US5981281A - Method for knockout mutagenesis in Streptococcus pneumoniae - Google Patents

Method for knockout mutagenesis in Streptococcus pneumoniae Download PDF

Info

Publication number
US5981281A
US5981281A US08/987,152 US98715297A US5981281A US 5981281 A US5981281 A US 5981281A US 98715297 A US98715297 A US 98715297A US 5981281 A US5981281 A US 5981281A
Authority
US
United States
Prior art keywords
dna
knockout
pneumoniae
streptococcus pneumoniae
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/987,152
Inventor
Richard Henry Baltz
Jo Ann Hoskins
Patricia Jean Solenberg
Patti Jean Treadway
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Original Assignee
Eli Lilly and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly and Co filed Critical Eli Lilly and Co
Priority to US08/987,152 priority Critical patent/US5981281A/en
Assigned to ELI LILLY AND COMPANY reassignment ELI LILLY AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALTZ, RICHARD HENRY, HOSKINS, JO ANN, SOLENBERG, PATRICIA JEAN, TREADWAY, PATTI JEAN
Application granted granted Critical
Publication of US5981281A publication Critical patent/US5981281A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56944Streptococcus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1247DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01018Exo-alpha-sialidase (3.2.1.18), i.e. trans-sialidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/315Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales

Definitions

  • This invention provides a method for producing knockout mutations in Streptococcus pneumoniae.
  • Streptococcus pneumoniae presents a special case because this organism is highly recombinogenic and readily takes up exogenous DNA from its surroundings. Thus, the need for new strategies and methods for developing antibacterial compounds in Streptococcus pneumoniae is pressing.
  • the present invention relates to a method for targeted mutagenesis in S. pneumoniae.
  • the method disclosed herein enables targeted mutagenesis of the S. pneumoniae genome.
  • the present invention provides a method for producing targeted knockout mutations in the S. pneumoniae chromosome.
  • the present invention provides mutated strains of S. pneumoniae produced by the method disclosed herein.
  • FIG. 1 Schematic of knockout method wherein a plasmid carrying a fragment of the S. pneumoniae genome is transferred by conjugation to S. pneumoniae cells, whereupon said plasmid recombines with the chromosome to produce a knockout mutation.
  • FIG. 2 Schematic of knockout mutagenesis, by transformation with a "knockout cassette”.
  • FIG. 3 Plasmid pCZA342 replicates in E. coli but not in S. pneumoniae. This plasmid provides a universal cloning site for insertion of genomic DNA fragments.
  • Gene refers to the full complement of chromosomal and extra-chromosomal DNA within a cell.
  • the genome comprises the genetic blueprint for all proteins and RNAs encoded by the cell or organism.
  • Essential genes or "essential ORFs” or “essential proteins” refer to genomic information or the protein(s) or RNAs encoded therefrom which, when disrupted by knockout mutation, or by other mutation, result in a loss of viability of cells harboring said mutation.
  • Non-essential genes or “non-essential ORFs” or “non-essential proteins” refer to genomic information or the protein(s) or RNAs encoded therefrom which when disrupted by knockout mutation, or other mutation, do not result in a loss of viability of cells harboring said mutation.
  • “Knockout mutant” or “knockout mutation” as used herein refers to an in vitro engineered disruption of native chromosomal DNA, typically within a protein coding region, such that a foreign piece of DNA conveniently but not necessarily providing a dominant selectable marker is inserted within the native sequence.
  • a knockout mutation within a protein coding region prevents expression of the wild-type protein, which usually leads to loss of the function provided by the protein.
  • a “knockout cassette” refers to a fragment of native chromosomal DNA having cloned therein a foreign piece of DNA that may provide a selectable marker.
  • Recombinant DNA cloning vector refers to any autonomously replicating agent, including, but not limited to, plasmids and phages, comprising a DNA molecule to which one or more additional DNA segments can or have been added.
  • recombinant DNA expression vector refers to any recombinant DNA cloning vector, for example a plasmid or phage, in which a promoter and other regulatory elements are present to enable transcription of the inserted DNA.
  • vector refers to a nucleic acid compound used for introducing exogenous DNA into host cells.
  • a vector comprises a nucleotide sequence which may encode one or more protein molecules. Plasmids, cosmids, viruses, and bacteriophages, in the natural state or which have undergone recombinant engineering, are examples of commonly used vectors.
  • complementary refers to the capacity of purine and pyrimidine nucleotides to associate through hydrogen bonding in double stranded nucleic acid molecules.
  • the following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil.
  • Oligonucleotide refers to a short polymeric nucleotide chain comprising from about 2 to 25 nucleotides.
  • isolated nucleic acid compound refers to any RNA or DNA sequence, however constructed or synthesized, which is locationally distinct from its natural location.
  • a “primer” is a nucleic acid fragment which functions as an initiating substrate for enzymatic or synthetic elongation of, for example, a nucleic acid molecule.
  • the Streptococcus pneumoniae genome is estimated to contain about 2.2 million nucleotide base pairs and to comprise about 2000 to 3000 ORFs and other genes. This invention provides a method for producing targeted knockout mutations within the S. pneumoniae genome.
  • the invention provides a method for producing knockout mutations in the S. pneumoniae genome. Knockout mutations are useful for a variety of applications.
  • the knockout procedure disclosed herein provides a method for (1) identifying the function of a protein in the cell, (2) constructing merodiploid strains, (3) introducing foreign genes onto the S. pneumoniae chromosome, (4) construction of strains with altered regulatory properties, (5) construction of defined mutations in which a wild type genomic sequence is replaced by a mutated copy of the wild-type sequence.
  • Abrogating normal production of a protein is a means of perturbing the cell in a defined way.
  • Critical biological functions can be affected by knockout mutations, and in some instances these can be determined easily by, for example, loss of viability. In other instances the phenotypic affect of a knockout mutation will require systematic screens to test for a loss in specific enzyme activities, for example, or, for changes in growth requirements.
  • knockout mutation cassettes are created by interrupting a fragment of genomic DNA with a foreign piece of DNA, and replacing the wild-type chromosomal copy of the sequence with the knockout cassette (See FIG. 2).
  • the knockout protocol involves cloning a foreign piece of DNA into a target DNA such that "tails" comprising the target site DNA remain at the 5' and 3' ends of the knockout cassette.
  • the tails should be at least 50 base pairs and preferably greater than 200 to 500 base pairs for efficient recombination and/or gene conversion.
  • the foreign DNA cloned into the target DNA also provides a selectable marker, for example, an antibiotic resistance gene.
