WO1991010633A1 - Process for producing dipentaerythritol - Google Patents

Process for producing dipentaerythritol Download PDF

Info

Publication number
WO1991010633A1
WO1991010633A1 PCT/JP1991/000004 JP9100004W WO9110633A1 WO 1991010633 A1 WO1991010633 A1 WO 1991010633A1 JP 9100004 W JP9100004 W JP 9100004W WO 9110633 A1 WO9110633 A1 WO 9110633A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reaction solution
temperature
pentaerythritol
dipentaerythritol
Prior art date
Application number
PCT/JP1991/000004
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Kambara
Toru Idemoto
Yasuko Ono
Chika Tona
Original Assignee
Mitsui Toatsu Chemicals, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2254130A external-priority patent/JPH03261736A/ja
Priority claimed from JP2268461A external-priority patent/JP2863296B2/ja
Application filed by Mitsui Toatsu Chemicals, Incorporated filed Critical Mitsui Toatsu Chemicals, Incorporated
Priority to DE69111914T priority Critical patent/DE69111914T2/de
Priority to KR1019910701062A priority patent/KR950001677B1/ko
Priority to EP91901530A priority patent/EP0462283B1/en
Publication of WO1991010633A1 publication Critical patent/WO1991010633A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups

Definitions

  • the present invention relates to a method for producing dipentaerythritol. More specifically, the present invention relates to a method for producing dipentaerythritol (hereinafter abbreviated as D-PE) by dehydration-condensation reaction of pentaerythritol (hereinafter abbreviated as PE) using an acid catalyst.
  • D-PE dipentaerythritol
  • PE pentaerythritol
  • D-PE which is increasing in demand as a raw material for heat stabilizers for polyester, urethane and polyvinyl chloride resins, and lubricating oils, is increased during the synthesis reaction of PE, that is, in the presence of alkali. It is a by-product produced when PE is produced by reacting formaldehyde and acetate aldehyde, and the conventional method is obtained by separating and purifying it. In such a method, in order to increase the D-PE by-product rate,
  • the conventional method for producing D-PE by the reaction of acetaldehyde and formaldehyde includes sodium formate and bispentaerythritol monoformal (hereinafter abbreviated as B-PE).
  • B-PE bispentaerythritol monoformal
  • the purification process is complicated because excess by-products or by-product impurities such as self-condensates of acetoaldehyde and formaldehyde are separated from PE and D-PE.
  • the amount of D-PE that can be produced depends on the amount of PE produced, and the limit is 10 to 15% of PE production. Therefore, there was a problem that the production volume of D-PE could not keep up with the increasing demand in recent years.
  • the method of synthesizing a polybenzene erythritol mixture from PE using phosphoric acid, sulfuric acid, aromatic sulfonic acid, etc. ((5) above) is intended to synthesize a polypentaerythritol mixture having various purposes. Therefore, it does not explicitly teach means for selectively synthesizing D-PE.
  • D-PE is first produced, and the produced D-PE is sequentially treated with tripentaerythritol (hereinafter, T-PE). (Abbreviated as), but also to higher molecular weight polypentaerythritol or intramolecular condensate. For this reason, the present inventors have found that there is a problem that this method is not practical as a method for producing D-PE.
  • the present invention solves the above-mentioned problems, and can efficiently produce D-PE, which was conventionally only produced as a by-product, and at the same time, has a low impurity concentration. It is an object of the present invention to provide a method for producing D-PE, which can obtain a high-quality D-PE with low purification, easy purification. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and when performing a dehydration-condensation reaction of PE using an acid catalyst, after the generation of D-PE, the generation of T-PE The reaction is stopped by lowering the temperature of the reaction solution before the concentration rises excessively, and at the same time, part of the PE is crystallized to obtain a reaction solution in which D-PE is concentrated to a more favorable concentration.
  • the idea was completed and the first embodiment of the present invention was completed.
  • a production method including a step of obtaining a reaction solution having an increased concentration of dipentaerythritol by removing crystallized pentaerythritol from the reaction solution.
  • the present inventor has found that by-products other than T-PE are produced as by-products generated when a dehydration-condensation reaction of PE is performed in a liquid-phase molten state using an acid catalyst. The reaction is performed in the presence of a polar solvent. The present inventors have found that the temperature can be remarkably reduced, and the treatment operation of the reaction solution can be further facilitated. Based on this finding, the second aspect of the present invention has been completed. 0
