誤差検出部 341 bが検 出した位相誤差を、 それ以外の期間は、 8PSK位相誤差検出部 341 c検出し た位相誤差を切替部 341 eへ出力するように切り替える。 切替部 341 eは、 復調モード切替部 50が出力する第 1の復調モード信号 (図 59 (e) を参照) を用いて、 Hi信号期間は、 BP SK位相誤差検出部 341 aが検出した位相誤 差を、 それ以外の期間は、 切替部 341 dが出力する位相誤差を位相誤差保持部 342へ出力するように切り替える。  The output of the complex multiplication unit 344 including the phase error is input to each of the BPSK phase error detection unit 341a, the QPSK phase error detection unit 341b, and the 8PSK phase error detection unit 341c. The BPSK phase error detector 341a detects a phase error with respect to the BPSK modulation axis (0 degree, 180 degrees) (FIG. 61 (a)). The QPSK phase error detection section 341b detects a phase error with respect to the QPSK modulation axis (45 degrees, 135 degrees, 225 degrees, 315 degrees) (FIG. 61 (b)). The 8PSK phase error detection unit 341c detects the phase error with respect to the 8PSK modulation axis (0, 45, 90, 135, 180, 225, 270, 315 degrees) (Fig. 61 (c)). . The switching unit 341 d uses the second demodulation mode signal (see FIG. 59 (d)) output from the demodulation mode switching unit 50 to determine the phase detected by the QPSK phase error detection unit 341 b during the Hi signal period. The error is switched to output the phase error detected by the 8PSK phase error detection unit 341c to the switching unit 341e during the other periods. The switching unit 341 e uses the first demodulation mode signal (see FIG. 59 (e)) output from the demodulation mode switching unit 50 to determine the phase detected by the BP SK phase error detection unit 341 a during the Hi signal period. The error is switched so that the phase error output from the switching unit 341 d is output to the phase error holding unit 342 during the other periods.
すなわち、 BPSK>QPSK>8PSKの優先順位で、 位相誤差検出部 34 1の復調モ一ドの切替が行われる。  That is, the demodulation mode of the phase error detector 341 is switched in the order of priority of BPSK> QPSK> 8PSK.
なお、 位相誤差保持部 342以降の動作は、 上記第 1の実施形態において説明 したのと同様であるが、 切換部 342 aおよび保持部 342 fを制御する信号と して、 タイミング生成部 36が出力するタイミング信号 (ゲート信号) ではなく ゲート信号選択部 49 Aが出力するゲート信号を用いる (図 55を参照) 。 これにより、 位相補正部 34 Cは、 第 1および第 2の復調モード信号およびゲ —ト信号に従って、 C/Nの状態に基づいた位相補正を行うことができる (ステ ヅプ S 505) 。 The operation after the phase error holding unit 342 is the same as that described in the first embodiment, except that the timing generation unit 36 outputs a signal for controlling the switching unit 342a and the holding unit 342f. The gate signal output by the gate signal selector 49A is used instead of the output timing signal (gate signal) (see FIG. 55). This allows the phase correction unit 34C to perform phase correction based on the C / N state in accordance with the first and second demodulation mode signals and the gate signal (step S505).
その内容を下記表 5に示す。  The contents are shown in Table 5 below.
なお、 下記表 5において 「BPSK同期信号期間」 とは、 フレーム同期信号/ TMCC信号期間およびキャリア同期補助信号期間の双方の期間 (上記図 6 (c ) のタイミング信号を用いた場合) 、 またはキャリア同期補助信号期間のみの期 間 (上記図 6 (d) のタイミング信号を用いた場合) を示している。  In Table 5 below, “BPSK synchronization signal period” refers to both the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period (when the timing signal in FIG. 6 (c) is used), or the carrier. The figure shows only the synchronization auxiliary signal period (when the timing signal in Fig. 6 (d) above is used).
【表 5】  [Table 5]
Figure imgf000110_0001
以上のように、 本発明の第 10の実施形態に係る復調装置は、 BP SK変調信 号期間で位相同期がされているときの C/N状態をキヤリア同期補助信号期間の 位相誤差に基づいて検出し、 当該 C/N状態および位相誤差検出部 341におい て設けた複数の位相変調方式に対応する基準位相に従って、 初期の搬送波再生で は B P S K変調されるフレーム同期信号/ TM C C信号期間およびキヤリァ同期 補助信号期間を用いて位相補正を行い、 位相同期後は当該期間以外の主信号の変 調期間においても位相補正を行う。
Figure imgf000110_0001
As described above, the demodulation device according to the tenth embodiment of the present invention determines the C / N state when the phase is synchronized in the BP SK modulation signal period based on the phase error in the carrier synchronization auxiliary signal period. According to the C / N state and the reference phase corresponding to a plurality of phase modulation schemes provided in the phase error detection section 341, the BPSK-modulated frame synchronization signal / TMCC signal period and carrier in the initial carrier recovery. The phase is corrected using the synchronization auxiliary signal period, and after the phase synchronization, the phase correction is also performed during the modulation period of the main signal other than the period.
これにより、 低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 BP SK, QP SKおよび 8 P SK変調がされる主信号の期間 における復調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することがで きる。 This enables stable and fast carrier synchronization even in low C / N conditions. In addition to this, it is possible to reduce the influence of the phase jitter of the demodulated signal during the period of the main signal on which the BP SK, QP SK, and 8 P SK modulation is performed, thereby improving the reception performance.
なお、 C/N検出部 48 Aにおける位相誤差検出部 48 1は位相補正部 34 C の位相誤差検出部 341と同様の機能を有しているので、 双方の位相誤差検出部 を共用化することが可能である。 共用化した場合は、 回路規模の削減を図ること ができる。 また、 フレーム同期判定部 47は、 位相同期を判定する方法の一例で あるため、 フレーム同期判定部 47の代わりに上記第 3の実施形態で述べた位相 同期検出部 43を用いても同様の効果が得られる。  The phase error detector 481 of the C / N detector 48A has the same function as the phase error detector 341 of the phase corrector 34C, so that both phase error detectors must be shared. Is possible. If they are shared, the circuit scale can be reduced. Further, since the frame synchronization determination unit 47 is an example of a method of determining phase synchronization, the same effect can be obtained even if the phase synchronization detection unit 43 described in the third embodiment is used instead of the frame synchronization determination unit 47. Is obtained.
(第 1 1の実施形態)  (Eleventh Embodiment)
本発明の第 1 1の実施形態に係る復調装置は、 上述した第 9および第 10の実 施形態と同様、 上記第 1の実施形態に係る復調装置において、 位相雑音に起因す る位相ジッ夕の影響を軽減して受信性能を向上させるものである。  The demodulation device according to the eleventh embodiment of the present invention is the same as the ninth and tenth embodiments described above, except that the demodulation device according to the first embodiment has a phase jitter caused by phase noise. Is reduced to improve the reception performance.
以下、 上述した位相ジッ夕の影響を軽減して受信性能を向上させる本発明の第 1 1の実施形態に係る復調装置について説明する。  Hereinafter, the demodulation device according to the eleventh embodiment of the present invention for reducing the influence of the above-described phase jitter and improving the reception performance will be described.
図 62は、 請求項 19, 37, 50に対応する、 本発明の第 1 1の実施形態に 係る復調装置の構成を示すブロック図である。 図 62において、 第 1 1の実施形 態に係る復調装置は、 直交検波部 31と、 周波数補正部 32と、 帯域制限フィル 夕 33と、 位相補正部 34 Cと、 フレーム同期検出部 35と、 タイミング生成部 FIG. 62 is a block diagram corresponding to Claims 19, 37, and 50, showing the configuration of the demodulation device according to the eleventh embodiment of the present invention. In FIG. 62, the demodulation device according to the first embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, Timing generator
36と、 誤り訂正検出部 44と、 フレーム同期判定部 47と、 ( /?^検出部48 Aと、 ゲート信号選択部 49 Bと、 復調モード切替部 5 OAと、 第 1の誤り訂正 部 37と、 第 2の誤り訂正部 38と、 ビデオデコーダ 39と、 TMCCデコーダ36, an error correction detection unit 44, a frame synchronization determination unit 47, a (/? ^ Detection unit 48A, a gate signal selection unit 49B, a demodulation mode switching unit 5OA, and a first error correction unit 37 , A second error correction unit 38, a video decoder 39, and a TMCC decoder
40と、 BER測定部 41とを備える。 40 and a BER measurement unit 41.
図 63は、 第 1 1の実施形態に係る復調装置が行う動作を示すフローチャート である。  FIG. 63 is a flowchart showing the operation performed by the demodulation device according to the first embodiment.
図 62に示すように、 第 1 1の実施形態に係る復調装置は、 上記第 1の実施形 態に係る復調装置に、 誤り訂正検出部 44とフレーム同期判定部 47と C/N検 出部 48 Aとゲート信号選択部 49Bと復調モード切替部 5 OAとをさらに加え 、 位相補正部 34を位相補正部 34 Cに代えた構成であり、 また、 上記第 10の 実施形態に係る復調装置に対して、 ゲート信号選択部 49 Aをゲート信号選択部 49Bに、 復調モード切替部 50を復調モード切替部 5 OAに代えた構成となる なお、 第 1 1の実施形態に係る復調装置のその他の構成は、 上記第 1および第 9〜第 10の実施形態に係る復調装置の構成と同様であり、 当該構成部分につい ては同一の参照番号を付してその説明を省略する。 As shown in FIG. 62, the demodulation device according to the eleventh embodiment The demodulator according to the embodiment further includes an error correction detection unit 44, a frame synchronization determination unit 47, a C / N detection unit 48A, a gate signal selection unit 49B, and a demodulation mode switching unit 5OA, and a phase correction unit 34 is added. In the demodulation device according to the tenth embodiment, the gate signal selection unit 49A is replaced with the gate signal selection unit 49B, and the demodulation mode switching unit 50 is replaced with the demodulation mode. The configuration of the demodulation device according to the first embodiment is the same as that of the demodulation devices according to the first and ninth to tenth embodiments. The same reference numerals are given to the components and the description is omitted.
また、 図 63において図 5, 図 49および図 56と同一の処理を行うステップ については、 同一のステップ番号を付してその説明を省略する。  Also, in FIG. 63, steps for performing the same processing as in FIGS. 5, 49 and 56 are denoted by the same step numbers, and description thereof is omitted.
まず、 図 64を参照して、 ゲート信号選択部 49 Bの動作を説明する。  First, the operation of the gate signal selection unit 49B will be described with reference to FIG.
図 64は、 ゲート信号選択部 49 Bの構成を示すブロック図である。 図 64に おいて、 ゲ一ト信号選択部 49 Bは、 AND回路 491 , 49 1 a, 495と、 定数発生部 492, 492 aと、 切替部 493, 494, 499と、 OR回路 4 96, 497と、 NOT回路 498とを備える。  FIG. 64 is a block diagram showing a configuration of gate signal selecting section 49B. In FIG. 64, the gate signal selection section 49 B includes AND circuits 491, 491 a, 495, constant generation sections 492, 492 a, switching sections 493, 494, 499, and an OR circuit 496, 497 and a NOT circuit 498.
ゲート信号選択部 49 Bにおいて、 OR回路 496の出力までは上記第 10の 実施形態で説明したとおりであり、 AND回路 49 1, 495および OR回路 4 96によって、 位相同期がとれて、 かつ、 TMCCが正しく訂正された場合だけ 、 切替部 494の出力信号がゲート信号として出力され、 それ以外の場合には、 今までどおり BPSKタイミング信号 (図 6 (c) または (d) ) がゲート信号 として出力される。  In the gate signal selection section 49B, the operation up to the output of the OR circuit 496 is as described in the tenth embodiment. The AND circuits 491, 495 and the OR circuit 496 achieve the phase synchronization and the TMCC The output signal of the switching section 494 is output as a gate signal only when is correctly corrected, otherwise, the BPSK timing signal (FIG. 6 (c) or (d)) is output as a gate signal as before. Is done.
一方、 AND回路 49 l aには、 C/N高レベル判定部 487が出力する判定 結果とフレーム同期判定部 47が出力する判定結果と誤り訂正検出部 44が出力 する検出結果の逆論理の信号 (NOT回路 498により論理値が反転) が入力さ れる。 切替部 499は、 フレーム同期信号/ TMCC信号期間およびキャリア同 期補助信号期間のタイミング信号と、 定数発生部 492 aが発生する 「定数 1」 とを入力し、 AND回路 49 1 aの出力に基づいて出力を切替える。 ここで、 切 替部 499は、 位相同期がとれて、 TMCCが正しく訂正されておらず、 かつ、 高 C/N状態である場合には、 定数発生部 492 aが発生する 「定数 1」 を、 そ れ以外の場合には、 OR回路 496が出力する信号をゲート信号として出力する ように切替える (ステップ S 701) 。 これにより、 TMCCが正しく訂正され ていないときでも、 つまり、 TMCCデコーダ 40から生成される主信号の夕ィ ミングを表す信号が信頼できないときでも、 位相同期がとれて、 かつ、 高 C/N 状態である場合には、 通信フレームの全期間において位相補正動作の実施を指示 する 「定数 1」 がゲート信号として出力される (ステップ S 702) 。 なお、 低 C/N状態である場合には、 BP SK期間の信号がゲ一ト信号として出力される (ステップ S 703) 。 On the other hand, the AND circuit 49 la includes a signal (inverse logic) of the determination result output from the C / N high-level determination unit 487, the determination result output from the frame synchronization determination unit 47, and the detection result output from the error correction detection unit 44. (The logical value is inverted by the NOT circuit 498). The switching unit 499 controls the period of the frame synchronization signal / TMCC signal and the carrier. The timing signal of the period auxiliary signal period and the “constant 1” generated by the constant generator 492a are input, and the output is switched based on the output of the AND circuit 491a. Here, the switching unit 499 outputs the “constant 1” generated by the constant generation unit 492a when the phase synchronization is obtained, the TMCC is not correctly corrected, and the C / N state is high. Otherwise, switching is performed so that the signal output from the OR circuit 496 is output as a gate signal (step S701). As a result, even when the TMCC is not correctly corrected, that is, when the signal representing the timing of the main signal generated from the TMCC decoder 40 is not reliable, the phase synchronization can be achieved and the high C / N state can be achieved. If, “constant 1” instructing execution of the phase correction operation is output as a gate signal during the entire period of the communication frame (step S702). In the case of the low C / N state, a signal in the BP SK period is output as a gate signal (step S703).
このゲート信号は、 位相補正部 34 Cの位相誤差保持部 342へ出力される。 次に、 図 65を参照して、 復調モード切替部 5 OAの動作を説明する。  This gate signal is output to the phase error holding unit 342 of the phase correction unit 34C. Next, the operation of the demodulation mode switching unit 5OA will be described with reference to FIG.
図 65は、 復調モード切替部 5 OAの構成を示すブロック図である。 図 65に おいて、 復調モード切替部 5 OAは、 AND回路 501~ 503と、 OR回路 5 04とを備える。  FIG. 65 is a block diagram showing a configuration of the demodulation mode switching unit 5OA. In FIG. 65, the demodulation mode switching unit 5 OA includes AND circuits 501 to 503 and an OR circuit 504.
AND回路 501は、 フレーム同期判定部 47が出力する判定結果と誤り訂正 検出部 44が出力する検出結果とを入力する。 AND回路 502は、 主信号 BP SKタイミング信号 (図 59 (d) を参照) と AND回路 50 1の出力とを入力 する。 AND回路 503は、 主信号 QPSKタイミング信号 (図 59 (c) を参 照) と AND回路 501の出力とを入力し、 論理結果を第 2の復調モード信号と して出力する。 〇R回路 504は、 フレーム同期信号/ TMCC信号期間および キャリア同期補助信号期間のタイミング信号 (図 59 (b) を参照) と AND回 路 502の出力とを入力し、 論理結果を第 1の復調モード信号として出力する。 このように、 ゲート信号選択部 49 Bと復調モード切替部 50Aとにより、 位 相補正部 34 Cを制御して、 TMCC信号が正しく訂正されて、 主信号の各変調 方式に対応して位相補正する前に、 同期がとれて、 かつ、 高 C/N状態である場 合には、 上記第 9の実施形態で説明したように主信号の期間を 8 P S Kとみなし て位相補正を行う (ステップ S 704, S 60 1 ) 。 その後は、 上記第 10の実 施形態で説明したのと同様に、 各変調方式に対応して位相補正を行う (ステップ S 502〜S 505, S 602〜S 603) 。 The AND circuit 501 inputs the determination result output from the frame synchronization determination unit 47 and the detection result output from the error correction detection unit 44. The AND circuit 502 inputs the main signal BP SK timing signal (see FIG. 59 (d)) and the output of the AND circuit 501. The AND circuit 503 receives the main signal QPSK timing signal (see FIG. 59 (c)) and the output of the AND circuit 501, and outputs the logic result as a second demodulation mode signal. 〇 The R circuit 504 inputs the timing signal (see Fig. 59 (b)) of the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period and the output of the AND circuit 502, and performs the first demodulation on the logical result. Output as a mode signal. Thus, the gate signal selection unit 49B and the demodulation mode switching unit 50A allow the If the TMCC signal is correctly corrected by controlling the phase corrector 34C, and before the phase correction corresponding to each modulation method of the main signal, synchronization is achieved and the C / N state is high. Then, as described in the ninth embodiment, the period of the main signal is regarded as 8 PSK, and the phase is corrected (steps S704 and S601). After that, in the same manner as described in the tenth embodiment, phase correction is performed corresponding to each modulation method (steps S502 to S505, S602 to S603).
その内容を下記表 6に示す。  The contents are shown in Table 6 below.
なお、 下記表 6において 「: BPS K同期信号期間」 とは、 フレーム同期信号/ TMCC信号期間およびキャリア同期補助信号期間の双方の期間 (上記図 6 (c ) のタイミング信号を用いた場合) 、 またはキャリア同期補助信号期間のみの期 間 (上記図 6 (d) のタイミング信号を用いた場合) を示している。  In Table 6 below, “: BPSK synchronization signal period” means the period of both the frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period (when the timing signal in FIG. 6 (c) is used). Alternatively, it shows only the carrier synchronization auxiliary signal period (when the timing signal in Fig. 6 (d) above is used).
【表 6】  [Table 6]
Figure imgf000114_0001
Figure imgf000114_0001
以上のように、 本発明の第 1 1の実施形態に係る復調装置は、 BPSK変調信 号期間で位相同期がされているときの C/N状態をキヤリア同期補助信号期間の 位相誤差に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フ レームの全期間において 8 P S K変調がされているとみなして位相誤差の補正を 行うと共に、 位相誤差検出部 341において設けた複数の位相変調方式に対応す る基準位相に従って、 初期の搬送波再生では B P S K変調されるフレーム同期信 号/ TMCC信号期間およびキヤリア同期補助信号期間を用いて位相補正を行い 、 位相同期後は当該期間以外の主信号の変調期間においても位相補正を行う。 これにより、 低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 BPSK, QP SKおよび 8 P SK変調がされる主信号の期間 における復調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することがで きる。 As described above, the demodulation device according to the first embodiment of the present invention uses the C / N state when the phase is synchronized in the BPSK modulation signal period based on the phase error in the carrier synchronization auxiliary signal period. If the detected C / N is at a predetermined level, The phase error is corrected by assuming that 8 PSK modulation is performed during the entire frame period, and the BPSK is recovered in the initial carrier wave recovery according to the reference phases corresponding to the multiple phase modulation methods provided in the phase error detection unit 341. The phase correction is performed using the modulated frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period, and after the phase synchronization, the phase correction is also performed in the modulation period of the main signal other than the period. This enables fast and stable carrier synchronization even in the low C / N state, and reduces the effect of demodulated signal phase jitter during the main signal that is BPSK, QPSK and 8PSK modulated. As a result, the reception performance can be improved.
(第 12の実施形態)  (Twelfth embodiment)
本発明の第 12の実施形態に係る復調装置は、 上述した第 9〜第 1 1の実施形 態と同様、 上記第 1の実施形態に係る復調装置において、 位相雑音に起因する位 相ジッ夕の影響を軽減して受信性能を向上させるものである。  The demodulator according to the twelfth embodiment of the present invention is the same as the ninth to eleventh embodiments, except that the demodulator according to the first embodiment has a phase jitter caused by phase noise. Is reduced to improve the reception performance.
以下、 上述した位相ジッ夕の影響を軽減して受信性能を向上させる本発明の第 12の実施形態に係る復調装置について説明する。  Hereinafter, a demodulation device according to a twelfth embodiment of the present invention that improves the reception performance by reducing the influence of the above-described phase jitter will be described.
図 66は、 請求項 20, 37, 51に対応する、 本発明の第 12の実施形態に 係る復調装置の構成を示すブロック図である。 図 66において、 第 12の実施形 態に係る復調装置は、 直交検波部 31と、 周波数補正部 32と、 帯域制限フィル 夕 33と、 位相補正部 34 Cと、 フレーム同期検出部 35と、 タイミング生成部 36と、 フレーム同期判定部 47と、 BER検出部 51と、 ゲート信号選択部 4 9と、 第 1の誤り訂正部 37と、 第 2の誤り訂正部 38と、 ビデオデコーダ 39 と、 TMCCデコーダ 40と、 BER測定部 41とを備える。  FIG. 66 is a block diagram showing a configuration of a demodulation device according to a twelfth embodiment of the present invention, corresponding to claims 20, 37, and 51. In FIG. 66, the demodulation device according to the twelfth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, Generating section 36, frame synchronization determining section 47, BER detecting section 51, gate signal selecting section 49, first error correcting section 37, second error correcting section 38, video decoder 39, TMCC It includes a decoder 40 and a BER measurement unit 41.
図 66に示すように、 第 12の実施形態に係る復調装置は、 上記第 1の実施形 態に係る復調装置に、 フレーム同期判定部 47と BE R検出部 51とゲート信号 選択部 49とをさらに加え、 位相補正部 34を位相補正部 34 Cに代えた構成で あり、 また、 上記第 9の実施形態に係る復調装置に対して、 〇 ?^検出部48を BER検出部 5 1に代えた構成となる。 As shown in FIG. 66, the demodulation device according to the twelfth embodiment is different from the demodulation device according to the first embodiment in that a frame synchronization determination unit 47, a BER detection unit 51, and a gate signal selection unit 49 are provided. In addition, the configuration is such that the phase correction unit 34 is replaced with a phase correction unit 34C. Further, in the demodulation device according to the ninth embodiment, a 〇? ^ Detection unit 48 is provided. This is a configuration in which the BER detector 51 is replaced.