  • the knockout procedure can be carried out by mixing a knockout gene cassette with a culture of S. pneumoniae competent for DNA uptake. While S. pneumoniae is naturally transformable it is preferred that cells be rendered competent for DNA uptake by any suitable method (See e.g. LeBlanc et.al. Plasmid 28, 130-145, 1992; Pozzi et al. J. Bacteriol. 178, 6087-6090, 1996). Where the target DNA is disrupted with an antibiotic resistance gene, selection of transformants is carried out on agar plates containing suitable levels of an appropriate antibiotic.
  • Knockout recombination events are easily confirmed by, for example, Southern blot hybridization, or more conveniently by PCR.
  • a fragment of S. pneumoniae genomic DNA (i.e. target site) disclosed herein is cloned into a suitable plasmid or other vector.
  • the recombinant vector is introduced into E. coli by transformation and transferred from E. coli to S. pneumoniae by conjugation.
  • the knockout vector then recombines with the S. pneumoniae chromosome across the target site to produce a disrupted genomic fragment (See FIG. 1).
  • the target DNA can comprise any DNA sequence disclosed herein, and is easily made by the PCR using conventional techniques.
  • a suitable cloning vector for the conjugation method has several salient features. First, the vector should replicate and be selectable in E.
  • a preferred cloning vector for this purpose is pCZA342 (See FIG. 3). The conjugation method of the knockout procedure is disclosed more fully in the accompanying Examples.
  • knockout cassettes and the DNA segments of this invention or fragments thereof can be generated by general cloning methods.
  • PCR amplification methods using oligonucleotide primers targeted to any suitable region of any of the sequences disclosed herein are preferred.
  • Methods for PCR amplification are widely known in the art. See e.g. PCR Protocols: A Guide to Method and Application, Ed. M. Innis et al., Academic Press (1990) or U.S. Pat. No. 4,889,818, which hereby is incorporated by reference.
  • the PCR comprises genomic DNA, suitable enzymes, primers, and buffers, and is conveniently carried out in a DNA Thermal Cycler (Perkin Elmer Cetus, Norwalk, Conn.).
  • a positive PCR result is determined by, for example, detecting an appropriately-sized DNA fragment following agarose gel electrophoresis.
  • the DNAs of the present invention may also be produced using synthetic methods well known in the art. (See, e.g., E. L. Brown, R. Belagaje, M. J. Ryan, and H. G. Khorana, Methods in Enzymology, 68:109-151 (1979)).
  • An apparatus such as the Applied Biosystems Model 380A or 380B DNA synthesizers (Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404) may be used to synthesize DNA.
  • Synthetic methods rely upon phosphotriester chemistry [See, e.g., M. J. Gait, ed., Oligonucleotide Synthesis, A Practical Approach, (1984)], or phosphoramidite chemistry.
  • Genomic DNA from S. pneumoniae strain R6 hex - was used as a source of DNA for PCR amplification (strain obtained from Dr. Alexander Tomasz, Rockefeller University; See S. Lacks "Mutants of Diplococcus pneumoniae that lack deoxyribonucleotides and other activities possibly pertinent to genetic transformation," J. Bacteriol. 101, 373-83, 1970). About 10 ml of bacteria were grown overnight at 37° C. in brain heart infusion broth without shaking.
  • the cells were harvested by centrifugation, washed one time in 50 mM Tris, 50 mM EDTA, and resuspended in 300 ul of 50 mM Tris 50 mM EDTA, 100 ug/ml RNAse.
  • Cells were lysed by the addition of 30 ul 4% deoxycholate and 30 ul 0.1% sodium dodecylsulfate with incubation at 37° C. for about 1 hour, or until the solution cleared.
  • the solution was extracted with 0.2 ml of TE-buffered phenol and the aqueous phase transfered to a clean tube. After another phenol extraction the DNA was precipitated by adding one-tenth volume of 3M sodium acetate and 2 volumes cold ethanol.
  • the DNA was recovered by centrifugation and resuspended in 500 ul of TE pH 8. After a reprecipitation step, the DNA pellet was resuspended in 50 ul to 100 ul of TE. About 1 ul of DNA solution was used for each PCR reaction.
  • oligonucleotides should be derived from the coding strand of the DNA to be amplified and the other should be derived form the non-coding strand.
  • the primers can be synthesized by the modified phosphotriester method using fully protected deoxyribonucleotide building blocks, as described, for example, in Narang et.al., Methods in Enzymology, 68, 90 (1980).
  • a preferred method employs automated DNA synthesizers, such as the Applied Biosystems 394 DNA Synthesizer (850 Lincoln Centre Drive, Foster City, Calif. 94404).
  • the amplification reaction was performed in a DNA Thermal Cycler using a Gene Amp Kit according to the manufacturer's instructions (Perkin Elmer Cetus, Norwalk, Conn.). A thermal step program that included the following parameters was used for DNA amplification: denaturation at 94° C. for 30 seconds, annealing at 55° C. for 30 seconds, primer extension at 72° C. for two minutes, for a total of 30 cycles. Ten ul of the PCR amplification product was analyzed by agarose gel electrophoresis on a 0.8% agarose gel. A positive result was indicated by the presence of an approriately-sized band. The amplified fragment was extracted from an agarose gel and used to construct a knockout plasmid, as illustrated in Example 2 for the nanA gene.
  • the S. pneumoniae nanA gene comprises 3107 base pairs and encodes the enzyme neuraminidase.
  • the nucleotide sequence of this gene has been published (M. Camara et.al. Infection and Immunity, 62, 3688-95, 1994).
  • Oligonucleotide primers targeting a 559 base pair region at the 5' end of nanA were synthesized to contain BamHI cloning sites. This region of nanA was amplified from genomic DNA, and the amplified DNA was gel-purified and digested with BamHI. The BamHI-digested DNA fragment was ligated into plasmid pCZA342(FIG.
  • pCZA342-nanA which carries oriT, an apramycin resistance gene, and an erythromycin resistance gene.
  • the erythromycin gene provides a selectable marker for S. pneumoniae.
  • the resulting plasmid, pCZA342-nanA was used to produce a knockout mutation in the nanA gene by conjugation (described in Example 3).
  • S. pneumoniae R6 hex - cells from frozen stock were grown in Brain Heart Infusion broth (BHI) supplemented with 35 mM L-threonine overnight at 37° C. to an OD 660 of 0.52 to 0.58 (this cell density range provides optimal results). The cells were harvested prior to entering stationary phase.
  • BHI Brain Heart Infusion broth
  • E.coli S17-1 obtained from Pasteur Institute, Ref. R. Simon et.al., Bio/Technology, 1, 784-791, 1983 was transformed by standard methods with plasmid pCAZ342-nanA (see Example 2).
  • the transformed E. coli cells were grown to stationary phase in TY broth supplemented with 100 ug/ml apramycin overnight at 37° C. on a roller drum.
  • R6 and S17-1 cells grown as described, were mixed in the following ratios: 9/1, 1/1, and 1/9, in 3 separate tubes, each containing 0.2 ml BHI broth. The mixed cells were pelleted and resuspended in the residual growth medium. Samples from each tube were spotted onto the surface of a chocolate II agar plate (BBL, Becton-Dickson) and incubated overnight at 37° C. Cells that grew at each spot were scraped from the plate, and resuspended in 0.5 ml BHI broth.
  • BBL chocolate II agar plate
  • the resuspended cells were plated in Nutrient Broth soft agar, onto chocolate agar plates supplemented with 0.3 ug/ml erythromycin and 30 ug/ml nalidixic acid. Drug-resistant colonies appeared after an overnight incubation at 37° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Provided herein is a method to produce knockout mutations at targeted sites in the genome of Streptococcus pneumoniae.