  • the acid catalyst used in the present invention refers to a substance that is usually used as a catalyst in the dehydration condensation reaction of alcohols, and is described in “Catalyst Lecture” (Kodansha, published in 1998) Vol. An example is given on page 13 and Tables 13 and 3.
  • mineral acids such as sulfuric acid, sulphite acid, sulfuric acid and the like, inorganic salts such as metal sulfates and metal phosphates, and clay minerals such as montmorillonite are preferred.
  • Particularly preferred are sulfuric acid and metal phosphates.
  • the metal species of the metal phosphate include Ai, B, Fe, Cr, Ti, Cu, Ni, Zn, and Zr.
  • the optimum amount of the catalyst varies depending on the type of the catalyst.
  • the amount is 0.01 to 3.0% by weight, preferably 0.1 to 1.5% by weight, based on the reaction solution. More preferably, it is 0.3 to 1.0% by weight. If the amount of the catalyst is too small, the reaction rate is low, and if the amount is too large, by-products of impurities increase.
  • PE is reacted in a liquid phase state.
  • the reaction is carried out in a liquid phase molten state, in which case the reaction temperature is necessarily higher than the melting point of the reaction mixture. Therefore, the reaction temperature is 200-260. C, preferably 230 to 250 ° C. If the reaction temperature is lower than this, the reaction mixture starts to solidify. In addition, the reaction rate is significantly reduced, which is not preferable.
  • PE is a dehydration condensation reaction by an acid catalyst, first but c D-PE is generated, D-PE Razz Todoma generated only for once from the generated D-PE T-PE, the higher molecular weight Raniwa Polypentyl erythritol is also produced. Although it is inherently difficult to completely prevent such a series of sequential side reactions, it is possible to prevent this side reaction to some extent.
  • the reaction solution is cooled to lower the temperature and the reaction is stopped before the concentration of T-PE generated during the reaction increases.
  • the concentration of T-PE does not increase excessively.
  • the conversion of PE should be at least 2% or more before the conversion is 25% or more-preferably 5-22%, more preferably 8-18%.
  • the present inventors have found that it is preferable to stop the reaction during the reaction. As a result, it is possible to achieve the prevention of by-produced impurities and the generation of D-PE with good balance.
  • the weight ratio of D-P EZPE in the reaction solution varies considerably depending on the selectivity of the reaction, the composition of the raw material PE used, and the like, but is usually about 0.18. ⁇ 0.22.
  • the reaction time varies greatly depending on factors such as the type and amount of the catalyst used, the reaction temperature and the like, but is about 10 to 600 minutes, preferably about 30 to about 80 minutes.
  • the reason why the conversion is defined by PE and B-PE is that commercially available PE usually contains D-PE and B-PE at about 3 to 6%, respectively. This is because one molecule of B-PE is considered to produce two molecules of PE and one molecule of horimarin in the method of the present invention.
  • the conversion rate of PE when controlling the concentration ratio of T-PE in the reaction solution, it is preferable to control the conversion rate of PE to preferably less than 25% to keep the concentration of D-PE in the reaction solution low.
  • the weight ratio of D-P EZPEs (PEs refers to the sum of PE, D-PE, T-PE and other products) is 3 to 25%, preferably Alternatively, by crystallizing and removing a portion of the PE in the reaction solution from the reaction solution having a D-PE concentration of 8 to 16%, the concentration of D-PE is preferably 5 to 30%, preferably It can be concentrated to about 16 to 23% .
  • the amount of PE to be removed by crystallization is 5 to 35%, preferably 10 to 30%, more preferably 23 to 28%. It is about. 0
  • the liquid temperature for separating the crystallized PE from the reaction solution is usually preferably about 195 ° C. or lower.
  • the PE in the step of removing the PE by cooling the reaction solution, the PE may be selectively crystallized and removed, or the cooling may be performed until the reaction solution is completely solidified. Then, it may be heated again to melt a part thereof, and the remaining PE crystals at that time may be removed. That is, both are equivalent.
  • a method known to those skilled in the art can be used as a solid-liquid separation method for removing the crystallized PE from the reaction solution and obtaining a reaction solution in which D-PE is concentrated.
  • separation is performed using a filter.
  • the type of filter is not particularly limited. However, since filtration is performed at a relatively high temperature, a sintered filter or a metal mesh filter is used. Is preferred.
  • the type of the reactor is not particularly limited, but a batch type stirred tank type, a flow type tube type and the like can be used.
  • a stirred tank reactor with a filter inside the reactor is used, after solid-liquid separation, the solid phase PE remains in the reactor and can be used as it is for the next reaction.