なお、 第 12の実施形態に係る復調装置のその他の構成は、 上記第 1および第 9の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同一 の参照番号を付してその説明を省略する。  The other configuration of the demodulation device according to the twelfth embodiment is the same as the configuration of the demodulation device according to the first and ninth embodiments, and the same reference numerals are assigned to the components. The description is omitted.
また、 第 12の実施形態に係る復調装置が行う処理ステップは、 上記第 9の実 施形態において図 49で示した処理ステップと同様であるため、 その説明を省略 する。  The processing steps performed by the demodulation device according to the twelfth embodiment are the same as the processing steps shown in FIG. 49 in the ninth embodiment, and a description thereof will not be repeated.
以下、 異なる構成である BE R検出部 5 1を、 図 67を参照して説明する。 図 67は、 BER検出部 51の構成を示すブロック図である。 図 67において 、 BER検出部 51は、 誤り訂正再符号化部 5 1 1と、 比較部 512と、 C/N 高レベル判定部 513とを備える。  Hereinafter, the BER detection unit 51 having a different configuration will be described with reference to FIG. FIG. 67 is a block diagram illustrating a configuration of the BER detection unit 51. In FIG. 67, the BER detection unit 51 includes an error correction re-encoding unit 511, a comparison unit 512, and a C / N high level determination unit 513.
誤り訂正再符号化部 51 1は、 第 2の誤り訂正部 38が出力する誤り訂正がさ れている TMCC信号を入力する。 そして、 誤り訂正再符号化部 51 1は、 フレ —ム同期信号/ TMCC信号期間のタイミング信号に基づいて、 入力する誤り訂 正後の TMCC信号に対して再符号化を施す。 比較部 512は、 誤り訂正再符号 化部 51 1が出力する再符号化された TMCC信号と、 位相補正部 34 Cが出力 する誤り訂正がされていない信号とを入力する。 そして、 比較部 512は、 フレ —ム同期信号/ TMCC信号期間のタイミング信号に基づいて、 位相補正部 34 Cが出力する信号から TMCC信号の期間を抽出し、 この誤り訂正がされていな い TMCC信号と再符号化された TMCC信号とを比較してビット誤り率を算出 する。 C/N高レベル判定部 513は、 比較部 512が出力するビッ ト誤り率を 入力し、 当該ビット誤り率が予め定めたしきい値を下回るか否かによって C/N が高いか低いかを判定する (図 49, ステップ S 502を参照) 。 そして、 この 判定の結果、 ビット誤り率が予め定めたしきい値を下回った場合、 C/N高レべ ル判定部 513は、 C/Nが高いと判断し、 当該結果をゲート信号選択部 49に 対して出力する。 ここで、 C/N高レベル判定部 5 1 3におけるしきい値については、 上記第 9 の実施形態で述べたように、 低 C/N時に位相数の多い変調方式を位相補正に用 いることにより、 位相補正部 3 4 Cにおける位相誤差検出部 3 4 1が誤った位相 誤差情報を出力することがないように、 決定しなければならない。 The error correction re-encoding unit 511 receives the error-corrected TMCC signal output from the second error correction unit 38. Then, the error correction re-encoding unit 511 re-encodes the input error-corrected TMCC signal based on the frame synchronization signal / TMCC signal period timing signal. Comparing section 512 receives the re-encoded TMCC signal output from error-correcting re-encoding section 511 and the uncorrected signal output from phase correcting section 34C. Then, the comparing section 512 extracts the period of the TMCC signal from the signal output by the phase correction section 34C based on the timing signal of the frame synchronization signal / TMCC signal period, The bit error rate is calculated by comparing the signal and the re-encoded TMCC signal. C / N high level determination section 513 receives the bit error rate output from comparison section 512, and determines whether the C / N is high or low depending on whether the bit error rate falls below a predetermined threshold. Judge (see FIG. 49, step S502). If the bit error rate falls below a predetermined threshold as a result of this determination, C / N high level determination section 513 determines that C / N is high, and determines the result as a gate signal selection section. Output to 49. Here, as for the threshold value in the C / N high level determination section 5 13, as described in the ninth embodiment, a modulation method having a large number of phases when the C / N is low is used for phase correction. Therefore, the determination must be made so that the phase error detection section 341 of the phase correction section 34 C does not output erroneous phase error information.
例えば、 上記第 9の実施形態で用いた値 1 1 . 2 5 d e gについてしきい値を 算出してみる。 上述したように、 1 1 . 2 5 d e gにおける C/Nは、 上記式 ( 5 ) にから 8 . 3 d Bとなる。  For example, a threshold value will be calculated for the value 11.25 deg used in the ninth embodiment. As described above, the C / N at 11.25 deg is 8.3 dB from the above equation (5).
一方、 B P S K変調における C/N対ビット誤り率の関係は、 一般に図 6 8に 示すような関係になることが知られているので、 この図 6 8から 8 . 3 d B時に おけるビット誤り率を読みとると、 1 X 1 0— 4が求まる。 よって、 しきい値は、 1 X 1 0— 4を目安に設定すればよい。 On the other hand, the relationship between the C / N and the bit error rate in BPSK modulation is generally known to be as shown in FIG. 68, so the bit error rate at 8.3 dB from FIG. When reading a, 1 X 1 0- 4 is obtained. Therefore, the threshold may be set to measure the 1 X 1 0- 4.
以上のように、 本発明の第 1 2の実施形態に係る復調装置は、 B P S K変調信 号期間で位相同期がされているときの C / N状態を T M C C信号のビット誤り率 に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレームの 主信号期間に対しても 8 P S K変調がされているとみなして位相誤差の補正を行 う。  As described above, the demodulation device according to the 12th embodiment of the present invention detects the C / N state when phase synchronization is performed during the BPSK modulation signal period based on the bit error rate of the TMCC signal. If the C / N is at a predetermined level, the phase error is corrected on the assumption that the 8 PSK modulation is also performed for the main signal period of the communication frame.
これにより、 低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 復調信号の位相ジッ夕の影響を軽減して受信性能を向上するこ とができる。  As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal can be reduced to improve the reception performance.
(第 1 3の実施形態)  (Third Embodiment)
本発明の第 1 3の実施形態に係る復調装置は、 上述した第 9〜第 1 2の実施形 態と同様、 上記第 1の実施形態に係る復調装置において、 位相雑音に起因する位 相ジッ夕の影響を軽減して受信性能を向上させるものである。  The demodulation device according to the thirteenth embodiment of the present invention is the same as the ninth to twelfth embodiments, except that the demodulation device according to the first embodiment has a phase jitter caused by phase noise. The effect of the evening is reduced to improve the reception performance.
以下、 上述した位相ジッ夕の影響を軽減して受信性能を向上させる本発明の第 1 3の実施形態に係る復調装置について説明する。  Hereinafter, a demodulation device according to a thirteenth embodiment of the present invention, which improves the reception performance by reducing the influence of the above-described phase jitter, will be described.
図 6 9は、 請求項 2 1 , 3 7 , 5 2に対応する、 本発明の第 1 3の実施形態に 係る復調装置の構成を示すブロック図である。 図 69において、 第 13の実施形 態に係る復調装置は、 直交検波部 31と、 周波数補正部 32と、 帯域制限フィル 夕 33と、 位相補正部 34 Cと、 フレーム同期検出部 35と、 タイミング生成部 36と、 誤り訂正検出部 44と、 フレーム同期判定部 47と、 BER検出部 51 Aと、 ゲート信号選択部 49 Aと、 復調モード切替部 50と、 第 1の誤り訂正部 37と、 第 2の誤り訂正部 38と、 ビデオデコーダ 39と、 TMCCデコーダ 4 0と、 BER測定部 41とを備える。 FIG. 69 shows a thirteenth embodiment of the present invention corresponding to claims 21, 37, 52. FIG. 3 is a block diagram illustrating a configuration of the demodulation device. In FIG. 69, the demodulation device according to the thirteenth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, A generation unit 36, an error correction detection unit 44, a frame synchronization determination unit 47, a BER detection unit 51A, a gate signal selection unit 49A, a demodulation mode switching unit 50, a first error correction unit 37, It includes a second error correction section 38, a video decoder 39, a TMCC decoder 40, and a BER measurement section 41.
図 69に示すように、 第 13の実施形態に係る復調装置は、 上記第 1の実施形 態に係る復調装置に、 誤り訂正検出部 44とフレーム同期判定部 47と BE R検 出部 51 Aとゲート信号選択部 49 Aと復調モード切替部 50とをさらに加え、 位相補正部 34を位相補正部 34 Cに代えた構成であり、 また、 上記第 10の実 施形態に係る復調装置に対して、 C/N検出部 48 Aを BER検出部 5 1 Aに代 えた構成となる。  As shown in FIG. 69, the demodulation device according to the thirteenth embodiment is different from the demodulation device according to the first embodiment in that an error correction detection unit 44, a frame synchronization determination unit 47, and a BER detection unit 51A And a gate signal selection unit 49A and a demodulation mode switching unit 50, and the phase correction unit 34 is replaced with a phase correction unit 34C. In addition, the demodulation device according to the tenth embodiment Thus, the configuration is such that the C / N detection unit 48A is replaced by the BER detection unit 51A.
なお、 第 13の実施形態に係る復調装置のその他の構成は、 上記第 1および第 10の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同 一の参照番号を付してその説明を省略する。  The rest of the configuration of the demodulation device according to the thirteenth embodiment is the same as that of the demodulation devices according to the first and tenth embodiments, and the same reference numerals are given to the components. The description is omitted.
また、 第 13の実施形態に係る復調装置が行う処理ステップは、 上記第 10の 実施形態において図 56で示した処理ステップと同様であるため、 その説明を省 略する。  Further, the processing steps performed by the demodulation device according to the thirteenth embodiment are the same as the processing steps shown in FIG. 56 in the tenth embodiment, and thus description thereof will be omitted.
以下、 異なる構成である BER検出部 51 Aを、 図 70を参照して説明する。 図 70は、 BER検出部 51 Aの構成を示すプロック図である。 図 70におい て、 BER検出部 51 Aは、 誤り訂正再符号化部 5 1 1と、 比較部 512と、 C /N高レベル判定部 513と、 C/N低レベル判定部 5 14とを備える。  Hereinafter, a BER detection unit 51A having a different configuration will be described with reference to FIG. FIG. 70 is a block diagram illustrating a configuration of the BER detection unit 51A. In FIG. 70, BER detection section 51A includes error correction and re-encoding section 5 11, comparison section 512, C / N high level determination section 513, and C / N low level determination section 514. .
誤り訂正再符号化部 5 1 1は、 第 2の誤り訂正部 38が出力する誤り訂正がさ れている TMCC信号を入力する。 そして、 誤り訂正再符号化部 51 1は、 フレ —ム同期信号/ TMCC信号期間のタイミング信号に基づいて、 入力する誤り訂 正後の TMCC信号に対して再符号化を施す。 比較部 512は、 誤り訂正再符号 化部 51 1が出力する再符号化された TMCC信号と、 位相補正部 34 Cが出力 する誤り訂正がされていない信号とを入力する。 そして、 比較部 512は、 フレ ーム同期信号/ TMCC信号期間のタイミング信号に基づいて、 位相補正部 34 Cが出力する信号から T M C C信号の期間を抽出し、 この誤り訂正がされていな い TMCC信号と再符号化された TMCC信号とを比較してビッ ト誤り率を算出 する。 C/N高レベル判定部 513は、 比較部 5 12が出力するビッ ト誤り率を 入力し、 当該ビット誤り率が予め定めた第 1のしきい値を下回るか否かによって C/Nが高いかを判定する (図 56, ステヅプ S 502を参照) 。 一方、 C/N 低レベル判定部 514は、 比較部 512が出力するビッ ト誤り率を入力し、 当該 ビッ ト誤り率が予め定めた第 2のしきい値を上回るか否かによって C/Nが低い かを判定する (図 56, ステップ S 602を参照) 。 そして、 この判定の結果、 ビット誤り率が予め定めた第 1のしきい値を下回った場合、 C/N高レベル判定 部 5 13は、 C/Nが高いと判断し、 当該結果をゲート信号選択部 49 Aに対し て出力し、 ビット誤り率が予め定めた第 2のしきい値を上回った場合、 C/N低 レベル判定部 514は、 C/Nが低いと判断し、 当該結果をゲート信号選択部 4 9 Aに対して出力する。 The error correction re-encoding unit 511 receives the error-corrected TMCC signal output from the second error correction unit 38. Then, the error correction re-encoding unit 5111 receives the input error correction based on the timing signal in the frame synchronization signal / TMCC signal period. Re-encoding is performed on the TMCC signal after the correction. Comparing section 512 receives the re-encoded TMCC signal output from error-correcting re-encoding section 511 and the uncorrected signal output from phase correcting section 34C. Then, comparing section 512 extracts the period of the TMCC signal from the signal output from phase correcting section 34C based on the timing signal of the frame synchronization signal / TMCC signal period, and extracts the error-corrected TMCC signal. The bit error rate is calculated by comparing the signal and the re-encoded TMCC signal. C / N high level determination section 513 receives the bit error rate output from comparison section 512, and has a high C / N depending on whether or not the bit error rate falls below a predetermined first threshold value. (See FIG. 56, step S502). On the other hand, C / N low-level determining section 514 receives the bit error rate output from comparing section 512, and determines whether the bit error rate exceeds a predetermined second threshold value. Is determined (see FIG. 56, step S602). If the bit error rate falls below a predetermined first threshold value as a result of this determination, the C / N high-level determination unit 513 determines that C / N is high, and determines the result as a gate signal. Output to selection section 49A, and if the bit error rate exceeds a second predetermined threshold, C / N low level determination section 514 determines that C / N is low and determines the result. Output to gate signal selector 49A.
ここで、 例えば、 C/N高レベル判定部 513における第 1のしきい値につい ては、 上述したように 1 X 10— 4とすればよい。 Here, for example, it is about the first threshold value in C / N and high-level determination unit 513 may be the 1 X 10- 4 as described above.
また、 C/N低レベル判定部 514における第 2のしきい値については、 上記 第 10の実施形態で用いた値 22. 5 [d e g] における C/N = 3 d Bに従つ て図 68から読みとると、 2. 3 x 10— 2が求まる。 よって、 第 1のしきい値は 、 1 X 10—4を、 第 2のしきい値は、 2. 3 X 10 を目安に設定すればよい。 以上のように、 本発明の第 13の実施形態に係る復調装置は、 BP SK変調信 号期間で位相同期がされているときの C/N状態を TMC C信号のビヅト誤り率 に基づいて検出し、 当該 C/N状態および位相誤差検出部 341において設けた 複数の位相変調方式に対応する基準位相に従って、 初期の搬送波再生では BP S K変調されるフレーム同期信号/ TM C C信号期間およびキヤリァ同期補助信号 期間を用いて位相補正を行い、 位相同期後は当該期間以外の主信号の変調期間に おいても位相補正を行う。 Further, the second threshold value in C / N low level determination section 514 is determined according to C / N = 3 dB at value 22.5 [deg] used in the tenth embodiment, as shown in FIG. When reading from, 2. 3 x 10- 2 is obtained. Therefore, the first threshold value, a 1 X 10- 4, the second threshold may be set to a guide 2. 3 X 10. As described above, the demodulation device according to the thirteenth embodiment of the present invention detects the C / N state when phase synchronization is performed during the BP SK modulation signal period based on the bit error rate of the TMC C signal. Provided in the C / N state and phase error detection section 341 According to the reference phase corresponding to a plurality of phase modulation methods, the phase is corrected using the BP SK modulated frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period in the initial carrier recovery, and the corresponding period after the phase synchronization The phase correction is also performed during the modulation period of the main signal other than.
これにより、 低 C/N状態においても高速かつ安定にキヤリア同期を行うこと ができると共に、 BPSK, QP SKおよび 8P SK変調がされる主信号の期間 における復調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することがで きる。  As a result, carrier synchronization can be performed quickly and stably even in a low C / N state, and the effect of the phase jitter of the demodulated signal during the period of the main signal subjected to BPSK, QP SK and 8P SK modulation is reduced. As a result, the reception performance can be improved.
(第 14の実施形態)  (14th embodiment)
本発明の第 14の実施形態に係る復調装置は、 上述した第 9〜第 13の実施形 態と同様、 上記第 1の実施形態に係る復調装置において、 位相雑音に起因する位 相ジッ夕の影響を軽減して受信性能を向上させるものである。  The demodulation device according to the fourteenth embodiment of the present invention is similar to the ninth to thirteenth embodiments described above, except that in the demodulation device according to the first embodiment, phase demodulation caused by phase noise is reduced. The effect is reduced to improve the reception performance.
以下、 上述した位相ジッ夕の影響を軽減して受信性能を向上させる本発明の第 14の実施形態に係る復調装置について説明する。  Hereinafter, a demodulation device according to a fourteenth embodiment of the present invention that improves the reception performance by reducing the influence of the above-described phase jitter will be described.
図 71は、 請求項 22, 37, 53に対応する、 本発明の第 14の実施形態に 係る復調装置の構成を示すブロック図である。 図 7 1において、 第 14の実施形 態に係る復調装置は、 直交検波部 31と、 周波数補正部 32と、 帯域制限フィル 夕 33と、 位相補正部 34 Cと、 フレーム同期検出部 35と、 夕イミング生成部 FIG. 71 is a block diagram showing a configuration of a demodulation device according to a fourteenth embodiment of the present invention, which corresponds to claims 22, 37, and 53. In FIG. 71, the demodulation device according to the fourteenth embodiment includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34C, a frame synchronization detection unit 35, Evening generator
36と、 誤り訂正検出部 44と、 フレーム同期判定部 47と、 BER検出部 51 Aと、 ゲート信号選択部 49 Bと、 復調モード切替部 5 OAと、 第 1の誤り訂正 部 37と、 第 2の誤り訂正部 38と、 ビデオデコーダ 39と、 TMCCデコーダ36, an error correction detection unit 44, a frame synchronization determination unit 47, a BER detection unit 51A, a gate signal selection unit 49B, a demodulation mode switching unit 5OA, a first error correction unit 37, 2 error correction unit 38, video decoder 39, TMCC decoder
40と、 BER測定部 41とを備える。 40 and a BER measurement unit 41.
図 71に示すように、 第 14の実施形態に係る復調装置は、 上記第 1の実施形 態に係る復調装置に、 誤り訂正検出部 44とフレーム同期判定部 47と BER検 出部 51 Aとゲート信号選択部 49 Bと復調モード切替部 5 OAとをさらに加え 、 位相補正部 34を位相補正部 34 Cに代えた構成であり、 また、 上記第 1 1の 実施形態に係る復調装置に対して、 C/N検出部 4 8 Aを B E R検出部 5 1 Aに 代えた構成となる。 As shown in FIG. 71, the demodulator according to the fourteenth embodiment is different from the demodulator according to the first embodiment in that an error correction detector 44, a frame synchronization determiner 47, and a BER detector 51A are provided. The configuration is such that a gate signal selection unit 49B and a demodulation mode switching unit 5OA are further added, and the phase correction unit 34 is replaced with a phase correction unit 34C. The demodulation device according to the embodiment has a configuration in which the C / N detection unit 48A is replaced with a BER detection unit 51A.
なお、 第 1 4の実施形態に係る復調装置のその他の構成は、 上記第 1および第 1 1の実施形態に係る復調装置の構成と同様であり、 当該構成部分については同 一の参照番号を付してその説明を省略する。  The rest of the configuration of the demodulation device according to the fourteenth embodiment is the same as the configuration of the demodulation device according to the first and eleventh embodiments, and the same reference numerals are used for the components. The description is omitted here.
また、 第 1 4の実施形態に係る復調装置が行う処理ステップは、 上記第 1 1の 実施形態において図 6 3で示した処理ステップと同様であるため、 その説明を省 略する。  Also, the processing steps performed by the demodulation device according to the fourteenth embodiment are the same as the processing steps shown in FIG. 63 in the above-described first embodiment, and thus description thereof will be omitted.
以上のように、 本発明の第 1 4の実施形態に係る復調装置は、 B P S K変調信 号期間で位相同期がされているときの C/N状態を T M C C信号のビッ ト誤り率 に基づいて検出し、 当該 C/Nが予め定めたレベルである場合、 通信フレームの 全期間において 8 P S K変調がされているとみなして位相誤差の補正を行うと共 に、 位相誤差検出部 3 4 1において設けた複数の位相変調方式に対応する基準位 相に従って、 初期の搬送波再生では B P S K変調されるフレーム同期信号/ T M C C信号期間およびキヤリア同期補助信号期間を用いて位相補正を行い、 位相同 期後は当該期間以外の主信号の変調期間においても位相補正を行う。  As described above, the demodulation device according to the fourteenth embodiment of the present invention detects the C / N state when the phase is synchronized during the BPSK modulation signal period based on the bit error rate of the TMCC signal. However, when the C / N is at a predetermined level, it is assumed that 8 PSK modulation is performed during the entire period of the communication frame, and the phase error is corrected. According to the reference phase corresponding to the multiple phase modulation methods, the phase is corrected using the BPSK-modulated frame synchronization signal / TMCC signal period and the carrier synchronization auxiliary signal period in the initial carrier recovery, and after the phase homology period, the phase correction is performed. The phase correction is also performed during the modulation period of the main signal other than the period.
これにより、 低 C/N状態においても高速かつ安定にキヤリァ同期を行うこと ができると共に、 B P S K, Q P S Kおよび 8 P S K変調がされる主信号の期間 における復調信号の位相ジッ夕の影響を軽減して、 受信性能を向上することがで きる。  This enables fast and stable carrier synchronization even in the low C / N state, and reduces the effect of the phase jitter of the demodulated signal during the period of the main signal subjected to BPSK, QPSK and 8PSK modulation. Therefore, the reception performance can be improved.
なお、 上記第 9〜第 1 4の実施形態に係る復調装置において、 定常復調に至つ てからも、 C/Nの状態を監視して、 その C/N検出結果により、 位相補正の対 象を変化させることにより、 復調信号の位相ジッ夕の影響を軽減して、 受信性能 を向上できるのは言うまでもない。  In the demodulators according to the ninth to fourteenth embodiments, even after steady demodulation, the state of C / N is monitored, and the target of phase correction is determined based on the C / N detection result. It is needless to say that by changing the value, the effect of the phase jitter of the demodulated signal can be reduced and the receiving performance can be improved.
