WO1998019689A1 - Novel coding sequences - Google Patents

Novel coding sequences Download PDF

Info

Publication number
WO1998019689A1
WO1998019689A1 PCT/US1997/019226 US9719226W WO9819689A1 WO 1998019689 A1 WO1998019689 A1 WO 1998019689A1 US 9719226 W US9719226 W US 9719226W WO 9819689 A1 WO9819689 A1 WO 9819689A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
assembly
orf
amino acid
Prior art date
Application number
PCT/US1997/019226
Other languages
French (fr)
Other versions
WO1998019689A9 (en
Inventor
Michael Terance Black
John Edward Hodgson
David Justin Charles Knowles
Michael Arthur Lonetto
Richard Oakley Nicholas
Robert H. Reid, Jr.
Phillip N. Zarfos
Original Assignee
Smithkline Beecham Corporation
Smithkline Beecham Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Beecham Corporation, Smithkline Beecham Plc filed Critical Smithkline Beecham Corporation
Priority to JP52147698A priority Critical patent/JP2001510989A/en
Priority to EP97911905A priority patent/EP1007069A1/en
Publication of WO1998019689A1 publication Critical patent/WO1998019689A1/en
Publication of WO1998019689A9 publication Critical patent/WO1998019689A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses.
  • the invention relates to novel polynucleotides and polypeptides set forth in Table 1.
  • Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, Streptococcus pneumoniae (herein S. pneumoniae) has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with S. pneumoniae, many questions concerning the virulence of this microbe remain.
  • S. pneumoniae Streptococcus pneumoniae
  • Streptococcal factors associated with pathogenicity e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgAl protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.
  • GUG is used as an initating nucleotide, rather than ATG, for a significant number of mRNA's in both Gram positive and Gram negative bacteria.
  • Statistics on the frequency of NTG codons in the start codon for several bacterial species are available on line via computer at http://biochem.otago.ac.nz:800/Transterrn/home_page. html).
  • ORF sequences from genes possessing GUG initiation codons and proteins expressed therefrom and homologues thereto to be used for screening for antimicrobial compounds.
  • polypeptide and polynucleotide sequences that may be used to screen for antimicrobial compound and which may also be used to determine the roles of such sequences in pathogenesis of infection, dysfunction and disease.
  • identification and characterization of such sequences which may play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.
  • polypeptides of the invention have amino acid sequence homology to a known protein(s) as set forth in Table 1.
  • the polynucleotide comprises a region encoding a polypeptide comprising a sequence sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.
  • a novel protein from Streptococcus pneumoniae comprising an amino acid sequence selected from the group consisting of the sequences set out in Table 1 , or a variant of any of these sequences.
  • an isolated nucleic_ acid molecule encoding a mature polypeptide expressible by the Streptococcus pneumoniae 0100993 strain contained in the deposited strain.
  • a further aspect of the invention there are provided isolated nucleic acid molecules encoding a polypeptide of the invention, particularly Streptococcus pneumoniae polypeptide, and including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
  • a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization.
  • particularly preferred embodiments of the invention are naturally occurring allelic variants of a polypeptide of the invention and polypeptides encoded thereby.
  • novel polypeptides of Streptococcus pneumoniae as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
  • inhibitors to such polypeptides useful as antibacterial agents, including, for example, antibodies.
  • products, compositions and methods for assessing expression of the polypeptides and polynucleotides of the invention treating disease, for example, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a Streptococcus pneumoniae bacteria.
  • disease for example, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation
  • administering a polypeptide or polynucleotide of the invention
  • polynucleotides that hybridize to a polynucleotide sequence of the invention, particularly under stringent conditions.
  • antibodies against . polypeptides of the invention are provided.
  • methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypeptide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.
  • agonists and antagonists of the polypeptides and polynucleotides of the invention preferably bacteriostatic or bacteriocidal agonists and antagonists.
  • compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.
  • Disease(s) means any bacterial infection, but preferably a streptococcal infection, such as, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema, endocarditis, meningitis, and infection of cerebrospinal fluid.
  • “Host cell” is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.
  • Identity is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences.
  • identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences.
  • Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol.
  • BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al, NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al, J. Mol. Biol 215: 403-410 (1990).
  • a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence it is intended that the nucleotide sequence of the tested polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence.
  • a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence.
  • These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
  • a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence is intended that the test amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid.
  • up to 5% of the amino acid residues in the reference sequence may be _ deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence.
  • These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
  • Isolated means altered “by the hand of man” from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both.
  • a polynucleotide or a polypeptide naturally present in a living organism is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated”, as the term is employed herein.
  • Polynucleotide(s) generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • Polynucleotide(s) include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • the term "polynucleotide(s)” also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art.
  • the term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)” also embraces short polynucleotides often referred to as oligonucleotide(s).
  • Polypeptide(s) refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds.
  • Polypeptide(s) refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids.
  • Polypeptide(s) include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art.
  • Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini.
  • Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma- carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, sel
  • Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.
  • "Variant(s)" as the term is used herein, is a polynucleotide or polypeptide thatêt differs from a reference polynucleotide or polypeptide respectively, but retains essential properties.
  • a typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide.
  • Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination.
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
  • a variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally.
  • Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans. DESCRIPTION OF THE INVENTION
  • polynucleotide and polypeptide sequences provided herein may be used in the discovery and development of antibacterial compounds. Upon expression of the sequences with the appropriate initiation and termination codons the encoded polypeptide can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgarno region can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression.
  • Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.
  • this invention also provides several means for identifying particularly useful target genes.
  • the first of these approaches entails searching appropriate databases for sequence matches in_ related organisms.
  • the Streptococcal-like form of this gene would likely play an analogous role.
  • a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate.
  • homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.
  • each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with an appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.
  • ORF open reading frame
  • the invention provides ORF sequences possessing a GTG (GUG ) initiation codon and protein targets expressed thereform.
  • Signature Tagged Mutagenesis This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes. Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.
  • the basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation.
  • the tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.
  • random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector.
  • This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance.
  • the resistant pool is introduced into a host and at various times after infection bacteria may be recovered and_ assessed for the presence of antibiotic resistance.
  • the chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.
  • transposons carrying controllable promoters which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene.
  • Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.
  • flow cytometry cell division, lysis, redox potential, DNA replication
  • incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan monitoring reporter enzyme gene fusions which respond to known cellular stresses.
  • RT-PCR Streptococcus pneumoniae messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials.
  • the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives).
  • the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA.
  • the process is optimised by finding those conditions which give a maximum amount of Streptococcus pneumoniae 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe.
  • a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles.
  • the PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).
  • the invention relates to novel polypeptides and polynucleotides as described in greater detail below.
  • the invention relates to polypeptides and polynucleotides of Streptococcus pneumoniae, which is related by amino acid sequence homology to known polypeptide as set forth in Table 1.
  • the invention relates especially to compounds having the nucleotide and amino acid sequence selected from the group consisting of the sequences set out in Table 1 , and to the nucleotide sequences of the DNA in the deposited strain and amino acid sequences encoded thereby.
  • a deposit containing a Streptococcus pneumoniae bacterial strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 1 1 April 1996 and assigned NC B Deposit No. 40794.
  • NCIMB National Collections of Industrial and Marine Bacteria Ltd.
  • the Streptococcus pneumoniae bacterial strain deposit is referred to herein as "the deposited bacterial strain” or as "the DNA of the deposited bacterial strain.”
  • the deposited material is a bacterial strain that contains the full length FabH DNA, referred to as "NCLMB 40794" upon deposit.
  • sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • a license may be required to make, use or sell the deposited materials, and no such license is hereby granted.
  • the deposited strain contains the full length genes comprising the polynucleotides set forth in Table 1.
  • the sequence of the polynucleotides contained in the deposited strain, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • polypeptides of the invention include the polypeptides set forth in Table 1 (in particular the mature polypeptide) as well as polypeptides and fragments, particularly those which have the biological activity of a polypeptide of the invention, and also those which have at least 50%, 60% or 70% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 or the relevant portion, preferably at least 80% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and more preferably at least 90% similarity (more preferably at least 90% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 , and still more preferably at least 95% similarity (still more preferably at least 95% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 , and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.
  • the invention also includes polypeptides of the formula:
  • R 2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in Table 1.
  • R 2 is oriented so that its amino terminal residue is at the left, bound to R j and its carboxy terminal residue is at the right, bound to R3.
  • Any stretch of amino acid residues denoted by either R group, where R is greater than 1 may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • n is an integer between 1 and 1000 or 2000.
  • a fragment is a variant polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned polypeptides.
  • fragments may be "free-standing,” or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region, a single larger polypeptide.
  • Preferred fragments include, for example, truncation polypeptides having a portion of the amino acid sequence of Table 1 , or of variants thereof, such as a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus.
  • Degradation forms of the polypeptides of the invention in a host cell, particularly a Streptococcus pneumoniae, are also preferred.
  • fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and tum-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, _ beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.
  • biologically active fragments which are those fragments that mediate activities of polypeptides of the invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of Streptococcus pneumoniae or the ability to initiate, or maintain cause disease in an individual, particularly a human.
  • Variants that are fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.
  • X or "Xaa” is also used.
  • X and “Xaa” mean that any of the twenty naturally occuring amino acids may appear at such a designated position in the polypeptide sequence.
  • nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from S. pneumoniae 0100993 by probing a DNA preparation with probes constructed from the particular sequences disclosed herein.
  • oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
  • a library of clones of chromosomal DNA of S.pneumoniae 0100993 in E. coli or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence.
  • Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes.
  • sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone.
  • another aspect of the invention relates to isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group consisting of the sequences in Table 1 and polynucleotides closely related thereto and variants thereof.
  • a polynucleotide of the invention encoding polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Streptococcus pneumoniae 0100993 cells as starting material, followed by obtaining a full length clone.
  • a polynucleotide sequence of the invention such as a sequence set forth in Table 1
  • a library of clones of chromosomal DNA of Streptococcus pneumoniae 0100993 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence.
  • Clones carrying DNA identical to that of the probe can then be distinguished using stringent conditions.
  • sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence.
  • such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone.
  • the DNA sequences set out in Table 1 each contains at least one open reading frame encoding a protein having at least about the number of amino acid residues set forth in Table 1.
  • the start and stop codons of each open reading frame (herein “ORF”) DNA are the first three and the last three nuclotides of each polynucleotide set forth in Table 1.
  • polynucleotides and polypeptides of the invention are structurally related to known proteins as set forth in Table 1. These proteins exhibit greatest homology to the homologue listed in Table 1 from among the known proteins.
  • the invention provides a polynucleotide sequence identical over its entire length to each _ coding sequence in Table 1. Also provided by the invention is the coding sequence for the mature polypeptide or a fragment thereof, by itself as well as the coding sequence for the mature polypeptide or a fragment in reading frame with other coding sequence, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence.
  • the polynucleotide may also contain non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids.
  • non-coding sequences including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids.
  • a marker sequence that facilitates purification of the fused polypeptide can be encoded.
  • the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al, Proc. Natl. Acad.
  • Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.
  • the invention also includes polynucleotides of the formula:
  • R is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in Table 1.
  • R is oriented so that its 5' end residue is at the left, bound to R ] and its 3' end residue is at the right, bound to R3.
  • Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1 may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • n is an integer between 1 and 1000, or 2000 or 3000.
  • polynucleotide encoding a polypeptide encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the Streptococcus pneumoniae having an amino acid sequence set out in Table 1.
  • the term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by integrated phage or an insertion sequence or editing) together with additional regions, that also may contain coding and/or non-coding sequences.
  • the invention further relates to variants of the polynucleotides described herein that encode for variants of the polypeptide having the deduced amino acid sequence of Table 1. Variants that are fragments of the polynucleotides of the invention may be used to synthesize _ full-length polynucleotides of the invention.
  • polynucleotides encoding polypeptide variants, that have the amino acid sequence of a polypeptide of Table 1 in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of such polynucleotide.
  • polynucleotides that are at least 50%, 60% or 70% identical over their entire length to a polynucleotide encoding a polypeptide having the amino acid sequence set out in Table 1 , and polynucleotides that are complementary to such polynucleotides.
  • polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the deposited strain and polynucleotides complementary thereto.
  • polynucleotides at least 90% identical over their entire length to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
  • a preferred embodiment is an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than S. pneumoniae; and a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than 5. pneumoniae.
  • Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of Table 1.
  • the invention further relates to polynucleotides that hybridize to the herein above- described sequences.
  • the invention especially relates to polynucleotides that hybridize under stringent conditions to the herein above-described polynucleotides.
  • stringent conditions and “stringent hybridization conditions” mean hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.
  • An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate,_ and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0. Ix SSC at about 65°C.
  • Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 1 1 therein.
  • the invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in Table 1 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.
  • polynucleotides of the invention may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a polypeptide and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in Table 1.
  • Such probes generally will comprise at least 15 bases.
  • such probes will have at least 30 bases and may have at least 50 bases.
  • Particularly preferred probes will have at least 30 bases and will have 50 bases or less.
  • each gene that comprises or is comprised by a polynucleotide set forth in Table 1 may be isolated by screening using a DNA sequence provided in Table 1 to synthesize an oligonucleotide probe.
  • a labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
  • polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to polynucleotide assays.
  • Polynucleotides of the invention that are oligonucleotides derived from the a polynucleotide or polypeptide sequence set forth in Table 1 may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
  • the invention also provides polynucleotides that may encode a polypeptide that is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance).
  • Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things.
  • the additional amino acids may be processed away from the mature protein by cellular enzymes.
  • a precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide.
  • inactive precursors When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
  • N means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA sequence, except it is preferred that N is not a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.
  • a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • a leader sequence which may be referred to as a preprotein
  • a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • the invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
  • Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.
  • host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention.
  • Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis et al., BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, - cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.
  • bacterial cells such as streptococci, staphylococci, enterococci E. coli, streptomyces and Bacillus subtilis cells
  • fungal cells such as yeast cells and Aspergillus cells
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells
  • plant cells include bacterial cells, such as streptococci, staphylococci, enterococci E. coli, streptomyces and Bacillus subtilis cells
  • fungal cells such as yeast cells and Aspergillus cells
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells
  • plant cells include bacterial cells, such as streptococci, staphylococci, enteroco
  • vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
  • vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses
  • the expression system constructs may contain control regions that regulate as well as engender expression.
  • any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard.
  • the appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, (supra).
  • secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
  • Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
  • This invention is also related to the use of the polynucleotides of the invention for use as - diagnostic reagents. Detection of such polynucleotides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)”), particularly mammals, and especially humans, infected with an organism comprising a gene of the invention may be detected at the nucleic acid level by a variety of techniques.
  • Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence.
  • Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S 1 protection or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl Acad. Sci., USA, 85: 4397-4401 (1985).
  • RNA or cDNA may also be used for the same purpose, PCR or RT-PCR.
  • PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among other things, amplifying a DNA of the invention isolated from a sample derived from an individual.
  • the primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and or classify the infectious agent.
  • the invention further provides a process for diagnosing disease, preferably bacterial infections, more preferably infections by Streptococcus pneumoniae, and most preferably disease, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having the sequence of Table 1 Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods
  • a diagnostic assay in accordance with the invention for detecting over- expression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example Assay techniques that can be used to determine levels of a protein, in a sample derived from a host are well-known to those of skill in the art Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays
  • Antibodies as used herein includes monoclonal and polyclonal antibodies, chime ⁇ c, single chain, simiamzed antibodies and humanized antibodies, as well as Fab fragments, including the products of an Fab lmmunolglobuhn expression library
  • Antibodies generated against the polypeptides of the invention can be obtained by administering the polypeptides or epitope-beanng fragments, analogues or cells to an animal, preferably a nonhuman, using routine protocols
  • any technique known in the art that provides antibodies produced by continuous cell line cultures can be used Examples include various techniques, such as those in Kohler, G and Milstein, C , Nature 256 495-497 (1975), Kozbor et al , Immunology Today 4 72 (1983), Cole et al , pg 77- 96 in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R Liss, Inc (1985)
  • phage display technology may be utilized to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v- genes of lymphocytes from humans screened for possessing recognition of a polypeptide of the invention or from naive libraries (McCafferty, J. et al., (1990), Nature 348, 552-554; Marks, J. et al., (1992) Biotechnology 10, 779-783).
  • the affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) Nature 352, 624-628).
  • each domain may be directed against a different epitope - termed 'bispecific' antibodies.
  • the above-described antibodies may be employed to isolate or to identify clones expressing the polypeptides to purify the polypeptides by affinity chromatography.
  • antibodies against a polypeptide of the invention may be employed to treat disease.
  • Polypeptide variants include antigenically, epitopically or immunologically equivalent variants that form a particular aspect of this invention.
  • the term "antigenically equivalent derivative” as used herein encompasses a polypeptide or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or polypeptide according to the invention, interfere with the immediate physical interaction between pathogen and mammalian host.
  • the term “immunologically equivalent derivative” as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.
  • the polypeptide such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken.
  • the fusion protein may provide stability to the polypeptide.
  • the antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH).
  • BSA bovine serum albumin
  • KLH keyhole limpet haemocyanin
  • a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.
  • the antibody or variant thereof is modified to make it less immunogenic in the individual.
  • the antibody may most preferably be "humanized”; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody , for example as described in Jones, P. et al. (1986), Nature 321, 522-525 or Tempest et al.,(1991) Biotechnology 9, 266-273.
  • a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum Mol Genet 1992, 1 :363, Manthorpe et al., Hum. Gene Ther. 1963:4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem.
  • Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures.
  • substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al, Current Protocols in Immunology 1(2): Chapter 5 (1991).
  • the invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of a polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal.
  • the method of screening may involve high-throughput techniques. For example, to screen for agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention.
  • the ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate.
  • Molecules that bind gratuitously, i.e., without inducing the effects of a polypeptide of the invention are most likely to be good antagonists.
  • Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.
  • an assay for antagonists of polypeptides of the invention is a competitive assay that combines any such polypeptide and a potential antagonist with a compound which binds such polypeptide, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay.
  • a polypeptide of the invention can be labeled, such as by radioactivity or a colorimetric compound, such that the ⁇ . number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.
  • Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a binding molecule, without inducing activities induced by a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.
  • Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented.
  • small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules.
  • Other potential antagonists include antisense molecules (see Okano, J. Neitrochem. 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988), for a description of these molecules).
  • Preferred potential antagonists include compounds related to and variants of a polypeptide of the invention.
  • Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds.
  • the encoded protein upon expression, can be used as a target for the screening of antibacterial drugs.
  • the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.
  • the invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection.
  • the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine et al, Infect. Immun.
  • the antagonists and agonists of the invention may be employed, for instance, to inhibit doctrine and treat disease.
  • H. pylori Helicobacter pylori bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France; http://www.uicc.ch/ecp/ecp2904.htm).
  • the international Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen.
  • Preferred antimicrobial compounds of the invention found using screens provided by the invention should be useful in the treatment of H. pylori infection. Such treatment should decrease the advent of H. /ry/o ⁇ -induced cancers, such as gastrointestinal carcinoma. Such treatment should also cure gastric ulcers and gastritis.
  • Another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal which comprises inoculating the individual with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody and/ or T cell immune response to protect said individual from infection, particularly bacterial infection and most particularly Streptococcus pneumoniae infection. Also provided are methods whereby such immunological response slows bacterial replication.
  • Yet another aspect of the invention relates to a method of inducing immunological response in an individual which comprises delivering to such individual a nucleic acid vector to direct expression of a polynucleotide or polypeptide of the invention, or a fragment or a variant thereof, for expressing such polynucleotide or polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response, such as, to produce antibody and/ or T cell immune response, including, for example, cytokine- producing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not.
  • an immunological response such as, to produce antibody and/ or T cell immune response, including, for example, cytokine- producing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not.
  • One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise.
  • Such nucleic acid vector may comprise
  • a further aspect of the invention relates to an immunological composition which, when introduced into an individual capable or having induced within it an immunological response, induces an immunological response in such individual to a polynucleotide of the invention or protein coded therefrom, wherein the composition comprises a recombinant _ polynucleotide or protein coded therefrom comprising DNA which codes for and expresses an antigen of said polynucleotide or protein coded therefrom.
  • the immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.
  • a polypeptide of the invention or a fragment thereof may be fused with co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties.
  • fused recombinant protein preferably further comprises an antigenic co-protein, such as lipoprotein D from Hemophilus influenzae, Glutathione-S-transferase (GST) or beta- galactosidase, relatively large co-proteins which solubilize the protein and facilitate production and purification thereof.
  • the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system.
  • the co-protein may be attached to either the amino or carboxy terminus of the first protein.
  • compositions particularly vaccine compositions, and methods comprising the polypeptides or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. et al. Science 273: 352 (1996).
  • kits using the described polynucleotide or particular fragments thereof which have been shown to encode non-variable regions of bacterial cell surface proteins in DNA constructs used in such genetic immunization experiments in animal models of infection with Streptococcus pneumoniae will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly Streptococcus pneumoniae infection, in mammals, particularly humans.
  • the polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue.
  • tissue damage include wounds in skin or connective tissue caused, e.g., by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina.
  • the invention also includes a vaccine formulation which comprises an atac immunogenic recombinant protein of the invention together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, or intradermal.
  • Formulations suitable for parenteral administration include aqueous and non- aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use.
  • the vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.
  • compositions for purposes of compositions, kits and administration
  • the invention also relates to compositions comprising the polynucleotide or the polypeptides discussed above or their agonists or antagonists.
  • the polypeptides of the invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject.
  • Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient.
  • Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof.
  • the formulation should suit the mode of administration.
  • the invention further relates to diagnostic and pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
  • Polypeptides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.
  • the pharmaceutical compositions may be administered in any effective, convenient _ manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.
  • the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.
  • the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams.
  • Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions.
  • Such carriers may constitute from about 1 % to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.
  • the daily dosage level of the active agent will be from 0.01 mg/kg to 10 g/kg, typically around 1 mg/kg.
  • the physician in any event will determine the actual dosage which will be most suitable for an individual and will vary with the age, weight and response of the particular individual.
  • the above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.
  • In-dwelling devices include surgical implants, prosthetic devices and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time.
  • Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, continuous ambulatory peritoneal dialysis (CAPD) catheters.
  • CAPD continuous ambulatory peritoneal dialysis
  • composition of the invention may be administered by injection to achieve a systemic effect against relevant bacteria shortly before insertion of an in-dwelling device. Treatment may be continued after surgery during the in-body time of the device.
  • composition could also be used to broaden perioperative cover for any surgical technique to prevent bacterial wound infections, especially Streptococcus pneumoniae wound infections.
  • Many orthopedic surgeons consider that humans with prosthetic joints should be . considered for antibiotic prophylaxis before dental treatment that could produce a bacteremia. Late deep infection is a serious complication sometimes leading to loss of the prosthetic joint and is accompanied by significant morbidity and mortality. It may therefore be possible to extend the use of the active agent as a replacement for prophylactic antibiotics in this situation.
  • compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.
  • composition of the invention may be used to bathe an indwelling device immediately before insertion.
  • the active agent will preferably be present at a concentration of 1 ⁇ g/ml to lOmg/ml for bathing of wounds or indwelling devices.
  • a vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response.
  • a suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals.
  • sequence search results providing characterization information regarding certain preferred polynucleotides (denoted as "Assembly") and polypeptides of the invention encoded thereby.
  • Assembly characterization information regarding certain preferred polynucleotides
  • polypeptides of the invention encoded thereby.
  • For each polynucleotide in Table 1 there is listed the closest homologue of each polypeptide encoded by each ORF in such polynucleotide. This determination of homology is based on a comparison of the sequences of in Table 1 with sequences available in the public domain (see heading entitled “Description” for the homologue name). Where no significant homologue was detected the term "unknown" appears after the heading "Description”.
  • Preferred polypeptides encoded by the ORFs of the invention are ones that have a biological function of the homologue listed, among other functions.
  • the analysis used to determine each homologue listed in Table 1 was either BlastP and/or BlastX and/or MPSearch, each of which is well known.
  • Table 1 is the amino acid sequence encoded by each ORF.
  • An "Assembly ID" number provides a convenient way to correlate the polynucleotide sequence with the ORF or ORFs it comprises and the polypeptides encoded by these ORFs, as well as to correlate such sequences with other pertinent information provided in Tables 1 and 2.
  • N-ACETYLNEURAMINATE LYASE SUBUNIT (EC 4.1.3.3) (N- ACETYLNEURAMINIC ACID ALDOLAS E) (N-ACETYLNEURAMINATE PYRUVATE LYASE) (NALASE) . - ESCHERICHIA COLI .
  • Assembly ID 3859774 Assembly Length: 214bp > 3859774 Strep Assembly -- Assembly id#3859774 ATCGAATTCTAACATGTGCTTCTCCTTCTATTGTTCCTATCTTTAAAATCTACTCCTTCA TGCTCCAAGAGCCAAGCTTTCTTTTCCACTCCTGCAGCATAACCTGTCAGACGCTTGCCT GCTCCCAACACACGATGACAAGGTACTAGGATAGACCAAGGATTGCGTCCCACTGCTCCA CCAATTGCTTGAGCAGAAGCCACTTGCAGGTCTT
  • DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE) (DHODEHASE) . - BACILLUS SUBTILIS.
  • SGC3 Mycoplasma hyorhinis
  • Bacillus subtilis (strain 168, ) DNA. Homologous to E. coli serine protease HtrA (BLAST)
  • N-acetylglucosamine-6-phosphate deacetylase (nagA) homolog - Haemophilus influe nzae (strain Rd KW20)
  • TRANSCRIPTION ELONGATION FACTOR GREA (TRANSCRIPT CLEAVAGE FACTOR GREA). - ESCHE RICHIA COLI .
  • Table 2 Provided in Table 2 is information on the direction of the ORF (forward or reverse) for each polynucleotide in Table 1. Also listed for each ORF is its start and stop codon positions (refer to the columns containing nucleotide code labeled "Start” and "Stop”). The triplet codon sequence for each start and stop codon is also shown. These codons may be shown in the sense orientation or antisense orientation, such as GTG and CAC, respectively, for start codons. The “Length” column discloses the length of each polynucleotide assembly.
  • the direction of translation on the polynucleotide depicted is denoted by and "Forward” for forward or and “Reverse” for reverse (or being on the opposite strand from the one depicted).
  • the "Assembly ID” number is a unique identifier assigned to each ORF of Table 1 and allows a correlation between the data in Tables 1 and 2.

Abstract

This invention relates to newly identified Streptococcal polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

