WO1993016857A1 - Mold for manufacturing very thin rubber molding and method of manufacturing the mold - Google Patents

Mold for manufacturing very thin rubber molding and method of manufacturing the mold Download PDF

Info

Publication number
WO1993016857A1
WO1993016857A1 PCT/JP1993/000208 JP9300208W WO9316857A1 WO 1993016857 A1 WO1993016857 A1 WO 1993016857A1 JP 9300208 W JP9300208 W JP 9300208W WO 9316857 A1 WO9316857 A1 WO 9316857A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
latex
thin rubber
heating
molding die
Prior art date
Application number
PCT/JP1993/000208
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Hayashi
Yoshiaki Tatsumi
Kinya Miyashita
Original Assignee
Sohzohkagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sohzohkagaku Co., Ltd. filed Critical Sohzohkagaku Co., Ltd.
Priority to US08/133,128 priority Critical patent/US5595704A/en
Priority to DE69310297T priority patent/DE69310297T2/en
Priority to EP93904328A priority patent/EP0587903B1/en
Publication of WO1993016857A1 publication Critical patent/WO1993016857A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C2035/0211Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7538Condoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/013Electric heat

Definitions

  • the present invention creates medical working gloves used in the medical field, such as condoms as contraceptives, rubber gloves for surgery, etc., and creates a clean working environment and accurately performs fine work. Molds for manufacturing ultra-thin rubber molded products such as rubber gloves for work used at work sites in the high-tech industry, etc., and for manufacturing ultra-thin rubber molded products using these molds The method. '
  • Ultra-thin rubber molded products such as condoms are generally formed from glass porcelain and are spaced at predetermined intervals on endless belts. Washing process in which the mold is successively immersed in a latex solution to adhere the latex to the surface of the mold, and the latex adhering to the surface of the mold is removed. Numerous processes such as a heating and drying process in which heating and drying are performed and vulcanization, and a testing process in which a molded product formed by a molding die is immersed in an electrolytic solution and energized to perform a pinhole inspection It has been manufactured through.
  • the mold was formed from a metal material, and the molded product that had been heated and dried and adhered to the surface of the mold was immersed directly into the electrolyte solution in the inspection process.
  • a pinhole inspection has been proposed (Japanese Patent Publication No. 47-17, 474).
  • a metal material is used as a molding die, and as a result, metal ions enter the latex from the molding die, which causes rubber to become a dispersoid.
  • the state of the colloid sol deteriorates, and it becomes impossible to adhere the latex to the surface of the mold in a good state, resulting in a large number of defective products, which is practically practical. Not converted.
  • the present inventors formed a mold with a conductive ceramic material made of SiC, ZrB2, or a mixture thereof, and used the mold.
  • a mold for an ultra-thin rubber molded product was proposed (Japanese Patent Laid-Open No. 1-108,012).
  • Japanese Patent Laid-Open No. 1-108,012 Japanese Patent Laid-Open No. 1-108,012
  • the production of ultra-thin rubber moldings can be carried out continuously from the washing process, the dipping process, the heating and drying process and the inspection process, without the problem of mixing in, thereby improving production efficiency.
  • the advantage is that it can be achieved.
  • the molding die is manufactured from the conductive ceramic material as described above, the conductive ceramic material is not only expensive itself, but also has a high specific gravity and no It is unsuitable for constructing a production line by arranging a large number of molds on the end belt, and the workability is poor, and the shape that can be formed is limited.
  • a grinding process for the surface and a polishing process for a mirror finish are required, and another problem that a great deal of labor and cost is required for the grinding process and the polishing process arises. It was not always satisfactory. That is, in order to manufacture a molding die using a conductive ceramic material, a binder is mixed with a powder of the ceramic material to prepare a compound, and the compound is prepared.
  • the mold is manufactured, and at this time, the surface can be ground into various shapes in the state of a green compact that is easy to process, or the surface can be polished to a mirror finish. Instead, the surface of a high-hardness sintered body obtained by sintering must be ground or polished to a mirror finish.
  • the present inventors consider the inspection step The complicated work of removing the molded article from the mold from the mold and reattaching it to another inspection mold can be omitted, and pinholes are generated as much as possible in the manufacturing process, especially in the heating and drying process.
  • the present inventors have conducted intensive research on a molding die for producing an ultra-thin rubber molded article and a method for producing an ultra-thin rubber molded article using the same, and completed the present invention.
  • an object of the present invention is to eliminate the troublesome work of "peeling off a molded article from a mold and reattaching it to another inspection mold" in an inspection process in the production of an ultra-thin rubber molded article. To provide a new manufacturing mold capable of preventing pinholes during the manufacturing process as much as possible.
  • Another object of the present invention is that it is lightweight, has good workability and can be easily formed into various shapes, and is particularly required as a mold for manufacturing a dome.
  • An object of the present invention is to provide a mold for manufacturing a novel ultra-thin rubber molded product having a mirror-finished surface.
  • an object of the present invention is to use such a molded article of an ultra-thin rubber molded article, and to carry out the complicated procedure of "peeling the molded article from the mold and reattaching it to another inspection mold" in the inspection process.
  • An object of the present invention is to provide a novel ultra-thin rubber molded article manufacturing method which can omit operations and minimize the occurrence of pinholes in the manufacturing process.
  • the main body of the mold body is immersed in a latex solution to adhere the latex to its surface, and the attached latex is heated and dried to form an ultra-thin rubber.
  • the main body surface of the mold body which is at least immersed in the latex liquid, is formed of amorphous carbon, and the base of the mold body has an electrode for conducting electricity.
  • This is a molding die for manufacturing ultra-thin rubber molded products, which is provided with a heating region that generates resistance by energization.
  • At least the surface of the main body of the mold body immersed in the latex liquid is formed of amorphous carbon, and the base has a current-carrying electrode and a resistance formed by the current-carrying.
  • the molding die of the present invention it is necessary that at least the surface of the main body to be immersed in the latex liquid at the time of use is formed of amorphous carbon.
  • amorphous carbon similarly to the main body surface, other materials such as ordinary graphite material, ceramics, and conductive material are used. It may be made of ceramics, glass, porcelain, etc. and has sufficient strength as a mold. If so, it may be formed in a hollow shape. The bulk specific gravity of this amorphous force is usually obtained in the range of 1.0 to 1.9 g Zcnf, which is lower than that of glass or porcelain. The value is much lower than that of the mold, and it can be used as a lightweight mold.
  • the heat-generating region formed at the base has a specific resistance value of 0.0000. ⁇ 0.1 ⁇ ⁇ ⁇ , preferably 0.00001 to 0.01 ⁇ ⁇ cm, and the heat transfer from the heat generation region at the base to the main body.
  • the coefficient power should be 10 to 0.001 ca 1 cm1 sec ⁇ ° C, preferably 5 to 0.001 calZcm ⁇ sec. ° C.
  • this root portion may be formed of another material having high electric resistance, or may be formed in, for example, a double helical structure so as to increase the electric resistance. So that the resistance is higher Additives such as ceramics and glass may be added.
  • an electrode at the base for supplying power to the above-mentioned heating area and supplying power when performing a pinhole inspection of a molded product formed on the surface of the main body.
  • a conductive adhesive such as BT-101 manufactured by Nisshin Spinning Co., Ltd. based on carbon, plastic, metal, glass, ceramics, etc.
  • a lead electrode may be attached, or band-like amorphous carbon may be wound around to attach.
  • At least a part of the surface of the main body that is immersed in the latex liquid at the time of use is composed of amorphous carbon.
  • phenol resin polyacrylo
  • a polymer material such as nitrile, polyimid, polyvinyl chloride, polyamide polyimide, vinylidene polychloride, or flann resin is used, and is subjected to a conventionally known method. It can be produced by carbonizing with.
  • a particularly preferred method of producing the amorphous carbon is to use a raw material of a po- lylic poimid, for example, Japanese Patent Application Laid-Open No. 215/1677 and Japanese Patent Application Laid-Open No. 3-247504. This method has the advantages of low porosity and high strength when manufactured by such a method.
  • the production of an ultra-thin rubber molded product is performed by using at least the above-mentioned mold, and at least (a) successively immersing the molded mold in a latex liquid to form a latex on the surface of the mold. Dipping process to attach grease, (b) energizing the molding die and
  • New paper A heating and drying step of heating and drying the latex adhering to the surface of the mold due to the generation of heat; and (c) removing the molded article from the mold from the mold.
  • it is immersed in the electrolytic solution as it is, and a pinhole inspection is performed by applying power.
  • the latex used in the immersion step (a) is not particularly limited, and examples thereof include natural rubber, butadiene-styrene synthetic rubber (SBR), and pig. Jean.
  • SBR butadiene-styrene synthetic rubber
  • NBR Acrylonitrile synthetic rubber
  • CR chloroprene rubber
  • silicone rubber polyacrylic rubber
  • fluorine-containing rubber fluorine-containing rubber
  • poly rubber Polyurethane rubber, polyisoprene, neutron, etc. Latex such as rubber-based rubber can be mentioned.