なお、 上記第 2〜第 8の実施形態に係る復調装置は、 それぞれ基本となる第 1 の実施形態に係る復調装置に対して擬似同期を回避することを目的とし、 上記第 9〜第 14の実施形態に係る復調装置は、 それぞれ基本となる第 1の実施形態に 係る復調装置に対して位相ジッ夕の影響を軽減することを目的として個々に記載 した。 しかし、 上記第 2〜第 8の実施形態に係る復調装置の構成と、 上記第 9〜 第 14の実施形態に係る復調装置の構成とをそれぞれ組み合わせることにより、 擬似同期の回避と位相ジッ夕の影響の軽減とを同時に実現することができる (請 求項 23〜 32, 54〜63) 。 Note that the demodulation devices according to the second to eighth embodiments have the purpose of avoiding pseudo-synchronization with respect to the demodulation device according to the first embodiment. The demodulation devices according to the ninth to fourteenth embodiments have been individually described for the purpose of reducing the influence of the phase jitter on the basic demodulation device according to the first embodiment. However, by combining the configurations of the demodulation devices according to the second to eighth embodiments and the configurations of the demodulation devices according to the ninth to fourteenth embodiments, respectively, it is possible to avoid pseudo synchronization and reduce phase jitter. The effect can be reduced at the same time (claims 23-32, 54-63).
また、 上記第 1〜第 14の実施形態では、 時分割多重を行う変調方式として B P SK、 QP SK、 8 P SKを取り上げて説明したが、 キャリア同期補助信号の 変調方式を時分割多重される n相位相変調のうち最も位相数 nの少ない位相変調 とすれば、 他の変調方式においても上述と同様の効果を得ることができる。 さらに、 各通信フレーム内のフレーム同期信号の設置位置が、 キャリア同期補 助信号の挿入周期にあたる位置とある程度近い場合には、 上記第 9の実施形態で 述べたフレーム同期判定部 47 (図 50) の構成を、 上記第 3, 第 5および第 7 の実施形態における位相同期検出部 43へ、 上記第 4, 第 6および第 8の実施形 態における第 1の位相同期検出部 43 Aへそれぞれ用いることが可能であり、 こ れにより回路の簡素化を図ることができる。  Further, in the first to fourteenth embodiments, BP SK, QP SK, and 8 P SK are described as the modulation schemes for performing time division multiplexing. However, the modulation scheme of the carrier synchronization auxiliary signal is time division multiplexed. If the phase modulation having the smallest number of phases n among the n-phase phase modulations, the same effect as described above can be obtained in other modulation methods. Further, when the installation position of the frame synchronization signal in each communication frame is somewhat close to the position corresponding to the insertion period of the carrier synchronization auxiliary signal, the frame synchronization determination unit 47 described in the ninth embodiment (FIG. 50) Is applied to the phase synchronization detection unit 43 in the third, fifth, and seventh embodiments, and to the first phase synchronization detection unit 43A in the fourth, sixth, and eighth embodiments, respectively. It is possible to simplify the circuit.
(3) その他の送信系および受信系 (3) Other transmission and reception systems
上記 ( 1) 送信系および (2) 受信系の説明においては、 通信フレーム内に B P S K変調のキヤリァ同期補助信号を分散挿入し、 このキヤリァ同期補助信号を 用いて周波数 ·位相補正する変調 ·復調装置および方法を説明した。  In the above description of (1) the transmission system and (2) the reception system, the modulation / demodulation device which dispersively inserts the BPSK modulated carrier synchronization auxiliary signal into the communication frame and corrects the frequency and phase using this carrier synchronization auxiliary signal. And the method was explained.
ここで、 上述したように、 主信号には低階層信号、 すなわち、 BP SK変調さ れている信号が存在する (図 2を参照) 。 従って、 この BPS K変調の主信号で ある低階層信号をも初期の搬送波再生に用いれば、 さらに高速かつ安定に同期を 行うことができる。  Here, as described above, the main signal includes a low-layer signal, that is, a signal subjected to BPSK modulation (see FIG. 2). Therefore, if the lower hierarchical signal, which is the main signal of the BPSK modulation, is also used for the initial carrier recovery, synchronization can be performed at higher speed and more stably.
そこで、 以下においては、 BP SK変調されている低階層信号をも利用して搬 送波再生を行える変調 ·復調装置および方法について説明する。 Therefore, in the following, the BP SK modulated low-layer signal is also used to carry A modulation and demodulation device and method capable of transmitting and reproducing waves will be described.
(変調装置および方法の他の実施形態)  (Other Embodiments of Modulator and Method)
図 7 2は、 請求項 3, 4 , 7 , 8に対応する、 本発明の一実施形態に係る他の 変調装置の構成を示すブロック図である。 図 7 2において、 本発明の一実施形態 に係る他の変調装置は、 フレーム同期信号/ T M C C信号生成部 1 1と、 T Sパ ケット合成部 1 2と、 T M C C誤り訂正符号化部 1 3と、 第 1の誤り訂正符号化 部 1 4と、 第 2の誤り訂正符号化部 1 5と、 第 1の B P S Kマッピング部 1 6と 、 B P S K/Q P S Kマッピング部 1 7と、 8 P S Kマッピング部 1 8と、 多重 化/直交変調部 1 9と、 同期補助信号生成部 2 2と、 差動符号化部 2 3と、 第 2 の B P S Kマツビング部 2 1とを備える。  FIG. 72 is a block diagram showing a configuration of another modulation device according to an embodiment of the present invention, which corresponds to claims 3, 4, 7, and 8. In FIG. 72, another modulation device according to an embodiment of the present invention includes a frame synchronization signal / TMCC signal generation unit 11, a TS packet synthesis unit 12, a TMCC error correction encoding unit 13, A first error correction coding unit 14, a second error correction coding unit 15, a first BPSK mapping unit 16, a BPSK / QPSK mapping unit 17, and a 8 PSK mapping unit 18; A multiplexing / quadrature modulation unit 19, a synchronization auxiliary signal generation unit 22, a differential encoding unit 23, and a second BPSK mapping unit 21.
図 7 3は、 本発明の一実施形態に係る他の変調装置において生成される通信フ レームの一例を示した図である。  FIG. 73 is a diagram illustrating an example of a communication frame generated in another modulation device according to an embodiment of the present invention.
図 7 2に示すように、 他の変調装置は、 上記変調装置 (図 1を参照) に、 差動 符号化部 2 3をさらに加え、 同期補助信号生成部 2 0を同期補助信号生成部 2 2 に代えた構成となる。  As shown in FIG. 72, the other modulation apparatus further includes a differential encoding section 23 in addition to the above-mentioned modulation apparatus (see FIG. 1), and a synchronization auxiliary signal generation section 20 is added to the synchronization auxiliary signal generation section 2. The configuration is replaced with 2.
なお、 他の変調装置のその他の構成は、 上記変調装置の構成と同様であり、 当 該構成部分については同一の参照番号を付してその説明を省略する。  The other configurations of the other modulation devices are the same as those of the above-described modulation device, and the corresponding components are denoted by the same reference numerals and description thereof will be omitted.
以下、 他の変調装置が上記変調装置と異なる構成である、 同期補助信号生成部 2 2および差動符号化部 2 3の動作を説明する。  Hereinafter, operations of the synchronization auxiliary signal generation unit 22 and the differential encoding unit 23, in which another modulation device has a different configuration from the above-described modulation device, will be described.
同期補助信号発生部 2 2は、 上述したようにキヤリア同期補助信号を生成する 。 このとき、 同期補助信号発生部 2 2は、 入力する T M C C情報に基づいて、 図 7 3に示すように、 キヤリア同期補助信号を挿入する位置の次のパケットに施さ れる変調方式を定義した情報を重畳する。 差動符号化部 2 3は、 変調方式情報が 重畳したキヤリア同期補助信号を入力し、 復調装置においてキヤリア同期がされ ていない状態でも変調方式情報を復号できるように、 変調方式情報に差動符号化 を施す。 そして、 この差動符号化された変調方式情報を重畳したキャリア同期補 助信号は、 第 2の BP SKマツビング部 21に入力される。 The synchronization auxiliary signal generator 22 generates the carrier synchronization auxiliary signal as described above. At this time, based on the input TMCC information, the synchronization auxiliary signal generation unit 22 transmits information defining the modulation scheme to be applied to the packet next to the position where the carrier synchronization auxiliary signal is inserted, as shown in FIG. Superimpose. The differential encoding unit 23 receives the carrier synchronization auxiliary signal on which the modulation scheme information is superimposed, and performs differential encoding on the modulation scheme information so that the demodulation apparatus can decode the modulation scheme information even when the carrier is not synchronized. Is applied. Then, a carrier synchronization complement in which the differentially encoded modulation scheme information is superimposed. The auxiliary signal is input to the second BP SK matting unit 21.
以降の動作は、 上述したとおりである。  The subsequent operation is as described above.
上記同期補助信号生成部 22および差動符号化部 23が行う動作を、 具体的な 値を一例に挙げて説明する。  The operations performed by the synchronization auxiliary signal generation unit 22 and the differential encoding unit 23 will be described using specific values as an example.
今、 1パケット中に 4シンボル (=4ビット) のキャリア同期補助信号を 4つ 挿入する通信フレームを生成する場合を考える。 このとき、 同期補助信号生成部 22で生成する各変調方式のキヤリア同期補助信号 (4 X 4 = 16ビット) を以 下のように設定する。  Now, consider a case where a communication frame is generated in which four carrier synchronization auxiliary signals of four symbols (= 4 bits) are inserted in one packet. At this time, the carrier synchronization auxiliary signal (4 × 4 = 16 bits) of each modulation scheme generated by the synchronization auxiliary signal generation unit 22 is set as follows.
8PSK : 0111111111 111111  8PSK: 0111111111 111111
QP SK : 0010101010101010  QP SK: 0010101010101010
BP SK : 0101010101010101  BP SK: 0101010101010101
このキヤリア同期補助信号に対して、 差動符号化部 23でそれぞれ差動符号化を 施すと、 以下ようになる。 When differential encoding is performed on the carrier synchronization auxiliary signal by the differential encoding unit 23, respectively, the following is obtained.
8PSK : 0101010101010101  8PSK: 0101010101010101
QP SK : 0011001100110011  QP SK: 0011001100110011
BPSK : 0110011001 100110  BPSK: 0110011001 100110
この差動符号化後のキヤリア同期補助信号を、 後述する復調装置において復号 すると、 以下のようになる。  When the carrier synchronization auxiliary signal after differential encoding is decoded by a demodulation device described later, the result is as follows.
8PSK : X 111111111 111111  8PSK: X 111111111 111111
QP SK : X010101010101010  QP SK: X010101010101010
BP SK : X101010101010101  BP SK: X101010101010101
このように、 差動符号化後のキャリア同期補助信号は、 1または 0が連続する ことがないため、 変調波にキャリアが立つことがなく、 また、 差動復号後 2b i tごとに同一パターンが 7回ずつ現れるので、 復調装置において多数決判決用い て信頼性を高めることができる。  In this way, the carrier synchronization auxiliary signal after differential encoding has no consecutive 1's or 0's, so that the carrier does not rise in the modulated wave, and the same pattern every 2 bits after differential decoding. Since the signal appears seven times, reliability can be improved by using a majority decision in the demodulator.
以上のように、 本発明の一実施形態に係る他の変調装置によれば、 復調装置に おいて次のパケッ卜の変調方式を定義する情報を重畳したキヤリア同期を補助す る信号を、 低 C/N状態に対して強い B P S Kにより変調し、 パケッ ト内に分散 して挿入した通信フレームを出力する。 As described above, according to another modulation device according to an embodiment of the present invention, a demodulation device A signal that assists carrier synchronization, superimposed with information that defines the modulation scheme for the next packet, is modulated by BPSK, which is strong against low C / N conditions, and is distributed and inserted into the packet. Is output.
これにより、 復調装置において、 低 C/N状態においてもパケット内に分散さ せた B P S Kのキヤリァ同期補助信号および B P S K変調された主信号を用いて 高速かつ安定にキヤリア同期を行うことができる。  As a result, in the demodulation device, even in the low C / N state, high-speed and stable carrier synchronization can be performed using the BPSK carrier synchronization auxiliary signal dispersed in the packet and the BPSK modulated main signal.
(復調装置および方法の他の実施形態)  (Other Embodiments of Demodulator and Method)
次に、 上述した本発明の一実施形態に係る他の変調装置において生成された通 信フレームを復調する復調装置および方法を、 以下に説明する。  Next, a demodulation device and a method for demodulating a communication frame generated in another modulation device according to an embodiment of the present invention will be described below.
図 7 4は、 請求項 3 8, 6 4に対応する、 本発明の一実施形態に係る他の復調 装置の構成を示すプロック図である。 図 7 4において、 本発明の一実施形態に係 る他の復調装置は、 直交検波部 3 1と、 周波数補正部 3 2と、 帯域制限フィル夕 3 3と、 位相補正部 3 4と、 フレーム同期検出部 3 5と、 タイミング生成部 3 6 Aと、 キャリア同期補助信号デコーダ 5 2と、 第 1の誤り訂正部 3 7と、 第 2の 誤り訂正部 3 8と、 ビデオデコーダ 3 9と、 T M C Cデコーダ 4 0と、 B E R測 定部 4 1とを備える。  FIG. 74 is a block diagram showing a configuration of another demodulation device according to an embodiment of the present invention, which corresponds to claims 38 and 64. In FIG. 74, another demodulation device according to an embodiment of the present invention includes a quadrature detection unit 31, a frequency correction unit 32, a band limiting filter 33, a phase correction unit 34, and a frame. A synchronization detection unit 35, a timing generation unit 36A, a carrier synchronization auxiliary signal decoder 52, a first error correction unit 37, a second error correction unit 38, a video decoder 39, It includes a TMCC decoder 40 and a BER measurement unit 41.
図 7 4に示すように、 一実施形態に係る他の復調装置は、 上記第 1の実施形態 に係る復調装置に、 キャリア同期補助信号デコーダ 5 2をさらに加え、 タイミン グ生成部 3 6をタイミング生成部 3 6 Aに代えた構成である。  As shown in FIG. 74, another demodulation device according to one embodiment further includes a carrier synchronization auxiliary signal decoder 52 added to the demodulation device according to the first embodiment, and a timing generation unit 36 This is a configuration in which the generator 36A is replaced.
なお、 一実施形態に係る他の復調装置のその他の構成は、 上記第 1の実施形態 に係る復調装置の構成と同様であり、 当該構成部分については同一の参照番号を 付してその説明を省略する。  The other configuration of the other demodulator according to the embodiment is the same as the configuration of the demodulator according to the first embodiment, and the components are denoted by the same reference numerals and the description thereof will be omitted. Omitted.
以下、 一実施形態に係る他の復調装置が上記第 1の実施形態に係る復調装置と 異なる構成である、 キヤリァ同期補助信号デコーダ 5 2およびタイミング生成部 3 6 Aの動作を順に説明する。  Hereinafter, the operations of the carrier synchronization auxiliary signal decoder 52 and the timing generator 36A, in which another demodulation device according to one embodiment has a different configuration from the demodulation device according to the first embodiment, will be described in order.
図 7 5は、 キヤリア同期補助信号デコーダ 5 2の構成を示すブロック図である 。 図 75において、 キャリア同期補助信号デコーダ 52は、 遅延検波部 52 1と 、 位相識別部 522と、 BPSK同期補助信号パターン照合部 523と、 主信号 BP SKゲート生成部 524とを備える。 FIG. 75 is a block diagram showing a configuration of the carrier synchronization auxiliary signal decoder 52. . In FIG. 75, the carrier synchronization auxiliary signal decoder 52 includes a delay detection section 521, a phase identification section 522, a BPSK synchronization auxiliary signal pattern matching section 523, and a main signal BP SK gate generation section 524.
遅延検波部 521は、 帯域制限フィル夕 33からの信号を入力し、 現在の位相 変調信号と 1シンボル前の位相変調信号の複素共役信号との複素乗算を行う。 位 相識別部 522は、 遅延検波部 521が出力する信号の位相を識別してデータを 復号する。 BP SK同期補助信号パターン照合部 523は、 位相識別部 522が 出力する信号からキヤリア同期補助信号の位置を検出し、 キヤリア同期補助信号 に重畳されている変調方式情報を抽出して主信号 BP SKゲ一ト生成部 524へ 出力する。 主信号 BP SKゲート生成部 524は、 入力する変調方式情報に基づ いて、 変調方式が BP SKである主信号の期間を与えるタイミング信号 (ゲート 信号) を生成する (図 76 (c) ) 。  The delay detection unit 521 receives the signal from the band limiting filter 33, and performs complex multiplication of the current phase modulation signal and the complex conjugate signal of the phase modulation signal one symbol before. The phase identification section 522 identifies the phase of the signal output from the delay detection section 521 and decodes the data. The BP SK synchronization auxiliary signal pattern matching unit 523 detects the position of the carrier synchronization auxiliary signal from the signal output from the phase identification unit 522, extracts the modulation method information superimposed on the carrier synchronization auxiliary signal, and extracts the main signal BP SK Output to the gate generation unit 524. The main signal BP SK gate generation section 524 generates a timing signal (gate signal) for giving a period of the main signal whose modulation scheme is BP SK, based on the input modulation scheme information (FIG. 76 (c)).
このタイミング信号は、 タイミング生成部 36Aへ出力される。  This timing signal is output to the timing generator 36A.
タイミング生成部 36 Aは、 まず、 フレーム同期検出部 35で検出されたフレ —ム先頭信号に基づいて、 1通信フレーム内のフレーム同期信号/ T M C C信号 の期間およびキャリア同期補助信号の期間を検出し、 図 76 (b) に示すような 当該期間に応じた補助信号 BPSKタイミング信号を生成する。 次に、 タイミン グ生成部 36 Aは、 生成した BP SKタイミング信号 (図 76 (b) ) と、 キヤ リア同期補助信号デコーダ 52が出力する主信号 BP SKタイミング信号 (図 7 6 (c) ) とに基づいて、 通信フレーム内の BP SK変調がされている期間を与 える全 BPSKタイミング信号 (図 76 (d) ) を生成する。  The timing generation unit 36A first detects the period of the frame synchronization signal / TMCC signal and the period of the carrier synchronization auxiliary signal in one communication frame based on the frame head signal detected by the frame synchronization detection unit 35. An auxiliary signal BPSK timing signal corresponding to the period as shown in FIG. 76 (b) is generated. Next, the timing generation section 36A generates the generated BP SK timing signal (FIG. 76 (b)) and the main signal BP SK timing signal output by the carrier synchronization auxiliary signal decoder 52 (FIG. 76 (c)). Based on the above, all BPSK timing signals (FIG. 76 (d)) giving the period during which the BPSK modulation is performed in the communication frame are generated.
この全 BP SKタイミング信号は、 周波数補正部 32および位相補正部 34へ 出力され、 当該信号に従った補正がなされる。  This all BP SK timing signal is output to the frequency correction unit 32 and the phase correction unit 34, and correction is performed according to the signal.
以上のように、 本発明の一実施形態に係る他の復調装置によれば、 時分割多重 される位相変調信号のうち、 バケツト内に分散配置されたキヤリャ同期補助信号 を含む BP SKに加え、 BP SK変調がなされている主信号をも用いて搬送波再 生を行う。 As described above, according to another demodulation device according to an embodiment of the present invention, among the phase-modulated signals that are time-division multiplexed, in addition to the BP SK including the carrier synchronization auxiliary signal dispersedly arranged in the bucket, The carrier signal is also re-used using the main signal that has been subjected to BP SK modulation. Do raw.
これにより、 低 C/N状態においてもパケヅト内に分散させた B P S Kのキヤ リァ同期補助信号および B P S K変調された主信号を用いて高速かつ安定にキヤ リア同期を行うことができる。  As a result, even in the low C / N state, high-speed and stable carrier synchronization can be performed using the BPSK carrier synchronization auxiliary signal dispersed in the packet and the BPSK modulated main signal.
なお、 上記実施形態においては、 キャリア同期補助信号デコーダ 5 2および夕 ィミング生成部 3 6 Aの構成を、 上記第 1の実施形態に係る復調装置に用いた場 合を説明した。 しかし、 このキャリア同期補助信号デコーダ 5 2およびタイミン グ生成部 3 6 Aの構成は、 上記第 2〜第 1 4の実施形態に係る復調装置にも用い ることが可能であり、 用いることにより同様の効果を奏することができる。 ここで、 第 1 0 , 第 1 1 , 第 1 3および第 1 4の実施形態に係る復調装置にキ ャリア同期補助信号デコーダ 5 2およびタイミング生成部 3 6 Aの構成を用いる 場合、 T M C Cデコーダ 4 0から得ていた主信号の変調方式の情報を、 キャリア 同期補助信号デコーダ 5 2から得ることももちろん可能である。  In the above embodiment, the case where the configurations of the carrier synchronization auxiliary signal decoder 52 and the timing generator 36A are used in the demodulation device according to the first embodiment has been described. However, the configurations of the carrier synchronization auxiliary signal decoder 52 and the timing generation unit 36A can be used in the demodulation devices according to the second to fourteenth embodiments. The effect can be achieved. Here, when the configurations of the carrier synchronization auxiliary signal decoder 52 and the timing generator 36 A are used in the demodulators according to the tenth, eleventh, thirteenth, and fourteenth embodiments, the TMCC decoder 4 Of course, it is also possible to obtain the information on the modulation method of the main signal obtained from 0 from the carrier synchronization auxiliary signal decoder 52.
また、 上述した復調装置に関する各実施形態において、 直交検波部 3 1におけ る局部発振信号の周波数を周波数補正部 3 2の周波数誤差保持部 3 2 2の出力に よって可変できるようにし、 上記構成の周波数補正部 3 2の複素乗算部 3 2 4の 代わりに、 直交検波部 3 1により周波数誤差を補正しても同様の効果が得られる のは言うまでもない。 産業上の利用可能性  Further, in each embodiment relating to the demodulation device described above, the frequency of the local oscillation signal in the quadrature detection unit 31 can be changed by the output of the frequency error holding unit 3 22 of the frequency correction unit 32, It goes without saying that the same effect can be obtained even if the frequency error is corrected by the quadrature detection unit 31 instead of the complex multiplication unit 3 2 4 of the frequency correction unit 32 of FIG. Industrial applicability
本発明は、 ディジタル衛星放送システムにおいて、 低 C/N時に復調装置の電 源投入やチャンネル選択等の動作を行っても、 安定かつ高速にキヤリア同期を行 うことが可能な変調 ·復調装置および方法として用いることができる。  The present invention relates to a modulation / demodulation device capable of performing stable and high-speed carrier synchronization even in a digital satellite broadcasting system, even when the demodulation device is turned on or a channel is selected at a low C / N. It can be used as a method.