Description

BACKGROUND OF THE INVENTION
This application claims the benefit of U.S. Provisional Application No. 60/036,281, filed Dec. 13, 1996.
This invention provides a method for producing knockout mutations in Streptococcus pneumoniae.
The recent emergence of widespread antibiotic resistance in common pathogenic bacterial species has justifiably alarmed the medical and research communities. Frequently these organisms are co-resistant to several antibacterial agents. Particularly problematic has been the rapid spread of penicillin resistance in Streptococcus pneumoniae, which frequently causes upper respiratory tract infections. Resistance to penicillin in this organism can be due to modifications of one or more of the penicillin-binding proteins (PBPs). Combating the phenomenon of increasing resistance to antibiotic agents among pathogenic organisms such as Streptococcus pneumoniae will require intensified research into the fundamental molecular biology of such organisms.
While inroads in the development of new antibiotics and new targets for antibiotic compounds have been made with a variety of microorganisms, progress has been less apparent in Streptococcus pneumoniae. In part, Streptococcus pneumoniae presents a special case because this organism is highly recombinogenic and readily takes up exogenous DNA from its surroundings. Thus, the need for new strategies and methods for developing antibacterial compounds in Streptococcus pneumoniae is pressing.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to a method for targeted mutagenesis in S. pneumoniae. The method disclosed herein enables targeted mutagenesis of the S. pneumoniae genome.
In one embodiment the present invention provides a method for producing targeted knockout mutations in the S. pneumoniae chromosome.
In another embodiment, the present invention provides mutated strains of S. pneumoniae produced by the method disclosed herein.
DESCRIPTION OF THE DRAWINGS
FIG. 1. Schematic of knockout method wherein a plasmid carrying a fragment of the S. pneumoniae genome is transferred by conjugation to S. pneumoniae cells, whereupon said plasmid recombines with the chromosome to produce a knockout mutation.
FIG. 2. Schematic of knockout mutagenesis, by transformation with a "knockout cassette".
FIG. 3. Plasmid pCZA342 replicates in E. coli but not in S. pneumoniae. This plasmid provides a universal cloning site for insertion of genomic DNA fragments.
DEFINITIONS
"Genome" refers to the full complement of chromosomal and extra-chromosomal DNA within a cell. The genome comprises the genetic blueprint for all proteins and RNAs encoded by the cell or organism.
"Essential genes" or "essential ORFs" or "essential proteins" refer to genomic information or the protein(s) or RNAs encoded therefrom which, when disrupted by knockout mutation, or by other mutation, result in a loss of viability of cells harboring said mutation.
"Non-essential genes" or "non-essential ORFs" or "non-essential proteins" refer to genomic information or the protein(s) or RNAs encoded therefrom which when disrupted by knockout mutation, or other mutation, do not result in a loss of viability of cells harboring said mutation.
"Knockout mutant" or "knockout mutation" as used herein refers to an in vitro engineered disruption of native chromosomal DNA, typically within a protein coding region, such that a foreign piece of DNA conveniently but not necessarily providing a dominant selectable marker is inserted within the native sequence. A knockout mutation within a protein coding region prevents expression of the wild-type protein, which usually leads to loss of the function provided by the protein. A "knockout cassette" refers to a fragment of native chromosomal DNA having cloned therein a foreign piece of DNA that may provide a selectable marker.
"Recombinant DNA cloning vector" as used herein refers to any autonomously replicating agent, including, but not limited to, plasmids and phages, comprising a DNA molecule to which one or more additional DNA segments can or have been added.
The term "recombinant DNA expression vector" as used herein refers to any recombinant DNA cloning vector, for example a plasmid or phage, in which a promoter and other regulatory elements are present to enable transcription of the inserted DNA.
The term "vector" as used herein refers to a nucleic acid compound used for introducing exogenous DNA into host cells. A vector comprises a nucleotide sequence which may encode one or more protein molecules. Plasmids, cosmids, viruses, and bacteriophages, in the natural state or which have undergone recombinant engineering, are examples of commonly used vectors.
The terms "complementary" or "complementarity" as used herein refers to the capacity of purine and pyrimidine nucleotides to associate through hydrogen bonding in double stranded nucleic acid molecules. The following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil.
"Oligonucleotide" refers to a short polymeric nucleotide chain comprising from about 2 to 25 nucleotides.
"Isolated nucleic acid compound" refers to any RNA or DNA sequence, however constructed or synthesized, which is locationally distinct from its natural location.
A "primer" is a nucleic acid fragment which functions as an initiating substrate for enzymatic or synthetic elongation of, for example, a nucleic acid molecule.
DETAILED DESCRIPTION OF THE INVENTION