  • the base of the mold is energized to heat the heated area to a predetermined temperature, and the latex adheres using the heat conduction from the base to the main body.
  • the main body is heated and the latex attached to the main body is heated and dried from inside.
  • the heating temperature in the main body of the mold body, the heating temperature in external heating, the heating time, etc. are appropriately set according to the type of latex used, the amount of latex attached to the main body, etc.
  • the heating temperature in the main body is about 80 to 170 ° C
  • the heating temperature for external heating is about 80 to 170 ° C.
  • the molded product thus formed on the surface of the main body of the mold is subjected to a pinhole inspection in the inspection step (c).
  • a pinhole inspection usually, a molded product is put on an inspection mold, immersed in an electrolytic solution, and energized to check whether or not electric continuity is observed. Pinholes are present anywhere on the molded product and are treated as defective.
  • a molding die on which a molded product is molded and adhered to the surface of the main body is immersed in an electrolytic solution as it is, and this molding die is used as an inspection die.
  • specific inspection methods and conditions can be exactly the same as those of a conventionally known method.
  • FIG. 1 shows a method for producing an ultra-thin rubber molded product according to Example 1 of the present invention, and is an explanatory diagram of a production line for producing a condom.
  • FIG. 2 is a partial cross-sectional explanatory view of a mold for manufacturing a condom according to Example 1 of the present invention, which is used in the condom manufacturing line shown in FIG. 1. .
  • FIG. 3 shows the condom manufacturing line of Fig. 1
  • FIG. 3 is an explanatory view similar to FIG. 2 showing a state in which a latex is attached to a main body of a molding die shown in FIG.
  • Fig. 4 is an explanatory view similar to Fig. 2 showing a state in which the condom formed on the surface of the main body of the mold shown in Fig. 2 is adhered to the condom manufacturing line of Fig. 1. is there.
  • FIG. 5 is a partial cross-sectional explanatory view showing a mold for manufacturing a condom manufactured in Example 2.
  • FIG. 6 is a partial cross-sectional explanatory view showing a mold for manufacturing a condom manufactured in Example—Example 3.
  • FIG. 7 is an explanatory partial cross-sectional view showing a molding die manufactured in Example 4 for manufacturing a condom.
  • FIG. 1 shows a condom manufacturing line according to an embodiment of the present invention.
  • This condom manufacturing line is basically composed of an endless belt 2 on which a number of condom molds 1 of the present invention are erected, and a water washing for washing the mold 1 with water.
  • a tank 3 a liquid tank 4 for immersing the main body of the mold 1 washed with water in a latex liquid, and a latex adhering to the main body of the mold 1.
  • Heating and drying chamber for heating and drying again 6 an electrolyte tank 7 for conducting a pinhole inspection of the condom adhering to the surface of the main body of the molding die 1 dried in the heating and drying chamber 6, and a cell passing through the electrolyte tank 7.
  • the product condom is removed from the mold 1 while removing the condom determined to be defective when passing through the product drying chamber 8 and the electrolyte tank 7.
  • a detaching device 9
  • each mold 1 in addition to heating from the outside, power is applied to each mold 1 to cause the heat generating area to generate resistance heat.
  • the attached or semi-dried latex is heated, dried and vulcanized.
  • a DC voltage for pinhole inspection was applied between the contact electrode 7a contacting the mold 1 and the electrode 7b provided in the electrolyte.
  • the molding die 1 used in Example 1 has a main body part M whose body is immersed in a latex liquid at the time of use and a latex part located at an upper part thereof.
  • the body M and the base B are not immersed in the liquid, and the main body M and the base B are the core 1 b formed of isotropic graphite material. It is formed of a surface portion 1a made of amorphous carbon laminated on the surface thereof, and the molding die 1 is placed in the preheating chamber 5 and the heating drying chamber 6 at the upper end of the die body.
  • the heating electrode 11 connected to the AC heating power supply 10 during the operation, and the amorphous carbon band-shaped electrode 12 provided with the heating area R from the heating electrode 11 are provided. It is provided.
  • the amorphous carbon band electrode 12 not only serves as one electrode connected to the AC heating power supply 10 but also allows the molding die 1 to pass through the electrolytic solution tank 7. Contacted with the contact electrode 7a of the DC voltage power supply 13 for pinhole inspection, and was placed in the electrolyte in the electrolyte tank ⁇ when the pinhole was present in the molded condom. Also serves as a contact terminal through which current flows due to a short circuit with electrode ⁇ b.
  • the main body M of the molding die 1 of the first embodiment When the main body M of the molding die 1 of the first embodiment is immersed in the latex liquid in the latex liquid tank 4 and comes out through this; As shown in the figure, a predetermined amount of latex L adheres to the surface of the main body M with a predetermined thickness, and is then preliminarily heated and dried in the preheating chamber 5 and completely heated in the heating drying chamber 6. Before drying, as shown in FIG. 4, the reinforcing portion 14 is formed around the opening edge of the molded product condom C by being wound around with a finger as shown in FIG.
  • methylene phenyldiisocyanate (MDI) was reacted with tetrachloroethylene in 82 2 ⁇ ⁇ in a catalyst for the formation of an olefin (1 -phenyl-3-methylphosphorenoxy)
  • the reaction mixture was allowed to react at 120 ° C for 6 hours in the presence of 0.13 g, and the resulting reaction mixture was cooled to room temperature to precipitate the resulting polypropyldiimide, which was then filtered.
  • the obtained precipitate was dried at 100 ° C. for 2 hours to obtain a powder of a polycarbonate.
  • An isotropic graphite material (bulk density: 1.83 g Zcm 3 , bending strength: 500 kg / cm 2 ) was processed into the shape shown in the core part 1 b in FIG. 2, and the surface was obtained in the above Production Example 1. was the port re Karubojii Mi de solution spray coating, 8 3 hours at 0. Q C, dried for 1 hour at 4 hours and 2 0 0 ° C at 1.2 0 ° C.
  • the molded body obtained in this way was heated from room temperature in nitrogen gas at a temperature rising rate of 10 ⁇ 0 ° C at a rate of 1,0'0 ° C, 1,500 ° C ⁇ 2,0, respectively.
  • the temperature was raised to 100 ° C and 2,500 ° C, and calcined at that temperature.
  • a surface layer 1a made of high carbon was laminated.
  • the layer thickness of the obtained surface layer 1a was l to 3 / m.
  • the mold 1 thus obtained was examined for its wettability to natural rubber latex solution, specific resistance and thermal conductivity. Table 1 shows the results.
  • the polycarbodiimide solution obtained in Production Example 1 was concentrated to a resin solid content concentration of 50% by weight, and the resulting high-concentration polyposide solution was cast into a mold. Heat treated at 0 ° C for 20 hours, at 80 ° C for 20 hours, and at 120 ° C for 20 hours, released, and molded into a hollow-shaped poly-positive imide resin as shown in Fig. 5. Obtained.
  • the molded body was heated to 1,000 ° C, 1,500 ° C, 2,0 ° C in nitrogen gas at a rate of 0.2 ° C / min from room temperature in nitrogen gas.
  • the temperature was raised to 00 ° C and 2,500 ° C, and calcined at that temperature to produce a hollow mold 1 entirely made of amorphous carbon as shown in Fig.5.
  • the mold 1 thus obtained was examined for its wettability with respect to a natural rubber latex solution, specific resistance, and thermal conductivity. Table 1 shows the results.
  • the polycarbonate powder obtained in Production Example 2 was placed in a mold, heated and pressed under the conditions of 180 ° (80 kg Zcnf), cooled to room temperature, and released.
  • a polycarbodiimide resin molded article having the shape shown in Fig. 6 was obtained.
  • the surface of the molded body was polished and mirror-finished, and then fired under the same conditions as in Example 3 to produce a mold 1 shown in FIG.
  • the mold 1 thus obtained was examined for its wettability to a natural rubber latex solution, its specific resistance, and its thermal conductivity. Table 1 shows the results.
  • a phenol resin molded article was molded under the same conditions as in Example 3, and the phenol resin molded article was molded.
  • the polycarbodimid powder obtained in Production Example 2 was placed in a mold, and a polycarbodimid tree B molded body was formed in the same manner as in Example 4, and the root portion B was ground. Then, the surface of the main body M of the polybolymid resin molded body is polished and mirror-finished, and then formed into a double spiral shape as shown in FIG. The sintering was performed under the same conditions as in Example 3 to produce a mold 1 shown in FIG.
  • the double helical portion formed at the base B can be used as the heating region R having a higher electric resistance, and the resistance heating can be performed more efficiently. I can do it.
  • reference numerals 1.5 denote electrodes of an AC heating power supply 10.
  • the use of the mold for manufacturing an ultra-thin rubber molded article of the present invention makes it possible to form an ultra-thin rubber.
  • the complicated process of "peeling the molded product from the molding die and reattaching it to another inspection die” can be omitted in the inspection process, and the molding process, especially the heating and drying process Since the product can be heated and dried from the inner mold side, pinholes can be prevented as much as possible.
  • the mold for producing an ultra-thin rubber molded product is lightweight, has good workability, and can be easily formed into various shapes. In particular, it is used as a mold for producing condoms. The required mirror finish of the required surface is easy.
  • the inspection :! The entire production process, including the process, can be performed with a single mold, and the production of ultra-thin rubber molded products is performed continuously without interruption during the entire process. This is very useful industrially because it can improve production efficiency and minimize the occurrence of pinholes in the manufacturing process.