  • the conversion of PE is about 14 to 18%
  • the D-PE concentration in the reaction solution is about 9 to 13% by weight
  • the T-PE concentration is about 1 to 2%.
  • the present inventors have found that the melting operation near the melting point of (80) is about 160-190 ° C, but the exact temperature during the melting operation at such a high temperature is high. Management is not always easy. It was also found that filter clogging during the filtration operation often resulted in insufficient concentration of D-PE. Furthermore, it was found that it would be more desirable to make the concentration of D-PE in the reaction solution 20% or more by a simpler operation and to increase the recovery of the produced D-PE.
  • the polar solvent used in the second embodiment of the present invention refers to a solvent composed of molecules having a dipole moment, having a dielectric constant of 15 to 100 at room temperature, and the presence of an acid catalyst. It is stable under the following reaction conditions.
  • the polar solvent include dimethylformamide, dimethyl sulfoxide, triphyl phosphate, sulfolane, 1,3-dimethyl_2-imidazolidinone, and water.
  • 1,3-dimethyl-2-imidazolidinone, a sulfolane having a high boiling point and being stable to acid is preferably used. More surprisingly, the inventor has found that water can be used favorably as a polar solvent both in the reaction step and in the subsequent D-PE concentration step.
  • the amount of the polar solvent used in the condensation reaction is 5 to 70% by weight, preferably 10 to 30% based on the reaction solution.
  • the same acid catalyst as used in the first embodiment of the present invention can be used.
  • the optimum amount depends on the type of the catalyst. For example, in the case of phosphoric acid, the amount is 0.01 to 3.0% by weight, preferably 0.1 to 2% by weight, based on the reaction solution. is there. If the amount of the catalyst is too small, the reaction rate is low, and if the amount is too large, by-products of impurities increase.
  • the PE is reacted in a liquid phase. Therefore, it is preferable that all of ⁇ and ⁇ are in the liquid phase under the reaction, and the reaction temperature is set so as to be such.
  • the reaction temperature at which all of ⁇ and ⁇ are in the liquid phase varies depending on the type and amount of the solvent used, but considering the reaction rate and by-products of impurities, the reaction temperature is 180 to 230 ° C, preferably 190 to 220 ° C is appropriate.
  • the reaction can also be performed under pressure.
  • the temperature of the reaction solution is lowered and the PE It is preferable to provide a step of partially crystallizing. In addition, it is preferable to provide a step of obtaining a reaction solution having a high D-PE concentration by removing the crystallized PE from the reaction solution.
  • the amount of PE to be removed by crystallization may be determined according to the amount already described. Specifically, as in the first embodiment of the present invention, the temperature of the reaction is lowered before the conversion of PE reaches 25% or more, the reaction is stopped, and the PE is crystallized and removed.
  • the reaction time varies greatly depending on factors such as the type and amount of the solvent and the catalyst used and the reaction time, but is about 30 to 900 minutes, preferably about 60 to 240 minutes.
  • the temperature at which PE is crystallized (solid-liquid separation temperature) varies depending on the composition of the reaction solution, the type and amount of the solvent used, and the type and amount of the catalyst used. It is at a temperature of 0 ° C, preferably between 50 ° C and 150 ° C.
  • a polar solvent of the same or different type as the polar solvent used in the condensation reaction may be separately added to the reactor. Good.
  • the amount of the polar solvent should be 30 to 70% of the total volume of the reaction solution. It is preferable to add them.
  • the weight ratio of D-P EZPEs (PEs refer to the sum of PE, D-PE, T-PE and other products as described above) 0.1 to 5% raw material, PE conversion 10 to 15%, D-PE concentration (D-PE / PEs) in the reaction solution is 5 to 25% by weight, preferably 11 to 1%
  • a reaction solution of about 16% by weight was obtained, and the D-PE concentration (D-PE / PEs) was further concentrated to about 10 to 35% by weight, preferably about 24 to 28% by weight.
  • a liquid can be obtained, and high purity D-PE can be easily obtained by subjecting the liquid to general separation means such as fractional crystallization. Unreacted PE can be circulated again to the reactor and used as a raw material.
  • liquid means “% by weight” when expressing the liquid composition.
  • a 500 g PE raw material was placed in a stainless steel net, a thermometer, a heating / stirring device, and a reactor equipped with a stainless steel 5 m mesh filter and a liquid outlet at the bottom. I charged.
  • the composition of this raw material was 91.4% PE, 3.8% D-PE, 4.0% B-PE, and 0.2% T-PE.