Claims

請求の範囲 The scope of the claims
1 . 通信対象である複数のデ一夕に対し、 当該データの各階層毎に異なった 伝送効率の位相変調を施して予め定めた固定長の通信フレームを生成する変調装 置であって、 1. A modulation device that generates a predetermined fixed-length communication frame by performing phase modulation with different transmission efficiency for each layer of the data for a plurality of data to be communicated,
前記複数のデータの各々に対し、 デ一夕内容に対応する位相変調を施して変調 信号を生成する位相変調手段と、  Phase modulation means for performing, on each of the plurality of data, phase modulation corresponding to the content of the data to generate a modulation signal;
前記デ一夕に施した複数の位相変調の内の位相数が最も少ない位相変調 (以下 、 最小位相変調という) を用いて位相変調を施したキャリア同期補助信号を生成 する信号生成手段と、  A signal generation unit that generates a carrier synchronization auxiliary signal that has been subjected to phase modulation using the phase modulation with the smallest number of phases (hereinafter, referred to as minimum phase modulation) among the plurality of phase modulations performed in the night;
前記キヤリァ同期補助信号が、 前記通信フレーム内で等時間間隔に分散するよ うに、 前記変調信号および前記キヤリア同期補助信号を時分割多重する多重化手 段とを備える、 変調装置。  A multiplexing means for time-division multiplexing the modulated signal and the carrier synchronization auxiliary signal so that the carrier synchronization auxiliary signal is dispersed at equal time intervals in the communication frame.
2 . 前記キャリア同期補助信号は、 2シンボル以上連続させて時分割多重化 されることを特徴とする、 請求項 1に記載の変調装置。  2. The modulation device according to claim 1, wherein the carrier synchronization auxiliary signal is time-division multiplexed continuously for two or more symbols.
3 . 前記キャリア同期補助信号は、 前記通信フレーム内の時分割多重される 位置に対して次のバケツトとなる変調信号に施されている位相変調を識別する情 報を重畳することを特徴とする、 請求項 1または 2に記載の変調装置。  3. The carrier synchronization auxiliary signal is characterized by superimposing information for identifying the phase modulation applied to the modulation signal serving as the next bucket at a position to be time-division multiplexed in the communication frame. The modulation device according to claim 1.
4 . 入力する信号に対し差動符号化を施して出力する差動符号化手段をさら に備え、  4. It is further equipped with differential encoding means for performing differential encoding on the input signal and outputting it.
前記信号生成手段は、 前記差動符号化手段において差動符号化された後の信号 に対し、 前記データに施した複数の位相変調の内の前記最小位相変調を施したキ ャリァ同期補助信号を生成することを特徴とする、 請求項 3に記載の変調装置。  The signal generation means includes: for a signal after differential encoding by the differential encoding means, a carrier synchronization auxiliary signal that has been subjected to the minimum phase modulation among a plurality of phase modulations performed to the data. The modulation device according to claim 3, wherein the modulation device is generated.
5 . 通信対象である複数のデ一夕に対し、 当該デ一夕の各階層毎に異なった 伝送効率の位相変調を施して予め定めた固定長の通信フレームを生成する変調方 法であって、 前記データに施した複数の位相変調の内の位相数が最も少ない位相変調 (以下 、 最小位相変調という) を用いて位相変調を施したキャリア同期補助信号を生成 し、 当該キヤリア同期補助信号が前記通信フレーム内で等時間間隔に分散するよ うに時分割多重することを特徴とする、 変調方法。 5. A modulation method for generating a predetermined fixed-length communication frame by performing phase modulation with different transmission efficiencies for each layer of the data over a plurality of data to be communicated. , Generating a carrier synchronization auxiliary signal that has been subjected to phase modulation using the phase modulation having the smallest number of phases among the plurality of phase modulations performed on the data (hereinafter, referred to as minimum phase modulation); A modulation method characterized by performing time division multiplexing so as to be distributed at equal time intervals within a communication frame.
6 . 前記キャリア同期補助信号は、 2シンボル以上連続させて時分割多重化 されることを特徴とする、 請求項 5に記載の変調方法。  6. The modulation method according to claim 5, wherein the carrier synchronization auxiliary signal is time-division multiplexed continuously for two or more symbols.
7 . 前記キャリア同期補助信号は、 前記通信フレーム内の時分割多重される 位置に対して次のバケツ トとなる変調信号に施されている位相変調を識別する情 報を重畳することを特徴とする、 請求項 5または 6に記載の変調方法。  7. The carrier synchronization auxiliary signal is characterized by superimposing information for identifying a phase modulation applied to a modulation signal serving as a next bucket at a position to be time-division multiplexed in the communication frame. The modulation method according to claim 5.
8 . 前記キャリア同期補助信号は、 差動符号化された後の信号に対し、 前記 データに施した複数の位相変調の内の前記最小位相変調を施すことにより生成さ れることを特徴とする、 請求項 7に記載の変調方法。  8. The carrier synchronization auxiliary signal is generated by subjecting the signal after differential encoding to the minimum phase modulation among a plurality of phase modulations applied to the data, The modulation method according to claim 7.
9 . 複数の位相変調信号と共に、 通信フレーム内において位相数が最も少な い位相変調 (以下、 最小位相変調という) を用いて位相変調を施されたキャリア 同期補助信号が等時間間隔に分散するように、 時分割多重された当該通信フレー ムを受信する復調装置であって、  9. Along with a plurality of phase-modulated signals, the carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation with the smallest number of phases in the communication frame (hereinafter referred to as minimum phase modulation) is distributed at equal time intervals A demodulator for receiving the time-division multiplexed communication frame,
前記通信フレーム内の予め定めた信号期間の周波数誤差を検出して周波数ずれ の補正を行う周波数補正手段と、  Frequency correction means for detecting a frequency error in a predetermined signal period in the communication frame and correcting a frequency deviation,
前記通信フレーム内の予め定めた信号期間の位相誤差を検出して位相ずれの補 正を行う位相補正手段と、  Phase correction means for detecting a phase error of a predetermined signal period in the communication frame and correcting a phase shift;
前記周波数補正手段、 もしくは前記位相補正手段のいずれかの出力信号を入力 し、 遅延検波を用いて前記通信フレームの同期信号を検出することでフレーム先 頭位置を検出するフレーム同期検出手段と、  A frame synchronization detection unit that receives an output signal of the frequency correction unit or the phase correction unit, detects a synchronization signal of the communication frame using delay detection, and detects a frame start position,
前記フレーム同期検出手段で検出した前記フレーム先頭位置に基づいて、 前記 最小位相変調が施された期間のうち少なくとも前記キヤリァ同期補助信号の期間 Based on the frame head position detected by the frame synchronization detecting means, at least a period of the carrier synchronization auxiliary signal in a period in which the minimum phase modulation is performed.
(以下、 同期信号期間という) を検出し、 当該同期信号期間を与えるタイミング 信号を生成するタイミング生成手段とを備え、 (Hereinafter referred to as “synchronization signal period”), and the timing of providing the synchronization signal period Timing generation means for generating a signal,
前記周波数補正手段および前記位相補正手段は、 前記タイミング信号が与える 前記同期信号期間において、 前記最小位相変調に従った補正動作を行うことを特 徴とする、 復調装置。  The demodulator, wherein the frequency correction unit and the phase correction unit perform a correction operation according to the minimum phase modulation during the synchronization signal period provided by the timing signal.
1 0 . 前記周波数補正手段、 もしくは前記位相補正手段のいずれかの出力信号 を入力し、 周波数引き込み状態を検出して前記位相補正手段が擬似同期する周波 数か否かを判断する周波数引き込み検出手段と、  10. Frequency pull-in detection means for receiving an output signal of either the frequency correction means or the phase correction means, detecting a frequency pull-in state, and determining whether or not the frequency of the phase correction means is a pseudo-synchronous frequency. When,
前記周波数引き込み検出手段の判断の結果、 前記位相補正手段が擬似同期しな い周波数にまで前記周波数補正手段における周波数補正が完了した場合は、 前記 位相補正手段を初期化する位相補正リセット手段とをさらに備えることを特徴と する、 請求項 9に記載の復調装置。  As a result of the determination by the frequency pull-in detecting means, when the frequency correction by the frequency correcting means is completed to a frequency at which the phase correcting means is not pseudo-synchronized, a phase correction resetting means for initializing the phase correcting means is provided. The demodulation device according to claim 9, further comprising:
1 1 . 前記位相補正手段の出力信号を入力し、 前記キャリア同期補助信号の期 間における位相同期の状態を検出する位相同期検出手段と、  11. An output signal of the phase correction means, a phase synchronization detection means for detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記位相同期検出手段と前記誤り訂正検出手段との検出結果から擬似同期か否 かを判定する擬似同期判定手段と、  Pseudo-synchronization determining means for determining whether or not to perform pseudo-synchronization from the detection results of the phase synchronization detecting means and the error correction detecting means,
前記疑似同期判定手段の判定の結果、 疑似同期である場合は、 前記位相補正手 段を初期化する位相補正リセット手段とをさらに備えることを特徴とする、 請求 項 9に記載の復調装置。  The demodulation device according to claim 9, further comprising: a phase correction reset unit that initializes the phase correction unit when the result of the determination by the pseudo synchronization determination unit is a pseudo synchronization.
1 2 . 前記位相補正手段の出力信号を入力し、 前記キャリア同期補助信号の期 間における位相同期の状態を検出する第 1の位相同期検出手段と、  12. A first phase synchronization detecting means for receiving an output signal of the phase correcting means and detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal;
前記位相補正手段の出力信号を入力し、 前記フレーム同期信号に含まれる伝送 制御信号 (T M C C信号) の期間における位相同期の状態を検出する第 2の位相 同期検出手段と、  A second phase synchronization detection unit that receives an output signal of the phase correction unit and detects a state of phase synchronization during a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記第 1の位相同期検出手段と前記第 2の位相同期検出手段との検出結果から 擬似同期か否かを判定する擬似同期判定手段と、 From the detection results of the first phase synchronization detection means and the second phase synchronization detection means Pseudo-synchronization determining means for determining whether or not pseudo-synchronization is performed;
前記疑似同期判定手段の判定の結果、 疑似同期である場合は、 前記位相補正手 段を初期化する位相補正リセット手段とをさらに備えることを特徴とする、 請求 項 9に記載の復調装置。  The demodulation device according to claim 9, further comprising: a phase correction reset unit that initializes the phase correction unit when the result of the determination by the pseudo synchronization determination unit is a pseudo synchronization.
1 3 . 前記位相補正手段の出力信号を入力し、 前記キャリア同期補助信号の期 間における位相同期の状態を検出する位相同期検出手段と、  13. An output signal of the phase correction means, and a phase synchronization detection means for detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記位相同期検出手段と前記誤り訂正検出手段との検出結果から擬似同期か否 かを判定する擬似同期判定手段と、  Pseudo-synchronization determining means for determining whether or not to perform pseudo-synchronization from the detection results of the phase synchronization detecting means and the error correction detecting means,
前記疑似同期判定手段の判定の結果、 疑似同期である場合は、 前記位相補正手 段へ入力する周波数を段階的に変化させる周波数ステップ手段とをさらに備える ことを特徴とする、 請求項 9に記載の復調装置。  10. The method according to claim 9, further comprising: frequency step means for changing a frequency input to the phase correction means in a stepwise manner when the result of the judgment by the pseudo synchronization judgment means is pseudo synchronization. Demodulator.
1 4 . 前記位相補正手段の出力信号を入力し、 前記キャリア同期補助信号の期 間における位相同期の状態を検出する第 1の位相同期検出手段と、  14. A first phase synchronization detection unit that receives an output signal of the phase correction unit and detects a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
前記位相補正手段の出力信号を入力し、 前記フレーム同期信号に含まれる伝送 制御信号 (T M C C信号) の期間における位相同期の状態を検出する第 2の位相 同期検出手段と、  A second phase synchronization detection unit that receives an output signal of the phase correction unit and detects a state of phase synchronization during a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記第 1の位相同期検出手段と前記第 2の位相同期検出手段との検出結果から 擬似同期か否かを判定する擬似同期判定手段と、  Pseudo-synchronization determining means for determining whether or not pseudo-synchronization is performed based on detection results of the first phase synchronization detecting means and the second phase synchronization detecting means;
前記疑似同期判定手段の判定の結果、 疑似同期である場合は、 前記位相補正手 段へ入力する周波数を段階的に変化させる周波数ステップ手段とをさらに備える ことを特徴とする、 請求項 9に記載の復調装置。  10. The method according to claim 9, further comprising: frequency step means for changing a frequency input to the phase correction means in a stepwise manner when the result of the judgment by the pseudo synchronization judgment means is pseudo synchronization. Demodulator.
1 5 . 前記周波数補正手段、 もしくは前記位相補正手段のいずれかの出力信号 を入力し、 周波数引き込み状態を検出して前記位相補正手段が擬似同期する周波 数か否かを判断する周波数引き込み検出手段と、 前記周波数引き込み検出手段の判断の結果、 前記位相補正手段が擬似同期しな い周波数にまで前記周波数補正手段における周波数補正が完了した場合は、 前記 位相補正手段を初期化する位相補正リセット手段とをさらに備えることを特徴と する、 請求項 1 3に記載の復調装置。 15. An input signal of either the frequency correction means or the phase correction means, a frequency pull-in detection means for detecting a frequency pull-in state and determining whether or not the frequency of the phase correction means is a pseudo-synchronous frequency. When, As a result of the determination by the frequency pull-in detecting means, when the frequency correction by the frequency correcting means is completed to a frequency at which the phase correcting means is not pseudo-synchronized, a phase correction resetting means for initializing the phase correcting means is provided. 14. The demodulation device according to claim 13, further comprising:
1 6 . 前記周波数補正手段、 もしくは前記位相補正手段のいずれかの出力信号 を入力し、 周波数引き込み状態を検出して前記位相補正手段が擬似同期する周波 数か否かを判断する周波数引き込み検出手段と、  16. Frequency pull-in detecting means for receiving an output signal of either the frequency correcting means or the phase correcting means, detecting a frequency pull-in state, and determining whether or not the frequency of the phase correcting means is a pseudo-synchronous frequency. When,
前記周波数引き込み検出手段の判断の結果、 前記位相補正手段が擬似同期しな い周波数にまで前記周波数補正手段における周波数補正が完了した場合は、 前記 位相補正手段を初期化する位相補正リセット手段とをさらに備えることを特徴と する、 請求項 1 4に記載の復調装置。  As a result of the determination by the frequency pull-in detecting means, when the frequency correction by the frequency correcting means is completed to a frequency at which the phase correcting means is not pseudo-synchronized, a phase correction resetting means for initializing the phase correcting means is provided. The demodulation device according to claim 14, further comprising:
1 7 . 前記位相補正手段の出力信号を入力し、 前記キャリア同期補助信号の期 間における位相同期の状態を検出するフレーム同期判定手段と、  17. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects a state of phase synchronization during a period of the carrier synchronization auxiliary signal,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、  C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal;
前記フレーム同期判定手段と前記 C /N検出手段との検出結果、 および前記夕 イミング信号に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/ Nが高い場合は、 前記通信フレームの全期間を与えるゲート信号を生成し、 それ 以外の場合は、 前記同期信号期間を与えるゲ一ト信号を生成するゲート信号生成 手段とをさらに備え、  Based on the detection result of the frame synchronization determination unit and the C / N detection unit and the evening signal, if there is phase synchronization and C / N is higher than a predetermined threshold, the communication A gate signal generating unit that generates a gate signal that provides the entire period of the frame; otherwise, generates a gate signal that provides the synchronous signal period.
前記位相補正手段は、 前記タイミング信号が与える前記同期信号期間では最小 位相変調による位相誤差を検出し、 前記同期信号期間以外では前記通信フレーム 内において位相数が最も多い位相変調による位相誤差を検出した後、 前記ゲート 信号が与える期間に従って補正動作を行うことを特徴とする、 請求項 9に記載の  The phase correction unit detects a phase error due to minimum phase modulation during the synchronization signal period provided by the timing signal, and detects a phase error due to phase modulation having the largest number of phases in the communication frame outside the synchronization signal period. The correcting operation according to claim 9, wherein the correcting operation is performed in accordance with a period given by the gate signal.
1 8 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、 18. The output signal of the phase correction means is input, and the phase in the phase correction means Frame synchronization determining means for detecting synchronization,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、  C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前 記位相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ 一ド信号を出力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching a demodulation method in the phase correction means according to a phase modulation method based on a signal output by the signal period providing means and the timing signal;
前記フレーム同期判定手段、 前記 C /N検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  Based on the frame synchronization determination means, the detection results of the C / N detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレ一ム の全期間を与えるゲート信号を、  If the C / N is higher than a predetermined first threshold, a gate signal giving the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 前記同期信号期間 を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、  There is a gate signal generation means for generating a gate signal for providing the synchronization signal period, except when the phase synchronization is performed and the error correction is completed,
前記位相補正手段は、 前記復調モード信号に従った位相変調方式による位相誤 差を検出し、 前記ゲート信号が与える期間に従って補正動作を行うことを特徴と する、 請求項 9に記載の復調装置。  10. The demodulation device according to claim 9, wherein the phase correction unit detects a phase error by a phase modulation method according to the demodulation mode signal, and performs a correction operation according to a period given by the gate signal.
1 9 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、 1 9. The output signal of the phase correction means is input, and the phase in the phase correction means is Frame synchronization determining means for detecting synchronization,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、  C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記フレーム同期判定手段および前記誤り訂正検出手段の検出結果、 並びに前 記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前記位 相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モード 信号を出力する復調モード切替手段と、  Based on the detection results of the frame synchronization determining means and the error correction detecting means, and the signal output by the signal period providing means and the timing signal, the demodulation method in the phase correcting means corresponds to the phase modulation method. Demodulation mode switching means for outputting a demodulation mode signal;
前記フレーム同期判定手段、 前記 C /N検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  Based on the frame synchronization determination means, the detection results of the C / N detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲ一ト信号を、  When C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間 を与えるゲート信号を生成し、 位相同期がない場合は、 前記同期信号期間を与えるゲ一ト信号を生成するゲ 一ト信号生成手段とをさらに備え、 If the C / N is lower than the second predetermined threshold, a gate signal giving the synchronization signal period is generated, When there is no phase synchronization, further comprising a gate signal generating means for generating a gate signal for providing the synchronization signal period;
前記位相補正手段は、 誤り訂正が完了していない場合、 前記タイミング信号が 与える前記同期信号期間では前記最小位相変調による位相差を検出し、 前記同期 信号期間以外では前記通信フレーム内において位相数が最も多い位相変調による 位相誤差を検出し、 誤り訂正が完了している場合、 前記復調モード信号に従った 位相変調方式による位相誤差を検出した後、 前記ゲート信号が与える期間に従つ て補正動作を行うことを特徴とする、 請求項 9に記載の復調装置。  When the error correction is not completed, the phase correction unit detects a phase difference due to the minimum phase modulation during the synchronization signal period provided by the timing signal, and when the number of phases in the communication frame is outside of the synchronization signal period, When the phase error due to the most phase modulation is detected and the error correction is completed, after the phase error according to the phase modulation method according to the demodulation mode signal is detected, the correction operation is performed according to the period given by the gate signal. The demodulator according to claim 9, wherein the demodulation is performed.
2 0 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  20. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C /N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、  A BER that measures a bit error rate of a transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects a state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記フレーム同期判定手段と前記 B E R検出手段との検出結果、 および前記夕 イミング信号に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/ Nが高い場合は、 前記通信フレームの全期間を与えるゲート信号を生成し、 それ 以外の場合は、 前記同期信号期間を与えるゲート信号を生成するゲート信号生成 手段とをさらに備え、  Based on the detection result of the frame synchronization determination unit and the BER detection unit, and based on the evening signal, if phase synchronization is performed and C / N is higher than a predetermined threshold, A gate signal generating unit that generates a gate signal that provides the entire period, and otherwise generates a gate signal that provides the synchronous signal period.
前記位相補正手段は、 前記タイミング信号が与える前記同期信号期間では最小 位相変調による位相誤差を検出し、 前記同期信号期間以外では前記通信フレーム 内において位相数が最も多い位相変調による位相誤差を検出した後、 前記ゲート 信号が与える期間に従って補正動作を行うことを特徴とする、 請求項 9に記載の  The phase correction unit detects a phase error due to minimum phase modulation during the synchronization signal period provided by the timing signal, and detects a phase error due to phase modulation having the largest number of phases in the communication frame outside the synchronization signal period. The correcting operation according to claim 9, wherein the correcting operation is performed in accordance with a period given by the gate signal.
2 1 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、 21. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、 Before error correction of the transmission control signal (TMCC signal) included in the frame synchronization signal BER detection means for measuring the bit error rate of the BER and detecting the state of C / N (carrier power / noise power) based on the bit error rate;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period providing unit that outputs a signal that gives a period of each phase modulation signal other than the synchronization signal period,
前記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前 記位相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ 一ド信号を出力する復調モ一ド切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching a demodulation method in the phase correction means in accordance with a phase modulation method based on the signal output by the signal period providing means and the timing signal. When,