Abstract

A mold for manufacturing a very thin rubber molding, wherein the body portion of the main body of the mold is immersed in a latex solution to deposit latex onto the surface of the body portion, latex deposited thereonto is heated and dried to thereby give a very thin rubber molding, at least the surface of the body portion of the main body of the mold immersed in the latex solution is made from amorphous carbon, and an electrode for current supply and a heat generating region for generating heat due to the resistance by the current supply are provided at the proximal portion of this main body of the mold. A method of manufacturing a very thin rubber molding, wherein one and the same mold can be used from an immersing step, in which the mold is immersed in the latex solution and latex is deposited onto the surface of the mold, to an inspecting step of the molding deposited onto the surface of the mold, and, simultaneously, the molding deposited onto the surface of the mold is heated and dried from the side of the mold to thereby prevent or minimize the formation of pinholes.

Description

明 細 ― 書  Specification
極薄ゴム成形品の製造用成形型及び製造方法  Mold and method for manufacturing ultra-thin rubber molded product
技 術 分 野 Technical field
本発明は、 避妊具と しての コ ン ドーム、 手術用 ゴム手 袋等の医療の現場で使用される医療用ゴム手袋、 ク リ 一 ンな作業環境を作り 出すと共に細かな作業を正確に行な う ためにハイテク産業等の作業現場で使用される作業用 ゴム手袋等の極薄ゴム成形品を製造するための成形型及 びこの成形型を用いて極薄ゴム成形品を製造するための 方法に関する。 '  The present invention creates medical working gloves used in the medical field, such as condoms as contraceptives, rubber gloves for surgery, etc., and creates a clean working environment and accurately performs fine work. Molds for manufacturing ultra-thin rubber molded products such as rubber gloves for work used at work sites in the high-tech industry, etc., and for manufacturing ultra-thin rubber molded products using these molds The method. '
背 景 技 術 . Background technology.
コ ン ドーム等の極薄ゴム成形品は、 一般的には、 ガラ. スゃ磁器で形成され、 無端ベル ト に所定の間隔をおいて. 多数立設された成形型を使用 し、 成形型を水洗槽で水洗 する水洗工程、 成形型を順次ラテ ッ ク ス液中に浸漬して 成形型の表面にラ テ ッ ク スを付着させる浸漬工程、 成形 型の表面に付着したラテツ ク スを加熱乾燥して加硫を行 なう加熱乾燥工程、 成形型によ り成形された成形品を電 解液中に浸漬し、 通電してピ ンホール検査を行な う検査 工程等の多数の工程を経て製造されている。  Ultra-thin rubber molded products such as condoms are generally formed from glass porcelain and are spaced at predetermined intervals on endless belts. Washing process in which the mold is successively immersed in a latex solution to adhere the latex to the surface of the mold, and the latex adhering to the surface of the mold is removed. Numerous processes such as a heating and drying process in which heating and drying are performed and vulcanization, and a testing process in which a molded product formed by a molding die is immersed in an electrolytic solution and energized to perform a pinhole inspection It has been manufactured through.
. しかしながら、 この様な従来の製造方法においては、 加熱乾燥工程の後に成形型の表面に付着している成形品 を一旦こ の成形型から外し、 ピンホール検査のための導 電性を有する検査型に再び装着し、 この状態で電解液中 に浸漬して通電し、 ピンホール検査を行なわなければな らず、 成形品が極薄ゴム製品であるために、 この検査ェ 程における成形型からの成形品の剥離と検査型への成形 品の再装着の作業が極めて面倒な作業であ り、 この検査 工程がコ ン ドーム等の極薄ゴム成形品の製造における重 犬な律速段階になつていた。 However, in such a conventional manufacturing method, after the heating and drying process, the molded product adhering to the surface of the mold is temporarily removed from the mold, and a conductive test for pinhole inspection is performed. Re-attach to the mold and in this state Since the molded product is an ultra-thin rubber product, the molded product is a very thin rubber product. The re-installation work was extremely cumbersome, and this inspection process had become the limiting step in the production of ultra-thin rubber molded products such as condoms.
そこで、 この問題を解決する ものと して、 成形型を金 属材料で形成し、 加熱乾燥処理されて成形型の表面に付 着している成形品をそのまま検査工程の電解液中に浸漬 してピンホール検査を行なう こ とが提案されている (特 公昭 47- 17, 474号公報) 。 しかしな.がら、 この方法は、 成形型と して金属材料を用いる ものであ り、 このために 成形型からラテッ ク ス中に金属イオンが入り込み、 これ が原因してゴムを分散質とする コ ロイ ドゾルの状態が悪 化し、 成形型の表面に良好な伏態でラテッ ク スを付着さ せる こ とができなく なり 、 結果と して不良品が多量に発 生し、 実際には実用化されていない。  Therefore, as a solution to this problem, the mold was formed from a metal material, and the molded product that had been heated and dried and adhered to the surface of the mold was immersed directly into the electrolyte solution in the inspection process. A pinhole inspection has been proposed (Japanese Patent Publication No. 47-17, 474). However, in this method, a metal material is used as a molding die, and as a result, metal ions enter the latex from the molding die, which causes rubber to become a dispersoid. The state of the colloid sol deteriorates, and it becomes impossible to adhere the latex to the surface of the mold in a good state, resulting in a large number of defective products, which is practically practical. Not converted.
また、 本発明者らは、 上述した問題を解決するため、 成形型を S i Cや Z r B 2 あるいはこれらの混合物等か らなる導電性セラ ミ ッ ク ス材料で形成し、 この成形型を そのまま検査型と して使用できるよう に し、 これによつ て検査工程における煩雑な 「成形型からの成形品の剥離 と検査型への成形品の再装着」 の作業を省略できるよ う にした極薄ゴム成形品の成形型を提案した (特開平 1 - 1 08, 012号公報) 。 この導電性セラ ミ ッ ク ス製の成形型を 使用する こ とにより 、 浸漬工程でラテッ ク ス中に金属ィ オンが混入する問題もな く 、 極薄ゴム成形品の製造をそ の水洗ェ程から浸漬工程、 加熱乾燥工程及び検査工程ま で連続して行な う こ とができ、 生産効率の向上を図る こ とができ る とい う利点が生じる。 In order to solve the above-mentioned problems, the present inventors formed a mold with a conductive ceramic material made of SiC, ZrB2, or a mixture thereof, and used the mold. Can be used as an inspection mold as it is, so that the complicated work of "peeling off the molding from the molding die and re-attaching the molding to the inspection die" in the inspection process can be omitted. A mold for an ultra-thin rubber molded product was proposed (Japanese Patent Laid-Open No. 1-108,012). By using this conductive ceramics mold, the metal is added to the latex during the immersion process. The production of ultra-thin rubber moldings can be carried out continuously from the washing process, the dipping process, the heating and drying process and the inspection process, without the problem of mixing in, thereby improving production efficiency. The advantage is that it can be achieved.
しかしながら、 この様に導電性セラ ミ ッ ク ス材料で成 形型を製造した場合、 この導電性セラ ミ ッ ク ス材料は材 ^それ自体が高価であるばかりでな く 、 比重が重く 、 無 端ベル ト に多数の成形型を立設して製造ライ ンを構成す るには不向きであ り 、 しかも、 加工性が悪く て成形でき る形状が制限され、 少しでも複雑な形状の成形型を作製 しょ う とする と表面の研削加工や鏡面仕上げのための研 磨加工が必要になり、 これら研削加工や研磨加工に多大 な労力と経費とを必要と.する という別の問題が生じ、 必 ずし も満足でき る ものである とは言えなかった。 すなわ ち、 導電性セラ ミ ッ ク ス材料で成形型を製造するには、 このセラ ミ ッ ク ス材料の粉末にバィ ンダ一を配合してコ ンパゥ ン ドを調製し、 この コ ンパゥ ン ドを成形して成形 型と同 じ形状の未焼結成形体を形成し、 得られた未焼結 成形体を所定の焼結温度で焼結して目的の導電性セラ ミ ッ ク ス製成形型を製造するが、 この際に、 加工し易い未 焼結成形体の状態でその表面を研削して種々の形状に し たり、 あるいは、 こ の表面を研磨して鏡面仕上げをする こ とができず、 焼結して得られた硬度の高い焼結体につ いてその表面を研削したり、 あるいは、 研磨して鏡面仕 上げを行なわなければな らない。  However, when the molding die is manufactured from the conductive ceramic material as described above, the conductive ceramic material is not only expensive itself, but also has a high specific gravity and no It is unsuitable for constructing a production line by arranging a large number of molds on the end belt, and the workability is poor, and the shape that can be formed is limited. In order to produce such a material, a grinding process for the surface and a polishing process for a mirror finish are required, and another problem that a great deal of labor and cost is required for the grinding process and the polishing process arises. It was not always satisfactory. That is, in order to manufacture a molding die using a conductive ceramic material, a binder is mixed with a powder of the ceramic material to prepare a compound, and the compound is prepared. To form an unsintered compact having the same shape as the mold, and sintering the obtained unsintered compact at a predetermined sintering temperature to form the desired conductive ceramics The mold is manufactured, and at this time, the surface can be ground into various shapes in the state of a green compact that is easy to process, or the surface can be polished to a mirror finish. Instead, the surface of a high-hardness sintered body obtained by sintering must be ground or polished to a mirror finish.