Description

NOVEL CODING SEQUENCES FIELD OF THE INVENTION
This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, in these and in other regards, the invention relates to novel polynucleotides and polypeptides set forth in Table 1. BACKGROUND OF THE INVENTION
The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, Streptococcus pneumoniae (herein S. pneumoniae) has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with S. pneumoniae, many questions concerning the virulence of this microbe remain.
While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgAl protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.
GUG is used as an initating nucleotide, rather than ATG, for a significant number of mRNA's in both Gram positive and Gram negative bacteria. Statistics on the frequency of NTG codons in the start codon for several bacterial species are available on line via computer at http://biochem.otago.ac.nz:800/Transterrn/home_page. html).
A discussion of initiation codons in B. subtilis is set forth in Vellanoweth, RL.1993 in Bacillus subtilis and other Gram Positive Bacteria. Biochemistry. Physiology and Molecular Genetics. Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-71 1. Vellenworth indicates a major difference between B. subtilis and the gram-negative organisms is in the choice of initiation codon. 91 % of the sequenced E. coli genes start with AUG. By contrast, about 30% of B. subtilis and other clostridial branch gened start with UUG or GUG. Moreover, CUG functions as a start codon in B. subtilis. Mutations of an AUG initiation codon to GUG or UUG often cause decreased expression in B. subtilis and E. coll. Generally, translation efficiency is higher with AUG initiation codons. A strong Shine-Delgarno ribosome binding site, however, can compensate almost fully for a weak initiation codon. It has been reported that genes with a range of expression levels have initiation codons other than ATG in gram positives (Vellanoweth, RL.1993 in Bacillus subtilis and other Gram Positive Bacteria. Biochemistry, Physiology and Molecular Genetics. Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-71 1).
Provided herein are ORF sequences from genes possessing GUG initiation codons and proteins expressed therefrom and homologues thereto to be used for screening for antimicrobial compounds. Clearly, there is a need for polypeptide and polynucleotide sequences that may be used to screen for antimicrobial compound and which may also be used to determine the roles of such sequences in pathogenesis of infection, dysfunction and disease. There is also need, therefore, for identification and characterization of such sequences which may play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.
The polypeptides of the invention have amino acid sequence homology to a known protein(s) as set forth in Table 1. SUMMARY OF THE INVENTION
It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between an amino acid sequence selected from the group consisting of the sequences set out in Table 1 and a known amino acid sequence or sequences of other proteins such as the protein identities listed in Table 1.
It is a further object of the invention to provide polynucleotides that encode novel polypeptides, particularly polynucleotides that encode polypeptides of Streptococcus pneumoniae.
In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding a polypeptide comprising a sequence sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.
In another particularly preferred embodiment of the invention there is a novel protein from Streptococcus pneumoniae comprising an amino acid sequence selected from the group consisting of the sequences set out in Table 1 , or a variant of any of these sequences. In accordance with another aspect of the invention there is provided an isolated nucleic_ acid molecule encoding a mature polypeptide expressible by the Streptococcus pneumoniae 0100993 strain contained in the deposited strain.
A further aspect of the invention there are provided isolated nucleic acid molecules encoding a polypeptide of the invention, particularly Streptococcus pneumoniae polypeptide, and including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants of a polypeptide of the invention and polypeptides encoded thereby.
Another aspect of the invention there are provided novel polypeptides of Streptococcus pneumoniae as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
Among the particularly preferred embodiments of the invention are variants of the polypeptides of the invention encoded by naturally occurring alleles of their genes.
In a preferred embodiment of the invention there are provided methods for producing the aforementioned polypeptides.
In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.
In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the polypeptides and polynucleotides of the invention, treating disease, for example, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a Streptococcus pneumoniae bacteria.
In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to a polynucleotide sequence of the invention, particularly under stringent conditions. In certain preferred embodiments of the invention there are provided antibodies against . polypeptides of the invention.
In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypeptide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.
In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polypeptides and polynucleotides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.
In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.
Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure. GLOSSARY
The following definitions are provided to facilitate understanding of certain terms used frequently herein.
"Disease(s) means any bacterial infection, but preferably a streptococcal infection, such as, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema, endocarditis, meningitis, and infection of cerebrospinal fluid.
"Host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.
"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, - including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991 ; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 ( 1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al, NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al, J. Mol. Biol 215: 403-410 (1990). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence it is intended that the nucleotide sequence of the tested polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously , by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence is intended that the test amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be _ deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
"Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.
"Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).
"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma- carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al, Meth. Enτymol. 182:626-646 (1990) and Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well. "Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that „ differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans. DESCRIPTION OF THE INVENTION
Each of polynucleotide and polypeptide sequences provided herein may be used in the discovery and development of antibacterial compounds. Upon expression of the sequences with the appropriate initiation and termination codons the encoded polypeptide can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgarno region can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.
Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in_ related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.
Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with an appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.
It is believed that bacteria possess a number of ways of regulating gene expression levels, especially in subtle degrees, and the interplay between ribosome binding site and inititation codon is utilized for this purpose for these genes. It is also believed that such genes will be important targets for antimicrobial drug discovery, particularly since pathogenesis genes are believed undergo gene expression regulation during in the pathogenesis process. Therefore, the invention provides ORF sequences possessing a GTG (GUG ) initiation codon and protein targets expressed thereform.
Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence. ORF Gene Expression
Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival per se, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:
1) Signature Tagged Mutagenesis (STM): This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes. Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.
The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.
In Streptococcus pneumoniae, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion- duplication mutagenesis technique as described by Morrison et al., J. Bacteriol. 159:870 (1984) the contents of which is incorporated by reference for background purposes.
2) In Vivo Expression Technology (IVET): This technique is described by Camilli et al, Prρc. Natl Acad. Sci. USA. 91 :2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.
In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool is introduced into a host and at various times after infection bacteria may be recovered and_ assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.
3) Differential display: This technique is described by Chuang et al., J. Bacteriol. 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to ORF 'unknowns'.
4) Generation of conditional lethal mutants by transposon mutagenesis: This technique, described by de Lorenzo, V. et aj., Gene 123: 17-24 (1993); Neuwald, A. F. et al., Gene 125: 69-73( 1993); and Takiff, H. E. et al., J. Bacteriol. 174: 1544- 1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.
In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.
5) Generation of conditional lethal mutants by chemical mutagenesis: This technique is described by Beckwith, J.. Methods in Enzymology 204:
3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at temperature other than physiological temperature (permissive temperature) and subsequent _ replica plating and growth at different temperature (e.g. 42"C to identify ts, 25"C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.
6) RT-PCR: Streptococcus pneumoniae messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of Streptococcus pneumoniae 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).
Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind. Use of the of these technologies when applied to the ORFs of the present invention , enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.
The invention relates to novel polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of Streptococcus pneumoniae, which is related by amino acid sequence homology to known polypeptide as set forth in Table 1. The invention relates especially to compounds having the nucleotide and amino acid sequence selected from the group consisting of the sequences set out in Table 1 , and to the nucleotide sequences of the DNA in the deposited strain and amino acid sequences encoded thereby.
Deposited materials
The deposit has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposit is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112.
A deposit containing a Streptococcus pneumoniae bacterial strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 1 1 April 1996 and assigned NC B Deposit No. 40794. The Streptococcus pneumoniae bacterial strain deposit is referred to herein as "the deposited bacterial strain" or as "the DNA of the deposited bacterial strain."
The deposited material is a bacterial strain that contains the full length FabH DNA, referred to as "NCLMB 40794" upon deposit.
The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.
The deposited strain contains the full length genes comprising the polynucleotides set forth in Table 1. The sequence of the polynucleotides contained in the deposited strain, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
Polypeptides The polypeptides of the invention include the polypeptides set forth in Table 1 (in particular the mature polypeptide) as well as polypeptides and fragments, particularly those which have the biological activity of a polypeptide of the invention, and also those which have at least 50%, 60% or 70% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 or the relevant portion, preferably at least 80% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and more preferably at least 90% similarity (more preferably at least 90% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 , and still more preferably at least 95% similarity (still more preferably at least 95% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 , and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.
The invention also includes polypeptides of the formula:
X-(R,)n-(R2)-(R3)n-Y wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R ] and R3 are any amino acid residue, n is an integer between 1 and 2000, and R2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in Table 1. In the formula above R2 is oriented so that its amino terminal residue is at the left, bound to Rj and its carboxy terminal residue is at the right, bound to R3. Any stretch of amino acid residues denoted by either R group, where R is greater than 1 , may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In preferred embodiments n is an integer between 1 and 1000 or 2000.
A fragment is a variant polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned polypeptides. As with polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region, a single larger polypeptide.
Preferred fragments include, for example, truncation polypeptides having a portion of the amino acid sequence of Table 1 , or of variants thereof, such as a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus. Degradation forms of the polypeptides of the invention in a host cell, particularly a Streptococcus pneumoniae, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and tum-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, _ beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.
Also preferred are biologically active fragments which are those fragments that mediate activities of polypeptides of the invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of Streptococcus pneumoniae or the ability to initiate, or maintain cause disease in an individual, particularly a human.
Variants that are fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.
In addition to the standard single and triple letter representations for amino acids, the term "X" or "Xaa" is also used. "X" and "Xaa" mean that any of the twenty naturally occuring amino acids may appear at such a designated position in the polypeptide sequence.
Polynucleotides
The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from S. pneumoniae 0100993 by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
To obtain the polynucleotide encoding the protein using the DNA sequence given herein typically a library of clones of chromosomal DNA of S.pneumoniae 0100993 in E. coli or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory . Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).
Moerover, another aspect of the invention relates to isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group consisting of the sequences in Table 1 and polynucleotides closely related thereto and variants thereof.
Using the information provided herein, such as the polynucleotide sequences set out in Table 1 , a polynucleotide of the invention encoding polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Streptococcus pneumoniae 0100993 cells as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a sequence set forth in Table 1 , typically a library of clones of chromosomal DNA of Streptococcus pneumoniae 0100993 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent conditions. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently, such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Illustrative of the invention, the polynucleotides set out in Table 1 were discovered in a DNA library derived from Streptococcus pneumoniae 0100993.
The DNA sequences set out in Table 1 each contains at least one open reading frame encoding a protein having at least about the number of amino acid residues set forth in Table 1. The start and stop codons of each open reading frame (herein "ORF") DNA are the first three and the last three nuclotides of each polynucleotide set forth in Table 1.
Certain polynucleotides and polypeptides of the invention are structurally related to known proteins as set forth in Table 1. These proteins exhibit greatest homology to the homologue listed in Table 1 from among the known proteins. The invention provides a polynucleotide sequence identical over its entire length to each _ coding sequence in Table 1. Also provided by the invention is the coding sequence for the mature polypeptide or a fragment thereof, by itself as well as the coding sequence for the mature polypeptide or a fragment in reading frame with other coding sequence, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence. The polynucleotide may also contain non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al, Proc. Natl. Acad. Sci., USA 86: 821- 824 (1989), or an HA tag (Wilson et al, Cell 37: 767 (1984). Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.
The invention also includes polynucleotides of the formula:
X-(R])n-(R2)-(R3)n-Y wherein, at the 5' end of the molecule, X is hydrogen, and at the 3' end of the molecule, Y is hydrogen or a metal, Rj and R is any nucleic acid residue, n is an integer between 1 and 3000, and R is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in Table 1. In the polynucleotide formula above R is oriented so that its 5' end residue is at the left, bound to R] and its 3' end residue is at the right, bound to R3. Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1 , may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In a preferred embodiment n is an integer between 1 and 1000, or 2000 or 3000.
The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the Streptococcus pneumoniae having an amino acid sequence set out in Table 1. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by integrated phage or an insertion sequence or editing) together with additional regions, that also may contain coding and/or non-coding sequences.
The invention further relates to variants of the polynucleotides described herein that encode for variants of the polypeptide having the deduced amino acid sequence of Table 1. Variants that are fragments of the polynucleotides of the invention may be used to synthesize _ full-length polynucleotides of the invention.
Further particularly preferred embodiments are polynucleotides encoding polypeptide variants, that have the amino acid sequence of a polypeptide of Table 1 in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of such polynucleotide.
Further preferred embodiments of the invention are polynucleotides that are at least 50%, 60% or 70% identical over their entire length to a polynucleotide encoding a polypeptide having the amino acid sequence set out in Table 1 , and polynucleotides that are complementary to such polynucleotides. Alternatively, most highly preferred are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the deposited strain and polynucleotides complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
A preferred embodiment is an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than S. pneumoniae; and a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than 5. pneumoniae.
Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of Table 1.
The invention further relates to polynucleotides that hybridize to the herein above- described sequences. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate,_ and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0. Ix SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 1 1 therein.
The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in Table 1 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.
As discussed additionally herein regarding polynucleotide assays of the invention, for instance, polynucleotides of the invention as discussed above, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a polypeptide and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in Table 1. Such probes generally will comprise at least 15 bases. Preferably, such probes will have at least 30 bases and may have at least 50 bases. Particularly preferred probes will have at least 30 bases and will have 50 bases or less.
For example, the coding region of each gene that comprises or is comprised by a polynucleotide set forth in Table 1 may be isolated by screening using a DNA sequence provided in Table 1 to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to polynucleotide assays.
Polynucleotides of the invention that are oligonucleotides derived from the a polynucleotide or polypeptide sequence set forth in Table 1 may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
The invention also provides polynucleotides that may encode a polypeptide that is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case in vivo, the additional amino acids may be processed away from the mature protein by cellular enzymes.
A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA sequence, except it is preferred that N is not a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.
In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
Vectors, host cells, expression
The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.
For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis et al., BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, - cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.
Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, enterococci E. coli, streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.
A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, (supra).
For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
Diagnostic Assays This invention is also related to the use of the polynucleotides of the invention for use as - diagnostic reagents. Detection of such polynucleotides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a gene of the invention may be detected at the nucleic acid level by a variety of techniques.
Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S 1 protection or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl Acad. Sci., USA, 85: 4397-4401 (1985).
Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among other things, amplifying a DNA of the invention isolated from a sample derived from an individual. The primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and or classify the infectious agent. The invention further provides a process for diagnosing disease, preferably bacterial infections, more preferably infections by Streptococcus pneumoniae, and most preferably disease, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having the sequence of Table 1 Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods
In addition, a diagnostic assay in accordance with the invention for detecting over- expression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example Assay techniques that can be used to determine levels of a protein, in a sample derived from a host are well-known to those of skill in the art Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays
Antibodies
The polypeptides of the invention or variants thereof, or cells expressing them can be used as an immunogen to produce antibodies lmmunospecific for such polypeptides "Antibodies" as used herein includes monoclonal and polyclonal antibodies, chimeπc, single chain, simiamzed antibodies and humanized antibodies, as well as Fab fragments, including the products of an Fab lmmunolglobuhn expression library
Antibodies generated against the polypeptides of the invention can be obtained by administering the polypeptides or epitope-beanng fragments, analogues or cells to an animal, preferably a nonhuman, using routine protocols For preparation of monoclonal antibodies, any technique known in the art that provides antibodies produced by continuous cell line cultures can be used Examples include various techniques, such as those in Kohler, G and Milstein, C , Nature 256 495-497 (1975), Kozbor et al , Immunology Today 4 72 (1983), Cole et al , pg 77- 96 in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R Liss, Inc (1985)
Techniques for the production of single chain antibodies (U S Patent No 4,946,778) can be adapted to produce single chain antibodies to polypeptides of this invention Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies
Alternatively phage display technology may be utilized to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v- genes of lymphocytes from humans screened for possessing recognition of a polypeptide of the invention or from naive libraries (McCafferty, J. et al., (1990), Nature 348, 552-554; Marks, J. et al., (1992) Biotechnology 10, 779-783). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) Nature 352, 624-628).
If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.
The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptides to purify the polypeptides by affinity chromatography.
Thus, among others, antibodies against a polypeptide of the invention may be employed to treat disease.
Polypeptide variants include antigenically, epitopically or immunologically equivalent variants that form a particular aspect of this invention. The term "antigenically equivalent derivative" as used herein encompasses a polypeptide or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or polypeptide according to the invention, interfere with the immediate physical interaction between pathogen and mammalian host. The term "immunologically equivalent derivative" as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.
The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.
Preferably, the antibody or variant thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized"; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody , for example as described in Jones, P. et al. (1986), Nature 321, 522-525 or Tempest et al.,(1991) Biotechnology 9, 266-273.
The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum Mol Genet 1992, 1 :363, Manthorpe et al., Hum. Gene Ther. 1963:4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem. 1989: 264,16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, PNAS, 1986:83,9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 1989:243,375), particle bombardment (Tang et al., Nature 1992, 356: 152, Eisenbraun et al., DNA Cell Biol 1993, 12:791 ) and in vivo infection using cloned retroviral vectors (Seeger et al., PNAS 1984:81 ,5849).
Antagonists and agonists - assays and molecules
Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al, Current Protocols in Immunology 1(2): Chapter 5 (1991).
The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of a polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.
Another example of an assay for antagonists of polypeptides of the invention is a competitive assay that combines any such polypeptide and a potential antagonist with a compound which binds such polypeptide, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. A polypeptide of the invention can be labeled, such as by radioactivity or a colorimetric compound, such that the^. number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.
Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a binding molecule, without inducing activities induced by a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.
Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists include antisense molecules (see Okano, J. Neitrochem. 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of a polypeptide of the invention.
Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.
The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine et al, Infect. Immun. 60:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques. The antagonists and agonists of the invention may be employed, for instance, to inhibit „ and treat disease.
Helicobacter pylori (herein H. pylori) bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France; http://www.uicc.ch/ecp/ecp2904.htm). Moreover, the international Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention found using screens provided by the invention, particularly broad-spectrum antibiotics, should be useful in the treatment of H. pylori infection. Such treatment should decrease the advent of H. /ry/oπ-induced cancers, such as gastrointestinal carcinoma. Such treatment should also cure gastric ulcers and gastritis.
Vaccines
Another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal which comprises inoculating the individual with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody and/ or T cell immune response to protect said individual from infection, particularly bacterial infection and most particularly Streptococcus pneumoniae infection. Also provided are methods whereby such immunological response slows bacterial replication. Yet another aspect of the invention relates to a method of inducing immunological response in an individual which comprises delivering to such individual a nucleic acid vector to direct expression of a polynucleotide or polypeptide of the invention, or a fragment or a variant thereof, for expressing such polynucleotide or polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response, such as, to produce antibody and/ or T cell immune response, including, for example, cytokine- producing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not. One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid.
A further aspect of the invention relates to an immunological composition which, when introduced into an individual capable or having induced within it an immunological response, induces an immunological response in such individual to a polynucleotide of the invention or protein coded therefrom, wherein the composition comprises a recombinant _ polynucleotide or protein coded therefrom comprising DNA which codes for and expresses an antigen of said polynucleotide or protein coded therefrom. The immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.
A polypeptide of the invention or a fragment thereof may be fused with co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties. Thus fused recombinant protein, preferably further comprises an antigenic co-protein, such as lipoprotein D from Hemophilus influenzae, Glutathione-S-transferase (GST) or beta- galactosidase, relatively large co-proteins which solubilize the protein and facilitate production and purification thereof. Moreover, the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system. The co-protein may be attached to either the amino or carboxy terminus of the first protein.
Provided by this invention are compositions, particularly vaccine compositions, and methods comprising the polypeptides or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. et al. Science 273: 352 (1996).
Also, provided by this invention are methods using the described polynucleotide or particular fragments thereof which have been shown to encode non-variable regions of bacterial cell surface proteins in DNA constructs used in such genetic immunization experiments in animal models of infection with Streptococcus pneumoniae will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly Streptococcus pneumoniae infection, in mammals, particularly humans.
The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused, e.g., by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina. The invention also includes a vaccine formulation which comprises an „ immunogenic recombinant protein of the invention together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, or intradermal. Formulations suitable for parenteral administration include aqueous and non- aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.
While the invention has been described with reference to certain protein, such as, for example, those set forth in Table 1 , it is to be understood that this covers fragments of the naturally occurring protein and similar proteins with additions, deletions or substitutions which do not substantially affect the immunogenic properties of the recombinant protein.
Compositions, kits and administration
The invention also relates to compositions comprising the polynucleotide or the polypeptides discussed above or their agonists or antagonists. The polypeptides of the invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration. The invention further relates to diagnostic and pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
Polypeptides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds. The pharmaceutical compositions may be administered in any effective, convenient _ manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.
In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.
Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1 % to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.
For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be from 0.01 mg/kg to 10 g/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual and will vary with the age, weight and response of the particular individual. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.