  • the liquid was cooled to form crystals as a whole, 330 g of water was added, the temperature was raised to 100 ° C to dissolve the crystals, and then cooled to 42 ° C for crystallization.
  • the weight of the crystals excluding water was 50.lg, and D-PE was 53.1% (weight ratio to PEs).
  • 110 g of water was added to the crystals to dissolve again, cooled to 42 ° C and crystallized, and the obtained crystals were collected.
  • D-PE 84, 2%, T-PE 15 0%, PE 0.7% high purity 0-? 27.8 g of £ crystals were obtained.
  • Example 2 Next, the cooling crystallization operation was repeated twice using water in the same manner as in Example 1, and the composition of D-PE 84.0%, T-PE 15.1%, PE 0.8% was obtained. 28.0 g of high-purity D-PE crystals were obtained.
  • the reaction was carried out in the same manner as in Example 1 except that the reaction time was changed to 2 hours.
  • PE 64.5%, D—PE 15.6%, T—PE 6.4%, and other products 11 A reaction liquid having a composition of 8% was obtained. This result indicates that the conversion of ⁇ 3 is 32.3% and the selectivity to D- ⁇ 4 is 41.2%.
  • Example 2 Then, the cooling crystallization operation was repeated twice using water in the same manner as in Example 1, and the composition of D-PE 61.8%, T-PE 35.0%, PE 0.7% was obtained. There were obtained 46,0 g of crystals. This was a crystal with a high T-PE content.
  • Example 1 except that the reaction temperature was set at 265 ° C and the reaction time was set at 30 minutes The reaction was carried out in the same manner as in Example 1 to obtain a reaction solution having a composition of 56.9% PE—14.9% PE—8.3% T—PE and 18.5% other products. This result indicates that the conversion of PE is 40.0% and the selectivity to D-PE is 31.2%.
  • Example 2 Next, the cooling crystallization operation was repeated twice using water in the same manner as in Example 1, and the composition of D-PE 55.6%, T-PE 40.8%, PE 0.7% was obtained. There were obtained 47.8 g of crystals. As in Comparative Example 1, this was a crystal having a high T—PE content.
  • Example 2 The same procedure as in Example 1 was carried out except that the amount of 85% phosphoric acid was 3 g, the reaction temperature was initially set at 240 ° C for 15 minutes, and then the temperature was lowered to 230 ° C for 1 hour. As a result of the reaction, a liquid having a composition of PE 0.80.7% D—PE 11.4%, T—PE 1.3%, and other products 5.4% was obtained. This result indicates that the conversion of ⁇ ⁇ is 14.8% and the selectivity to D- ⁇ 5 is 58.3%.
  • Example 2 Next, the cooling and crystallization operation was repeated twice using water in the same manner as in Example 1 to obtain a composition having a composition of D-PE 86.0%, T-PE 13.1%, PE 0.7%. 27.0 g of highly pure D-PE crystals were obtained.
  • Example Liquid composition (%) Catalyst Liquid type—PE D-PE T-PE 1 D-PE / PE Extracted liquid volume ( ⁇ ] _
  • the raw material is supplied to a stainless steel steel container 1, a thermometer, a pressure gauge, a heating / stirring device, and a stainless steel 5 m mesh filter at the bottom and a reactor equipped with a liquid outlet.
  • a stainless steel steel container 1 a thermometer, a pressure gauge, a heating / stirring device, and a stainless steel 5 m mesh filter at the bottom and a reactor equipped with a liquid outlet.
  • the composition of this raw material was as follows: PE 91.4%, D-PE 3.8%, B-PE 4.0%, T-PEO. 2%.
  • the solution was cooled to room temperature to crystallize the PEs, and the sulfolane was separated by filtration to obtain 155 g of crystals.
  • the reaction was carried out in the same manner as in Example 9 except that the reaction time was set at 200 minutes and the reaction temperature was set at 230 ° C.
  • PE 52.2%, D-PE 12.3%, T-PE A reaction solution having a composition of 5.0% PE and 9.3% of other products was obtained.
  • the results show that the conversion of ⁇ 3 is 31.1% and the selectivity to D- ⁇ 2. is 42.2%.
  • Example 9 the crystals of PEs were separated from sulfolane, and then recrystallized twice using water. As a result, 53.7 g of a crystal having a composition of D-PE 62.0%. T-PE 37.1% and PE 0.7% was obtained. This crystal had a high T—PE content.
  • Example 10 The reaction was carried out in the same manner as in Example 8, except that 10 g of titanium phosphate was used instead of phosphoric acid as a catalyst. As a result, 66.7% of PE, 9.2% of D-PE, 1% of T-PE A reaction solution having a composition of 0.0% and other products of 2.4% was obtained. ⁇ — ⁇ ⁇ was not detected. The analysis shows that the conversion of ⁇ ⁇ is 12.5% and the selectivity to D- ⁇ 6 is 69.1%.
  • the method for producing dipentaerythritol of the present invention can efficiently produce dipentaerythritol itself, which has been conventionally only produced as a by-product, efficiently, and has a low impurity concentration after the synthesis reaction of dipentaerythritol. Easy and high-quality dipentaerythritol can be provided industrially at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
ジペン夕エリ スリ トールの製造方法
技術分野 .