更に、 水洗工程、 浸漬工程、 加熱乾燥工程及び検査ェ 程からなる コ ン ドーム等の極薄ゴム成形品の製造におい ては、 製造される成形品の厚さが極めて薄く 、 このため に加熱乾燥工程で成形型の表面に付着したラテツ ク スか らその溶剤を除去する際にピンホールが発生し易いとい う問題がある。 この問題については、 それがどの様な原 因でピンホールが発生するかについて、 必ずしも明確で はないが、 本発明者らの研究によれば、 成形型の表面に 付着したラテッ クスを加熱乾燥する際に、 外部からの加 · 熱のみでこの加熱乾燥を行なう と、 先ず最初にこのラテ ッ クスの層の表面のみが先に乾燥し、 それから順次この ラテツ タスの層の内部に乾燥が進行する こ とになるが、 このラテッ ク スの層の内部が乾燥する際に、 そこで蒸発 した揮発成分が先に乾燥したラテツ ク スの層の表面を破 壊して外部に出てく る こ とにな り、 これがピンホール発 生の重大な原闵の 1 つになっている ものと考えられる。 特に、 成形品がコ ン ドームである場合には、 その成形 Π口Ρ の厚さが通常 0 . 0 2 〜 0 . 1 m m程度と極めて薄く 、 また、 その製品の性質上ピンホールを有する不良品の製 造は許されず、 ,このために製造される全ての成形品につ いてその ピ ンホール換査を行なう検査工程が必要になる そこで、 この極薄ゴム成形品の製造においては、 その製 造過程で如何にピ ンホールの発生を防止し、 製品歩留り の向上を図るかという点も重大な課題となっている。 発 明 の 開 示 In addition, washing process, dipping process, heat drying process and inspection process In the production of ultra-thin rubber molded articles such as condoms, the thickness of the molded article produced is extremely thin, and therefore, from the latex adhering to the surface of the mold during the heating and drying process. There is a problem that a pinhole is easily generated when the solvent is removed. Regarding this problem, it is not always clear what causes pinholes, but according to the study of the present inventors, the latex adhering to the surface of the mold was heated and dried. When performing this heating and drying only by external heating, first, only the surface of the latex layer is dried first, and then the drying proceeds inside the latex layer sequentially. However, when the inside of this latex layer dries, the volatile components evaporated there break down the surface of the previously dried latex layer and come out to the outside. Therefore, this is considered to be one of the major causes of pinhole occurrence. In particular, when the molded product is a condom, the thickness of the molding opening is extremely thin, usually about 0.02 to 0.1 mm, and there is no pinhole due to the properties of the product. Production of non-defective products is not permitted, and an inspection process is required to perform pinhole inspection on all molded products manufactured for this purpose. Another important issue is how to prevent the generation of pinholes in the manufacturing process and improve product yield. Disclosure of the invention
そ こで、 本発明者らは、 かかる観点に鑑み、 検査工程 での成形品を成形型から剝がして別の検査型に再装着す る とい う煩雑な作業を省略でき る と共に、 製造過程、 特 に加熱乾燥工程での ピンホールの発生を可及的に防止す る こ とができ る、 極薄ゴム成形品の製造用成形型及びこ れを用いた極薄ゴム成形品の製造方法について鋭意研究 を重ね、 本発明を完成した。 In view of this, the present inventors consider the inspection step The complicated work of removing the molded article from the mold from the mold and reattaching it to another inspection mold can be omitted, and pinholes are generated as much as possible in the manufacturing process, especially in the heating and drying process. The present inventors have conducted intensive research on a molding die for producing an ultra-thin rubber molded article and a method for producing an ultra-thin rubber molded article using the same, and completed the present invention.
従って、 本発明の目的は、 極薄ゴム成形品の製造にお いて、 検査工程における "成形品を成形型から剥がして 別の検査型に再装着する " とい う煩雑な作業を省略でき る と共に、 製造過程での ピ ンホ ールの発生を可及的に防 止する こ とができ る新規な製造用成形型を提供する こ と にめ る  Therefore, an object of the present invention is to eliminate the troublesome work of "peeling off a molded article from a mold and reattaching it to another inspection mold" in an inspection process in the production of an ultra-thin rubber molded article. To provide a new manufacturing mold capable of preventing pinholes during the manufacturing process as much as possible.
また、 本発明の他の目的は、 軽量であって、 加工性が よ く て容易に種々 の形状に形成する こ とができ、 特にコ ン ドー ムの製造用成形型と して要求される表面の鏡面仕 上げが容易である新規な極薄ゴム成形品の製造用成形型 を提供する こ とにある。  Another object of the present invention is that it is lightweight, has good workability and can be easily formed into various shapes, and is particularly required as a mold for manufacturing a dome. An object of the present invention is to provide a mold for manufacturing a novel ultra-thin rubber molded product having a mirror-finished surface.
更に、 本発明の目的は、 こ の様な極薄ゴム成形品の成 形型を使用 し、 検査工程における "成形品を成形型から 剥がして別の検査型に再装着する " とい う煩雑な作業を 省略でき る と共に、 製造過程での ピ ンホ ールの発生を可 及的に防止する こ とができ る新規な極薄ゴム成形品の製 造方法を提供する こ と にある。  Furthermore, an object of the present invention is to use such a molded article of an ultra-thin rubber molded article, and to carry out the complicated procedure of "peeling the molded article from the mold and reattaching it to another inspection mold" in the inspection process. An object of the present invention is to provide a novel ultra-thin rubber molded article manufacturing method which can omit operations and minimize the occurrence of pinholes in the manufacturing process.
すなわち、 本発明は、 型本体の本体部をラテ ッ ク ス液 中に浸漬してその表面にラテ ッ ク スを付着させ、 この付 着したラテ ツ ク スを加熱乾燥して極薄ゴム成形品を製造 するための成形型であ り、 少な く と もラテッ ク ス液中に 浸漬される型本体の本体部表面がァモルフ ァスカーボン で形成されており、 この型本体の根元部には通電のため の電極と通電によ り抵抗発熱する発熱領域とが設けられ ている極薄ゴム成形品の製造用成形型である。 That is, in the present invention, the main body of the mold body is immersed in a latex solution to adhere the latex to its surface, and the attached latex is heated and dried to form an ultra-thin rubber. Manufacture goods The main body surface of the mold body, which is at least immersed in the latex liquid, is formed of amorphous carbon, and the base of the mold body has an electrode for conducting electricity. This is a molding die for manufacturing ultra-thin rubber molded products, which is provided with a heating region that generates resistance by energization.
また、 本発明は、 少なく と もラテ ッ ク ス液中に浸漬さ れる型本体の本体部表面がァモルフ ァスカ ーボンで形成 され、 かつ、 根元部には通電のための電極と通電によ り 抵抗発熱する発熱領域とが設けられた成形型を使用 し、  Further, according to the present invention, at least the surface of the main body of the mold body immersed in the latex liquid is formed of amorphous carbon, and the base has a current-carrying electrode and a resistance formed by the current-carrying. Use a mold provided with a heating area that generates heat,
(a)成形型を順次ラテツ クス液中に浸漬してこの成形型 の表面にラテ ッ ク スを付着させる浸漬工程と、  (a) an immersion step of sequentially immersing the mold in a latex liquid to adhere the latex to the surface of the mold;
(b)成形型へ通電し.てその発熱領域を抵抗発熱させ、. こ れによって成形型の表面に付着したラテ ッ ク スを加熱乾 燥させる加熱乾燥工程と、  (b) energizing the molding die to generate resistance heat in the heat generating area, thereby heating and drying the latex adhering to the surface of the molding die; and
(c)成形型によ り成形された成形品をこの成形型から取 り外すこ どなく そのまま電解液中に浸漬し、 通電してピ ンホール検査を行な う検査工程 ' とを有する極薄ゴム成形品の製造方法である。  (c) An ultra-thin process comprising immersing the molded product in the electrolytic solution as it is without removing it from the molding die, applying electricity, and performing a pinhole inspection. This is a method for producing a rubber molded product.
本発明の成形型において、 その型本体は、 少な く と も 使用時にラテツ ク ス液中に浸漬される本体部表面がァモ ルフ ァ スカーボンで形成されている ことが必要であ り、 この本体部表面以外の部分については、 それが本体部表 面と同様にァモルフ ァ スカーボンで形成されていて も、 また、 それ以外の材料、 例えば、 通常の黒鉛材料、 セラ ミ ッ ク ス、 導電性セラ ミ ッ ク ス、 ガラス、 磁器等で形成 されていてもよ く 、 また、 成形型と しての強度が確保さ れれば、 中空状に形成されていてもよい。 このァモルフ ァ ス力一ボ ンの嵩比重は、 通常、 1 . 0 〜 1 . 9 g Zcnf の範囲で得られ、 ガラ スや磁器と比べて低い値であ り 、 また、 導電性セラ ミ ッ ク スと比較すればかな り低い値で あり 、 軽量の成形型とする こ とができ る。 In the molding die of the present invention, it is necessary that at least the surface of the main body to be immersed in the latex liquid at the time of use is formed of amorphous carbon. Regarding the part other than the main body surface, even if it is formed of amorphous carbon similarly to the main body surface, other materials such as ordinary graphite material, ceramics, and conductive material are used. It may be made of ceramics, glass, porcelain, etc. and has sufficient strength as a mold. If so, it may be formed in a hollow shape. The bulk specific gravity of this amorphous force is usually obtained in the range of 1.0 to 1.9 g Zcnf, which is lower than that of glass or porcelain. The value is much lower than that of the mold, and it can be used as a lightweight mold.