前記フレーム同期判定手段、 前記 B E R検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  The frame synchronization determination means, based on the detection results of the B ER detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  When C / N is higher than a predetermined first threshold value, a gate signal giving the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 前記同期信号期間 を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、  There is a gate signal generation means for generating a gate signal for providing the synchronization signal period, except when the phase synchronization is performed and the error correction is completed,
前記位相補正手段は、 前記復調モード信号に従った位相変調方式による位相誤 差を検出し、 前記ゲート信号が与える期間に従って補正動作を行うことを特徴と する、 請求項 9に記載の復調装置。  10. The demodulation device according to claim 9, wherein the phase correction unit detects a phase error by a phase modulation method according to the demodulation mode signal, and performs a correction operation according to a period given by the gate signal.
2 2 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、 22. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit, A BER that measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects the state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記フレーム同期判定手段および前記誤り訂正検出手段の検出結果、 並びに前 記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前記位 相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モード 信号を出力する復調モード切替手段と、  Based on the detection results of the frame synchronization determining means and the error correction detecting means, and the signal output by the signal period providing means and the timing signal, the demodulation method in the phase correcting means corresponds to the phase modulation method. Demodulation mode switching means for outputting a demodulation mode signal;
前記フレーム同期判定手段、 前記 B E R検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  The frame synchronization determination means, based on the detection results of the B ER detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C /Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When C / N is lower than a predetermined second threshold value, a gate signal that gives a period of the signal subjected to the minimum phase modulation is
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  When C / N is higher than a predetermined first threshold value, a gate signal giving the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間 を与えるゲート信号を生成し、 位相同期がない場合は、 前記同期信号期間を与えるゲート信号を生成するゲ 一ト信号生成手段とをさらに備え、 If the C / N is lower than the second predetermined threshold, a gate signal giving the synchronization signal period is generated, When there is no phase synchronization, further comprising a gate signal generation means for generating a gate signal for providing the synchronization signal period;
前記位相補正手段は、 誤り訂正が完了していない場合、 前記タイミング信号が 与える前記同期信号期間では前記最小位相変調による位相差を検出し、 前記同期 信号期間以外では前記通信フレーム内において位相数が最も多い位相変調による 位相誤差を検出し、 誤り訂正が完了している場合、 前記復調モード信号に従った 位相変調方式による位相誤差を検出した後、 前記ゲート信号が与える期間に従つ て補正動作を行うことを特徴とする、 請求項 9に記載の復調装置。  When the error correction is not completed, the phase correction unit detects a phase difference due to the minimum phase modulation during the synchronization signal period provided by the timing signal, and when the number of phases in the communication frame is outside of the synchronization signal period, When the phase error due to the most phase modulation is detected and the error correction is completed, after the phase error according to the phase modulation method according to the demodulation mode signal is detected, the correction operation is performed according to the period given by the gate signal. The demodulator according to claim 9, wherein the demodulation is performed.
2 3 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  23. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、  C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal;
前記フレーム同期判定手段と前記 C/N検出手段との検出結果、 および前記夕 イ ミング信号に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/ Nが高い場合は、 前記通信フレームの全期間を与えるゲート信号を生成し、 それ 以外の場合は、 前記同期信号期間を与えるゲート信号を生成するゲート信号生成 手段とをさらに備え、  Based on the detection result of the frame synchronization determination unit and the C / N detection unit, and the evening timing signal, if there is phase synchronization and C / N is higher than a predetermined threshold, A gate signal generating unit that generates a gate signal that provides the entire period of the communication frame; otherwise, a gate signal generating unit that generates a gate signal that provides the synchronization signal period.
前記位相補正手段は、 前記タイミング信号が与える前記同期信号期間では最小 位相変調による位相誤差を検出し、 前記同期信号期間以外では前記通信フレーム 内において位相数が最も多い位相変調による位相誤差を検出した後、 前記ゲ一ト 信号が与える期間に従って補正動作を行うことを特徴とする、 請求項 1 0〜1 6 のいずれかに記載の復調装置。  The phase correction unit detects a phase error due to minimum phase modulation during the synchronization signal period provided by the timing signal, and detects a phase error due to phase modulation having the largest number of phases in the communication frame outside the synchronization signal period. The demodulator according to any one of claims 10 to 16, wherein a correction operation is performed in accordance with a period given by the gate signal.
2 4 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  24. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、 C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal; Error correction detection means for detecting a correction state of error correction processing of a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前 記位相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ 一ド信号を出力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching a demodulation method in the phase correction means according to a phase modulation method based on a signal output by the signal period providing means and the timing signal;
前記フレーム同期判定手段、 前記 C /N検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  Based on the frame synchronization determination means, the detection results of the C / N detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 前記同期信号期間 を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、  There is a gate signal generation means for generating a gate signal for providing the synchronization signal period, except when the phase synchronization is performed and the error correction is completed,
前記位相補正手段は、 前記復調モ一ド信号に従った位相変調方式による位相誤 差を検出し、 前記ゲ一ト信号が与える期間に従って補正動作を行うことを特徴と する、 請求項 1 0、 1 2、 1 4または 1 6のいずれかに記載の復調装置。  10. The method according to claim 10, wherein the phase correction unit detects a phase error by a phase modulation method according to the demodulation mode signal, and performs a correction operation according to a period given by the gate signal. The demodulation device according to any one of 12, 14, and 16.
2 5 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  25. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、 前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、 C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal; In the communication frame, a signal period providing unit that outputs a signal that gives a period of each phase modulation signal other than the synchronization signal period,
前記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前 記位相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ ―ド信号を出力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching a demodulation method in the phase correction means according to a phase modulation method based on the signal output by the signal period giving means and the timing signal;
前記フレーム同期判定手段、 前記 C/N検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  Based on the detection results of the frame synchronization determination unit, the C / N detection unit and the error correction detection unit, and the signal output by the signal period assignment unit and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲ一ト信号を、  If the C / N is higher than the predetermined first threshold, a gate signal giving the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 前記同期信号期間 を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、  There is a gate signal generation means for generating a gate signal for providing the synchronization signal period, except when the phase synchronization is performed and the error correction is completed,
前記位相補正手段は、 前記復調モード信号に従った位相変調方式による位相誤 差を検出し、 前記ゲート信号が与える期間に従って補正動作を行うことを特徴と する、 請求項 1 1、 1 3または 1 5のいずれかに記載の復調装置。  The phase correction unit detects a phase error by a phase modulation method according to the demodulation mode signal, and performs a correction operation according to a period given by the gate signal. 6. The demodulation device according to any one of 5.
2 6 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  26. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、  C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、 前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、 Error correction detection means for detecting a correction state of error correction processing of a transmission control signal (TMCC signal) included in the frame synchronization signal; In the communication frame, a signal period providing unit that outputs a signal that gives a period of each phase modulation signal other than the synchronization signal period,
前記フレーム同期判定手段および前記誤り訂正検出手段の検出結果、 並びに前 記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前記位 相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ一ド 信号を出力する復調モード切替手段と、  Based on the detection results of the frame synchronization determining means and the error correction detecting means, and the signal output by the signal period providing means and the timing signal, the demodulation method in the phase correcting means corresponds to the phase modulation method. Demodulation mode switching means for outputting a demodulation mode signal to be switched
前記フレーム同期判定手段、 前記 C/N検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  Based on the detection results of the frame synchronization determination unit, the C / N detection unit and the error correction detection unit, and the signal output by the signal period assignment unit and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間 を与えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving the synchronization signal period is generated,
位相同期がない場合は、 前記同期信号期間を与えるゲート信号を生成するゲ ―ト信号生成手段とをさらに備え、  If there is no phase synchronization, further comprising a gate signal generating means for generating a gate signal for providing the synchronization signal period,
前記位相補正手段は、 誤り訂正が完了していない場合、 前記タイミング信号が 与える前記同期信号期間では前記最小位相変調による位相差を検出し、 前記同期 信号期間以外では前記通信フレーム内において位相数が最も多い位相変調による 位相誤差を検出し、 誤り訂正が完了している場合、 前記復調モード信号に従った 位相変調方式による位相誤差を検出した後、 前記ゲート信号が与える期間に従つ て補正動作を行うことを特徴とする、 請求項 1 0、 1 2、 1 4または 1 6のいず れかに記載の復調装置。 When the error correction is not completed, the phase correction unit detects a phase difference due to the minimum phase modulation during the synchronization signal period provided by the timing signal, and when the number of phases in the communication frame is outside of the synchronization signal period, By the most phase modulation When a phase error is detected and the error correction is completed, a phase error by a phase modulation method according to the demodulation mode signal is detected, and then a correction operation is performed according to a period given by the gate signal. The demodulation device according to any one of claims 10, 12, 14, and 16.
2 7 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  27. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記位相補正手段の出力信号を入力し、 受信信号の C/N (搬送波電力/雑音 電力) の状態を検出する C/N検出手段と、  C / N detection means for receiving an output signal of the phase correction means and detecting a state of C / N (carrier power / noise power) of a received signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記フレーム同期判定手段および前記誤り訂正検出手段の検出結果、 並びに前 記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前記位 相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モード 信号を出力する復調モード切替手段と、  Based on the detection results of the frame synchronization determining means and the error correction detecting means, and the signal output by the signal period providing means and the timing signal, the demodulation method in the phase correcting means corresponds to the phase modulation method. Demodulation mode switching means for outputting a demodulation mode signal;
前記フレーム同期判定手段、 前記 C/N検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  Based on the detection results of the frame synchronization determination unit, the C / N detection unit and the error correction detection unit, and the signal output by the signal period assignment unit and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、 If C / N is higher than the predetermined first threshold, the communication frame Gate signal that gives the entire period of
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間 を与えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving the synchronization signal period is generated,
位相同期がない場合は、 前記同期信号期間を与えるゲート信号を生成するゲ ―ト信号生成手段とをさらに備え、  If there is no phase synchronization, further comprising a gate signal generating means for generating a gate signal for providing the synchronization signal period,
前記位相補正手段は、 誤り訂正が完了していない場合、 前記タイミング信号が 与える前記同期信号期間では前記最小位相変調による位相差を検出し、 前記同期 信号期間以外では前記通信フレーム内において位相数が最も多い位相変調による 位相誤差を検出し、 誤り訂正が完了している場合、 前記復調モード信号に従った 位相変調方式による位相誤差を検出した後、 前記ゲート信号が与える期間に従つ て補正動作を行うことを特徴とする、 請求項 1 1、 1 3または 1 5のいずれかに 記載の復調装置。  When the error correction is not completed, the phase correction unit detects a phase difference due to the minimum phase modulation during the synchronization signal period provided by the timing signal, and when the number of phases in the communication frame is outside of the synchronization signal period, When the phase error due to the most phase modulation is detected and the error correction is completed, after the phase error according to the phase modulation method according to the demodulation mode signal is detected, the correction operation is performed according to the period given by the gate signal. The demodulation device according to any one of claims 11, 13, and 15, wherein the demodulation is performed.
2 8 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  28. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、  A BER that measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects the state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記フレーム同期判定手段と前記 B E R検出手段との検出結果、 および前記夕 イミング信号に基づき、 位相同期があり、 かつ、 予め定めたしきい値に対し C/ Nが高い場合は、 前記通信フレームの全期間を与えるゲート信号を生成し、 それ 以外の場合は、 前記同期信号期間を与えるゲート信号を生成するゲート信号生成 手段とをさらに備え、  Based on the detection result of the frame synchronization determination unit and the BER detection unit, and based on the evening signal, if phase synchronization is performed and C / N is higher than a predetermined threshold, A gate signal generating unit that generates a gate signal that provides the entire period, and otherwise generates a gate signal that provides the synchronous signal period.
前記位相補正手段は、 前記タイミング信号が与える前記同期信号期間では最小 位相変調による位相誤差を検出し、 前記同期信号期間以外では前記通信フレーム 内において位相数が最も多い位相変調による位相誤差を検出した後、 前記ゲート 信号が与える期間に従って補正動作を行うことを特徴とする、 請求項 1 0〜1 6 のいずれかに記載の復調装置。 The phase correction unit detects a phase error due to minimum phase modulation during the synchronization signal period provided by the timing signal, and detects a phase error due to phase modulation having the largest number of phases in the communication frame outside the synchronization signal period. The correction operation is performed according to a period given by the gate signal thereafter. The demodulator according to any one of the above.
2 9 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  29. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、  A BER that measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects the state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前 記位相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ 一ド信号を出力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching a demodulation method in the phase correction means according to a phase modulation method based on a signal output by the signal period providing means and the timing signal;
前記フレーム同期判定手段、 前記 B E R検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  The frame synchronization determination means, based on the detection results of the B ER detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C /Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  When C / N is higher than a predetermined first threshold value, a gate signal giving the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 前記同期信号期間 を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、  There is a gate signal generation means for generating a gate signal for providing the synchronization signal period, except when the phase synchronization is performed and the error correction is completed,
前記位相補正手段は、 前記復調モード信号に従った位相変調方式による位相誤 差を検出し、 前記ゲート信号が与える期間に従って補正動作を行うことを特徴と する、 請求項 1 0、 1 2、 1 4または 1 6のいずれかに記載の復調装置。 The phase correction means may include a phase error caused by a phase modulation method according to the demodulation mode signal. The demodulation device according to claim 10, wherein a difference is detected, and a correction operation is performed in accordance with a period given by the gate signal.
3 0 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  30. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、  A BER that measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects the state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前 記位相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モ 一ド信号を出力する復調モード切替手段と、  Demodulation mode switching means for outputting a demodulation mode signal for switching a demodulation method in the phase correction means according to a phase modulation method based on a signal output by the signal period providing means and the timing signal;
前記フレーム同期判定手段、 前記 B E R検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  The frame synchronization determination means, based on the detection results of the B ER detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了した場合以外は、 前記同期信号期間 を与えるゲート信号を生成するゲート信号生成手段とをさらに備え、  There is a gate signal generation means for generating a gate signal for providing the synchronization signal period, except when the phase synchronization is performed and the error correction is completed,
前記位相補正手段は、 前記復調モード信号に従った位相変調方式による位相誤 差を検出し、 前記ゲート信号が与える期間に従って補正動作を行うことを特徴と する、 請求項 1 1、 1 3または 1 5のいずれかに記載の復調装置。 The phase correction unit detects a phase error by a phase modulation method according to the demodulation mode signal, and performs a correction operation according to a period given by the gate signal. The demodulation device according to any one of claims 11, 13, and 15.
3 1 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  31. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、  A BER that measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects the state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出する誤り訂正検出手段と、  Error correction detecting means for detecting a correction state of error correction processing of a transmission control signal (TMC C signal) included in the frame synchronization signal;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記フレーム同期判定手段および前記誤り訂正検出手段の検出結果、 並びに前 記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前記位 相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モード 信号を出力する復調モード切替手段と、  Based on the detection results of the frame synchronization determining means and the error correction detecting means, and the signal output by the signal period providing means and the timing signal, the demodulation method in the phase correcting means corresponds to the phase modulation method. Demodulation mode switching means for outputting a demodulation mode signal;
前記フレーム同期判定手段、 前記 B E R検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、  The frame synchronization determination means, based on the detection results of the B ER detection means and the error correction detection means, and a signal output by the signal period giving means and the timing signal,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、  If there is phase synchronization and error correction is completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲート信号を、  When the C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、 If C / N is higher than the predetermined first threshold, the communication frame Gate signal that gives the entire period of
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間 を与えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving the synchronization signal period is generated,
位相同期がない場合は、 前記同期信号期間を与えるゲ一ト信号を生成するゲ ート信号生成手段とをさらに備え、  When there is no phase synchronization, further comprising gate signal generation means for generating a gate signal for providing the synchronization signal period;
前記位相補正手段は、 誤り訂正が完了していない場合、 前記タイミング信号が 与える前記同期信号期間では前記最小位相変調による位相差を検出し、 前記同期 信号期間以外では前記通信フレーム内において位相数が最も多い位相変調による 位相誤差を検出し、 誤り訂正が完了している場合、 前記復調モード信号に従った 位相変調方式による位相誤差を検出した後、 前記ゲート信号が与える期間に従つ て補正動作を行うことを特徴とする、 請求項 1 0、 1 2、 1 4または 1 6のいず れかに記載の復調装置。  When the error correction is not completed, the phase correction unit detects a phase difference due to the minimum phase modulation during the synchronization signal period provided by the timing signal, and when the number of phases in the communication frame is outside of the synchronization signal period, When the phase error due to the most phase modulation is detected and the error correction is completed, after the phase error according to the phase modulation method according to the demodulation mode signal is detected, the correction operation is performed according to the period given by the gate signal. The demodulator according to claim 10, wherein the demodulation is performed.