In-dwelling devices include surgical implants, prosthetic devices and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time. Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, continuous ambulatory peritoneal dialysis (CAPD) catheters.
The composition of the invention may be administered by injection to achieve a systemic effect against relevant bacteria shortly before insertion of an in-dwelling device. Treatment may be continued after surgery during the in-body time of the device. In addition, the composition could also be used to broaden perioperative cover for any surgical technique to prevent bacterial wound infections, especially Streptococcus pneumoniae wound infections. Many orthopedic surgeons consider that humans with prosthetic joints should be . considered for antibiotic prophylaxis before dental treatment that could produce a bacteremia. Late deep infection is a serious complication sometimes leading to loss of the prosthetic joint and is accompanied by significant morbidity and mortality. It may therefore be possible to extend the use of the active agent as a replacement for prophylactic antibiotics in this situation.
In addition to the therapy described above, the compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.
Alternatively, the composition of the invention may be used to bathe an indwelling device immediately before insertion. The active agent will preferably be present at a concentration of 1 μg/ml to lOmg/ml for bathing of wounds or indwelling devices.
A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals.
Each reference disclosed herein is incorporated by reference herein in its entirety. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety. TABLES
Certain pertinent data for preferred polypeptide and polynucleotide embodiments of the invention are summarized in Tables 1 and 2.
Provided in Table 1 are sequence search results providing characterization information regarding certain preferred polynucleotides (denoted as "Assembly") and polypeptides of the invention encoded thereby. For each polynucleotide in Table 1 , there is listed the closest homologue of each polypeptide encoded by each ORF in such polynucleotide. This determination of homology is based on a comparison of the sequences of in Table 1 with sequences available in the public domain (see heading entitled "Description" for the homologue name). Where no significant homologue was detected the term "unknown" appears after the heading "Description". Preferred polypeptides encoded by the ORFs of the invention, particularly full length proteins either obtained using such ORFs or encoded entirely by such ORFs, are ones that have a biological function of the homologue listed, among other functions. The analysis used to determine each homologue listed in Table 1 was either BlastP and/or BlastX and/or MPSearch, each of which is well known. Also provided in Table 1 is the amino acid sequence encoded by each ORF. An "Assembly ID" number provides a convenient way to correlate the polynucleotide sequence with the ORF or ORFs it comprises and the polypeptides encoded by these ORFs, as well as to correlate such sequences with other pertinent information provided in Tables 1 and 2. Following the heading "ORF Predictions" the nucleotides at the beginning and end of the ORF sequence are set forth ("Start" and "End" respectively). The direction of translation on the polynucleotide depicted is denoted by an "F" for forward or an "R" for reverse (reverse being translated on the opposite strand from the one depicted). The length of each amino acid sequence is also indicated in a column entitled "Length." Below these data is shown the amino acid sequence encoded by the ORF. If a given polynucleotide comprises one ORF, then in the column entitled "ORF #" there is the numeral one. If it encodes two, there are the numerals one and two in the column, and so on.
TABLE 1
Assembly ID: 3049156 Assembly Length: 495bp
> 3049156 Strep Assembly -- Assembly id#3049156 CTCGGTGATAGAAATAGTGTAATCATGCTTTTCTCTTCTTATCTATACTTTGCTACTTCT ATTATACAAAAAAATAAAGCGCTTGACTAGGGATTTTTAGAAAAAAAGCCTATTTTTTCA AGAAAAATAGGCTTTTTGCGAACGATTGACACAATTGGATTTGGTTAATTCACTCTTAAC GATGGTTTTAAACGATATATATTTTTATATATGTAAATTAAAAACTTCTTTCCTTTCACT TCCTACGACTTTTCAGATACAGATAGCCAAAGAAGTTTTCATAGAGGGCAAAAAAGAGGA GGAAGGCATGAAGAAAGAAGGTCTCTGGCAAAATCATAATAACAGGATCCTTGGCTGGAT CAAAAAGCCAGGTATCATCTCCCACAAAGAGAATTTGATGGAAAAGAGTAAAGAATTGGT CAAAACCAATCAAAACTCCCCCAAGTCCATCATCACAGGTAAGACTACTAGAGCCAGGAG ACTTTTTCGATAAAG
ORF Predictions :
ORF # Start End Direction Length
1 236 385 R 50 aa
> 3049156-1 ORF translation from 236-385, direction R VGDDT LFDPAKDPVIMILPETFFLHAFLLFFALYENFFGYLYLKSRRK* Description: unknown
Assembly ID: 3049862 Assembly Length: 529bp
> 3049862 Strep Assembly -- Assembly id#3049862 CTAGAGCAAGTATTTTTCAAACTTTTTCCGAATAAATAGATAGAGCCAGAGAATTTAGTA AACCTAGATTTAA7ΛAATGTGCTATAACATAATATATTGAATCTATAATAGTACACCTTGA CTGCTAAAATATTTCTATAAATTAATTTGACTTTCCTGATAGAGTTATTCACATCTTATT TCAACTCACTATAGAAGGAGGAATAGGAGGATTCTCAGACATCCGGGCATCAGCCCAACT AATGATTTGATTGCTAAGAAAATATTCAGCAATCCAGAAATCACTTGTCAATTTATTCGC GATATGCTGGACTTGCCAGCAAAAAATGTTGACCATTTTGGAGGGAAGCGATATTCACGT ATTACTCTCCATGCCTTACTCAGTGCAGGATTTTTATACCAGTATAGACGTCTTGGCGGA GTTGGATAACGGTACTCAAGTAATTATTGAGATTCAAGTCCATCATCAGAATTTTTCATC AATCACTTGTGGACTTACCTGTGCAGTCAGGTTAATCAAATCTTGAAAA
ORF Predictions:
ORF # Start End Direction Length
1 383 526 F 48 aa
> 3049862-1 ORF translation from 383-526, direction F VQDFYTSIDVLAELDNGTQVIIEIQVHHQNFSSITCGLTCAVRLIKS*
Description: unknown
Assembly ID: 3112810 Assembly Length: 885bp
> 3112810 Strep Assembly -- Assembly id#3112810 CTCATCATCTGTCAAAAAGCGTTTCTTAGCAGTCGTGATATCCATAAAATAATCTAATAT CACGATTTCCTCATCCGCAAAGAAAGGAAGGCTGACCAACTCCAGTGCCACATCCTTGTA AACTACTTCTTGCATATCAAAGTAGGCAAAGTTGAGGTCAGCAGAATCATACCCAATCTG TTTCAACACTTGACTCTTCATCACTTCAAACTGACCCTGATCTGTCCCTGTAAATAGGCG CAGGCTCGGTAAATTCGATAAAGTCAACTTCTGACTTTCTTCAATGGCTAGCATCGTCTC TCCTTTCTTCAGATTTTTCGATTTAATTTAGTCiATATAGCGCAATTTCCCACGGAAATC TTCTAAGCTCTCGTAGCCTTTTTCCACCATGATTGCTTTCAGTTCATTGGTAAAGCGGTC AAAAGCACTGACGCCTTCTTTGTGAAGGGTCGTTCCCACCTGCACCATACTTGCTCCACA GAGGATGTGTTCAAAGGCATCTCGACCAGTCAGAACGCCACCTGTTCCGATAATTTGGAT TTGAGGATTTAAACGTTGATAAAAGGCGTGAACATTGGCTAGAGCAGTCGGTTTGATGTA TTATCCACCAATTCCACCAAAACCATTCTTAGGCCGAATAACGACAGATTCGTCTTCTiVT ATAGAGGCCGTTTCCGATAGAGTTAACGCAGTTGACAAACTTGAGCGGATATTTGTTGAA AATAGCTGCCGCTTGATCAAAGTGAACAATATCAAAATAAGGTGGCAATTTAATTCCAAG AGGTTTGGTGAAGTAAGCAAACACT-TCTGCCAAAATCCGGTCTGTTGTCTCAAAATCATA GGCAATCTGAGGTTTACCTGGAACATTTGGACAGGAAAGATTTAG
ORF Predictions :
ORF # Start End Direction Length
1 601 804 R 68 aa
> 3112810-2 ORF translation from 601-804, direction R VFAYFTKPLGIKLPPYFDIλ/HFDQAAAIFNKYPLKFVNCλ/ SIGNGLYIEDESWIRPKN GFGGIGG*
Description:
LLCPYRDA NCBI gi : 511014 - Lactococcus lactis . DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE)
Assembly ID: 3112866 Assembly Length: 925bp
> 3112866 Strep Assembly -- Assembly id#3112866 TCTTGGCCAACTGCATGGAGTTCAGCGGTCAATTTCAACGCACCTGAGAAACAGACCCCT GCACCCCTGAAATCTCAGGAGACATGATGGTCTGGATGGAATCAATAATGAGAAAGTCTG GCTGGATACGCTACCACTTCTGCACGAACACTCTGCATATTGGTCTCTGCATAGAGATAA AACTCACTATCAAAATCACCTAAGCGCTCTGCACGTAGTTTAATCTGCTGGGCAGACTCC TCCCCACTGACATAGAGAACTGTCCCCACTTGGGACAACTGGGTTGAGACTTGTAGGAGA AGAGTTGATTTCCCAATCCCAGGATCCCCACCGATGAGGACGAGACTTTCCTGGTACAAC TCCGCCTCCAAGCACACGGTTGAATTCCTCCATCTCCGTCTTGGTTCGATTGACATTGAT GGAAGTCACCTCAGCTAGTTTCATGGGCTTGGTTTTCTCACCTGTCAAGGACACACGCGC ATTCTTGACCTCGGCAACCTCAACCTCTTCCACAAAAGAAGACCAAGACCCACAGTTGGG GCAACGTCCCAGATATTTAGGGGAATTATACCCACAATTTTGACATACAAATGTCGCTTT TTTCTTTGCGATGACAAACCTCTTTCTATATCTCTAACTCACACTCAATCACTTGGCAAA AATCAATCTTCTCATTTGGCACAAACTGGCGCATGAGCATTCGATGAGCAACAACTACCA CAGTCTGATGTTCTCGATACTTAGACATACATTCTAGAAACCGAGACTTCATTTCCGTAG CTGTCTCATATTGAATAGGACTATTAGGAAGCAACTCCCCCTTGTTTTCTAAAAACAGTC TTCTAGCTGTTTCAAAGTTTTCTATTCCTGTTTTATAGACCTGCCATTCATGTAATAAAG GCTCTACTCTTAAAGGAAGACCCGT
ORF Predictions:
ORF # Start End Direction Length 1 220 513 R 98 aa _
> 3112866-2 ORF translation from 220-513, direction R VEEVEVAEVKNARVSLTGEKTKPMKLAEVTSINVNRTKTEMEEFNRVLGGGVV.PGKSRPH RWGSWDWEINSSPTSLNPWPSGDSSLCQWGGVCPAD*
Description: SMS PROTEIN. - ESCHERICHIA COLI .
Assembly ID: 3113664 Assembly Length: 602bp
> 3113664 Strep Assembly -- Assembly id#3113664 TTATGTCAGTGGGATTACGCCTAATCTCCCAGAAGCAGAATTATTATCCGGTCAGGAAAT TAAAACCTTGGNAGACATGAAAACTGCAGCGCAGAAATTGCATGATTTAGGAGCGCCAGC AGTCATTATCAAAGGGAGGCAATCGTCTTAGTCAGGACAAGGCTGTGGATGTCTTTTATG ATGGACAGACCTTTACTATCCTAGAAAATCCAGTTATCCAAGGCCAAAATGCTGGTGCAG GTTGTACCTTTGCCTCTAGCATTGCCAGTCACTTGGTTAAAGGTGATAAACTTTTGCCAG CAGTAGAAAGCTCTAAGGCTTTCGTTTATCGTGCTATTGCACAAGCAGATCAGTATGGAG TAAGACAATATGAAGCAAACAAAAACAACTAAAATCGCCCTTGTATCCCTATTAACCGCC CTTTCTGTGGTTCTAGGTTATTTCTTAAAAATCCCAACACCTACAGGNATTCTAACTCTT TTAGATGCTGGTGTCTTCTTTGCGGCCTTTTACTTTGGTAGTCGTGAAGGAGCGGTAGTC GGAGGACTAGCAAGTTTCTTGCTTGACCTCTTATCAGGCTACCCTCAGTGGATGTTTTTT AG
ORF Predictions:
ORF # Start End Direction Length
1 165 392 F 76 aa
> 3113664-1 ORF translation from 165-392, direction F VDVFYDGQTFTILENPVIQGQNAGAGCTFASSIASHLVKGDKLLPAVESSKAFVYRAIAQ ADQYGVRQYEANKNN*
Description: Thi protein - Rhizobium meliloti
Assembly ID: 3113716 Assembly Length: 456bp
> 3113716 Strep Assembly -- Assembly id#3113716 CTGGATACTAAGAGAAATCAAAAAAGCACTCTAGGATAGAGGCCTAAAGTGCTTAGTTTC AAGGCTTTACAGCCTATCATATTTAATAAAATATTACAACATCTTGTTGTAGAATTCAAC GACAAGTGCTTCGTTGATTTCTGGGTTGATTTCGTCGCGTTCTGGCAAGCGAGTCAAIGA ACCTTCCAATTTTTCAGCGTCGAATGATACGAATGCTGGACGTCCAAGAGTAGCTTCTAC TGCTTCAAGGATTGCTGGAACTTTCAATGATTTTTCACGAACTGAGATCACTTGACCTGC AGTTACGCGGTATGATGGGATATCAACGCGTTTCCCGTCAACAAGGATGTGACCGCTGGT TTACAAATTGGACCAAACTTGACGACCAGTAGTCGCGAGACCAAGACGGTAAACAACGTT ATCCAAACGACGTTCCAAAAGAAGCATAAAGTTGAA
ORF Predictions:
ORF # Start End Direction Length
1 94 291 R 66 aa
> 3113716-1 ORF translation from 94-291, direction R VISVREKSLKVPAILEAVEATLGRPAFVSFDAEKLEGSLTRLPERDEINPEINEALWEF YNKML*
Description: 3 OS RIBOSOMAL PROTEIN S4 (BS4) . - BACILLUS SUBTILIS.
Assembly ID: 3174176 Assembly Length: 1961bp
> 3174176 Strep Assembly -- Assembly id#3174176 CTAATATAGAATAATCACCGCCGTTGTGAAAGAACGATTGGATGATAATCCAATCGTTCA GGGAAATTGGAAGACCTTGGGTTTCCAATTTAGGCATGAGACACCTTTGGTGGCTGCTGC CGTCCCTCACAAGCTAAGGTGATTGTTGAAAAAGAGGAAAAAGGAGAAGAAATGAAACCA GTAATTTCCATCATCATGGGCTCAAAATCCGACTGGGCAACCATGCAAAAAACAGCAGAA GTCCTAGACCGCTTCGGTGTAGCCTACGAAAAGAAAGTTGTTTCCGCACACCGTACACCA GACCTCATGTTCAAACATGCAGAAGAAGCCCGTAGTCGTGGCATCAAGATCATCATCGCA GGTGCTGGTGGCGCAGCGCATTTGCCAGGCATGGTAGCTGCCAAAACAACCCTTCCAGTC ATTGGTGTGCCAGTCAAGTCTCGTGCTCTTAGTGGAGTGGATTCACTCTATTCTATCGTT CAGATGCCGGGTGGGGTGCCTGTTGCGACCATGGCTATCGGTGAACTCTTTTTTAGGATA TAAAACAGGGTTCGGATAAGTTTTTTTGCAAGGTGGATGATGGCTACATTGTAATGTTTT CCTTGTTCTAACTTAGTCTTAAAAGCAGGTGAAAAGTGAGGGCATGCTTTGGCAGCTTGT ATGAGTACCTACCGCAGATAAGGGGAACCCCGTTTGACCATCCTCCCAGCTAAATCAATC TGACCTGACTGATAAATAGAAGAATCCAGTCCAGCGAAAGCTTGTAATTGAGCAGGATTA TCAAAGGCATGAATATTTCGAATCTCGGCTAAAATGACCGCCCCTAAACGATTCTCAATC CCAGTAACCGTCGTGATGACCGAGTTTAACTCAGCCATCAAGTCATTGACACATTTTTCC GCCTTGTCAATGAGCCTCTTGTAATGTTTGATGTTTTCATTACACGAGATAAAACGTCTA TGCGTTATCAAACTCATTACCAATTAAAACAAATGTGGTTAGATCCTTTCGGAAATTGTC AAGCGATTGGAGGAAATGAACTAATCCACAGCGGCTTATTCCAAGTATACCACTTGGGCT TTGGCAGTAGCTAACTGCGCTAAATATAATATAAGGAGGAGTAAAATGAAGACAGTTCAA TTTTTTTGGCATTATTTTAAGGTCTACAAGTTCTCATTTGTAGTTGTCATCCTGATGATT GTTCTGGCGACTTTTGCCCAAGCCCTCTTTCCAGTCTTTTCTGGACAAGCGGTGACG£ G CTAGCCAATTTAGTTCAAGCTTATCAAAATGGGCAATCCAGAACTTGTATGGCAAAGCCT ATCAGGAATTCATGGTCAATCTTGGCCTGCTGGTTTTGGGTTCTATTTATCTCTAGGTGT AATATAAACATGTGTCTCATGACGCGCGTGATTGCAGAATCGACCAACGAGATGCGCAAA GGTCTCTTTGGTAAGCTTGCTCAGTTGACGGTTTCTTTCTTTGACCGTCGACAAGATGGC GATATCCTGTCTCATTTTACCAGTGATTTGGATAATATCCTCCAAGCCTTTAACGAAAGC TTGATTCAGGTCATGAGCAATATTGTTTTATACATTGGTCTGATTCTTGTCATGTTTTCG AGAAATGTGACGCTGGCTCTCATCACCATTGCCAGCACCCCATTGGCTTTCCTTATGCTG ATTTTCATCGTGAAAATGGCACGTAAATACACCAACCTCCAGCAGAAAGAGGTAGGGAAG CTCAACGCCTATATGGATGAGAGCATCTCAGGCCAAAAAGCCGTGATTGTGCTAGGAATT CAAGAGGATATGATGGCAGGATTTCTTGAACAAAATGAGCGCGTGCGCAAGGCAACCTTT AAAGGAAGAATGTTCTCAGGAATTCTTTTCCCTGTCATGAATGGGATGAGCCTGATTAAT ACAGCCATCGTCATCTTTGCTGGTTCGGCTGTACTTTTGAA
ORF Predictions:
ORF # Start End Direction Length
1 139 543 F 135 aa
> 3174176-1 ORF translation from 139-543, direction F VIVEKEEKGEEMKPVISIIMGSKSDWATMQKTAEVLDRFGVAYEKKWSAHRTPDLMFKH AEEARSRGIKIIIAGAGGAAHLPGMVAAKTTLPVIGVPVKSRALSGVDSLYSIVQMPGGV PVATMAIGELFFRI*
Description:
PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21) (AIR C ARBOXYLASE) (AIRC) . - BACILLUS SUBTILIS.
Assembly ID: 3174186 Assembly Length: 375bp
> 3174186 Strep Assembly -- Assembly id#3174186 CTATCTCCAAGTNCGNTTGGAATNCCTCCGCNANCCACAACTCATCCAAGCACTTTNCAA CGTGNCCTGGTCCGGTCCTCCAGTGCGTCTNACNGCACCTTCAACCTGCNCATGGGTAGG TCACATGGCTTCGGGTCTACGTCATGATACTAAGGCGCCCTATTCAGACTCGGNTNCCCT AGGGCTCCGTCTCTTCAACTTAACCACGCAACAGAACGTNACCCGCCGGTTCATTCTACA AAAGGCAGNCTCTCACCCATTAACGGGCTCGAACTTGTTGTAGGCACACNGCTTCAGGTN CTATTTCACCCCCCTCCCGGGGAGCANCTCAACTGACCCNCACGGCACCGGTGNANNAAA CGGTCACTTAGGGAG
ORF Predictions:
ORF # Start End Direction Length 1 83 2 83 F 67 aa _
> 3174186-1 ORF translation from 83-283, direction F VRXXAPSTCXWVGHMASGLRHDTKAPYSDSXXLGLRLFNLTTQQNXTRRFILQKAXSHPL TGSNLL*
Description: unknown
Assembly ID: 3174374 Assembly Length: 665bp
> 3174374 Strep Assembly -- Assembly id#3174374 GGGGGGGGTNNNTTCTGGGGCCGGGTGNNTCCTNGAAAAAATGCTGGACTTAACGGTTAA ATCATTTGAATTGGCCTGTGGATTTTAGCTAGCAATCCAGAGCGAGTTTTCTCCAAGACA GACCTCTATGAAAAGATCTGGAAAGAANACTACGTGGATGACACCAATACCTTGAATGTG CATATCCATGCTCTTCGACAGGAGCTGGCAAAATATAGTAGTGACCAAACGCCCACTATT AAGACAGTTTGGGGGTTGGGATATAAGATAGAGAAACCGAGAGGACAAACATGAAACTAA AAAGTTATATTTTGGTTGGATATATTATTTCAACCCTCTTAACCATTTTGGTTGTTTTTT GGGCTGTTCAAAAAATGCTGATTGCGAAAGGCGAGATTTACTTTTTGCTTGGGATGACCA TCGTTGCCAGCCTTGTCGGTGCTGGGATTAGTCTCTTTCTCCTATTGCCAGTCTTTACGT CGTTGGGCAAACTCAAGGAGCATGCCAAGCGGGTAGCGGCCAAGGATTTCCCTCCAATTT GGANGTTCAAGGTCCCTGTTAAATTTCCCCCATTTAGGGGCAACCTTTTAATGAAANTTT CCNTNATTTGCCGGGTANCTTTGAATCCCTNGGAAAAAACCCAACNAAAAAAAGGGCTTA NNCCC
ORF Predictions :
ORF # Start End Direction Length
1 154 294 F 47 aa
> 3174374-1 ORF translation from 154-294, direction F VDDTNTLNVHIHALRQELAKYSSDQTPTIKTVWGLGYKIEKPRGQT*
Description:
REGULATORY PROTEIN VANR. - ENTEROCOCCUS FAECIUM (STREPTOCOCCUS FAECIUM) .
Assembly ID: 3174972 Assembly Length: 98 bp
> 3174972 Strep Assembly -- Assembly id#3174972 CTACGATATCTTTGGTCTTTTGTAAGATATGAGGTCCACCCTTATGCGCCTCAGTTGGCA TTTCATGCGATTCAAGAAGTTGCCCCTCTTGATCAACCAAACCATACTTGATGTTGGX C CACCGATATCAATTGCAACGTAATATGTCATAAATACCTCCTTTTAGATTAGAGGAAGCG CTCCTTGGTTTCACGAATCAAGGCAGCAGCCGCTTCTACAACTGGACGATCTTCTTCAGT CACTGGTGTCAATGGTGAACGAACAGATCCAATATTCAAGCCTTCATTGATTTTCAAGAC TTCTTTGATGACACCGTACATATTTCCATGAGCAGAAGTGAGTTTACCAATGATTGCGTT GATAGCATACTGCAATTCACGCGCTGTTTCTAGGTCCTTATCCGCAATCAACTGATTGAG TTTCAAGAAGAGTTCTGGCATAGCACCATAAGTACCACCGATACCAGCCCTAGCCCCCAT GAGGCGTCCTCCTAGGAACTGCTCATCAGGACCATTAAAGACGATATGGTCTTCTCCACC AAGGCTGACAAAGGTTTGGATATCTTGAACTGGCATAGAAGAGTTCTTCACACCGATAAC ACGAGGATTTTTCAACATTTCTGTGTAAAGGCTTGGAGTCAAAGCAACCCCTGCCAATTG AGGAATGTTGTAAATCACGTAGTCTGTGTTTGGAGCTGCAGAACTGATATCGTTCCAGTA TTTGGCAACTGAGTTATTCTGGCAAGCGGAAATAAATTGGTGGAATCCGTTGCAATAGCA TCTACTCCCAAGCTTTCAGCATGGCGAGCAAGTTCCATACTATCTTTAGTATTATTGCAA GCAACATGGGCAATAATGGTCAATTTACCTTTGGCTACCGCCATGACTTCTTCCAAAATC AACTTGCGATCTTCAACGCTTTGGTAGATACATTCACCAGAAGAACCATTGACATAAGAC CTTGAACACCTTTATCAATGAAGTATTGA
ORF Predictions:
ORF # Start End Direction Length
1 169 678 R 170 aa
> 3174972-1 ORF translation from 169-678, direction R VIYNIPQLAGVALTPSLYTEMLKNPRVIGVKNSSMPVQDIQTFVSLGGEDHIVFNGPDEQ FLGGRLMGARAGIGGTYGAMPELFLKLNQLIADKDLETARELQYAINAIIGKLTSAHGNM YGVIKEVLKINEGLNIGSVRSPLTPVTEEDRPWEAAAALIRETKERFL*
Description:
N-ACETYLNEURAMINATE LYASE SUBUNIT (EC 4.1.3.3) (N- ACETYLNEURAMINIC ACID ALDOLAS E) (N-ACETYLNEURAMINATE PYRUVATE LYASE) (NALASE) . - ESCHERICHIA COLI .
Assembly ID: 3175138 Assembly Length: 145Obp
> 3175138 Strep Assembly -- Assembly id#3175138 CTCCATATTTCTTAGCCTTCTCAATTAGGGTCTTGAAGTCTTCGACACCACCGATACGCT TACCAATATCAGCATAGTTCAAGTGACCAGAGTCATGGCTGTGATATCCTTAACTTTTTC CCAACCTTGAGGGTTGTTCATAATGCTACGATAAGCAATGGCACCATCTTGCCAATCAAC TTTCTTGTCTGCATTGGCATCTTCAGTGATAACAACCTTAGCACTTGGAAGTTCCTTCGT GTATTCTGGGAAAACAATGCCCTTATAAGCTTTTTCCCATTGCCATTCAGAGCTGTGGAT TCCTACATAGTTGGCATTTCCGACTGTTTCTTTATAAGCTGTCAAACGAGTCCAGTCATT CGAACCACCACCATAGCTATTTTGAGAGTTACTCCAAACACCAGCAGCAAGCTTATCTGT AGAAACAAATCCATACATGTAACCCTTAGCCAAATCCTTCATTGGATTGGTTACATCGiVT ATGATCATCTCCGCTGACATGCGTATTGTTTGACATGGTTGCCCCATCAAACTTAGCACC AGTTTGATCACTAGAAACAGAGACTAAAGCATTGCCGAGGAAACTAATAGAAGAAAGTAG TTTTCTTTCGTCATCAATCTTTTGACCTGGAGTGACTTGATTGTGGTTGACAATCTTGGT CACATCAAAGTGCAATTGATTGTCCACAACTTGCAAGCGTACTGTCATTTCCGCATTGAT TAAGTGAGCATCATCGCGAAGCTTCATCAAGTACTCTGCTGTTGTCTCATTGATTTTTTT ATAAGTGACTTCAGGGGTGATTCGGTGGTTATTGATAAAGACTTGGTTGAATTGTTGCAC CTGTCCTGGCAAAGTATGTCCATTCAAGGTGTATCCCTTGACACGAAGGAAGGCTTGGTC AATTACTGCCTTAAGTACCTTAAACTGGATCGTATCATAAGTCACCTTGCTATCGTCAAC AACCGGACCTGTTTCTTTCTGGGCAGGGGTATCCTCTGGGTTTTACCCTCTCTGTGGCTA TCCGTTTCAACGCTTGAACAACTGGTCGCTCATCGTCATAAGAGCCCGCCTTGAGAAAAA TCTTCTTCTCATTTCTAAGATGGTCATTGACCGCAGCTGGTAGAGTCACTGTGTCAAAGA AGATTGACATCCTTATTTGCCTGGCATTTACCTGACCGTCTGACTTGAAGACTGATAGAG AGACGGTTTGTTGATCCTGTTTCAGGAGCAGCAACACGACTACCTCTATACCAAGTGCTA GTTGTTGGAGATTTATACTCCCAGAACCAGCCATCCTTGTCATAACCGACAAAAACATTA TTATTGGTATCTTTAAATTTCAAGGAGACACCAAAGCGTGATTTGCCCTTTTCAGAATCT TCTTTGAAGGTTAAATCAACAGTTGCATTTCCATTGGCATCAACGGTCAAGCCCTTCTTT TCAAACAGAG
ORF Predictions:
ORF # Start End Direction Length
1 79 945 R 289 aa
> 3175138-1 ORF translation from 79-945, direction R VTYDTIQFKVLKAVIDQAFLRVKGYTLNGHTLPGQVQQFNQVFINNHRITPEVTYKKINE TTAEYLMKLRDDAHLINAEMTVRLQWDNQLHFDVTKIVNHNQVTPGQKIDDERKLLSSI SFLGNALVSVSSDQTGAKFDGATMSNNTHVSGDDHIDVTNPMKDLAKGYMYGFVSTDKLA AGV SNSQNSYGGGSNDWTRLTAYKETVGNANYVGIHSSEWQWEKAYKGIVFPEYTKELP SAKWITEDANADKKVDWQDGAIAYRSIMNNPQG EKVKDITAMTLVT*
Description: unknown
Assembly ID: 3175860 Assembly Length: 420bp
> 3175860 Strep Assembly -- Assembly id#3175860 CTGCGAGTTGTGAGGCTCCTATTATGTCTCGTGATTAAAATCTCTATAAGGTGATTTTGG AGGGAAATTATCGGGCGACAGCGGGTAGAGAAGAGATGAAAGAGGCTATTTTGGAATATC AAGCAAATCCTGCTGCCTTAAAAGATCTCAAAGAAAAGGCTAAGAATATTTCCAGAGAGT ATTCTGAAGAGCATCTGTTACAAATCTGGTTGGACTTTTATGAGAAACAAGCCGCTTTAG GGACAAAGTAAAAAGTGAGGTAATCTATGCGAATTGGTTTATTTACAGATACCTATTTTC CTCAGGTTTCTGGTGTTGCGACCAATATCCCAACCTTGAAAACCCACCTTGAAAACACJ3G ACTTGCCTGCATTTNTATCTCATACAATCCACCGAATTTCGATGTCCCCCTCCCTACAAC
ORF Predictions:
ORF # Start End Direction Length
1 51 251 F 67 aa
> 3175860-1 ORF translation from 51-251, direction F VILEGNYRATAGREEMKEAILEYQANPAALKDLKEKAKNISREYSEEHLLQIWLDFYEKQ AALGTK*
Description: unknown
Assembly ID: 3175918 Assembly Length: 661bp
> 3175918 Strep Assembly -- Assembly id#3175918 CTCCCCAAACTTTTATTTGAGAGTGAACGGTATAAGAATATGAAACCGGAGGTTAAGGTG GTTTACTCAGTTTTAAAAGATCGGTTGGAGTTGTCTTTGAGCAAAGGTTGGATTGATGAG GATGGGACTATTTATTTGATTTATTCCAATTCAAATTTGATGGCACTTTTAGGCTGTTCA AAGTCAAAATTACTCTCCATGTGAGTTTGAAGTGACATTTTTAGATGATTACCATAAAAA ACATAACTACCCACTATTTTACGAATCCTATCTTCAAAACGTTATGGAATTCCTTGAAAG TCAAGACATAAAGAATGGGGTTGATGCCTTTGTAGATGATCATCAAAATCTCGTTTTTGT TTTATATGGACAAGGCTATCGAGCCGAGGGAAAAGAGGGAATACTTACAACCCAAGTAAC TGTAAAAGCTTATGATGAAGACAAGA7AACCGATTAACTTCGCAAATTTATTAGATTCCTT AATCGTGTCAGAATATCAAATGGAACCGAATCTTTGGGAGGTCTCCTATGATTGATCTCT ATCTAAGTAAAAATAGCCGAAGAAATCAACTTCTTTTAGACTTCTTCCAAAACTATGGCA TCGAGGTATCTTGTCATTCAGTTTCTGAAATGACAAAGGACAAATTAATTGAGATGATGA G
ORF Predictions :
ORF # Start End Direction Length
1 212 535 F 108 aa
> 3175918-1 ORF translation from 212-535, direction F VTFLDDYHKKHNYPLFYESYLQNVMEFLESQDIKNGVDAFVDDHQNLVFVLYGQGYRAEG KEGILTTQVTVKAYDEDKKPINFANLLDS IVSEYQMEPNLWEVSYD*
Description: unknown Assembly ID: 3811220 Assembly Length: 1429bp
> 3811220 Strep Assembly -- Assembly id#3811220 CTGCCCCTGTAAGGCTGGACGATTGCCTTTCTTAGTATCCGCAAAGAGGTAAACTGAGAA TAGAGAGGATTTCTCCTTCAATATCTTTGACAGACAGGTTCATCTTGCCTTCTACGTCTG AAAAAATCCGCATATTGACCAGTTTTCTCACAGCATAGTCCAAATCTTCCTCTTGGTCCT CTGGTCCAACACCAACCAGCAATAAAAGTCCCTGATTGATTTTTCCCTGAATCTGGCCTT CTATACTCACTTGGGCTTTTTTAACCCGTTGGATAATGATTTTCATAATAGCCTTTCTAG TAAGAGCTAGGACAACTAGCCGTTGGTCCGTTTGACAGAGTAAACTTCTGGCACACTCTT AATTTTATCGACAACCGTGGTCAGTGTAGAGAGGTTGGCAATACCGAAGGACACATGGAT ATTAGCAAACTTCATATCCTTGGTTGGTTGGGCATTGACCGTTGAAATATTCTTGGTTGT ATTTGAAAGAACTTGCAGTACATCGTTCAACAGTCCTGTACGGTTGAGACCGTAGATATC GATATGGGCCATATACTCCTTATTTGAGCTAGAGTACTGGTCTTCCCATTCCACATCAAG GAGACGTTGCTCGTAGTTTTCTTGGGCACGCAGGTTCATACAGTCCACACGGTGAATAGC CACACCACGACCCTTGGTAATGTAGCCAACAATATCGTCACCAGGCACGGGGTTACAACA CTTAGCAATCCGCACTAGGAGACCAGAAGCACCTTCAATAACCACTCCCCCCTCATGCTT GACCTTGGAGAGTTTCTTTATTTTCAACCTTGACCTCGCCACCTTTGACAAGCTCCTCTG CCTCAGCCTTGGCCTTGGCACGCTCTTCCTCACGGCGTTCTTTTTCAGTCAGACGGTTAA AGACGGTAATCGCACCGATTTCCCCAAAACCAATGGCCGCAAAGAGGGAGTCTTCTGTCT TGTAACTGGTCTTTTGCAGAACTTGATCCATGTGGCGCTTGTCCATAAATTTATTTGCCA CATAGCCATTTTCTTGGAACTGAGCCATCAGCATCTCACGACCCTTGTTGACAGACAATT CCTTATCTTGGTTTTTAAAGAACTGGCGAATCTTATTGCGCGCCTTGCTAGTCTTGACCA TATTGAGCCAGTCACGGCTAGGTCCAAAGGAGTTCGGGTTGGCGATAATTTCAACCTGAT CCCCTGTCTTTAACTTGGTTGTCAGTGGAACCATGCGGCCATTGACCTTGGCACCAGTTG CTTTTTCACCGACCTTGGTATGGATTTCGTAGGCAAAATCAATCGGTCCTGAATCTTTGG GAAGAGAACGGACAGCTCCATCTGGGGTAAAAACGTAAATCTCCTCAGCCAGATAGTTTT CCTTAACAGAGTCCACAAATTCCTTAGCATCATCAGCCTGGTCTTGGAG
ORF Predictions:
ORF # Start End Direction Length
1 316 873 R 186 aa
> 3811220-2 ORF translation from 316-873, direction R VRKSVPRPRLRQRSLSKVARSRLKIKKLSKVKHEGGWIEGASGLLVRIAKCCNPVPGDD IVGYITKGRGVAIHRVDCMNLRAQENYEQRLLDVEWEDQYSSSNKEYMAHIDIYGLNRTG LLNDVLQVLSNTTKNISTVNAQPTKDMKFANIHVSFGIANLSTLTTWDKIKSVPEVYSV KRTNG*
Description: stringent response-like protein - Streptococcus equisimilis Assembly ID: 3811436 Assembly Length: 1513bp
> 3811436 Strep Assembly -- Assembly id#3811436 CTCTGCAATGATGTACTCAAACATCTCCGCTTCTAGTTCCTCCTTAGGCAGAGGCAATTT CCCACGTCGCATCCGGTTCATAAAGACCGTATGGTTTTCTAAAATCAAACTATACAAACT CATGTGGGGAATATCCAATCCAATGGCTTTAGCCACATTTTCCTTTACTTGCTCCATGGT CTGACCAGGCAGAGCATAAATCAAATCAATGGAGATGTTGTCAAAACCAGCCAGTTTCAG GCGATCGATATTTTCATAAATATCCTTCTCCAAATGACTGCGCCCAATCTTTTTCAACAT CTTATCATCAAAGGTCTGGACACCTAGCGAAACACGATTGACAGCCGAATTTTTCAAAAC AGCTATCTTATCCGCATCCAAATCGCCTGGATTGGCTTCAATGGTCAACTCTTCCAAGAC AGACAAATCCAAGTTTTTAGTCAAGCCATTCAGTAACACCTCCAGTTGCGGAGCCGACAG GGCTGTCGGTGTTCCACCACCGATATAAAGGGTTGACAACTTTTCAATATCATAAGAACG AAACTCTTCCAGCAGATGCTCTAAATAGCTGTCGACTGGCTGATTTTTGATGAAGACCTT TGAAAAATCACAATAATAACAAATCTGGGTACAAAATGGGATGTGCACATAGGCTGACGT TGGTTTTTTCTGCATAGTAATTATTATACCACAAAGACTAGATTCCAGATAAAAATCACC ATCCCCAGATACATAGTCCGTCCGGAGATGGTGATGGTTTATTCTTCTGTTATATCAATC ACAATCTCTTCTGAGTCATCAAGAGCTTCGGCTTTTTCTTGCCATTGTTCCTTGAGATTA TTTAATTGATTTTTTGATGCTTCTGTCGCTTGAAAAGCATAGGATTTAGCTTGAGCAAGT ATACTGTCCACAGTGATTTCACCTGACTCAACCTGTTCTTTTGTTTTCAGAACAAAATCT GTAGCCTGCTCCTTAACTTCTGTCAGTTTTTCACAGACTTGCTCCTTGGCATACTCCGGA TCTTCTCTCAAATCATCTAAAAAATCTTGAGCCTGACTGCAAACTTGTTTGCCCTTATCA CTTGTTAAAAACAAGGCAAGAGCTGCACCTGAAACGGTTCCTAAAAGGATTGAGGATAAT TTACCCATAAGGATTCTCCTTTTTTATTTTTTGAAAAATTTACTTGCAAGACGAAGAGCT GACAGACTTGCACCAGTCTTGAGTGTTTTTGAACCAGCTGATGAAGCTTTCTTGCTCAAG ACACGCGCATGGTCATTGAGGTCTGAAACAGATAGAGATAAATCTGCAACAGCACTGAAG AGTGGATCAATCGTAGCCACCTTGACATTGATATCATCTGCCAAGACATTGACCTTAGCC AACAACTCATTGGTGTGATGCAAGGTCACATCCACATCTGAAGTCAAGGTTTTAATCGTC TTTTCTGTTTCATCGATGACACGACCAAGCTTTTGTACAGTAATGATCAGATAGACCAAA AAGACAATCACAG
ORF Predictions :
ORF # Start End Direction Length
1 1164 1511 R 116 aa
> 3811436-3 ORF translation from 1164-1511, direction R VIVFLVYLIITVQKLGRVIDETEKTIKTLTSDVDVTLHHTNELLAKVNVLADDINVKVAT IDPLFSAVADLSLSVSDLNDHARVLSKKASSAGSKTLKTGASLSALRLASKFFKK*
Description: unknown Assembly ID: 3811984 Assembly Length: 505bp
> 3811984 Strep Assembly -- Assembly id#3811984
CTCTTGTCAGAGAAATTTACAAAACGTTAGGAGAATAAGATGGCATTTATTGAAAAAGGT CAAGAAATCGATATGGAAGTCATCAAGGCTGAAACCCAATTGTCTGCAGAAGCCTTGAGA CTCAAGGAAAGCCGTGACAGGGAATTGGCAGATATTATTTCAGGGGAAGATGACCGTATT CTCTTGGCTGATTGGTCCTTGCTCTTCTGATAATGAAGAGGCGGTCTTGGAATATGCTCG CCGTTTATCCGCCTTGCAAAAGAAGGTAGCGGATAAGATTTTCATGGTCATGCGCGTGTA TACTGCTAAGCCTCGTACCAATGGAGACGGCTATAAAGGGTTGGTTCACCAGCCAGATAC TTCTAAGGCTCCAACCCTGATTAACGGCTTGCAGGCTGTGCGCCAGTTGCACTACCGCGT TGATTACAGAGACTGGTTTGACAACGGCAGATGAGATGCTTTATCCGTCAAATCTGATCT TGGTGGATGACTTTGGTCACCTACC
ORF Predictions:
ORF # Start End Direction Length
1 134 454 F 107 aa
> 3811984-2 ORF translation from 134-454, direction F VTGNWQILFQGKMTVFSWLIGPCSSDNEEAVLEYARRLSALQKKVADKIFMVMRVYTAKP RTNGDGYKGLVHQPDTSKAPTLINGLQAVRQLHYRVDYRDWFDNGR*
Description:
PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE, TYR-SENSITIVE (EC 4.1.2.15) (PHOSP HO-2-KETO-3-DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) ( 3 -DEOXY-D-ARABINO-HEP TULOSONATE 7 -PHOSPHATE SYNTHASE) . - ESCHERICHIA COLI .
Assembly ID: 3857228 Assembly Length: 1827bp
> 3857228 Strep Assembly -- Assembly id#3857228 CTCTTTTAACCGTTTTAGCGGTGACACCGAGGATTTTTTCAGGACCCAAGACTTGTCGGG CAACCGAAACTGGGAGTTCGTCATCTCCAATATGCAGACCAGCAGCATCAACCGCAAGAC AAACATCCAACCGATCATCGATTATCAAGGGGACCTGATAGGCATCTGTTATTTCCTTGA CTTGTTTTGCCAGTTGATAATATTGATTGGTTGTGAGATTTTTTTCTCGCAATTGGACTA TGGTAACCCCTGAACGGCAGGCCGTCTCAACTTTTGCAAGAAAGCTTTCCACGGAATCTT GATAGCGATTGGTTACCAGATATAGTCTAAGCGCTTCTCTATTCATAAACCTCTCCTTTG ATGGTATCTAGCCAATTTTCATCTCTTCTTAGGAGCGAAAGCTGATTGAGTACTTGGTAA CGAAATTCTTCCAATCCCATTCCTTGAACAACTATTTTCTCAGCAGCGATATTGAGATAA GAGACTGCTAAGCAAGAACTTCAAAACCAGTCTTTCCTTGGCTGAGAAAAACAGCTGTTA AGGCTCCAACCAAGTCTCCTGTCCCTGTTATCCAGTCTAATTCAGTACAGCCATTCTCAA GTACAGCAACTTGATTCTCCGAAACAATAAGGTCCTTGGGACCTGTGACTAAGAATGACA TACCACGATAGGTCTGACACCAGTCTTTCAAGACTTGAAGCAAATCCTCCGTTTCTTGAT CTTTAGCACTCGCATCGACCCCAACGCCGTGATGCTTTAATCCAACAAGACTTCGAATTT CTGACATGTTTCCTTTAAGGACCGTAGGTCTATAGTCTAAAAGGTCTTTAACTAAGCTCT TACGAATGGATGAAGTCGTTACGCCAACCGCATCTACTACCATCGGGAGAGAAGATTGGT TTGCATACAAAGCTGCCATGCGGATTGCTTTTTCCTTCTCAGCTGACAAATGCCCCAAAT TGATGAAGAGAGCCTGGCTTTGCTTAGTAAAATCAAGAACTTCACGGGGATCATCTGCCA TGACAGGTTTGCATCCCAGAGCCAAAATCCCATTTGCCAGCATCTCACAAGAAATCTCAT TGGTCATACAGTGAATGAGGGAACTAGAGCCTATAGGAAAAGGATTTGTCAATGCCTGCA TCATTCTATCCTTTCAGCAAAGAAATATCCTTGCACTTTTTTAAAGAATTCCTGCTTGAT TAAAAATCTAAATGCAATAAAGGAAATCGCTGTACCAATCAAGGTTGCTCCGAAAAATCG AGGCGTGTAGATAAACCAACTAAGCTTAGCAGCCGATCCTGTAAAGAGCACCATAACAGG ATAGGAAACAATAGAACCAATAATACCTGTTCCCACAATTTCTCCCAAGGCAGAAAAGTA AAATTTTCGACCGTACTTATAAAAGAGACCTGCTAGAAGGGCTCCAAAAGTCGCTCCTGT GAGAGATAAAGGAGCTTATCGGAATACCCTTGAGTCGTCATACGGATAAAGGCTGTCACT GTAGCCATAGCCAAGGCATAAACAGGTCCCATCATGATTCCCGCTAGAATATTGACTACA CTGGACATCGGTGCCATTCCCTCAATCCGAAAGATAGGTGTAAGGACTACATCAAGGGCA ATCATCATAGATAAAATGGTCAATTTGTGAACTTGTAGTTGGTGCTTTCTCAAGTTTCTA TTCTTCTCCTTTTTCTAAAGACTGTAAATCGCTCTTCCATGTCTGGTGTTGGTAAGCCAT CTCCCAAAACTTGGCTTCCATATGAACACTGATGTGGAAGGCATCTAGCATTTTTTGCTT ATCTGTCTCATCACTTTCTCGATAGAG
ORF Predictions:
ORF # Start End Direction Length
1 1141 1356 R 72 aa
> 3857228-2 ORF translation from 1141-1356, direction R VGTGIIGSIVSYPVMVLFTGSAAKLSWFIYTPRFFGATLIGTAISFIAFRFLIKQEFFKK VQGYFFAERIE*
Description: unknown
Assembly ID: 3857842 Assembly Length: 485bp
> 3857842 Strep Assembly -- Assembly id#3857842 CTATTGCCAATCCATATAGCCTATCAGGTGGTCAATAACAACGTGTGGCCATCGCTCGTG GCCTATCAATGAATCCAGACATCATGCTCTTCGATGAACCAAATTCTGCCCTTGACCCTG AGATGGTTGGAGAAGTAATTAACGTTATGAAGGAATTGGCTGAGCAAGGCATGACCATGA TTATCGTAACCCATGAGATGGGATTTGCCCGCCAGGTTGCCAACCGCGTTATCTTTACTG CAGATGGCGAGTTCCTTGAAGACGGAACACCTGACCAAATCTTTGATAACCCACAAC^CC CTCGTCTGAAAGAGTTCTTAGATAAGGTCTTAAACGTCTAAACTCAAACTGCAAGGATTT CCTTGCAGTTTTTCTACCTCGTATTGGAATTTTTGATTTTTCGGAAAATTATGTTAGAAT TAAGTTTATGAAATGAGGTTTCCTCATACCTAGCAAGACTAGGAATAAAAATAGAAATTA GGTAG
ORF Predictions:
ORF # Start End Direction Length
1 45 341 F 99 aa
> 3857842-1 ORF translation from 45-341, direction F VAIARGLSMNPDIMLFDEPNSALDPEMVGEVINVMKELAEQGMTMIIVTHEMGFARQVAN RVIFTADGEFLEDGTPDQIFDNPQHPRLKEFLDKVLNV*
Description:
GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ . - BACILLUS STEAROTHERMOPHILUS .
Assembly ID: 3857996 Assembly Length: 1547bp
> 3857996 Strep Assembly -- Assembly id#3857996 NTCTTGGGCNCNGGGCGNNTCCTTTGAGGACNACGGTATCGATGACCTTGATCTCAAGTG CAAGCAGTATCTGAATCTGCAGCAGCACCTGTCCGTGCAAAAGTTCGTCCAACATACAGT ACAAACGCTTCAAGTTATCCAATTGGAGAATGTACATGGGGAGTAAAAACATTGGCACCT TGGGCTGGAGACTACTGGGGTAATGGAGCACAGTGGGCTACAAGTGCAGCAGCAGCAGGT TTCCGTACAGGTTCAACACCTCAAGTTGGAGCAATTGCATGTTGGAATGATGGTGGATAT GGTCACGTAGCGGTTGTTACAGCTGTTGAATCAACAACACGTATCCAAGTATCAGAATCA AATTATGCAGGTAATCGTACAATTGGAAATCACCGTGGATGGTTCAATCCAACAACAACT TCTGAAGGTTTTGTTACATATATTTATGCAGATTAATTTACAGAGGGACTCGAATAGAGC CCTCTTTTCAGGTTTTACCGTGACAATCCCTATTAAAAATTATATCAAAATCGTGAAAAT ATTGGAAAAGTATGGTAGAATGAAAATTGTCGTGTGAACGATAATACTCATTCTTGATGA ATTGTGAAGCAGTTGCCCTTGGGTCGTTTTGCGAGTTGAAGTCAAGAAGAGGAAAAAAAC AAAAAGGAGAAATACTCATCGAATTTCAATGAAACAACTTCTTGAGGCTGGTGTACACTT TGGTCACCAAACTCGTCGCTGGAATCCTAAGATGGCTAAGTACATCTTTACTGAACGTAA CGGAATCCACGTTATCGACTTGCAACAAACTGTAAAATACGCTGACCAAGCATACGACTT CATGCGTGATGCAGCAGCTAACGATGCAGTTGTATTGTTCGTTGGTACTAAGAAACAAGC AGCTGATGCAGTTGCTGAAGAAGCAGTACGTTCAGGTCAATACTTCATCAACCACCGTTG GTTGGGTGGAACTCTTACAAACTGGGGAACAATCCAAAAACGTATCGCTCGTTTGAAAGA AATTAAACGTATGGAAGAAGATGGAACTTTCGAAGTTCTTCCTAAGAAAGAAGTTGCACT TCTTAACAAACAACGTGCGCGTCTTGAAAAATTCTTGGGCGGTATCGAAGATATGCCTCG TATCCCAGATGTGATGTACGTAGTTGACCCACATAAAGAGCAAATCGCTGTTAAAGAAGC TAAAAAATTGGGAATCCCAGTTGTAGCGATGGTTGACACCAATACTGATCCAGATGATiVT CGATGTAATCATCCCAGCTAACGATGACGCTATCCGTGCTGTTAAATTGATCACAGCTAA ATTGGCTGACGCTATTATCGAAGGACGTCAAGGTGAGGATGCAGTAGCAGTTGAAGCAGA ATTTGCAGCTCCAGAAACTCAAGCAGATTCAATTGAAGAAATCGTTGAAGTTGTAGAAGG TGACAACGCTTAATTTATACAAATAGTAATTACCTAGGAGGGCGGGGCTTAGCCCGGCTC TCCTATTTTCAAAAAATATAGGAGAATTAAAATGGCAGAAATTACAG
ORF Predictions:
ORF # Start End Direction Length
1 58 456 F 133 aa
> 3857996-1 ORF translation from 58-456, direction F VQAVSESAAAPVRAKVRPTYSTNASSYPIGECTWGVKTLAPWAGDYWGNGAQWATSAAAA GFRTGSTPQVGAIACWNDGGYGHVAWTAVESTTRIQVSESNYAGNRTIGNHRG FNPTT TSEGFVTYIYAD*
Description : unknown
Assembly ID: 3858236 Assembly Length: 740bp
> 3858236 Strep Assembly -- Assembly id#3858236 CTATAAAAAAAAGGGTAACCAGTATGGAGGATGAATGTCTGGAACTATCTGAGAATCTCG GATTTTGGAAATCAGACCGATCATCATGAGATAAGGAAGGAAAGCACTTGTAAAAAGCAC TGTAACCACGCCAGTCCCCTGTCCCAAGAGGGTGAGGTGGTAGCGTAAAACCATGCGGAA AAATCCCTTTTTAGTGGTTGAAATTCTCTCCTTGCTGCGACGTTCTTTTTTGACCTTCTC CTCACTATTAAGCAGGATCACGTCATAAAAACGAGGAAGGACCTTCTTTTTGGTCAGATA AAGCAGGAAGAGAGTTAGTCCTATCCAAGCGAGCAGACCCAATATGGCTTCTATTGAAAA AGGCTCCACTGCTATTTTGTAAAAGATATGAAGAGGATAAAGGAGAAATGGAATGTCTCT AACTTTGTCAACAATACTTCCAAAAGTCGACTGAAGAAAGAAGATAAATATTAAAGGTAT GAGAACTCCTATCCCAATCATCACATTCGAAAAAATAGACTGATACTTTCTGAAGACCCT AGTCTGAGCCAAGAAATGTACTGCCACTACCGTCACTAAAGTAACAGAGACAAATAATAA GGTCAAGGACAGTAGCATCAAAGGCAAACCCAGCCAAAGAGAAGGAGCTAGACTAATATA GAGGGCTAGAAAATAAGCTAGGATTGGTACAATTCCAGTTAGAGCTGGCAAGAGGACAGA CAGTCCTTTAGCAATTCGAT
ORF Predictions:
ORF # Start End Direction Length
1 1 261 R 87 aa > 3858236-1 ORF translation from 1-261, direction R _ VILLNSEEKVKKERRSKERISTTKKGFFRMVLRYHLTLLGQGTGWTVLFTSAFLPYLMM IGLISKIRDSQIVPDIHPPYWLPFFL*
Description: unknown
Assembly ID: 3858264 Assembly Length: 2219bp
> 3858264 Strep Assembly -- Assembly id#3858264 ATCGAATTCGTTTTGCAAGTGGCGAAATGCGAACCACGTTTGTGTCTTTATAAGTTTCCA CGTCTTCTTTGTGGACACGACCGTTTGCACCTGAGCCAGAAACGTCGTAGAGGTTTATCC CTAAATCATCCGCTAACTTTCTAGCTGCAGGAGTCGCTCTTAGCTTGTCATCAGCCATGA CCTCTCCAATTCTATTTATGATACAAAGGGCGTCAAAAGCGACTGAAAAATAGGAAATCG ACGATGGCTTCGATGAAGCCAAGGAGATTTATCTTTTTTTCCAAGCTTTTAGCCCGTGCT CTAATCTAAGATATTAAGGACGAAGAGCTCTGCACCTAAAAGATACAAAGTTCTCGTCAG CTTTGTTTTATTTACATAACTTATCTTATGTAACTCTATTCTTTGTTATAAGTTTTTCGG ATTGCATCTTTGATACTTTCAACTGTTGGAATCATTGCACATTTTTAGGTTTTGCGCATA AGGCATCGGCACATCTTCTCCTGCACAACGGCGGATTGGTGCATCTAGATAGTCAAATGC TTCTGATTCTGAAATAATAGCTGAAATTTCACCGATATAGCCACTTGTTTTGTGGGCATC GTTGACCAGAACAACCTTACCAGTCTTCTTCACTGAGTTTATGATGATATCCTTATCAAG CGGAACAAGGGTACGTGGGTCAACAATTTCAACTGAAATTCCTTCTTCAGCTAATTCTTC AGCAGCTTGAACCACACGGCGAAGCATTTTTCCATAAGTGACAACTGTTACATCCGTTCC TTGGCGTTTGATTTCACCAACCCCAAGTGGAATTGTGTAGTCTGGATCAACTGGCACTTC CCCTTTTTGGTTAAATTCTGACTTGTACTCAAGTATAATAACTGGGTTGTTATCACGGAT AGAAGACTTAAGCAGGCCTTTCATGTCCGCAGGTGTTCCAGGTGCCACAACCTTAAGCCC TGGAATGTGAGTAAACCAAGACTCTAGAGATTGTGAGTGCTGGGCGGCAGAGCCAACTCC GTTACCAGCTGCACAACGAACAGTCATTGGAACCTGACCTTTACCACCAAACATGTAACG TGTTTTAGCAGCTTGGTTGACGATATTGTCCATGGCAATAACAGAGAAGTCCATGAAGGT CATATCGACGATTGGACGAAGTCCTGTCATGGCTGCTCCTGCTGCAGCTCCAGAGATGGC AGCTTCAGAAATCGGACAGTCACGGACACGTTCTGGACCAAATTCTTCAAGCATTCCAAC AGAAGTACCGAAGTCTCCTCCGAAGACACCGACGTCTTCTCCCATCAAGAACACATTTTC ATCGCGAACGCATTTCCTCAGACATAGCAAGGATAATGGTGTCACGGAAGGACATTGTTT TTGTTTCCATTTTATCTCTTTCTCCTTAGTCTGCGTAAATATCTTCAAAGGCTGATTCAA GCGGTGGGAATGGGCTTTCCTCTGCAAATTTAACAGAAGCTTCTACTGCTTCCTTTACTT GCGCTTGGATTTCTTCCAATTCTTCGGCACTTGCAATGTTATTTTCAATAAGGTAATTGC GGAGGTTTTCGATTGGATCTTTTTGTTTCCACAATTCCACTTCTTCACGCGTACGATATT TACCAGGGTCAGATGATGAGTGACCGAGCCAGCGATAAGTTACACTTTCAATCAAGACTG GACCATTGCCACTGCGAACATGGTCTATAGCTTTCTGAAATCCTTCATAGACATCGATGA CATTGTTACCGTCTTCGATGAACATTCCAGGAATTCCATAAGCGGCGCTACGTTGATGGA TATGTTCTATATTGGTCATTTTCTTGATATCCGCAGAGATACCGTAACCGTTGTTAATGC AATAGAAAATGACTGGCAGGTTCCAGATAGAAGCCATGTTCACTGCTTCGTGGAAAACAC CTTCATTGGTCGCACCATCTCCAAAGAAGCAGACAACGATTTTACCGGTATTTTGCAT.TT GCTGACTGAGGGCTGCACCGACAGCGATCCCCATACCACCACCTACGATACCATTGGCAC CAAGGTTCCCAGCATCAAGGTCAGCGATATGCATAGATCCACCTTTCCCTTTACAGGTTC CAGTGTATTTACCAAGGATTTCAGCCATCATTCCGTTGAAGTCAATCCCTTTAGCAATAG CTTGCCCGTGTCCACGGTGGTTTGAGGTAATCAGATCATCTGGATTGAGAGCTACATAG
ORF Predictions:
ORF # Start End Direction Length
1 439 1365 R 309 aa
> 3858264-1 ORF translation from 439-1365, direction R VTPLSLLCLRKCVRDENVFLMGEDVGVFGGDFGTSVGMLEEFGPERVRDCPISEAAISGA AAGAAMTGLRPIVDMTFMDFSVIAMDNIWQAAKTRYMFGGKGQVPMTVRCAAGNGVGSA AQHSQSLESWFTHIPGLKWAPGTPADMKGLLKSSIRDNNPVIILEYKSEFNQKGEVPVD PDYTIPLGVGEIKRQGTDVTWTYGKMLRRWQAAEELAEEGISVEIVDPRTLVPLDKDI IINSVKKTGKWLVNDAHKTSGYIGEISAIISESEAFDYLDAPIRRCAGEDVPMPYAQNL KMCNDSNS*
Description:
2-OXOISOVALERATE DEHYDROGENASE BETA SUBUNIT (EC 1.2.4.4) (BRANCHED- CHAIN ALPHA -KETO ACID DEHYDROGENASE COMPONENT BETA CHAIN (El)) (BCKDH El-BETA) . - BACILL US SUBTILIS.
Assembly ID: 3858610 Assembly Length: 1078bp