本発明は、 ジペンタエリスリ トールの製造方法に関する。 より 詳しく は、 酸触媒を用いたペンタエリ ス リ トール (以下、 P E と 略記する) の脱水縮合 ^応により ジペンタエリ スリ トール (以下、 D— P E と略記する) を製造する方法に関する。 背景技術
ポリエステル、 ポリ ウレタン、 ポリ塩化ビニル樹脂の熱安定剤、 潤滑油等の原料と して、 その需要が増大している D— P Eは、 P Eの合成反応の際、 即ちアルカ リの存¾下、 ホルムアルデヒ ド とァセ トアルデヒ ドとを反応させて P Eを製造する際に副生する ものであり、 これを分離精製することにより得ているのが従来の —般的方法であ っ た。 こ の よ う な方法において、 従来から D— P Eの副生率を増大させるために、
( 1 ) P Eの合成反応系に仕込んだァセ トアルデヒ ドに対するホ ルムアルデヒ ドのモル比を理論モル比である 4より小さ くする方 法 ;
( 2 ) ホルムアルデヒ ド、 ァセ トアルデヒ ド及びアルカ リ剤の濃 度を高く して反応を行う方法 ;
( 3 ) ホルムアルデヒ ド水溶液に P Eを添加溶解させて反応を行 う方法等が提案されている。
しかし、 これらの方法は P Eと D— P Eとの合計収率が低く、 主生成物である P Eの品質が悪いという欠点があった。 これらの 方法の改良法として、
( 4 ) ホルムアルデヒ ド、 アルカ リ及びァセ トアルデヒ ドの一部 を予め反応容器に仕込んでおき、 そこにホルムアルデヒ ド、 アル カ リ、 ァセ トアルデヒ ドを各々の理論モル量以上で、 且つ反応温 度を 5 0°C以下に保って同時に滴下し反応させる方法が提案され ている (特公平 1— 4.4 6 8 9号公報) 。
また、 (5) P Eを、 燐酸、 硫酸等を用いて脱水縮合させポリべ ンタエリ スリ トールを合成する方法も知られている (米国特許第 2 4 6 2 0 4 7号) 。
その他に、 P Eと D— P Eとの混合物から D— P Eを分離する 方法として、
(6) D - P EXP Eの比率を 3 0 Z 7 0以上に調整した混合液 から、 D— P Eを晶析する方法 (米国特許第 2 4 4 8 5 6 6号) や、
(7) P E/D— P Eの重量比率が 1 6以下であって、 特定の P E濃度の混合液から D— P Eを晶析する方法が提案されている
(特公平 2 - 1 0 8 1 1号公報) 。 '
しかしながら、 従来の上記のァセ トアルデヒ ドとホルムアルデ ヒ ドとの反応による D— P Eの製造方法 (上記方法 (4) ) には、 蟻酸ソーダ、 ビスペンタエリ ス リ トールモノ ホルマール (以下、 B— P Eと略記する) 、 過剰なホルムアルデヒ ド或いはァセ トァ ルデヒ ド · ホルムアルデヒ ドの自己縮合物等の副生する不純物を P Eや D— P Eから分離するために精製工程が複雑なものとなる という問題があった。 また、 D— P Eの生産可能量は P Eの生産 量に依存しており、 P Eの生産量の 1 0〜 1 5 %が限界となって いるので、 D— P Eの生産量が近年の需要増大に対応できないと いう問題があった。
又、 P Eから燐酸、 硫酸、 芳香族スルホン酸等を用いてポリべ ン夕エリ スリ トール混合物を合成する方法 (上記 (5) ) は、 そ の目的が種々のポリペンタエリスリ トール混合物を合成すること にあるため、 D— P Eを選択的に合成する手段を明示的に教示し てはいない。 本発明者の知見によれば、 酸触媒を用いて P Eを脱 水縮合させると、 まず D— P Eが生成するが、 生成した D— P E は逐次的に ト リペンタエリス リ トール (以下、 T— P Eと略記す る) 、 更に高分子量のポリペンタエリスリ トール或いは分子内縮 合物に変化する。 このため、 この方法のままでは D— P Eの製造 方法と して実用的でないという問題があることを本発明者らは見 出した。
米国特許第 2 4 4 8 5 6 6号に開示の方法 (上記 (6) ) は、 P Eと D— P Eとの混合物から D— P Eを分離する技術を開示す るものであり、 P Eを自己縮合させその反応液から D— P Eを取 得するという D— P Eの合成方法を開示していない。 従って、 こ の米国特許に開示された方法は、 P Eの生産と独立的に D— P E を製造する方法とはならなかった。
特公平 2 - 1 0 8 1 1号公報に記載の方法 (上記 (7) ) につ いては、 前述の (1 ) 乃至 (4) と同様の問題の他に、 P E濃度 を所定の範囲に調整するという繁雑な工程が要求されるという問 題があつた。
この発明は、 上記の問題点を解決し、 従来副生的にしか生産で きなかった D— P Eを、 効率良く生産でき、 しかも不純物の濃度 が低 く 、 精製が容易で高品質の ものを得 られる よ う にする D - P Eの製造方法を提供することを目的と している。 発明の開示
本発明者は、 前記問題点を解決するために鋭意研究を行い、 酸 触媒を用いて P Eの脱水縮合反応を実施するに際し、 D— P Eを 生成の後、 逐次的に生成する T一 P Eの濃度が過剰に上昇する前 に反応液温度を下げることにより反応を停止させ、 それと共に P Eの一部を結晶化させ、 D— P Eがより好ま しい濃度まで濃縮さ れた反応液を取得するという着想に至り本発明の第 1の態様を完 成させた。
即ち、 本発明によれば、 ジペンタエリスリ トールの製造方法に おいて :
酸触媒の存在下、 ペン夕エリス リ トールを 2 0 0〜 2 6 0 Cの 温度で液相状態で縮合反応させる工程 ;
反応液の温度を低下させ、 ペンタエリスリ トールの一部を結晶 化する工程 ; 及び
結晶化したペンタエリスリ トールを反応液から除去することに より ジペンタエリスリ トールの濃度を高めた反応液を得る工程を 含んでなる製造方法が提供される。
また、 本発明者は、 酸触媒を用いて P Eの脱水縮合反応を液相 溶融状態で実施する場合に生ずる T一 P E以外の不純物の副生が. 該反応を極性溶剤の存在下で行う ことにより顕著に低減でき、 更 に反応液の処理操作が容易になることを知見し、 この知見に基づ き本発明の第 2の態様を完成させた。 0
即ち、 本発明によれば、 ジペンタエリ スリ トールの製造方法に おいて、 酸触媒の存在下、 ペンタエリスリ トールを液相状態で縮 合反応させるに際し、 極性溶剤の存在下で反応を行う製造方法が 提供される。 発明を実施するための最良の態様
以下、 本発明の第 1の態様を詳細に説明する。
本発明で使用される酸触媒とは、 アルコール類の脱水縮合反応 に通常、 触媒と して用いられている物質をいい、 触媒講座 (講談 社、 1 9 8 5年刊) 第 8卷 2 7 8頁、 表 1 3 · 3にその例が挙げ られている。 例えば、 燁酸、 亜燒酸、 硫酸等の鉱酸、 金属硫酸塩、 金属燐酸塩等の無機塩、 モンモリ ロナイ ト等の粘土鉱物であるが、 特に辚酸、 金属燐酸塩が好ま しい。 金属憐酸塩の金属種と しては、 例えば Ai 、 B、 F e、 C r、 T i、 C u、 N i、 Z n、 Z r等 を挙げることができる。
最適な触媒量は、 触媒の種類により異なるが、 例えば燐酸の場 合には、 反応液に対し 0. 0 1 〜 3. 0重量%、 好ま し く は 0. 1〜 1. 5重量%、 より好ま しく は 0. 3〜 1. 0重量%で ある。 触媒の量が少なすぎると反応速度が小さ く、 多すぎると不 純物の副生が増大する。
本発明においては、 P Eを液相状態で反応させるものである。 例えば、 液相溶融状態で反応させるものであり、 その場合には、 必然的に反応温度は反応混合物の融点以上となる。 従って、 反応 温度は 2 0 0〜 2 6 0。C、 好ま しく は 2 3 0〜 2 5 0 °Cが適当で ある。 これより も反応温度が低い場合には反応混合物が凝固し始 めるとともに反応速度が著しく低下し好ま しく ない。
酸触媒により P Eは脱水縮合反応し、 まず D— P Eが生成する c しかし、 D— P Eの生成のみにとどま らず、 いったん生成した D— P Eから T— P E、 さ らにはより高分子量のポリペン夕エリ スルトールも生成してしまう。 これら一連の逐次的な副反応を完 全に防止することは本質的に困難であるが、 この副反応をある程 度防止することは可能である。
すなわち、 この副反応の防止のためには、 反応液中の D— P E 濃度を低 く する こ とが最も効果的であ る。 しか し、 余り に D— P Eの濃度を低く してしま う と D— P Eの収率自体も低下し てしま う ことになる。
従って、 本発明においては、 反応中に生成する T— P Eの濃度 が上昇する前に反応液を冷却して温度を下げ、 反応を停止させる < この場合、 T— P Eの濃度が過剰に上昇しないようにするには、 P Eの転化率が 2 5 %以上となる前に、 少なく と転化率 2 %以上- 好ま しく は転化率が 5〜22 %、 より好ま しく は 8〜 1 8 %であ る間に反応を停止させることが好ま しいことを本発明者らが見出 した。 これにより、 不純物の副生の防止と D— P Eの生成をバラ ンス良く達成することができる。 なお、 P Eの転化率が 2 5 %の ときの反応液中の D— P EZP Eの重量比は反応の選択率、 使用 した原料 P Eの組成等でかな り異なるが、 通常約 0. 1 8〜 0. 2 2となる。
反応時間は、 使用する触媒の種類、 量、 反応温度等の因子によ り大きく異なるが、 1 0〜 6 0 0分、 好ま しく は 3 0〜: L 8 0分 程度である。 ここで転化率とは、 以下に示す式で定義されるものである 反応後 [PE]モル] X 1 0 0 転化率 (%) = 1 0 0 - 反応前 [PE モル + 2 X (B-PE モル)] このように転化率が P Eと B— P Eから定義される理由は、 商 業的に通常入手し得る P Eが D— P Eと B— P Eを通常夫々 3〜 6 %程度含んでおり、 そして 1分子の B— P Eは本発明の方法に おいて 2分子の P Eと 1分子のホリマリ ンを生成すると考えられ るからである。
ところで本発明において、 反応液中の T— P Eの濃度比率を制 御するにあたり、 P Eの転化率を好ま しく は 2 5 %未満に制御し て反応液中の D— P Eの濃度を低く押さえると、 そのような低濃 度の D— P Eを含む反応液から直接 D _ P Eを分離回収すること は困難となり、 且つ D— P Eの製造コス トの増大を招く ことにな o
そこで本発明においては、 冷却により反応を停止させた後、 更 に反応液から未反応の P Eの一部を結晶化して除去することによ り、 溶液中の D _ P E濃度を上昇させている。 本発明に従えば、 D— P EZP E類 (P E類とは、 P E、 D— P E、 T一 P Eとそ の他の生成物の合計をいう) の重量比が 3〜 2 5 %、 好ま しく は 8〜 1 6 %の D— P E濃度を有する反応液から、 反応液中の P E の一部を結晶化して除去することにより、 D— P Eの濃度を 5〜 3 0 %、 好ま しく は 1 6〜 2 3 %程度まで濃縮することができる なお、 結晶化で除去する P Eの量は 5〜 3 5 %、 好ま しく は 1 0 〜 3 0 %、 更に好ま しく は 2 3〜 2 8 %程度である。 0
o