3 2 . 前記位相補正手段の出力信号を入力し、 前記位相補正手段における位相 同期を検出するフレーム同期判定手段と、  32. A frame synchronization determination unit that receives an output signal of the phase correction unit and detects phase synchronization in the phase correction unit,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出する B E R検出手段と、  A BER that measures the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction and detects the state of C / N (carrier power / noise power) based on the bit error rate. Detecting means;
前記通信フレームにおいて、 前記同期信号期間以外の各位相変調信号の期間を 与える信号を出力する信号期間付与手段と、  In the communication frame, a signal period giving unit that outputs a signal giving a period of each phase modulation signal other than the synchronization signal period,
前記フレーム同期判定手段および前記誤り訂正検出手段の検出結果、 並びに前 記信号期間付与手段が出力する信号と前記タイミング信号とに基づいて、 前記位 相補正手段における復調方式を、 位相変調方式に対応して切り替える復調モード 信号を出力する復調モード切替手段と、  Based on the detection results of the frame synchronization determining means and the error correction detecting means, and the signal output by the signal period providing means and the timing signal, the demodulation method in the phase correcting means corresponds to the phase modulation method. Demodulation mode switching means for outputting a demodulation mode signal;
前記フレーム同期判定手段、 前記 B E R検出手段および前記誤り訂正検出手段 の検出結果、 並びに前記信号期間付与手段が出力する信号と前記タイミング信号 に基づき、 位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、 Based on the detection results of the frame synchronization determination unit, the BER detection unit and the error correction detection unit, and a signal output by the signal period assignment unit and the timing signal, If there is phase synchronization and error correction is completed and C / N is higher than a predetermined first threshold, a gate signal giving the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記最小位相変調 が施されている信号の期間を与えるゲ一ト信号を、  When C / N is lower than a predetermined second threshold value, a gate signal giving a period of the signal subjected to the minimum phase modulation is given by:
それ以外の場合は、 前記最小位相変調期間および予め定めた変調信号期間 を与えるゲート信号を生成し、  Otherwise, generate a gate signal that gives the minimum phase modulation period and a predetermined modulation signal period,
位相同期があり、 かつ、 誤り訂正が完了していない場合であって、  If there is phase synchronization and error correction has not been completed,
予め定めた第 1のしきい値に対し C/Nが高い場合は、 前記通信フレーム の全期間を与えるゲート信号を、  If the C / N is higher than the predetermined first threshold, a gate signal that gives the entire period of the communication frame is
予め定めた第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間 を与えるゲート信号を生成し、  If the C / N is lower than the second predetermined threshold, a gate signal giving the synchronization signal period is generated,
位相同期がない場合は、 前記同期信号期間を与えるゲート信号を生成するゲ 一ト信号生成手段とをさらに備え、  When there is no phase synchronization, further comprising a gate signal generation means for generating a gate signal for providing the synchronization signal period;
前記位相補正手段は、 誤り訂正が完了していない場合、 前記タイミング信号が 与える前記同期信号期間では前記最小位相変調による位相差を検出し、 前記同期 信号期間以外では前記通信フレーム内において位相数が最も多い位相変調による 位相誤差を検出し、 誤り訂正が完了している場合、 前記復調モード信号に従った 位相変調方式による位相誤差を検出した後、 前記ゲート信号が与える期間に従つ て補正動作を行うことを特徴とする、 請求項 1 1、 1 3または 1 5のいずれかに 記載の復調装置。  When the error correction is not completed, the phase correction unit detects a phase difference due to the minimum phase modulation during the synchronization signal period provided by the timing signal, and when the number of phases in the communication frame is outside of the synchronization signal period, When the phase error due to the most phase modulation is detected and the error correction is completed, after the phase error according to the phase modulation method according to the demodulation mode signal is detected, the correction operation is performed according to the period given by the gate signal. The demodulation device according to any one of claims 11, 13, and 15, wherein the demodulation is performed.
3 3 . 前記フレーム同期検出手段は、  3 3. The frame synchronization detecting means includes:
信号を遅延検波する遅延検波手段と、  Delay detection means for delay-detecting the signal,
遅延検波された位相変調信号から、 伝送された信号を識別する 1または 2以上 の位相識別手段と、  One or more phase identification means for identifying the transmitted signal from the differentially detected phase modulated signal;
前記 1または 2以上の位相識別手段の出力と前記フレーム同期信号とのパター ン照合を行う照合手段とを備え、 A pattern of the output of the one or more phase identification means and the frame synchronization signal. Verification means for performing verification,
前記 1または 2以上の位相識別手段は、 前記フレーム同期信号を伝送する位相 変調に対応した位相識別領域をそれぞれ有し、 2以上の当該位相識別領域はそれ それ異なつた位相回転を施して並列に設置し、  The one or more phase discriminating means has a phase discriminating region corresponding to the phase modulation for transmitting the frame synchronization signal, and the two or more phase discriminating regions perform different phase rotations in parallel to perform the phase rotation. Install,
前記照合手段は、 前記位相識別領域の位相回転量が異なる前記位相識別手段の それぞれの出力に対してパターン照合を行うことを特徴とする、 請求項 9〜3 2 のいずれかに記載の復調装置。  The demodulator according to any one of claims 9 to 32, wherein the matching unit performs pattern matching on each output of the phase identification unit having a different phase rotation amount of the phase identification region. .
3 4 . 前記フレーム同期検出手段は、  3 4. The frame synchronization detecting means includes:
信号を遅延検波する遅延検波手段と、  Delay detection means for delay-detecting the signal,
遅延検波信号に予め定めた数種類の位相回転を与える複数の位相回転手段と、 前記複数の位相回転手段のそれぞれの出力に対し、 位相識別を行う位相識別手 段と、  A plurality of phase rotation means for applying a predetermined number of types of phase rotation to the differential detection signal; a phase identification means for performing phase identification on the output of each of the plurality of phase rotation means;
前記位相識別手段の出力と前記フレーム同期信号とのパターン照合を行う照合 手段とを備え、  A matching unit that performs pattern matching between the output of the phase identification unit and the frame synchronization signal,
前記位相識別手段は、 前記フレーム同期信号が伝送される位相変調に対応する 位相識別領域を有し、 遅延検波されて異なった位相回転が与えられたそれぞれの 位相変調信号に対し伝送された信号を識別し、  The phase discriminating means has a phase discriminating region corresponding to the phase modulation in which the frame synchronization signal is transmitted, and converts a signal transmitted for each phase modulated signal that has been subjected to differential detection and given a different phase rotation. Identify,
前記照合手段は、 前記位相識別手段のそれぞれの出力に対してパターン照合を 行うことを特徴とする、 請求項 9〜 3 2のいずれかに記載の復調装置。  33. The demodulation device according to claim 9, wherein the matching unit performs pattern matching on each output of the phase identification unit.
3 5 . 前記フレーム同期検出手段は、  3 5. The frame synchronization detecting means includes:
信号を遅延検波する遅延検波手段と、  Delay detection means for delay-detecting the signal,
遅延検波された位相変調信号から伝送された信号を識別する位相識別手段と、 前記位相識別手段の識別位相を回転する識別位相回転手段と、  Phase identification means for identifying a signal transmitted from the differentially detected phase modulated signal, identification phase rotation means for rotating the identification phase of the phase identification means,
前記位相識別手段の出力と前記フレーム同期信号のパターン照合を行う照合手 段とを備え、  A collation means for comparing the output of the phase identification means and the pattern of the frame synchronization signal,
前記位相識別手段は、 前記フレーム同期信号を伝送する位相変調に対応した位 相識別領域を有し、 前記位相回転手段は前記照合手段により前記フレーム同期信 号を検出するまで、 前記位相識別手段における前記位相識別領域の位相を回転さ せることを特徴とする、 請求項 9〜3 2のいずれかに記載の復調装置。 The phase identification means may include a phase corresponding to a phase modulation for transmitting the frame synchronization signal. 10. A phase identification area, wherein the phase rotation means rotates the phase of the phase identification area in the phase identification means until the frame synchronization signal is detected by the matching means. 33. The demodulation device according to any one of to 32.
3 6 . 前記フレーム同期検出手段は、  36. The frame synchronization detecting means includes:
信号を遅延検波する遅延検波手段と、  Delay detection means for delay-detecting the signal,
遅延検波信号に位相回転を与える位相回転手段と、  Phase rotation means for performing phase rotation on the differential detection signal,
前記位相回転手段の出力を入力して遅延検波された位相変調信号から伝送され た信号を識別する位相識別手段と、  Phase identification means for receiving an output of the phase rotation means and identifying a signal transmitted from the differentially detected phase modulation signal;
前記位相識別手段の出力と前記フレーム同期信号のパターン照合を行う照合手 段とを備え、  A collation means for comparing the output of the phase identification means and the pattern of the frame synchronization signal,
前記照合手段により前記フレーム同期信号を検出するまで、 前記位相回転手段 の位相を回転させることを特徴とする、 請求項 9〜3 2のいずれかに記載の復調  The phase of the phase rotation means is rotated until the frame synchronization signal is detected by the matching means, wherein the demodulation according to any one of claims 9 to 32.
3 7 . 前記周波数補正手段の出力信号を入力し、 当該出力信号の帯域制限を行 つた後、 前記位相補正手段へ出力する帯域制限フィル夕をさらに備え、 37. An output signal of the frequency correction unit is input, and after a band of the output signal is limited, a band limit filter output to the phase correction unit is further provided.
前記フレーム同期検出手段は、 周波数補正手段、 または前記帯域制限フィル夕 、 もしくは前記位相補正手段のいずれかの出力信号を入力し、 前記フレーム先頭 位置を検出することを特徴とする、 請求項 9〜3 6のいずれかに記載の復調装置  The frame synchronization detection unit receives an output signal of one of a frequency correction unit, a band limiting filter, and the phase correction unit, and detects the frame start position. 36 Demodulator according to any of 6
3 8 . 前記キャリア同期補助信号が、 前記通信フレーム内の時分割多重される 位置に対して次のパケットとなる変調信号に施されている位相変調を識別する情 報を重畳している場合、 38. In the case where the carrier synchronization auxiliary signal superimposes information for identifying the phase modulation applied to the modulation signal to be the next packet with respect to the time division multiplexed position in the communication frame,
前記情報に基づいて前記最小位相変調が施されている信号の期間を検出し、 当 該最小位相変調期間を与える信号を前記タイミング生成手段へ出力する情報検出 手段をさらに備え、  Information detecting means for detecting a period of the signal on which the minimum phase modulation is performed based on the information, and outputting a signal giving the minimum phase modulation period to the timing generation means,
前記タイミング生成手段は、 前記同期信号期間に加え、 前記最小位相変調期間 を与えるタイミング信号を生成することを特徴とする、 請求項 9〜37のいずれ かに記載の復調装置。 The timing generation means may include, in addition to the synchronization signal period, the minimum phase modulation period The demodulation device according to any one of claims 9 to 37, which generates a timing signal that gives:
39. 前記周波数ステップ手段は、 疑似同期が発生する周波数を f g [Hz] とした場合、 (一 1) n1 nxf g [Hz] (n=l, 2, ·") に基づいて前 記位相補正手段に入力する周波数を段階的にずらすことを特徴とする、 請求項 1 3〜16のいずれかに記載の復調装置。 39. If the frequency at which the pseudo-synchronization occurs is fg [Hz], the frequency step means calculates the frequency based on (1-1) n1 nxf g [Hz] (n = l, 2,. 17. The demodulation device according to claim 13, wherein the frequency input to the phase correction means is shifted stepwise.
40. 複数の位相変調信号と共に、 通信フレーム内において位相数が最も少な い位相変調 (以下、 最小位相変調という) を用いて位相変調を施されたキャリア 同期補助信号が等時間間隔に分散するように、 時分割多重された当該通信フレー ムの復調方法であって、  40. A carrier synchronization auxiliary signal that has been phase-modulated using the phase modulation with the smallest number of phases (hereinafter referred to as minimum phase modulation) in a communication frame along with a plurality of phase-modulated signals is distributed at equal time intervals. A method for demodulating the time-division multiplexed communication frame,
前記通信フレームの同期信号を検出することで、 前記最小位相変調が施された 期間のうち少なくとも前記キャリア同期補助信号の期間 (以下、 同期信号期間と いう) を検出するステップと、  Detecting a synchronization signal of the communication frame to detect at least a period of the carrier synchronization auxiliary signal (hereinafter, referred to as a synchronization signal period) in the period in which the minimum phase modulation is performed;
前記同期信号期間において、 前記最小位相変調に従った周波数および位相の補 正動作を行うステップとを備える、 復調方法。  Performing a frequency and phase correction operation according to the minimum phase modulation during the synchronization signal period.
41. 周波数引き込み状態を検出して、 擬似同期が発生する周波数か否かを判 定するステップと、  41. detecting a frequency pull-in state to determine whether the frequency is a frequency at which pseudo-synchronization occurs;
前記判定するステップにおける判断の結果、 疑似同期が発生しない周波数であ る場合は、 位相補正動作を初期化するステップとをさらに備える、 請求項 40に 記載の復調方法。  41. The demodulation method according to claim 40, further comprising, if the result of the determination in the determining step is a frequency at which pseudo synchronization does not occur, initializing a phase correction operation.
42. 前記キヤリア同期補助信号の期間における位相同期の状態を検出するス テヅプと、  42. a step of detecting a state of phase synchronization during the period of the carrier synchronization auxiliary signal;
前記フレーム同期信号に含まれる伝送制御信号 (TMCC信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a correction state of error correction processing of a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記キャリァ同期補助信号期間の位相同期状態と前記 T M C C信号期間の誤り 訂正状態とから擬似同期か否かを判定するステップと、 前記判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正 動作を初期化するステップとをさらに備える、 請求項 40に記載の復調方法。 Determining whether or not pseudo synchronization is to be performed based on a phase synchronization state of the carrier synchronization auxiliary signal period and an error correction state of the TMCC signal period; 41. The demodulation method according to claim 40, further comprising: if the result of the determination in the determining step is pseudo synchronization, the step of initializing a phase correction operation.
43. 前記キヤリア同期補助信号の期間における位相同期の状態を検出するス テップと、  43. detecting a phase synchronization state during the period of the carrier synchronization auxiliary signal;
前記フレーム同期信号に含まれる伝送制御信号 (TMCC信号) の期間におけ る位相同期の状態を検出するステップと、  Detecting a phase synchronization state during a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記キヤリァ同期補助信号期間の位相同期状態と前記 TMC C信号期間の位相 同期状態とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on the phase synchronization state during the carrier synchronization auxiliary signal period and the phase synchronization state during the TMCC signal period;
前記判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正 動作を初期化するステップとをさらに備える、 請求項 40に記載の復調方法。  41. The demodulation method according to claim 40, further comprising: if the result of the determination in the determining step is pseudo synchronization, the step of initializing a phase correction operation.
44. 前記キヤリア同期補助信号の期間における位相同期の状態を検出するス テヅプと、  44. a step of detecting a state of phase synchronization during the period of the carrier synchronization auxiliary signal;
前記フレーム同期信号に含まれる伝送制御信号 (TMCC信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a correction state of error correction processing of a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記キヤリア同期補助信号期間の位相同期状態と前記 TMCC信号期間の誤り 訂正状態とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on a phase synchronization state of the carrier synchronization auxiliary signal period and an error correction state of the TMCC signal period;
前記判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正 動作を行わせる周波数を段階的に変化させるステップとをさらに備える、 請求項 40に記載の復調方法。  41. The demodulation method according to claim 40, further comprising, if the result of the determination in the determining step is pseudo-synchronization, changing the frequency at which the phase correction operation is performed in a stepwise manner.
45. 前記キャリア同期補助信号の期間における位相同期の状態を検出するス テヅプと、  45. a step of detecting a state of phase synchronization during a period of the carrier synchronization auxiliary signal;
前記フレーム同期信号に含まれる伝送制御信号 (TMCC信号) の期間におけ る位相同期の状態を検出するステップと、  Detecting a phase synchronization state during a transmission control signal (TMCC signal) included in the frame synchronization signal;
前記キヤリァ同期補助信号期間の位相同期状態と前記 TMC C信号期間の位相 同期状態とから擬似同期か否かを判定するステップと、  Determining whether or not pseudo synchronization is to be performed based on the phase synchronization state during the carrier synchronization auxiliary signal period and the phase synchronization state during the TMCC signal period;
前記判定するステップにおける判断の結果、 疑似同期である場合は、 位相補正 動作を行わせる周波数を段階的に変化させるステップとをさらに備える、 請求項If the result of the judgment in the judging step is quasi-synchronous, phase correction Changing the frequency at which the operation is performed in a stepwise manner.
4 0に記載の復調方法。 40. The demodulation method according to 40.
4 6 . 周波数引き込み状態を検出して、 擬似同期が発生する周波数か否かを判 定するステップと、  4 6. Detecting a frequency pull-in state and determining whether or not the frequency is a frequency at which pseudo synchronization occurs;
前記判定するステップにおける判断の結果、 疑似同期が発生しない周波数であ る場合は、 位相補正動作を初期化するステップとをさらに備える、 請求項 4 4に 記載の復調方法。  The demodulation method according to claim 44, further comprising, if the result of the determination in the determining step is a frequency at which pseudo synchronization does not occur, the step of initializing a phase correction operation.
4 7 . 周波数引き込み状態を検出して、 擬似同期が発生する周波数か否かを判 定するステップと、  4 7. Detecting a frequency pull-in state and determining whether or not the frequency is a frequency at which pseudo synchronization occurs;
前記判定するステップにおける判断の結果、 疑似同期が発生しない周波数であ る場合は、 位相補正動作を初期化するステップとをさらに備える、 請求項 4 5に 記載の復調方法。  46. The demodulation method according to claim 45, further comprising: if the result of the determination in the determining step is a frequency at which pseudo synchronization does not occur, the step of initializing a phase correction operation.
4 8 . 位相同期の状態を検出するステップと、  4 8. Detecting the state of phase synchronization;
受信信号の C /N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合、 前記同 期信号期間では前記最小位相変調による位相誤差を検出し、 前記通信フレームの 前記同期信号期間以外では前記通信フレーム内において位相数が最も多い位相変 調による位相誤差を検出した後、 前記通信フレームの全期間で位相補正動作を行 うステップとをさらに備える、 請求項 4 0に記載の復調方法。  Detecting the C / N (carrier power / noise power) state of the received signal; and if there is phase synchronization and the C / N is higher than a predetermined threshold, After detecting a phase error due to the minimum phase modulation, and detecting a phase error due to a phase modulation having the largest number of phases in the communication frame other than the synchronization signal period of the communication frame, correcting the phase during the entire period of the communication frame. The demodulation method according to claim 40, further comprising a step of performing an operation.
4 9 . 位相同期の状態を検出するステップと、  4 9. detecting the state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調が施された期間以外の期間において対応する位相変調による位相誤差を 検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間およ び前記最小位相変調が施された期間において前記最小位相変調による位相誤差を 検出した後、 位相補正動作を行うステップとをさらに備える、 請求項 4 0に記載 の復調方法。 If there is phase synchronization and error correction is completed, and C / N is higher than a predetermined first threshold value, the phase error due to the corresponding phase modulation in the entire period of the communication frame is calculated. Detected, the first threshold value and a predetermined second threshold value If the C / N is between the maximum and minimum values, a phase error due to the corresponding phase modulation is detected in a period other than the period in which the phase number is largest in the communication frame and the second operation is performed. Performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed, when the C / N is lower than the threshold value. 41. The demodulation method according to claim 40, comprising:
5 0 . 位相同期の状態を検出するステップと、  50. detecting a state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C /Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応 する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い 場合は、 前記同期信号期間および前記最小位相変調が施された期間において前記 最小位相変調による位相誤差を検出した後、 位相補正動作を行うステップと、 位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 前記第 1の しきい値に対し C/Nが高い場合、 前記同期信号期間では前記最小位相変調によ る位相誤差を検出し、 前記通信フレームの前記同期信号期間以外では前記通信フ レーム内における前記最大位相変調による位相誤差を検出した後、 位相補正動作 を行うステップとをさらに備える、 請求項 4 0に記載の復調方法。  If there is phase synchronization and error correction is completed, and if C / N is higher than a predetermined first threshold, the phase error due to the corresponding phase modulation in the entire communication frame period is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, phase modulation having the largest number of phases in the communication frame (hereinafter referred to as maximum phase modulation) ), A phase error due to the corresponding phase modulation is detected in a period other than the period in which C / N is lower than the second threshold value, and the synchronization signal period and the minimum phase modulation are performed. Performing a phase correction operation after detecting the phase error due to the minimum phase modulation during a period of time when the phase is synchronized and error correction is not completed, and the first threshold value is satisfied. High C / N In this case, a phase error due to the minimum phase modulation is detected during the synchronization signal period, and a phase error due to the maximum phase modulation within the communication frame is detected during a period other than the synchronization signal period of the communication frame, and then phase correction is performed. 41. The demodulation method according to claim 40, further comprising: performing an operation.
5 1 . 位相同期の状態を検出するステップと、  5 1. detecting the state of phase synchronization;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力ノ雑 音電力) の状態を検出するステップと、 The bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction is measured, and the C / N (carrier power noise) is determined based on the bit error rate. Detecting the state of sound power);