> 3858610 Strep Assembly -- Assembly id#3858610 CTAACCCTNGACGGGGCCGCTATCATCAGTCAAACAGCTAAAAATCTTGTCTGCAAAAGT CTCGATTAACTGAGCTTTTACAAAAGCCGTATTTCCTGGAATAACTTGGAGATTGATCAT CTTATCCATCAATTCAGCCGATTCGATATTGTCTTCAGCCAGTTGCAGACTTTTTACGAT TGATTTTGGCAATTCGTAGACATAGGTGTTGTCTCTCAAAGGAATTTTGACAATACCTAA CTCTTTGATATCTCGGGATACCGTCGCCTGAGTGGCAGTGATACCTGCTTCTTTCAAATG TTCTACAATTTCTTCTTGCGTGCCGATTTGATAATCTGTCACCAATCTTCTAATTTTTTC AAGTCTCTCTTTTTTATTCATTTTTAAATTGACTATGCGCCCTCTCTACTGCTTCTTTAA TCTCAGCAAGAATCTGATTGCTTGCTGACTTTTCTTTTTTCAAATACACTAAAAATTCAA TATTTCCATGTCCACCTTGGATGGGAGAAAAGTCCAAGCCAAGGACTGAAAAACCTGCCT CTACTGCCATAGCTGTTACAGATTCAAGGACATTCTGATGAATCTTAGCATCTCGAATAA TTCCATTTTTCCCAATCTGCTCACGTCCTGCCTCAAACTGAGGTTTGACAAGTGCTACCA CCTGACCTTGATCAGCCAAGACACGGTGCAAGGCTGGCAAAATCAGACTAAGGGAAATGA AACTCACATCAATACTGGCAAAGCTCGGCTCCTGCTCGAAATCAGTCTTTTCAGCATAGC GGAAATTGAACTGCTCCATGCTGACAACTCGTGGGTCTTGGCGTAATTTCCAAGCCAACT GATTGGTACCAACATCGACTGCAAAGACCAACTTGGCACTATTCTGTAGCATGACATCGG TAAAACCTCCAGTAGAGGCCCCGATATCAATCGTAGTCGCGCCATCCACCGACAAATCAA AGACCTGCAAGGCCCTTTTCCAGTTTCAAACCACCACGGCTGACATACTTGAGTTTCTCC CCCTTGAGTTTTAATTCGGTGTCATCTGGAATTTCTCTCCTGGCTTGTCAAACCGTTC
ORF Predictions:
ORF # Start End Direction Length
1 374 949 R 192 aa
> 3858610-2 ORF translation from 374-949, direction R VDGATTIDIGASTGGFTDVMLQNSAKLVFAVDVGTNQLA KLRQDPRWSMEQFNFRYAE KTDFEQEPSFASIDVSFISLSLILPALHRVLADQGQWALVKPQFEAGREQIGKNGIIRD AKIHQNVLESVTAMAVEAGFSVLGLDFSPIQGGHGNIEFLVYLKKEKSASNQILAEIKEA VERAHSQFKNE*
Description: cytotoxin/hemolysin ORF2 tly - Serpula hyodysenteriae
Assembly ID: 3858716 Assembly Length: 928bp
> 3858716 Strep Assembly -- Assembly id#3858716 ACTTTCCTGACCTCTGTTTCCAAATAATCTTCCAAATGGACAGAGATCTACCGTTGTTTG CATCGATAGCTGAGGTCTTTTTTAGAAAATACCATCACTTTTAGAAAATATAAACACATT TTTCGGATAAGATTAAGGTTAAAAGCAGCTCGTTTATCCAGGGTCTGATGATGGTCTTCA CGATAAACCACATCCAATAACCAATGCATACTTTCTGCTGACCAATGACCTCGAACACTA TGGCAAAAGGTCATCAACATCAAGCTTAAAGTTAAAGATAAAATAGCGAACGTCTTGACT TGTAATACCATCTCTATCAATAGTATTACGAGTCATTCCAATTCCACGCAATTTATGCCA TTTGGGATGGTTTTGACACAACCACTTAACATCAGAAGACACCCAGTATTCTCGAACTTC AATCTATCCTCTTTCTATATTCTAACTGAAAGGACAATTCAATGATTCATTTAATAATGA TTAGCGCCATTGCTCTAGCCATTGGAATTGGTTACCGCACCAAAATCAATATTGGCCTGC TGGCTATTGCTTTTTCTTACCTCATCGCAACCACTCTCATGGGATTAAGTCCCAAAGAAC TTCTTCATTTTTGGCCAACCTCACTCTTTTTTACCATTTTTAGCGTCTCTCTCTTTTATA ACGTTGCAACAACTAACGGTACTCTTGATGTTTTGGCTCAACACATTCTCTACCGCACAC GCACCCACCCTAACGCCCTCTACATGATTTTATACCTGATGGCAACCCTTTTGTCTGCTT TAGGTGCTGGATTTTTCACTACTATGGCCGTTTGCTGTCCTCTAGCGATTACCCTCTGTC AAAAAGCGGACAAACACCCTTTGATTGGAGTCAAAGCGTCAATGGGAACTTCAGGAAGGG TAATTTGATAACCAAAGGAATAAAATTT
ORF Predictions:
ORF # Start End Direction Length
1 238 402 R 55 aa > 3858716-1 ORF translation from 238-402, direction R VSSDVKWLCQNHPKWHKLRGIGMTRNTIDRDGITSQDVRYFIFNFKLDVDDLLP*
Description : unknown
Assembly ID: 3859124 Assembly Length: 847bp
> 3859124 Strep Assembly -- Assembly id#3859124 AAAAACGCACCATATCAAAAACTAAAAAGTTTGATATCATGCGTCATGTCTTAAACTAAT TGACTATACTTTCTATTCAAATGAGCTTTTAACCAATTGATTGAGCCAATCCACTCTTAA AACCAAAGGAGCAATTTCTCGGCTTAGCTGACTCTTCTCGGAATCTGAACCATGTACAAC ATTTTGGATAATCTCATTTTCTCCAGCAGCTTTTGCAAAATCACCTCGAATAGTGCCTGG TAAAGCTTCTTCTGGACGAGTTGCACCCATCATGGTCCGCCAAGTTTCGATTACTTTGGG ACCAGAAATGACACCCACAAGAACTGGACCTGAAGTCATGAATTCACGAATCGGTGGGTA AAAACTCTGACCAACCAAGTCCTGATAGTGCTGGTCAATCAACTCTTCTGAAAACCTGTG AACGAAACTCCAATTTTTCGATTGTAAATCCACGTTGTTCGATGCGCTTTAACACTTCAC CCACTAGCCCTCTTTTTACACCATCTGGTTTGATGATAAAGAATGTTTGTTCCATACCCG TCTCCTTTGTCAGCTTCTTTCTTTTATTTTACCACATCTCGTGGAAAAATGGAGAAAGTT TTCAGAAGAGAGAATGAGAGAACCCTCGGGTTCTCTCATTCTCTCTTATTCTACTGTTTC TTCCACAGTGTCAACGGCAGTATCCACAACTACTTCTGTTGTTTCTTCATTTCCTTCTTC CTCTACTGGAGGATTAAGGTATTCTTCTTCGTTGACAGCATGTGGTTCAAGGTTACGGTA ACGGGCCATACCAGTACCAGCTGGGATGATCTTACCGATGAATAACATTTTCCTTTAAAT TCCAAGG
ORF Predictions:
ORF # Start End Direction Length
1 73 453 R 127 aa
> 3859124-1 ORF translation from 73-453, direction R VDLQSKNWSFλ/HRFSEELIDQHYQDLVGQSFYPPIREFMTSGPVLVGVISGPKVIETWRT MMGATRPEEALPGTIRGDFAKAAGENEIIQNWHGSDSEKSQLSREIAPLVLRVDWLNQL VKSSFE*
Description: NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6) (NDK) (NDP KINASE] (ABNORMAL WING DI SCS PROTEIN) (KILLER-OF-PRUNE PROTEIN) . - DROSOPHILA MELANOGASTER (FRUIT FLY)
Assembly ID: 3859244 Assembly Length: 578bp
> 3859244 Strep Assembly -- Assembly id#3859244 ACAACCTAACTACCGNCTAATTCAGCGCGAACTTCTGCAGTAGCTGCTTCAACAACTTCA CGACGTGAAAGGATGAAGCGGTTTTCTTTAGCGTTAACTTCTTTGATTTTAGTATCAAAT TCTTGACCTACAAAACGCTCAGCGTTACGTACGAAACGAGTATCCAACATTGAAGCTGGG ATAAATCCACGAACACCTTCAAATTCTACTGAAAGTCCACCTTTAACGGCACGCGTTCCT TTAACAGTAACAACTTCTTCTTCGCGACCAACAAGTTTGTCCCATGCTTTGCGAGCTTCA AGGCGTTTTTTAGATGACAAGGTATGTAACTGTATCAGTATCTTTACCAACTACTTGACG AAGTACAAGAACATCCAATACTTCTCCTACTTTAACAAAGTCATTGATATCTGCATCACG ATCGTTTGTCAATTCGCGAAGAGTCAAGACACCCTTCAACACCAGTTCCCAGAAGAATGC AACGTTAGCTTGAGTCGCATCAACTGTCAATACTTCAGCACTAACACATCACCAGTCTCA ACTTGACTNACGCTATTGAGCANATCTTCAAATTCGAT
ORF Predictions:
ORF # Start End Direction Length
1 310 462 R 51 aa
> 3859244-2 ORF translation from 310-462, direction R VLKGVLTLRELTNDRDADINDFVKVGEVLDVLVLRQWGKDTDTVTYLVI*
Description : unknown
Assembly ID: 3859250 Assembly Length: 888bp
> 3859250 Strep Assembly -- Assembly id#3859250 GTAGTTATAGTAGGGGTCGGATTGAAATGCCACNGCGCTTCTTGGAGTTTCTGATACCGT TTAAAATAGCGTTGGGCATTCTGGTTGGGAGTCAGAGCCTTATCAAGCGCAATCATGATA GGTTGGTTGGTATAGTAGTTGTCTAGGATAACCTGGTTCTTGGTCGTTAGGCACCTGGTG GAGGAAGGTTGTCAGCAATTCTCCTTTTTGACGAAATTCTTCAGCGTTGTCTGTCGCCAG TAACTATTTTTCCTGTTTTTTGAGTTTGTGTCGGTTTTTCTGAAGTTCATTTTCAACACG ACGAATCAGTTCACTGGCCTGCTGTTTGACGCGGTCGCGCTCAGCCTTATCCTTATAGTA GGTGTCCAACAAATCAGAAAGATTTGCAAAAGGCTCTCCCACCTGATTTGCAAAAGGAAC TGGACTGAAGGAAGTCTCAGTCAAGCATGGCTTGGTTTCCTGATTGAAAAAATTTCGGAA AGCGGAAAGTTTTTCACTAACCAGTATCCTTTCCAATTCATTTGCCGTATCGCGTCCCAG ACCTTGAAAGAGGCTTTGAAGATTTTTTGCTGTTAGTTCTTGGGTTTGCAGGATTTCAAA GAGCTTTTCATCCTTGATAGTAAAAGGATTGAGAGATTCTGTACTTGGCGGAGCGATATA GGTCGATCCTGGAAGTAAGGTGCGGTAGCTATTTTGTGAAAAGCCGACGTGTTTGATAAC TTCGAGGATTTTATGACTGCTTTTATCCGACCAGTTAGAATATTACTGTGTTTCCCCATA ATTTCGATAATCAAGGTAGCCTGGATATGGTCTCCAATCTCGTTTTTATTGGAAACTGTA ATTTCCACAATACGGTCATTTTCCACTTGCTCAATCGACTCAATCAGG _
ORF Predictions:
ORF # Start End - Direction Length
1 244 402 R 53 aa
> 3859250-1 ORF translation from 244-402, direction R VGEPFANLSDLLDTYYKDKAERDRVKQQASELIRRVENELQKNRHKLKKQEK*
Description :
STRFBP5A NCBI gi : 496253 - Streptococcus pyogenes . Fibrinogen/Fibronectin binding protein
Assembly ID: 3859588 Assembly Length: 513bp
> 3859588 Strep Assembly -- Assembly id#3859588 ATCGAATTTTGTTCTTTCATAGAGAGCTACCTGAGTTCTATTCAAGCTCAGGTAGTACTT TCTTATAAACTAGACAAACTAACTGTCATTCTACCATCAGATTACAAGACATCATCGTCA CTCACCTTGGAATTCAATGTCGTACCCCAATGGGTAATTTTACGGTGGGGTTGAGCTAAA ATTGGTCTGTTTTCATAGATTGTTTGCCATCTATTCCATAGTAGGCCCGTCTTTTTCTCA ATCTTAACTCGCAGATTTCTCATATTTTCTTTGATTGGGAGGTTGAGGACAAAACCTGCA GTCTGGTTGCGACCGTTTCCTTCCCAAGAATGACTACGAACAACTTGGTTTCCATCTTTA TCTACTGGAACTTCTTCCCAAGTTATGGAGTAGCGGGCAATGTAAGCTCCACTGTGTTGA ATTATCAATGTTTTATCTTTCACAGGGAGTCTGACTGATTGGTTGAACTGGCTTAGAAAC TTGTGTCGCCGTTTCAGCATTCGTAGCTATAAA
ORF Predictions :
ORF # Start End Direction Length
1 102 443 R 114 aa
> 3859588-1 ORF translation from 102-443, direction R VKDKTLIIQHSGAYIARYSITWEEVPVDKDGNQWRSHSWEGNGRNQTAGFVLNLPIKEN MRNLRVKIEKKTGLLWNRWQTIYENRPILAQPHRKITHWGTTLNSKVSDDDVL*
Description:
PNEUMOLYSIN (THIOL-ACTIVATED CYTOLYSIN) . - STREPTOCOCCUS PNEUMONIAE .
Assembly ID: 3859774 Assembly Length: 214bp > 3859774 Strep Assembly -- Assembly id#3859774 ATCGAATTCTAACATGTGCTTCTCCTTCTATTGTTCCTATCTTTAAAATCTACTCCTTCA TGCTCCAAGAGCCAAGCTTTCTTTTCCACTCCTGCAGCATAACCTGTCAGACGCTTGCCT GCTCCCAACACACGATGACAAGGTACTAGGATAGACCAAGGATTGCGTCCCACTGCTCCA CCAATTGCTTGAGCAGAAGCCACTTGCAGGTCTT
ORF Predictions:
ORF # Start End Direction Length
1 9 131 R 41 aa
> 3859774-1 ORF translation from 9-131, direction R VLGAGKRLTGYAAGVEKKAWLLEHEGVDFKDRNNRRRSTC*
Description: GLUTAMATE RACEMASE (EC 5.1.1.3). - ESCHERICHIA COLI .
Assembly ID: 3860140 Assembly Length: 1084bp
> 3860140 Strep Assembly -- Assembly id#3860140 CTCCAGCAATGGATCCAAGTATGATGGGCGGGATGATGTAAGCTTTCTATAGAAAACACC TTATAAAAAACACGAAAGGAGGGAATGACTAACCCTTCTTTTTATAATATTCACTTCTAA GATTGATGGTGAGCTCTCCTAACTTATATGATAAAATAAGACTAGAGGAAAGGAGAAGAA CATGATCGATGTACAAGAAATTCTGTGCAAGATGACCCCCAATCAGAAGATTAATTATGA CCGTGTCATGCAGAAAATGGTACAAGCATGGGAAAAAAATGAGTAGCGGCCAACCATTCT CGTGCATGTTTGCTGTGCCCCTTGTAGTACCTATACACTAGAATATTTGACCAAGTATGC AGATGTGACCATCTATTTTGCCAATTCTAATATCCATCCCAAGGCAGAATACCATAAGCG GGTCTATGTCACCAAGAAATTTGTTAGTGATTTTAATGAGCAGACAGGAAATACGGTTCA GTACCTAGAAGCTCCCTACGAACCCAATTAATACCGAAAACTAGTTAGGGGGCTAGAGGA GGAGCCCGAAGGTGGCGACCGTTGCAAGGTTTGTTTTGACTACCGACTGGATAAAACAGC GCAAGTGGCTATGGACTTGGGCTTTGACTACTTTGGTTCAGCCTTGACCATCAGTCCTCA TAAGAATTCTCAAACTATCAATAGCATCGGAATCGATGTGCAAAAAATTTACACGCCCCA CTATCTTCCCAACGATTTCAAGAAAAATCAAGGCTACAAACGTTCAGTAGAGATGCGTGA GGAGTATGATATCTATCGTCAATGTTATTGTGGCTGCGTCTATGCAGCCCAAGCCCAGAA TATTGACCTGGTTTAAGTTGAGTAGGACGCCACAGCATGCTTGCTGGATAAGGATGTTGA GAAAGACTATTCTCATATCACATTTATAGTAGATTGAAACTAGAATAGTACACCTTTACT TCTCAAACATTGTTAGAAATCGATTCGGCTGTCCTTATTTCATTTTAATATACTGGTACG AAATTAGATATATCAATGATAACTTGCCTCAAGGTAGGTTTTTTGATAGTAGAAAAGCGA TAGA
ORF Predictions: ORF # Start End Direction Length _
1 302 511 F 70 aa
2 605 .856 F 84 aa
> 3860140-1 ORF translation from 302-511, direction F VHVCCAPCSTYTLEYLTKYADVTIYFANSNIHPKAEYHKRVYVTKKFVSDFNEQTGNTVQ YLEAPYEPN*
Description : unknown
> 3860140-2 ORF translation from 605-856, direction F VAMDLGFDYFGSALTISPHKNSQTINSIGIDVQKIYTPHYLPNDFKKNQGYKRSVEMREE YDIYRQCYCGCVYAAQAQNIDLV*
Description: unknown
Assembly ID: 3860206 Assembly Length: 1124bp
> 3860206 Strep Assembly -- Assembly id#3860206 ATCGAATTCATTGACTGCCTGAAAAGACTTCAACTCGTCTGCCTGATAACCGAAAGACTT GGTTACTTTGATACCTGATACGGACTCCTGTACCTTGTTATTGAGTTCAGAAAAAGCAGC TTGGGATTCGCCAAAGGCCTTATGAGTCTTTCTCCCTAGGCGACTAGTCGTATAGGCCAT GAAAGGTAGGGGGAGAATGGCAACAAGAGTCATCTGCCATGAGATGCTAAAGAGCATGGT CAACAAAGTCACCAGAGCCGTGATAGAGGCATCCACCGCAGACATGACACCGCCACCTGC TAAACGAGTCAAGGAATTGATATCATTGGTTGCGTGTGCCATCAGATCACCCGTCCGATA GGTTTGATAAAAGGCTGACGACATTTTTGTGAAATGCTTAAACAAGCGAGACCGCATGAT CTGTCCCAAGCAATAAGAGGTCCCAAGGATATACATACGCCACACATAGCGCAAATAGTA CATACCAAAGGCTGCAAGTAGCAAGTAAAATAGGCTAAGAAGGAGGTCCTGCTGGGTTAA TTGCCCCGATGTGATGGCATCAATAACCCGCCCCATAACCATAGGAGGAATGAGATTGAG GACGGAAACCAAGACCAGGGCCACAATCCCGACTAGATAACGGCGTTTTTCTAACTTGAA AAACCACCAAAATTTTTGAATAATGGACATAAAATCCCTTTCTGGATTGCAAATAGAAAC CTGAGGCCAATACTCAATGGAAAATCAAAGAGCAAACTAGGAAACTAGCCGCAGGCTGCT CAAAGCACTGCTTTGAGGTTGTAGATAGAACTGACGAAGTCAGTAACCTACATACGGCAA GGCGACGTTGACGCCGTTTGAAGAAATTTCCGAAGAATACAAGACCCCAGGTTTTTCTTA TTTATAAGTTACCACTGTAACAGCACCCTTGTCATATTCAGCAATAAAGATATTGGCTAC ATTGTCATGCCCTTGTTTACTGAGGTTATCAAGCAACCACTCCTCGCTACGAACAATCGA TCCCAAGACATCTACTTGAATCACACCGTCAGTCACAACTGGATACTTAGGATTTTCATC TCCCATTTGCACAACGATGAGTTGCCCATTTTGCTCTTGCACAG ORF Predictions :
ORF # Start End Direction Length
1 898 1-056 R 53 aa
> 3860206-2 ORF translation from 898-1056, direction R VTDGVIQVDVLGSIVRSEEWLLDNLSKQGHDNVANIFIAEYDKGAVTWTYK*
Description: unknown
Assembly ID: 3860270 Assembly Length: 1242bp
> 3860270 Strep Assembly -- Assembly id#3860270 TTACCTTCATTGCAGCCATTATTGGTTCTTGTGTCAGCCAGATTTTAAGTATTCTTTATA AGACACCTGCTGTGGTCTTTATCTTGGCCATTTTGGCACCGCTGGTTCCAGGTTATCTCT CCTACCGAACAACTGCCTTTTTTGTGACAGGGGACTATAATAAAGCACTGGCAAGTGCGA CCTTGGTTGTCATGTTGGCTTTGGTAATCTCTATTGGAATGGCTAGCGGAACAGTGATTC TCAGACTGTATCATTATATAAAAACACATCGAGTATCGTAGACTTTACAGAAATAAAAGA ATTTTCTGAAAAATGAGATAAATAAATTAACAACGCTTTCTATATGTGCGAGAATACCGC ACTTATGAAGAAATTGCGGCTGATTTTGGTATCCACGAAAGCAACTTAATCCGTCGGAGC CAATGGGTTGAAGTAACTCTTGTTCAAAGTGGTGTTACGATTTCAAAAACTCATCTTAGT GCTGAGAATACGGTGATTGTGGATGCAACAGAGGTAAAAATCAATCGCCCTAAAAAACAA TTAGCGAATGATTCTGGTAAAAAGAAATTTCACGCTATGAAGGCTCAGGCGATTGTCACA AGTCAAGGGAGAATTGTTTCTTTGGATATCGCTGTGAACTATTGTCATGATATGAAGTTG TTCAAAATGAGTCGCAGAAATATCGGACAAGCTGGAAAAATCTTGGCTGATAGTGGTTAT CAAGGGCCCATGAAGATATATCCTCAAGCACAAACTCCACGTAAATCCAGCAAACTCAAG CCGCTAATAGCTGAAGATAAAGCTTATAACCATGCGCTATCCAAGGAGAGAAGCAAGGTT GAGAACATCTTTGCCAAAGTAAAAACGTTTAAAATGTTTTCAACAACCTATCGAAATCAT CGTAAACGCTTCGGATTACGAATGAATTTGATTGCTGGCATTATCAATTATGAACTAGGA TTCTAGTTTTGCAGGAAGTCTATTATTTTCCTTATTGTCTGTAAGTCTACTGACCTTGTT GTTTATCCCAGTCATGGTTTCTAGTTCGGGCTCAGAGTTTCAAAGTGGATGGCAAGAGCA TCAATTGATTGCTGAGAAGGTTAGTAAAACACTTGACAAGACATTTGATAAGGATGTCAG AAAAATTCCGACCAGTCAGTTTTATCAAAAATTTGTAGATGAGATGGGAAGGATTTACTC AGGAAATTTGATCCTCCCAGGAGCTGATAACTGTGAATGGAG
ORF Predictions:
ORF # Start End Direction Length
1 346 966 F 207 aa
> 3860270-1 ORF translation from 346-966, direction F VREYRTYEEIAADFGIHESNLIRRSQWVEVTLVQSGVTISKTHLSAENTVIVDATEVKIN RPKKQLANDSGKKKFHAMKAQAIVTSQGRIVSLDIAVNYCHDMKLFKMSRRNIGQAGKIL ADSGYQGPMKIYPQAQTPRKSSKLKPLIAEDKAYNHALSKERSKVENIFAKVKTFKMFST TYRNHRKRFGLRMNLIAGIINYELGF*
Description: ISL2 protein - Lactobacillus helveticus (Probable transposase)
Assembly ID: 3860438 Assembly Length: 1575bp
> 3860438 Strep Assembly -- Assembly id#3860438
GTGATGGGGCCTCAGGGAAATGGTTTTGACTTGTCTGACCTTGATGAGCAGAATCAGGTT
CTCCTTGTTGGTGGTGGGATTGGTGTTCCACCCTTGCTTGAGGTGGCCAAGGAATTGCAT
GAACGTGGAGTGAAAGTAGTGACAGTCCTCGGTTTTGCTAATAAGGATGCTGTTATTTTG
AAAACGGAATTGGCTCAGTATGGTCAGGTCTTTGTAACGACAGATGATGGTTCTTATGGC
ATCAAGGGAAATGTTCCGTTGTTATCAATGATTTAGATAGTCAGTTTGATGCTGTTTACT
CGTGTGGGGCTCCAGGAATGATGAAGTATATCAATCAAACCTTTGATGATCACCCAAGAG
CCTATTTATCTCTGGAATCTCGTATGGCTTGTGGGATGGGAGCTTGCTATGCCTGTGTTC
TAAAAGTACCAGAAAGCGAGACGGTCAGCCAACGCGTCTGTGAAGATGGTCCTGTTTTCC
GCACAGGAACAGTTGTATTATAAGGAGAAAATTATGACTACAAATCGATTACAAGTGTCT
CTACCTGGTTTGGATTTGAAAAATCCGATTATTCCAGCATCAGGCTGTTTTGGCTTTGGA
CAAGAGTATGCCAAGTACTATGATTTAGACCTTTTAGGTTCTATTATGATCAAGGCGACA
ACCCTTGAACCACGTTTTGGGAATCCAACTCCAAGAGTGGCAGAGACGCCTGCTGGTATG
CTCAATGCAATTGGCTTGCAAAATCCTGGTTTAGAGGTTGTTTTGGCTGAAAAGCTACCT
TGGCTGGAAAGAGAATATCCAAATCTTCCTATTATTGCCAATGTAGCTGGTTTTTCAAAA
CAAGAGTATGCAGCTGTTTCTCATGGGATTTCCAAGGCAACTAATATAAAAGCTATCGAG
CTCAATATTTCTTGTCCCAATGTTGACCACTGTAATCATGGACTTTTGATTGGTCAAGAT
CCAGATTTGGCTTATGATGTGGTGAAAGCAGCTGTGGAAGCCTCAGAAGTGCCAGTTTAT
GTCAAATTAACCCCGAGTGTGACCGATATCGTTACTGTCGCAAAAGCTGCAGAAGATGCG
GGAGCAAGTGGCTTGACTATGATCATACTCTGGTGGGATGCGCTTTGACCTCAAAACCAG
AAAACCAATCTTGGCCAATGGAACAGGTGGAATGTCAGGTCCAGCAGTTTTCCAGTAGCC
CTCAAACTCATCCGCCAAGTAGCCCAAACAACAGACCTGCCTATCATTGGAATGGGGGGA
GTGGATTCGGCTGAAGCTGCCCTAGAAATGTATCTGGCTGGGGCATCTGCTATCGGAGTT
GGAACAGCTAACTTTACCAATCCTTATGCCTGCCCTGACATCATCGAAAATTTACCAAAA
GTCATGGATAAATACGGTATTAGCAGTCTGGAAGAACTCCGTCAGGAAGTAAAAGAGTCT
CTGAGGTAAACTGCAATCAATCTGTTCTTGATTTTTTATTAGTTTGTAATATGAATTTAG
GAGAATTTTGGTACAATAAAATAAATAAGAACAGAGGAAGAAGGTTAATGAAGAAAGTAA
GATTTATTTTTTTAG
ORF Predictions:
ORF # Start End Direction Length 1 1 27 6 F 92 aa
2 460 1128 F 223 aa
> 3860438-1 ORF translation from 1-276, direction F - VMGPQGNGFDLSDLDEQNQVLLVGGGIGVPPLLEVAKELHERGVKWTVLGFANKDAVIL KTELAQYGQVFVTTDDGSYGIKGNVPLLSMI*
Description : unknown
> 3860438-3 ORF translation from 460-1128, direction F VKMVLFSAQEQLYYKEKIMTTNRLQVSLPGLDLKNPIIPASGCFGFGQEYAKYYDLDLLG SIMIKATTLEPRFGNPTPRVAETPAGMLNAIGLQNPGLEWLAEKLPWLEREYPNLPII NVAGFSKQEYAAVSHGISKATNIKAIELNISCPNVDHCNHGLLIGQDPDLAYDWKAAVE ASEVPVYVKLTPSVTDIVTVAKAAEDAGASGLTMIILWWDAL*
Description:
DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE) (DHODEHASE) . - BACILLUS SUBTILIS.
Assembly ID: 3860544 Assembly Length: 776bp
> 3860544 Strep Assembly -- Assembly id#3860544 CTAAGATATCAGAATAACAACGAAATCGAAGCATTAAAAACAAATATTACTTCTAAGAAT AGCGAGATTGATAGTCAACAAAGCAATATTAAGGATATGACCGTACCTATAATGATCCAA CTTCTCAGGCTTATAATATTTATGCTCAATTAATTAGTGAGTTAGGTACTGCTCGTTCAA ACAACAATAAAAGTATTACAGAGCTTGAGGCTAATCTTGGAGTGGCAACAGGTCAAGATA AAGCTCATAGTATATTAGCGTCAAATGAAGGTACTCTGCATTATCTGGTACCTTTGAAAC AAGGAATGTCTATTCAGCAGGGGCAAACGATAGCAGAAGTTTCAGGGAAAGAAAAAGGTT ACTATGTAGAGGCTTTTGTACTTGCGAGTGATATTTCTCGTGTTTCAAAAGGAGCAAAAG TTGATGTTGCTATTACTGGTGTGAATAGTCAAAAATATGGAACACTAAAGGGACAAGTCA GACAGATTGATTCAGGAACAATTTCCCAAGAAACGAAAGAGGGGAATATTAGCCTCTATA AAGTCATGATAGAATTAGAAACCTTAACTCTAAAACATGGAAGCGAGACGGTCATACTCC AAAAGGATATGCCAGTTGAAGTGCGGATTGTCTATGATAAAGAAACCTATCTTGATTGGA TTTTAGAAATGTTAAGTTTCAAGCAATAATTGGTTTTAAACCTTAGGTAACCTATAAAAA CAAATAAGGTAGAGAAAGGATATTTTATCTAAGTTAGCTCACATTACTGCCATTCC
ORF Predictions:
ORF # Start End Direction Length
1 222 689 F 156 aa > 3860544-1 ORF translation from 222-689, direction F __ VATGQDKAHSILASNEGTLHYLVPLKQGMSIQQGQTIAEVSGKEKGYYVEAFVLASDISR VSKGAKVDVAITGVNSQKYGTLKGQVRQIDSGTISQETKEGNISLYKVMIELETLTLKHG SETVILQKDMPVEVRIVYDKETYLD-WILEMLSFKQ*
Description: unknown
Assembly ID: 3860558 Assembly Length: 1487bp
> 3860558 Strep Assembly -- Assembly id#3860558 CTGGCCTTTCTCCACCAAAATTGTTCCTTGAGGGAAGGAAGTCAGAACACTAGCCGTTGC ATCTTCCTTTTGCTTTTCAATCGTAATTCCAGATAATTTTTCCCATTCTTTTTGGTGACC CCGGGAGGCAGGATTGAATGGCTTGAGGGAAATGACAAACTTGTCCTAGCAAGAATGGTC AAGGCACCTCCGTCTACAATCAAAATCTGATTTGGGCTTAAATTAACAAAGACCTGTTTT ACTAGATTTTCTCCAGAAGCATCGTCTCGTAAACCAGGCCCCAGCAAGATAACTTCTGCC TTCTCCAATTGCTCTTTTAACAATTGCTGGTCTTGAAGAGAAAAGGCCATAGGCTCAGGT AAATGGCTGTGCAGAGCCGGGATATTTTCCCTGTCCGTTCCAACGGTCACCAATCCTGCA CCGCTTTTTACAGCTGCTAAAGCAGCCATGATGATGGCACCTCCATAAGGATAAGTACCA CCAAGCAGCAGCAGACGACCATAATCTCCTTTATGACTTGAACGAGAACGTTCAATAATA ACTTTTTCTAGTAAGGTTTGATTAATCACTTTCATCCTTTTTCCCTCTCACTTTTATTAT ACAACAAAAAGGAGACGCAGACCTCCTTTTGTAATCTTATATCTAAAATTTAATATTCAT TTCTGCCATTTTAGATATAGCTATAGAAAATACACTCTATTAATCGAATGTTTCTCTTAT TTTCTATCCAATGTCCGAAGTGCTGCTTGATAAGTTTGCTCCATCAGCATGGTAATGGTC ATAGGACCGACACCTCCAGGGACTGGCGTGATATGGCTAGCAAGTGGTGCAACTGCCTCA TAATCAACATCTCCACAGAGCTTCCCATTTTCATCTCGGTTCATCCCAACGTCAATGACA ACCGCACCTGGTTTGACAAAGTCAGCAGTCACAAACTTGGCGCGGCCGATTGCGACTACA AGAATATCTGCTTTAGCAGCCACCTTGGCAAGATTATGAGTTCGTGAGTGGGCCAAGGTT ACTGTCGCATTTTTAGCCAAAAGAAGCTGAGCCATAGGTTTTCCAACGATATTTGAACGA CCGATTACGACCGCATTTTTACCTTCCAAGTCAATCCCATATTCATGAAACATTTCCATA ATTCCTGCAGGTGTCGAGGGAATCATGACTGGATGTCCAGACCAAAGACGTCCCATGTTT AGGGGATGGAAACCATCCACATCCTTTTCTGGGTCAATGGCTAATAAAACCGCCTCTTCA TCGATATGTTTTGGTAATGGCAACTGGACCAAAATCCCATGCCAAGCTGGATCCTGATTA TATTTAGCAATCAGGTCTAACAATTCCTCTTGAGTAATGGTCTCTGGAACTCGCACTACT TCGGTACGGGAACCAGCCGCAAGAGCTGACCTCTCCTTGTTGCGAACGTTAAACTTGGCT GGCTGGATTATCCCCAACCAAAATCACTACCAAACCAGGCACTAGAG
ORF Predictions:
ORF # Start End Direction Length
1 717 1376 R 220 aa > 3860558-2 ORF translation from 717-1376, direction R __ VRVPETITQEELLDLIAKYNQDPAWHGILVQLPLPKHIDEEAVLLAIDPEKDVDGFHPLN MGRLWSGHPVMIPSTPAGIMEMFHEYGIDLEGKNAWIGRSNIVGKPMAQLLLAKNATVT LAHSRTHNLAKVAAKADILWAIGRAKFVTADFVKPGAWIDVGMNRDENGKLCGDVDYE AVAPLASHITPVPGGVGPMTITMLMEQTYQAALRTLDRK*
Description :
5 , 10-methylene-tetrahydrofolate dehydrogenase (folD) homolog Haemophilus infl uenzae (strain Rd KW20)
Assembly ID: 3860568 Assembly Length: 1634bp
> 3860568 Strep Assembly -- Assembly id#3860568 CGTGCCTTGGCCAATGATCCAAAAATCTTGATTTCAGACGAGTCGCTTCAAATTTCGGCC CCTGGACCCTTAAGACCAACCCAAGCAGATTTTGGCCCTTGGTTGCAAGATTTGAACCAA AAATTAGGCTTGACTGTTGTCCTGATTACGCATGAAATGCAGATTGTCAAAGACATTGCC AACCGTGTTGCAGTTATGCAGGATGGGCATTTGATTGAAGAGAGTAGTGTGCTTGAAATC TTCTCAGACCCTAAACAACCTTTGACTCAAGACTTTATCTCAACAGCTACAGGTATTGAC GAAGCCATGGTCAAAATCGAGAAGCAAGAAATCGTGGAACACTTGTCTGAAAACAGTCTC TTGGTGCAACTCAAGTACGCTGGATCTTCAACAGACGAGCCACTTTTGAATGAATTGTAC AAGCATTATCAAGTAATGGCTAATATTCTCTATGGGAATATCGAAATCCTCGATGGTACT CCTGTTGGAGAATTGGTGGTGGTCTTGTCAGGTGAAAAAGCAGCGCTGGCAGGTGCTCAA GAAGCCATTCGTCAAGCAGGCGTACAGTTAAAAGTATTGAAGGGAGGACAGTAAGATGGA ATCATTGATTCAAACCTATTTACCAAATGTCTATAAGATGGGTTGGTCTGGTCAGGCAGG CTGGGGAACAGCTATCTACCTAACCCTCTATATGACAGTTCTTTCCTTCATTATCGGAGG CTTCTTGGGGCTAGTGGCAGGTCTCTTTCTCGTCTTGACAGCGCCAGGTGGTGTCTTGGA GAATAAAGTCGTATTCTGGATTTTAGACAAAATTACCTCAATTTTTCGTGCGGTTCCCTT TATCATCCTCTTGGCAATCTTGTCACCACTTTCTCACTTGATTGAAAAAACAAGTATCGG GCCAAATGCAAGCCCTTGTCCCACTTTCTTTTGCAGTCTTTGCCTTCTTTGCCCGTCAGG TGCAGGTTGTCTTGGCTGAAATGGATGGCGGTGTCATTGAGGCGGGCTCAAAGCGAGCGG AGCGACTTTCTGGGACATCGTGGGTGTTTACCTATCAGAAGGTCTTCCAGATTTGATCCG TGTGACGACTGTGACCTTGATTTCCCTTGTTGGGGAAACAGCTATGGCCGGTGCGGTTGG AGCTGGTGGTATCGGTAACGTAGCCATCGCTTATGGATTTAACCGCTACAATCACGATGT GACCATCTTGGCAACCATCGTTATCATTTTGATTATCTTTGCAATCCAATTCTTAGGAGA TTTCTTGACTAAGAAATTGAGCCATAAATAAAAAAGAGCCGTGTGGCTCTTTTTAACTGA TCAGATTTTCTGGGCAAATTTTTTACTCAAGGCTTGTCCAATCAAGGCACCCACTAGGGC TCCGATGACAATACTTGCGATAAATAGAAGGACAGTTCCAGGGTTTGGAGCGACCATGAT GCGGTCGATATATTCTTGGGATTTTCCTCTTGCCAGAAGAGTAGCCATATAGGCTTTGGG CGCAATCCACATAAGCAAGATTGGTCCTGTTGTACTAAAGGCGAAAATAATGAAAGAAAG GAAGTTCTTTGTTTTGTCCTTGTATTTTCCTAAATGAGCTACTCCATCTGCTAGGAGGCC ACAGATAATTCGAT ORF Predictions :
ORF # Start End Direction Length
1 1040 1291 F 84 aa
> 3860568-3 ORF translation from 1040-1291, direction F VGVYLSEGLPDLIRVTTVTLISLVGETAMAGAVGAGGIGNVAIAYGFNRYNHDVTILATI VIILIIFAIQFLGDFLTKKLSHK*
Description: unknown
Assembly ID: 3860582 Assembly Length: 1087bp
> 3860582 Strep Assembly -- Assembly id#3860582 GGAATCATGATGATGTCACTGCTAAATGGTTTCTTAGAAAAAATATTTCCTGAGCGCTTA CAGATTAGTTTGGGCTTGCTGATTTTATCATTGAGCGGTACAGCTCCCTTCTGGTACCAA GCCTATCCCTTTGTCTTTGGAACACGGCTTCTCTTTGGTTTGGGTCTTGGGATGATCAAT GCCAAGGCCATTTCTATTATCAGTGAACGCTACCAAGGAAAAAGGCGAATTCAGATGTTA GGGCTACGCGCTTCTGCAGAGGTCGTTGGAGCTTCTCTCATTACCTTGGCCGTCGGTCAA GTTGTTGGCCTTTGGTTGGACAGCTATCTTTCTAGCCTATAGTGCTGGATTTTTGGTGCT GCCCCTTTATCTGCTCTTTGTCCCTTATGGAAAATCAAAGAAAGAAGTCAAGAAAAGAGC GAAGGAAGCAAGTCGTTTAACTCGAGAAATGAAAGGCTTGATTTTTACCTTAGCTATCGA AGCGGCAGTTGTAGTTTGTACCAATACAGCTATTACCATCCGTATTCCAAGTTTGATGGT GGAAAGAGGATTGGGGGATGCCCAGTTATCTAGTTTTGTTCTTAGTATCATGCAGTTGAT CGGGATTGTGGCTGGGGTGAGTTTTTCTTTCTTGATTTCTATCTTTAAAGAGAAACTGCT CCTCTGGTCTGGTATTACCTTTGGCTTGGGGCAAATCGTGATTGCCTTGTCTTCATCCTT GTGGGTGGTAGTAGCAGGAAGTGTTCTGGCTGGATTTGCCTATAGTGTAGTCTTGACGAC GGTCTTTCAACTTGTCTCTGAACGAATTCCAGCTAAACTCCTCAATCAAGCAACTTCATT TGCTGTATTAGGCTGTAGTTTCGGAGCCTTTACGACCCCATTCGTTCTAGGTGCAATTGG CTTACTAACTCACAATGGGATGTTGGTCTTTAGTATCTTAGGAGGTTGGTTGATTGTAAT CTCTATCTTTGTCATGTACCTACTTCAGAAGAGAGCTCTAGGATTGATTCCTAAGTTTTT CTTTTGATACTCAATGAAAATCAAAGAGCAAACTATAGTTGATTGAGTTTGGAATAGTAT GCTGTAG
ORF Predictions :
ORF # Start End Direction Length
1 356 1027 F 224 aa
> 3860582-1 ORF translation from 356-1027, direction F VLPLYLLFVPYGKSKKEVKKRAKEASRLTREMKGLIFTLAIEAAVWCTNTAITIRIPSL MVERGLGDAQLSSFVLSIMQLIGIVAGVSFSFLISIFKEKLLLWSGITFGLGQIVIALS3 SLWVWAGSVLAGFAYSWLTTVFQLVSERIPAKLLNQATSFAVLGCSFGAFTTPFVLGA IGLLTHNGMLVFSILGGWLIVISIFVMYLLQKRALGLIPKFFF*
Description: unknown
Assembly ID: 3860724 Assembly Length: 119lbp
> 3860724 Strep Assembly -- Assembly id#3860724
GGATTCCAACGATTATGAACTTGACTGGTCCACTGATTCATCCAATGGCTTTAGAAACAC
AGCTTTCTTGGAATTAGTCGTCCAGACTCCTAGAAAGTACAGCTCAGGTTTTGAAAATAT
GGTCGCAAACGTGCCATCGTGGTTGCTGGACCAGAAGGGTTGGATGAAGCTGGCTTGAAC
GGAACAACCNAGATTGCACTTNTTGAAAATGGCGAAATCAGCTTGTCAAGCTTTACTCCA
GAGGATTTGGGAATGGAAGGCTATGCTATGGAAGATATTCGTGGTGGGAATGCTCAGGAA
AATGCAGAAATTTTGCTTAGCGTTCTGAAAAACGAAGCAAGTCCATTCTTGGAAACGACA
GTCTTGAATGCTGGTCTTGGTTTCTATGCTAATGGTAAGATTGATAGCATCAAGGAAGGA
GTTGCCTTGGCCCGTCAAGTGATTGCTAGAGGCAAGGCCCTTGAAAAACTCAGACTGTTA
CAGGAGTACCAAAAATGAGTCAGGAATTTTTAGCACGAATCTTAGAGCAGAAGGCGCGTG
AGGTGGAGCAGATGAAGCTGGAGCAAATCCAGCCTCTGCGCCAGACCTATCGCTTGGCAG
AATTTTTGAAGAATCATCAGGACCGCTTGCAGGTAATCGCTGAGTCAAGAAAGCTAGCCC
TAGTTTGGGAGATATCAATCTCGATGTGGATATTGTGCAACAGGCCCAGACTTATGAAGA
AAACGGAGCAGTGATGATTTCGGTGTTGACAGATGAGGTTTTCTTTAAAGGGCATTTGGA
TTATCTACGGGAAATTTCCAGTCAGGTAGAGATTCCGACGCTCAACAAAGACTTTATCAT
AGATGAAAAGCAAATCATCCGCGCTCGCAATGCAGGTGCGACAGTTATCTTGCTTATTGT
GGCAGCCTTGTCCGAAGAACGCCTCAAGGAACTGTATGACTACGCGACAGAGCTTGGTCT
GGAAGTCTTAGTGGAGACTCACAATCTAGCTGAACTAGAGGTAGCCCACAGACTTGGTGG
CTGAGATTATCGGGGTCAACAACCGCAACTTGACTACCTTTGAAGTCGACTTGCAGACCA
GTGTAGATTTAGCCCCTTACTTTGAGGAAGGTCGCTATTACATTTCTGAATCTGCCATTT
TCACAGGGCAGGATGCGGAACGACTAGCCCCATACTTTAACGGAATTCGAT
ORF Predictions:
ORF # Start End Direction Length
1 139 498 F 120 aa
2 686 1024 F 113 aa
> 3860724-1 ORF translation from 139-498, direction F
WAGPEGLDEAGLNGTTXIALXENGEISLSSFTPEDLGMEGYAMEDIRGGNAQENAEILL
SVLKNEASPFLETTVLNAGLGFYANGKIDSIKEGVALARQVIARGKALEKLRLLQEYQK*
Description: ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18 ) . - _ LACTOCOCCUS LACTIS (SUB SP. LACTIS) (STREPTOCOCCUS LACTIS) .
> 3860724-2 ORF translation from 686-1024, direction -F VDIVQQAQTYEENGAVMISVLTDEVFFKGHLDYLREISSQVEIPTLNKDFIIDEKQIIRA RNAGATVILLIVAALSEERLKELYDYATELGLEVLVETHNLAELEVAHRLGG*
Description:
INDOLE-3 -GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) (IGPS). - LACTOCOCCUS LACTIS (SUBSP. LACTIS) (STREPTOCOCCUS LACTIS) .
Assembly ID: 3860858 Assembly Length: 858bp
> 3860858 Strep Assembly -- Assembly id#3860858 ATCGAATTTGCCAACCAAGAAAAATATCCCTTGGATGGTTCTTGGCAATGCAAGCAATAT CATCGTTCGTGATGGTGGGATTCGTGGATTTGTCATCTTGTGTGACAAGCTCAATAACGT TTCTGTTGATGGCTATACCATTGAAGCAGAAGCTGGGGCTAACTTGATTGAAACAACTCG CATTGCCCTCCGTCATAGTTTAACTGGCTTTGAGTTTGCTTGTGGTATTCCAGGAAGCGT TGGCGGTGCTGTCTTTATGAATGCGGGTGCCTATGGTGGCGAGATTGCTCACATCTTGCA GTCTTGTAAGGTCTTGACCAAGGATGGAGAAATCGAAACCCTGTCTGCTAAAGACTTGGC TTTTGGTTACCGCCATTCAGCTATTCAGGAGTCTGGTGCAGTTGTCTTGTCAGTTAAATT TGCCCTAGCTCCAGGAACCCATCAGGTTATCAAGCAGGAAATGGACCGCTTGACGCACCT ACGTGAACTCAAGCAACCTTTGGAATACCCATCTTGTGGCTCGGTCTTTAAGCGTCCAGT CGGGCATTTTGCAGGTCAGTTCGAATTTCAGAAGCTGGCTTGAAAGGCTATCGTATCGGT GGCGTAGAAGTGTCAGAAAAGCATGCAGGATTTATGATCAATGTCGCAGATGGAACGGCC AAAGACTACGAGGACTTGATCCAATCGGTTATCGAAAAAGTCAAGGAACACTCAGGTATT ACGCTTGAAAGAGAAGTCCGGATCTTGGGTGAAAGCCTATCGGTAGCGAAGATGTATGCA GGTGGTTTTACTCCCTGCAAGAGGTAGTGGGGACCTGACAGAGCCCCGATCGGTTAATCT ATGAAAAAGAAGGAATTT
ORF Predictions :
ORF # Start End Direction Length
1 610 807 F 66 aa
> 3860858-1 ORF translation from 610-807, direction F VSEKHAGFMINVADGTAKDYEDLIQSVIEKVKEHSGITLEREVRILGESLSVAKMYAGGF TPCKR*
Description: unknown Assembly ID: 3860890 _
Assembly Length: 980bp
> 3860890 Strep Assembly r- Assembly id#3860890 CTGAAAAAACAGGTTTTGACTATGNAGATTGACAGACGACCGTTCGGAGGTGCAGATATT GATGCAGCAGGACCTCCCTTACCTGATGAAACCCTTAAGGCAAGTAGGGAAGCAGATGCT ATCCTACTAGTAGCTATCGGTAGTCCTCAGTATGATGGAGTAGCGGTTCGCCCTGAACAA GGCCTGATGGCTCTCCGTAAGAACTCAATCTTTACGCTAATATTCGTCCTGTAAAAATCT TTGACAGTCTCAAGTATTTGTCACCACTCAAACCGGAACGAATTTCTGGTGTAGACTTCG TCGTGGTGCGTGAATTGACTAGGCGAGATTTACTTTGGAGATCATATCCTTGAAGAGCGC AAAGCGCGTGATATCAACGACTATAGCTATGAGGAAGTGGAGCGGATTATTCGCAAAGCC TTTGCCATCGAATTGCAAGAAATCGCAGAAAAATCGTTACTAGTATCGATAAGCAAAATG TTCTAGCGACCTCAAAACTCTGGCGGAAAGTAGCTGAGGAAGTCGCACAGGATTTCTCAG ATGTAACCTTGGAACACCAGCTGGTAGACTCAGCTGCTATGCTTATGATTACCAATCCTG CTAAGTTTGATGTTATTGTAACGGAGAATCTTTTTGGAGATATTTTATCTGATGAATCAA GCGTCTTATCTGGTACACTTGGGGTTATGCCATCAGCCAGTCATTCTGAAAATGGACCAA GTCTCTATGAACCTATTCACGGTTCAGCACCTGATATTGCAGGTCAAGGAATTGCCAATC CTATTTCCATGATTTTATCAGTTGTCATGATGTTGAGAGATAGTTTCGGACGTTATGAGG ATACAGAGCGTATCAAACGTGCTGTTGAGACAAGTCTGGCGGCAGGAATTTTAACGAGAG ATATAGGAGGTCAGGCTTCAACAAAGGAAATGATGGAAGCTATTATTGCAAGGTTATGAA GTTAGACGAAAAAATTCGAT
ORF Predictions:
ORF # Start End Direction Length
1 ' 397 486 F 30 aa
> 38-60890-2 ORF translation from 397-486, direction F VERIIRKAFAIELQEIAEKSLLVSISKMF*
Description: unknown
Assembly ID: 3860952 Assembly Length: 874bp
> 3860952 Strep Assembly -- Assembly id#3860952 TCGATCTAGAGAATTGCTCCAGAGCTTCCTGACCGTCCGCTGCCTCAATAGTTTCATAGC CACAATCCGTCAAATAATCACTGACCCCCTCACGGATCATCTCTTCATCTTCTACAATTA AAATTTTCATACTTTAACTGCTCTCTATTTTTTATTTTTCTTAGAATAAATACCTACTCT ATTTTCTATTATAGTCTCTTGCTGGCCTTTTGTATGTAAGCAACTGACCACTAGATAAAA CGTTGTGAAATTCCTTTCTCATAAATTCCATAACTTTAGTATATTATATTTAAGCACTAA AGTACAAAGAAAGCAACTGAAAGCAATGATTTTCACCACTGCTTTCAGATTTATTTTGAA TTGTTAAATAGCTATTCCTATCCACTATTCTTGAATAGAAACACAAGATGCAATCTTT.AT TCCAGACTCATTTTTTAAAAAATCAAATTTATTCACCATCCAGCAAGAGCTCTTTTGGTT GTTTTCTAAGGAGATTGCTTGAAGCAAGCGCCATAACGAGAACCACTAGAACCAAGGCAA GGACAAAAATGATGATAAAGTCTGATGTCTGAATGGAAATGTCTAGGCTCGACAAGGTCT TGCTAAAGCCATCTACTTCTGCACCGCCACCAAGGTTAGAGGCTTGAGCCGCCTTACTAG CCTGTTTGGCAACACCTGAAGTCACATTGGCAAGGACAGTGTTTCCAATTCGCACGGGCA GTGTAATTAGCTAGGAAGTAAGCANAAACTAGAGCAGGGATAGCAATCAAGATAGATTCG GTGATGAATTGACCCAAGATACTTGCCTGCTTGAGACCAATAGAGAGGAGGATTCCCACT TCCTTGCCGACGGGCATTGATCCAAAGACTGAGC
ORF Predictions:
ORF # Start End Direction Length
1 449 715 R 89 aa
> 3860952-1 ORF translation from 449-715, direction R VRIGNTVLANVTSGVAKQASKAAQASNLGGGAEVDGFSKTLSSLDISIQTSDFIIIFVLA LVLWLVMALASSNLLRKQPKELLLDGE*
Description: unknown
Assembly ID: 3860962 Assembly Length: 762bp
> 3860962 Strep Assembly -- Assembly id#3860962 CTTGTAACGGTCATAAAGTTTCTGCAAACTACCATCCTTGCTCCATTTAGTAACCAAGTT ATCAAGATAGTCGTTGAGCTCTGTATTTGATTTCTTGGTAACAATACCGTAGTCAGATGG CTTGAAACTATCATCTAGTAGTTCTGTGCGTTTAACTAGTGTAGCCAGATAGAATAGAGC GGTCAACGGAAAAGGCATCGATACGATGAGCGTGAAGGGAAGTAATCAATTCTGGGTAGG AACCAAGTTCGACGAATTTAAACTTCAGACCTTTCTTTTTACCCAGTTCAGTAATCAGGC GTTGGGTGATAGAACCTTGGGCGACTCCGATGGTTTTGCCGTTTAGGTCCTCAATCTTTT TGATTTTGGCAGATTTATTGACCAAAAATCCAGAAGCGTCTGTGTAGTAGGGACTGGTAA AGTTGTAGAGTTTTTTGCGTTCGTCCGTGATGGTAAAGGTCGCGATATCCATATCGACCT GTTCATTGTCTAGAAGGGGGCCGCGGGTTTGTGCTGTAACCGGCACATAGTGAATCTTGA CCTTGAGTTCATCAGCTACCATTTTGGCCAAGTCGGTTTCGATACCAGAATAAGTACCGG TCTTGGGATCTTTGTTAACCAAAATTGGGAACGTCTTGTTTGACACCCGACAACCAGTTC GCCTCTTTTTTGAATGTCTGCGATACTAGTATTAGCCTGGACTGGTTTGGCAGCAACAAG GCCGAAAAGGCTAATCAATAATGCTGATAAAAAGAATTCGAT
ORF Predictions:
ORF # Start End Direction Length 1 152 646 R 165 aa _
> 3860962-1 ORF translation from 152-646, direction R VSNKTFPILVNKDPKTGTYSGIETDLAKMVADELKVKIHYVPVTAQTRGPLLDNEQVDMD IATFTITDERKKLYNFTSPYYTDASGFLVNKSAKIKKIEDLNGKTIGVAQGSITQRLITE LGKKKGLKFKFVELGSYPELITSLHAHRIDAFSVDRSILSGYTS*
Description: cell adhesion factor PEBl precursor - Campylobacter jejuni
Assembly ID: 3861268 Assembly Length: 1942bp
> 3861268 Strep Assembly -- Assembly id#3861268 CTCGAATTTTTGGTGCTCCAGAAACGGTTCCAGCAGGAAGCGTTGCTTTCAAGGCATCCA TGGCAGTGAGTTCTGCAAGCAAACGTCCCTTGACCACACTGGTCAAATGCATGACGTAGC GGAAGAGCTCCACCTCCATATACTTAGTAACTTGGACACTGGCCGTTTCAGAGATGCGGC CAATATCGTTACGCCCCAAGTCTACCAACATTCGATGTTCTGCTGTTTCCTTCTCATCAG AGAGGAGGTCAGTCGCCAAGGCCTTGTCTTCTCCATCCGTAGCCCCTCTTGGTCGCGTCC CTGCAATCGGATTGGTTGTCACGATGCCATTTTTGACAGAAACCAAACTTTCTGGACTAG CTCCGATGATTTGATAATCCCCAAAATCATACAAATAAAGGTAATTAGATGGATTAGTCA CGCGGAGATTTCTGTAGAAGTCAAATGGATTTCCAGTTAACTTCTGCGTGAAGAAAACGC TGGCTGAGTTACACATCGGAACATATCTCCGTTACGAATCAAGTCACGAGCTGTTTCTAC CATTCCCTCAAACTTATGTGGAGCGATATGCGGTTTGAAGTCAAGTGGTGATAAATCCAA GTCTTCAAATTCATTTGGAGCAGGAATGCGTAATTCCTCAAGCACTTGGTTCAAGGATTT TTCCAAGGCCTCTTGACTGCGCTCACTATAAAGTGCATCCTCTATGACATGTTATCTTCT CCTTCTTGTTGGTCAAAGACCATATAGCTCTCATAGACAAAGAAATGCATGTCGGGCGTC CCAATTGTATCCTCAGGGATTTGACCAATTTCTTCATAAAGCGAAATCATATCGTAACCA ACAAAACCAATGGCTCCCCCACCAAAAGGGAGGTCTGAATGGTGCTGGCTCTTATGAATC ACTTCATAAAGGAAATCCAAGGGATCCCGATCAATCGCTTGACCATTTTGATAGAGAACT CCATTTTCAAACTTAATCTCAAAAACTGGATTATAGGCTAGGATAGAAAAACGAGCTGTT TCCTTGTCTCTCGGAATACTCTCTAAAATAACCTTATGTTGCCCCTTTAAGCGCATATAA GCCAAGATTGGTGATAAGACATCTCCATGAATGATTCGTTCCATTGTCATTTCCCTTTCA GTTCTAATTCGAGTTCGTGGCGACTGTATGAAAAATCCCCACGCAAAATAACTTGCGTGA GGACGAAATTCGCGGTGCCACCTCAATTATAGGATTTCTCCTATCTCTCATTCCTGTCTC AGATATCTCCTGTAACAGGCTGTGCGATAAAGGGCACTCCCTTGAGAATGATGTTTTCTT CTCTCGTTTCAGATGAACCCAACTTTACAGCTTTCTCTGCTTGTTTTCAGCAACCACAAG CTCTCTGTGAGAGAAAAGACTGTAATTTTTCCATCTATTATTTTTTAGCTTCTAGTAATC TGCAATCGCAGCTAGGTCCTTGCCTCCACGACCAGAGACATTGATGAAGAGATGTTCATC TCGGTACACCTTTATACTCTTCGAAAATCTCTTCAAACCGCGTCAACGTCGCCTTGCCGT AGGTATGGTTACTGACTTCGTCAGTTCTATCTGCAACCTCAAAACAGTGTTTTGAGCTGA CTTCGTCAGTCTTATCGACAACCTCAAAACAGTGTTTTGAGCAGCCTGCAGCTAGTTTCC TAGTTTGCTCTTTGATTTTCATTGAGTATTATTTCATTTTCTCCTGCAATTGAATTCTTG CTCAGCTTTTTGTCTTCTATTTCTTTAAAATCAAAGTAGCTCTTTTGTTAATAACTCOAT CAACAAACATCGTGGTACAAGTATCTACTTTGAAATTTATCAACCACTTAACAACTGATA CTGTATTTCTAGGAAAACGATGACATTCTTCCTAATAAAACTTCTCATATATAGCATAAA TTTCTACTCTTTTTAATTCGAT
ORF Predictions :
ORF # Start End Direction Length
1 457 645 R 63 aa
> 3861268-1 ORF translation from 457-645, direction R VLEELRIPAPNEFEDLDLSPLDFKPHIAPHKFEGMVETARDLIRNGDMFRCVTQPAFSSR RS*
Description:
ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27). - LACTOCOCCUS LACTIS (SUBSP. L ACTIS) (STREPTOCOCCUS LACTIS).
Assembly ID: 3861270 Assembly Length: 1048bp
> 3861270 Strep Assembly -- Assembly id#3861270 CTGTTAAGATTGTTTCCGTGCATCCACATAGGATTTACCTTGTCTGTATGGGCCAATTCA CCCATCAAAACGCCATAGGTCTCATCTGTCAAGATACTAGACATACCGATATTGTACCAA AGACTGGTATGACGGAAATAAGTCGATGCGTGTAAACTCAACAAAAAGAGACGCAAGTTG ATTAGAAAAACCGTCATAGCAATAGCTGCCACAGGAGCTTGAACCACAATCAGTGCCAAC ATGGCAAACTGGGCACTCCCAGCATAAACAAAGAGACTCATCAAGCCCATCTCAACAGGT GTCACATAGGGCGCACCGATAGTCCCACAGGCCAGGCCGATACTGACATAGCCAAGAGCC GTTGGCATGGCTGCCTGCGCCCCCTCCTAAAATCCTTTTTCTTTCATCTTTCTCCTCATA TTGTCTTAATAATACTCAATGAAAATCAAAGAGCAAACTAGGAAATTAGCCGCAGGNTGC TCAAAACACCGTTTTGAGGTTGCAGATAGAAACTGACGAAGTCAGCTCAAAACACCGTTT TGAGGTTGCAGATAGAACTGACGAAGTCAGTAACATATATACGGCAAGGCGACGTTGACG TGGTTTGAAGAGATTTTCGAAGAGTATTAGAAAATGCCGATAAGGGTCTGCATACCAAGG CTGGTGAGGATGATGGCAATCCAGCAGACGGCTCCGAGAACAATGGATTTTCCACTGGAT TTGACCATAGCGACCAGATTAGTTTTGAGACCGATGGCACTCATGGCCATGATAATGAGG AATTTAGAGAGTTGTTTGAGAGGGGTAAAGAAACTACTAGACACACCGAGAGAGGTCAGA AGGGTGGTTAGGAGCGATGCAAGGATGAAGTAAAGGATAAAAAGTGGGAAGACTTTTTTC AGTTGTAAGCCTTGCTTATTTTTTTGCTCGCGACTTTGCCAGTAGGAGAGAAAGAGAGTG ATGGGGATGATAGCTAGGGTGCGCGTGAGTTTGACAATGGTTGCGGATTCGAGGGTATTG GTCTGGTAGAGACTGTCCCAAGCGCTAG
ORF Predictions :
ORF # Start End Direction Length 1 627 824 R 66 aa
> 3861270-1 ORF translation from 627-824, direction R VSSSFFTPLKQLSKFLIIMAMSAIGLKTNLVAMVKSSGKSIVLGAVCWIAIILTSLGMQT LIGIF*
Description: unknown
Assembly ID: 3861288 Assembly Length: 157lbp
> 3861288 Strep Assembly -- Assembly id#3861288
AGAGCTGGTAATATTCCCAAAGAAACGGCTCAAATCGAATTAGAAAGCCTTCTGCAAAAA GGAATCCCAGTCGCTCTGGTATCACGATGCTTTAACGGTATTGCCGAGCCTGTTTATGCC TACCAGGGTGGGGGCGTACAGTTGCAAAAAGCAGGCGTTTTCTTTGTTAAAGAACTCAAC GCCCAAAAAGCCCGCTTGAAACTCCTCATCGCCCTCAATGCCGGACTAACAGGACAGGCT TTGAAAGACTATATGGAAGGCTAATACTCTTCGAAAATCTCTGCAAACCACGTCAGCGTC GCCTTACCGTATGTAGAGCACAAAATCAGGAAATCTTCTCGATTCCCTGATTTTTTCTAT TTACGTTTTCGTGTTGAGCTACGTTCTGTCAAACCATGAGGTAAGAGAACTTCACGTTCT TCCAACTCTTCCTTATGCATAATCTTGGTCAACATACGCATACTAATGGCACCAAGGTCA TAAAGAGGTTGGGCAATCGTTGTCAAGTTTGGACGGGTAAAGCGTGAGATTTGTGAATCA TCACTAGTAATAATTCGATAATCTTCTGGCACAGAAACACCTTATCAGCCAAACCGTTCA AGACTCCTGCTGCCAACTCATCACCTGTCACAACTGCTGCAGTTGCATTTGATGAAATCA AACGCTCTGCTAAGGCGTAACCATCATCATAGCTATATTTAGATTCAAATACCAAACCCT CACTATAAGCGATTCCTGCTTTTTTCAAGGTTTCCTTGTAGCCAACTAAACGAACCTTAC CATTGATGTCATCCACTAGCGGACCGCTAACGAAAGCAATACGCTCATTTTCTTTAGCAA GGTAACTCACTGCATCAATTGTTGCTTGCTTATAGTCAATATTGACACTTGGCAACTGGT GCTCAACATCGACAGTTCCTGCGAGAACAATCGGAGTACGTGAACGCGAAAATTCTGAGC GAATTTTATCTGTCAAGTGATAACCCATATAGATAATGCCATCTACCTGCTTTGAAAAGA GGGTATTGACAACAGAAACTTCTTTCTCGTTATCTTCATCGCTATTAGCTAGGACAATAT TGTACTTGTACATTTCTGCAATATCATCAATCCCCTTAGCCAAACTCGAAAAATAACCAT TGGTAATATTTGGAATCACGACACCGACAGTGGTTGTCTTTTTACTTGCAAGACCACGCG CAACTGCATTTGGACGATAATCCAAACGATCAATTACCTCTAGCACTTTTTTACGGGTAT TCTCTTTTACATTTTTATTGCCATTGACCACACGGCTGACCGTCGCCATGGGAAACACCT GCTTCACGAGCGACATCATAAATGGTTACTGTATCATCTGCATTCATTCCTTTTCCTGTC CTTTCTATCTCCACACATTCTTTTACAAGTAGAAGTGCTGAATTGAAAGCTCTATATCTT ACTTACAAAAATGAAGATGTGAAAATTTCGTTTTCATATTTCTACTTATTCCATTCTATC ACTAATTGTAAACACTTTCAAGTGTTTTTTGAAGATTGATTGAAAAAATTTCATAGAAAA CCTAGGTTTAG
ORF Predictions : ORF # Start End Direction Length _