また、 この型本体の根元部については、 成形型の本体. 部表面に付着したラテ ッ ク スを加熱乾燥する際に、 この 成形型側からの加熱が可能になるよ う に、 通電して抵抗 発熱する発熱領域が形成されている こ とが必要であ り 、 そのために、 少な く と も この根元部に形成される発熱領 域については、 その固有抵抗値が 0 . 0 0 0 0 1 〜 0 . 1 Ω · αη、 好ま し く は 0 . 0 0 0 1 〜 0 . 0 1 Ω · cm.で あるのがよ く 、 また、 この根元部の.発熱領域から本体部 への伝熱係数力く 1 0 〜 0 . 0 0 0 0 1 c a 1 cm · s e c. · °C、 好ま し く は 5 〜 0 . 0 0 0 1 calZ cm · sec. · °Cで あるのがよい。 この様な根元部における固有抵抗値及び この根元部から本体部への伝熱係数を選択する こ とによ り 、 根元部の発熱領域で発熱した熱を効率良く 本体部へ 伝達し、 そこでこの本体部に付着する ラテ ッ ク スを都合 良く 加熱乾燥する こ とができ る。 なお、 この成形型の根 元部については、 この部分に設け られる発熱領域での十 分な抵抗発熱を確保するために、 この根元部に電気抵抗 を高く するための処理を施してもよ く 、 例えば、 この根 元部を電気抵抗の高い別の材質で形成したり 、 電気抵抗 が高く なるよ う に例えば 2 重螺旋構造に形成したり、 更 には、 こ の根元部の部分の電気抵抗が高く なるよ う に、 セラ ミ ッ クス、 ガラ ス等の添加剤を添加してもよい。 そ して、 この根元部については、 上記加熱領域に通電 し、 また、 本体部表面に成形された成形品のピンホール 検査を行なう 際に通電するために、 電極を設けておく こ とが必要であ り、 例えば、 カーボン、 プラスチッ ク、 金 属、 ガラス、 セラ ミ ッ ク ス等を基材とする、 日清紡績株 式会社製商品名 B T — 1 0 1 のよう な導電性接着剤で引 出し電極を取り付けたり、 あるいは、 バン ド状ァモルフ ァスカーボンを巻き付ける等して取り付けてもよい。 Also, when heating and drying the latex adhering to the surface of the mold, heat is applied to the base of the mold so that heating from the mold side is possible. It is necessary that a heat-generating region for generating resistance heat is formed. Therefore, at least the heat-generating region formed at the base has a specific resistance value of 0.0000. ~ 0.1 Ω · αη, preferably 0.00001 to 0.01 Ω · cm, and the heat transfer from the heat generation region at the base to the main body. The coefficient power should be 10 to 0.001 ca 1 cm1 sec · ° C, preferably 5 to 0.001 calZcm · sec. ° C. By selecting such a specific resistance value at the root and a heat transfer coefficient from the root to the main body, heat generated in the heat generating region at the root is efficiently transmitted to the main body. Latex adhering to the main body can be conveniently heated and dried. In addition, in order to secure sufficient resistance heat generation in the heat generating area provided in this portion, a process for increasing electric resistance may be performed on the root portion of the mold. For example, this root portion may be formed of another material having high electric resistance, or may be formed in, for example, a double helical structure so as to increase the electric resistance. So that the resistance is higher Additives such as ceramics and glass may be added. In addition, it is necessary to provide an electrode at the base for supplying power to the above-mentioned heating area and supplying power when performing a pinhole inspection of a molded product formed on the surface of the main body. For example, using a conductive adhesive such as BT-101 manufactured by Nisshin Spinning Co., Ltd. based on carbon, plastic, metal, glass, ceramics, etc. A lead electrode may be attached, or band-like amorphous carbon may be wound around to attach.
この様に、 少な く と も使用時にラテッ ク ス液中に浸漬 される本体部表面を構成するァモルフ ァス.カーボンの製 造方法については、 例えば、 フ ヱ ノ ール樹脂、 ポ リアク リ ロ二 ト リ ル、 ポ リ イ ミ ド、 ポ リ塩化ビニル、 ポ リ 力ル ポジイ ミ ド、 ポ リ塩化ビニリ デン、 フ ラ ン樹脂等の高分 子材料を使用 し、 これを従来公知の方法で炭素化処理す る こ とによ り製造する こ とができる。  In this way, at least a part of the surface of the main body that is immersed in the latex liquid at the time of use is composed of amorphous carbon.For the method of producing carbon, for example, phenol resin, polyacrylo A polymer material such as nitrile, polyimid, polyvinyl chloride, polyamide polyimide, vinylidene polychloride, or flann resin is used, and is subjected to a conventionally known method. It can be produced by carbonizing with.
このアモルフ ァ スカーボンの製造方法について、 特に 好ま しい方法は、 ポ リ カルポジイ ミ ドを原料とする、 例 えば特開平 2 — 1 5 2 1 6 7 号ゃ特開平 3 — 2 4 7 5 0 4号の各公報に記載された方法等であ り、 この様な方法 で製造する こ とによ り、 気孔率が低く 、 強度が高く なる という利点がある。  A particularly preferred method of producing the amorphous carbon is to use a raw material of a po- lylic poimid, for example, Japanese Patent Application Laid-Open No. 215/1677 and Japanese Patent Application Laid-Open No. 3-247504. This method has the advantages of low porosity and high strength when manufactured by such a method.
また、 本発明において、 極薄ゴム成形品製造は、 上記 成形型を使用 し、 少なく と も(a)成'形型を順次ラテ ッ ク ス 液中に浸漬してこの成形型の表面にラテツ ク スを付着さ せる浸漬工程、 (b)成形型へ通電してその発熱領域を抵抗  In the present invention, the production of an ultra-thin rubber molded product is performed by using at least the above-mentioned mold, and at least (a) successively immersing the molded mold in a latex liquid to form a latex on the surface of the mold. Dipping process to attach grease, (b) energizing the molding die and
新たな用紙 発熱させ、 これによ つて成形型の表面に付着したラテ ツ ク スを加熱乾燥させる加熱乾燥工程、 及び、 (c)成形型に よ り成形された成形品をこの成形型から取り外すこ とな く そのまま電解液中に浸漬し、 通電してピンホール検査 を行なう検査工程、 からなる方法で行なわれる。 New paper A heating and drying step of heating and drying the latex adhering to the surface of the mold due to the generation of heat; and (c) removing the molded article from the mold from the mold. In this method, it is immersed in the electrolytic solution as it is, and a pinhole inspection is performed by applying power.
上記浸漬工程 (a)で使用される ラ テ ッ ク スと しては、 特 に限定される ものではな く 、 例えば、 天然ゴムや、 ブタ ジェン · スチ レ ン系合成ゴム ( S B R ) 、 ブタ ジエ ン .  The latex used in the immersion step (a) is not particularly limited, and examples thereof include natural rubber, butadiene-styrene synthetic rubber (SBR), and pig. Jean.
ア ク リ ロニ ト リ ル系合成ゴム ( N B R ) 、 ブチルゴム、 ク ロ ロ プ レ ン ゴム ( C R ) 、 シ リ コ ー ンゴム、 ポ リ ア ク リ ル系ゴム、 含フ ッ素系ゴム、 ポ リ ウ レタ ン系ゴム、 ポ リ イ ソプレ ン、 ノヽ イ ノ、。ロ ン系ゴム等のラテ ッ ク スを挙げ る こ とができ る。 Acrylonitrile synthetic rubber (NBR), butyl rubber, chloroprene rubber (CR), silicone rubber, polyacrylic rubber, fluorine-containing rubber, poly rubber Polyurethane rubber, polyisoprene, neutron, etc. Latex such as rubber-based rubber can be mentioned.
また、 加熱乾燥工程 (b)については、 成形型の根元部に 通電してその加熱領域を所定の温度に加熱し、 この根元 部から本体部への熱伝導を利用 してラテッ ク スが付着し ' ている本体部を加熱し、 これによつて本体部に付着した ラ テ ッ ク スをその内部から加熱し乾燥する。 そ して、 こ の際に、 従来の乾燥工程と同様に、 電気炉等の外部加熱 をも併せて利用するのがよ く 、 これによつてラテ ッ ク ス 全体をその肉厚方向において極端な温度差の無い状態で 均一に加熱乾燥する こ とができ 、 ピ ンホールの発生をよ り確実に防止でき る。 こ の様に、 成形型の本体部に付着 したラテツ ク スをその内部から加熱し乾燥する こ とによ り 、 成形される極薄ゴム成形品において ピ ンホールの発 生を可及的に防止する こ とができ る。 なお、 この際にお ける、 型本体の本体部での加熱温度、 外部加熱における 加熱温度、 これらの加熱時間等は、 使用される ラテッ ク スの種類や本体部に付着されるラテツ クスの量等に応じ て適宜設定されるが、 通常、 本体部での加熱温度が 8 0 〜 1 7 0 °C程度であ り 、 また、 外部加熱の加熱温度が 8 0 〜 1 7 0 °C程度である。 In the heating and drying step (b), the base of the mold is energized to heat the heated area to a predetermined temperature, and the latex adheres using the heat conduction from the base to the main body. The main body is heated and the latex attached to the main body is heated and dried from inside. At this time, similarly to the conventional drying process, it is preferable to use the external heating of an electric furnace or the like in combination, whereby the entire lattice is extremely thinned in its thickness direction. Heating and drying can be performed uniformly without a large temperature difference, and the generation of pinholes can be more reliably prevented. By heating and drying the latex adhering to the main body of the mold from inside, the occurrence of pinholes in the ultra-thin rubber molded product is minimized. can do. In this case, The heating temperature in the main body of the mold body, the heating temperature in external heating, the heating time, etc. are appropriately set according to the type of latex used, the amount of latex attached to the main body, etc. Usually, the heating temperature in the main body is about 80 to 170 ° C, and the heating temperature for external heating is about 80 to 170 ° C.
この様にして成形型の本体部表面上に成形された成形 品は、 次に検査ェ程(c)でピ ンホール検査が行なわれる。 このピ ンホール検査は、 通常、 検査型に成形品を被せ、 これを電解液中に浸漬し、 通電して電気の導通が認めら れるか否かを調べ、 電気の導通が認められる場合には成 形品の何れかの場所にピンホールが存在する こ とになり、 不良品と して取り扱う。 .本発明においては、 本体部表面 上に成形品が成形されて付着している成形型をそのまま 電解液中に浸漬し、 こ の成形型を検査型と して使用する。 この際の具体的な検査の方法や条件は、 従来公知の方法 と全く 同様に行なう ことができる。 図面の簡単な説明  The molded product thus formed on the surface of the main body of the mold is subjected to a pinhole inspection in the inspection step (c). In this pinhole inspection, usually, a molded product is put on an inspection mold, immersed in an electrolytic solution, and energized to check whether or not electric continuity is observed. Pinholes are present anywhere on the molded product and are treated as defective. In the present invention, a molding die on which a molded product is molded and adhered to the surface of the main body is immersed in an electrolytic solution as it is, and this molding die is used as an inspection die. In this case, specific inspection methods and conditions can be exactly the same as those of a conventionally known method. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の実施例 1 に係る極薄ゴム成形品の製 造方法を示すもので、 コ ン ドームを製造するための製造 ライ ンの説明図であ る。  FIG. 1 shows a method for producing an ultra-thin rubber molded product according to Example 1 of the present invention, and is an explanatory diagram of a production line for producing a condom.
図 2 は、 本発明の実施例 1 に係る コ ン ドーム製造用の 成形型であって、 図 1 に示すコ ン ドーム製造ラ イ ンで使 用されている成形型の部分断面説明図である。  FIG. 2 is a partial cross-sectional explanatory view of a mold for manufacturing a condom according to Example 1 of the present invention, which is used in the condom manufacturing line shown in FIG. 1. .
図 3 は、 図 1 のコ ン ドーム製造ラ イ ンにおいて、 図 2 に示す成形型の本体部にラテ ツ ク スを付着させた状態を 示す図 2 と同様の説明図である。 Fig. 3 shows the condom manufacturing line of Fig. 1 FIG. 3 is an explanatory view similar to FIG. 2 showing a state in which a latex is attached to a main body of a molding die shown in FIG.