本発明において、 反応液から結晶化した P Eを分離する際の液 温度は通常約 1 9 5 °C以下が好ま しい。 最適な温度は反応液の組 成、 使用する触媒の種類、 量等で異なるが、 好ま しく は約 1 6 0 〜 1 9 0°C、 より好ま しく は 1 7 6〜 1 8 8 °Cの範囲である。 な お、 この温度範囲は P E と D— P Eとの共晶組成 (D— P E/ P E = 2 0Z8 0) の融点付近の温度になつている。
なお、 本発明において、 反応液を冷却して P Eを除去する工程 と しては、 P Eを選択的に結晶化させ、 それを除去してもよく、 あるいは、 反応液を完全に固化するまで冷却し、 再び加熱して、 その一部を溶融させ、 そのときに残存する P Eの結晶を除去して もよい。 即ち両者は均等である。
結晶化した P Eを反応液から除去し、 D— P Eが濃縮した反応 液を得るための固液分離の方法と しては、 当業者に公知の方法を 採用することができる。 一般的にはフィ ルターを用いて分離する < フィ ルターの型式については特に制限はないが、 比較的高温で濂 過を行う ことから、 焼結フィ ルター或いは金属製のメ ッ シュフィ ルタ一を用いるのが好ま しい。
反応器型式については特に制限はないが、 攬拌槽型回分式、 管 型流通式等を使用できる。 例えば、 反応器内部にフィ ルターを有 する攪拌槽型の反応器を用いた場合には、 固液分離の後、 固相の P Eは反応器内に残り、 そのまま次ぎの反応に供することができ る利点がある。
本発明の第 1の態様によれば、 例えば P Eの転化率約 1 4〜 1 8 %、 反応液中の D— P E濃度が約 9〜 1 3重量%、 T一 P E 濃度が約 1〜 2重量%の反応液を約 1 8 0 °Cに冷却することによ り、 D— P Eが約 1 9〜 2 1重量%に濃縮された液を得ることが でき、 この液に分別晶析法等の一般的な分離手段を施すことによ り、 純度の高い D— P Eを得る こ とができる。 なお、 未反応の P Eは再び反応器に循環して原料と して使用するこ とができる。 次ぎに本発明の第 2の態様を説明する。
前述したように、 酸触媒を用いて P Eの脱水縮合反応を液相溶 融状態で実施する場合、 T— P Eより高分子量のポリペン夕エリ スリ トール類や分子内縮合物等の不純物が多量に副生するという 問題があることを本発明者らは見出した。 この原因はもちろん完 全には明らかではないが、 一つには反応を液相溶融状態で行った 場合に必然的に反応温度が反応混合物の融点以上となり、 特に反 応初期には 2 4 0 °C以上の高温となるためであると考えられる。 また、 本発明の第 1の態様において D— P Eの濃度を高めた反応 液か ら P Eを濂別する工程は、 P E と D— P E との共晶組成 (D - P E / P E = 2 0 / 8 0 ) の融点付近での濂過操作 (約 1 6 0〜 1 9 0°C) となることを本発明者らは見出したが、 この ような高温での濂過操作中の厳密な温度管理は必ずしも容易では ない。 ま た、 濂過操作中にフ ィ ルターの目詰ま り が生じて、 D— P Eの濃縮が不十分となる場合もしばしばあることが分かつ た。 更に、 より容易な操作で反応液中 D— P Eの濃度を 2 0 %以 上にし、 生成 D— P Eの回収率を上げるようにするこ とがより望 ま しいことが分かつた。
これらの本発明者らが見出した新規な問題点は、 酸触媒の存在 下、 P Eを液相状態で縮合反応させるに際し、 極性溶剤の存在下 で反応を行う ことで解決できた。 すなわち、 従来、 このような反 応では極性溶剤を使用することが考慮されていなかつたのに対し、 極性溶剤を使用することにより、 反応での不純物の副生が低減し、 D— P Eが濃縮された反応液の濾過操作が容易になり、 また、 D— P Eの濃縮も効率よく進行することを本発明者は見出したの
"C、める。
本発明の第 2の態様で使用される極性溶剤とは、 双極子モーメ ン トを有する分子からなる溶剤をいい、 その誘電率が常温で 1 5 〜 1 0 0のもので、 酸触媒の存在する反応条件下では安定なもの である。 係る極性溶剤と しては、 ジメチルホルムア ミ ド、 ジメチ ルスルホキシ ド、 ト リ プチルフォスフェー ト、 スルホラ ン、 1 , 3 —ジメチル _ 2 —イ ミ ダゾリ ジノ ン、 水等が例示される。 中で も、 沸点が高く、 酸に対して安定なスルホラン、 1 , 3 —ジメチ ルー 2—イ ミ ダゾリ ジノ ンが好ま し使用できる。 更に驚くべきこ には、 反応工程においてもその後の D— P Eの濃縮工程において も、 極性溶剤と して水が好ま しく使用できることを本発明者は見 出しに。
なお、 縮合反応での極性溶剤の使用量は、 反応液に対し 5〜 7 0重量 、 好ま しく は 1 0〜 3 0 %である。
また、 使用する酸触媒は本発明の第 1の態様と同様のものを使 用することができる。 また、 その最適使用量は、 触媒の種類によ り異なるが、 例えば燐酸の場合には、 反応液に対し 0 . 0 1 〜 3 . 0重量%、 好ま しく は 0 . 1〜 2重量%である。 触媒の量が 少なすぎると反応速度が小さ く、 多すぎると不純物の副生が増大 する。
本発明の第 2の態様においては、 P Eを液相状態で反応させる ので、 反応下において Ρ Εはすべて液相になっていることが好ま しく、 そのようになるように反応温度を設定する。 Ρ Εがすべて 液相状態となる反応温度は使用する溶剤の種類、 量で異なるが、 反応速度並びに不純物の副生を考慮すると、 反応温度は 1 8 0〜 2 3 0 °C、 好ま しく は 1 9 0〜 2 2 0 °Cが適当である。 また、 反 応は加圧下で実施することもできる。
本発明の第 2の態様を実施する際には、 本発明の第 1の態様と 同様に、 反応中に生成する T一 P Eの濃度が上昇する前に、 反応 液の温度を低下させ P Eの一部を結晶化する工程を設けることが 好ま しい。 加えて、 結晶化した P Eを反応液から除去することに より D— P Eの濃度を高めた反応液を得る工程を設けることも好 ま しい。 なお、 結晶化で除去する P Eの量はすでに述べた量に準 じて定めればよい。 具体的には、 本発明の第 1の態様と同様に、 P Eの転化率が 2 5 %以上になる前に反応を温度を下げ、 反応を 停止させ P Eを結晶化し除去する。 なお、 反応時間は使用する溶 剤、 触媒の種類、 量及び反応時間等の因子により大き く異なるが、 3 0〜 9 0 0分、 好ま しく は 6 0〜 2 4 0分程度である。
なお、 P Eを結晶化させる温度 (固液分離温度) は、 反応液の 組成、 使用する溶剤の種類、 量、 使用する触媒の種類、 量等に よつて異なるが、 約 4 0〜: L 6 0 °C、 好ま し く は 5 0〜 1 5 5 °C の温度である。
なお、 結晶化した P Eを濂過して除去するときには、 濾過の操 作性を向上させるために、 縮合反応で用いた極性溶剤と同種また は異種の極性溶剤を別途反応器に追加してもよい。 極性溶剤を追 加する場合には、 極性溶剤が反応液全量の 3 0〜 7 0 %となるよ うに追加するのが好ま しい。
本発明の第 2の態様によれば、 D— P EZP E類 (P E類と は前述したように、 P E、 D— P E、 T一 P Eとその他の生成物 の合計をいう) の重量比が.1〜 5 %の原料から、 P Eの転化率 1 0〜 1 5 %、 反応液中の D— P E濃度 (D— P E / P E類) が 5〜 2 5重量%、 好ま しく は 1 1〜 1 6重量%程度の反応液を得、 これから更に D— P E濃度 (D— P E/P E類) が 1 0〜 3 5重 量%、 好ま しく は 2 4〜 2 8重量%程度に濃縮された液を得るこ とができ、 この液に分別晶析法等の一般的な分離手段を施すこと により容易に純度の高い D— P Eを得ることができる。 なお、 未 反応の P Eは再び反応器に循環して原料と して使用することがで きる。
次ぎに、 本発明を以下の実施例において更に具体的に説明する が、 本発明はこれらの実施例に限定されるものではない。 なお、 以下の実施例において、 液組成を表す場合の は "重量" % を意味する。
実施例 1
ステンレス網製の内容量 1 、 温度計、 加熱 ·攙拌装置、 並び に底部にステンレス鐦製 5 mメ ッ シュフィ ルターと液抜出し口 を装備した反応器に、 原料の 5 0 0 gの P Eを仕込んだ。 この原 料の組成は、 P E 9 1. 4 %、 D - P E 3. 8 %、 B - P E 4. 0 %、 T一 P E 0. 2 %であった。
これを Ν 2雰囲気下、 24 0 °Cに昇温して溶融状態と し、 そこ に 8 5 %燐酸1. 5 gを加えて 2 4 0 °Cで 1時間反応させた。 反 応後、 反応液の一部を取りだして分析したところ、 P E 7 9. 7 %、 D— P E 1 1. 6 %、 T - P E 1. 6 %、 その他の生成物 6. 2 %の組成であり、 B— P Eは検出されなかった。 この分析 結果は、 P Eの転化率が 1 6. 0 %> D - P Eへの選択率が 5 5 %であることを示している。
次いで、 反応液を 1 8 3 °Cまで降温して未反応の P Eの一部を 結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出し た結果、 P E 6 4. 6 % D - P E 1 9. 6 %、 T— P E 3. 0 %、 その他の生成物 1 1. 7 %の組成の液を 1 5 4 g得た。
この液を冷却して全体を結晶と し、 水を 3 3 0 g加えて 1 0 0 °Cまで昇温して結晶を溶解し、 次いで 42 °Cに冷却して晶析させ、 得 られた結晶を據取 した と こ ろ、 水分を除いた結晶重量は 5 0. l gで、 D— P Eは 5 3. 1 % (P E類に対する重量比) であった。 この結晶に水を 1 1 0 g加えて再度溶解し、 42°Cに 冷却して晶析させ、 得られた結晶を濂取したところ、 D— P E 8 4, 2 %, T - P E 1 5. 0 %, P E 0. 7 %の組成の高純度 の0—? £の結晶を 2 7. 8 g得た。
実施例 2
実施例 1 と同様に溶融した 5 0 0 gの P Eに、 燐酸ジルコニゥ ムを 2 0 g加え、 2 4 0 °Cで 1 時間反応させた結果、 P E 7 8. 5 %、 D— P E 1 2. 5 %、 T一 P E 1. 8 %、 その他の 生成物 6. 3 %の組成の液を得た。 なお Β— Ρ Εは検出されなか つた。 この分析結果は、 Ρ Εの転化率が 1 7. 6 %、 D— Ρ Εへ の選択率が 5 5. 7 %であることを示している。
次いで、 反応液を 1 8 8 まで降温して未反応の Ρ Εの一部を 結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出し た結果、 Ρ Ε 6 3. 8 % D - P E 2 0. 0 %、 Τ— Ρ Ε 3. 3 %、 その他の生成物 1 1. 1 %の組成の液を 1 6 0 g得た。
次いで、 実施例 1 と同様に水を用いて冷却晶析操作を 2回繰り 返したところ、 D— P E 8 4. 0 %, T - P E 1 5. 1 %, P E 0. 8 %の組成の高純度の D— P Eの結晶を 2 8. 0 g得た。
比較例 1
反応時間を 2時間と した以外は実施例 1 と同様に反応を行い、 P E 6 4. 5 %、 D— P E 1 5. 6 %、 T— P E 6. 4 %、 その 他の生成物 1 1. 8 %の組成の反応液を得た。 この結果は Ρ Εの 転化率が 3 2. 3 %、 D— Ρ Εへの選択率が 4 1. 2 %であるこ とを示している。