1 357 572 R 72 aa
> 3861288-1 ORF translation from 357-572, direction R VPEDYRIITSDDSQISRFTRPNLTTIAQPLYDLGAISMRMLTKIMHKEELEEREVLLPHG LTERSSTRKRK*
Description : GLUCOSE-RESISTANCE AMYLASE REGULATOR. - BACILLUS SUBTILIS.
Assembly ID: 3861306 Assembly Length: 1682bp
> 3861306 Strep Assembly -- Assembly id#3861306 CTGACGTAAAAAAGATTTTCGGAAAAGTATCATCATCTATTTTAGACCATTTTCTTATAA TAACCATTTTATTTTTATTTGTCAAGGTCTTTGAATTCTTTCTTAAACAAGCCTTGTAAT CTCTACTTTTGAAGAATTTATTTTTCCTTACTGACAAGATTTGAGACGGTAGGAATCATT GAAAATAACCTAGCCAACATCAATCACAATCATTTCTCCTTTCTCAATTACACTAAATTA TAGTGTATTGAATCTATAACAGTGCACCTTGGCTGCTAAAATATTTCTATAAATTAATTT GACTTTCCTGATAGAGTTGTTCACATCTTATTTCAATTCACTATACTTTCCCTTATACTC AATGAAAATCAAAGCGCAAACTAGGAAGCTAGCCACAGGCTGCTCAAAGCACTGCTTTGA GGTTGTAGATAAGACTGACGAAGTCAGTTACATATATCTACGGCAAGGCGAAGCTGACGC GGTTTGAAGAGATTTTCGAAGAGTATAAAGTTTGTTTCTGTATCTTTCAGAAAAATAAGG TATACTGTATGTAAACGATTTCAAAGGAGTCCAGTTATGGCAAAAACATTTTTTATTCCA AATAAACAGAGCATTTTAGGAGAACAAGAGATTTTGAATGCCAAGTCGATCTTGGCTATG ATGTAGTCTATCTCCGTCAGCCTCTTAATCGTCTCGAGTATATTGAGTGTGCGATAGTGG GGCAATCACAATTTCTTTTTAAGGTCAGTTATGCTGATGGTCAAAAGGCTTACCGTGTCG ATCTTCCTGACCTACTAACAAAGACAGACTGGCAGATTATCAAGTCATTTTTAGATGTTT TGCTTGCTTATACAGGGACTGATATTGAAGGGCTAGATGGTTTTGATTTTGAAGCTTATT TCCAAGCAAGTATTCAAGCCTATCTAGCAGACCCTGTAGCTCGTTTTACGATTTGCCAAC GAATTTTTAATCCTATTTTCTTTAGTCGTGAGAACTTGAAAAGCTTTTTAGAGGCAGATG GCTTGGCTCAGTTTGAAGCGCGTGTGCGTGCGGTTCAAGAGACAGATGCCTACTTTGCGA GAGTTTCCTTCTATCAGGATGGAGAAGGAAAAGTGCATGGCGTTTACCATCTAGCTCAAG GAGTCAAGACAGTTTTACCGAGAGAACCGTTTGTTCCTGCAGCCTATATTGAGCGAATTG GTGGATAAGGAAGTCCAGTGGGAGATTGACTTGGTTCAAATCACAGGAGACGGCTCTAAA CCAGAAGACTATGAATCCATAGCTCGCTTGGACTATGCAAAATTCTTAGAGGTATTACCC CCATCTTTTTACCACCAACTAGACGCCAATCAAATAGAAATACAACCCATCCTAGGACAA GATTTTAAAACATTAGCACAAGAAAAGTAAAGCAGAAGCAGGTCAATCGACTTGCTTTTT TGACATAGAAAAAATCCTGCCAAGGATGACAGGATTGCTACTCAATGAAAATCAAAGAGC AAACTAGGAAGCTAGCCGCAGGCTGTACTTGAGTACGGTAAGGCGAAGCTGACGTGGTTT GAATTTGATTTTCGAAGAGTATGAATTTTAAAGAAAGGCCAAGATACGAAGATAATCTCC AATCAGTGCCACTTCAGCTTCCAAGAAGAAGAAGATTATAACTCCCGTTCCCCAAGGACA GA _
ORF Predictions:
ORF # Start End „ Direction Length
1 717 1208 F 164 aa
2 1201 1410 F 70 aa
> 3861306-1 ORF translation from 717-1208, direction F VGQSQFLFKVSYADGQKAYRVDLPDLLTKTDWQIIKSFLDVLLAYTGTDIEGLDGFDFEA YFQASIQAYLADPVARFTICQRIFNPIFFSRENLKSFLEADGLAQFEARVRAVQETDAYF ARVSFYQDGEGKVHGVYHLAQGVKTVLPREPFVPAAYIERIGG*
Description: unknown
> 3861306-2 ORF translation from 1201-1410, direction F VDKEVQWEIDLVQITGDGSKPEDYESIARLDYAKFLEVLPPSFYHQLDANQIEIQPILGQ DFKTLAQEK*
Description: unknown
Assembly ID: 3861334 Assembly Length: 3041bp
> 3861334 Strep Assembly -- Assembly id#3861334 ATCGAATTAAAAATGAGGTATTCAGGCTTGTGATTTTCTATGGAAGTTAATAGTGATTGC CTCTAATGCTTACAAGTGATATTAAAAATAGAGGACCTAGTGATGTCAATCATTTCAACT GATTTAACCCCTTTTCAAATAGATGATACATTGAAAGCAGCCTTGCGAGAAGATGTTCAT TCCGAAGATTACAGTACCAATGCCATTTTTGATCATCATGGCCAAGCCAAGGTGTCGCTT TTTGCCAAGGAAGCTGGTGTTTTAGCGGGGCTAACCGTTTTTCAAAGGGTTTTTACCCTA TTTGATGCCGAGGTGACCTTCCAGAATCCTCATCAATTTAAGGATGGGGATCGTTTGACT AGTGGCGATTTGGTTTTAGAAATCATAGGCTCGGTGAGAAGTCTCTTAACATGTGAACGC GTTGCCTTGAATTTTTTACAACATTTATCAGGGATCGCTTCGATGACAGCTGCTTATGTA GAAGCCTTAGGCGATGATTGCATTAAGGTATTTGATACTCGAAAAACTACTCCTAATTTA CGTCTTTTTGAGAAATATGCCGTGAGAGTTGGCGGTGGCTATAATCATCGCTTTAATTTA TCAGATGCTATCCTGCTAAAAGACAATCACATTGCGGCAGTAGGTAGTGTTCAAAGGGCA ATTGCTCAAGCGCGTGCCTATGCTCCTTTTGTGAAAATGGTCGAGGTGGAAGTGGAAAGC CTTGCTGCTGCCGAAGAAGCTGCGGCGGCGGGTGCTGATATTATCATGTTGGATAATATG TCATTGGAACAGATTGAACAGGCCATTACCCTAATTGCAGGACGTTCTCGGATTGAATGT TCTGGAAATATTGATATGACCACTATTAGCCGTTTTCGTGGTTTAGCGATTGATTACGTC TCCAGTGGTAGTTTAACCCATAGTGCTAAGAGTCTTGATTTTTCCATGAAGGGTTTAACC TACCTTGATGTCTAAGTTGTAAAATAAACTAACTTTTTAAAGGATGTCTTTCCTCTAQAA CGAGTTTTATGTCAGATAGTTTAAACGCCTCTTCAAATATAGTAAAATGAACCAAAAATA GTACACAATGTGGTATAATCTTCTTATGGCATATTCAATAGATTTTCGTAAAAAAGTTCT TTCTTATTGTGAGCGAACAGGTAGTATAACAGAAGCATCACACGTTTTCCAAATCTCACG TAATACCATTTATGGCTGGTTAAAGCTAAAAGAGAAAACAGGAGAGCTAAACCACCAAGT AAAAGGAACAAAACCAAGAAAAGTTGATAGAGATAGACTTAAAAACTATCTTACTGACAA TCCAGACGCTTATTTGACTGAAATAGCTTCTGAATTTGGCTGTCATCCAACTACCATCCA CTATGCGCTCAAAGCTATGGGCTACACTCGAAAAAAGGACCACACCTACTATGAACAAGA CCCAGAAAAAGTAGCCTTATTTCTTAAAAATTTTAATAGTTTAAAGCACCTAGCACCTGT TTAGATTGATGAAACAGGATTCGATACTTATTTTTATCGAGAATATGGTCGCTCATTAAA AGGTCAGTTAATAAGAGGTAAAGTATCTGGAAGAAGATATCAGAGGATTTCTTTGGTTGC AGGTCTAACAAATGGTGAGTTAATCGCTCCAATGACTTACGAAGAGACGATGACGAGCGA CTTTTTTGAAGCATGGTTTCAGAAGTTTCTCTTACCAACATTAACCACACCATCGGTTAT TATTATGGATAATGCAAGATTCCATAGAATGGGTAAGTTAGAACTTTTATGCGAGGAGTT TGGGCATAAACTTTTACCTCTTCCTCCCTACTCGCCTGAGTACAATCTTATTGAGAAAAC ATGGGCTCATATCAAAAAGCACCTCAAAAAGGTATTACCAAGTTGCAATACCTTTTATGA GGCTCTTTTGTCCTGCTCTTGTTTCAATTGACTATAGTTCACGGATACAGTTGGGAAAGA AGTTAAATGTAGTTGGATTTCCACTAAAGGTTGATGAGTAAGTTTTTGTATCTGAACCTG ATTGGCCGCAAGCAGCTAAAAGCAAAGCAGATGCAAAAGTCAGACCTGCACCAAGGACAC GCTTCTTTATGTTCATCTTCTTTCTCCTTAATAGTGGGAATTTGTAAAGTTAATTGAATT TCAAGAATGAAGGTTTTATAAACTTTGGTTATAAAAAACAAAGGATTTCTGTCTTTTATA CAGTCCTCCCCTTGTTTTTATACGATTTCAATTTTAAATTTTTCTGCAAAAAATATTTAT AGTAATTCCACACAGAAAGCATCCCATGGAACTAAGATTTGTTTTTCAAAGACTTCTTGA GCTAGGGTGTTTTCAATCAAGACAGATTTGACTTTTCCTTCTACTGTCAAGTCTTGCTCT TCATTGGACAAGTTAGCCACAACTAGGAAGCGACGGTCGCCATCCTTACGTATATAAGCA AAGACCTTATCAGCCGTATCAAGCAATTCAAAGTCAGCTCGAATTAGCCAACTATTCTCC TTGCGAATTTGGACCAGTTTCTGATAGGTATAGAAAATAGAATCTGGATTTGCCAGCGCT TCTTGGACGTTGATCATCTCGTAATTTGGATTAACTGCCAACCAAGGTTGACCTGTTGAG AAACCAGCGTTTTTGCTCTCGTCCCATTGCATAGGGGTACGGGCATTGTCACGTCCAATA ACACGGATACTGTCCATGATTTCTTGCATCGGAACACCTTTTTCAAGAGCCTCACGCGCA TAGTTGAGAGATTCAATATCTTCTACTTGATCCAGTGTTTCAAACGGATAGTTGGTCATC CCAATCTCCTCACCTTGGTAGATATAAGGAGTTCCTCTCATAAGATGAAGCAAGATTGCA AAGGCTTTGGCAGATTTTTCGCGGTATTCTTGGTCATTTCCCCAGATTGAGACAATACGA GGGAGGTCATGGTTGTTCCAGAAGAGGGAATTCCAGCCGTCCTCAACTCCTAACTCTGTC TGCCATTTGTTGAAGATTTCTTTTAACTTAGCGATATTCAG
ORF Predictions :
ORF # Start End Direction Length
1 76 975 F 300 aa
> 3861334-1 ORF translation from 76-975, direction F VILKIEDLVMSIISTDLTPFQIDDTLKAALREDVHSEDYSTNAIFDHHGQAKVSLFAKEA GVLAGLTVFQRVFTLFDAEVTFQNPHQFKDGDRLTSGDLVLEIIGSVRSLLTCERVALNF LQHLSGIASMTAAYVEALGDDCIKVFDTRKTTPNLRLFEKYAVRVGGGYNHRFNLSDAIL LKDNHIAAVGSVQRAIAQARAYAPFVKMVEVEVESLAAAEEAAAAGADIIMLDNMSLEQI EQAITLIAGRSRIECSGNIDMTTISRFRGLAIDYVSSGSLTHSAKSLDFSMKGLTYLDV*
Description : PROBABLE NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING] (EC 2.4.2.19) (QUINOLINATE PHOSPHORIBOSYLTRANSFERASE (DECARBOXYLATING) ) (QAPRTASE) (FRAGMENT) . - BACILLUS
SUBTILIS (BLAST)
Assembly ID: 3864148 Assembly Length: 4694bp
> 3864148 Strep Assembly -- Assembly id#3864148 TTAATTTAAATTCTTAAAATTTTTTCATAATAATCTCCCTATAAAAATAAAGTCGCCCAA TCAGGCGGCTTATTTTTTTGAAAAATGGGCTTGGTGCCTGAGAATAAATAGCTTAGTGAT AGAAGAAAATGGGGAAATATGGTATAATGAAACGATAGATTTTTGAATAGGAATAAGATC ATGTTTGGATTTTTTAAGAAAGATAAAGGCTGTGGAAGTAGAGGTTCCGACACAGGTTCC TGCTCATATCGGCATCATCATGGATGGCAATGGCCGTTGGGCTAAAAAACGTATGCAACC GCGAGTTTTTGGACATAAGGCGGGCATGGAAGCATTGCAAACCGTGACCAAGGCAGCCAA CAAACTGGGCGTCAAGGTTATTACGGTCTATGCTTTTTCTACGGAAAACTGGACCCGTCC AGATCAGGAAGTCAAGTTTATCATGAACTTGCCAGTAGAGTTTTATGATAATTATGTCCC GGAACTACATGCGAATAATGTTAAGATTCAAATGATTGGGGAGACAGACCGCCTGCCTAA GCAAACCTTCGAAGCTTTAACCAAGGCTGAGGAATTGACTAAGAACAACACAGGATTGAT TCTTAATTTTGCTCTTAACTATGGTGGACGTGCTGAGATTACACAGGCGCTTAAGTTGAT TTCCCAGGATGTTTTAGATGCCAAAATCAACCCAGGTGACATCACAGAGGAATTGATTGG TAACTATCTCTTTACCCAGCATTTGCCTAAGGACTTACGAGACCCAGACTTGATTATCCG TACTAGTGGAGAATTGCGTTTGAGCAATTTCCTTCCATGGCAGGGAGCCTATAGTGAGCT TTATTTTACGGACACCTTATGGCCTGATTTTGACGAAGCGGCCTTGCAGGAAGCTATTCT TGCCTATAATCGTCGCCATCGCCGATTTGGAGGAGTTTAGGAGGAAATATGACCCAGGAT TTACAGAAAAGAACCTTGTTATGCAGGGATTGCCCTGACTATTTTCCTACCAATTTTAAT GATTGGGGGCTCTTGCTTCAGATAGCAATCGGAATCATANCCATGCTAGCCATGCATGAA CTTTTGAAGATGAGAGGTCTAGAGACCATGACGATGGAGGCCTCTTGACCCTCTTTGCAC NTTNGTATTGACCATTCCCCTGGAATCGAATTACCTGACTTTTTTGCCAGTTGATGGGAA TGTGGTTGCCTATAGTGTTTTGATTTCAATCATGTTAGGAACGACCGTTTTTAGCAAGTC TTATACGATTGAGGATGCGGTTTTCCCTCTTGCTATGAGCTTCTACGTGGGCTTTGGATT TAATGCTTTACTAGATGCTCGTGTTGCAGGTTTGGACAAGGCTCTCTTAGCCTTGTGTAT CGTCTGGGCGACAGACAGTGGTGCCTATCTTGTTGGGATGAACTATGGGAAACGAAAGTT AGCACCAAGGGTATCGCCTAATAAAACCCTTGAGGGTGCCTTGGGTGGTATTTTAGGAGC AATTTTAGTAACCATTATCTTTATGATAGTTGACAGTACAGTTGCTCTTCCATATGGAAT TTACAAGATGTCAGTCTTTGCTATTTTCTTTAGCATTGCTGGACAATTTGGTGATTTACT AGAAAGTTCGATCAAACGTCATTTTGGTGTTAAGGATTCTGGGAAATTTATCCCTGGACA TGGTGGTGTTTTGGATCGTTTCGATAGTATGTTGCTTGTATTTCCAATCATGCACTTATT TGGACTCTTTTAATCAAAAGACGGAGGAAACGCTATGCTCGGAATTTTAACCTTTATTCT GGTTTTTGGGATTATTGTAGTGGTGCACGAGTTCGGGCACTTCTACTTTGCCAAGAAATC AGGGATTTTAGTACGTGAATTTGCCATCGGTATGGGACCTAAAATCTTTGCTCACATTGG CAAGGATGGAACGGCCTATACCATTCGAATCTTGCCTCTGGGTGGCTATGTCCGCATGGC CGGTTGGGGTGATGATACAACTGAAATCAAGACAGGAACGCCTGTTAGTTTGACACTTGC TGATGATGGTAAGGTTAAACGCATCAATCTCTCAGGTAAAAAATTGGATCA7ΛACAGCCCT CCCTATGCAGGTGACCCAGTTTGATTTTGAAGACAAGCTCTTTATCAAAGGATTGGTTCT GGAAGAAGAAAAAACATTTGCAGTGGATCACGATGCAACGGTTGTGGAAGCAGATGGTAC TGAGGTTCGGATTGCACCTTTAGATGTTCAATATCAAAATGCGACTTTATCTGGGGCAAA CTGATTACCAATTTTGCAGGTCCTATGAACAATTTTATCTTAGGTGTTGTTGTTTTTTGG GTTTTAATCTTTATGCAGGGTGGTGTCAGAGATGTTGATACCAATCAGTTCCATATCATG CCCCAAGGTGCCTTGGCCAAGGTAGGAGTACCAGAAACGGCACAAATTACCAAGATTGGC TCACATGAGGTTAGCAACTGGGAAAGCTTGATCCAAGCTGTGGAAACAGAAACCAAAGAT AAGACGGCACCGACTTTGGATGTGACTATTTCTGAAAAGGGGAGTGACAAACAAGTCACT GTTACACCCGAAGATAGTCAAGGTCGTTACCTTCTAGGTGTTCAACCGGGGGTTAAGTCA GATTTTCTATCCATGTTTGTAGGTGGTTTTACAACTGCTGCTGACTCAGCTCTCCGAATT CTCTCAGCTCTGAAAAATCTGATTTTCCAACCGGATTTGAACAAGTTGGGTGGACCTGTT GCTATCTTTAAGGCAAGTAGTGATGCTGCTAAAAATGGAATTGAGAATATTCTTGTACTT CTTGGCAATGATTTCCATCAATATTGGGATTTTTAATCTTATTCCGATTCCAGCCTTGGA TGGTGGTAAGATTGTGCTCAATATCCTAGAAGCCATCCGCCGCAAACCATTGAAACAAGA AATTGAAACCTATGTCACCTTGGCCGGAGTGGTCATCATGGTTGTCTTGATGATTGCTGT GACTTGGAATGACATTATGCGACTCTTTTTTAGATAATCGAGGAATATTATGAAACAAAG TAAAATGCCTATCCCAACGCTTCGCGAAATGCCAAGCGATGCTCAAGTTATCAGCCATGC TCTTATGTTGCGTGCTGGTTATGTTCGCCAAGTTTCAGCAGGTGTTTATTCTTATCTACC ACTTGCCAACCGTGTGATTGAAAAAGCTAAAAACATCATGCGCCAAGAATTCGAAAAGAT TGGTGCTGTTGAGATGTTGGCTCCAGCCCTTCTTAGTGCAGAATTGTGGCGTGAATCAGG TCGTTACGAAACCTATGGTGAAGACCTTTACAAACTGAAAAACCGTGAAAAATCAGACTT TATCTTAGGTCCAACTCACGAAGAAACCTTTACAGCTATTGTCCGTGATTCTGTTAAATC TTACAAGCAATTGCCACTCAACCTTTATCAAATTCAGCCCAAGTATCGTGATGAAAAACG CCCACGTAATGGACTTCTTCGTACACGTGAGTTTATCATGAAGGATGCTTATAGTTTCCA CGCTAACTATGATAGTTTGGATAGTGTTTATGATGAGTACAAAGCAGCCTATGAGCGTAT TTTCACTCGTAGTGGTTTAGACTTCAAGGCTATTATTGGTGACGGTGGAGCCATGGGTGG TAAGGATAGCCAAGAATTTATGGCCATTACATCTGCTCGTACAGACCTTGACCGCTGGGT TGTCTTGGACAAGTCAGTTGCCTCATTTGACGAAATTCCTGCAGAAGTGCAAGAAGAAAT CAAGGCAGAATTGCTCAAATGGATAGTCTCTGGTGAAGATACCATTGCTTACTCAAGTGA GTCTAGCTATGCAGCTAACTTAGAAATGGCAACAAACGAGTACAAACCAAGCAACCGTGT TGTCGCTGAAGAAGAAGTTACTCGTGTTGAAACGCCAGATGTTAAATCAATTGATGAAGT TGCAGCCTTCCTCAATGTTCCAGAAGAACAAACGATTAAAACCCTCTTCTACATTGCAGA TGGTGAGCTTGTTGCAGCCCTTCTAGTTGGAAATGACCAACTCAACGAAGTCAAGTTGAA AAATCACTTGGGAGCAAATTTCTTTGACGTTGCTAGCGAAGAAGAAGTGGCGAATGTTGT TCAAGCAGGATTTGGTTCACTTGGACCAGTTGGTTTGCCAGAGAATATTAAAATTATTGC AGATCGTAAGGTGCAAGATGTTCGCAATGCAGTTGTCGGTGCTAACGAAGATGGCTACCA CTTGACTGGTGTGAACCCAGGCCGTGATTTTACTGCAGAATATGTGGATATCCGTGAAGT TCGTGAGGGTGAAATTTCCCCAGATGGACAAGGTGTCCTTAACTTTGCGCGTGGTATTGA GATCGGTCATATTTTCAAACTCGGAACTCGCTATTCAGCAAGCATGGGAGCAGATGTCTT GGATGAAAATGGTCGTGCTGTGCCAATCATCATGGGATGTTACGGTATCGGTGTCAGCCG TCTTCTTTCAGCAGTGATGGAGCAACACGCTCGCCTCTTTGTTAACAAAACGCCAAAAGG TGAATACCGTTACGCTTGGGGAATCAATTTCCCTAAAGAATTGGCACCATTTGATGTGCA TTTGATTACTGTTAATGTCAAGGATGAAGAAGCGCAAGCCTTGACAGAAAAACTTGAAGC AAGCTTGATGGGAG
ORF Predictions:
ORF # Start End Direction Length
1 212 940 F 243 aa
2 1202 1753 F 184 aa
3 2750 3037 F 96 aa
> 3864148-1 ORF translation from 212-940, direction F VEVEVPTQVPAHIGIIMDGNGRWAKKRMQPRVFGHKAGME LQTVTKAANKLGVKVITVY AFSTENWTRPDQEVKFIMNLPVEFYDNYVPELHANNVKIQMIGETDRLPKQTFEALTKAE ELTKNNTGLILNFALNYGGRAEITQALKLISQDVLDAKINPGDITEELIGNYLFTQHLPK DLRDPDLIIRTSGELRLSNFLPWQGAYSELYFTDTLWPDFDEAALQEAILAYNRRHRRFG GV*
Description: unknown
> 3864148-2 ORF translation from 1202-1753, direction F WAYSVLISIMLGTTVFSKSYTIEDAVFPLAMSFYVGFGFNALLDARVAGLDKALLALCI VWATDSGAYLVGMNYGKRKLAPRVSPNKTLEGALGGILGAILVTIIFMIVDSTVALPYGI YKMSVFAIFFSIAGQFGDLLESSIKRHFGVKDSGKFIPGHGGVLDRFDSMLLVFPIMHLF GLF*
Description:
CDP-diglyceride synthetase (cdsA) homolog - Haemophilus influenzae (strain Rd K W20)
> 3864148-10 ORF translation from 2750-3037, direction F VDLLLSLRQWMLLKMELRIFLYFLAMISINIGIFNLIPIPALDGGKIVLNILEAIRRKP LKQEIETYVTLAGWIM LMIAVTWNDIMRLFFR*
Description: unknown Assembly ID: 3864172 _
Assembly Length: 1352bp
> 3864172 Strep Assembly _-- Assembly id#3864172 CTCGTAAGTTCGGAAGCTATCTACACAAGAAATTAACCGCTGCCTAAAGGAGAAGCCATG TCAACATATAACTGGGATGAGAAGCATATCCTTACCTTTCCTGAAGAAAAAGTAGCCCTT TCTACTAAGGATGTCCATGTTTACTATGGTAAAAATGAATCCATTAAGGGGATTGATATG CAATTTGAAAGAAATAAAATTACAGCTTTGATTGGTCCGTCGGGATCGGGGAAATCTACC TACTTACGCAGTCTCAATCGCATGAATGATACCATTGATATTGCTAAAGTAACTGGGCAG ATTCTCTATCGTGGAATTGATGTCAACCGTCCAGAAATCAACGTTTATGAAATGCGTAAA CACATTGGAATGGTTTTTCAACGCCCCAATCCATTTGCTAAATCGAATTTACCGTAATAT TACCTTTGCGCATGAACGTGCTGGAGTTAAGGATAAGCAAGTCCTAGATGAAATCGTAGA AACCTCCCTTAGTCAGGCTGCCCTTTGGGATCAGGTTAAAGACGATCTCCACAAGTCAGC CTTGACCTTATCAGGTGGTCAGCAACAACGTCTCTGTATCGCTCGTGCCATCTCTGTTAA GCCAGATATCCTCTTAATGGATGAGCCAGCCTCAGCCTTGGATCCGATTGCGACCATGCA ACTAGAAGAGACCATGTTTGAGCTCAAGAAAAACTTTACCATCATCATTGTAACGCATAA TATGCAGCAGGCTGCTCGTGCAAGTGACTATACAGGCTTCTTTTACTTGGGTGATTTGAT TGAGTATGACAAGACTGCAACTATTTTCCAAAATGCCAAGCTACAGTCCACCAATGACTA TGTATCTGGTCACTTTGGTTAGAAAGGAAACCGTATGACAGATGCGATTTTACAGGTATC AGACCTGTCCGTTTATTATAATAAAAAGAAGGCTTTGAATAGTGTTTCCCTATCTTTCCA ACCTAAGGAAATTACAGCCTTGATTGGTCCATCTGGATCAGGGAAGTCAACCCTCCTCAA GTCTCTCAACCGCATGGGAGATCTCAATCCAGAGGTGACCACAACTGGATCCGTGGTGTA CAATGGTCACAACATCTACAGTCCGCGTACAGATACGGTTGAATTACGTAAGGAAATCGG AATGGTTTTCCAACAACCTAATCCTTTCCCTATGACTATCTATGAGAATGTTGTCTACGG GCTTCGTATCAATGGAATTAAGGATAAGCAGGTTCTGGATGAAGCCGTAGAAAAAGCCTT GCAAGGTGCCTCTATCTGGGATGAGGTCAAGGATCGTCTATATGATTCAGCTATTGGATT GTCAGGTGGTCAACAGCAGCGTGTCTGCGTGG
ORF Predictions:
ORF # Start End Direction Length
1 311 862 F 184 aa
> 3864172-2 ORF translation from 311-862, direction F VELMSTVQKSTFMKCVNTLEWFFNAPIHLLNRIYRNITFAHERAGVKDKQVLDEIVETSL SQAALWDQVKDDLHKSALTLSGGQQQRLCIARAISVKPDILLMDEPASALDPIATMQLEE TMFELKKNFTIIIVTHNMQQAARASDYTGFFYLGDLIEYDKTATIFQNAKLQSTNDYVSG HFG*
Description: HYPOTHETICAL ABC TRANSPORTER (ORF75) . - BACILLUS SUBTILIS. (BLAST) Assembly ID: 3864180 _
Assembly Length: 2258bp
> 3864180 Strep Assembly -- Assembly id#3864180
AACTTCGACCGTGATAAACAAGCTGAGCTTTGACATACTTGTAGCCAACCTAAAAGCCGT
TCTTCAAGGCCTCAAACCAGCTGCAACTCATTCAGGAAGCCTGGATGAAAATGAAGTGGC
TGCCAATGTTGAAACCAGACCAGAACTCATCACAAGAACTGAAGAAATTCCATTTGAAGT
TATCAAGAAAGAAAATCCTAATCCCAGCTGGTCAGGAAATATTATCACAGCAGGAGTCAA
AGGTGAACGAACTCATTACATCTCTGTACTCACTGAAAATGGAAAAACAACAGAAACAGT
CCTTGATAGCCAGGTAACCAAAGAAGTTATAAACCAAGTGGTTGAAGTTGGCGCTCCTGT
AACTCACAAGGGTGATGAAAGTGGTCTTGCACCAACTACTGAGGTAAAACCTAGACTGGA
TATCCAAGAAGAAGAAATTCCATTTACCACAGTGACTCGTGAAAATCCACTCTTACTCAA
AGGAAAAACACAAGTCATTACTAAGGGTGTCAATGGACATCGTAGCAACTTCTACTCTGT
GAGCACTTCTGCCGATGGTAAGGAAGTGAAAACACTTGTAAATAGTGTCGTAGCACAGGA
AGCCGTTACTCAAATAGTCGAAGTCGGAACTATGGTAACACATGTAGGCGATGAAAACGG
ACAAGCCGCTATTGCTGAAGAAAAACCAAAACTAGAAATCCTAAGCCAACCAGCTCCTGC
TGAGGAAAGCAAAGCTCTTCCTCAAGATCCAGCTCCTGTGGTAATAGAGAAAAAACTTCC
TGAAACAGGAACTCACGATTCTGCAGGGACTAGTAGTCGCAGGACTCATGGCCACACTAG
CAGCCTATGGACTCACTAAAAGAAAAGAAGACTAAGTCTTTTCGATAAAAAATAAACAGC
GAGATTGAAGCTCGCTGTTTATTTTTTAATTAATCACCTAGTCCAAGACGTTCAAAGATA
TCATCCACTCGTTTGGTGTAATAAACTGGGTTGAAGATTTCATCGATTTCTTCTTGTGTG
AGACGTGATGTTACTTCTGAATCTGCCTCAAGAAGTGGTTTAAAGTCTACTTGGTTGTCC
CAAGAGTAGGCTGTTTTTGGTTGCACCAAGTCATAGGCTTGCTCACGGGTCATGCCTTTT
TCAATCAATGTCAACATAGCCCGTTGGCTAAAGATAAGACCAAAAGTCGAGTTCATGTTT
CGGATCATATTTTCTGGGAAGACTGTCAAGTTCTTGACGATATTTCCAAAACGGTTGAGC
ATGTAGTCAATCAAAATGGTCGTATCTGGTGTGATGATACGCTCAGCTGATGAGTGAGAA
ATATCGCGTTCGTGCCAGAGAGCGACGTTTTCATAAGCCGTAATCATGTGACCACGAATG
ACACGCGCCAGACCAGTCATATTTTCAGAACCGATTGGGTTGCGTTTGTGAGGCATTGCT
GAAGACCCTTTTTGCCCTTTAGCAAAGAACTCTTCTACTTCGCGTTGCTCAGATTTTTGT
AGACCACGAATCTCAGTCGCCATACGTTCGATTGAAGTCGCAATGCTGGCAAGAACCGCA
AAGTACTCAGCGTGAAGGTCACGAGGAAGGACTTGTGTTAAAGATTCCTTGGGCACGGAT
GCCAAGATTTATCGCAGACATACTCCTCTACAAATGGTGGGATATTGGCAAAGTTCCCAA
CCGCACCAGAAATCTTACCAGCTTCTACACCAGCAGCCGCATGCTCGAAGCGCTCGATAT
TGCGTTTCATTTCGCTGTACCAAGTTGCTAATTTAAGACCAAAGGTTGTCGGCTCAGCGT
GCACACCATGAGTACGCCCCATCATGATGGTGAACTTGTGCTCCTTGGCCTTGTCAGCGA
TGATATTAGTGAAGTTTTCAAGGTCACGACGGATGATGTCGTTGGCCTGCTTGTAGAGGT
AACCATAAGCAGTATCCACCACGTCGGTAGAAGTTAACCCATAGTGAACCCACTTGCGCT
CTTCACCAAGAGTCTCAGAAACCGCACGCGTGAAAGCCACCACATCGTGGCGCGTCTCCT
GCTCAATTTCCAAAATACGGTCGATGTCAAAGTCCGCCTTCTTGCGAATCAAAGCCACAT
CTTCCTTAGGGATTTCCCCCAACTCAGCCCATGCCTCGTCAGAGAGGATTTCCACCTCAA
GCCAAGCACGGTATTTATTTTCTTCACTCCAAATATTCGCCATCTCAGGGCGAGAGTAAC
GGTTGATCATGTGTTAATTTTTCCTTTCTTCTTAAGAT ORF Predictions:
ORF # Start End Direction Length
1 930 1-616 R 229 aa
> 3864180-2 ORF translation from 930-1616, direction R VPKESLTQVLPRDLHAEYFAVLASIATSIERMATEIRGLQKSEQREVEEFFAKGQKGSSA MPHKRNPIGSENMTGLARVIRGHMITAYENVALWHERDISHSSAERIITPDTTILIDYML NRFGNIVKNLTVFPENMIRNMNSTFGLIFSQRAMLTLIEKGMTREQAYDLVQPKTAYSWD NQVDFKPLLEADSEVTSRLTQEEIDEIFNPVYYTKRVDDIFERLGLGD*
Description:
ADENYLOSUCCINATE LYASE (EC 4.3.2.2) (ADENYLOSUCCINASE) (ASL) BACILLUS SUBTIL IS.
Assembly ID: 3864184 Assembly Length: 4392bp
> 3864184 Strep Assembly -- Assembly id#3864184 CCCTTTTGCCTCTCCCTTTGGTGCAGATTCTTTTGGGAATTGTGATTGGTCTCTTTTTAC CCAATACTGACTTTCATCTTAATACGGAGTTGTTTTTGGCCTGGTTATCGGACCCTTGCT TTTCCGAGAGGCTGAAGAAGCAGATGTTACGGCTATTTTAAAACACTGGCGAATCATTGT TTATCTCATATTTCCAGTGATTTTTATCTCGACCCTGAGTTTGGGTGGCTTGGCCCATCT TCTTTGGTTCAGCCTTCCCTTGGCAGCTTGCTTGGCTGTTGGGGCAGCCCTTGGTCCTAC GGACTTGGTGGCCTTTGCCTCTCTTTCGGAGCGTTTTAGCTTTCCTAAGCGCGTGTCCAA TATTCTTAAGGGCGAAGGACTCTTGAATGATGCTTCTGGTTTGGTGGCTTTTCAGGTAGC TTTGACAGCTTGGACAACTGGAGCTTTTTCTCTGGGGCAAGCTAGCAGTTCGCTCATCTT TTCAATCCTAGGCGGTTTTTTAATTGGATTTTTAACAGCCATGACCAACCGCTTCCTCCA TACCTTCTTGCTAAGTGTGCGCGCAACGGATATTGCCAGTGAACTTTTATTAGAATTCGA GTTTGCCTCTAGTGACCTTCTTTCTGGCAGAAGAAGTCCATGTTTCAGGGATTATTGCCG TCGTAGTTGATCGAATTTTAAAGGCAAGTCGCTTCAAGAAAATCACGCTCCTCGAAGCCC AAGTGGATACGGTGACCGAGACGGTCTGGCATACAGTGACCTTTATGCTCAACGGTTCTG TCTTTGTGATTTTAGGGATGGAGTTGGAAATGATAGCAGAACCTATCTTGACCAATCCAA TCTATAATCCTCTACTTTTATTGCTATCTCTCATCGCCCTTACCTTTGTCCTCTTTGTCA TTCGTTTTATTATGATCTATGGCTATTATGCCTATAGAACCCGACGCCTAAAGAAAAAGC TAAATAAGTATATGAAGGACATGTTTCTCTTGACCTTTTCAGGTGTTAAGGGAACGGTGT CGATTGCTACGATTCTCTTGATACCAAGTAATCTAGAACAGGAGTATCCTCTCTTGCTTT TCCTTGTTGCAGGTGTGACGCTTGTCAGCTTTTTAACAGGTCTCTTGGTCTTGCCTCATC TTTCTGATGAAGAGGAAGAAAGCAAGGATTATCTCATGCATATCGCCATTTTGAATGAAG TAACGCTAGAGTTGGAAAAAGAGTTGGAAGACACCAGAAATAAACTTCCCCTCTATGCGG CTATTGACAATTCGATCATGGACGTATTGAAAATCTCATTTTAAGCCAAGAAAACCAGGA TGATCAAGAAGACTGGGCTGCTTTGAAAATCGAATTCTTAGTATTGAAAGTGATGGTTTG GAACAGGCCTATGAAGAGGGGAACATTAGCAATCGTGCTTACCGAGTTTACCAACGTTAT CTGAAAAATATAGAACAAGGAATCAATCGTAAACTTGCCTCAAGACTGACCTATTATTTT CTTGTTTCCTTGAGGATTTTACGTTTTCTTCTTCATGAAGTTTTTACTCTTGGAAAGACC TTCCGTAGCTGGAAGGACAAGGAGCAAAGCCGTCTCCGTGCTCTTGATTATGACCAAATT GCAGAGCTCTATCTTGCCAATACAGAGATGATTATTGAAAGTTTGGAAAACCTGAAGGGA GTCTACAGACGCTCTTTGATTAGTTTTATGCAGGAGTCTCGTCTTCGAGAAACAGCTATT ATCAGCAGTGGTGCCTTTGTCGAACGGGTTATCAATCGTGTCAAACCCAACAATATCGAT GAAATGCTGAGAGGCTATTATCTGGAGCGCAAGTTGATTTTCGAATACGAAGAAAAACGA TTGATTACGACTAAGTATGCCAAGAAATTACGACAAAATGTAAATAACTTAGAGAACTAT TCCTTGAAGGAAGCTGCCAATACCCTGCCGTATGATATGGTGGAATTGGTAAGAAGAAAT TAGTTAATACTCTTCGAAAATCTCTTCAAACCACGTCAGCGTCGCCTTGGATTATATATG TGACTGACTTCGTCAGTTTCATCTACAACCTCAAAGCAGGGCTTTGAGCAACCTGCGGCT AGCTTCCTAGTTTGCTCTTTGATTTTCATTGAGTATAAGATTGTAAGTGAAGGAGTGTGA CATGAAAAAATGGGGAAAGAGCCTGAACTAGTCCTGTCTACTTTTACCCAATCACACTTC CATTTGGTACAGCTGGATCAACTGTGAGAAGGGATCGAATTTGCCATCATGTTCAGCTGA GAGAATCATACCCTGGCTGACATATTTTTTCATCATTTTACGTGGTTTGAGGTTAGCAAC GATTTGAACTTTCTTGCCGACCAATTCTTGTTCATTTGGATAGTATTTTGCAATTCCTGA AAGAATCTGACGATCTTCTCCATCACCAGCATCCAAGCGGAATTGAAGCAACTTATCTGA ACCTTCTACTTTAGACACTTCTTTGACTTCTGCGACACGGATTTCAACCTTGTCAAAGTC TTCAAACTTGATTTCATCCTTGTTTAGTTTGAGCTCAACTTCGTCCGGATTCCATTCTTT TTCGACTGCTGGTTTATTGCCTTCCATTTGTTCCTTGATATAGGCGATTTCTTCTTCCAT ATTTAGACGTGGAAAGATAGGTGTTCCTTTGGCAACTACAGTCACATCTGCTGGGAAGTC AGCCAAACTCAAGTTTTCAAGACTAGAAACTTCTTCCAAACCAAGTTGAGTCAAAACTGC ACGACTAGTTTCCATCATAAATGGTTCAATCAAGTGAGCAACTACACGAATGCTGGCTGC CAAGTGGCTCATGACACTTGCCAATTGGTCACGAAGAGCTTCATCCTTGTCCAAGACCCA TGGTGCAGTCTCATCGATGTATTTATTGGTACGAGAGATCAGAGTCCAGACTGCTTCAAG CGCACGTGGATAGTCAACTGCTTCCATGTGTGTATGGAAGTCTGCGATTGATTTTTCTGC AACCTCAGCAAGAACATGATCAAATTCAGTCACACCTTCTACATAGGCAGGGATTTGTCC ATCAAAGTACTTATTAATCATGGAAACCGTACGGTTAAGGAGGTTCCCAAGGTCATTAGC CAATTCATAGTTGATACGACCGACATAGTCTTCAGGAGTAAAGGTTCCGTCTGAACCAAC TGGAAGGTTACGCATGAGGTAGTAACGAAGTGGATCTAGTCCATAACGCTCTACCAACAT TTCAGGGTAAACGACATTCCCTTTTGACTTAGACATTTTTCCGTCTTTCATGACAAACCA ACCATGGGCAATCAAACGATCAGGTAATTTAACATCCAACATCATAAGAAGGATTGGCCA GTAGATAGAGTGGAAGCGAAGGATGTCTTTTCCTACCATATGGAAGACTGTTCCATTCCA GAACTTGTCAAAGTTACCATGTTCGTCTTGAGCGTAGCCAAAAGCTGTCGCATAGTTAAG AAGGGCATCAATCCAAACGTAGACAACGTGTTTTGGATTTGATGGGACAGGCACTCCCCA TGTAAAGGTTGTACGAGATACCGCCAAATCTTCCAAACCTGGCTCGATGAAGTTGCGTAG CATTTCATTAAGACGACCATCTGGCGTGATAAATTCAGGATGAGCTTTGAAAAATTCGAC CAAACGGTCTTGGTATTTGCTAAGGCGAAGGAAGTATGATTCTTCAGAAACCCATTCAAC CTCATGACCTGATGGAGCAATACCACCAGTCACATTTCCAGCTTCATCACGGAAAACTTC TGCCAGCTGGCTTTCTGTAAAGAATTCTTCGTCTGATACTGAATACCAACCAGAGTATTC ACCCAAGTAGATATCATCTTGAGCAAGTAAGCGTTCAAAGACCTGTGCGACAACTTTTTC ATGGTAGTCATCGGTTGTACGGATAAATTTATCGTATGAGATATCTAGTAATTGCCAGAG TTCTTTAACTCCAACCGCCATTCCATCAACATAGGCTTGAGGTGTAATACCAGATTCGAA TTCCGCTTTCTGCTGGATTTTCTGACCATGTTCATCAAGACCTGTCAGATAAAATACATC GTAGCCCATCAGGCGTTTGTAACGTGCTAGGACATCACATGCGATAGTTGTGTAGGCAGA ACCGATATGAAGTTTCCCAGATGGATAGTAAATCGGCGTTGTAATATAAAAATTTTTTTC AGACATAATTTTTCCTTTCCAGGCAAATGAAACCTGTTTTTCTAACACTTCATTATATCA CATTTTTAATGAATTTCGATAGGGAAATCCATACCAAAACAAGATAGACGAGTGTCCATC TTGTTGATCTCATTCATAACGAAGGGCTTCAATTGGATCAAGTTTCGATGCCTTGTTGGC TGGCAAGACTCC
ORF Predictions:
ORF # Start End Direction Length
1 197 670 F 158 aa
2 612 1304 F 231 aa
> 3864184-1 ORF translation from 197-670, direction F VIFISTLSLGGLAHLLWFSLPLAACLAVGAALGPTDLVAFASLSERFSFPKRVSNILKGE GLLNDASGLVAFQVALTAWTTGAFSLGQASSSLIFSILGGFLIGFLTAMTNRFLHTFLLS VRATDIASELLLEFEFASSDLLSGRRSPCFRDYCRRS*
Description: unknown
> 3864184-2 ORF translation from 612-1304, direction F VTFFLAEEVHVSGIIAVWDRILKASRFKKITLLEAQVDTVTETVWHTVTFMLNGSVFVI LGMELEMIAEPILTNPIYNPLLLLLSLIALTFVLFVIRFIMIYGYYAYRTRRLKKKLNKY MKDMFLLTFSGVKGTVSIATILLIPSNLEQEYPLLLFLVAGVTLVSFLTGLLVLPHLSDE EEESKDYLMHIAILNEVTLELEKELEDTRNKLPLYAAIDNSIMDVLKISF*
Description: unknown
Assembly ID: 3864194 Assembly Length: 1941bp
> 3864194 Strep Assembly -- Assembly id#3864194
AATTAGTATTCTCAACCTTTTTATCTTGATAGTTCAAGATGGCATTCGTTGAATTGGTAA CATAGTAACTATCCACTCCCTTCAGTTTAGCTGCCTCTTGAACCCAGGATTCTTGCGGTT TTGGCGGTTCAACAGGAATTCTTTTTCTTTTCCAGAAACCGTAAAAGCTGATTGTTTCTG AGTAAAAGACCCATCTTTACTTTTTTTAGGAGAGAAAAAGACGCTAATATTTTTCTGAGA TTTAGTCATATCTTTATTGACTTGACGAGATAGGGAATCACCCAAAGCCATAATCACAAC AACTGATGAAACACCGATAATAATCCCAATCATAGTAAGCAAAGAACGCATCTTGTGAGC CATGATAGATGAAAAGGCAAATTTCAGATTCTGCATCTTAGTTTTCCTCCTTTCCTAACT GAGCACTGTCAGACGAAATGACCCCATCCCGAATGACAATCTGACGTTTGGCATAGGCAG CAATCTCAGGCTTCATGCGTTACCATGATAATGGTTTTTCCTTCTTTATTCAAATCA&CC AATAATTGCATAATTTGGTTACCTGTTTTGGTATCCAAGGCTCCTGTCGGTTCATCCGCT AGGATAATAGAAGGATTGTTTACCAAGGCACGCGCAATGGCTACACGTTGCTTTTGACCA CCAGATAATTCTGAAGGTAAATGGTGACTACGTTCTATCAATTCAACCTTGTCTAAATAT TCCTCAGCCAACTTGCGACGTTTTGAAGACGAAACTCCTGCGTAAATCAAGGGCAATTCT ACATTTTGCAGAGCATTGAGCTTCGATAGAAGAAAGAACTGCTGAAAGACAAAACCGATT TGTTGGTTACGGACCTTAGCTAGTTGTTTTTCACCAAGCCCAGCCACTTCTTGACCTTCA AGATAATATTCTCCACTGGTTGGTGTATCCAACATGCCAATCGTATTCATCAGAGTGGAC TTACCAGACCCAGATGGTCCCATGATGGCTACAAATTCACCCTCATTCACTTCTAGATTG ATATTTTTGAGAACCTGCAGTTCTTGGTCACCATTACGGTAACTTCTGAAGATATTTTTT AGACTAATTAGTTGCTTCATCAGCCTTCACCTCTTTTCCTTCTTCCAAGGAAGATGTTGG ATTACTGATGACCTTAGCACCGTTCGTTAAACCAGAAGTGATTTCTTGATTTTCTGCGTC AGCATTTCCCAATGAAACCTCAACTTTTTTAGCCTTTTGTTGTTCATCCACAATCCAGAC ATAATTTTTACTATCATCCATTACTAGACTGCTAACAGGAACAAGAATAGCCTTAGTTTT GCTTTTAACCTCAATGTTGACAGAAAAACCTTGTTTCAAATCACCAACCTCGCCTGTCAC ATCAATAGTATAAGGGTATTTAGAACCTGTATTATTCCCGGCTGCTGGACTAGCTGCTTC ACCATTGTTTTTAGGATAGTCAGAAATATAGGCTTAATTTCCCAGTCCATTTTTTATCAG GATACACTTTAGAAGTAAAGCTTACTTCTTGACCTACAGAAAGGTTGGCTAGATTGTACT CAGACAATTCTCCCTTGACTTGTAAATTTTCATTGCTGACAATATGAACCATAACTTGAC TCGCCCCTGTTGGAGATTTAGAAACATTGCTATTGACTTCGACTACAGTTCCCTCTAGGG TACTGAGAACAGTTGTTGCATCCAATTGACTTTGAGCCTTGCTTAATTGCGCTGCAGCAT CTGCACGCGCATCACGGGCATCACCCAATTGAGCATCAATAGAAGCAACAGAATTTCCAG CCACTGGAGTTGGGCTTTGCACCGTTGCATCTTCTCCTCCTACTGGCGCTGGTAACTGTG GAGCCTGAGCTGAAGCGGCTTCATTTCGTGCTTGATTGAGTTCATTGATATGACGATCTG CCTTAGCTACTGCTCGACTAG
ORF Predictions:
ORF # Start End Direction Length
1 1084 1380 R 99 aa
> 3864194-3 ORF translation from 1084-1380, direction R VTGEVGDLKQGFSVNIEVKSKTKAILVPVSSLVMDDSKNYVWIVDEQQKAKKVEVSLGNA DAENQEITSGLTNGAKVISNPTSSLEEGKEVKADEATN*
Description: unknown
Assembly ID: 3864338 Assembly Length: 1335bp
> 3864338 Strep Assembly -- Assembly id#3864338 ATCGAATTCCCTATTTTAACACTTTCTTTTCTAAAACAGTCTATATTTTATTTCAAACTG TATTATATTTTTGAAAAAATAAAGTCCTTTTTTCTTTTTTTCAGAAAAAAGGGTATA A AAAGAAAATAAGCAGTAACACTCAATGGAAATCGAAAAAGCAAACTAGGAAGCTAGCCGC AGATTGCTCAAAACACTGTTTTGAGGTTGCAGATAGAGCTGACGTGGTTTGAAGAGATTT TCGAAGAGTATAAAAAGGTGCTAGGCATGTTGATTTTTCCTTTGTTAAATGATTTGTCAA GAAAAATCATCCATATTGGACATGGATGCCTTTTTTGCTGCAGTGGAAATCAGGGATAAT CCTAAACTCAGAGGAAAACCTGTCATTATTGGAAGCGACCCTCGGCAAACAGGTGGACGG GGAGTCGTTTCTACCTGTAGTTATGAGGCAAGAGCTTTTGGTGTCCATTCTGCCATGAGT TCCAAGGAAGCTTATGAACGTTGTCCCCAGGCTGTCTTTATCTCAGGGAATTCGATGAGA AATACAAGTCTGTGGGACTCCAGATTCGAGCTATTTTTAAGCGCTATACAGATTTGATTG AACCCATGAGCATTGACGAAGCCTATTTGGATGTGACAGAAAATAAACTCGGTATCAAGT CAGCGGTCAAAATTGCTCGCCTCATTCAAAAAGATATCTGGCAAGAACTCCATCTAACTG CTTCCGCAGGCGTTTCTTACAACAAATTCTTAGCTAAAATGGCGAGTGATTATCAAAAAC CACATGGTTTGACAGTGATTCTACCTGAACAGGCTGAGGATTTTCTCAAACAAATGGATA TTTCCAAATTTCATGGAGTAGGAAAAAAGACAGTAGAACGTCTTCATCAAATGGGCGTTT TTACTGGTGCTGATTTACTTGAAGTTCCTGAGGTAACCCTAATAGACCGTTTTGGTAGAC TAGGCTATGATCTGTATCGAAAGGCTCGTGGCATTCACAACTCTCCAGTCAAATCCAATC ACATCCGTAAATCAATCGGCAAGGAGAAAACCTACGGGAAGATTCTCCGTGCTGAGGAAG ATATCAAAAAAGAGAGCTGACTCTTCTATCAGAAAAAGTCGCTCTCAATCTACATCAACA AGAAAAAGCTGGAAAAATTGTCATTTTGAAAATCCGCTACGAGGACTTTTCAACTCTTAC CAAACGAAAAAGTATTGCTCAAAAAACACAAGATGCTAGTCAGATAAGCCAAATAGCCCT GCAACTCTATGAAGAATTAAGTGAGAAAGAAAGAGGTGTCCGCCTATTGGGGATTACCAT GACTGGATTTTAAAG
ORF Predictions:
ORF # Start End Direction Length
1 552 1100 F 183 aa
> 3864338-2 ORF translation from 552-1100, direction F VGLQIRAIFKRYTDLIEPMSIDEAYLDVTENKLGIKSAVKIARLIQKDIWQELHLTASAG VSYNKFLAKMASDYQKPHGLTVILPEQAEDFLKQMDISKFHGVGKKTVERLHQMGVFTGA DLLEVPEVTLIDRFGRLGYDLYRKARGIHNSPVKSNHIRKSIGKEKTYGKI RAEEDIKK ES*
Description:
ECODINJ NCBI - Escherichia coli (sub_strain W3110, strain K-12) DinP, DNA damage inducible protein
Assembly ID: 3864360 Assembly Length: 1796bp
> 3864360 Strep Assembly -- Assembly id#3864360 TCCAAGCTAGCTATTTCGTGGAAGGGGCTTCGGTTGGCAGAACCTGGTGAATTTACCCAA ACGTGCTTTTTTAAACGGTCGCGTAGACTTGACACAGGCAGAGGCTGTGATGGATATCAT CCGTGCCAAGACTGACAAGGCCATGAACATTGCGGTCAAACAATTAGACGGCTCCCTTTC TGACCTCATTAACAATACCCGTCAAGAAATCCTCAATACACTTGCCCAAGTTGAGGTCAA TATCGACTATCCTGAATATGATGATGTTGAGGAAGCTACTACTGCCGTTGTCCGTGAGAA GACTATGGAGTTTGAGCAATTGCTAACCAAGCTCCTTAGGACAGCACGTCGTGGTAAAAT CCTTCGTGAAGGAATTTCAACGGCTATCATTGGACGTCCCAACGTTGGGAAATCAAGCCT TCTCAACAACCTCTTGCGTGAGGACAAGGCTATCGTAACCGATATCGCTGGGACAACACG AGATGTCATCGAAGAGTACGTCAACATCAATGGTGTTCCTCTAAAATTGATTGACACAGC TGGTATTCGTGAAACGGATGATATCGTTGAACAAATCGGTGTTGAGCGTTCGAAAAAAGC CCTCAAGGAAGCCGACTTGGTTCTACTAGTGCTAAATGCCAGTGAACCACTGACTGCGCA AGACAGACAACTTCTTGAAATTAGCCAAGATACCAATCGCATTATTCTACTTAATAAAAC CGACCTGCCAGAAACGATTGAAACTTCGAAACTACCTGAAGACGTTATCCGTATTTCAGT CCTTAAAAACCAAAACATCGACAAGATTGAAGAGCGAATCAACAACCTCTTCTTTGAAAA TGCTGGCTTGGTCGAGCAAGATGCTACTTACTTGTCAAACGCCCGTCACATTTCCCTGAT TGAAAAAGCAGTTGAAAGCCTACAAGCCGTTAATCAAGGTCTTGAGCTGGGGATGCCAGT TGATTTGCTTCAAGTTGACTTGACTCGTACTTGGGAAATCCTCGGAGAAATCACTGGGGA TGCTGCTCCAGATGAACTCATCACCCAACTCTTTAGCCAATTCTGTTTAGGAAAATAAGA AAAATCCATGATCCTTCATTCGGTCATGGATTTTATTGTCTTTATTAGTAATCTGGTCTT AAGACCCCTGTTACAGTTGCCTTAGTTGCTTCGTAGTCGCCATCTACGACAACCTTGATA ATGCGTTTGACATCTTCTTCTGGTGCTGGAACAAGAGGTAGACGAGTGGGTCCAGCTTCA AATCCCATATAGTTAAGAATTGCCTTAACTGGAGCAGGACTTGGATAAGAGAAGAGAGCA TTAACCTTAGGAATGAATTTACGCTGAATTGCTGCGGCTTTCTTCATATCGCTTTCTGCA ATGGCAGTAAACATCTCGTGCATTTCATCCCCATTTGTATGAGAGGCAACAGAAATAACC CCATCCGCCCCAAGGTTCATGGCATGGAAAGCATCTCCATCCTCACCTGTATAAATCAAG AACTCTTCAGGCTTGTGCTCAATCAAGTAAGCCATATTAGCCAAGCTAGTACATTCTTTG ACACCGATAATATTTGGATGGTCAGCCAAGCGAAGCATGGTTTCTGGAGTCAATTCGACA ACTACACGCCCTGGAATGTTATAGATAATAATTGGTAGGTCAGAAGCATCTGCAATAGCC TTAAAGTGCTGATACATCCCTTCTTGAGAAGGTTTGTTGTAGTAAGGAACAATAGCAAGC CCAGCTGCGAAACCACCAAATTCCGCTACTTCTTTGACAAACTCAATAGAGTCACG
ORF Predictions:
ORF # Start End Direction Length
1 47 1078 F 344 aa
> 3864360-1 ORF translation from 47-1078, direction F
VNLPKRAFLNGRVDLTQAEAVMDIIRAKTDKAMNIAVKQLDGSLSDLINNTRQEILNTLA
QVEVNIDYPEYDDVEEATTAWREKTMEFEQLLTKLLRTARRGKILREGISTAIIGRPNV
GKSSLLNNLLREDKAIVTDIAGTTRDVIEEYVNINGVPLKLIDTAGIRETDDIVEQIGVE
RSKKALKEADLVLLVLNASEPLTAQDRQLLEISQDTNRIILLNKTDLPETIETSKLPEDV
IRISVLKNQNIDKIEERINNLFFENAGLVEQDATYLSNARHISLIEKAVESLQAVNQGLE
LGMPVDLLQVDLTRTWEILGEITGDAAPDELITQLFSQFCLGK* Description:
THIOPHENE AND FURAN OXIDATION PROTEIN THDF . - ESCHERICHIA COLI
Assembly ID: 3864388 Assembly Length: 2337bp
> 3864388 Strep Assembly -- Assembly id#3864388 CTTCGTACAGGTGGTTCCTATGCAAGGGTGGAAGCCAATCGTCAGAACAACAAGCATCTT CATCAAGCCAGAACTGGAGCAATTACAAAAAGAAATTGCTGAAGAAGAAGCAAGCTTGGG TTCAGAAGAAGTGGCTTTGAAGACCTTGCAAGATGAGATGGCCAGATTGACCGAGTCATT AGAAGCTATTAAATCTCAAGGAGAGCAGGCACGTATTCAGGAGCAAGGCTTGTCCCTCGC TTATCAGCAAACTAGTCAGCAAGTTGAAGAACTGGAAACTCTTTGGAAACTCCAAGAAGA GGAAATAGATCGTCTTTCCGAGGGAGATTGGCAAGCGGATAAGGAAAAATGCCAAGAGCG TCTTGCTGCAATCGCCAGTGACAAGCAAAATCTGGAAGCTGAGATTGAAGAGATTAAGTC TAATAAAAATGCCATCCAAGAACGCTATCAAAACTTGCAGGAAGAGCTAGCGCAAGCTCG TTTGCTTAAGACAGAACTGCAAGGGCAAAAACGTTATGAAATTGCTGATATTGAACGCTT AGGCAAGGAATTGGACAATCTTGATTTTGAACAAGAGGAAATCCAGCGCCTTCTTCAAGA AAAGGTTGACAATCTTGAGAAGGTTGATACAGAATTGCTCAGTCAACAGGCGGAAGAATC CAAAACTCAGAAAACGAACCTCCAACAAGGTTTGATTCGCAAACAGTTTGAGTTGGATGA TATAGAAGGTCAGCTGGATGATATTGCTAGTCATTTGGATCAGGCTCGCCAGCAGAATGA GGAGTGGATTCGCAAGCAAACACGTGCTGAAGCTAAGAAAGAAAAGGTCAGCGAGCGCTT TGCCGCCATCTACAAAGTCAATTAACAGACCAGTACCAGATTAGCCATACTGAAGCTCTA GAAAAAGCGCATGAATTGGAAAACCTCAATCTGGCAGAGCAAGAAGTTAAGGATTTAGAG AAGGCTATTCGCTCACTGGGTCCTGTCAATATAGAAGCTATTGACCGGTACGAAGAAGTT CACAACCGTCTGGACTTTCTAAATAGTCAGCGAGATGATATTTTGTCAGCGAAAAATCTG CTCCTTGAAACCATTACAAAGATGAATGATGAGGTTAAGGAACGCTTTAAATCAACCTTT GAAGCTATTCGTGAGTCCTTTAAAGTGACCTTCAAGCAGATGTTTGGCGGAGGTCAGGCA GACTTGATATTGACTGAGGGCGACCTTTTACAGCTGGTGTGGAGATTTCTGTTCAACCTC CAGGTAAGAAAATCCAGTCGCTTAACCTCATGAGTGGTGGTGAAAAAGCCCTATCGGCTC TTGCCTTGCTTTTCTCCATTATTCGTGTCAAGACCATTCCTTTTGTCATCTTGGATGAGG TGGAAGCTGCGTTGGATGAAGCCAATGTTAAACGTTTTGGGGATTACCTCAACCGCTTTG ACAAGGACAGCCAGTTTATCGTCGTAACCCACCGTAAGGGAACCATGGCAGCGGCCGATT CCATCTATGGAGTGACCATGCAAGAATCGGGTGTTTCAAAGATTGTTTCAGTTAAGTTAA AAGATTTAGAAAGTATTGAAGGATGACAATTAAACTAGTAGCAACGGATATGGACGGAAC CTTCCTAGATGAGAATGGGCGCTTTGATATGGACCGCCTCAAGTCTCTCTTGGTTTCCTA CAAGGAAAAAGGGATTTACTTTGCGGTGGCTTCGGGTCGGGGATTTCTGTCTCTGGAAAT CGAATTATTTGCTGGTGTTCGTGATGACATTATTTTCATCGCGGAAAATGGCAGTTTGGT AGAGTATCAAGGTCAGGACTTGTATGAAGCGACTATGTCTCGTGACTTTTATCTGGCAAC TTTTGAAAAGCTGAAAACGTCACCTTATATAGATATCAATAAACTGCTCTTGACGGGTAA GAAGGGTTCATATGTTCTAGATACGGTTGATGAGACCTATTTGAAAGTGAGTCAGCATTA TAATGAAAATATCCAAAAAGTAGCGAGTTTGGAAGATATCACAGATGACATTTTCAAATT TACAACCAACTTCACAGAAGAAACGCTAGAAGCTGGTGAAGCTTGGGTCAATGATAATGT CCCTGGTGTCAAGGCTATGACAACTGGCTTTGAATCTATTGATATTGTTCTGGACTATGT CGATAAGGGTGTAGCTATTGTTGAATTAGCTAAAAAACTTGGCATCACAATGGATCAQGT CATGGCTTTTGGAGACAATCTTAATGACTTACATATGATGCAGGTTGTGGGACATCCTGT AGCTCCTGAAAATGCACGACCAGAGATTTTAGAATTAGCATAAGACTGTGATTGGTC
ORF Predictions:
ORF # Start End Direction Length
1 1239 1586 F 116 aa
> 3864388-3 ORF translation from 1239-1586, direction F VEISVQPPGKKIQSLNLMSGGEKALSALALLFSIIRVKTIPFVILDEVEAALDEANVKRF GDYLNRFDKDSQFIWTHRKGTMAAADSIYGVTMQESGVSKIVSVKLKDLESIEG*
Description:
P115 protein - Mycoplasma hyorhinis (SGC3) (similarity to SMC1_YEAST, chromosome segragation protein)
Assembly ID: 3864406 Assembly Length: 2162bp
> 3864406 Strep Assembly -- Assembly id#3864406 CTAAAAGTGAAGCCCGATAGCGTCTCTCTCCTGCAAGGATTTCATAACCAATAACAGGAG ATTGACGAACAATAATCGGTTGAATGACCCCATTTTCTTTGATAGACTGTGCTAGTTCAT CTAGCTTTTCTCTATCAAATTCTTTTCGGGGTTGATAGGGATTTTTTTGTATATCTGTGA TAGAAATCATTTCAAATTTTTCCATGATTCTACACTAACACATCTTTTCTCTTATGTAAA GCTTTCTTTACATAGATGTCAATTAAGATTCTAAATCACCTGAACTCTTGTTAAGTTTGA TAGAGGTAGTTTCTTCTTTCCCGTTACGATAGTAGGTTATCTTAATGGTGTCTCCGATAG AATGGTTGTAAAGAGCACTTTGTAAGTCTGTTGATGAAGCAATCTCTTTGTCATCTACTT TTGTAATTACATCGTATTTTTCAAGGTGACCATTGGCAGGCATATTACTTTGTACCGAAC GAACAATTACACCAGATGTAACATTACTTGGAATATTGAGTCTTCTGATGTCGCTTGTAC TCACATTAGATAAATTAACCATCTGGATTCCCAAAGCTGGACGCGTCACTTTTCCGTTTT TTTCTAACTGTTCAATAATATTGATAGCATCATTTGCAGGAATTGCGAAACCAAGACCTT CTACAGATGTTCCTCCATTTGTAGCAATTTTACTTGAGGTAATTCCGATAACCTGCCCTT GAATATTGATCAGTGGGCCGCCAGAGTTACCTGGGTTAATAGCAGTATCAGTTTGGATGG CTTTTGTAGAAATAGCTTGTCCATCTTCCGATTTTAAGGATACATTTCTATTGAGACTGG ATACGATACCTTGAGTGACAGTATTTGCATATTCAGAACCTAACGGGCTACCGATGGCAA TAGCAGTTTCTCCTACAGTTAACTTACTAGAATCACCAAACTCAGCTACTGTTGTCACTT TTTCTGAAGAGATTTCGACGACAGCAATATCAGAGAAAGTGTCAGCTCCGACAATTTCTC CAGGTACTTTAGTCCCATCTGACAATCGAATATCTACTTTGCTGGCGCCATTTATAACGT GATTGTTGGTGACGATGTAAGCTTCTTTATCATTCTTTTTATAAATAACTCCAGATCCTT CACTAGAGATTCGCTGAGAATCTGTGTCAGTATCATCATTGCCAAATACGCTATTTTGTC TGTTTGCCGAATAAGTAATAACAGAAACAACAGCATCTTTTACTTTGTTAACGGCCTGTG TTGTTGAATTTTCCGTTCCTTATAGGCAGTTTGTGTAATAGTACTATTGTTGTTAGAGTT GTTTACACTACTTTTTTGAGTTAGTTGAGTTATTGAAAAACTACCCAAGGCTCCACTAAA AAAGCTAATGACGATAACGACTAATAATTGAAACCATTTTTTGTAAAATGTTTTTAGATG TTTCATATTTGCCTCCATATGTTTGAATTACTGAAAGTATAAACTGACTAGCTTAATTAT AACTTAAACACAAAAGTTTTACACAAACTGTGGATAACTCTTTTGAAACTGTGATTTTCT TAATTGAAATCTATTTTTTATTTTGTGAATAAGATGTGAAAAAATAGAGAATATGTTAGA ATAGAGTCATGAAAATTAAAGTTGTAACAGTTGGGAAACTGAAAGAAAAGTATTTAAAAG ATGGTATCGCAGAGTATTCAAAACGAATTTCTAGATTTGCTAAGTTTGAAATGATTGAGT TATCAGATGAAAAAACACCAGATAAGGCCAGTGAATCAGAAAATCAAAAGATTTTAGAAA TAGAAGGTCAGAGAATTTTATCAAAAATTGCTGACCGTGATTTCGTTATTGTGTTAGCCA TTGAAGGGAAAACTTTCTTCTCAGAAGAATTTAGTAAGCAGTGAGAAGAAACTTCTATAA GGAAGGATGTCTACTCTTACTTTTATTATTGGGGGAAGTTTAGGATTGTCATCATCTGTA AAAAATAGAGCCAATCTTTCTGTCAGTTTTGGTCGCCTAACCTTGCCTCATCAGTTAATG AGACTAGTTCTTGTTGAACAAATCTATCGCGCTTTTACGATTCAGCAGGGATTCCCCTAC CATAAATAGAGAATTGACTTTTAATTGAATTTTTGGTAGAATAATTGTGTTAGGTCTCAT AG