The Streptococcus pneumoniae genome is estimated to contain about 2.2 million nucleotide base pairs and to comprise about 2000 to 3000 ORFs and other genes. This invention provides a method for producing targeted knockout mutations within the S. pneumoniae genome.
Production of Knockout Mutations
The invention provides a method for producing knockout mutations in the S. pneumoniae genome. Knockout mutations are useful for a variety of applications. For example, the knockout procedure disclosed herein provides a method for (1) identifying the function of a protein in the cell, (2) constructing merodiploid strains, (3) introducing foreign genes onto the S. pneumoniae chromosome, (4) construction of strains with altered regulatory properties, (5) construction of defined mutations in which a wild type genomic sequence is replaced by a mutated copy of the wild-type sequence.
Abrogating normal production of a protein is a means of perturbing the cell in a defined way. Critical biological functions can be affected by knockout mutations, and in some instances these can be determined easily by, for example, loss of viability. In other instances the phenotypic affect of a knockout mutation will require systematic screens to test for a loss in specific enzyme activities, for example, or, for changes in growth requirements.
In one embodiment "knockout mutation cassettes" are created by interrupting a fragment of genomic DNA with a foreign piece of DNA, and replacing the wild-type chromosomal copy of the sequence with the knockout cassette (See FIG. 2). In this embodiment, the knockout protocol involves cloning a foreign piece of DNA into a target DNA such that "tails" comprising the target site DNA remain at the 5' and 3' ends of the knockout cassette. The tails should be at least 50 base pairs and preferably greater than 200 to 500 base pairs for efficient recombination and/or gene conversion. For convenience, the foreign DNA cloned into the target DNA also provides a selectable marker, for example, an antibiotic resistance gene.
The knockout procedure can be carried out by mixing a knockout gene cassette with a culture of S. pneumoniae competent for DNA uptake. While S. pneumoniae is naturally transformable it is preferred that cells be rendered competent for DNA uptake by any suitable method (See e.g. LeBlanc et.al. Plasmid 28, 130-145, 1992; Pozzi et al. J. Bacteriol. 178, 6087-6090, 1996). Where the target DNA is disrupted with an antibiotic resistance gene, selection of transformants is carried out on agar plates containing suitable levels of an appropriate antibiotic. Following transformation, a fraction of cells that have taken up the knockout cassette will have undergone homologous recombination or gene conversion across the genomic DNA tails of the cassette, resulting in replacement of the wild-type genomic sequence with the knockout cassette (See FIG. 2). Knockout recombination events are easily confirmed by, for example, Southern blot hybridization, or more conveniently by PCR.
In the preferred method for producing knockout mutations in S. pneumoniae, a fragment of S. pneumoniae genomic DNA (i.e. target site) disclosed herein is cloned into a suitable plasmid or other vector. The recombinant vector is introduced into E. coli by transformation and transferred from E. coli to S. pneumoniae by conjugation. The knockout vector then recombines with the S. pneumoniae chromosome across the target site to produce a disrupted genomic fragment (See FIG. 1). The target DNA can comprise any DNA sequence disclosed herein, and is easily made by the PCR using conventional techniques. A suitable cloning vector for the conjugation method has several salient features. First, the vector should replicate and be selectable in E. coli, (2) the vector should be selectable but not replicate in S. pneumoniae, and (3) the vector should be transferable from E. coli to S. pneumoniae by conjugation. A preferred cloning vector for this purpose is pCZA342 (See FIG. 3). The conjugation method of the knockout procedure is disclosed more fully in the accompanying Examples.
Skilled artisans will recognize that the knockout cassettes and the DNA segments of this invention or fragments thereof can be generated by general cloning methods. PCR amplification methods using oligonucleotide primers targeted to any suitable region of any of the sequences disclosed herein are preferred. Methods for PCR amplification are widely known in the art. See e.g. PCR Protocols: A Guide to Method and Application, Ed. M. Innis et al., Academic Press (1990) or U.S. Pat. No. 4,889,818, which hereby is incorporated by reference. The PCR comprises genomic DNA, suitable enzymes, primers, and buffers, and is conveniently carried out in a DNA Thermal Cycler (Perkin Elmer Cetus, Norwalk, Conn.). A positive PCR result is determined by, for example, detecting an appropriately-sized DNA fragment following agarose gel electrophoresis.
The DNAs of the present invention may also be produced using synthetic methods well known in the art. (See, e.g., E. L. Brown, R. Belagaje, M. J. Ryan, and H. G. Khorana, Methods in Enzymology, 68:109-151 (1979)). An apparatus such as the Applied Biosystems Model 380A or 380B DNA synthesizers (Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404) may be used to synthesize DNA. Synthetic methods rely upon phosphotriester chemistry [See, e.g., M. J. Gait, ed., Oligonucleotide Synthesis, A Practical Approach, (1984)], or phosphoramidite chemistry.
The following examples more fully describe the present invention. Those skilled in the art will recognize that the particular reagents, equipment, and procedures described are merely illustrative and are not intended to limit the present invention in any manner.