図 4 は、 図 1 の コ ン ドーム製造ラ イ ンにおいて、 図 2 に示す成形型の本体部の表面に成形されたコ ン ドームが 付着している状態を示す図 2 と同様の説明図である。  Fig. 4 is an explanatory view similar to Fig. 2 showing a state in which the condom formed on the surface of the main body of the mold shown in Fig. 2 is adhered to the condom manufacturing line of Fig. 1. is there.
図 5 は、 実施例 2で作製したコ ン ドーム製造用の成形 型を示す部分断面説明図である。  FIG. 5 is a partial cross-sectional explanatory view showing a mold for manufacturing a condom manufactured in Example 2.
図 6 は、 実施—例 3 で作製したコ ン ドーム製造用の成形 型を示す部分断面説明図である。  FIG. 6 is a partial cross-sectional explanatory view showing a mold for manufacturing a condom manufactured in Example—Example 3.
図 7 は、 実施例 4 で作製したコ ン ドーム製造用の成形 型を示す部分断面説明図である。 - 発明を実施するための最良の形態 以下、 添付図面に示す実施例に基づいて、 本発明を具 体的に説明する。  FIG. 7 is an explanatory partial cross-sectional view showing a molding die manufactured in Example 4 for manufacturing a condom. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described based on embodiments shown in the accompanying drawings.
実施例 1  Example 1
図 1 に本発明の実施例に係る コ ン ドーム製造ライ ンが 示されてい る。 こ の コ ン ドーム製造ラ イ ンは、 基本的に は、 本発明のコ ン ドーム製^用成形型 1 が多数立設され た無端ベル ト 2 と、 この成形型 1 を水洗するための水洗 槽 3 と、 こ こで水洗された成形型 1 の本体部をラテ ッ ク ス液中に浸漬する ラ テ ッ ク ス液槽 4 と、 成形型 1 の本体 部に付着したラテ ツ ク スを予備的に加熱乾燥する予備加 熱室 5 と、 こ の予備加熱室 5 で予備加熱された成形品の 上部を指で縁巻き して製品コ ン ドームの開口端縁に補強 部を形成したのち、 再び加熱乾燥するための加熱乾燥室 6 と、 この加熱乾燥室 6 で乾燥され、 成形型 1 の本体部 表面に付着している コ ン ドームの ピンホール検査を行な う電解液槽 7 と、 この電解液槽 7 を通過したコ ン ドーム を最終的に乾燥する製品乾燥室 8 と、 電解液槽 7.を通過 した際に不良品と して判定されたコ ン ドームを除去しな がら製品コ ン ドームを成形型 1 から取り外す取外し装置 9 とで構成されている。 FIG. 1 shows a condom manufacturing line according to an embodiment of the present invention. This condom manufacturing line is basically composed of an endless belt 2 on which a number of condom molds 1 of the present invention are erected, and a water washing for washing the mold 1 with water. A tank 3, a liquid tank 4 for immersing the main body of the mold 1 washed with water in a latex liquid, and a latex adhering to the main body of the mold 1. After the preheating chamber 5 for preliminary heating and drying, and the upper part of the molded article preheated in the preheating chamber 5 is wrapped with a finger to form a reinforcing portion at the opening edge of the product condom, Heating and drying chamber for heating and drying again 6, an electrolyte tank 7 for conducting a pinhole inspection of the condom adhering to the surface of the main body of the molding die 1 dried in the heating and drying chamber 6, and a cell passing through the electrolyte tank 7. The product condom is removed from the mold 1 while removing the condom determined to be defective when passing through the product drying chamber 8 and the electrolyte tank 7. And a detaching device 9.
そして、 上記予備加熱室 5 と加熱乾燥室 6 内では、 外 部からの加熱以外に、 各成形型 1 に通電してその発熱領 域を抵抗発熱させ、 これによつて成形型 1 の表面に付着 したラ テ ッ ク スあるいは半乾燥状態のラテツ クスを加熱 乾燥し、 加硫させている。 また、 上記電解液槽 7 におい ては、 成形型 1 に接触する接触電極 7 a と電解液中に配 設された電極 7 b との間にピンホール検査用の直流電圧 を印加しておき、 成形型 1 がこの電解液槽 7 内の電解液 中を通過する間に、 この成形型 1 の本体部に.付着してい る コ ン ド:一ムに ピ ンホールがあ る場合にはこの ピ ンホ一 ルを介して電流が流れ、 この コ ン ドームは ピ ンホールが 存在して不良品である ことを検知し、 その情報を取外し 装置 9 に伝達して不良品を取り除く よ う に構成されてい る。  In addition, in the preheating chamber 5 and the heating / drying chamber 6, in addition to heating from the outside, power is applied to each mold 1 to cause the heat generating area to generate resistance heat. The attached or semi-dried latex is heated, dried and vulcanized. In the electrolyte bath 7, a DC voltage for pinhole inspection was applied between the contact electrode 7a contacting the mold 1 and the electrode 7b provided in the electrolyte. While the mold 1 passes through the electrolytic solution in the electrolyte bath 7, the command adhered to the main body of the mold 1: If there is a pinhole in the film, this pin Electric current flows through the hole, and this condom is configured to detect the presence of a pinhole as a defective product, remove the information, and transmit the information to the device 9 to remove the defective product. You.
この実施例 1 で使用されている成形型 1 は、 図 2 に示 すよう に、 その型本体が使用時にラテ ッ ク ス液中に浸漬 される本体部 Mとその上部に位置してラテツ クス液中に は浸漬されない根元部 B とからなり、 これら本体部 Mと 根元部 B とは等方性黒鉛材料で形成された芯部分 1 b と その表面に積層されたァモルフ ァ スカーボン製の表面部 1 a とで形成されており 、 こ の型本体の上端部にはこの 成形型 1 が予備加熱室 5 及び加熱乾燥室 6 内に人ってい る時に交流加熱電源 1 0に接続される加熱用電極 1 1と、 こ の加熱用電極 1 1から加熱領域 Rを確保しつつ設け られた アモルフ ァ スカーボン製のバン ド状電極 1 2が設け られて いる。 そ して、 このアモルフ ァ スカーボン製のバン ド状 電極 1 2は、 上記交流加熱電源 1 0に接続される一方の電極 となるだけでな く 、 成形型 1 が電解液槽 7 内を通過中に ピ ンホール検査用の直流電圧電源 1 3の接触電極 7 a と接 触し、 成形されたコ ン ドームに ピンホールが存在する場 合に電解液槽 Ί の電解液中に配設された電極 Ί b との間 で短絡して電流が流れる接触端子をも兼ねている。 As shown in Fig. 2, the molding die 1 used in Example 1 has a main body part M whose body is immersed in a latex liquid at the time of use and a latex part located at an upper part thereof. The body M and the base B are not immersed in the liquid, and the main body M and the base B are the core 1 b formed of isotropic graphite material. It is formed of a surface portion 1a made of amorphous carbon laminated on the surface thereof, and the molding die 1 is placed in the preheating chamber 5 and the heating drying chamber 6 at the upper end of the die body. The heating electrode 11 connected to the AC heating power supply 10 during the operation, and the amorphous carbon band-shaped electrode 12 provided with the heating area R from the heating electrode 11 are provided. It is provided. The amorphous carbon band electrode 12 not only serves as one electrode connected to the AC heating power supply 10 but also allows the molding die 1 to pass through the electrolytic solution tank 7. Contacted with the contact electrode 7a of the DC voltage power supply 13 for pinhole inspection, and was placed in the electrolyte in the electrolyte tank Ί when the pinhole was present in the molded condom. Also serves as a contact terminal through which current flows due to a short circuit with electrode Ίb.
なお、 この実施例 1 の成形型 1 は、 その本体部 Mがラ テ ッ クス液槽 4 内のラテ ッ ク ス液中に浸漬され、 こ ; を 通過して出てきたと き に、 図 3 に示すよ うに、 本体部 M 表面に所定量のラテ ッ ク ス Lが所定の厚さで付着し、 次 いで予備加熱室 5 で予備的に加熱乾燥されて加熱乾燥室 6 内で完全に加熱乾燥されるまでの間に、 図 4 に示すよ . う に、 指で縁巻き されて成形品コ ン ドーム Cの開口端縁 に補強部 14が形成される。  When the main body M of the molding die 1 of the first embodiment is immersed in the latex liquid in the latex liquid tank 4 and comes out through this; As shown in the figure, a predetermined amount of latex L adheres to the surface of the main body M with a predetermined thickness, and is then preliminarily heated and dried in the preheating chamber 5 and completely heated in the heating drying chamber 6. Before drying, as shown in FIG. 4, the reinforcing portion 14 is formed around the opening edge of the molded product condom C by being wound around with a finger as shown in FIG.
次に、 この実施例 1 で用い られている成形型 1 も含め て、 本発明の極薄ゴム成形品の製造用成形型及びその製 造方法を説明する。  Next, a molding die for producing an ultra-thin rubber molded product of the present invention, including the molding die 1 used in Example 1, and a production method thereof will be described.
〔原料ポ リ カ ルポ ジイ ミ ドの調製〕  [Preparation of raw material polydiimide]
製造例 1 2, 4-ト リ レンジイ ソ シァネー ト (2, 4-TDI ) と 2, 6 -ト リ レ ン ジイ ソ シァネ ー ト (2, 6-TDI ) の混合物 (2, 4-TD I /2, 6-TDI = 80/ 20) 5 4 gをテ ト ラ ク ロ ロエチ レン 5 0 0 ? ^中でカ ルポジイ ミ ド化触媒 (1-フ ヱニル- 3-メ チルホスフ ォ レ ンオキサイ ド) 0 . 1 2 の存在下に 1 2 ひ。 Cで 4時間反応させ、 ポ リ カルボジイ ミ ド溶液を得 た。 Production Example 1 A mixture of 2,4-trirange isocyanate (2,4-TDI) and 2,6-trirange isocyanate (2,6-TDI) (2,4-TD I / 2, 6-TDI = 80/20) 54 g of tetrachloroethylene 500? In the presence of 0.12, a catalyst for the formation of calposimids (1-phenyl-3-methylphosphorenoxide) is used. The mixture was reacted with C for 4 hours to obtain a polycarbodiimide solution.
製造例 2  Production Example 2
メ チ レ ンジ フ エニルジイ ソ シァネ ー ト ( MD I ) 5 0 g をテ ト ラ ク ロ ロエチレン 8 2 Ο τ^中で力ノレポジイ ミ ド化 触媒 ( 1 -フ ェニル -3-メ チルホスフ ォ レ ンォキサイ ド) 0 . 1 3 gの存在下に 1 2 0 °Cで 6 時間反応させ、 得ら れた反応混合物を室温まで冷却して生成したポ リ 力ルポ ジイ ミ ドを沈澱させ、 ろ過して得られた沈澱物を 1 0 0 °Cで 2 時間乾燥し、 ポ リ カ ルポジイ ミ ド粉末を得た。  50 g of methylene phenyldiisocyanate (MDI) was reacted with tetrachloroethylene in 82 2τ ^ in a catalyst for the formation of an olefin (1 -phenyl-3-methylphosphorenoxy) The reaction mixture was allowed to react at 120 ° C for 6 hours in the presence of 0.13 g, and the resulting reaction mixture was cooled to room temperature to precipitate the resulting polypropyldiimide, which was then filtered. The obtained precipitate was dried at 100 ° C. for 2 hours to obtain a powder of a polycarbonate.