ORF Predictions:
ORF # Start End Direction Length
1 263 958 R 232 aa
> 3864406-1 ORF translation from 263-958, direction R VTTVAEFGDSSKLTVGETAIAIGSPLGSEYANTVTQGIVSSLNRNVSLKSEDGQAISTKA IQTDTAINPGNSGGPLINIQGQVIGITSSKIATNGGTSVEGLGFAIPANDAINIIEQLEK NGKVTRPALGIQMVNLSNVSTSDIRRLNIPSNVTSGVIVRSVQSNMPANGHLEKYDVITK VDDKEIASSTDLQSALYNHSIGDTIKITYYRNGKEETTSIKLNKSSGDLES*
Description :
Bacillus subtilis (strain 168, ) DNA. Homologous to E. coli serine protease HtrA (BLAST)
Assembly ID: 3864452 Assembly Length: 1766bp
> 3864452 Strep Assembly -- Assembly id#3864452 ATCGAATTTTCCAAAATGGGGAGCTAGAGCAGTGGAGTGATTATGTGGCAGACGATTTGA TTCAGCATAATCATGAGATTGGACAAGGAAGTGCTGCTTATAAAAACTATGTGGCTGAAT ATATTGTCACTTTTGACTTCGTTTTCCAACTCTTAGGACAAGGAAACTATGTGGTTAGCT ATGGTCAGACTCAGATTGATGGCGTTGCTTATGCCAAGTACGATATCTTCCGTTTAAAGA ACGGGAAAATTGTGGAGCATTGGGATAATAAGGAAGTCATGCCTAAGGTAGAAGACTTGA CCAATCGAGGGAAGTTTTAAATTGAGGACAAAGAATGATTGAATACAAAAATGTAGCACT GCGCTACACAGAAAAGGATGTCTTGAGAGATGTCAACTTACAGATTGAGGATGGGGAATT TATGGTTTTAGTAGGGCCTTCTGGGTCAGGTAAGACGACCATGCTCAAGATGATTAACCG TCTTTTGGAACCAACTGATGGAAATATTTATATGGATGGGAAGCGCATCAAAGACTAT.GA TGAGCGTGAACTTCGTCTTTCTACTGGTTATGTTTTACAGGCTATTGCTCTTTTTCCAAA TCTAACAGTTGCGGAAAATATTGCTCTCATTCCTGAAATGAAGGGGTGGAGCAAGGAAGA AATTACGAAGAAAACAGAAGAGCTTTTGGCTAAGGTTGGTTTACCAGTAGCCGAGTATGG GCATCGCTTACCTAGTGAATTATCTGGTGGAGAACAGCAACGGGTCGGTATTGTCCGAGC TATGATTGGTCAGCCCAAGATTTTCCTCATGGATGAACCCTTTTCGGCCTTGGATGCTAT TTCGAGAAAACAGTTGCAGGTTCTGACAAAAGAATTGCATAAAGAGTTTGGGATGACAAC GATTTTTGTAACCCATGATACGGATGAAGCCTTGAAGTTGGCGGACCGTATTGCTGTCTT GCAGGATGGAGAAATTCGCCAGGTAGCGAATCCCGAGACAATTTTAAAAGTGCCTGCAAC AGACTTTGTAGCAGACTTGTTTGGAGGTAGTGTTCATGACTAATTTAATTGCAACTTTTC AGGATCGTTTTAGTGATTGGTTGACAGCTACAATGACATTGGTCGGTTCCTTGAGCAAGA GATAGATTAGCCAGACAGTCATGCCCAAAATCCCTCCAGGTAAGAGCATAGACCGTTGCA CATTAAGTACGATTAAAAAAGTGATAATGGCAAGAAAACTTGCTACTGCTTGTAATAAAA AGGTTGTTAGTGTCATATTAGTTCATCAATACCAAGGCGACAGAAGTTCCTGCCCCTAAA GCGAGGGTAATGAGCAGGGATTCAAACATCTTACTCATACCAGAGTTTATGTGGTTGGTC ATAATATCACGGACCGCATTGGTCAAGGCAATACCTGGTACAAACGGCATGACCGCACCA GCTATAATCAAATCTGCCGTTGAAGGAAAACCTGTGTAGCGAGCCCAAAACTGGGCAATT ATCCCAAAGACAAAAGCTCCAGCAAAGGCTGTCACAAAGGGAATTCGGATAAATTTTTCC ACATAGAGGGAAAAGGCAAAACCAAATAAGGTCGCCACTCCTGCCCCAAGTGCGTCGTAG ATATTTCCGCTAAACATAACTGAAAAGAAAGGAGCACTAAAGGTCGCAGCCAGAGTTACC TGCAACTTAGTATAGGGAAGGGGTTGAGCTTGCAAGGCCGTCAATTGCTTAAAGGCTGTT TCTAAGTCAATCTGCCCCCCAACTGG
ORF Predictions:
ORF # Start End Direction Length
1 1079 1201 R 41 aa
> 3864452-2 ORF translation from 1079-1201, direction R VQRSMLLPGGILGMTVWLIYLLLKEPTNVIVAVNQSLKRS*
Description: unknown
Assembly ID: 3864458 Assembly Length: 1705bp
> 3864458 Strep Assembly -- Assembly id#3864458 CTCTGACGGAGGCTGGTTATGTGGGTGAGGATGTGGAAAATATACTCCTCAAACTCTTGC AGGTTGCTGACTTTAACATCGAACGTGCAGAGCGTGGCATTATCTATGTGGATGAAATTG ACAAGATTGCCAAGAAGAGTGAGAATGTGTCTATCACACGTGATGTTTCTGGTGAAGGGG TGCAACAAGCCCTTCTCAAGATTATTGAGGGAACTGTTGCTAGCGTACCGCCTCAAGGTG GACGCAAACATCCACAACAAGAGATGATTCAAGTGGATACAAAAAATATCCTCTTCATCG TGGGTGGTGCTTTTGATGGTATTGAAGAAATTGTCAAACAACGTCTGGGTGAAAAAGTC.A TCGGATTTGGTCAAAACAATAAGGCGATTGACGAAAACAGCTCATACATGCAAGAAATCA TCGCTGAAGACATTCAAAAATTTGGTATTATCCCTGAGTTGATTGGACGCTTGCCTGTTT TTGCGGCTCTTGAGCAATTGACCGTTGATGACTTGGTTCGCATCTTGAAAGAGCCAAGAA ATGCCTTGGTGAAACAATACCAAACCTTGCTTTCTTATGATGATGTTGAGTTGGAATTTG ACGACGAAGCCCTTCAAGAGATTGCTAATAAAGCAATCGAACGGAAGACAGGGGCGCGTG GACTTCGCTCCATCATCGAAGAAACCATGCTAGATGTTATGTTTGAGGTGCCGAGTCAGG AAAATGTGAAATTGGTTCGCATCACTAAAGAAACTGTCGATGGAACGGATAAACCGATCC TAGAAACAGCCTAGAGGTGACTATGGAACTTAATACACACAATGCTGAAATCTTGCTCAG TGCAGCTAATAAGTCCCACTATCCGCAGGATGAACTGCCAGAGATTGCCCTAGCAGGGCG TTCAAATGTTGGTAAATCCAGCTTTATCAACACTATGTTGAACCGTAAGAATCTCGCTCG TACATCAGGAAAACCTGGTAAAACCCAGCTCCTGAACTTTTTTAACATTGATGACAAGAT GCGCTTTGTGGATGTGCCTGGTTATGGCTATGCTCGTGTTTCTAAAAAGGAACGTGAAAA GTGGGGGTGCATGATTGAGGAGTAATTTAACGACTCGGGAAAATCTCCGTGCGGTTGTCA GTCTAGTTGACCTTCGTCATGACCCGTCAGCAGATGATGTGCAGATGTACGAATTTCTCA AGTATTATGAGATTCCAGTCATCATTGTGGCGACCAAGGCGGACAAGATTCCTCGTGGTA AATGGAACAAGCATGAATCAGCAATCAAAAAGAAATTAAACTTTGACCCAAGTGACGATT TCATCCTCTTTTCATCTGTCAGCAAGGCAGGGATGGATGAGGCTTGGGATGCAATCTTAG AAAAATTGTGAGGAAAAGAAAATGGCAAAAACAATTCATACAGATAAGGCCCCAAAGGCT ATCGGGCCCTATGTTCAAGGAAAAATCGTTGGCAACCTTTTGTTTGCTAGCGGTCAAGTT CCCCTATCCCCTGAAACTGGGGAAATTGTAGGAGAGAATATCCAAGAACAGACAGAGCAA GTCTTGAAAAACATCGGTGCTATTTTGGCAGAAGCAGGAACAGACTTTGACCATGTTGTC AAAACAACTTGTTTCTTGAGCGATATGAACGACTTTGTTCCTTTTAATGAGGTTTACCAA ACGGCCTTCAAAGAGGAATTCCCAG
ORF Predictions:
ORF # Start End Direction Length
1 797 1105 F 103 aa
2 1179 1391 F 71 aa
> 3864458-2 ORF translation from 797-1105, direction F VTMELNTHNAEILLSAANKSHYPQDELPEIALAGRSNVGKSSFINTMLNRKNLARTSGKP GKTQLLNFFNIDDKMRFVDVPGYGYARVSKKEREKWGCMIEE*
Description: unknown
> 3864458-3 ORF translation from 1179-1391, direction F VQMYEFLKYYEIPVIIVATKADKIPRGKWNKHESAlKKKLNFDPSDDFILFSSVSKAGMD EAWDAILEKL*
Description: HYPOTHETICAL 22.0 KD PROTEIN IN LON-HEMA INTERGENIC REGION (ORFX) . - BACILLUS S UBTILIS .
Assembly ID: 3864474 Assembly Length: 1673bp
> 3864474 Strep Assembly -- Assembly id#3864474 ACGTTTTGGGAACTGTTCGGATAGCAGATTCCGAACAAACTGATAATGGTTGGCAAAATC ATTATTCCTAATAGTAACGAAGCTGGTTAGGACAACTCATGCCATTTCCTAAAAAGGTTT TAATCCAAGGCACCAATAATTGTAGGCCGAAAAAACCATAAACAATAGATGGAATGGCTG CCATCAAGTTGATAGCTGATTTTAAGAAGCTATAGACGGGCTTTGGACAATTATAAACCA TAAACACCGATGTCAAGATCGCCTGTTGGCACCCCAATCACAATCGCTCCTAAGGTCGAA TAAATAAGGAACCAACGATCATTGGTAAAATACCATAGCTTGCCGGAATGTTCGTTGGCG ACCAATCACTGCCTAATAAAAAACGGGCAAAGCCGTAGTTAGCTATGAAAGGTAAGCCAT TACTAAAAATAAAGAAACAGATTAGCAAAATAGCTACAACAGCTACTGTTGCACTCATGA AAAAAATTGCCCTAAAAACTGCTTCTTTGAAGGCTTGTTTTGTCACATCTTGTCCTTTCT AGTGAAGAAAGTAAGGGAGATACGACACCTCCCTACTTGCCTTCTTTATCTTATTGTACG ATGAAACGTCTGCATCTCTTTAGAGATTTATGGAGCAAACATTTTATTTAATCTTGTCCC AGGTGGTTAATTTGCCACTAAAAACGTCCGCAAGTTCAGCCATACTGACTTGGCTTGCCT TATTGTCATTATTGACCACAACAGCAATACCGTCTAAAGCAATAGCATCATGGGTGAGAC TCTTACCTTCTTCAGGAGTTAATTCCCTAGAAACCATACCAATATCAGCGGTTTTCTCCT TAACAGCGGTAATACCTGCTGAAGACCCATTAGAGGTAATATCAATCGTAACTTCTGGAT TTTCTTTTTTATAAGCTTCTGCTAATTTTTCCATTAAAGAAGATACTGAAGTGGAACCTA CAACAGACAACTTGCCTGATAAGTGTTGGCTTGTATATTCTGTGGTTTCGGTTTTAGCTT CAATAAATTTATTATCTGTGACCACTTGTTGACCTTGTTTGGAGTGGATAAAGCTGATAA AATCTTGACCTAGCTTGGAAAGATTAGAAGACCAAACAATGTTGAAGGGACGTTGAAGAG GGTATTCACCATCTAAAACTGTGTCTCGACTAGCCTTGACACCATCAATCTCTAAAGCCT TGACAGATTTCGTTAAAGATCCCAAGGAGATGTAGCCGATAGCATTAGCATTCCCTTGAA CTGCTGAGAGAACACCTTCTGTACTATTTTGAATCACAGCTGTTTTGGCAGTGTAGTCAA TTTTTTTATCACCGTCTTTTTTGAGAATCCCTGTGATTTCTGTGAAGGCACCCCGTGTTC CAGAGCCATTTTCTCGTGAAATCACCTCAATCGTTCCTGGAGCTGACTGTTTGGAAGCAG CTGACTGATTGCCACAGGCAACAAGCCCAAATCCTGATAAGCCAATGGCTGCAAGAGTAA GCATTTTTTTGAATTTCATAATAATCACCTTTATCTCTATGTATTTTTCTTGTGTAGGCT TACTACATTTATAGTCTAACAAGTCTTTGTAAAGGTTTATCCCTGATTCATGTAAAGATT GTGTAAAGAATCAAAAAAAGCCACTTTTGAAAAATGGCTGCCCCTAAAAATAG
ORF Predictions :
ORF # Start End Direction Length
1 68 247 R 60 aa
2 644 1528 R 295 aa
> 3864474-1 ORF translation from 68-247, direction R VFMVYNCPKPVYSFLKSAINLMAAIPSIVYGFFGLQLLVPWIKTFLGNGMSCPNQLRYX*
Description:
PROBABLE ABC TRANSPORTER -PERMEASE PROTEIN (ORF72). --BACILLUS SUBTILIS. (BLAST)
> 3864474-2 ORF translation from 644-1528, direction R VIIMKFKKMLTLAAIGLSGFGLVACGNQSAASKQSAPGTIEVISRENGSGTRGAFTEITG ILKKDGDKKIDYTAKTAVIQNSTEGVLSAVQGNANAIGYISLGSLTKSVKALEIDGVKAS RDTVLDGEYPLQRPFNIVWSSNLSKLGQDFISFIHSKQGQQWTDNKFIEAKTETTEYTS QHLSGKLSWGSTSVSSLMEKLAEAYKKENPEVTIDITSNGSSAGI AVKEKTADIGMVS RELTPEEGKSLTHDAIALDGIAWVNNDNKASQVSMAELADVFSGKLTTWDKIK*
Description: probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)
Assembly ID: 3864510 Assembly Length: 1702bp
> 3864510 Strep Assembly -- Assembly id#3864510 CTTTTTTATTTCACAACAAGTTCATAACGTGTCTTACTGGTGAAGGTTTGACCAGCTTTA AGAATGACTTGGCCTTTAAGGTCACTGTGAATGGCATCTGGTAAAGCTTGCGCTTCAAGA GCAATCCCATTGTGCTGTAGCATTGGCTGACCTCCTATGATGACACTTTCATCCACAAAG TTTGCTGTGTAGACCACAAAGCAAGGAGCTTCTGTCTTGAAAAGCAGGAAGCGACCTGAA TTTTGGTCATAAAGGAATCCAGCATTGTCATGGCCTGCAGGAAGGGCAAATGGATGATCC AAACCTGATGCCAGCTGGATTTGCTCATCTTCTTCTGCAAAGATATCCTTCAACAAGGCA CCATTGTAGATGTGTTTGACCACATCACGGTTGGCTTCTGGAGTTTTGGCAGGAACACCG TCAGGAGCGATTGAGTAAATGCCCTCTGTGTTTAGTTGGAAGACATGACGGTCAATCGTC TGCGTGAAATCACCAGACAAGTTGAAATAGCTGTGGTTGGTTGGATTGACCAGCGTATCC TGATCGGTCGTTACCTTGTAGATCGAATTCATGGAGGCACCAGTTTCTTCCAAGTGATAA CTGATCGCCAAATCTTGAGATTTCCAGGGAACCCTCCTGTCCCATCTGTACGCTCTGTGT AGAGAGTCAAGCCATGATCGCTTACTTCTTCAACTTCAAACAAGCTGGAATCCCAACCAG TTGAACCACTGTGATTACAGTTGCTAGCATTATTAACCTCAAGGTCATAGGTCTTACCAT TGAGCTCAAAGGTCGCACCTGCAATACGACCCGCTACAGGACCTACACTTGCTCCATGCT TGGGACTATTGCCTACATAACT TC AAGTCATCAAATCCCAAGATAACATTGGCAAAAT TTCCAGCCTTGTCAGGTGCGACATAGCGCAAGATAGTCGCACCATAAGTCATAACCTCAA GTTGGTAGCCACCGTCTGTCTCAAATCGATAGGCCAAGACATCCTCACCCTCAACATTTC CAAATACACGCTCTGTGTATGCTTTCATTCTGTTCTCCTTTTACTATTTCTCTCAAGCAA ACAAACCATAGAAAGCGTACTGACAATCTATGGTTTATCTGATAATTTACAAATCCTCTT GTCAAGAATTCATAAACACTGTCTTACTTTTGATATTCGTGAATTATGACACCTTGTACT ACACGGTTTACTGTACCTGTAGGAGACGGTGTATCTGGTTTATTTTCTACCTTGAGTGAA GTCAATAGGGCAAAGAGTTGGGCATAAACGATGTAAGGGAAGACACGGTAAATATCATTC AAGACACCGCCACAACCAAGGGCCACTTCTTTGACATTTTCAAGACCAAAAGCTTGAΪCA CTCAAAAGCACAACACGACGAGCAATCTGGTCACCAGCAACTTCACGAACCAAGTCCAAG TCGTACTTACGAGTGTAGTCCGTCGTTGTACCAAAGACCAAAACAACTGTATTGTCGTTG ATAAGAGATTTTGGACCGTGACGGAAGCCAACTGGGCTTTCATACATGGTCGGAACTTGA CCAGCAGTTAATTCCAAAATCTTGAGCTGAGCTTCATGAGCAAGTCCAAAGAAAGGACCA GCGCCTAGAATAGATGACACGGTTAAAGTCTAAATCAACGAGATCTTTGACATCTTCTGC CTTGTCTAAAACTTTACGGGCA
ORF Predictions:
ORF # Start End Direction Length
1 1164 1640 R 159 aa
> 3864510-3 ORF translation from 1164-1640, direction R VSSILGAGPFFGLAHEAQLKILELTAGQVATMYESPVGFRHGPKSLINDNTWLVFGTTT DYTRKYDLDLVREVAGDQIARRWLLSDQAFGLENVKEVALGCGGVLNDIYRVFPYIVYA QLFALLTSLKVENKPDTPSPTGTVNRWQGVIIHEYQK*
Description:
AGAS PROTEIN. - ESCHERICHIA COLI . (Probable tagatose-6-phosphate ketose/aldose isomerase)
Assembly ID: 3864526 Assembly Length: 194Obp
> 3864526 Strep Assembly -- Assembly id#3864526 TGCAGGATTTGATTTGGACGACTTTTATTATTACCAGATTCGCCTAGGAATAGAAAAAAG AGCCCAAGAGTTGGACTATGATATCTTGCGCTATTTTAATGACCACCCTTTTACCCTAAG CGAGGAAGTGATTGGGATTCTCTGCATCGGAAAGTTTAGTCGAGCTCAGATTTCTGCCTT TGAAGAATACCAAAAGCCTCTTGTATTTCTAGACAGCGATACACTTTCCCTGGGACATAC CTGTATTATCACGGATTTTTACACTGCTATGAAACAGGTTGTCGATTATTTCCTCAGTCA AGGAATGGACCGTATCGGGATTCTAACAGGCCTTGAAGAAACAACAGACCAAGAAGAAAT CATTCAGGACAAGCGTCTAGAAAACTTCAAAAACTACAGTCAAGCGAGGGGAATCTATCA TGATGAACTGGTCTTTCAAGGAAGATTTACTGCCCAGTCTGGCTATGACTTAATGAAGGA GGCCATTCAGAGCTTGGGAGACCAACTTCCGCCAGCATTTTTCGCAGCCAGCGATAGTTT AGCTATCGGTGCCCTCCGTGCCCTCCAAGAAGCTGGAATCAGCCTGCCAGATCGCGTCAG CCTCATTTCCTTTAACGACACTAGTCTGACCAAACAGGTCTATCCTCCCCTCTCTAGTAT TACAGTTTATACTGAAGAAATGGGCCGAGCAGGTATGGATATTCTTAACAAGGAAGTCCT CCACGGTCGGAAAATCCCTAGCCTGACCATGCTGGGAACCAGACTGACATTAAGAGAAAG TACCCTAAATCAAGAATAGGATAACATAAAAAACGAATAGAGTTCTAAAACTCCTATTCG TTTTTTATTCGATTACAATCATAGACTTAATGGTCTTACGTTCATCCATATCTTTGTAGG CTTGGTCGATATCTTCCAGTTTATAACTTGAAGTAAAGACGCGACCTGGATTGATATCAC CATCAAGGACGGCTTTTAGTAAAAATTGCTTATCGTATGTTGTAGCAGAAGCTGCCCCAC CTGCTACAGAGATATTTTGCATAAATGTCGAACCAAGAGCACGATTATTATAGTGTGβGA CTCCTACAAAGCCCATACGCCCTCCATTATGAAGAACACCTAGCGCCTGTTCTATAGCAG CCTCCGTACCAACACATTCAAGTGCTGCGTCTGCTCCTCCGCCGAGGATTTCACGCACCT TGGTAATTCCTTCTTGACCACGTTCTGCAACAACAGCTGTCGCACCTGACTCCATAGCCA TCTTTTGACGGTCTTCATGACGGCTCATAAGGATAATTTGTGATGCTCCACGCATCTTAG CCGCGATGACAGCACATTGACCAACAGCCCCATCACCGATAACAACAACCTTGTCCCCTT TTTGAACATTTGCAACACGCGCCGCATGATAGCCTGTCGGCATGACATCTGCAAGAGTCA AAAGGGACTTGAGCATCCCTTCTGTATAGTCAGAAGGTTGACCAGGGATTTTAACCAGCG CCCAGTTTGCATAGTGGAAGCGAATATATTCTGCCTGAAAATCACCCCCCAAATTATTGC CAATATGATTGTCGCAAGAACCGTCAAATCCAGCAAGACAGGCATCACACTCACCACATC CATGTGTAAAAGGGACAATCACAAAATCACCTGGTTTCACCGTCGTAATGGCTTCCCCAG CTTCTTCAACAATCCCAATCGCTTCGTGTCCACTTATTTTTTGTGTCCAACTTTCGTTTT CCNTGGATTACGGTACCTCCATAAATTTGAACCACAAACGCACGCACGAACCACACGAAT AATCACATCATCCGCTTCTATTATTTGCGGACGTTCAATGCTAGCAAGTCCAACCTGACC TGCCTTTGTATATACTGCTGATTTCATTTAAAATTTTCCTTCCTTATAAAGTTTAATTTT GAGATTTAAACGATTTAAAG
ORF Predictions:
ORF # Start End Direction Length
1 845 1660 R 272 aa
> 3864526-2 ORF translation from 845-1660, direction R VKPGDFVIVPFTHGCGECDACLAGFDGSCDNHIGNNLGGDFQAEYIRFHYANWALVKIPG QPSDYTEGMLKSLLTLADVMPTGYHAARVANVQKGDKVWIGDGAVGQCAVIAAKMRGAS QIILMSRHEDRQKMAMESGATAWAERGQEGITKVREILGGGADAALECVGTEAAIEQAL GVLHNGGRMGFVGVPHYNNRALGSTFMQNISVAGGAASATTYDKQFLLKAVLDGDINPGR VFTSSYKLEDIDQAYKDMDERKTIKSMIVIE*
Description: ALCOHOL DEHYDROGENASE (EC 1.1.1.1). - ALCALIGENES EUTROPHUS .
Assembly ID: 3864548 Assembly Length: 2051bp
> 3864548 Strep Assembly -- Assembly id#3864548 ATCGAATTTTTCTAGCCAGGCTACAGTTTTGGCAAGTAAGGTTTCATCTCAGGCAGTCAA CTGGGTGAGTGCCTTTATTAGCGGAGCTTCTCAAGTGATTGTTGCCTTGATTATCGTTCC TTTCATGCTCTTTTATCTCTTGCGTGATGGGAAAGGCTTGCGTAACTATTTGACCCAATT CATTCCAAGAAAATTGAAGGAACCTGTTGGACAAGTTCTATCAGATGTGAATCAACAGTT GTCCAACTATGTTCGAGGGCAAGTGACAGTGGCTATTATTGTAGCAGTAATGTTTATCAT CTTCTTCAAGATTATTGGTCTACGCTATGCGGTTACGCTGGGGGTTACTGCTGGTATTTT AAATCTGGTCCCTTATCTTGGTAGCTTTCTAGCCATGCTTCCTGCCCTAGTATTGGGTTT GATTGCTGGTCCAGTCATGCTTTTGAAAGTAGTGATTGTCTTTATTGTAGAACAAACHAT TGAAGGCCGTTTTGTCTCTCCATTGATTTTGGGAAGTCAATTAAACATCCACCCTATTAA TGTTCTCTTTGTTTTGTTAACTTCAGGATCTATGTTTGGTATCTGGGGAGTTTTACTTGG TATTCCGGTTTATGCCTCTGCTAAGGTTGTCATTTCAGCCATTTTCGAATGGTATAAGGT AGTCAGTGGTCTATATGAATTAGAGGGTGAGGAAGTCAAGAGTGAACAATAGTCAACAGA TGTTACAGGCTTTGGAGGAGCAAGATTTAACTAAGGCTGAGCATTATTTCGCCAAAGCTT TAGAAAATGATTCAAGTGATCTTCTGTATGAGTTGGCAACTTATCTTGAAGGGATTGGTT TCTATCCTCAGGCCAAGGAAATTTACCTGAAAATTGTAGAAGAATTTCCAGAGGTTCATC TTAATCTAGCTGCAATGGCTAGCGAGGATGGTCAAATAGAAAAAGCCTTTAACTATCTTG AGGAAATCCAAGCTGACAGTGACTGGTATGTCTCGCTCTTTGGCTCTGAAGGCAGACCTA TACCAGCTGGAAGGTTTGACAGATGTGGCACGTGAGAAATTATTGGAGGCCTTGACCTAC TCAAAGGATTCTCTCTTGATATTGGGTTTGGCAAAGTTGGATAGTGAGTTGGAAAATTAC CAAGCGGCTATTCAAGCCTATGCCCAGTTAGATAATCGCTCGATTTATGAGCAAACGGGC ATTTCCACCTATCAACGAATTGGCTTTGCCTATGCTCAGTTAGGGAAATTTGAAACGGCT ACTGAGTTTTTAGAAAAAGCCCTGGAGTTAGAATACGATGACTTAACAGCTTTTGAGTTG GCCAGTCTTTATTTTGATCAAGAAGAATATCAAAAAGCCACCCTCTACTTTAAGCAGCTT GATACCATTTCTCCTGACTTTGAAGGCTATGAGTATGGGTACAGTCAGGCTTTACATAAG GAACATCAAGTTCAAGAAGCCCTGCGTATCGCTAAGCAAGGATTAGAGAAAAATCCCTTT GAAACTCGCCTCTTGCTAGCTGCTTCACAATTTTCTTATGAATTGCATGATGCTAGTGGT GCAGAAAATTATCTCCTTACTGCAAAAGAAGACGCTGAGGATACAGAAGAAATCTTGCTT CGTTTAGCCACTATTTATCTGGAGCAGGAGCGTTATGAGGATATTCTAGACTTGCAGAGT GAGGAGCCAGAAAATCTTTTGACCAAGTGGATGATTGCTCGTTCTTATCAAGAAATGGAC GATTTGGATACTGCTTATGAGCATTATCAAGAGTTGACAGGAGATTTGAAGGACAATCCA GAATTTCTGGAACACTATATCTATCTCTTGCGTGAATTGGGACATTTTGAAGAAGCAAAA GTCCATGCTCACACTTACTTAAAACTGGTTCCAGATGATGTGCAAATGCAAGAACTGTTT GAGAGATTGTAAGAATGTTTAAACATATAGAACTGTAGTTTATCTCTTTTGATAGCTACG GTCTTTATTTGTACATGGTAGAATCTTTTTACAAAAATACTTGGTAATCTTGTTTATTCA TGCCATAATAG
ORF Predictions:
ORF # Start End Direction Length
1 687 1055 F 123 aa
2 979 1932 F 318 aa
> 3864548-2 ORF translation from 687-1055, direction F VRKSRVNNSQQMLQALEEQDLTKAEHYFAKALENDSSDLLYELATYLEGIGFYPQAKEIY LKIVEEFPEVHLNLAAMASEDGQIEKAFNYLEEIQADSDWYVSLFGSEGRPIPAGRFDRC GT*
Description : unknown > 3864548-3 ORF translation from 979-1932, direction F _ VTGMSRSLALKADLYQLEGLTDVAREKLLEALTYSKDSLLILGLAKLDSELENYQAAIQA YAQLDNRSIYEQTGISTYQRIGFAYAQLGKFETATEFLEKALELEYDDLTAFELASLYFD QEEYQKATLYFKQLDTISPDFEGYEYGYSQALHKEHQVQEALRIAKQGLEKNPFETRLLL AASQFSYELHDASGAENYLLTAKEDAEDTEEILLRLATIYLEQERYEDILDLQSEEPENL LTKWMIARSYQEMDDLDTAYEHYQELTGDLKDNPEFLEHYIYLLRELGHFEEAKVHAHTY LKLVPDDVQMQELFERL*
Description: unknown
Assembly ID: 3864582 Assembly Length: 1318bp
> 3864582 Strep Assembly -- Assembly id#3864582 CTTTAGCAATCAGTTTATTGGGAGATTTGACTGCCACTTCTGTTGGAACCTTGATAATCT TTTTACCCTCAAAGCGTTCCATACCAGAAATCTTAACATCAACTGCTAAAATAACTACAT CCGCTGCATCAATCTGCTCTTGACTCAATTCATTTTCTACCCCTATTGTCCCCTGAGTCT CAACATGAATCACATGTCCAGCTACCTTTGCGGCATTCTCTAATTTTTCCTGTGCAATAT AAGTGTGGGCAATTCCCATAGTACAAGCTGCAACACCAACAATTTTCATACGGATACCCT CCAAAATTTTTTCTTATTAACAAAAAGCTGCAATCACATCATCAGATGTCTGAGCCCGAA CTAATTTGGCAACAACTTCGTCATTACCAAGTTTTCGAGCAAAGAGTGATAAGGTCTTCA AATGCTCCCTAGCAGCTTCTGTATCATCACCAACTGCAAAGAGTACAATTACTTTGACCC CTTTCCCATCAATGGTCTCCCAAGGAATCTCATTGTGATTTATAGCTATGACTACCCCCG CCTTCTCCACAGCAGAACTCTAGCTATGGGGAATAGCAATATAATTCCCAATACCGGTCT GTCCTTCTGCCTCTCTCTGATAAAGACCTTCGATAAATTGGTCTCTATCAGACACATAAC CCGTCTCAACCAATAGTATGAGCTAATGCCTCAAAAACCTCTTCTTTGCTCTGCATCTGT AAATCCGTCTGGATCAGACTCACATTAAGAATATCTTTGATTTCCATATATTATCTCCCG TAATTCTTCTTTTGTTAACTGTTTTAATTGATTTATGAATGATTCATCTGCTAGTCTTCT CATCAATGTTTTAATACATGACTTGTCCTGTGATACTGCAATGGCCAAACCGATAATAAG GTCAACACACTGGATATCCTTCGACCATTCTCTGATAGGTGGTTTTAATCTAGTAATCAC TAAGACATGATGTTGAAAGTTTCCTTCACAATGTGGTAGAAGAACACCTTTAGCAACCTC TATACTTCCCTGTCTCTCACGGTAATATAGAAGCTCTTCTATTTTTTCTGTATCTTCAGA AACAAGAAGGCTGATTTGATTTGCTAATTCTTTGTAGGCTTCTTGACGATTTTGAACAGA TATATCCATAAGGACAAGCGAAAGATTATTCATAGTTTATCTCCTGAATTTTTGCTTGAA GACGTTGTTTATCACCCTCGGTTAGAAAAGCACTAACTAGGACAAACGGGACACTTGCTG GTTCCTGCAAAGCTACCGTCGTCACAATGAAATCTAAATCTGGATATAGATTTATCAG
ORF Predictions:
ORF # Start End Direction Length
1 317 550 R 78 aa > 3864582-1 ORF translation from 317-550, direction R _ VEKAGWIAINHNEIPWETIDGKGVKVIVLFAVGDDTEAAREHLKTLSLFARKLGNDEW AKLVRAQTSDDVIAAFC*
Description : Probable phosphotransferase enzyme Ila component
Assembly ID: 3864604 Assembly Length: 2077bp
> 3864604 Strep Assembly -- Assembly id#3864604 CTAGTCTTGGCTACTGTCTAAGTTGGCTTGTGCATAAGCCTGCCAGATTTTTTGTTGGGG TTTGGCAAGTGGGTAATTCTTGAATTCTTCTGGTGAAAGCCAACGAACTTCCCTATCTGA AAAATCATGGAAGTCACTCACCTGACCTGCTACAATCTGTACATGCCATTTTCGATGACT AAAAACATGCTGGACTGTATCAAAACAAACATCAAGCCAATCAACATCTAGGTCATAGTC CTGCTGGAAACTCTCTTCTGGGACTGGGGCCAGAGTTCACACTTTCTTCCGCAACCTGAT GAAAGAGGTCAAACTGCTCTTCTTGCGAAAAGTTATCAACTTCTATAAAGGGGAAATGCC AAAAACCTGCCAAGAGCTTTTCGCTTTCATTTTTTTCAAGTAAAAATTGTCCTTGAGAAT TTTTCACAACTAAGGCTTTAAGATAAATAGGAACCGGCTTTTTCTTAGGAGATTTAATTG GATAACGGTCCATGGTTCCATTCTGATATGCCGCACTAAAGTCCTTGACTGGGCTTTCTT CAGGTCTGGGATTTACAGGAGACTCAATATCAGACCCTAAGTCCATCAAGGCTTGATTAA AATCACCCGGACGATCTGGATTAATCAAGATCTCCATCATTGCCTGAAAAATTTTTCGAT TACTTGGAATCCCAATATCGTGGTTGACTTCAAACAGACGCGCCAAGACCCGCATGACAT TACCATCTACAGCTGGCTCAGGCAAGTTAAAAGCAATACTGGAAATGGCTCCTGCTGTGT AAGGTCCAATCCCTTTCAAGCTGGAAATTCCTTCATAGGTATTTGGAAATTGGCCACCAA AGTCAGTCATAATCTGCTGGGCTGCAGCCTGCATATTGCGAACTCGAGAATAATAACCCA AGCCCTCCCAAGCTTTCAGTAAACTCTCCTCAGGCGCAGTTGCCAGACTTTCGACAGTTG GAAACCAGTCCAAAAATCTTTCGTAGTAAGGGATAACTGTATCCACCCTGGTCTGCTGAA GCATGATTTCAGATACCCAGATGTGATAAGGATTTTTACTTCTCCTCCAAGGCAAATCTC TTTTGTTTTCATCATACCAAGCGAGAAGTTTTCTCACCGGAAAGAAATGACTTTCTCCTC CGGCCACATGACGATACCGTATTCTTTCAAATCCTAACATATCTCTAGTTATAACACAGA AGGTTTCACCTGTCTTTGTATCTGATTTATAATATTTTCAATAGATAGTATATAACTTTT CCTATCTACTTATACTCCAATGAAAATCCAAAGAGCAAACTAAGAAGCTAGCCGCAGGTT GCTCAAAACACTGTTTTGAGGTTGTGGATAGAACTGACAGAGTCAGTATCATATTACCTA CGGCAAGGTGAAGCTGACGTAGTTTGAAAAGATTTTCGAAGAGTATAAATCTTATTGATG AACTGCTTGCAGTCTGAGAAAAAATGAGCTTGGATATTATTTCCAAACTCACTTAAAGTC AATTTCAATCCACTAGAACAAGCCTAGTACAGTTCCATCGCTTTCAACATCCATGTTGAG AGCTGCTGGACGTTTTGGAAGACCTGGCATGGTCATAACATCACCAGTTAAGGCAACGAT GAAGCCTGCACCTAATTTTGGTACCAATTCACGAATGGTAATTTCAAAGTTTTCTGGTGC TCCAAGCGCATTTGGATTGTCTGAGAAACTGTATTGAGTTTTAGCCATACAAATTGGCAA TTTGTCCCAACCGTTTTGAACGATTTGAGCAATTTGTGTTTGAGCTTTCTTCTCAAAGTT CACTTTGCTACCACGATAGATTTCAGTGACAATTTTTTCAATCTTTTCTTGGACAGAAAG GTCATTATCGTACAAACGTTTATAGTTAGCTGGATTTTCAGCAATTGTCTTAACAACTGT TTCGGCAAGTGCTACTCCACCTTCTGCTCCATCAGCCCAGACACTAGCCAATTCAACT.GG TACATCGATTGAGGCACAGAGTTCTTTTAAGGCTGCAATTTCAGCTTCTGTATCAGATAC AAATTCGTTAATAGATACAAGCTAATGGAATACCGAA
ORF Predictions:
ORF # Start End Direction Length
1 1 141 R 47 aa
2 1513 1803 R 97 aa
> 3864604-1 ORF translation from 1-141, direction R VSDFHDFSDREVRWLSPEEFKNYPLAKPQQKIWQAYAQANLDSSQD*
Description : unknown
> 3864604-3 ORF translation from 1513-1803, direction R VNFEKKAQTQIAQIVQNGWDKLPICMAKTQYSFSDNPNALGAPENFEITIRELVPKLGAG FIVALTGDVMTMPGLPKRPAALNMDVESDGTVLGLF*
Description : FORMATE--TETRAHYDROFOLATE LIGASE (EC 6.3.4.3) (FORMYLTETRAHYDROFOLATE SYNTHETAS E) (FHS) (FTHFS) . - CLOSTRIDIUM ACIDI-URICI.
Assembly ID: 3864610 Assembly Length: 1887bp
> 3864610 Strep Assembly -- Assembly id#3864610 CTCAAAACNCTGCTTTGAAGAGATTTTCAAAGAGTACAAGAAGTTTAGTTATTAGCGTTC TTACCGCTTGTAAACTAGATTTCTCATAAAATAGAATCTTTTCCTTTTAGTTGTAAACTA GTCTGGGAGAGTAGAGAGGTTTGAGATACCTTTCTAGCTTTTGGATTATCATCTAAGAAG AGTAATTTCCCTTGCATTAAAAAGGGGAAAAAGAGACACGAAATGACTATAATGGGTGAC AATGGGGGAAGGGATAGACAAGAGATTTTATCCACATATGAAAAAAGGAGGTTAGGAAAG AGTTATATATCCTATATTATATAAATAATCAATTGCGCAGAAATTTGGTAAGAATTCATG CGTCAACTCATAAAGAACTACTTAAAAAATTCACAGTATTCATAATTATTTTCGAGGAGA AAAACAGTGAAAAAAAGAAAAAAGCTTGCTCTGTCTCTTATCGCTTTTTGGCTGACGGCT TGTTTAGTAGGCTGTGCTAGCTGGATTGATCGTGGAGAATCCATAACGGCTGTTGGCTCA ACTGCCTTGCAACCCTTGGTTGAAGTAGCGGCAGATGAATTTGGCACCATCCATGTTGGA AAAACGGTCAATGTCCAAGGGGGAAGTTCTGGTACAGGCTTGTCCCAGGTTCAGTCTGGG GCAGTTGATATAGGAAACTCAGATGTATTTGCTGAGGAAAAAGACGGAATTGATGCTTCT GCTCTTGTTGACCACAAGGTCGCGGTAGCTGGCTTGGCTCTGATTGTCAATAAGGAGGTT GATGTTGATAACCTAACGACAGAGCAACTTCGTCAAATCTTCATAGGTGAGGTAACCAAT TGGAAAGAGGTTGGTGGTAAGGACTTACCCATCTCTGTTATCAATCGGGCAGCCGGCXCT GGCTCTCGTGCTACCTTTGATACTGTCATTATGGAAGGTCAGTCTGCCATGCAAAGTCAG GAGCAGGATTCAAATGGAGCGGTAAAATCAATCGTATCAAAAAGTCCAGGAGCTATCTCT TATTTATCTCTTACCTATATAGATGATTCGGTCAAAAGCATGAAGTTGAATGGCTATGAC TTAAGTCCAGAAAATATAAGTAGCAATAATTGGCCCTTGTGGTCTTATGAGCATATGTAT ACATTGGGGCAGCCCAATGAGTTGGCTGCAGAATTTCTCAATTTTGTTCTCTCGGATGAG ACCCAAGAAGGGATTGTCAAAGGATTGAAGTATATTCCGATTAAGGAAATGAAGGTTGAA AAAGATGCTGCCGGAACTGTGACAGTGTTGGAAGGGAGACAATAATGAATCAAGAAGAAT TAGCTAAGAAAATGTTGCTTCCATCAAAGAATTCTCGTCTGGAGAAATTAGGAAAAGGTT TGACCTTTGCCTGTCTTTCTTTGATAGTCATCCTTGTGGCCATGATTTTGGTTTTCGTAG CGCAAAAAGGCTTGTCGACCTTCTTTGTCAATGGTGTGAATATCTTTGACTTTCTTTTGG GAGGAACTTGGAATCCTTCTAGTAAAGAATTTGGTGCCCTTCCTATGATTTTGGGTTCCT TTATCGTTACCATTCTCTCAGCCCTTATCGCAACACCCTTTGCTATTGGTGCAGCAGTTT TTATGACCGAAGTATCACCAAAAGGGGCGAAGATTTTGCAACCAGCTATTGAACTCCTGG TTGGGATTCCTTCAGTAGTGTACGGATTTATTGGCTTGCAAGTCGTCGTTCCCTTTGTTC GCAGTGTCTTTGGTGGGACTGGTTTTGGGATTTTGTCAGGGATTTCCGTCCTCTTTGTCA TGATTTTGCCGACCGTAACCTTTATGACAACGGATAGCTTGCGTGCGGTTCCTCCNTTAT TATCGTGAAGCCAGTTTCGCTATGGGA
ORF Predictions:
ORF # Start End Direction Length
1 427 1305 F 293 aa
> 3864610-1 ORF translation from 427-1305, direction F VKKRKKLALSLIAFWLTACLVGCASWIDRGESITAVGSTALQPLVEVAADEFGTIHVGKT VNVQGGSSGTGLSQVQSGAVDIGNSDVFAEEKDGIDASALVDHKVAVAGLALIVNKEVDV DNLTTEQLRQIFIGEVTNWKEVGGKDLPISVINRAAGSGSRATFDTVIMEGQSAMQSQEQ DSNGAVKSIVSKSPGAISYLSLTYIDDSVKSMKLNGYDLSPENISSNNWPLWSYEHMYTL GQPNELAAEFLNFVLSDETQEGIVKGLKYIPIKEMKVEKDAAGTVTVLEGRQ*
Description:
PROBABLE ABC TRANSPORTER BINDING PROTEIN PRECURSOR (ORF108) . BACILLUS SUBTILIS. (BLAST)
Assembly ID: 3864716 Assembly Length: 405bp
> 3864716 Strep Assembly -- Assembly id#3864716 CTGAGGAATCAAAAGTTGAACCACCAGTAGAACAAGCATAAGTCCCAGAACAACCCGTGC AACCTACACAAGCTGAGCAACCAAGTACACCAAAAGAATCATCACAACAAGAAAATCCTA AAGAAGATAGGGGAGCGGAAGAGACTCCGAAACAAGAAGATGAACAGCCAGCAGAAGCCC AAGAAATCAAGGTTGAAGAACCAGTAGAATCTATAGAGGAGACTGTCATTCAACCTGTTG AACAACCAAAAGTGGAAACGCCTGCTGTTTAATAACTAACGGAACCTACAGAGGAACCTA AAGTTGAAGTAACTAGTATTCCCCTCACTACTCGCTATGAGGAAGACCTTACTTACGAAC ACGGAACGCGTTGAAGTTGTTAAGGAAGGTTATAATTGGCAGTAT
ORF Predictions:
ORF # Start End Direction Length
1 57 272 F 72 aa
> 3864716-1 ORF translation from 57-272, direction F VQPTQAEQPSTPKESSQQENPKEDRGAEETPKQEDEQPAEAQEIKVEEPVESIEETVIQP VEQPKVETPAV*
Description: unknown
Assembly ID: 3864718 Assembly Length: 1542bp
> 3864718 Strep Assembly -- Assembly id#3864718 CTATGGGATTGGTAGTTCTTCCTAGTGCAGGGGCTGTAGACCCAGTTGCGACCCTAGCGC TGGACTAGTCGAGAGGGTGTTGTTGAAAATGGATGGCTATCGCTATGTTGGTTATCTATC AGGTGACATCCTCAAAACGCTTGGCTTGGACACTGTTTTAGAAGAAACCTCAGCAAAACC TGGAGAGGTGACTGTAGTCGAAGTTGAGACTCCTCAATCAACAACAAATCAGGAGCAAGC TAGGACAGAAAACCAAGTAGTAGAGACAGAGGAAGCTCCAAAAGAAGAAGCACCTAAAAC AGAAGAAAGTCCAAAGGAAGAACCAAAATCGGAGGTAAAACCTACTGACGACACCCTTCC TAAAGTAGAAGAGGGGAAAGAAGATTCAGCAGAACCATCTCCAGTTGAAGAAGTAGGTGG AGAAGTTGAGTCAAAACCAGAGGAAAAAGTAGCAGTTAAGCCAGAAAGTCAACCATCAGA CAAACCAGCTGAGGAATCAAAAGTTGAACCACCAGTAGAACAAGCAAAAGTCCCAGAACA ACCCGTGCAACCTACACAAGCTGAGCAACCAAGTACACCAAAAGAATCATCACAACAAGA AAATCCTAAAGAAGATAGGGGAGCGGAAGAGACACCGAAACAAGAAGATGAACAGCCAGC AGAAGCCCAAGAAATCAAGGTTGAAGAACCAGTAGAATCAAAAGAGGAGACTGTTAATCA ACCTGTTGAACAACCAAAAGTGGAAACGCCTGCTGTAGAAAAACAAACGGAACCAACAGA GGAACCAAAAGTTGAAGTAACAAGTATTCCCCAAACTACTCGCTATGAGGAAGACCTTAC TAAGGAACACGGAACGCGTGAAGTTGTTAAGGAAGGTAAGAATGGCAGTAGAACAGTTAC TACTCCATATATCTTGAATGCGACAGATGGTACGACTACAGAAGGCACTTCGACAACTGA TGAAGCTGAGATGGAGAAAGAGGTTGTTCGTGTTGGCACGAAACCCAAAGAAAAATTAGC TCCAGTCTTAAGTTTGACAAGTGTTACAGATAATGCAATGTTGCGTAGTGCGAGACTTAC TTATCATTTGGAAAATACAGATAGTGTTGATGTGAAAAAAATTCATGCTGAAATTAAAAA TGGCGATAAGGTTGTCAAAACTATTGACTTATCTAAAGAGAGATTATCAGATGCTGTTGA CGGTCTTGAACTTTATAAAGATTATAAGATTGTGACGAGTATGACCTATGATAGAGGTAA TGGTGAAGAAACCTCTACGTTGGAAGAAACTCCACTACGATTAGACCTCAAGAAGGTTGA ATTGAAAAACATCGGCTCTACTAATCTCGTCAAAGTAAATGAGGATGGTACTGAGGTGGC AAGTGACTTCTTAACAAGTAAACCTGTGGATGTGCAGAATTACTACCTCAAAGTAAC TC CCGTGATAATAAAGTTGTTTCCCCTCCCAGTTGAAAAAATTGAAGAGGTGACTGAGGAAG GTCCACCACTTTACAAAGTCCCTGCTAAGGCCCTAATTTGAT
ORF Predictions :
ORF # Start End Direction Length
1 77 1474 F 466 aa
> 3864718-1 ORF translation from 77-1474, direction F VLLKMDGYRYVGYLSGDILKTLGLDTVLEETSAKPGEVTWEVETPQSTTNQEQARTENQ WETEEAPKEEAPKTEESPKEEPKSEVKPTDDTLPKVEEGKEDSAEPSPVEEVGGEVESK PEEKVAVKPESQPSDKPAEESKVEPPVEQAKVPEQPVQPTQAEQPSTPKESSQQENPKED RGAEETPKQEDEQPAEAQEIKVEEPVESKEETVNQPVEQPKVETPAVEKQTEPTEEPKVE VTSIPQTTRYEEDLTKEHGTREWKEGKNGSRTVTTPYILNATDGTTTEGTSTTDEAEME KEWRVGTKPKEKLAPVLSLTSVTDNAMLRSARLTYHLENTDSVDVKKIHAEIKNGDKW KTIDLSKERLSDAVDGLELYKDYKIVTSMTYDRGNGEETSTLEETPLRLDLKKVELKNIG STNLVKVNEDGTEVASDFLTSKPVDVQNYYLKVTSRDNKλ/VSPPS*
Description: unknown
Assembly ID: 3864802 Assembly Length: 1321bp
> 3864802 Strep Assembly -- Assembly id#3864802 ATCGAATTACTTCAACTCCAACTTTACTCTCAATAAAAATCAAATGTAAAAAGAGGAGCT AAATTTATCTTTTTCTCCTCCTTCATCGTTCTTACTTTTGACCATAATAAGCATTTGGTC CATGTTTACGTTGGTAGTGTTTTTCTAGTATGTACTGGGGAGCAGGTTCAACTCTTGGAT TGATTTGTTCTGTAAAGCGATTCATCTTTGATACTTCCTCTAGTACGACAGAGTGATAAA CAGCATTCTCTGGATTTTTGCCCCAGGTGAATGGACCGTGATTGCGTACAACAATTCCTG GTACTTCAACCGGGTTAAGTCCGCGATGTTCAAACTCTTCTACGATAACCAGGCCAGTAT CTTTTTCATAGGCCACTTCTACTTCGTCCTTGGTCAAACTACGGGCGCAAGGGATTGAAC CGTAGAAATAATCTGCATGGGTTGTTCCGTAGAAAGGAATATCACGACCTGCCTGAGCCC AAGCAACAGCTTCTGTCGAATGGGTGTGAACCACACTACCAATTTCTGACCAAGCCTTAT ATAATTGCACATGAGTTGGGAAGTCGGAAGATGGTCTTAAATCCCCTTATAGGATCTTAC CATCTAGATCAGTCACTACCATGTTTTCAGGTGTCAATTCGTCATAATCCACGCCTGATG GTTTGATAACAATGACACCGAGTTCGCGATTGACTTCAGATACATTCCCCCAGGTAAATT TGACAAGTCCATGTTTTGGCAATGATTGATTGGCATCACAGACTCGTTTACGCATAGCAT TGATTACTTGATTCATCTTACATCAAACCTGCTTTCTTAATGAGTGGATAGAGAAAAGCT TGCGCCTCTTGAATGGCTGCGCGTGTTTCTTCTACTGTTTCACAATTTTCAGACCACATT TCGATTAGGAAAGGTCCATTATAATTGGTTTCCTTTAAAATATCGAAAGCTTCTTCCCAT TTGACACAACCTTGCCCAAAAGGTACATCTCGGAACTGGCCCTTTGAACTTTCTGTCACT GCATAAGTATCCTTGAGATGGAGAGTTGCGATGGCATGATGACCAAGATAAAACTCACTA TAGATATCATTATGCCATGCAGACACATTACCAATATCTGGATATACAAAGAGGAAGGGA GAGTCAATCTCTTTTTCTATAGCCAAATATTTTTCGATGCTATTGATGAAAGGATCATCC ATAATTTCAATAGCAAGTACCACCTGAGCTTCTTCAGCCCAGTCACAGGCTTTTCTCAAA TTTTTGATAAAACGTTGGCGTGTCTGGGGTGACTTTTCCTCATAGTAAACATCGTAACCA G
ORF Predictions :
ORF # Start End Direction Length
1 92 550 R 153 aa
> 3864802-1 ORF translation from 92-550, direction R VQLYKAWSEIGSWHTHSTEAVAWAQAGRDIPFYGTTHADYFYGSIPCARSLTKDEVEVA YEKDTGLVIVEEFEHRGLNPVEVPGIWRNHGPFTWGKNPENAVYHSWLEEVSKMNRFT EQINPRVEPAPQYILEKHYQRKHGPNAYYGQK*
Description :
L-RIBULOSE-5-PHOSPHATE 4-EPIMERASE (EC 5.1.3.4). - ESCHERICHIA COLI.
Assembly ID: 3864854 Assembly Length: 1265bp
> 3864854 Strep Assembly -- Assembly id#3864854 TTTTTCTGTTTTTCGGAGCAAACTGGGCTCCAGCCGGTTTTGGCCTTCTTTCCTTAGCTA CAGCTGGTTTAGCTGGCTCAGATTTTTCGGCTTTCTTTTCTGCACTTACTTTTGGTGCTG CAGGTTTTGCTTCTACTTTCGGAGCAGCTGCAGGCTTAAAGCTGGCAGCAATTTTTGCAG CGACAGCTTCTTCCACACTTGATGAGTGGCTTTTCACATCCAAGCCCAACTCTTTTGCAC GCGCTACAACTTCTTTACTTTCTTTTCCAAGTTCTTTTGCGATTTCGTACAATCTTTTCT TAGACAAATCATGTCCTCCTCTTCTATTCCATAAGAGACCTCATTTTCTTTGTAAATCCA GCATCTGTTACAGCCAAAACCTTTCTCGATTTCCCGACTGCTATGATTAATTCCAGTGTT GAAAACACGGTTACAATTTCTACTTGATAATAATGACTTTTATCTTGAATCTTCTTGGTC AGATTGGGTCCAGCATCATGAGCTAGAAAGACCAACTTGGCCTTGCCGTCTTGAATGGCC TTGACCACCAATTCTTCACCCGATATGATGCGCCCTGCTCGCTGAGCAAGCCCCAAGAGA TTACTTATCTTTTGCTTATTCAAGTCCCAACTCTCTTCTTTTCACTTTGTGATCCACATA AGCGATCAACTCGTCATAAAAGCTTTCTTCCACTTCCATGCTAAAGCTGCGGTTAAAGAC CTTCTTCTTTTTCGCCTCTAGGGCTTCTGCATTGTCTAGTTTGATATAAGCGCCGCGGCC ATTGGCCTTGCCCGTAGGATCAATAAAGACTTGTCCTTCCTTGTTCTTGACAATGCGGAG CAAATCACGCTTATCAATCACTTCGTTAGACACAACAGACTTGCGCAAAGGGATTTTTCT TGTTTTCATCTTTCCCTCCTCTAGCAGCTTTTATTCTTCTACAGTATCGTTTTCTACTTC CAACTCTACTGAAGCAGCGTCTTCCATGGCTTCAAATTCGCTAGCAGACTTGATATCGAT ACGGTAACCAGTCAAGTGAGCCGCCAAGCGCACGTTTTGTCCACGACGACCAATGGCAAG AGAAAGCTTGTTATCTGGAACAACCACCAAGGCACGTTTGCTGTCGTTTTCATCAAAG&T AACTTGGTCAACCTCAGCAGGAGCGATGGCATTGTAGATAAATTCAGCTGGATCTGCTAC CCACTCGATAACATCGATATTTTCTTCGATTGGTACCATGCGGTCATTTTTAGCATCGTA ACGAG
ORF Predictions :
ORF # Start End Direction Length
1 324 548 R 75 aa
> 3864854-1 ORF translation from 324-548, direction R WKAIQDGKAKLVFLAHDAGPNLTKKIQDKSHYYQVEIVTVFSTLELIIAVGKSRKVLAV TDAGFTKKMRSLME*
Description:
PROBABLE 11.1 KD RIBOSOMAL PROTEIN IN NUSA-INFB INTERGENIC REGION (ORF4) . - BACILLUS SUBTILIS.
Assembly ID: 3864862 Assembly Length: 1305bp
> 3864862 Strep Assembly -- Assembly id#3864862 ATAAACCAAAGGAAGCTGAGCTCTTTAGTCCCAGCTTCTTTTTATATATAAAATTTTACC CGTGAAAAGACAGGGCCTTAGCAGACTTCTTTTTTACTTCGTTCACCCTTGCTTTTTCTT TGTATGTTTGGGCGTTGGCAGTTGGTTATACATAGCTAAAATCAGGTCTTATAGAAACAT CTTATTATCAAGTTCTTCCACTCAAATCATTTCTTTGGCACCTTTGTATGGAAACTCAAA AGAAGATTGGTCAATCTTATCTAAGACTGCTTGCACGGGTTTAACTAAAAGCGATCGTCA TAAATGCCGCCAATAATCTTGCCGCGGAAGTAAAGAATATACTCCCCCATCATGGAACGG TAAGTCACATCATCTAATCCTGATAATTGTTCCAAAACAAATTCCAAATAGTTCTTACTT GATGCCATTTCTAATCTTCTAGGCTCTGTTCAACGATAACAACCGTATAGAGTTCTTGCT TAACCTCGCATCCAATTGATTTAAAGCCCTGCTTTTCCCAAAAATGCTGAGATTGCGGAT TTCCCTTAACATAAGCCAAACGTGCCTTTCGAAAGTTCTTAGCAAAATAAGCTAGTGCTT CTGTCACAATATGACTACCAATCCCTTTCCTCTGATAGGCTTGATCAACCATAAACAAAC CAATAAAAACAGTCTCCTCATCAGGATATGCATAGACAAAATCCATAACAGCCACAAGGT CAAATCCATTCCAAAATCCAACAAAAAACTTATCAGCCTTAGCTTTACCTTCAGGTAGAC AAAGCATGTCCTCTTTTACAGTTGCAAAATTTGGCTCTGGTGGACAATGCTGAAAATACA GAGGATTACTTTCATATAAAGATAAAATACTTGGAATATCCTTTTCAGTTAGTATCCTAC AACTGTAATACTTAGATAGTTGGTCAATCATCTTTTCAAATTCGATACTTTCTTGTGCCC TGTGATTATGACACAGGAAGATGCACTGATCGTCATCAGCCACATAAAAGTTCTTTCCAT CGTGCCTAATCGTTGTCTCAAACCTTTGGATAAAACCTTTAGCCTATACAACTGGATTTT CCTCTCTCAAAAGTATATTCTTTTGCAGGCGAACTTCCTCAAAATCAGTCGTGTGCAACT TCAGTAGAATATTCATAGGCTCGGATAATCTGAGCGACAACAGGATGGCGAACCACATCC TTGGCTGAAAAATGAACAAAGTCAATCTGATGGATGTTCTTGAGTTTCTCTTGAGCATCA ATCAAACCGGACTTGACATTACGTGGCAGGTCAATCTGACTAATA _
ORF Predictions:
ORF # Start End . Direction Length
1 431 1003 R 191 aa
> 3864862-1 ORF translation from 431-1003, direction R VADDDQCIFLCHNHRAQESIEFEKMIDQLSKYYSCRILTEKDIPSILSLYESNPLYFQHC PPEPNFATVKEDMLCLPEGKAKADKFFVGFWNGFDLVAVMDFVYAYPDEETVFIGLFMVD QAYQRKGIGSHIVTEALAYFAKNFRKARLAYVKGNPQSQHFWEKQGFKSIGCEVKQELYT WIVEQΞLED*
Description : unknown
Assembly ID: 3864888 Assembly Length: 1742bp
> 3864888 Strep Assembly -- Assembly id#3864888 CTAATCTCCTTAAAACGTGATCTTTTCAAGAATATTTTTATCTAAACAATCCAGCAAGTC TTGGTAAGAATAGACTTCGTAAGTCGGCTGGGCTTGTGTGTGATTTTCGAGGTGATGAGG ATTATACCAGATAGTGTCAATCCCCGCATTATTGCCACCTTGAATGTCGGCGGTTAGAGA ATCTCCAATCATCAGCGTCTTTTCTTTACTAAATCCAGCAATTTGCTGGCCAATCTTTTC ATAAAAAAGAGCATCCGGCTTTTGAGTTTGCAACTGTTCTGAGATAAAGACTTGATTGAA ATAAGGTGCTAGACCAGATTGAGCCAAACGTCCTGTCTGAATGGCAGTAATGCCATTTGT CGCAGCATACAAGTTATAATCACGCTCAATGAGGCTGTCCAAGAGATCATGAGCGCCCGA TAGTGTTTGTCCCTGCTGGGCGAGGTAAAATTGGTAACGCTGGGCAAGAAAACTACCGTC TTTTTCCTGTCCAAAATGAGCAAATAAACGAGAAAAGCGCGTGTTAACCAGCTCTTGTTT ACTGATTTTCTTCAGCTCCAAGTCTTTCCAGAGAGCCTTGTTCATAGGAACGTAATAATC TTTATAAGCCGGAATATCCGCAACTCCTTCTTCTTTTAGAAGTGGAGTCAAAGCCACATC CTCAGCAGCATCAAAATCAAGAAGAGTGTGGTCGAGGTCGAAGAGTACAAATTTGTAGAA CAATTTGAGGTTTTCCTTTCTGAAAATTCATTAAGAACATTATATCATAAAGCACCTCAT ACAATTAACTAATTTAATCACTTAAAAAAAATTCGAACACTTTCTATACAACTGACAGCT CAAATCTTTCAGAATAGAACAATACTAACTATCGAACACCCCGTCTTCATAAATACATAT GTAATTCTAGGCCTAGAATTCCTATAAACTAAATGCTTTCATACTCTTCCAAGTAATTGA TTGCCTTAAATTTTAATTTTTGAAGGTTTCTAAAGCTAGAATAGCCCCATCACAATCAGT TTTGATTGATTCACAATTTAGAAACACTATAGTTTCACTCCTGTTAAAATAAAAAGGAAC TGCATAAAGCAATCCCTTTCTGATTTTGAAATCATTTACTTAACATTTTATAGTTGAGAT AATCAATAGCTTATCTATAAAAAGAGTTATAGTAAAATTCCTTATTTATTGATTCCAAGC TCCGCTAACTGTATTTGAATAACTGACAGTTCTGCACCAGCCTGAAAAAGAGCAGCTGCA TTATAGGCACCTTCTACAATTGGAACCCTGTTGATGATGATACTTTTATCACTGAAATCA GTCACCATTTTTAAGTTCATTTTAGCAGAACCTAGGTCAAAAAAGGCAAGTAAAGTATCT GCTGGATTTTCGGAAACAACCCTATCTACTTGATCAAAACTCGTTCCAATTCCTCCGC.ee TCGGTTCCTCCTACATAAGTAATCGGAACATCTTTAGCTACTTTACTAATCAGTTCAACA ACACCTTCTGCAATGTGTTTGGAATGTGAAACGATAACAAGACCAATACCAATACTTTCC ATCAAACCACTCCAGTTTCTAAAATAGCAGTAAAGAGTAATCCTGATGAGAATGATCCAG GATCAATATGTCCAAGAAACCACATGCTCCTAAGACAAGAGCTAACAGACTGGCCATCAA TAATAGTATTGTTCTTTTTTTCATCATTACTCCTTAACTAGTGTTTAACTGATTAATTCG AT
ORF Predictions:
ORF # Start End Direction Length
1 10 657 R 216 aa
> 3864888-1 ORF translation from 10-657, direction R VALTPLLKEEGVADIPAYKDYYVPMNKALWKDLELKKISKQELVNTRFSRLFAHFGQEKD GSFLAQRYQFYLAQQGQTLSGAHDLLDSLIERDYNLYAATNGITAIQTGRLAQSGLAPYF NQVFISEQLQTQKPDALFYEKIGQQIAGFSKEKTLMIGDSLTADIQGGNNAGIDTIWYNP HHLENHTQAQPTYEVYSYQDLLDCLDKNILEKITF*
Description: unknown
Assembly ID: 3864898 Assembly Length: 1136bp
> 3864898 Strep Assembly -- Assembly id#3864898 GTGGAATGCGGGGACGCCTTGTCTAATTTTGGATCAAGCCCTGAGTTTGACACAGGGAAA TGAGCTGGACGGACTGCTATCTCTGAAGAAATTACTGGCACCATTAGCCTATCAGCCTTG GATGATTATGTGGCGGCCTTGTCTCAACAGGATGTTCCCAAAGCTTTGTCTTGCTTGAAT CTTCTTTTTGACAATGGTAAGAGCATGACTCGTTTTGTGACCGATCTTTTGCACTATTTA AGAGACTTGTTAATTGTTCAAACAGGGGGAGAAAATACTCATCATAGTTCAGTCTTTGTA GAAAATTTGGCACTTCCTCAAAAAAATCTGTTTGAAATGATTCGCTTAGCAACAGTGAAT TTAGCAGATATTAAGTCTAGTTTGCAGCCCAAGATTTATGCTGAAATGATGACCGTCCGT TTGGCGGAAATCAAGCCCGAACCAGCTCTATCAGGAGCGGTTGAAAATCGAATTGCTACG CTGAGACAGGAAGTTGCCCGTCTCAAACAAGAGCTTTCTAATGCAGGTGCGGTTCCTAAA CAAGTTGCACCAGCTCCTAGTCGACCAGCTACGGGCAAAACAGTCTATCGTGTCGATCGC AATAAAGTGCAATCTATCTTACAAGAGGCCGTCGAAAATCCTGATTTAGCACGTCAAAAT CTAATTCGTTTGCAGAATGCCTGGGGAGAGGTAATTGAAAGTCTAGGTGGGCCGGACAAG GCTCTGCTAGTTGGTTCTCAACCGGTTGCTGCCAATGAACACCATGCTATTCTTGCTTTT GAGTCTAACTTCAATGCTGGTCAAACTATGAAACGAGACAATCTCAATACCATGTTTGGT AATATCCTCAGTCAGGCGGCAGGTTTTTCACCTGAGATTTTAGCTATTTCCATGGAGGAA TGGAAAGAAGTTCGCGCAGCCTTTTCAGCCAAAGCCAAATCTTCTCAAACTGAAAAAGAA GTAGAAGAAAGCCTGATTCCAGAAGGATTTGAATTTTTGGCTGATAAAGTGAAGGTAGAG GAAGACTAAAGAAAGATTTCATGATACAATAAGTTTATGAATAAACAACAATTTATTAIT ATGGCGCTATTTACAGCTGCTGAGACCTATTTTTTCAATGAAGCCTGGATGACTGG
ORF Predictions:
ORF # Start End Direction Length