位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合、 前記同 期信号期間では前記最小位相変調による位相誤差を検出し、 前記通信フレームの 前記同期信号期間以外では前記通信フレーム内において位相数が最も多い位相変 調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備える 、 請求項 4 0に記載の復調方法。  If there is phase synchronization and C / N is higher than a predetermined threshold, a phase error due to the minimum phase modulation is detected in the synchronization signal period, and the phase error is detected in periods other than the synchronization signal period of the communication frame. The demodulation method according to claim 40, further comprising: performing a phase correction operation after detecting a phase error due to a phase modulation having the largest number of phases in the communication frame.
5 2 . 位相同期の状態を検出するステップと、  5 2. Detecting phase synchronization status;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、  Measuring a bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting a state of C / N (carrier power / noise power) based on the bit error rate; When,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステツプと、  A step of detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調が施された期間以外の期間において対応する位相変調による位相誤差を 検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間およ び前記最小位相変調が施された期間において前記最小位相変調による位相誤差を 検出した後、 位相補正動作を行うステップとをさらに備える、 請求項 4 0に記載 の復調方法。  If there is phase synchronization and error correction is completed, and if C / N is higher than a predetermined first threshold, the phase error due to the corresponding phase modulation in the entire communication frame period is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, the C / N is a period other than the period in which the phase modulation with the largest number of phases is performed in the communication frame. The phase error due to the corresponding phase modulation is detected during the period, and if the C / N is lower than the second threshold value, the minimum phase is detected during the synchronization signal period and the period when the minimum phase modulation is performed. The demodulation method according to claim 40, further comprising: performing a phase correction operation after detecting a phase error due to modulation.
5 3 . 位相同期の状態を検出するステップと、  5 3. detecting the state of phase synchronization;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、  Measuring a bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting a state of C / N (carrier power / noise power) based on the bit error rate; When,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステップと、 Error correction processing of a transmission control signal (TMCC signal) included in the frame synchronization signal Detecting a correction state of the
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応 する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い 場合は、 前記同期信号期間および前記最小位相変調が施された期間において前記 最小位相変調による位相誤差を検出した後、 位相補正動作を行うステップと、 位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 前記第 1の しきい値に対し C/Nが高い場合、 前記同期信号期間では前記最小位相変調によ る位相誤差を検出し、 前記通信フレームの前記同期信号期間以外では前記通信フ レーム内における前記最大位相変調による位相誤差を検出した後、 位相補正動作 を行うステップとをさらに備える、 請求項 4 0に記載の復調方法。  If there is phase synchronization and error correction is completed, and if C / N is higher than a predetermined first threshold, the phase error due to the corresponding phase modulation in the entire communication frame period is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, phase modulation having the largest number of phases in the communication frame (hereinafter referred to as maximum phase modulation) ), A phase error due to the corresponding phase modulation is detected in a period other than the period in which C / N is lower than the second threshold value, and the synchronization signal period and the minimum phase modulation are performed. Performing a phase correction operation after detecting the phase error due to the minimum phase modulation during a period of time when the phase is synchronized and error correction is not completed, and the first threshold value is satisfied. High C / N In this case, a phase error due to the minimum phase modulation is detected during the synchronization signal period, and a phase error due to the maximum phase modulation within the communication frame is detected during a period other than the synchronization signal period of the communication frame. 41. The demodulation method according to claim 40, further comprising: performing an operation.
5 4 . 位相同期の状態を検出するステップと、  5 4. detecting the state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合、 前記同 期信号期間では前記最小位相変調による位相誤差を検出し、 前記通信フレームの 前記同期信号期間以外では前記通信フレーム内において位相数が最も多い位相変 調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備える 、 請求項 4 1〜4 7のいずれかに記載の復調方法。  Detecting the C / N (carrier power / noise power) state of the received signal; and if there is phase synchronization and the C / N is higher than a predetermined threshold, Detecting a phase error due to minimum phase modulation, detecting a phase error due to phase modulation having the largest number of phases in the communication frame other than the synchronization signal period of the communication frame, and then performing a phase correction operation. The demodulation method according to any one of claims 41 to 47, comprising:
5 5 . 位相同期の状態を検出するステップと、  5 5. detecting the state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調が施された期間以外の期間において対応する位相変調による位相誤差を 検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間およ び前記最小位相変調が施された期間において前記最小位相変調による位相誤差を 検出した後、 位相補正動作を行うステップとをさらに備える、 請求項 4 1 , 4 3 , 4 5または 4 7のいずれかに記載の復調方法。 In the case where phase synchronization is performed and error correction is completed, the first When C / N is higher than the threshold value, a phase error due to the corresponding phase modulation is detected in the entire period of the communication frame, and a phase error between the first threshold value and a predetermined second threshold value is detected. If the C / N is equal to, the phase error due to the corresponding phase modulation is detected in a period other than the period in which the phase modulation having the largest number of phases is performed in the communication frame. If / N is low, the method further comprises: performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed. The demodulation method according to any one of 1, 43, 45 and 47.
5 6 . 位相同期の状態を検出するステップと、  5 6. detecting the state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C /Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調が施された期間以外の期間において対応する位相変調による位相誤差を 検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間およ び前記最小位相変調が施された期間において前記最小位相変調による位相誤差を 検出した後、 位相補正動作を行うステップとをさらに備える、 請求項 4 2, 4 4 または 4 6のいずれかに記載の復調方法。  Detecting the C / N (carrier power / noise power) state of the received signal; and performing phase synchronization and error correction, and the C / N (C / N) is determined based on a predetermined first threshold. If / N is high, a phase error due to the corresponding phase modulation is detected in the entire period of the communication frame, and is C / N between the first threshold value and a predetermined second threshold value. In the communication frame, the phase error due to the corresponding phase modulation is detected in a period other than the period in which the phase modulation having the largest number of phases is performed in the communication frame, and when the C / N is lower than the second threshold, Performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed. Demodulation according to any of 6 Law.
5 7 . 位相同期の状態を検出するステップと、  5 7. detecting the state of phase synchronization;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステツプと、  Detecting a C / N (carrier power / noise power) state of the received signal; and detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal.
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応 する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い 場合は、 前記同期信号期間および前記最小位相変調が施された期間において前記 最小位相変調による位相誤差を検出した後、 位相補正動作を行うステップと、 位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 前記第 1の しきい値に対し C/Nが高い場合、 前記同期信号期間では前記最小位相変調によ る位相誤差を検出し、 前記通信フレームの前記同期信号期間以外では前記通信フ レーム内における前記最大位相変調による位相誤差を検出した後、 位相補正動作 を行うステップとをさらに備える、 請求項 4 1 , 4 3 , 4 5または 4 7のいずれ かに記載の復調方法。 If there is phase synchronization and error correction is completed, and C / N is higher than a predetermined first threshold value, the phase error due to the corresponding phase modulation in the entire period of the communication frame is calculated. Detected, the first threshold value and a predetermined second threshold value If the C / N is between the maximum value and the maximum value, the phase error due to the corresponding phase modulation in a period other than the period in which the number of phases is the largest in the communication frame (hereinafter referred to as the maximum phase modulation) is calculated. If the C / N is lower than the second threshold value, the phase correction operation is performed after detecting the phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed. Performing phase synchronization, and when error correction is not completed, and when C / N is higher than the first threshold value, the minimum phase modulation is performed in the synchronization signal period. Detecting a phase error due to the maximum phase modulation within the communication frame during a period other than the synchronization signal period of the communication frame, and then performing a phase correction operation. Comprising the al, claim 4 1, 4 3, 4 5 or 4 7 demodulating method of any crab described.
5 8 . 位相同期の状態を検出するステップと、  5 8. Detecting phase synchronization status;
受信信号の C/N (搬送波電力/雑音電力) の状態を検出するステップと、 位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C /Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応 する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い 場合は、 前記同期信号期間および前記最小位相変調が施された期間において前記 最小位相変調による位相誤差を検出した後、 位相補正動作を行うステップと、 位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 前記第 1の しきい値に対し C /Nが高い場合、 前記同期信号期間では前記最小位相変調によ る位相誤差を検出し、 前記通信フレームの前記同期信号期間以外では前記通信フ レーム内における前記最大位相変調による位相誤差を検出した後、 位相補正動作 を行うステップとをさらに備える、 請求項 4 2 , 4 4または 4 6のいずれかに記 載の復調方法。 Detecting the C / N (carrier power / noise power) state of the received signal; and performing phase synchronization and error correction, and the C / N (C / N) is determined based on a predetermined first threshold. If / N is high, a phase error due to the corresponding phase modulation is detected during the entire period of the communication frame, and is C / N between the first threshold value and a predetermined second threshold value. In this case, a phase error due to the corresponding phase modulation is detected in a period other than the period in which phase modulation having the largest number of phases (hereinafter, referred to as maximum phase modulation) is performed in the communication frame, and the second threshold value is set. On the other hand, when C / N is low, there is a step of performing a phase correction operation after detecting a phase error due to the minimum phase modulation in the synchronization signal period and the period in which the minimum phase modulation is performed; and , Wrong If the positive is not completed and C / N is higher than the first threshold value, a phase error due to the minimum phase modulation is detected during the synchronization signal period, and the phase error of the communication frame is detected. And performing a phase correction operation after detecting a phase error due to the maximum phase modulation in the communication frame during a period other than the synchronization signal period. Demodulation method described above.
5 9 . 位相同期の状態を検出するステップと、  5 9. detecting the state of phase synchronization;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、  Measuring the bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting the state of C / N (carrier power / noise power) based on the bit error rate; When,
位相同期があり、 かつ、 予め定めたしきい値に対し C/Nが高い場合、 前記同 期信号期間では前記最小位相変調による位相誤差を検出し、 前記通信フレームの 前記同期信号期間以外では前記通信フレーム内において位相数が最も多い位相変 調による位相誤差を検出した後、 位相補正動作を行うステップとをさらに備える 、 請求項 4 1〜4 7のいずれかに記載の復調方法。  If there is phase synchronization and C / N is higher than a predetermined threshold, a phase error due to the minimum phase modulation is detected in the synchronization signal period, and the phase error is detected in periods other than the synchronization signal period of the communication frame. 48. The demodulation method according to claim 41, further comprising: performing a phase correction operation after detecting a phase error due to a phase modulation having the largest number of phases in the communication frame.
6 0 . 位相同期の状態を検出するステップと、  6 0. Detecting a state of phase synchronization;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、  Measuring a bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting a state of C / N (carrier power / noise power) based on the bit error rate; When,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C /Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調が施された期間以外の期間において対応する位相変調による位相誤差を 検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間およ び前記最小位相変調が施された期間において前記最小位相変調による位相誤差を 検出した後、 位相補正動作を行うステップとをさらに備える、 請求項 4 1 , 4 3 , 4 5または 4 7のいずれかに記載の復調方法。  If there is phase synchronization and error correction is completed, and if C / N is higher than a predetermined first threshold value, the phase error due to the corresponding phase modulation in the entire period of the communication frame is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, the C / N is a period other than the period in which the phase modulation with the largest number of phases is performed in the communication frame. The phase error due to the corresponding phase modulation is detected during the period, and when the C / N is lower than the second threshold value, the minimum phase is detected during the synchronization signal period and the period when the minimum phase modulation is performed. 48. The demodulation method according to claim 41, further comprising: performing a phase correction operation after detecting a phase error due to modulation.
6 1 . 位相同期の状態を検出するステップと、 前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、 6 1. detecting the state of phase synchronization; Measuring a bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting a state of C / N (carrier power / noise power) based on the bit error rate; When,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調が施された期間以外の期間において対応する位相変調による位相誤差を 検出し、 当該第 2のしきい値に対し C/Nが低い場合は、 前記同期信号期間およ び前記最小位相変調が施された期間において前記最小位相変調による位相誤差を 検出した後、 位相補正動作を行うステップとをさらに備える、 請求項 4 2 , 4 4 または 4 6のいずれかに記載の復調方法。  If there is phase synchronization and error correction is completed, and if C / N is higher than a predetermined first threshold, the phase error due to the corresponding phase modulation in the entire communication frame period is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, the C / N is a period other than the period in which the phase modulation with the largest number of phases is performed in the communication frame. The phase error due to the corresponding phase modulation is detected during the period, and if the C / N is lower than the second threshold value, the minimum phase is detected during the synchronization signal period and the period when the minimum phase modulation is performed. 47. The demodulation method according to claim 42, further comprising: performing a phase correction operation after detecting a phase error due to modulation.
6 2 . 位相同期の状態を検出するステップと、  6 2. Detecting phase synchronization status;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、  Measuring a bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting a state of C / N (carrier power / noise power) based on the bit error rate; When,
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正処 理の訂正状態を検出するステップと、  Detecting a correction state of an error correction process of a transmission control signal (TMC C signal) included in the frame synchronization signal;
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C/Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応 する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い 場合は、 前記同期信号期間および前記最小位相変調が施された期間において前記 最小位相変調による位相誤差を検出した後、 位相補正動作を行うステップと、 位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 前記第 1の しきい値に対し C/Nが高い場合、 前記同期信号期間では前記最小位相変調によ る位相誤差を検出し、 前記通信フレームの前記同期信号期間以外では前記通信フ レーム内における前記最大位相変調による位相誤差を検出した後、 位相補正動作 を行うステップとをさらに備える、 請求項 4 1 , 4 3 , 4 5または 4 7のいずれ かに記載の復調方法。 If there is phase synchronization and error correction is completed, and if C / N is higher than a predetermined first threshold, the phase error due to the corresponding phase modulation in the entire communication frame period is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, phase modulation having the largest number of phases in the communication frame (hereinafter referred to as maximum phase modulation) ), A phase error due to the corresponding phase modulation is detected in a period other than the period in which C / N is lower than the second threshold value, and the synchronization signal period and the minimum phase modulation are performed. Performing a phase correction operation after detecting a phase error due to the minimum phase modulation during a period of time, In the case where there is phase synchronization and error correction has not been completed and C / N is higher than the first threshold value, the phase error due to the minimum phase modulation is reduced in the synchronization signal period. Detecting and detecting a phase error due to the maximum phase modulation in the communication frame other than the synchronization signal period of the communication frame, and then performing a phase correction operation. The demodulation method according to any one of 45 or 47.
6 3 . 位相同期の状態を検出するステップと、  6 3. detecting the state of phase synchronization;
前記フレーム同期信号に含まれる伝送制御信号 (T M C C信号) の誤り訂正前 のビット誤り率を測定し、 当該ビット誤り率に基づいて C/N (搬送波電力/雑 音電力) の状態を検出するステップと、  Measuring a bit error rate of the transmission control signal (TMCC signal) included in the frame synchronization signal before error correction, and detecting a state of C / N (carrier power / noise power) based on the bit error rate; When,
位相同期があり、 かつ、 誤り訂正が完了した場合であって、 予め定めた第 1の しきい値に対し C / Nが高い場合、 前記通信フレームの全期間において対応する 位相変調による位相誤差を検出し、 当該第 1のしきい値と予め定めた第 2のしき い値との間の C/Nである場合、 前記通信フレーム内において位相数が最も多い 位相変調 (以下、 最大位相変調という) が施された期間以外の期間において対応 する位相変調による位相誤差を検出し、 当該第 2のしきい値に対し C/Nが低い 場合は、 前記同期信号期間および前記最小位相変調が施された期間において前記 最小位相変調による位相誤差を検出した後、 位相補正動作を行うステップと、 位相同期があり、 かつ、 誤り訂正が完了していない場合であって、 前記第 1の しきい値に対し C/Nが高い場合、 前記同期信号期間では前記最小位相変調によ る位相誤差を検出し、 前記通信フレームの前記同期信号期間以外では前記通信フ レーム内における前記最大位相変調による位相誤差を検出した後、 位相補正動作 を行うステップとをさらに備える、 請求項 4 2 , 4 4または 4 6のいずれかに記 載の復調方法。  If there is phase synchronization and error correction is completed, and C / N is higher than a predetermined first threshold value, the phase error due to the corresponding phase modulation in the entire period of the communication frame is calculated. If the detected value is C / N between the first threshold value and a predetermined second threshold value, phase modulation having the largest number of phases in the communication frame (hereinafter referred to as maximum phase modulation) ), A phase error due to the corresponding phase modulation is detected in a period other than the period in which C / N is lower than the second threshold value, and the synchronization signal period and the minimum phase modulation are performed. Performing a phase correction operation after detecting the phase error due to the minimum phase modulation during a period of time when the phase is synchronized and error correction is not completed, and the first threshold value is satisfied. High C / N In this case, a phase error due to the minimum phase modulation is detected during the synchronization signal period, and a phase error due to the maximum phase modulation within the communication frame is detected during periods other than the synchronization signal period of the communication frame. 47. The demodulation method according to claim 42, further comprising a step of performing a correction operation.
6 4 . 前記キャリア同期補助信号が、 前記通信フレーム内の時分割多重される 位置に対して次のバケツトとなる変調信号に施されている位相変調を識別する情 報を重畳している場合、 6 4. Information for identifying the phase modulation applied to the modulation signal serving as the next bucket at the position where the carrier synchronization auxiliary signal is time-division multiplexed in the communication frame Information is superimposed,
前記情報に基づいて前記最小位相変調が施されている信号の期間を検出し、 当 該最小位相変調期間を与える信号を前記夕ィミング信号を生成するステップへ出 力し、 前記タイミング信号を生成するステップは、 前記同期信号期間に加え、 前 記最小位相変調期間を与えるタイミング信号を生成することを特徴とする、 請求 項 40〜63のいずれかに記載の復調方法。  Detecting a period of the signal subjected to the minimum phase modulation based on the information, outputting a signal providing the minimum phase modulation period to a step of generating the evening signal, and generating the timing signal; 64. The demodulation method according to claim 40, wherein the step generates a timing signal that gives the minimum phase modulation period in addition to the synchronization signal period.
65. 前記周波数を段階的に変化させるステップは、 疑似同期が発生する周波 数を f g [Hz] とした場合、 (一1) n―' xnxf g [Hz] (n= l, 2, ···) に基づいて位相補正動作を行う周波数を段階的にずらすことを特徴とする、 請求項 44〜47のいずれかに記載の復調方法。 65. In the step of changing the frequency stepwise, assuming that the frequency at which the pseudo-synchronization occurs is fg [Hz], (1-1) n- 'xnxf g [Hz] (n = l, 2, ... 48. The demodulation method according to any one of claims 44 to 47, wherein the frequency at which the phase correction operation is performed is shifted stepwise based on ().
PCT/JP1998/004147 1997-09-19 1998-09-16 Modulator/demodulator and modulation/demodulation method WO1999016223A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/254544 1997-09-19
JP25454497 1997-09-19
JP9/332236 1997-12-02
JP33223697 1997-12-02