〔成形型の製造〕  [Manufacture of molding die]
実施例 2  Example 2
等方性黒鉛材料 (嵩密度 1 . 8 3 g Zcm3、 曲げ強度 5 0 0 kg /cm2) を図 2 の芯部分 1 b に示す形状に加工し、 その表面に上記製造例 1 で得られたポ リ カルボジィ ミ ド 溶液をスプ レー塗布し、 8 0.QCで 3 時間、 1.2 0 °Cで 4 時間及び 2 0 0 °Cで 1 時間乾燥した。 An isotropic graphite material (bulk density: 1.83 g Zcm 3 , bending strength: 500 kg / cm 2 ) was processed into the shape shown in the core part 1 b in FIG. 2, and the surface was obtained in the above Production Example 1. was the port re Karubojii Mi de solution spray coating, 8 3 hours at 0. Q C, dried for 1 hour at 4 hours and 2 0 0 ° C at 1.2 0 ° C.
この様にして得られた成形体を、 窒素ガス中で室温か ら昇温速度 1 0 ^ノ分の速度でそれぞれ 1 , 0 0' 0 °C、 1, 5 0 0 °C ^ 2 , 0 0 0 °C及び 2, 5 0 0 °Cまで昇温 させ、 その温度で焼成して芯部分 1 bの表面にァモルフ  The molded body obtained in this way was heated from room temperature in nitrogen gas at a temperature rising rate of 10 ^ 0 ° C at a rate of 1,0'0 ° C, 1,500 ° C ^ 2,0, respectively. The temperature was raised to 100 ° C and 2,500 ° C, and calcined at that temperature.
新たな用紙 一 — New paper One —
ァ スカーボン製の表面層 1 a を積層 した。 得られた表面 層 1 a の層厚は l 〜 3 / mであ っ た。 A surface layer 1a made of high carbon was laminated. The layer thickness of the obtained surface layer 1a was l to 3 / m.
この様に して得られた成形型 1 について、 天然ゴムラ テッ ク ス溶液に対する濡れ性、 固有抵抗値及び熱伝導率 を調べた。 結果を表 1 に示す。  The mold 1 thus obtained was examined for its wettability to natural rubber latex solution, specific resistance and thermal conductivity. Table 1 shows the results.
実施例 3  Example 3
エバポ レーターを用いて製造例 1 で得られたポ リ カル ボジィ ミ ド溶液を樹脂固形分濃度 5 0 重量%まで濃縮し 得られた高濃度ポ リ カルポジイ ミ ド溶液を金型に注型し 6 0 °Cで 2 0 時間、 8 0 °Cで 2 0 時間及び 1 2 0 °Cで 2 0 時間熱処理し、 離型し 図 5 に示すよ うな中空形状の ポ リ カルポジイ ミ ド樹脂成形体を得た。  Using an evaporator, the polycarbodiimide solution obtained in Production Example 1 was concentrated to a resin solid content concentration of 50% by weight, and the resulting high-concentration polyposide solution was cast into a mold. Heat treated at 0 ° C for 20 hours, at 80 ° C for 20 hours, and at 120 ° C for 20 hours, released, and molded into a hollow-shaped poly-positive imide resin as shown in Fig. 5. Obtained.
このポ リ カルポジイ ミ ド樹脂成形体を、 窒素ガス中で 室温から昇温速度 0 . 2 °C /分の速度でそれぞれ 1 , 0 0 0 °C 、 1 , 5 0 0 °C 、 2 , 0 0 0 °C及び 2 , 5 0 0 °C まで昇温させ、 その温度で焼成し、 図 5 に示すよ う に、 全体がァモルフ ァ ス力一ボン製の中空状成形型 1 を作製 した。  The molded body was heated to 1,000 ° C, 1,500 ° C, 2,0 ° C in nitrogen gas at a rate of 0.2 ° C / min from room temperature in nitrogen gas. The temperature was raised to 00 ° C and 2,500 ° C, and calcined at that temperature to produce a hollow mold 1 entirely made of amorphous carbon as shown in Fig.5.
この様に して得られた成形型 1 について、 天然ゴムラ テ ッ ク ス溶液に対する濡れ性、 固有抵抗値及び熱伝導率 を調べた。 結果を表 1 に示す。  The mold 1 thus obtained was examined for its wettability with respect to a natural rubber latex solution, specific resistance, and thermal conductivity. Table 1 shows the results.
実施例 4  Example 4
製造例 2 で得られたポ リ カルポ ジイ ミ ド粉末を金型に 入れ、 1 8 0 ° ( 、 8 0 kg Z cnf の条件で加熱加圧成形を し 室温まで冷却して離型し、 図 6 に示すよ う な形状のポ リ カルボジィ ミ ド樹脂成形体を得た。 新たな用紙 このポ リ カルポジイ ミ ド樹脂成形体の表面を研磨加工 して鏡面仕上げを行なった後、 上記実施例 3 と同じ条件 で焼成を行い、 図 6 に示す成形型 1 を作製した。 The polycarbonate powder obtained in Production Example 2 was placed in a mold, heated and pressed under the conditions of 180 ° (80 kg Zcnf), cooled to room temperature, and released. A polycarbodiimide resin molded article having the shape shown in Fig. 6 was obtained. The surface of the molded body was polished and mirror-finished, and then fired under the same conditions as in Example 3 to produce a mold 1 shown in FIG.
この様にして得られた成形型 1 について、 天然ゴムラ テッ クス溶液に対する濡れ性、 固有抵抗値及び熱伝導率 を調べた。 結果を表 1 に示す。  The mold 1 thus obtained was examined for its wettability to a natural rubber latex solution, its specific resistance, and its thermal conductivity. Table 1 shows the results.
実施例 5  Example 5
フ ニ ノ ール樹脂 (昭和高分子㈱製 B R L — 2 7 4 ) を 用い、 実施例 3 と同様な条件でフ ニ ノ ール樹脂成形体を 成形し、 このフ ニ ノ ール樹脂成形体を実施例 3 と同様な 条件で焼成し、 図 5 に示すよう な形状の全体がァモルフ ァスカーボン製の中空状成形型 1 を作製した。  Using a phenol resin (BRL # 2744 manufactured by Showa Polymer Co., Ltd.), a phenol resin molded article was molded under the same conditions as in Example 3, and the phenol resin molded article was molded. Was fired under the same conditions as in Example 3 to produce a hollow mold 1 having a shape as shown in FIG. 5 and made entirely of amorphous carbon.
この様にして得られた成形型 1 を使用 し、 天然ゴムラ テッ クス溶液に対する濡れ性、 固有抵抗値及び CD 熱伝導率 を調.ベた。 結果を表 1 に示す。  Using the mold 1 thus obtained, the wettability to a natural rubber latex solution, the specific resistance value and the CD thermal conductivity were measured. Table 1 shows the results.
【表 1 】 焼成温度 濡れ性 固有抵抗値 熱伝導率(cai (。C )— の評価 ( Ω · cm ) 1 cm. sec. °C ) [Table 1] Firing temperature Wettability Specific resistance Thermal conductivity (cai (.C) —Evaluation (Ω · cm) 1 cm. Sec. ° C)
1, 000 〇 0.0006 0.3 施 1, 500 〇 0.0006 0.3 例 1, 000 〇 0.0006 0.3 Application 1, 500 〇 0.0006 0.3 Example
2 2, 000 〇 0.0006 0.3  2 2,000 〇 0.0006 0.3
2, 500 〇 0, 0006 0.3  2,500 〇 0, 0006 0.3
1, 0G0 〇 0.0051  1, 0G0 〇 0.0051
施 1, 500 〇 0.0048  Allocation 1,500 〇 0.0048
 An example
3 2, 000 〇 0.0046 0.020  3 2,000 〇 0.0046 0.020
2, 500 〇
Figure imgf000018_0001
2,500〇
Figure imgf000018_0001
i
Figure imgf000019_0001
i
Figure imgf000019_0001
(注) 濡れ性の評価.は コ ン ドームの製造が可能である 場合を〇と した  (Note) Wetability was evaluated when condoms could be manufactured.
実施例 6  Example 6
製造例 2 で得.られたポ リ 力ルボジィ ミ ド粉末を金型に 入れ、 実施例 4 と同様の方法でポ リ カルボジィ ミ ド樹 B 成形体を成形し、 その根元部 Bを研削加ェして図 7 に示 すよ う な 2 重螺旋形状に形成し、 更に.このポ リ 力ルボジ ィ ミ ド樹脂成形体の本体部 Mの表面を研磨加工して鏡面 仕上げを行なった後、 上記実施例 3 と同 じ条件で焼成を 行い、 図 7 に示す成形型 1 を作製した。  The polycarbodimid powder obtained in Production Example 2 was placed in a mold, and a polycarbodimid tree B molded body was formed in the same manner as in Example 4, and the root portion B was ground. Then, the surface of the main body M of the polybolymid resin molded body is polished and mirror-finished, and then formed into a double spiral shape as shown in FIG. The sintering was performed under the same conditions as in Example 3 to produce a mold 1 shown in FIG.
この実施例の成形型 1 によれば、 根元部 B に形成した 2 重螺旋形状の部分を電気抵抗のよ り高い加熱領域 Rと して使用でき、 よ り効率良く 抵抗加熱を行な う こ とがで き る。 なお、 この成形型 1 において、 符号 1· 5 は交流加 熱電源 10の電極である。  According to the molding die 1 of this embodiment, the double helical portion formed at the base B can be used as the heating region R having a higher electric resistance, and the resistance heating can be performed more efficiently. I can do it. In the molding die 1, reference numerals 1.5 denote electrodes of an AC heating power supply 10.
産業上の利用可能性 Industrial applicability
以上の実施例の結果から も明 らかなよ うに、 本発明の 極薄ゴム成形品の製造用成形型を用いれば、 極薄ゴム成 - - 形品の製造において、 その検査工程において "成形品を 成形型から剥がして別の検査型に再装着する " とい う煩 雑な作業を省略できる と共に、 製造過程、 特に加熱乾燥 工程で成形品を内側の成形型側から加熱乾燥する ことが できるので、 ピンホールの発生を可及的に防止する こ と ができ る。 また、 この極薄ゴム成形品の製造用成形型は、 軽量であって、 加工性がよ く て容易に種々の形状に形成 する こ とができ、 特にコ ン ドームの製造用成形型と して 要求される表面の鏡面仕上げが容易である。 As is clear from the results of the above examples, the use of the mold for manufacturing an ultra-thin rubber molded article of the present invention makes it possible to form an ultra-thin rubber. --In the production of molded products, the complicated process of "peeling the molded product from the molding die and reattaching it to another inspection die" can be omitted in the inspection process, and the molding process, especially the heating and drying process Since the product can be heated and dried from the inner mold side, pinholes can be prevented as much as possible. In addition, the mold for producing an ultra-thin rubber molded product is lightweight, has good workability, and can be easily formed into various shapes. In particular, it is used as a mold for producing condoms. The required mirror finish of the required surface is easy.
更に、 本発明の極薄ゴム成形品の製造方法によれば、 上記の如き成形型を使用するので、 検査:! 程も含めて製 造工程の全ての工程を 1 つの成形型で行なう こ とができ、 極薄ゴム成形品の製造を途中で中断する こ となく その全 ての工程に亘つて連続して行なう こ とができ、 生産効率 の向上を図る こ とができるほか、 製造過程での ピンホー ルの発生を可及的に防止する こ とができるので、 工業上 極めて有用である。  Furthermore, according to the method for producing an ultra-thin rubber molded product of the present invention, since the above-mentioned mold is used, the inspection :! The entire production process, including the process, can be performed with a single mold, and the production of ultra-thin rubber molded products is performed continuously without interruption during the entire process. This is very useful industrially because it can improve production efficiency and minimize the occurrence of pinholes in the manufacturing process.