次いで、 反応液を 1 8 0でまで降温して未反応の Ρ Εの一部を 結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出し た結果、 Ρ Ε 4 6 . 0 %、 D — Ρ Ε 2 2 . 6 %、 Τ - Ρ Ε 1 0. 8 %、 その他の生成物 2 0. 1 %の組成の液を 1 7 6 g得 た。
次いで、 実施例 1 と同様に水を用いて冷却晶析操作を 2回繰り 返したところ、 D— P E 6 1. 8 %, T一 P E 3 5. 0 %, P E 0. 7 %の組成を有する結晶を 4 6, 0 g得た。 これは T一 P E 含有率の高い結晶であつた。
このように本比較例においては、 P Eの転化率が 3 2. 3 %に なるまで反応を行う と、 T一 P Eの含有率が高く 、 純度の低い D— P E しか得られなかった。
比較例 2
反応温度を 2 6 5 °C, 反応時間を 3 0分と した以外は実施例 1 と同様に反応を行い、 P E 5 6. 9 % D— P E 1 4. 9 %、 T一 P E 8. 3 %、 その他の生成物 1 8. 5 %の組成の反応液を 得た。 この結果は P Eの転化率が 4 0. 0 %、 D— P Eへの選択 率が 3 1. 2 %であることを示している。
次いで、 反応液を 1 7 6 °Cまで降温して未反応の P Eの一部を 結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出し た結果、 P E 3 8. 1 %、 D - P E 2 0. 1 % . T一 P E 1 3. 1 %、 その他の生成物 2 8. 3 %の組成の液を 1 8 8 g得 た。
次いで、 実施例 1 と同様に水を用いて冷却晶析操作を 2回繰り 返したところ、 D— P E 5 5. 6 %, T - P E 4 0. 8 %, P E 0. 7 %の組成を有する結晶を 4 7. 8 g得た。 これは比較例 1 と同様に、 T— P E含有率の高い結晶であった。
このように本比較例において、 P Eの転化率が 4 0. 0 %にな るまで反応を行う と、 T— P Eの含有率が非常に高く、 純度の低 い D— P E しか得られなかつた。
実施例 3
8 5 %燐酸量を 3 gと し、 反応温度を最初 2 4 0 °Cで 1 5分間 反応させた後、 2 3 0 °Cに下げて 1時間反応させた以外は実施例 1 と同様に反応を行っ た結果、 P E 8 0. 7 % D — P E 1 1. 4 %、 T— P E 1. 3 %、 その他の生成物 5. 4 %の組成 の液を得た。 この結果は、 Ρ Εの転化率が 1 4. 8 %、 D - Ρ Ε への選択率が 5 8. 3 %であることを示している。
次いで、 反応液を 1 8 8 °Cまで降温して未反応の P Eの一部を 結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出し た結果、 P E 6 5. 4 %、 D— P E 1 9. 5 %、 T - P E 2. 6 %、 その他の生成物 1 1. 4 %の組成の液を 1 6 0 g得た。
次いで、 実施例 1 と同様に水を用いて冷却晶析操作を 2回繰り 返したところ、 D— P E 8 6. 0 %, T一 P E 1 3. 1 %, P E 0. 7 %の組成の純度の高い D— P Eの結晶を 2 7. 0 g得た。
実施例 4
触媒と して燐酸チタ ンを用いた以外は実施例 2と同様に反応を 行った結果、 P E 8 2. 9 %、 D— P E 1 0. 2 %、 T一 P E 1. 1 %、 その他の生成物 5. 3 %の組成の液を得た。 この結果 は、 P Eの転化率が 1 3. 0 %、 D— P Eへの選択率が 5 5. 4 %であることを示している。
次いで、 反応液を 1 8 8 °Cまで降温して未反応の P Eの一部を 結晶化させ、 液相部を反応器の底部のフィルターを通して抜出し た結果、 P E 6 5. 1 %、 D— P E 1 9. 4 %、 T一 P E 2. 5 %、 その他の生成物 1 1. 2 %の組成の液を 1 4 5 g得た。
次ぎに、 実施例 1 と同様に水を用いて冷却晶析操作を 2回繰り 返したところ、 D— P E 8 5. 8 %, T一 P E 1 2. 9 %, P E 1. 0 %の組成の純度の高い D _ P Eの結晶を 2 2. 9 g得た。
実施例 5〜 7
各種の触媒を用いて、 実施例 2と同様に反応を行った。 その結 果を第 1表に示す。 7
第 1表
実施例 液組成 (%) 触媒 液種類— PE D-PE T-PE 1 D-PE/PE 抜出し液量(ι]_
5 アルミニウム 反応液 83.4 9.2 1.0 6.4 0.11
抜出し液 66.1 19.7 2.1 12.1 154
6 ニ ケル 反 82.2 9.8 0.9 7.1 0.12
抜出し ft 64.5 20.4 1.9 13.2 162
7 鼸クロム 反応液 85.6 8.2 0.8 5.4 0.10
抜出し液 66.4 19.6 1.9 12.1 168
実施例 8
ステ ン レス鋼製の内容量 1 、 温度計、 圧力計、 加熱 ·攪拌装 置、 並びに底部にステ ン レス鋼製 5 mメ ッ シュフィ ルターと液 抜き出 し口を装備 した反応器に、 原料の 4 0 0 gの P E及び l O O gの水を仕込んだ。 こ の原料の組成は、 P E 9 1. 4%、 D - P E 3. 8 %、 B - P E 4. 0 %、 T一 P E O. 2 %であつ た。
これを N 9雰囲気下、 2 2 0 Cに昇温して溶融状態と し、 そこ に 8 5 %燐酸 3. 0 gを加えて 2 2 0 °Cで 1時間反応させた。 こ の間、 圧力は 8 k gZ c m Gを示した。
反応後、 反応液の一部を取り だ して分析したと こ ろ、 P E 6 5. 3 %、 D _ P E 1 0. 1 %、 T一 P E 1. 3 %、 その他の 生成物 2. 7 %の組成であり、 Β— Ρ Εは検出されなかった。 こ の分析結果は、 Ρ Εの転化率が 1 3. 8 %、 D— P Eへの選択率 1 o
が 7 2. 3 %であることを示している。
次いで、 3 0 0 gの水をポンプを用いて、 反応器に 1時間かけ て送り、 且つ反応液の温度を 6 0でと した。 こ う して未反応の P Eの一部を結晶化させ、 液相部を反応器の底部のフィ ルターを 通して抜出 した結果、 P E 1 8. 7 %、 D - P E 8. 4 %、 T一 P E 0. 9 %、 その他の生成物 2. 6 %の組成の溶液を 5 1 8 g得た。 D— P E/P E類の比率は 2 8 %であった。
この溶液を 42°Cに冷却し、 結晶を析出させた後、 得られた結 晶を濂取し、 この結晶を再度 1 7 0 gの水に溶解して 42 °Cに冷 却し再結晶させて漶取した。 この結果、 D— P E 8 5. 3 %, T - P E 1 3. 4 %, P E 1. 0 %の組成の高純度 D— P Eの結 晶を 3 4. 5 g得た。
実施例 9
水に代えてスルホランを用いた以外は、 実施例 8と同様に反応 を行つた結果、 P E 6 3. 4 %^ D - P E 1 0. 8 %、 Τ— Ρ Ε 1. 4 %、 その他の生成物 3. 4 %の組成の液を得た。 なお Β _ Ρ Εは検出されなかった。 この分析結果は、 Ρ Εの転化率が 1 6. 3 %、 D— Ρ Εへの選択率が 6 7. 2 %であることを示し ている。
次いで、 3 0 0 gのスルホランをポンプを用いて、 反応器に 1 時間かけて送り、 且つ反応液の温度を 1 5 0°Cと した。 こ う して 未反応の P Eの一部を結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出した結果、 P E 1 7. 9 %、 D— P E 8. 7 %、 T一 P E 1. 3 %、 その他の生成物 3. 4 %の組成の液を 5 24 g得た。 D— P E ZP E類の比率は 2 8 %であった。 l y
この液を室温まで冷却し P E類を晶析させ、 濾過によりスルホ ラ ンを分離したところ、 1 5 5 gの結晶を得た。
次いで、 実施例 1 と同様に水を用いて冷却晶析操作を 2回繰り 返したところ、 D— P E 8 4. 9 %, T— P E 1 3. 8 %, P E 0. 9 %の組成の純度の高い D— P Eの結晶を 3 8. O g得た。
比較例 3
反応時間を 2 0 0分、 反応温度を 2 3 0 °Cと した以外は実施例 9 と 同様に反応を行っ た結果、 P E 5 2. 2 %、 D - P E 1 2. 3 %、 T一 P E 5. 0 %、 その他の生成物 9. 3 %の組成 の反応液を得た。 こ の結果は Ρ Εの転化率が 3 1 . 1 %、 D - Ρ Εへの選択率が 4 2. 2 %であることを示している。
次いで、 反応液を降温して未反応の Ρ Εの一部を結晶化させ、 液相部を反応器の底部のフィ ルターを通して抜出した結果、 Ρ Ε 1 4. 0 %、 D— Ρ Ε 9. 4%、 T— P E 4. 3 %、 その他の生 成物 7. 8 %の組成の液を 5 5 2 g得た。 D— P EZP E類の比 率は 2 6. 4 %であつた。
実施例 9 と同様に、 P E類の結晶をスルホランと分離した後、 水を用いて 2回再結晶操作を行っ た。 その結果、 D — P E 6 2. 0 %. T - P E 3 7. 1 %、 P E 0. 7 %の組成の結晶を 5 3. 7 g得た。 この結晶は T— P Eの含有率が高い結晶であつ た。
このように本比較例においては、 P Eの転化率が 3 1. 1 %に なるまで反応を行う と、 T一 P Eの含有率が高く 、 純度の低い D— P E しか得られなかった。
実施例 1 0 触媒と して燐酸に代えて燐酸チタンを 1 0 g使用した以外は、 実施例 8 と同様に反応を行った結果、 P E 6 6. 7 %、 D - P E 9. 2 %、 T一 P E 1. 0 %、 その他の生成物 2. 4 %の組成の 反応液を得た。 Β— Ρ Εは検出されなかった。 この分析結果は、 Ρ Εの転化率が 1 2. 5 %、 D— Ρ Εへの選択率が 6 9. 1 %で あることを示している。
次いで、 水 3 0 0 gをポンプを用いて、 反応器に 1時間かけて 送り、 且つ反応液の温度を 6 0 °Cと した。 こ う して未反応の P E の一部を結晶化させ、 液相部を反応器の底部のフィ ルターを通し て抜出した結果、 P E 1 9. 7 %、 D - P E 7. 8 %、 T一 P E 1. 0 %、 その他の生成物 2. 0 %の組成の液を 4 8 3 g得た。 D - P E /P E類の比率は 2 5 %であった。
次ぎに、 この溶液に対して実施例 8 と同様に冷却晶析操作を 2 回繰り返したところ、 D— P E 8 5. 5 %, T - P E 1 3. 8 %, P E 0. 9 %の組成の純度の高い D— P Eの結晶を 3 0. 7 g得
産業上の利用性
本発明のジペンタエリスリ トールの製造方法は、 従来副生的に しか生産できなかつたジペンタエリスリ トールそのものを主体的 に効率よく製造でき、 またジペンタエリ スリ トールの合成反応後 の不純物の濃度が低いので、 精製も容易で高品質のジペンタエリ ス リ トールを工業的に低コス トで提供することができる。