1 130 1029 F 300 aa
> 3864898-1 ORF translation from 130-1029, direction F VAALSQQDVPKALSCLNLLFDNGKSMTRFVTDLLHYLRDLLIVQTGGENTHHSSVFVENL ALPQKNLFEMIRLATVNLADIKSSLQPKIYAEMMTVRLAEIKPEPALSGAVENRIATLRQ EVARLKQELSNAGAVPKQVAPAPSRPATGKTVYRVDRNKVQSILQEAVENPDLARQNLIR LQNAWGEVIESLGGPDKALLVGSQPVAANEHHAILAFESNFNAGQTMKRDNLNTMFGNIL SQAAGFSPEILAISMEEWKEVRAAFSAKAKSSQTEKEVEESLIPEGFEFLADKVKVEED*
Description: unknown
Assembly ID: 3864938 Assembly Length: 167 Obp
> 3864938 Strep Assembly -- Assembly id#3864938 CTGTCTCTGAAACAGTCACATCAAGTGCCTCTGAACAANCGCCCCNCCTAGGTNGACGGT ATCGATAAGCTCGATCTGTGATTTCAGAGAAGAAATCAAGTGCTGTAACAGAAGTAAGAT GTAATTGTATGTAAAGGAGACGTCATGTTAAATAGTATTGTAACCATTATTTGTATTGCC CTTATCGCGTTTATCTTGTTTTGGTTTTTCAAAAAGCCTGAAAAATCTGGACAAAAAGCC CAGCAAAAAAACGGATACCAAGAGATTCGAGTGGAAGTCATGGGAGGCTATACTCCTGAG TTGATTGTCCTCAAGAAATCAGTGCCAGCCCGCATTGTCTTTGACCGCAAGGATCCTTCA CCATGTCTGGATCAAATTGTTTTTCCAGATTTTGGTGTACATGCGAACCTGCCAATGGGG GAAGAGTATGTAGTGGAAATCACGCCTGAACAGGCTGGAGAGTTTGGCTTTGCTTGTGGT ATGAACATGATGCACGGCAAGATGATTGTAGAGTAGGTGGAGACTATGACAGAAATTGTG AAAGCAAGCTTAGAAAATGGCATTCAAAAAATCCGTATCCGAGCTGAAAAAGGCTATCAT CCAGCCCATATCCAGCTTCAAAAGGGAATTCCAGCTGAGATTACCTTTCATTCGTGCTAC TCCTTCAAACTGTTATAAGGGAAATTCTGTTTGAAGAAGAAGGTATCTTGGAAGCAATCG GCGTAGATGAGGAGAAAGTCATTCGTTTTACACCTCAAGAATTAGGGAGACATGAATTTT CTTGTGGCATGAAGATGCAAAAGGGAAGCTATATAGTCGTTGAGAAGACTCGAAAATCTC TATCTCTCCTGCAAACGTTTTTGGATTACTAGTATCTTTACTGTGCCTCTTGTGATTCTC ATGATTGGGATGTTGGCAGGTAGCATTAGTCATCAAGTCATGCATTGGGGAACCTTTTTA GCAACAACGCCTATTATGTTAGTTGCGGGTAAGCCATATATCCAGAGTGCTTGGGCCAGT TTTAAAAAGCACAATGCCAACATGGATACCTTGGTTGCGCTGGGAACTCTAGTGGCTTAT TTCTATAGCCTAGTTGCTCTCTTTGCTGGTCTCCCTGTTTACTTCGAAAGTGCTGGATTT ATCCTCTTTTTCGTTCTTTTGGGAGCAGTTTTTGAGGAAAAAATGAGGAAAAATACGTCC CAAGCTGTGGAGAAATTACTGGACTTGCAAGCTAAAACCGCAGAAGTCTTGAGTGATGAT AGTTATGTCCAAGTTCCTTTGGAACAAGTCAAGGTACGCGACCTTGATTCCAGTGCGT.ee CGGTGAAAAGATTGCTGTTGATGGTGTCGTAGTAGAAGGTGTCTCTAGTATTGACGAATC CATGGTGACAGGTGAGAGTCTGCCTGTGGACAAGACAGTTGGAGATACTGTCATTGGCTC AACCATCAATCATAGTGGAACGCTTGTCTTTAGAGCAGAAAAAGTTGGCTCAGAGACTGT TTTGGCTCAGATTGTAGATTTTGTGAAGAAAGCTCAGACAAGTCGTGCGCCGATTCAGGA CTTGACGGATAAGATTTCAGGGATTTTTGTCCCAGTAGTTGTCATTTTAGGAATCATGAC CTTTTGGGTTTGGTTCGTCTTGCTCAGGGATAGTGTGGTCGTGCTTGGAG
ORF Predictions:
ORF # Start End Direction Length
1 883 1326 F 148 aa
> 3864938-2 ORF translation from 883-1326, direction F VPLVILMIGMLAGSISHQVMHWGTFLATTPIMLVAGKPYIQSAWASFKKHNANMDTLVAL GTLVAYFYSLVALFAGLPVYFESAGFILFFVLLGAVFEEKMRKNTSQAVEKLLDLQAKTA EVLSDDSYVQVPLEQVKVRDLDSSASR*
Description: ATCS_SYNP7
Assembly ID: 3864956 Assembly Length: 1252bp
> 3864956 Strep Assembly -- Assembly id#3864956 ACAAGAACAATTGGAACAGGTACAGGCTGTTAAAAAATCGATTAACACAGCTAGTGAAGA AGTGAAAAACCAAGTCTTGCTACCCATGGCTGATCACTTAGTGGCTGCTACTGAGGAAAT TTTAGCGGCTAATGCCCTCGATATGGCAGCGGCTAAGGGGAAAATCTCAGATGTGATGTT GGATCGTCTTTATTTGGATGCAGATCGTATAGAAGCGATGGCAAGAGGAATTCGTGAAGT GGTTGCCTTACCAGATCCAATCGGTGAAGTTTTAGAAACAAGTCAGCTTGAAAATGGTTT GGTTATCACAAAAAAACGTGTAGCTATGGGGGTCATCGGTATTATCTATGAAAGCCGTCC AAATGTGACGTCTGATGCGGCTGCTTTGACTCTTAAGAGTGGAAATGCGGTTGTTCTTCG TAGTGGTAAGGATGCCTATCAAACAACCCATGCCATTGTCACAGCCTTGAAGAAGGGCTT GGAGACGACTACTATTCATCCAAATGTGATTCAACTGGTGGAGGATACTAGCCGTGAAAG TAGTTATGCTATGATGAAGGCCAAGGGCTATCTAGACCTTCTCATTCCTCGTGGAGGAGC TGGCTTGATTAATGCAGTAGTTGAGAATGCCATTGTGCCTGTTATCGAGACAGGAACTGG GATTGTCCATGTTTATGTCGATAAGGACGCAGATGACGACAAGGCACTGTCTATCATCAA CAATGCCAAAACCAGTCGTCCTTCTGTCTGCAATGCCATGGAGGTTCTGCTGGTTCATGA AGACAAGGCAGCAAGCTTCCTTCCTCGCTTGGAGCAAGTGCTGGTTGCAGATCGAAAAGA AGCTGGGTTGGAACCAATTCAATTCCGCCTAGATAGCAAAGCAAGCCAGTTTGTTTCAGG TCAAGCTGCTCAAGCACAAGACTTTGATACCGAGTTTTTAGACTATATTCTAGCTGTTAA GGTTGTGAGCAGTTTAGAAGAAGCGGTTGCGCATATTGAATCCACAGTACCCATCATTCG GATGCTATTGTGACGGAAAATGCTGAAGCTGCAGCATACTTTACAGATCAAGTGGACTCT GCAGCGGTGTATGTTAATGCCTCAACTCGTTTCACAGATGGAGGACAATTTGGTCTTGG.T TGTGAAATGGGGATTTCTACTCAGAAATTGCACGCGCGTGGTCCAATGGGCTTGAAAGAG TTGACCAGCTACAAGTATGTGGTTGCTGGTGATGGGCAGATAAGGGAGTAAG
ORF Predictions:
ORF # Start End Direction Length
1 1030 1251 F 74 aa
> 3864956-2 ORF translation from 1030-1251, direction F VTENAEAAAYFTDQVDSAAVYVNASTRFTDGGQFGLGCEMGISTQKLHARGPMGLKELTS YKYWAGDGQIRE*
Description: gamma-glutamyl phosphate reductase (proA) homolog - Haemophilus influenzae (str ain Rd KW20)
Assembly ID: 3864958 Assembly Length: 1785bp
> 3864958 Strep Assembly -- Assembly id#3864958 CTGCCCTAGCAGGAACGCAAGAAGGAACTGGAGAATAGGCATTTTCAAAATTATAACCTA CACTAGCCATCATATCTAATGTTGGAGTGCTAACTAGCTTATCCTTACTATTCAAGGATA AGGCGTCTGCTCTCATTTGATCTACAACAATCAAAATAATATTTGGTTGTTTTGTCTGAA CCATAAAATCTCCTTTCTAATATGGCAAAAGAGGCACAAGAAGATATCTACCTTTACTGC ACCCCTTTCTATATCAATCTCTCTATATAAAGCAATAACATTCTTGTTATGTTTTATAGA ACAATGGACTAAAATATGACTAAATCGATTAGGAAATTCAAATCATTTTCTAGTACTGTT TTAGTAAGTTACAGTGTACTATTCCAACTTCAATAAATTATAAACCTTTGTCTAATAACA ATTTTAGTGGAGATAAGAAATCCTACACCTAACTCATCTTACACGTAATCTATTTCTATT TTATCACAAAAAACGCAAGTAAGACCATTAACTCAATTCAGTTTTATCTGCCATTTTCAC AAATGGGAAATAAGTCAAGACACTAATAATCAAACAAACAACTGATAAGATGATGGCACG CCAATCAAATGCTGTAGAGAAGAAACCATATAAAATTGGAGGCATTACCCAAGTAACATT TTGTGTAACAGGTGAAACAAGACCCCAGCTTGTTGCCCAGTAAGCTACCGTTGCCATGAA AACCGGGCTAAGTACAAATGGTATAAATAGCAAAGGATTCAAGACAACTGGTAAACCATA ATTCGATACCGGCTCACCAATATTAAACAGAACTGGTGCTAGACCAAGTTTAGCAACTTT TCGATAATGACTGTTTCTTGAAAAAATTAAAATAGCAAGTACTAATCCTAATCCTCCAAA CCAGACAAACGCCCCAAAAGACCCACTTGTCCATATATAAGGAATCGGTTCACCTTTTTG GAAAGCATCCAGATTCGCTAACATAGCAACTCCAAATAGCCCTTCCATGATGGGAGCCAA TACATTTCCTCCATGGAGACCAAAAAACCAGAATAACTTATTCAAAAAGATCATCAGAAT AACTGCAAAGAAACTTTGAGACAAACCTAGTAATGGCGTTTGTAACACCTTGTAAACCCA ATCAATCAATAAGTCATTGCTAAGTAAATGGAAAACATAAGTCAAGATGGCTACTATATA CATCGCCATAAATCCTGGAATGATAGAAGTGAACGGCTTAGCAATCGCAGGGGGAACTGA ATCTGGTAACTTGATTACCCAGTTCTTTTTCATTACTTTACAGAAAATAATAGAGGCTAA AAATCCAATCATCATGGCTGTAAAGTAGCCTCTGGCATTAATATGGTTTCCTGGAATCJC ATTCCCAATAGTTACCATCAGATTTTTACCATCAAATGCTAGATTATCAATTCCATGTTA AGATTTGATCTAATTTCACATCTCCTACATTTGCCAAAGGGAAACTCTTTGTAACTGTAC TTCCAATCGAAATGACAAACGAAGCAAGTGATACCAAACCAGCAGAAACTGTATCAACCT TGTAAATCTTAGCGATATTCACTCCCAAGCAATAGATGAACAACAAGGAAACAATTGGTA TACTTCCCTTGAATACCAAATTATTGATGTCAACAAGCCACTGAAAGGTTTTCGTAATAC TTCCTAGGTGAAATTGTTGTGGTAAATCCACTAGAAAAGCATTTAATAACAAAGCAATGG AACCTGTCATAATAACAGGCATAGTCCCCACAAATGAATCACGTT
ORF Predictions :
ORF # Start End Direction Length
1 1427 1711 R 95 aa
> 3864958-2 ORF translation from 1427-1711, direction R VDLPQQFHLGSITKTFQWLVDINNLVFKGSIPIVSLLFIYCLGVNIAKIYKVDTVSAGLV SLASFVISIGSTVTKSFPLANVGDVKLDQILTWN*
Description : unknown
Assembly ID: 3865022 Assembly Length: 1386bp
> 3865022 Strep Assembly -- Assembly id#3865022 ATCGAATTTCATTTCTATTTCCTATTCCATTTTTATTCAAAAAATCAAAAAGCAAACTAG AAAGCTGGTCGCTGGTGGTTCAAAACACTGTTTTGAGATTGTCAATAGAACTGACAAACC CTGTAATATACCTGCATATATACATACGACAAGGCGATACTACCCTAGTTTGAAGAGATT TTCGAAGAGTATTCATTTTTGTCTTTTACTTATTATACCATATTCACATAAAAAAACGAA CATTCTTATCCTAAAAAATGCTCATTTTTCTTAAATTATCAATCTAAATCTGGTTTATAG AAGGAACGATTATCCATAGCGAAGATTTTATTGGTCATCTCTCCTTTATCCACCAAAGCC AGAGCTGTTGACATCATCATCATGCTTGCATCCAGATTGTCAATCATATGGATAATCTCT GCCTCCATAATACGTGGACGGACTGGAATTTCCATATTCAAGCAAGCCGTGGTGGACTTG AGGATGACATGACGAAGCAAAACGACTTCTTCCTTGGTATCATCGATGCCGAGTTCCATA ACTGTCTTGGTAATTTCGCTATCAATGAGAGCGATATGTCCAAGAAGATTACCTCGCACT GTGTACTCTGTCTGGTCTGGCCCCGTCAACTCGATAACCTTAGCTAAGTCATGCAGCATA ATCCCCGCATAGAGCAGGCTCTTATTGAGCTGAGGATAAACTTCGCTAATAGCGTCTGCC AAACGTACCATGGTCGCCGTATGATAAGCCAACCCCGTTTCAAAGGCATGGTGGTTGGTC TTGGCGGCTGGATAGGAGTAGAATTCCTTATCATACTTGGTGTAGAGATTTCGGACAATC CGTTGCCAGACAGGATTTTCAATTTTGAAAATCATTTGCGACATGTAGTCACGAATTTCC TTGACATCAACTGGTGACTTGACCTTGAAATCAGCTGGGTCATTGGGTTCACCAGCTTGA GGCAGGCGGAGAGTAATTTGATTGACTTGAGGGGTATTGTTATAAACTTCTCGGCGTCCT TTCATGTGGACAACCTTACCTGCGGTAAAGGCCTCAATGTTATGAGGTTGGGCATCCCAG AGCTTCCCATCAATCTCGCCACTATCATCTTGGAAGGTAAAGGCTAGGTAGTTTTTCCCA GCTCGAGTTTGCCTCAGGTCAGCTGATTTGATTAGGTAAAAGCCTTCAAATAACTCATCT TTTTTCATGTGACTAATCTTCATATTCTTCCTCATTTTCTTGAAAATGGAGTAGATCAAG CGCAGGCTCACCTTCTGACAACTCAATGTGACGGAGCGTCCGCTCGATAGCTATGGTACG ACGGTTTAATAATTCGATCAATATTGCCAGAGGCATGTTGGAGATGTTTTTGTGCCTTGA CCAGAA
ORF Predictions:
ORF # Start End Direction Length
1 279 1271 R 331 aa
> 3865022-1 ORF translation from 279-1271, direction R VSLRLIYSIFKKMRKNMKISHMKKDELFEGFYLIKSADLRQTRAGKNYLAFTFQDDSGEI DGKLWDAQPHNIEAFTAGKWHMKGRREVYNNTPQVNQITLRLPQAGEPNDPADFKVKSP VDVKEIRDYMSQMIFKIENPλ/WQRIVRNLYTKYDKEFYSYPAAKTNHHAFETGLAYHTAT MVRLADAISEVYPQLNKSLLYAGIMLHDLAKVIELTGPDQTEYTVRGNLLGHIALIDSEI TKTVMELGIDDTKEEWLLRHVILKSTTACLNMEIPVRPRIMEAEIIHMIDNLDASMMMM STALALVDKGEMTNKIFAMDNRSFYKPDLD*
Description: gi 1710422 (U21636) cmp-binding-factor 1 [Staphylococcus aureus]
Assembly ID: 3865036 Assembly Length: 1167bp
> 3865036 Strep Assembly -- Assembly id#3865036 CTCAGATTACAGAGGACAATCAACTGGTTCATTTTCGTTTCCAGTTTCAAAAAGGCTTAG AAAGGGAGTTCATCTATCGTGTGGAAAAAGAAAAAAGTTAAGGCAGGTGTTCTCCTCTAC GCAGTCACCATAGCAGCCATCTTTAGTCTTTTGTTGCAATTTTATTTGAACCGACAAGTC GCCCACTATCAAGACTATGCTTTGAATAAAGAAAAATTGGTTGCTTTTGCTATGGCTAAA CGAACCAAAGATAAGGTTGAGCAAGAAAGTGGGGAACAGGTTTTTAATCTAGGTCAGGTA AGCTATCAAAACAAGAAAACTGGCTTAGTGACGAGGGTTCGTACGGATAAGAGCCAATAT GAGTTTCTGTTTCCTTCAGTCAAAATCAAAGAAGAGAAAAGAGATAAAAAGGAAGAGGTA GCGACCGATTCAAGCGAAAAAGTGGAGAAGAAAAAATCAGAAGAGAAGCCTGAAAAGAAA GAGAATTCCTAGTCAATTCAACTATAATGCGTTGAATCCAGAATAGTCCACTGTAGTTTC TAGAAAATTGCTGGAAATGGATGTTAAGCTCCAATTCATTTGTTTATATCTTATTTCAGT CCACTATACTTTGTGCTAAATTAAAGATATGAAACATGATTTTAACCACAAAGCAGAAAC TTTCGATTTCCCTAAAAATATCTTCCTCGCAAACTTGGTATGTCAAGCAGCCGAGAAACA GATTGATCTTCTATCAGACAAAGAAATTTTAGATTTCGGTGGTGGCACGGGTCTATTAGC CTTGCCCCTAACCCCTAGCCAAGCAGGCTAAGTCAGTCACTCTTGTAGACATTTCTGAGA AAATGTTGGAGCAAGCTCGTTTGAAAGTGGAGCAGCAAGCAATCAAGAATATCCAGTTTT TGGAGCAAGATTTACCGAAAAATCCCTTGGAGAAAGAGTTTGATTGCCTTGCTGTTAGTC GGGTTCTTCATCATATGCCTGATTTGGATGCGGCTCTCTCACTGTTTCATCAACATTTGA AGGAAGATGGGAAACTCATCATTGCTGATTTTACCAAGACAGAAGCTAATCATCATGGAT TTGATTTAGCTGAACTGGAAAACAAGCTAATTGAGCATGGGTTTTTCATCTGTGCATAGT CAGATNCTCTATAGCGCTGAAGANC-TG
ORF Predictions:
ORF # Start End Direction Length
1 79 492 F 138 aa
> 3865036-1 ORF translation from 79-492, direction F VWKKKKVKAGVLLYAVTIAAIFSLLLQFYLNRQVAHYQDYALNKEKLVAFAMAKRTKDKV EQESGEQVFNLGQVSYQNKKTGLVTRVRTDKSQYEFLFPSVKIKEEKRDKKEEVATDSSE KVEKKKSEEKPEKKENS*
Description: unknown
Assembly ID: 3865054 Assembly Length: 916bp
> 3865054 Strep Assembly -- Assembly id#3865054 TCTCCCAACATATAATTTCCGTTTTCCAATCCCCCAGCTGTCATACAGTCTGTGATAAGA GCGATGTTTTCTGTTCCTTTTTGTTTGATAAGAATTTCGCAAGCCTTTGGATCTACGTGG TGACCATCACAGATCAACTCTGCATAGGTATGTGGCAATTGGTACATGGCTCCAACCATA CCCAATTCACGGTGAGTCAACCCACGCATTCCATTGTAGGCATGCACCCAAACACTCGCT CCAGCATCGACTGCTTTTTTGGCTTCATCAAAAGTCGCGTTTGAATGTCCAAGAGCAACC GTCACACCTTCGCCCGTAACTGTACGAACAAAGTCTTCCACCCCATCACGTTCTGGTGCA ATCGAATTTTATTAAGCAAGCCATTTGCCGCTTTTTGCCAAGAATGAAACTCCTCAACAC CCGGGTCTCTCATATAAGTTGGATTTTGTGCCCCCTTAAAAGTTTCTGTGAAATATGGAC CTTCATAATAAATCCCACGAATCTTAGCACCTGTTGCTTCTTTATAATGGTTTCCAAGAT TTTCAGTGACTGCAAGCAATTGCTCATAAGTGGCTGTTAAAGTTGTGGGTAAGAAACTGG TAACACCGGTACTAAGAAGTCCTTCACTCATAGTATGCAATGTACCTTCAATGTTGTTGT CCATCACATCTACACCTGCATATCCATGAATATGAGTATCCACAAGACCTGGGGCAATGC TATAACCTGTATAGTCAATCACCTCAGCCCCTTCAGGAATCTGCTCTACATGTTTCCCAA ACTTGCCGTCCACAAGTTCCAAGTAACCACCTCGACAAATCCGTGTGGGTAGAAAAACTG ATCCGCTTTAATATAGTTAGGCATAATGTTAACCTCCTTAAAAGATTGATTCTACAATTT ATTATGTCAATTCGAT
ORF Predictions :
ORF # Start End Direction Length
1 302 793 R 164 aa > 3865054-1 ORF translation from 302-793, direction R _ VDGKFGKHVEQIPEGAEVIDYTGYSIAPGLVDTHIHGYAGVDVMDNNIEGTLHTMSEGLL STGVTSFLPTTLTATYEQLLAVTENLGNHYKEATGAKIRGIYYEGPYFTETFKGAQNPTY MRDPGVEEFHSWQKAANGLLNKIRLHQNVMGWKTLFVQLRAKV*
Description:
N-acetylglucosamine-6-phosphate deacetylase (nagA) homolog - Haemophilus influe nzae (strain Rd KW20)
Assembly ID: 3865102 Assembly Length: 786bp
> 3865102 Strep Assembly -- Assembly id#3865102 CTGGATTAAAACGAGGCAGTTTCAGACTAATATCCAAGTCGTAAGAAATGCCTGAAATAA GCTTTTCTAAATTGTCCAAAGCTTGCGGGAAAACGCTCTTGGAATAGTTTCTCTAAAGAA CTTGCTGATATAAAGACATCTTGTCTCGAACGCAAGGGAACTTCTCTGAGCGGTAGATTT TCTTTAATCGCTGTTAAAACTTGAAGAACTTCTCTATCCCTGCTTTCAAAAGCGTTGACC CGATAAAGAGGTAAGATAGGATGATGAAATTCGCTTGCTAGTGTTTCTGGATAAACCCCT ATATAGTAATCACAGCCTAGTTCTAACGACTCAACTCTATCAAAATAAGGCACAATGACC GCGATATCCTCCAGGTACTGGGACAGGACTGACCAAGTTTTCTCCCCCTGCATCTTGGCT GTCGAAAGCTTCATCAACTGCTGATAGCCCACACTAGATAGAGCTAAAAAGCGCAAATTC ACTTCCTGATCATCTACAAACACTGTCATTTCAAGCCCTAGCAAAGGATGAATGCCGTAT TTTTTTGTAATCTCTAGAAAGTCGAAAGCGCCATAAAGATTGTCAATATCCATCATAGCC AAATGAGTGTAGCCGTATTCTTTAGCTGCTCTCACATACTTTTCGATCGAAATGACGCTT TCCATAAAACTATAGACTGTTTTTGTATCTAGTTGTGCGATCAATTTACACTTCTCCTCT ATCCTTCTCACTATATTATACCATTTTCACCTATAAATGGCTTCTCTTGAGAAAAATTTC GATCAG
ORF Predictions:
ORF # Start End Direction Length
1 27 731 R 235 aa
> 3865102-1 ORF translation from 27-231, direction R VRRIEEKCKLIAQLDTKTVYSFMESVISIEKYVRAAKEYGYTHLAMMDIDNLYGAFDFLE ITKKYGIHPLLGLEMTVFVDDQEVNLRFLALSSVGYQQLMKLSTAKMQGEKTWSVLSQYL EDIAVIVPYFDRVESLELGCDYYIGVYPETLASEFHHPILPLYRVNAFESRDREVLQVLT AIKENLPLREVPLRSRQDVFISASSLEKLFQERFPASFGQFRKAYFRHFLRLGY*
Description: unknown
Assembly ID: 3865156 Assembly Length: 1213bp
> 3865156 Strep Assembly -- Assembly id#3865156 CACTTTCAGCTTCTTCTCTTTTTGAACGGTTATAAACACGAATCAGATTCCCTATTTCTT GCGATTTATGTGATTCCTTATTTTCCAATCTAAAGTATAGTGAAATGAAATAAAACATGC GCAAATCGATTAAGGAATTTAATCTAATTTCTAACAATGTCTTAGAAATCAAAGTGTACT ATTTTAACTTCAATGCACTAAACATCTAATACTCAATAAAAATCAAAGAGCAAACTAGGA AACTAGCCGCAGGTGGCTCAAAACACTGTTTTGAGGTTGTAGATGAAACTGACGAAGTCA GTAACCATACATACGGCAAGGCGACGCTGACGTGGTTTGAAGAGATTTTCGAAGAGTAGC AAAATGGAAAAAGGAGTGAGTGAAGCACATCGCCTCCCCACTCCTTTTTCTGTTTTTAGG CTGTTTTTTCAACCTTCAAGATTTTTACATCATAGCTACCAACAGGCGTTTCAATGGTTG CTGTATCACCTGTTTTCTTGCCAATCAAGGCCTGCCCAATTGGGCTTTCATTTGAAACCT TACCTGCAAAGGCATCCGCACCAGCTGAACCTACGATAATATAAACTTCTTCTTCGTCCT CACCAATTTCTTGGATGGTGACTGTTTTACCAATCGCTACTTCGTCCTGGGCAACTGCGT CGCTATTGACGATTTCAGCATAGCGGATTTTTGTTTCTAAGCTAGAGATTTGTCCTTCGA CAAAGGCTTGTTCATCCTTAGCTGCTTCGTACTCACTGTTTTCTGAAAGGTCACCGTATG AACGGGCAATCTTAATGCGTTCTACCACTTCTGGTCGACGAAACCAATTTCAATTCTTCT AATTCTTTTTCAAGTTTTTCCTTTTCCTCAAGGGTCATAGGATATGTTTTTTCTGCCATT TTTCTCAACTTTCTTCTGATAATATTTTCTAAAGAAAATTATGTGAAGTATCACATAATT TTAGTTTGTTTAGTTTAATTTGCTGTTGACATGTTCAGCGACATTGCGGTCGTGGTCTTC TTGATTGTTAGCATAGTAAACCTTGCCTTCTGTGACATCTGCTACAAAGTAAAAGTTATC GCTCTTAGTTTGATTGATGCTTGACTCAATCCGCATCCAAGACTTGGACTATCGACTGGA CCAGGCATGAGACCTACATTTTTATAAACATTATAAGGTGAATCAATGTTGGTATCAATC GCAACATCCTCAG
ORF Predictions:
ORF # Start End Direction Length
1 416 808 R 131 aa
> 3865156-1 ORF translation from 416-808, direction R WERIKIARSYGDLSENSEYEAAKDEQAFVEGQISSLETKIRYAEIVNSDAVAQDEVAIG KTVTIQEIGEDEEEVYIIVGSAGADAFAGKVSNESPIGQALIGKKTGDTATIETPVGSYD VKILKVEKTA*
Description:
TRANSCRIPTION ELONGATION FACTOR GREA (TRANSCRIPT CLEAVAGE FACTOR GREA). - ESCHE RICHIA COLI .
Assembly ID: 3865160 Assembly Length: 1173bp
> 3865160 Strep Assembly -- Assembly id#3865160 TGCGGCTGAGTTGGGAATTCCTATCGTTAATAAGCGTGTATCGGTGACACCTATTTCTTT GATTGGGGCAGCGACAGATGCGACGGACTACTGGTTCTGGCAAAAGCGCTTGATAAGGCT GCGAAAGAGATTGGTGTGGACTTTATTGGTGGTCTTTCTGCCTTAGAACAAAAAGGTTAT CAAAAGGGAGATGAGATTCTCATCAATTCCATTCCTCGCGCTTTGACTGAGACGGATAAG GTCTGCTCGTCAGTCAATATCGGCTCAACCAAGTCTGGTATTAATATGACGGCTGTGGCA GATATGGGACGAATTTATCAAGGAAACGGCAAATCTTTCAGATATGGGAGCGGCCAAGTT GGTTGTATTCGCTAATGCTGTTGAGGACAATCCATTTATGGCGGGTGCCTTTCATGGTGT TGGGGAAGCAGATGTTATCATCAATGTCGGAGTTTCTGGTCCTGGTGTGGTGAAACGTGC TTTGGAAAAAGTTCGTGGACAGAGCTTTGATGTTAGTAACCCGAAAACCAGTTAAGAAAA CTGCCTTTTAAAATCACTCCGTATCCGGTCCAATTGGTTTGGTCAAATGCCCAGTGAGAG ACTGGGTGTGGAGTTTGGTATTGTGGACTTGAGTTTGGCACCAACCCCTGCGGTTGGAGA CTCTGTGGCACGTGTCCTTGAGGAAATGGGGCTAGAAACAGTTGGCACGCATGGAACGAC AGCTGCCTTGGCCCTCTTGAACGACCAAGTTAAAAAGGGTGGAGTGATGGCCTGTAACCA GGTCGGTGGTCTATCTGGTGCCTTTATCCCTGTTTCTGAGGATGAAGGAATGATTGCTGC AGTGCAAAATGGCTCTCTTAATTTAGAAAAACTAGAAGCTATGACGGCTATCTGTTCTTG TTGGATTGGATATGATTGCCATCCCAGAAGATACGCCTGCTGAAACTATTGCGGCTATGA TTGCGGATGAAGCAGCAATCGGTGTTATCAACATGAAAACAACAGCTGTTCGTATCATTC CCAAAGGAAGAGAAGGCGATATGATTGAGTTTGGTGGTCTATTAGGAACTGCACCCGTTA TGAAGGTTAATGGGGCTTCGTCTGTCGACTTCATCTCTCGCGGTGGACAAATCCCAGCAC CAATTCATAGTTTTAAAAATTAAGAAAATAGGA
ORF Predictions:
ORF # Start End Direction Length
1 136 375 F 80 aa
> 3865160-1 ORF translation from 136-375, direction F VDFIGGLSALEQKGYQKGDEILINSIPRALTETDKVCSSVNIGSTKSGINMTAVADMGRI YQGNGKSFRYGSGQVGCIR*
Description: unknown
Assembly ID: 3865172 Assembly Length: 1209bp
> 3865172 Strep Assembly -- Assembly id#3865172 TCGGAATCTGAGCTAGTGTAGCTTCCTTAATCTTATCTGATAAGATAGCTGTCATATCAG ACTCAATCATTTCCTGGAGCAATCAACATTGACTCGTATATTCCGACTAGCGACCTCGCG TGCCACAGACTTGGTAAAGCCAATCAAGCCAGCCTTAGAAGCAGCATAGTTAGCTTGACC AATATTCCCCATCAAACCAACAACACTAGACATATTAATGATAGCACCTTCTCTGGCTTT CATCATCGGTTTCAAGACTGATTGTGTCATATTAAAGGCACCAGTCAGATTGACCTTGAG CACTTTTTCAAAATCTGCTTCTGTCATCTTGAGCATAAGAGTATCTTGGGTAATCCCTGC ATTGTTGACCAAAACATCTACTGAACCCAGTTCTGCAATAGCTTGATCAATCATACGCJT AGCGTCTGCAAAATCTGATACATCTCCTGAAATGGGAACCACCTTGATACCATAGTTTGA AAACTCAGCGAGCAATTCTTCTGAGATTGCCCCACGACTGTTTAAGACAATGTTGGCTCC TGCTTGAGCAAACTTGTGGGCGATGGCAAGACCAATTCCACGACTCGAACCTGTAATAAA GATATTTTTATGTTCTAGTTTCATTTTTTTCCTTTCAAAACTTCTACTTATTTTAGTCTA TTTTTCTAAAAGTGCTACTAAACTCGCTTGATCTTCCACATGAGCTAAGTGAGCAGTTTG ATCAATTTTTTTAACAAAACCTGACAAGACTTTCCCCGGTCCAATCTCGAATAAAGTTGC TTATGCCTGCTTCTTGCATGACCCCAATACTTTCATAGAAACGAACGGGTTCCTTGACCT GACGCGTCAAGAGCTGAGCAATGTCCTCTTTTTGCATCACAGCAGCTTCTGTATTGCCGA CTAGGGGACAAGTAAAATCTGAAAAACTTACCTGAGCTAGAGTTTCAGCTAGTTTCTGGC TAGCAGGCTCAAGGAGAGCGGTGTGAAAGGGACCTGACACCTTAAGAGGAATCAAGCGTT TGGCACCTGCTTCTTGCAAAAGTTCAACCGCTCGATCAACTGCAACCACTTCTCCAGCAA TGACGATTTGTGCAGGTGTGTTATAGTTGGCTGGAGTAACCACTCCAAGTTCCAGAAGCT TTTTGACAGGCTTCTTCAATGACCTCTACTGGCGTATTGAGAACTGCTACCATCTTGCCA AGTTCAGCA
ORF Predictions :
ORF # Start End Direction Length
1 731 1123 R 131 aa
> 3865172-2 ORF translation from 731-1123, direction R WTPANYNTPAQIVIAGEWAVDRAVELLQEAGAKRLIPLKVSGPFHTALLEPASQKLAE TLAQVSFSDFTCPLVGNTEAAVMQKEDIAQLLTRQVKEPVRFYESIGVMQEAGISNFIRD WTGESLVRFC*
Description: malonyl coenzyme A-acyl carrier protein transacylase (fabD) homolog - Haemophil us influenzae (strain Rd KW20)
Assembly ID: 3865228 Assembly Length: 813bp
> 3865228 Strep Assembly -- Assembly id#3865228 ATGACACGTCTGTTCTCTCAAGCAGAAATGGCAGAGTAACAAGCTCGATATTGAGGTAGC CGATAAAGAATTGGCTGAATTTGAAGCTCAGATTAAACAGGAAGTGGAAGCTCCAACTTG TAGTGAGTCCTCAGGTTGAAGAAGAGCCTCAGCTCATCCAGTTGGCCCAATGTATGAAGA ACCAGAAGTAAATCCAGTGCATCCGACAGGTCCAACACCAGCTACAGAAACTGTTGATTC AATACCGGGATTTGAAGCACCGCAAGAATCTGTTACAATTTTATAAGAAATATTCTGAGA ACAATATCTTATCCTTATATTTCCAGCGAGCAGGAAATGGTGTGAGTCCTGCATTCCCTA TCGATAAGATTATCCTCTCAAACTATCAAGTCTGAATCTAGTAAGATTTGACGTTCCCCA CGTTACGGGATAAGAGAGAGAAAGACTAAATCTTTTTCCGAATAAAGGTGGTACCACGAT TTTCGTCCTTTTTGGAAGTCGTGGTTTTTAATTTGTTATTATTTATAAAGGAGATACCAT GAAACTCAAAGACACCCTTAATCTTGGGAAAACTGAATTCCCAATGCGTGCAGGCCTTCC TACCAAAGAGCCAGTTTGGCAAAAGGAATGGGAAGATGCAAAACTTTATCAACGTCGTCA AGAATTGAACCAAGGAAAACCTCATTTCACCTTGCATGATGGCCCTCCATACGCTAACGG AAATATCCACGTTGGACATGCTATGAACAAGATTTCAAAAGATATCATTGTTCGTTCTAA GTCTATGTCAGGATTTTACGCGCCATTTATTCC
ORF Predictions:
ORF # Start End Direction Length
1 197 286 F 30 aa
> 3865228-1 ORF translation from 197-286, direction F VHPTGPTPATETVDSIPGFEAPQESVTIL*
Description : unknown
Assembly ID: 3865230 Assembly Length: 953bp
> 3865230 Strep Assembly -- Assembly id#3865230 ATCGAATTATTTTGAAACAAGGTGGATCAGCTATTTTGGCCTTGATTAGTATTTTACTCT TTAAATACACTTGAAGGTCGATTCTAATCTCGCTAATCCTTTTTAATCCAGAATAAGGGA AATATGTTATACTTGTTTTTAAGAAAAAAGTTTCATTGAATTGGTTTTGAGGAGTTAGAA ATGAAAGTATTAGTGACAGGTTTTGAGCCCTTTTGAGGCCATTAAAGGTTTACCAGCTGA AATCCATGGTGCTGAGGTCCGTTGGCTAGAGGTGCCGACAGTTTTTCACAAATCTGCTCA AGTATTGGAAGAAGAGATGAATCGTTATCAACCTGACTTTGTCCTTTGTATTGGGCAAGC TGGTGGAAGAACTAGTTTGACACCTGAACGAGTGGCCATTAATCAAGACGATGCACGTAC TTCTGATAACGAAGATAATCAACCGATTGACCGTCCCATTCGCCCAGATGGTGCTTCGGC CTACTTTAGTAGTTTGCCGATTAAAGCGATGGTTCAAGCTATAAAAAAGAAGGATTACCG GCCTCTGTTTCCAATACGGCAGGGACTTTTGTCTGCAGCCATTTGATGTATCAGGCTCTC TATTTGGTAGAAAAGAAATTCCCATATGTTAAGGCAGGTTTTATGCATATTCCTTATATG ATGGAACAGGTGGTGAACAGACCGACTACTCCAACTATGAGTTTAGTGGATATTCGGCGA GGGATAGAAGCAGCAATCGGCGCTATGATAGAACATGGAGATCAGGAACTCAAGTTGGTA GGCGGAGAAATTCATTGATAGAAAAAAGCTTGAGGGGAAAACCTTCAAGCTTTTGGACGT TTTCGAGCCAATACTGCTCGGTAAAACATAATTTTAGTGCATTGGATATAAGGTAGGAGT GAAAAACTAGCAATGCCAAAGGTAATCCAATTGAGGAAGTACCAAGGAAGAAG
ORF Predictions:
ORF # Start End Direction Length
1 272 586 F 105 aa > 3865230-1 ORF translation from 272-586, direction F _ VPTVFHKSAQVLEEEMNRYQPDFVLCIGQAGGRTSLTPERVAINQDDARTSDNEDNQPID RPIRPDGASAYFSSLPIKAMVQAIKKKDYRPLFPIRQGLLSAAI*
Description:
PYRROLIDONE-CARBOXYLATE PEPTIDASE (EC 3.4.19.3) ( 5-OXOPROLYL- PEPTIDASE) . - STR EPTOCOCCUS PYOGENES .
Assembly ID: 3865378 Assembly Length: 1060bp
> 3865378 Strep Assembly -- Assembly id#3865378 CTACTTGAAACAGAACTGAAATTATACCCACTACCTCCCTGATTATCTTCAATGCTTACG TCTAAATAAACTTCCCCACTATTATTTAGCTTAGCAACAACTGTTATAGTAAAATAACAT AAAATTCACATAAATAGATTAGGGAAATCAAAGCAACTTCTAGGAATGTTTTAGCAGTCA CAGTGTACTTTCCCAGCATCAAGCCACTATAACTCTGCACATAAAAATGGAGAAGATGGC CATCCTCTTCTCCAAATATTAACTTCTTTACAAACCAACTATAGTTGACAAAGAACCTAA AATCAATTGATAACACGAGGTCAGGTCGGTCAACTCTTTCAACTGAAGCCCTGTCAACTC TTCCCATTTATCAATCTTGTATTGGAGAGAATTGCGGTGCAGATAGAGTTGCTGGGCTGT TTAAGTGAGAACAGCACTATTTTCCCAAAGAGAGAGAATGATTTCCTGAATCTGATCTTG ATCCAAAATCATCTGGTGTAGACATTCCTTGATTGGCTTCAAGTCCACGAGTCTTTCTCC CAGACTCCAAAGATAGAGCTGAGAAAAAGTATGAACACCTTGGTGACCCTGACGCCACCA TGTCTTGAACAAATCCCGCTCAGCTTTGATTAAGTCTGATAGGGCTTGATGTCCCGTCTG AGACCAAACCTGACCCAACATGATAGAAAGACGAAGTCCAAAGTCATACTCAACCGCTTC AATCGTATCACTTAAAATATCTCTTACAGAAGTGTATTTGTCTTGTTGAAGCACGAAAAC ATAATCCTGAGATCCGACCTGTAGCACTGTCTGACAATTCGGAAAAAGAGTCCGCATCAT ATCTAGCCAAGAAGCCAGATTTTCCTGCTGAAAATAAGAAAGATGGCAATAAACCAACTG AATCTTTTTAAAAACTTGCGGTGCCTGTCCCTTGCCTTCAACCAGATAGGAATACCAAGG GTTTAGCGAACGAACCTGCTCCTGCTGGGTCAAAAGGGCAACCAACTGCTTTTCACGCTC GCTGAGCCCAGCTTCCTCCAGCAAAATCCACTGCTGAGAG
ORF Predictions:
ORF # Start End Direction Length
1 421 807 R 129 aa
> 3865378-1 ORF translation from 421-807, direction R VLQVGSQDYVFVLQQDKYTSVRDILSDTIEAVEYDFGLRLSIMLGQVWSQTGHQALSDLI KAERDLFKTWWRQGHQGVHTFSQLYLWSLGERLVDLKPIKECLHQMILDQDQIQEIILSL WENSAVLT*
Description : unknown Assembly ID: 3865470 Assembly Length: 895bp
> 3865470 Strep Assembly -- Assembly id#3865470 ATTTTAGACTTTGATGACAATCCTCAGGCGGTTATCATGCCCAATCACGAGGGGCTGGAA TTGCAGTTGCCAAAGAAGTGTGTTTATGCATTTTTAGGTGAGGAGATCTGACCGCTATGC AAGGGAAGTAGGGGCGGATTGTGTCGGCGAATTCGTTTCTGCTACCAAGACCTATCCAGT CTCTTTCATCAACTACAAGGGTGAGGAGGTCTGTCTGGATCAGGCTCCTGCTGGCTCCGC TCCAGCAGCCCAGTTTATGGATGGGTTGATTGGCTATGGTGTGGAGCAGCTTATCTCTAC TGGGACCTGTGGTGTCCTAGCTGATATAGAGGAAAATGCCTTTCTAGTCCCTGTTCGCGC TTTGCGAGATGAGGGAGCCAGTTACCACTATGTGGCACCTTGTCGTTATATGGAAATGCA GCCAGAGGCTATTGCTGCTATTGAGGAAGTTTTGGAAGACAGAGGGATTCCTTATGAAGA AGTCATGACCTGGACGACAGACGGTTTTTACCGAGAAACGGCTGAAAAGGTGGCTTATCG TAAGGAAGAAGGCTGTGCTGTTGTGGAGATGGAGTGTTCTGCTCTTGCGGCAGTAGCTCA ATTGCGTGGGGTTCTCTGGGGTGAATTGTTGTTCACAGCAAATTCTCTAGCGGACTTGGA CCAGTACAACAGTCGTGACTGGGGCTCGGAACCTTTTAATAAGGCGCTAAAACTGAGTTT AGCAAGTGTCCACCACCTTTAGTTGTACTGGCAAAGGATTTGTTTTATCATAAAATGTCT AGCTCATACTTTTCAAAAATATGTTTAAACGAAGTCACCTTCCTCTTGTCCTAAGCATGT TTGAAGTTGGGAAAAATCTTTAAAATCAGAAAAACGTATCATATCAGGTTGATGA
ORF Predictions:
ORF # Start End Direction Length
1 98 742 F 215 aa
> 3865470-1 ORF translation from 98-742, direction F VRRSDRYAREVGADCVGEFVSATKTYPVSFINYKGEEVCLDQAPAGSAPAAQFMDGLIGY GVEQLISTGTCGVLADIEENAFLVPVRALRDEGASYHYVAPCRYMEMQPEAIAAIEEVLE DRGIPYEEVMTWTTDGFYRETAEKVAYRKEEGCAWEMECSALAAVAQLRGVLWGELLFT ANSLADLDQYNSRDWGSEPFNKALKLSLASVHHL*
Description: unknown
Assembly ID: 3865632 Assembly Length: 645bp
> 3865632 Strep Assembly -- Assembly id#3865632 AGGGCTGTCAAGCTTGGTTAGAACGTTTAGAAAAGGAGAGTTAAGGTGGAAAATCTTACG AATTTTTACGAAAAGTATCGTGTCTATCTGACTCGTCCACGTTTAGAGCTTTTGGCAGTA GTTACCATTGTTTTANGNGCTGTACTCGTCTTTTTTCTAAATATTCCAGGAAAAGGTGTC TTAAAACTCGATAATGGAACGATTGTTTATGATGGCAGTCTTGTCCGTGGTAAAATGAAT GGCCAAGGTACCATTACCTTCCAAAATGGAGACCAATATACAGGTGGCTTCAACAATGGA GCCTTCAACGGAAAAGGTACCTTTCAATCTAAAGAAGGCTGGACCTACGAAGGTGATTTT GTAAATGGTCAGGCTGAAGGAAAAGGGAAACTAACAACAGAACAAGAAGTCGTTTATGAA GGAACTTTTAAACAAGGCGTTTTTCAACAAAAATAAAGCCTCCTTATCAAAGGAGGTATT ATTAGAATTACAAGGTAAGCGTTTACCTGTAAATCCCTTTCTTTCCAAATCCCTCTTCCA AGCAAGTTTGTGAAATAAAAAATATTTGAAATAAATTTCACAAACTTCAAAGATAAAACC TGATAAGAAAAGAAAATGAGAAAAGTTTCGCAAGAGTTTAAAAAT
ORF Predictions:
ORF # Start End Direction Length
1 46 456 F 137 aa
> 3865632-1 ORF translation from 46-456, direction F VENLTNFYEKYRVYLTRPRLELLAWTIVLXAVLVFFLNIPGKGVLKLDNGTIVYDGSLV RGKMNGQGTITFQNGDQYTGGFNNGAFNGKGTFQSKEGWTYEGDFVNGQAEGKGKLTTEQ EWYEGTFKQGVFQQK*
Description: unknown
Assembly ID: 3865710 Assembly Length: 572bp
> 3865710 Strep Assembly -- Assembly id#3865710 GAGATCTGTCTTGACACCAAAAGTGTGGAGTACGCCAGCTAATTCAACGGCGATATAACC AGCGCCTAGAATCGCAATTGACTCTGGAAGTTCTTCCCAGGCAAATACATCATCAGAAGA GCCACCTAGCTCAGCACCAGGAATATTAGGAATACTTGGATGGGCACCTGTAGCAATCAC GATATGTCTAGCACGAATCAGTTCACCATTTACGCTTACAGTATGAGAATCTACAAATTC AGCATGACCTTCAATCAAGTCTACACCGTTGCGTTTAAAACTACCATCATAGAGAAGAAC GAGCGCGATCAATGTAGGCTTCACGATTGCGACGTAGGGTTGCAAAGTTAAAGTTAAGAT CAGTAGTCTCAAAGCCGTAGTCTCCTCCAAATTGATGGAAAGTCTCAGCGATTTGCGCCC CGCTACCACATGATTCTTTTAGGAACACAACCGACGTTGACACAGGTTCCACCTAATTTC TTTTCCTCAATAACGGCTGCTTTGGCTCCATGTTCCCAGCACGGTTCATGGTAGCGATCC TCCGCTACCTCCACGATAGCAATGATATCATA
ORF Predictions:
ORF # Start End Direction Length
1 287 448 R 54 aa
> 3865710-1 ORF translation from 287-448, direction R VFLKESCGSGAQIAETFHQFGGDYGFETTDLNFNFATLRRNREAYIDRARSSL* Description : glutathione reductase (NADPH) (EC 1.6.4.2; Streptococcus thermophilus
Provided in Table 2 is information on the direction of the ORF (forward or reverse) for each polynucleotide in Table 1. Also listed for each ORF is its start and stop codon positions (refer to the columns containing nucleotide code labeled "Start" and "Stop"). The triplet codon sequence for each start and stop codon is also shown. These codons may be shown in the sense orientation or antisense orientation, such as GTG and CAC, respectively, for start codons. The "Length" column discloses the length of each polynucleotide assembly. The direction of translation on the polynucleotide depicted is denoted by and "Forward" for forward or and "Reverse" for reverse (or being on the opposite strand from the one depicted). As indicated above, the "Assembly ID" number is a unique identifier assigned to each ORF of Table 1 and allows a correlation between the data in Tables 1 and 2.
TABLE 2
Assembly Start Stop Start Stop Length Direction ID
3049156 -CAC TCA- 236 385 50 Reverse 3049862 GTG TGA 383 526 48 Forward 3112810 -CAC TTA~ 601 804 68 Reverse 3112866 -CAC TTA~ 220 513 98 Reverse 3113664 GTG TAA 165 392 76 Forward
Assembly Start Stop Start Stop Length Directio
ID
31 13716 -CAC - TTA- 94 291 66 Reverse
3174176 GTG TAA 139 543 135 Forward
3174186 GTG TAG 83 283 67 Forward
3174374 GTG TGA 154 294 47 Forward
3174972 -CAC TTA- 169 678 170 Reverse
3175138 -CAC TCA- 79 945 289 Reverse
3175860 GTG TAA 51 251 67 Forward
3175918 GTG TGA 212 535 108 Forward
381 1220 -CAC CTA- 316 873 186 Reverse
381 1436 -CAC TTA- 1 164 151 1 1 16 Reverse
381 1984 GTG TGA 134 454 107 Forward
3857228 -CAC TCA- 1 141 1356 72 Reverse
3857842 GTG TAA 45 341 99 Forward
3857996 GTG TAA 58 456 133 Forward
3858236 -CAC CTA- 1 261 87 Reverse
3858264 -CAC TCA- 439 1365 309 Reverse
3858610 -CAC TTA- 374 949 192 Reverse
3858716 -CAC CTA- 238 402 55 Reverse
3859124 -CAC CTA- 73 453 127 Reverse
3859244 -CAC TTA- 310 462 51 Reverse
3859250 -CAC CTA- 244 402 53 Reverse
3859588 -CAC TTA- 102 443 1 14 Reverse
3859774 -CAC CTA- 9 131 41 Reverse
3860140 GTG TAA 302 51 1 70 Forward
3860140 GTG TAA 605 856 84 Forward
3860206 -CAC TTA- 898 1056 53 Reverse
3860270 GTG TAG 346 966 207 Forward
3860438 GTG TAG 1 276 92 Forward
3860438 GTG TGA 460 1128 223 Forward
3860544 GTG TAA 222 689 156 Forward
3860558 -CAC TTA- 717 1376 220 Reverse
3860568 GTG TAA 1040 1291 84 Forward
3860582 GTG TGA 356 1027 224 Forward
3860724 GTG TGA 139 498 120 Forward Assembly Start Stop Start Stop Length Directio ΪΓΪ
3860724 GTG .. TGA 686 1024 1 13 - Forward
3860858 GTG TAG 610 807 66 Forward
3860890 GTG TAG 397 486 30 Forward
3860952 -CAC TTA- 449 715 89 Reverse
3860962 -CAC TTA- 152 646 165 Reverse
3861268 -CAC TTA- 457 645 63 Reverse
3861270 -CAC TTA- 627 824 66 Reverse
3861288 -CAC CTA- 357 572 72 Reverse
3861306 GTG TAA 717 1208 164 Forward
3861306 GTG TAA 1201 1410 70 Forward
3861334 GTG TAA 76 975 300 Forward
3864148 GTG TAG 212 940 243 Forward
3864148 GTG TAA 1202 1753 184 Forward
3864148 GTG TAA 2750 3037 96 Forward
3864172 GTG TAG 31 1 862 184 Forward
3864180 -CAC TTA- 930 1616 229 Reverse
3864184 GTG TGA 197 670 158 Forward
3864184 GTG TAA 612 1304 231 Forward
3864194 -CAC CTA- 1084 1380 99 Reverse
3864338 GTG TGA 552 1 100 183 Forward
3864360 GTG TAA 47 1078 344 Forward
3864388 GTG TGA 1239 1586 1 16 Forward
3864406 -CAC TTA- 263 958 232 Reverse
3864452 -CAC TCA- 1079 1201 41 Reverse
3864458 GTG TAA 797 1 105 103 Forward
3864458 GTG TGA 1 179 1391 71 Forward
3864474 -CAC CTA- 68 247 60 Reverse
3864474 -CAC TTA- 644 1528 295 Reverse
3864510 -CAC TTA- 1 164 1640 159 Reverse
3864526 -CAC TTA- 845 1660 272 Reverse
3864548 GTG TGA 687 1055 123 Forward
3864548 GTG TAA 979 1932 318 Forward
3864582 -CAC TTA- 317 550 78 Reverse
3864604 -CAC CTA- 1 141 47 Reverse
3864604 -CAC CTA- 1513 1803 97 Reverse
3864610 GTG TAA 427 1305 293 Forward
3864716 GTG TAA 57 272 72 Forward
3864718 GTG TGA 77 1474 466 Forward
3864802 -CAC TTA- 92 550 153 Reverse Assembly Start Stop Start Stop Length Directio
ID
3864854 -CAC - CTA- 324 548 75 - Reverse
3864862 -CAC CTA- 431 1003 191 Reverse
3864888 -CAC TTA- 10 657 216 Reverse
3864898 GTG TAA 130 1029 300 Forward
3864938 GTG TGA 883 1326 148 Forward
3864956 GTG TAA 1030 1251 74 Forward
3864958 -CAC TCA- 1427 171 1 95 Reverse
3865022 -CAC TCA- 279 1271 331 Reverse
3865036 GTG TAG 79 492 138 Forward
3865054 -CAC TCA- 302 793 164 Reverse
3865102 -CAC CTA- 27 731 235 Reverse
3865156 -CAC TTA- 416 808 131 Reverse
3865160 GTG TAA 136 375 80 Forward
3865172 -CAC TTA- 731 1 123 131 Reverse
3865228 GTG TAA 197 286 30 Forward
3865230 GTG TGA 272 586 105 Forward
3865378 -CAC TTA- 421 807 129 Reverse
3865470 GTG TAG 98 742 215 Forward
3865632 GTG TAA 46 456 137 Forward
3865710 -CAC TCA- 287 448 54 Reverse
EXAMPLES
The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention. Example 1 Isolation of DNA coding for a virulence gene in Streptococcus pneumoniae
As mentioned above each of the DNAs disclosed herein by virtue of the fact that it includes an intact open reading frame is useful to a greater or lesser extent as a screen for identifying antimicrobial compounds. A useful approach for selecting the preferred DNA sequences for screen development is evaluation by insertion-duplication mutagenesis. This system disclosed by Morrison et al., J. Bacteriol. 159:870 (1984), is applied as follows.
Briefly, random fragments of Streptococcus pneumoniae, strain 0100993 DNA are generated enzymatically (by restriction endonuclease digestion) or physically (by sonication based shearing) followed by gel fractionation and end repair employing T4 DNA polymerase. It is preferred that the DNA fragments so produced are in the range of 200-400 _ base pairs, a size sufficient to ensure homologous recombination and to insure a representative library in E.coli. The fragments are then inserted into appropriately tagged plasmids as described in Hensel et aL, Science 269: 400-403(1995). Although a number of plasmids can be used for this purpose, a particularly useful plasmid is pJDC9 described by Pearce et al., Mol. Microbiol. 9: 1037 (1993) which carries the erm gene facilitating erythromycin selection in either E. coli or 5. pneumoniae previously modified by incorporation of DNA sequence tags into one of the polylinker cloning sites. The tagged plasmids are introduced into the appropriate S. pneumoniae strain selected, inter alia, on the basis of serotype and virulence in a murine model of pneumococcal pneumonia.
It is appreciated that a seventeen amino acid competence factor exists (Havastein et al., Proc. Nat'l. Acad. Sci. USA 92: 1 1 140-44 (1995)) and may be usefully employed in this protocol to increase the transformation frequencies. A proportion of transformants are analysed to verify homologous integration and as a check on stability. Unwanted levels of reversion are minimized because the duplicated regions will be short (200-400 bp), however if significant reversion rates are encountered they may be modulated by maintaining antibiotic selection during the growth of the transformants in culture and/or during growth in the animal.
The S. pneumoniae transformants are pooled for inoculation into mice, eg., Swiss and/or C57B 1/6. Preliminary experiments are conducted to establish the optimum complexity of the pools and level of inoculum. A particularly useful model has been described by Veber et al. (J. Antimicrobiol. Chemother.32:432 (1993) in which 10^ cfu inocula sizes are introduced by mouth to the trachea. Strain differences are observed with respect to onset of disease e.g. ,3-4 days for Swiss mice and 8-10 days for C57B 1/6. Infection yields in the lungs approach 10° cfu/lung. IP administration is also possible when genes mediating blood stream infection are evaluated. Following optimization of parameters of the infection model, the mutant bank normally comprising several thousand strains is subjected to the virulence test. Mutants with attenuated virulence are identified by hybridization analysis using the labelled tags from the "input" and "recovered" pools as probes as described in Hensel et al., Science 269: 400-403(1995). 5. pneumoniae DNA is colony blotted or dot blotted, DNA flanking the integrated plasmid is cloned by plasmid rescue in E. coli (Morrison et al., J. Bacteriol. 159:870 (1984)) and sequenced. Following sequencing, the DNA is compared to the nucleotide sequences given herein and the appropriate ORF is identified and function confirmed for example by knock-out studies. Expression vectors providing the selected protein are prepared and the protein is configured _ in an appropriate screen for the identification of anti-microbial agents. Alternatively, genomic DNA libraries are probed with restriction fragments flanking the integrated plasmid to isolate full-length cloned virulence genes whose function can be confirmed by "knock-out" studies or other methods, which are then expressed and incorporated into a screen as described above.