EXAMPLE 1 Construction of Direct Selection Knockout Cassette
Genomic DNA from S. pneumoniae strain R6 hex- was used as a source of DNA for PCR amplification (strain obtained from Dr. Alexander Tomasz, Rockefeller University; See S. Lacks "Mutants of Diplococcus pneumoniae that lack deoxyribonucleotides and other activities possibly pertinent to genetic transformation," J. Bacteriol. 101, 373-83, 1970). About 10 ml of bacteria were grown overnight at 37° C. in brain heart infusion broth without shaking. The cells were harvested by centrifugation, washed one time in 50 mM Tris, 50 mM EDTA, and resuspended in 300 ul of 50 mM Tris 50 mM EDTA, 100 ug/ml RNAse. Cells were lysed by the addition of 30 ul 4% deoxycholate and 30 ul 0.1% sodium dodecylsulfate with incubation at 37° C. for about 1 hour, or until the solution cleared. The solution was extracted with 0.2 ml of TE-buffered phenol and the aqueous phase transfered to a clean tube. After another phenol extraction the DNA was precipitated by adding one-tenth volume of 3M sodium acetate and 2 volumes cold ethanol. The DNA was recovered by centrifugation and resuspended in 500 ul of TE pH 8. After a reprecipitation step, the DNA pellet was resuspended in 50 ul to 100 ul of TE. About 1 ul of DNA solution was used for each PCR reaction.
Skilled artisans will recognize that within a particular set of PCR primers, one of the oligonucleotides should be derived from the coding strand of the DNA to be amplified and the other should be derived form the non-coding strand. The primers can be synthesized by the modified phosphotriester method using fully protected deoxyribonucleotide building blocks, as described, for example, in Narang et.al., Methods in Enzymology, 68, 90 (1980). A preferred method employs automated DNA synthesizers, such as the Applied Biosystems 394 DNA Synthesizer (850 Lincoln Centre Drive, Foster City, Calif. 94404).
The amplification reaction was performed in a DNA Thermal Cycler using a Gene Amp Kit according to the manufacturer's instructions (Perkin Elmer Cetus, Norwalk, Conn.). A thermal step program that included the following parameters was used for DNA amplification: denaturation at 94° C. for 30 seconds, annealing at 55° C. for 30 seconds, primer extension at 72° C. for two minutes, for a total of 30 cycles. Ten ul of the PCR amplification product was analyzed by agarose gel electrophoresis on a 0.8% agarose gel. A positive result was indicated by the presence of an approriately-sized band. The amplified fragment was extracted from an agarose gel and used to construct a knockout plasmid, as illustrated in Example 2 for the nanA gene.
EXAMPLE 2 Construction of a plasmid for use in Knockout Mutagenesis of nanA Gene
The S. pneumoniae nanA gene comprises 3107 base pairs and encodes the enzyme neuraminidase. The nucleotide sequence of this gene has been published (M. Camara et.al. Infection and Immunity, 62, 3688-95, 1994). Oligonucleotide primers targeting a 559 base pair region at the 5' end of nanA were synthesized to contain BamHI cloning sites. This region of nanA was amplified from genomic DNA, and the amplified DNA was gel-purified and digested with BamHI. The BamHI-digested DNA fragment was ligated into plasmid pCZA342(FIG. 3), which carries oriT, an apramycin resistance gene, and an erythromycin resistance gene. The erythromycin gene provides a selectable marker for S. pneumoniae. The resulting plasmid, pCZA342-nanA, was used to produce a knockout mutation in the nanA gene by conjugation (described in Example 3).
EXAMPLE 3 Producing a Knockout Mutation in S. pneumoniae by Conjugation
S. pneumoniae R6 hex- cells from frozen stock were grown in Brain Heart Infusion broth (BHI) supplemented with 35 mM L-threonine overnight at 37° C. to an OD660 of 0.52 to 0.58 (this cell density range provides optimal results). The cells were harvested prior to entering stationary phase.
E.coli S17-1 (obtained from Pasteur Institute, Ref. R. Simon et.al., Bio/Technology, 1, 784-791, 1983) was transformed by standard methods with plasmid pCAZ342-nanA (see Example 2). The transformed E. coli cells were grown to stationary phase in TY broth supplemented with 100 ug/ml apramycin overnight at 37° C. on a roller drum.
For conjugation, R6 and S17-1 cells, grown as described, were mixed in the following ratios: 9/1, 1/1, and 1/9, in 3 separate tubes, each containing 0.2 ml BHI broth. The mixed cells were pelleted and resuspended in the residual growth medium. Samples from each tube were spotted onto the surface of a chocolate II agar plate (BBL, Becton-Dickson) and incubated overnight at 37° C. Cells that grew at each spot were scraped from the plate, and resuspended in 0.5 ml BHI broth. The resuspended cells were plated in Nutrient Broth soft agar, onto chocolate agar plates supplemented with 0.3 ug/ml erythromycin and 30 ug/ml nalidixic acid. Drug-resistant colonies appeared after an overnight incubation at 37° C.
Drug-resistant colonies were tested for knockout gene replacement first by Southern blot hybridization to demonstrate that the nanA bearing plasmid had integrated into the S. pneumoniae chromosome. The Southern-blot tests demonstrated disruption of the native chromosomal sequence, and more importantly replacement of the wild-type nanA sequence by pCZA343-nanA. Moreover, neuraminidase enzyme activity was absent in extracts prepared from the exconjugants, as expected following inactivation of nanA.