Claims

請求の範囲 . ジペンタエリ スリ トールの製造方法において : 酸触媒の存在下、 ペンタエリ ス リ トールを 2 0 0〜 2 6 0°Cの温度で液相状態で縮合反応させる工程 ; 反応液の温度を低下させペンタエリ スリ トールの一部を結 晶化する工程 ; 及び 結晶化したペン夕エリ ス リ トールを反応液から除去するこ とにより ジペンタエリ ス リ トールの濃度を高めた反応液を得 る工程を含んでなる製造方法。 . ペンタエリスリ トールの転化率が 2 5 %以上になる前に反 応液の温度を 1 9 5 °C以下に低下させる請求項 1記載の製造 方法。 . 反応液中のジペン夕エリ ス リ トールのペンタエリ ス リ トー ルに対する重量比が 0 . 1 8以上となる前に反応液の温度を 1 9 5 °C以下に低下させる請求項 1記載の製造方法。. 更に、 ジペンタエリスリ トールの濃度を高めた反応液から ジペンタエリ スリ トールを分離する工程を含んでなる請求項
1、 2または 3記載の製造方法。
. ジペン夕エリスリ トールの製造方法において、 酸触媒の存 在下、 ペンタエリ スリ トールを液相状態で縮合反応させるに 際し、 極性溶剤の存在下で反応を行う製造方法。
. 極性溶剤が常温で 1 5〜 1 0 0の値の誘電率を有する請求 項 5記載の製造方法。
. 極性溶剤が、 ジメ チルホルムア ミ ド、 ジメ チルスルホキシ ド、 ト リ プチルフ ォスフェー ト、 スルホラ ン、 1 , 3 —ジメ チル _ 2 —イ ミ ダゾリ ジノ ン、 水またはこれらの任意の混合 物である請求項 6記載の製造方法。
. 極性溶剤がスルホラ ン、 1 , 3 —ジメ チルー 2 —イ ミ ダゾ リ ジノ ンまたは水である請求項 7記載の製造方法。
. 極性溶剤が反応液に対して 5乃至 7 0 %である請求項 5乃 至 8のいずれかに記載の製造方法。
. 反応液の温度を低下させペンタエリ スリ トールの一部を結 晶化させる工程及び結晶化したペンタエリ スリ トールを反応 液から除去することにより ジペンタエリスリ トールの濃度を 高めた反応液を得る工程を有する請求項 5記載の製造方法。. ペンタエリスリ トールの転化率が 2 5 %以上となる前に、 反応液の温度を低下させペンタエリスリ トールの一部を結晶 化する工程を有する請求項 1 0記載の製造方法。
. 反応液の温度を 4 0〜 1 6 0 °Cに低下させる請求項 1 0記 載の製造方法。
. 更に、 ジペンタエリ ス リ トールの濃度を高めた反応液から ジペンタエリスリ トールを分離する工程を含んでなる請求項 1 0記載の製造方法。
PCT/JP1991/000004 1990-01-09 1991-01-08 Process for producing dipentaerythritol WO1991010633A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69111914T DE69111914T2 (de) 1990-01-09 1991-01-08 Verfahren zur herstellung von dipentaerythritol.
KR1019910701062A KR950001677B1 (ko) 1990-01-09 1991-01-08 디펜타에리트리톨의 제조방법
EP91901530A EP0462283B1 (en) 1990-01-09 1991-01-08 Process for producing dipentaerythritol

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP95390 1990-01-09
JP2/953 1990-01-09
JP2254130A JPH03261736A (ja) 1990-01-09 1990-09-26 ジペンタエリスリトールの製造方法
JP2/254130 1990-09-26
JP2268461A JP2863296B2 (ja) 1990-10-08 1990-10-08 ジペンタエリスリトールの製造方法
JP2/268461 1990-10-08

Publications (1)

Publication Number Publication Date
WO1991010633A1 true WO1991010633A1 (en) 1991-07-25

Family

ID=27274686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000004 WO1991010633A1 (en) 1990-01-09 1991-01-08 Process for producing dipentaerythritol

Country Status (4)

Country Link
US (1) US5254749A (ja)
EP (1) EP0462283B1 (ja)
DE (1) DE69111914T2 (ja)
WO (1) WO1991010633A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005134A1 (en) * 1990-09-24 1992-04-02 Perstorp Ab Process for the production of di-trimethylolpropane
JP2015529659A (ja) * 2012-08-08 2015-10-08 ロケット フレールRoquette Freres 不均一触媒反応による、水素化糖の少なくとも1種の分子内脱水生成物を含む組成物の合成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19749201A1 (de) * 1997-11-07 1999-08-12 Degussa Verfahren zur intermolekularen Veretherung und zur Etherspaltung
CN102070413B (zh) * 2010-12-23 2012-02-01 安徽金禾实业股份有限公司 一种双季戊四醇的合成方法
CN102329196B (zh) * 2011-09-23 2013-09-04 安徽金禾实业股份有限公司 一种单、双季戊四醇分离的方法
CN102807477A (zh) * 2012-09-12 2012-12-05 上海北凯实业有限公司 由单季戊四醇合成双季戊四醇的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139028A (en) * 1981-02-19 1982-08-27 Koei Chem Co Ltd Method for producing dipentaerythritol or ditrimethylol-alkane in high ratio as by-product
JPS588028A (ja) * 1981-07-03 1983-01-18 Koei Chem Co Ltd ジペンタエリスリト−ルの分離方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462047A (en) * 1946-04-26 1949-02-15 Trojan Powder Co Pentaerythritol condensation products
US2487208A (en) * 1946-12-23 1949-11-08 Colgate Palmolive Peet Co Preparation of diglycerol
US2820066A (en) * 1954-05-27 1958-01-14 Celanese Corp Separation of mixtures of pentaerythritol and dipentaerythritol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139028A (en) * 1981-02-19 1982-08-27 Koei Chem Co Ltd Method for producing dipentaerythritol or ditrimethylol-alkane in high ratio as by-product
JPS588028A (ja) * 1981-07-03 1983-01-18 Koei Chem Co Ltd ジペンタエリスリト−ルの分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0462283A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005134A1 (en) * 1990-09-24 1992-04-02 Perstorp Ab Process for the production of di-trimethylolpropane
US5324863A (en) * 1990-09-24 1994-06-28 Perstorp Ab Process for the production of di-trimethylolpropane
JP2015529659A (ja) * 2012-08-08 2015-10-08 ロケット フレールRoquette Freres 不均一触媒反応による、水素化糖の少なくとも1種の分子内脱水生成物を含む組成物の合成方法

Also Published As

Publication number Publication date
DE69111914T2 (de) 1996-03-21
DE69111914D1 (de) 1995-09-14
EP0462283A4 (en) 1992-10-21
EP0462283A1 (en) 1991-12-27
US5254749A (en) 1993-10-19
EP0462283B1 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JP4256777B2 (ja) 2,2,2−トリフルオロエタノールの製造方法
EP0552255B1 (en) Manufacture of high-purity hydroxyacetic acid
KR101852214B1 (ko) 다이트라이메틸올프로페인의 제조 방법
US5264624A (en) Process for the recovery of adipic acid
WO1991010633A1 (en) Process for producing dipentaerythritol
US4709089A (en) Method for refining 2-(aryl substituted) propionic acid or its salt
JPS59134788A (ja) ジオキサングリコ−ルの製造法
JP3318992B2 (ja) N−(α−アルコキシエチル)ホルムアミドの製造方法
JP2863296B2 (ja) ジペンタエリスリトールの製造方法
JP2001226323A (ja) 安息香酸ベンジルの回収方法
JP3674010B2 (ja) パラフェニレンジイソシアナートの製造方法
JPH03261736A (ja) ジペンタエリスリトールの製造方法
JP4127017B2 (ja) ベンジルカルバゼート化合物の製造法
US3968176A (en) Process for producing pentaerythritol
JP3882859B2 (ja) 水加ヒドラジンの製造方法
KR950001677B1 (ko) 디펜타에리트리톨의 제조방법
JPH0372066B2 (ja)
JPH0616585A (ja) ジペンタエリスリトールの製造方法
JP4641640B2 (ja) カルボジヒドラジドの製造方法
JPH08176044A (ja) 2−t−ブチルハイドロキノンの製造方法
EP0966428A1 (en) PROCESS FOR THE CRYSTALLIZATION FROM A LINEAR OR BRANCHED (C5-C6) ALCOHOL OR THEIR MIXTURES OF (S)-N,N&#39;-bis 2-HYDROXY-1- (HYDROXYMETHYL)ETHYL]-5- (2-HYDROXY-1-OXOPROPYL)AMINO]-2,4,6- TRIIODO-1,3-BENZENEDICARBOXAMIDE
JPS59137431A (ja) トリメチロ−ルヘプタンの製造方法
RU2402524C1 (ru) Способ получения монохлоруксусной кислоты
JPH0948789A (ja) O,s−ジメチル−n−アセチルホスホルアミドチオエートの精製法
US4127735A (en) Preparation of dichlorophene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991901530

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991901530

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991901530

Country of ref document: EP