Publications (1)

Publication Number Publication Date
WO1999016223A1 true WO1999016223A1 (en) 1999-04-01

Family

ID=26541729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004147 WO1999016223A1 (en) 1997-09-19 1998-09-16 Modulator/demodulator and modulation/demodulation method

Country Status (3)

Country Link
KR (1) KR100365982B1 (en)
CN (1) CN100375475C (en)
WO (1) WO1999016223A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086902A1 (en) * 2000-05-10 2001-11-15 Sysat Communication Carrier frequency recovery using punctured four-phase modulation-demodulation
EP1511255A3 (en) * 1999-04-23 2006-09-06 Kabushiki Kaisha Kenwood Broadcast satellite digital broadcasting receiver

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789857B (en) * 2009-01-23 2013-06-05 瑞昱半导体股份有限公司 Synchronous determination device, receiving device comprising same and receiving method
KR101578303B1 (en) 2014-08-25 2015-12-17 윌커슨벤자민 Ultra Low Power Wideband Non-Coherent BPSK Demodulator using 1st Order Sideband Filters with Phase Zero Alignment
KR101624739B1 (en) 2014-10-15 2016-05-26 윌커슨벤자민 Low Power Wideband Non-Coherent BPSK Demodulator to Align the Phase of Sideband Differential Output Comparators for Reducing Jitter, using 1st Order Sideband Filters with Phase 180 Degree Alignment
KR101623275B1 (en) 2014-10-31 2016-05-31 윌커슨벤자민 Ultra Low Power Wideband Non-Coherent BPSK Demodulator using 1st Order Sideband Filters with Phase 180 Degree Alignment
JP6598563B2 (en) * 2015-08-05 2019-10-30 ルネサスエレクトロニクス株式会社 Signal converter and control device
CN107317778B (en) * 2017-07-28 2019-11-26 西安电子科技大学 BPSK modulating signal phase transition detection method based on 1D-CNN

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102943A (en) * 1989-09-18 1991-04-30 Fujitsu Ltd Digitalized carrier recovery circuit with pseudo pull-in correction function
JPH05236042A (en) * 1992-02-19 1993-09-10 Nec Corp Mis-synchronization preventing device
JPH0614069A (en) * 1992-06-29 1994-01-21 Hitachi Ltd Synchronization detector for digital angular modulation signal demodulation circuit
JPH08330910A (en) * 1995-03-28 1996-12-13 Matsushita Electric Ind Co Ltd Automatic frequency controller
JPH09321813A (en) * 1996-05-28 1997-12-12 Nippon Hoso Kyokai <Nhk> Digital transmission method and transmitter-receiver
JPH10215291A (en) * 1997-01-30 1998-08-11 Kenwood Corp Broadcast receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735730A3 (en) * 1995-03-28 1999-07-07 Matsushita Electric Industrial Co., Ltd. Automatic frequency controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102943A (en) * 1989-09-18 1991-04-30 Fujitsu Ltd Digitalized carrier recovery circuit with pseudo pull-in correction function
JPH05236042A (en) * 1992-02-19 1993-09-10 Nec Corp Mis-synchronization preventing device
JPH0614069A (en) * 1992-06-29 1994-01-21 Hitachi Ltd Synchronization detector for digital angular modulation signal demodulation circuit
JPH08330910A (en) * 1995-03-28 1996-12-13 Matsushita Electric Ind Co Ltd Automatic frequency controller
JPH09321813A (en) * 1996-05-28 1997-12-12 Nippon Hoso Kyokai <Nhk> Digital transmission method and transmitter-receiver
JPH10215291A (en) * 1997-01-30 1998-08-11 Kenwood Corp Broadcast receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1511255A3 (en) * 1999-04-23 2006-09-06 Kabushiki Kaisha Kenwood Broadcast satellite digital broadcasting receiver
WO2001086902A1 (en) * 2000-05-10 2001-11-15 Sysat Communication Carrier frequency recovery using punctured four-phase modulation-demodulation
FR2808951A1 (en) * 2000-05-10 2001-11-16 Jean Pierre Dehaene Carrier frequency recovery uses punctured four-phase modulation-demodulation for accurate signal recovery

Also Published As

Publication number Publication date
CN100375475C (en) 2008-03-12
CN1239621A (en) 1999-12-22
KR100365982B1 (en) 2003-02-07
KR20000068952A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
EP0940957B1 (en) AFC circuit, carrier reproducing circuit, and receiver
US8699628B2 (en) Signal demodulation method and apparatus and signal modulation method and apparatus in return link of satellite system
WO1991006166A1 (en) Digital demodulator
JPH0810879B2 (en) Demodulator
KR100394200B1 (en) Orthogonal phase demodulation circuit
JPH11234357A (en) Synchronization acquisition circuit
WO1999016223A1 (en) Modulator/demodulator and modulation/demodulation method
WO1999031850A1 (en) Apparatus for generating absolute phase of signal received by receiver
JP3153188B2 (en) Modulation / demodulation device and method
US20070104294A1 (en) Apparatus for independently extracting streams from hierarchically-modulated signal and performing soft-decision, and method thereof
US6046630A (en) π/4 QPSK digital demodulating apparatus and a method thereof
JP3205313B2 (en) PSK demodulator, PSK demodulation method, and phase noise detection method
CN101103604B (en) Method and device for carrier recovery using phase interpolation with assist
JP2000278344A (en) Pseodo lock detection system
EP1175055B1 (en) Broadcast satellite digital broadcasting receiver
EP1039710B1 (en) Carrier reproduction circuit
WO1999039485A1 (en) Receiver
US11310027B2 (en) Method of date-stamping telemetry signals
US20060269015A1 (en) Receivers for DPSK signals
JP3088354B2 (en) Received signal phase rotation angle detection device
JPH11112588A (en) Psk demodulator
JP3024111B2 (en) Absolute phase shifter for received signal of receiver
JP4375032B2 (en) QAM transmission system and QAM receiver
JP2001345869A (en) Carrier-reproducing circuit and digital signal receiver
JP2002101142A (en) Digital broadcasting demodulator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801359.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1019997004137

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019997004137

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997004137

Country of ref document: KR