Claims (1)

We claim:
1. A method for producing a targeted knockout mutation in Streptococcus pneumoniae comprising the steps of:
a. transforming E. coli with a plasmid that carries a S. pneumoniae genomic DNA fragment;
b. conjugating a transformant from step (a) with S. pneumoniae;
c. selecting exconjugants from step (b) by any suitable means; and
d. verifying a knockout mutation by any suitable means.
US08/987,152 1996-12-13 1997-12-08 Method for knockout mutagenesis in Streptococcus pneumoniae Expired - Fee Related US5981281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/987,152 US5981281A (en) 1996-12-13 1997-12-08 Method for knockout mutagenesis in Streptococcus pneumoniae

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3628196P 1996-12-13 1996-12-13
US08/987,152 US5981281A (en) 1996-12-13 1997-12-08 Method for knockout mutagenesis in Streptococcus pneumoniae

Publications (1)

Publication Number Publication Date
US5981281A true US5981281A (en) 1999-11-09

Family

ID=21887710

Family Applications (15)

Application Number Title Priority Date Filing Date
US08/986,963 Expired - Fee Related US5958730A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence FtsY
US08/987,119 Abandoned USH2070H1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence for DNA ligase
US08/987,151 Expired - Fee Related US6162617A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence dnaG
US08/987,146 Expired - Fee Related US6350866B1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence FtsZ
US08/986,769 Expired - Fee Related US6074847A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence HI1146
US08/987,121 Expired - Fee Related US6268175B1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence GCP
US08/987,123 Expired - Fee Related US6136557A (en) 1996-12-13 1997-12-08 Strepococcus pneumoniae gene sequence FtsH
US08/986,967 Abandoned USH2023H1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae sequence GrpE
US08/987,122 Expired - Fee Related US5910580A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence HI1648
US08/987,152 Expired - Fee Related US5981281A (en) 1996-12-13 1997-12-08 Method for knockout mutagenesis in Streptococcus pneumoniae
US08/987,144 Expired - Fee Related US6060282A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence Dpj
US08/986,765 Expired - Fee Related US6071724A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniaegene sequence era
US08/986,768 Expired - Fee Related US6271000B1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence mraY
US08/987,147 Abandoned USH2071H1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene HI0454
US09/198,284 Abandoned USH2019H1 (en) 1996-12-13 1998-11-23 Streptococcus pneumoniae gene sequence HI1648

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US08/986,963 Expired - Fee Related US5958730A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence FtsY
US08/987,119 Abandoned USH2070H1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence for DNA ligase
US08/987,151 Expired - Fee Related US6162617A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence dnaG
US08/987,146 Expired - Fee Related US6350866B1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence FtsZ
US08/986,769 Expired - Fee Related US6074847A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence HI1146
US08/987,121 Expired - Fee Related US6268175B1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence GCP
US08/987,123 Expired - Fee Related US6136557A (en) 1996-12-13 1997-12-08 Strepococcus pneumoniae gene sequence FtsH
US08/986,967 Abandoned USH2023H1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae sequence GrpE
US08/987,122 Expired - Fee Related US5910580A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence HI1648

Family Applications After (5)

Application Number Title Priority Date Filing Date
US08/987,144 Expired - Fee Related US6060282A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence Dpj
US08/986,765 Expired - Fee Related US6071724A (en) 1996-12-13 1997-12-08 Streptococcus pneumoniaegene sequence era
US08/986,768 Expired - Fee Related US6271000B1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene sequence mraY
US08/987,147 Abandoned USH2071H1 (en) 1996-12-13 1997-12-08 Streptococcus pneumoniae gene HI0454
US09/198,284 Abandoned USH2019H1 (en) 1996-12-13 1998-11-23 Streptococcus pneumoniae gene sequence HI1648

Country Status (5)

Country Link
US (15) US5958730A (en)
EP (1) EP0950108A1 (en)
AU (1) AU5793798A (en)
CA (1) CA2274311A1 (en)
WO (1) WO1998026072A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014630A2 (en) * 2003-08-08 2005-02-17 Chiron Srl Streptococcus pneumoniae knockout mutants
US20050170351A1 (en) * 2002-02-20 2005-08-04 Patrick Tan Materials and methods relating to cancer diagnosis