Claims

What is claimed is 1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
(a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of Table 1 ;
(b) a polynucleotide having at least a 70% identity to a polynucleotide encoding a mature polypeptide expressed by the gene contained in the S. pneumoniae of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1 ;
(c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence of Table 1 ;
(d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
(e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
4. The polynucleotide of Claim 2 comprising the nucleic acid sequence selected from the group consisting of the nucleic acid sequences set forth in Table 1.
5. The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
6. A vector comprising the polynucleotide of Claim 1.
7. A host cell comprising the vector of Claim 6.
8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
9. A process for producing a polypeptide or fragment comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide or fragment.
10. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
11. A polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
12. An antibody against the polypeptide of claim 10.
13. An antagonist or agonist of the activity or expression of the polypeptide of _ claim 10.
14. A method for the treatment or prevention of disease of an individual comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 10.
15. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 13.
16. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 10 in an individual comprising:
(a) determining a nucleic acid sequence encoding said polypeptide, and/or
(b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.
17. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 10 comprising: contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound; and determining whether the compound interacts with and activates or inhibits an activity of the polypeptide by detecting the presence or absence of a signal generated from the interaction of the compound with the polypeptide.
18. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with the polypeptide of claim 10, or a fragment or variant thereof, adequate to produce antibody and/or T cell immune response to protect said animal from disease.
19. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of a polypeptide of claim 10, or fragment or a variant thereof, for expressing said polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.
20. A polynucleotide comprising a polynucleotide sequence selected from the group consisting of the the first ten polynucleotides sequences from the top of Table 1.
21. A polypeptide comprising a polypeptide encoded by the polynculeotide of - claim 20.
22. The isolated polynucleotide of claim 1 wherein said nucleotide is selected from the group consisting of:
(a) a polynucleotide having at least a 90% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 ;
(b) a polynucleotide having at least a 90% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the S. pneumoniae of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1 ;
(c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 90% identical to the amino acid sequence of Table 1 ;
(d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
(e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
23. The isolated polynucleotide of claim 1 selected from the group consisting of:
(a) a polynucleotide having at least a 95% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 ;
(b) a polynucleotide having at least a 95% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the S. pneumoniae of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1 ;
(c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence of Table 1 ;
(d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
(e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
24. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
(a) a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than S. pneumoniae; (b) a polynucleotide encoding a polypeptide comprising an amino acid sequence - which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than S. pneumoniae; and
(c) a polynucleotide which is complementary to the polynucleotide of (a) or (b).
25. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
26. An isolated nucleic acid encoding one of the amino acid sequences of Claim 1 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
27. Recombinant vectors comprising the nucleic acid sequences of Claim 26 and host cells transformed or transfected therewith.
28. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 1 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
29. Antimicrobial compounds identified by the method of Claim 28.
30. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
31. An isolated nucleic acid encoding one of the amino acid sequences of Claim 30 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
32. Recombinant vectors comprising the nucleic acid sequences of Claim 31 and host cells transformed or transfected therewith.
33. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 30 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
34. Antimicrobial compounds identified by the method of Claim 33.
PCT/US1997/019226 1996-11-01 1997-10-27 Novel coding sequences WO1998019689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52147698A JP2001510989A (en) 1996-11-01 1997-10-27 New coding sequence
EP97911905A EP1007069A1 (en) 1996-11-01 1997-10-27 Novel coding sequences

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2993096P 1996-11-01 1996-11-01
US60/029,930 1996-11-01

Publications (2)

Publication Number Publication Date
WO1998019689A1 true WO1998019689A1 (en) 1998-05-14
WO1998019689A9 WO1998019689A9 (en) 1998-08-20

Family

ID=21851626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/019226 WO1998019689A1 (en) 1996-11-01 1997-10-27 Novel coding sequences

Country Status (3)

Country Link
EP (1) EP1007069A1 (en)
JP (1) JP2001510989A (en)
WO (1) WO1998019689A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838525A2 (en) * 1996-10-25 1998-04-29 Smithkline Beecham Corporation Streptococcus pneumoniae polypeptide greA
EP0849362A2 (en) * 1996-10-24 1998-06-24 Smithkline Beecham Corporation Streptococcus proteins of the spoT/relA family (spo/rel)
EP0885965A2 (en) * 1997-06-20 1998-12-23 Smithkline Beecham Corporation Histidine kinase polypeptides
EP0885903A2 (en) * 1997-06-20 1998-12-23 Smithkline Beecham Corporation Nucleic acid encoding streptococcus pheumoniae response regulator
EP0903407A2 (en) * 1997-09-18 1999-03-24 Smithkline Beecham Corporation Streptococcus pneumoniae phoH gene
EP0906330A1 (en) * 1996-04-18 1999-04-07 Smithkline Beecham Corporation STREPTOCOCCUS PNEUMONIAE ISOLEUCYL tRNA SYNTHETASE
EP0909820A2 (en) * 1997-10-08 1999-04-21 Smithkline Beecham Corporation Histidine kinase from Staphylococcus pneumoniae
EP0913479A2 (en) * 1997-10-27 1999-05-06 Smithkline Beecham Corporation Adenine glycosylase
EP0913478A2 (en) * 1997-09-17 1999-05-06 Smithkline Beecham Corporation Histidine kinase from Streptococcus pneumoniae 0100993
WO1999047553A2 (en) * 1998-03-18 1999-09-23 Glaxo Group Limited Bacterial yeal family members as targets for antimicrobial drug design
WO2000021544A1 (en) * 1998-10-14 2000-04-20 Smithkline Beecham Corporation Ups (undecaprenyl diphosphate synthase)
WO2001053334A1 (en) * 2000-01-19 2001-07-26 Smithkline Beecham Corporation thdF
WO2002061070A2 (en) 2001-02-02 2002-08-08 Id-Lelystad, Instituut Voor Dierhouderij En Diergezondheid B.V. Environmentally regulated genes, involved in the virulence of streptococcus suis
WO2003048733A2 (en) * 2001-12-05 2003-06-12 Smithkline Beecham Corporation Undecaprenyl pyrophosphate synthase (upps) enzyme and methods of use
US7670835B2 (en) 2000-11-09 2010-03-02 Id-Lelystad, Institut Voor Dierhouderij En Diergezondheid B.V. Virulence of streptococci
US7709009B2 (en) 2003-07-31 2010-05-04 Novartis Vaccines And Diagnostics, Srl Immunogenic compositions for streptococcus pyogenes
US7731978B2 (en) 2007-12-21 2010-06-08 Novartis Ag Mutant forms of streptolysin O
US7776323B2 (en) 1998-07-22 2010-08-17 Stichting Dienst Landbouwkundig Onderzoek Streptococcus suis vaccines and diagnostic tests
US7838010B2 (en) 2004-10-08 2010-11-23 Novartis Vaccines And Diagnostics S.R.L. Immunogenic and therapeutic compositions for Streptococcus pyogenes
US7893238B2 (en) 1997-07-02 2011-02-22 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
EP2314719A1 (en) * 2003-04-15 2011-04-27 Intercell AG S. pneumoniae antigens
US7939087B2 (en) 2000-10-27 2011-05-10 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from Streptococcus groups A & B
US8287885B2 (en) 2007-09-12 2012-10-16 Novartis Ag GAS57 mutant antigens and GAS57 antibodies
US8778358B2 (en) 2004-07-29 2014-07-15 Novartis Vaccines And Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as Streptococcus agalactiae
US8945589B2 (en) 2003-09-15 2015-02-03 Novartis Vaccines And Diagnostics, Srl Immunogenic compositions for Streptococcus agalactiae

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601980A (en) * 1979-07-05 1986-07-22 Genentech Inc. Microbial expression of a gene for human growth hormone
US5474905A (en) * 1993-11-24 1995-12-12 Research Corporation Technologies Antibodies specific for streptococcus pneumoniae hemin/hemoglobin-binding antigens
US5476929A (en) * 1991-02-15 1995-12-19 Uab Research Foundation Structural gene of pneumococcal protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601980A (en) * 1979-07-05 1986-07-22 Genentech Inc. Microbial expression of a gene for human growth hormone
US5476929A (en) * 1991-02-15 1995-12-19 Uab Research Foundation Structural gene of pneumococcal protein
US5474905A (en) * 1993-11-24 1995-12-12 Research Corporation Technologies Antibodies specific for streptococcus pneumoniae hemin/hemoglobin-binding antigens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLINICAL CHEMISTRY, 1981, Vol. 27, No. 11, SEVIER et al., "Monoclonal Antibodies in Clinical Immunology", pages 1797-1806. *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906330A1 (en) * 1996-04-18 1999-04-07 Smithkline Beecham Corporation STREPTOCOCCUS PNEUMONIAE ISOLEUCYL tRNA SYNTHETASE
EP0906330A4 (en) * 1996-04-18 1999-10-20 Smithkline Beecham Corp STREPTOCOCCUS PNEUMONIAE ISOLEUCYL tRNA SYNTHETASE
EP0849362A3 (en) * 1996-10-24 1999-10-20 Smithkline Beecham Corporation Streptococcus proteins of the spoT/relA family (spo/rel)
EP0849362A2 (en) * 1996-10-24 1998-06-24 Smithkline Beecham Corporation Streptococcus proteins of the spoT/relA family (spo/rel)
US6268179B1 (en) 1996-10-24 2001-07-31 Smithkline Beecham Corporation Spo-rel from streptococcus pneumoniae
EP0838525A2 (en) * 1996-10-25 1998-04-29 Smithkline Beecham Corporation Streptococcus pneumoniae polypeptide greA
EP0838525A3 (en) * 1996-10-25 2001-09-05 Smithkline Beecham Corporation Streptococcus pneumoniae polypeptide greA
US6287836B1 (en) 1997-05-30 2001-09-11 Smithkline Beecham Corporation Histidine kinase from Streptococcus pneumoniae and compositions therecontaining
EP0885903A3 (en) * 1997-06-20 2000-01-19 Smithkline Beecham Corporation Nucleic acid encoding streptococcus pheumoniae response regulator
EP0885965A3 (en) * 1997-06-20 2000-01-12 Smithkline Beecham Corporation Histidine kinase polypeptides
EP0885903A2 (en) * 1997-06-20 1998-12-23 Smithkline Beecham Corporation Nucleic acid encoding streptococcus pheumoniae response regulator
EP0885965A2 (en) * 1997-06-20 1998-12-23 Smithkline Beecham Corporation Histidine kinase polypeptides
US7893238B2 (en) 1997-07-02 2011-02-22 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
EP0913478A2 (en) * 1997-09-17 1999-05-06 Smithkline Beecham Corporation Histidine kinase from Streptococcus pneumoniae 0100993
EP0913478A3 (en) * 1997-09-17 1999-12-29 Smithkline Beecham Corporation Histidine kinase from Streptococcus pneumoniae 0100993
EP0903407A2 (en) * 1997-09-18 1999-03-24 Smithkline Beecham Corporation Streptococcus pneumoniae phoH gene
EP0903407A3 (en) * 1997-09-18 2001-10-17 Smithkline Beecham Corporation Streptococcus pneumoniae phoH gene
EP0909820A3 (en) * 1997-10-08 1999-08-04 Smithkline Beecham Corporation Histidine kinase from Staphylococcus pneumoniae
EP0909820A2 (en) * 1997-10-08 1999-04-21 Smithkline Beecham Corporation Histidine kinase from Staphylococcus pneumoniae
EP0913479A2 (en) * 1997-10-27 1999-05-06 Smithkline Beecham Corporation Adenine glycosylase
EP0913479A3 (en) * 1997-10-27 2000-10-25 Smithkline Beecham Corporation Adenine glycosylase
WO1999047553A2 (en) * 1998-03-18 1999-09-23 Glaxo Group Limited Bacterial yeal family members as targets for antimicrobial drug design
WO1999047553A3 (en) * 1998-03-18 2001-02-22 Glaxo Group Ltd Bacterial yeal family members as targets for antimicrobial drug design
US7776323B2 (en) 1998-07-22 2010-08-17 Stichting Dienst Landbouwkundig Onderzoek Streptococcus suis vaccines and diagnostic tests
US8728490B2 (en) 1998-07-22 2014-05-20 Stichting Dienst Landbouwkundig Onderzoek Streptococcus suis vaccines and diagnostic tests
USRE45170E1 (en) 1998-07-22 2014-09-30 Stichting Dienst Landbouwkundig Onderzoek Streptococcus suis vaccines and diagnostic tests
WO2000021544A1 (en) * 1998-10-14 2000-04-20 Smithkline Beecham Corporation Ups (undecaprenyl diphosphate synthase)
US6537774B1 (en) 1998-10-14 2003-03-25 Smithkline Beecham Corporation UPS (undecaprenyl diphosphate synthase
WO2001053334A1 (en) * 2000-01-19 2001-07-26 Smithkline Beecham Corporation thdF
US8137673B2 (en) 2000-10-27 2012-03-20 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from Streptococcus groups A & B
US9738693B2 (en) 2000-10-27 2017-08-22 Novartis Ag Nucleic acids and proteins from streptococcus groups A and B
US10428121B2 (en) 2000-10-27 2019-10-01 Novartis Ag Nucleic acids and proteins from streptococcus groups A and B
US9840538B2 (en) 2000-10-27 2017-12-12 Novartis Ag Nucleic acids and proteins from Streptococcus groups A and B
US7939087B2 (en) 2000-10-27 2011-05-10 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from Streptococcus groups A & B
US7955604B2 (en) 2000-10-27 2011-06-07 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from streptococcus groups A and B
US8025890B2 (en) 2000-10-27 2011-09-27 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from streptococcus groups A and B
US8431139B2 (en) 2000-10-27 2013-04-30 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from Streptococcus groups A and B
US7670835B2 (en) 2000-11-09 2010-03-02 Id-Lelystad, Institut Voor Dierhouderij En Diergezondheid B.V. Virulence of streptococci
US8071111B2 (en) 2000-11-09 2011-12-06 Stichting Dienst Landbouwkundig Onderzoek Virulence of Streptococci
US7927605B2 (en) 2001-02-02 2011-04-19 Stichting Dienst Landbouwkundig Onderzoek Environmentally regulated genes of Streptococcus suis
WO2002061070A2 (en) 2001-02-02 2002-08-08 Id-Lelystad, Instituut Voor Dierhouderij En Diergezondheid B.V. Environmentally regulated genes, involved in the virulence of streptococcus suis
US8324354B2 (en) 2001-02-02 2012-12-04 Stichting Dienst Landbouwkundig Onderzoek Environmentally regulated genes of Streptococcus suis
WO2003048733A3 (en) * 2001-12-05 2005-03-10 Smithkline Beecham Corp Undecaprenyl pyrophosphate synthase (upps) enzyme and methods of use
WO2003048733A2 (en) * 2001-12-05 2003-06-12 Smithkline Beecham Corporation Undecaprenyl pyrophosphate synthase (upps) enzyme and methods of use
EP2314719A1 (en) * 2003-04-15 2011-04-27 Intercell AG S. pneumoniae antigens
US8128936B2 (en) 2003-07-31 2012-03-06 Novartis Vaccines And Diagnostics, S.R.L. Immunogenic compositions for Streptococcus pyogenes
US7709009B2 (en) 2003-07-31 2010-05-04 Novartis Vaccines And Diagnostics, Srl Immunogenic compositions for streptococcus pyogenes
US9056912B2 (en) 2003-07-31 2015-06-16 Novartis Vaccines And Diagnostics, Srl Immunogenic compositions for Streptococcus pyogenes
US8529913B2 (en) 2003-07-31 2013-09-10 Novartis Vaccines And Diagnostics, Srl Immunogenic compositions for Streptococcus pyogenes
US8945589B2 (en) 2003-09-15 2015-02-03 Novartis Vaccines And Diagnostics, Srl Immunogenic compositions for Streptococcus agalactiae
US8778358B2 (en) 2004-07-29 2014-07-15 Novartis Vaccines And Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as Streptococcus agalactiae
US7838010B2 (en) 2004-10-08 2010-11-23 Novartis Vaccines And Diagnostics S.R.L. Immunogenic and therapeutic compositions for Streptococcus pyogenes
US9102741B2 (en) 2007-09-12 2015-08-11 Novartis Ag GAS57 mutant antigens and GAS57 antibodies
US8858957B2 (en) 2007-09-12 2014-10-14 Novartis Ag GAS57 mutant antigens and GAS57 antibodies
US8287885B2 (en) 2007-09-12 2012-10-16 Novartis Ag GAS57 mutant antigens and GAS57 antibodies
US8399651B2 (en) 2007-09-12 2013-03-19 Novartis Ag Nucleic acids encoding GAS57 mutant antigens
US8039005B2 (en) 2007-12-21 2011-10-18 Novartis Ag Mutant forms of streptolysin O
US7731978B2 (en) 2007-12-21 2010-06-08 Novartis Ag Mutant forms of streptolysin O
US8409589B2 (en) 2007-12-21 2013-04-02 Novartis Ag Mutant forms of streptolysin O

Also Published As

Publication number Publication date
JP2001510989A (en) 2001-08-07
EP1007069A1 (en) 2000-06-14

Similar Documents

Publication Publication Date Title
US5866366A (en) gidB
US7250285B2 (en) Purified polypeptides from Streptococcus pneumoniae
US6346392B1 (en) Polynucleotides encoding a novel glutamine transport ATP-binding protein
WO1998019689A1 (en) Novel coding sequences
EP0914330A1 (en) Novel compounds
US5882896A (en) M protein
US6310193B1 (en) MurC from Streptococcus pneumoniae
US6280971B1 (en) Polynucleotides encoding GTP cyclohydrolase II (RIBA)
US6225083B1 (en) FtsL from Streptococcus pneumoniae
US5928895A (en) IgA Fc binding protein
US6444208B1 (en) Ribonuclease III from Streptococcus pneumoniae
EP0911410A2 (en) Era polynucleotides and polypeptides from Streptococcus pneumoniae belonging to the GTPase family
US6372487B1 (en) Polynucleotides encoding peptide release factor, prfC (RF-3), a GTP-binding protein
US6350857B1 (en) Fifty-four homologue (ffh) from streptococcus pneumoniae
US5858718A (en) Pcr a
US6297039B1 (en) Amps from Streptococcus pneumoniae
US5882898A (en) Streptococcus pneumoniae polynucleotides which encode folyl-polyglutamate synthetase (FPGS) polypeptides
US6268179B1 (en) Spo-rel from streptococcus pneumoniae
US5888770A (en) Spoiiie
US6287803B1 (en) Polynucleotides encoding a novel era polypeptide
US6177269B1 (en) aroA
US5840538A (en) Lgt
US6284878B1 (en) def1
US20020058790A1 (en) FtsY
US20020173457A1 (en) LicD1

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
COP Corrected version of pamphlet

Free format text: PAGES 1-22, DESCRIPTION, REPLACED BY NEW PAGES 1-267; PAGES 123-126, CLAIMS, REPLACED BY NEW PAGES 268-271; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 521476

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997911905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09297451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1997911905

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997911905

Country of ref document: EP