Claims

求 の 範 囲 Range of request
(1) 型本体の本体部をラ テ ッ ク ス液中に浸漬してその 表面にラ テ ッ ク スを付着させ、 こ の付着したラ テ ッ ク ス を加熱乾燥して極薄ゴム成形品を製造するための成形型 であり 、 少な く と もラ テ ッ ク ス液中に浸漬される型本体 の本体部表面がァモルフ ァ ス力一ボンで形成されており 、 この型本体の根元部青には通電のための電極と通電によ り 抵抗発熱する発熱領域とが設け られている こ とを特徴と する極薄ゴム成形品の製造用成形型。  (1) The main body of the mold body is immersed in a latex solution to adhere the latex to its surface, and the adhered latex is heated and dried to form ultra-thin rubber. This is a molding die for manufacturing products, and at least the surface of the main body of the mold body immersed in the latex liquid is formed of amorphous carbon, and the root of the mold body is formed. The molding die for manufacturing ultra-thin rubber molded products, characterized in that the part blue is provided with electrodes for energization and a heating area for generating resistance heat by energization.
(2) 型本体は、 その芯部分が黒鉛材料で形成されてい る と共に、 この芯部分の表面にアモルフ ァ スカーボンの 表面層が積層されている請求項 1 記載の極薄ゴム成形品 の製造用成形型。  (2) The production of the ultra-thin rubber molded product according to claim 1, wherein the core portion of the mold body is formed of a graphite material, and a surface layer of amorphous carbon is laminated on the surface of the core portion. Molds.
(3) 型本体は、 その全体がアモルフ ァ スカーボンであ る と共に、 その根元部が開口した中空状に形成されてい る請求項 1 記載の極薄ゴム成形品の製造用成形型。.  (3) The mold for manufacturing an ultra-thin rubber molded product according to claim 1, wherein the mold body is entirely formed of amorphous carbon and is formed in a hollow shape with an open base. .
(4) 少な く と も本体部表面に形成されるアモルフ ァ ス 力 一ボ ンが、 ポ リ カ ルポジイ ミ ド、 フ エ ノ ール樹脂、 ポ リ アク リ ロニ ト リ ノレ、 ポ リ イ ミ ド、 ポ リ塩化ビニル、 ポ リ塩化ビニ リ デン及びフ ラ ン樹脂から選ばれた樹脂を成 形し、 得られた成形体を焼成して得られたものである請 求項 1 記載の極薄ゴム成形品の製造用成形型。  (4) At least the amorphous force formed on the surface of the main body is made up of a polycarbonate resin, a phenol resin, a polyacrylonitrile resin, and a polyimidone. The electrode according to claim 1, which is obtained by molding a resin selected from the group consisting of a resin, polyvinyl chloride, polyvinylidene chloride, and a fluorinated resin, and firing the obtained molded body. Mold for manufacturing thin rubber molded products.
(5) 少な ぐと もラ テ ッ ク ス液中に浸漬される型本体の 本体部表面がアモルフ ァ スカ ーボ ンで形成され、 かつ、 根元部には通電のための電極と通電によ り抵抗発熱する 発熱領域とが設け られた成形型を使用 し、 少な く と も (a)成形型を順次ラテツ ク ス液中に浸漬してこの成形型 の表面にラテツ ク スを付着させる浸漬工程と、 (5) The surface of the main body of the mold body, which is immersed in the latex liquid, is formed of amorphous carbon, and the base is provided with an electrode and a current-carrying electrode. Use a mold with a heating area that generates heat (a) an immersion step of sequentially immersing the mold in a latex liquid to adhere the latex to the surface of the mold;
(b)成形型へ通電してその発熱領域を抵抗発熱させ、 こ れによって成形型の表面に付着したラテツ クスを加熱乾 燥させる加熱乾燥工程と、  (b) a heating / drying step of energizing the molding die to generate resistance heat in its heat generating region, thereby heating and drying the latex adhered to the surface of the molding die;
(c)成形型によ り成形された成形品をこの成形型から取 り外すことなく そのまま電解液中に浸漬し、 通電してピ ンホール検査を行なう検査工程  (c) Inspection process in which the molded product molded by the molding die is immersed in the electrolyte solution without being removed from this molding die, and the power is supplied to perform the pinhole inspection.
とを有する こ とを特徴とする極薄ゴム成形品の製造方法A method for producing an ultra-thin rubber molded article, characterized by having:
(6) 成形型の表面に付着したラテッ ク スの加熱乾燥ェ 程において、 外部からの加熱と成形型への通電による抵 抗発熱とで加熱乾燥する請求項 5記載の極薄ゴム成形品 の製造方法。 (6) The ultra-thin rubber molded article according to claim 5, wherein in the heating and drying step of the latex adhering to the surface of the molding die, heating and drying are performed by external heating and resistance heat generated by energizing the molding die. Production method.
PCT/JP1993/000208 1992-02-21 1993-02-22 Mold for manufacturing very thin rubber molding and method of manufacturing the mold WO1993016857A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/133,128 US5595704A (en) 1992-02-21 1993-02-22 Method of using a shaping mold for making ultra-thin shaped rubber articles
DE69310297T DE69310297T2 (en) 1992-02-21 1993-02-22 MOLD FOR MAKING VERY THIN RUBBER OBJECTS AND METHOD FOR MAKING THE MOLD
EP93904328A EP0587903B1 (en) 1992-02-21 1993-02-22 Mold for manufacturing very thin rubber molding and method of manufacturing the mold

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2100792 1992-02-21
JP4/21007U 1992-02-21
JP8188092 1992-10-14
JP4/81880U 1992-10-14

Publications (1)

Publication Number Publication Date
WO1993016857A1 true WO1993016857A1 (en) 1993-09-02

Family

ID=26358013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000208 WO1993016857A1 (en) 1992-02-21 1993-02-22 Mold for manufacturing very thin rubber molding and method of manufacturing the mold

Country Status (5)

Country Link
US (2) US5595704A (en)
EP (1) EP0587903B1 (en)
CA (1) CA2108888A1 (en)
DE (1) DE69310297T2 (en)
WO (1) WO1993016857A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426225B4 (en) * 1994-07-23 2005-08-04 Robert Griebel Device for checking the porosity of thin rubber products
JP3389775B2 (en) * 1995-05-19 2003-03-24 株式会社デンソー Insert product molding method and insert product molding device
US6217815B1 (en) * 1998-06-10 2001-04-17 Carter-Wallace, Inc. Method and apparatus for manufacturing prophylactic devices
US7484224B2 (en) * 2002-05-02 2009-01-27 Bae Systems, Inc. Adapter deployment without recycle
US6611149B1 (en) 2002-12-23 2003-08-26 Agri Dynamics, Inc. Condom nipple testing apparatus
WO2014148884A1 (en) * 2013-03-19 2014-09-25 Boey Weng Kee Richard New dipping former for producing elastic articles
US20180056552A1 (en) * 2015-03-18 2018-03-01 Weng Kee Richard BOEY New dipping former for producing elastic articles
US10974420B2 (en) 2017-03-21 2021-04-13 International Business Machines Corporation Feature casting for manufacture observation
CN111267281A (en) * 2020-01-20 2020-06-12 广州大明联合橡胶制品有限公司 Intelligent condom production method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230507A (en) * 1988-07-21 1990-01-31 Souzou Kagaku:Kk Molding tool for sticking product to body part
JPH02503888A (en) * 1987-05-07 1990-11-15 ポーラス・プラスチックス・リミテッド Method and device for manufacturing articles by microwave heating

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228992A (en) * 1939-02-17 1941-01-14 Dean Rubber Mfg Company Method of producing beaded articles from liquid latex
US2867847A (en) * 1953-04-22 1959-01-13 Int Latex Corp Forms for manufacture of deposited latex articles
US2893085A (en) * 1954-03-20 1959-07-07 Elek Ska Svetsningsaktiebolage Methods of casting steel bodies
NL7200575A (en) * 1971-01-28 1972-08-01
US3850563A (en) * 1973-03-16 1974-11-26 T Milonas System and method for confectionary molding
DE2358802A1 (en) * 1973-11-26 1975-05-28 Kraftwerk Union Ag PROCEDURE FOR IDENTIFYING WALL DAMAGE INSIDE THE HEAT EXCHANGER TUBES
US4001359A (en) * 1974-09-19 1977-01-04 Allied Chemical Corporation Testing and correcting metering accuracy of multihole spinnerets
SU549764A1 (en) * 1975-12-29 1977-03-05 Комплексная Геофизическая Экспедиция Научно-Производственного Объединения "Союзгеофизика" Device for recording seismic vibrations
US4104343A (en) * 1977-03-04 1978-08-01 Monsanto Company Detecting and sorting abnormal articles during blow molding
US4340348A (en) * 1980-02-29 1982-07-20 Bioresearch Inc. Glove molding apparatus
IT1189758B (en) * 1986-05-26 1988-02-04 Fip Formatura Inienzione Poli DEVICE FOR THE FORMING OF THERMOPLASTIC PRODUCTS EQUIPPED WITH UNDER TEAM
US5116551A (en) * 1987-05-07 1992-05-26 Davidson Roderick I Method and apparatus for producing an article by microwave heating
JPS648012A (en) * 1987-06-30 1989-01-12 Meiki Seisakusho Kk Nozzle structure of injection molding machine
JPH01108012A (en) * 1987-10-22 1989-04-25 Souzou Kagaku:Kk Mold for item having opening at least at its end and to be closely in contact with any part of human body
SU1549764A1 (en) * 1988-05-26 1990-03-15 М.Ю. Бродский, О.В. Харламов, А.С. Малевский-Малевич, А.К. Евменов и Ю.Я. Левкин Mould for making dipped articles
JP2725705B2 (en) * 1988-12-02 1998-03-11 日清紡績株式会社 Cell separator for fuel cells
US5176866A (en) * 1989-02-28 1993-01-05 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing a resin product having a bent hollow portion and a core usable for the same process
JPH0324750A (en) * 1989-06-22 1991-02-01 Nec Corp Cap of package for semiconductor device
JPH03230507A (en) * 1990-02-06 1991-10-14 Taiyo Yuden Co Ltd Manufacture of inductor element and its fitting method
US5246198A (en) * 1990-06-01 1993-09-21 Canon Kabushiki Kaisha Diamond crystal coated mold for forming optical elements
US5336322A (en) * 1992-03-06 1994-08-09 Konica Corporation Coating apparatus
US5323544A (en) * 1993-01-22 1994-06-28 Ansell Incorporated Method and apparatus for drying coatings or films
JP2503888B2 (en) 1993-06-30 1996-06-05 日本電気株式会社 Data transmission method in mobile radio communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503888A (en) * 1987-05-07 1990-11-15 ポーラス・プラスチックス・リミテッド Method and device for manufacturing articles by microwave heating
JPH0230507A (en) * 1988-07-21 1990-01-31 Souzou Kagaku:Kk Molding tool for sticking product to body part

Also Published As

Publication number Publication date
EP0587903B1 (en) 1997-05-02
US5595704A (en) 1997-01-21
DE69310297D1 (en) 1997-06-05
DE69310297T2 (en) 1997-11-20
US5667822A (en) 1997-09-16
EP0587903A1 (en) 1994-03-23
EP0587903A4 (en) 1994-04-27
CA2108888A1 (en) 1993-08-22

Similar Documents

Publication Publication Date Title
KR101532292B1 (en) Graphite composite film
WO1993016857A1 (en) Mold for manufacturing very thin rubber molding and method of manufacturing the mold
WO2016011987A1 (en) Graphene thin film and preparation method therefor
KR910000077B1 (en) Poly (arylene sulfide) printed circuit boards
CN1288945C (en) Surface treated copper foil and method for preparing the same and copper-clad laminate using the same
CN1089309A (en) The aromatic poly of electroless coating surface and manufacture the method on this surface
CN1269285A (en) Soft substrate plate
CN1184510C (en) Composite sheet and its mfg. device
US4048005A (en) Process for producing a laminated metallic sheet
JP2004123506A (en) Method of manufacturing film-like graphite
CN1213645C (en) Surface treated copper foil and method for preparing the same and copper-cload laminate using the same
JPS63290729A (en) Aromatic polyimide film with metallic surface and its manufacture
JP2004299919A (en) Graphite and method for producing the same
US11945931B1 (en) Recyclable nano composite as well as preparation method and application thereof
JP2007154071A (en) Resin-molded article for metal plating and injection-molded circuit component using the same
JP4078630B2 (en) Carbon film manufacturing method and carbon film obtained thereby
JP2004324007A (en) Treating agent for polyimide fiber, polyimide fiber treated therewith, nonwoven fabric and composite material
JP3136300B2 (en) Conductive ceramics, method for producing conductive ceramics film, method for producing conductive ceramics molded product, composition for forming conductive ceramics, and electric heating element
Uhlig et al. Liquid cooling in an LTCC-module for a switched mode amplifier
KR101656817B1 (en) Method for preparing graphite sheet and film roll structure used therein
JPH03185181A (en) Method for treating surface of carbon fiber
CN115125596A (en) Surface treatment method and application
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon
JPH02112935A (en) Thin film flexible printed wiring board
JP2002321295A (en) Polyimide composite pipe and its production method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2108888

Country of ref document: CA

Ref document number: 08133128

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993904328

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993904328

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993904328

Country of ref document: EP