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506385A (en) * 1996-02-20 2000-05-30 スミスクライン・ビーチャム・コーポレイション New ERA
US6165989A (en) * 1996-05-14 2000-12-26 Smithkline Beecham Corporation Era of Streptococcus pneumoniae
US5681694A (en) * 1996-06-18 1997-10-28 Eli Lilly And Company Murd protein method and kit for identification of inhibitors
US5910414A (en) 1996-10-15 1999-06-08 Smithkline Beecham Corporation Topoisomerase I of streptococcus pneumoniae
US5789202A (en) * 1996-10-17 1998-08-04 Eli Lilly And Company DNA encoding a novel penicillin binding protein from streptococcus pneumoniae
US6096518A (en) 1996-10-24 2000-08-01 Smithkline Beecham Corporation DNA encoding SPO/REL polypeptides of streptococcus
CA2269663A1 (en) 1996-10-31 1998-05-07 Human Genome Sciences, Inc. Streptococcus pneumoniae antigens and vaccines
US5821335A (en) * 1996-11-19 1998-10-13 Eli Lilly And Company Biosynthetic gene murg from streptococcus pneumoniae
US6287803B1 (en) * 1996-11-27 2001-09-11 Smithkline Beecham Corporation Polynucleotides encoding a novel era polypeptide
US5948645A (en) * 1996-12-04 1999-09-07 Eli Lilly And Company Biosynthetic gene muri from Streptococcus pneumoniae
US7098023B1 (en) 1997-07-02 2006-08-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US6800744B1 (en) 1997-07-02 2004-10-05 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US5840538A (en) * 1997-08-06 1998-11-24 Smithkline Beecham Corporation Lgt
EP0896061A3 (en) * 1997-08-08 2000-07-26 Smithkline Beecham Corporation RpoA gene from Staphylococcus aureus
EP0896060A3 (en) * 1997-08-08 2000-07-19 Smithkline Beecham Corporation RpoA gene from Staphylococcus aureus
US5929045A (en) * 1997-08-12 1999-07-27 Smithkline Beecham Corporation Recombinant expression of polynucleotides encoding the UDP-N-acetylmuramoylalanine:D-glutamate ligase (MurD) of Streptococcus pneumoniae
US6197300B1 (en) * 1997-08-12 2001-03-06 Smithkline Beecham Corporation ftsZ
US5888770A (en) * 1997-08-26 1999-03-30 Smithkline Beecham Corporation Spoiiie
US6072032A (en) * 1997-08-29 2000-06-06 Smithkline Beecham Corporation FtsY polypeptides from Streptococcus pneumoniae
EP0915161A3 (en) * 1997-10-21 1999-08-25 Smithkline Beecham Corporation DnaG DNA primase of Streptococcus pneumoniae
GB9726586D0 (en) * 1997-12-16 1998-02-11 Microscience Ltd Protein and compositions containing it
AU753971B2 (en) * 1997-12-31 2002-10-31 Millennium Pharmaceuticals, Inc. Essential bacterial genes and their use
GB9808423D0 (en) * 1998-04-22 1998-06-17 Glaxo Group Ltd Bacterial polypeptide family
US6274719B1 (en) * 1998-04-24 2001-08-14 Smithkline Beecham Corporation Gcp
JP2002516078A (en) * 1998-05-28 2002-06-04 スミスクライン・ビーチャム・コーポレイション acpS
US6190881B1 (en) * 1998-06-05 2001-02-20 Smithkline Beecham Corporation Ribonucleotide diphosphate reductase, nrdF, of streptococcus pneumoniae
WO2000001801A1 (en) * 1998-07-02 2000-01-13 Smithkline Beecham Corporation Ftsz multimeric proteins and their uses
US6936252B2 (en) 1998-07-27 2005-08-30 Microbial Technics Limited Streptococcus pneumoniae proteins and nucleic acid molecules
WO2000006738A2 (en) * 1998-07-27 2000-02-10 Microbial Technics Limited NUCLEIC ACIDS AND PROTEINS FROM $i(STREPTOCOCCUS PNEUMONIAE)
EP1790730A3 (en) * 1998-07-27 2007-09-12 Sanofi Pasteur Limited Streptococcus pneumoniae proteins and nucleic acid molecules
US20030134407A1 (en) 1998-07-27 2003-07-17 Le Page Richard William Falla Nucleic acids and proteins from Streptococcus pneumoniae
US6515119B1 (en) * 1998-09-30 2003-02-04 Millennium Pharmaceuticals, Inc. Use of S-ydcB and B-ydcB, essential bacterial genes
US6537774B1 (en) 1998-10-14 2003-03-25 Smithkline Beecham Corporation UPS (undecaprenyl diphosphate synthase
US6110685A (en) * 1998-10-28 2000-08-29 Smithkline Beecham Corporation infB
WO2000025818A1 (en) * 1998-11-04 2000-05-11 Smithkline Beecham Corporation asuE/trmU
US6346395B1 (en) * 1999-01-27 2002-02-12 Smithkline Beecham Corp. Nucleic acids encoding Streptococcus pneumoniae FabG
US6110704A (en) * 1999-01-28 2000-08-29 Smithkline Beecham Corporation 3-ketoacyl-ACP-reductase (FabG) of Staphylococcus aureus
US6346396B1 (en) * 1999-01-29 2002-02-12 Jianzhong Huang MurA
JP2002542821A (en) * 1999-04-30 2002-12-17 ハイブリジェニックス・ソシエテ・アノニム Prokaryotic DNA collection for two-hybrid systems, Helicobacter pylori protein-protein interaction and uses thereof
US6548273B1 (en) * 1999-07-22 2003-04-15 Smithkline Beecham Corporation lacR from Streptococcus pneumoniae
US6168797B1 (en) * 1999-08-18 2001-01-02 Smithkline Beecham Corporation FabF
US6951729B1 (en) 1999-10-27 2005-10-04 Affinium Pharmaceuticals, Inc. High throughput screening method for biological agents affecting fatty acid biosynthesis
US6613553B1 (en) * 2000-02-04 2003-09-02 St. Jude Children's Research Hospital Enoyl reductases and methods of use thereof
GB2364054B (en) * 2000-03-24 2002-05-29 Smithkline Beecham Corp Method of amplifying quinolone-resistance-determining-regions and identifying polymorphic variants thereof
CA2424987A1 (en) * 2000-10-06 2002-04-18 Smithkline Beecham Corporation Methods of agonizing and antagonizing fabk
US7048926B2 (en) 2000-10-06 2006-05-23 Affinium Pharmaceuticals, Inc. Methods of agonizing and antagonizing FabK
US7033795B2 (en) 2000-10-06 2006-04-25 Affinium Pharmaceuticals, Inc. FabK variant
US7056697B2 (en) 2000-10-06 2006-06-06 Affinium Pharmaceuticals, Inc. FabK variant
US6821746B2 (en) 2000-10-06 2004-11-23 Affinium Pharmaceuticals, Inc. Methods of screening for FabK antagonists and agonists
JP2004515251A (en) * 2000-12-19 2004-05-27 ファゲテック,インコーポレイティド Compositions and methods related to the Staphylococcus aureus essential gene and its encoded protein STAAU_R9
EP2311989A1 (en) * 2003-04-15 2011-04-20 Intercell AG S. pneumoniae antigens
US20070149496A1 (en) * 2003-10-31 2007-06-28 Jack Tuszynski Water-soluble compound
WO2013043643A1 (en) * 2011-09-21 2013-03-28 St. Jude Children's Research Hospital Live, attenuated streptococcus pneumoniae strain and vaccine for protection against pneumococcal disease
EP3684922A1 (en) * 2017-07-31 2020-07-29 Enzibeta Biotech Pvt. Ltd. Modified gene sequences encoding choline oxidase and a method for preparing betaine usng the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747281A (en) * 1984-09-28 1998-05-05 Cornell Research Foundation, Inc. System useful for the production of proteins from recombinant DNA in single celled organisms

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762786A (en) * 1984-09-27 1988-08-09 Eli Lilly And Company Vectors and conditions which allow genetic transformation of cephalosporium
US4569794A (en) * 1984-12-05 1986-02-11 Eli Lilly And Company Process for purifying proteins and compounds useful in such process
RU1780542C (en) * 1985-04-22 1992-12-07 Эли Лилли Энд Компани Method for forming recombinant plasmid dna pp20 coding isopenicillin-n-synthetase, method for producing strain cephalosporium acremonium possessing activity of isopenicillin-n-synthetase
US4892819A (en) * 1985-11-25 1990-01-09 Eli Lilly And Company Recombinant DNA expression vectors and DNA compounds that encode isopenicillin N synthetase from penicillium chrysogenum
US4960707A (en) * 1987-08-17 1990-10-02 Associated Universities, Inc. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae
US5070020A (en) * 1988-05-09 1991-12-03 Eli Lilly And Company Recombinant dna expression vectors and dna compounds that encode deacetoxycephalosporin c synthetase
GB9100825D0 (en) * 1991-01-15 1991-02-27 Univ Guelph Pasteurella haemolytica glycoprotease gene and the purified enzyme
IL109410A0 (en) * 1993-04-30 1994-07-31 Ell Lilly & Company Fema gene of staphylococcus epidermidis, fema protein, and vectors and microorganisms comprising the fema gene
US5591839A (en) * 1994-08-18 1997-01-07 Glyko, Inc. Polynucleotides encoding α2-3 neuraminidase
JP3571378B2 (en) * 1994-09-30 2004-09-29 扶桑薬品工業株式会社 Infectious disease diagnostic probe
US5705352A (en) * 1995-02-27 1998-01-06 Eli Lilly And Company Multiple drug resistance gene of Aspergillus fumigatus
US5773214A (en) * 1995-02-27 1998-06-30 Eli Lilly And Company Multiple drug resistance gene of aspergillus flavus
US5691161A (en) * 1996-08-01 1997-11-25 Eli Lilly And Company Peptidoglycan biosynthetic mura protein from Streptococcus pneumoniae
US6197300B1 (en) * 1997-08-12 2001-03-06 Smithkline Beecham Corporation ftsZ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747281A (en) * 1984-09-28 1998-05-05 Cornell Research Foundation, Inc. System useful for the production of proteins from recombinant DNA in single celled organisms

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Claverys et al., Gene 164:123 128 (1995). *
Claverys et al., Gene 164:123-128 (1995).
K. F. Chater and C. J. Bruton. "Mutational cloning in Streptomyces and the isolation of antibiotic production genes." Gene 26(1):67-78 (1983).
K. F. Chater and C. J. Bruton. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene 26(1):67 78 (1983). *
Kolkman et al., J. Bacteriology 178(13):3736 3741 (1996). *
Kolkman et al., J. Bacteriology 178(13):3736-3741 (1996).
Tao et al., Gene 120:105 110 (1992). *
Tao et al., Gene 120:105-110 (1992).

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170351A1 (en) * 2002-02-20 2005-08-04 Patrick Tan Materials and methods relating to cancer diagnosis
WO2005014630A2 (en) * 2003-08-08 2005-02-17 Chiron Srl Streptococcus pneumoniae knockout mutants
WO2005014630A3 (en) * 2003-08-08 2005-07-21 Chiron Srl Streptococcus pneumoniae knockout mutants
US20070184443A1 (en) * 2003-08-08 2007-08-09 Chiron Srl Streptococcus pneumoniae knockout mutants

Also Published As

Publication number Publication date
US6271000B1 (en) 2001-08-07
US6162617A (en) 2000-12-19
US5910580A (en) 1999-06-08
US6268175B1 (en) 2001-07-31
EP0950108A1 (en) 1999-10-20
USH2071H1 (en) 2003-07-01
US6071724A (en) 2000-06-06
USH2019H1 (en) 2002-04-02
WO1998026072A1 (en) 1998-06-18
USH2070H1 (en) 2003-07-01
US5958730A (en) 1999-09-28
US6136557A (en) 2000-10-24
US6074847A (en) 2000-06-13
AU5793798A (en) 1998-07-03
US6060282A (en) 2000-05-09
CA2274311A1 (en) 1998-06-18
USH2023H1 (en) 2002-05-07
US6350866B1 (en) 2002-02-26

Similar Documents

Publication Publication Date Title
US5981281A (en) Method for knockout mutagenesis in Streptococcus pneumoniae
Hoang et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants
Fort et al. Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis
Horiuchi et al. Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate
JP4303597B2 (en) Construction of novel strains containing minimized genomes by Tn5-binding Cre / loxP excision system
Ellwood et al. Deletion of a ribosomal ribonucleic acid operon in Escherichia coli
Dartois et al. Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis
JP2002514434A (en) Cell-free chimera formation of heteroduplex mutant vectors and use in eukaryotes
JPS6143989A (en) Recombined dna plasmid and its production and holding bacteria
AU2019319230B2 (en) Novel mutations that enhance the DNA cleavage activity of acidaminococcus sp. Cpf1
US4626504A (en) DNA transfer vector for gram-negative bacteria
EP0035831B1 (en) Method for making genetically modified microorganisms
Jiang et al. Highly efficient genome editing in Xanthomonas oryzae pv. oryzae through repurposing the endogenous type I‐C CRISPR‐Cas system
Bradley et al. TRNA2Gln Su+ 2 mutants that increase amber suppression
Perwez et al. MobB protein stimulates nicking at the R1162 origin of transfer by increasing the proportion of complexed plasmid DNA
Gregg-Jolly et al. Recovery of DNA from the Acinetobacter calcoaceticus chromosome by gap repair
Slupska et al. Genes involved in the determination of the rate of inversions at short inverted repeats
EP1161551A2 (en) Methods and materials for the rapid and high volume production of a gene knock-out library in an organism
US6391631B1 (en) Bacterial plasmids
Mackenzie et al. DNA repair mutants of Rhodobacter sphaeroides
Tabata et al. Mapping of 61 genes on the refined physical map of the chromosome of Thermus thermophilus HB27 and comparison of genome organization with that of T. thermophilus HB8
Kraiß et al. In vivo transposon mutagenesis in Haemophilus influenzae
CN111548980B (en) Recombinant erythromycin engineering bacterium, and construction method, screening method and application thereof
Vasanthakrishna et al. Characterization of the initiator tRNA gene locus and identification of a strong promoter from Mycobacterium tuberculosis
Saulnier et al. Utilization of IncP-1 plasmids as vectors for transposon mutagenesis in myxobacteria

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELI LILLY AND COMPANY, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BALTZ, RICHARD HENRY;HOSKINS, JO ANN;SOLENBERG, PATRICIA JEAN;AND OTHERS;REEL/FRAME:010040/0231

Effective date: 19980415

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20031109