US3767447A - Electron scattering prevention film and method of manufacturing the same - Google Patents

Electron scattering prevention film and method of manufacturing the same Download PDF

Info

Publication number
US3767447A
US3767447A US3767447DA US3767447A US 3767447 A US3767447 A US 3767447A US 3767447D A US3767447D A US 3767447DA US 3767447 A US3767447 A US 3767447A
Authority
US
United States
Prior art keywords
layer
electron scattering
scattering prevention
electron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
H Mizuno
N Akiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Application granted granted Critical
Publication of US3767447A publication Critical patent/US3767447A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/30Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines
    • H01J29/32Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines with adjacent dots or lines of different luminescent material, e.g. for colour television
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • An electron scattering prevention film in disclosed comprising at least the following three layers: an electrode layer deposited on a phosphor layer; a first electron scattering prevention layer deposited on the electrode layer composed of a first electron scattering prevention material having a smaller atomic number than that of the material constituting the electrode layer; and a second electron scattering prevention layer deposited on the first electron scattering prevention layer composed of a second electron scattering prevention material having a smaller atomic number than that of the material constituting the electrode layer.
  • a bimetal action which occurs between the electrode layer and the first electron scattering prevention layer is cancelled by a bimetal action which occurs between the first electron scattering prevention layer and the second electron scattering prevention layer whereby the electron scattering prevention film is prevented from being distorted to an extent that the electrode layer peels off from the phosphor layer under variation of temperature.
  • This invention relates to an electron scattering and reflecting prevention film and a method of manufacturing the same, and more particularly to a film'for use in color television picture tubes designed to minimize the reflection and scattering of electron beams and to prevent peeling off of a deposited film from a phosphor layer under variation of temperature.
  • electron beams emitted from electron guns are accelerated in the accelerating field of a high volt? age and strike a phosphor surface in' electron beams of high kinetic energy exciting the phosphors to'produce a luminous output.
  • a large number of secondary electrons, reflecting electrons and scattering electrons are generated by the impact of the electron beams of high kinetic energy.
  • the electron scattering prevention film must be of such a thickness that corresponds to the kinetic energy of the striking electrons so that the scattering of electrons will effectively be prevented.
  • phosphor screen voltage of the picture tube is in the order of 20 KV to 20-odd KV in which case the thickness of the electron scattering prevention film should be more than several thousand A.
  • the thicker the electron scattering prevention film the greater is the stress between the material composing the electron scattering prevention layer and the material composing the metal backing layer due to difference in the coefficient of thermal expansion between the two materials. Consequently, the electron scattering prevention layer is more apt to peel off from the metal backing layer because of a bimetal action between the two layers. Owing to such disadvantages, the above described conventional film has not been put to practical use.
  • the applicant proposed a film which is capable of effectively preventing scattering of electrons and which is much less likely to peel off than the conventional films and a method of manufacturing the same, in U.S. Pat. application Ser. No. 1,647 U.S. Pat. No. 3,692,576, filed jam. 9, 1970, entitled Electrons scattering pre? vention film and method of manufacturing the same.
  • the electron scattering prevention film is manufactured by forming a crossed layer of aluminum (Al) and boron carbide (B C) between the metal backing layer of aluminum and the electron scattering prevention layer of boron carbide.
  • This electron scattering prevention film is advantageous in that the electron scattering prevention layer is formed integrally with the metal backing layer through the crossed layer so that the electron scattering prevention layer hardly peels off from the metal backing layer.
  • this proposed electron scattering prevention film is not still free from the problem that the metal backing layer sometimes peels off from the phosphor layer during heating process due to a bimetal action which takes place between the metal backing layer and the electron scattering prevention layer.
  • an intermediate film is first coated on the phosphor layer to make a flat surface and then aluminum is evaporated on this flat surface. The intermediate film is removed later by a baking treatment.
  • adhesion of the metal backing layer produced in the above described manner to the phosphor layer is extremely weak.
  • the metal backing layer easily peels off from the phosphor layer when the bimetal actiontakes place between the metal backing layer and the electron scattering prevention layer as described above. This causes a problem that precision is required in various manufacturing conditions with a resultant increase in the manufacturing cost.
  • Another object of the invention is to provide an electron scattering prevention film and a method of manufacturing the same which film is capable of effectively preventing the scattering of electrons produced by the striking electron beams and in which an electrode layer does not peel off from a phosphor layer under variation of temperature.
  • a further object of the invention is to provide an electron scattering prevention film and a method of manufacturing the same in which an electron scattering prevention layer does not peel off from an electrode layer and the electrode layer does not peel off from a phosphor layer under variation of temperature.
  • a still further object of the invention is to provide an electron scattering prevention film and a method of manufacturing the same which film is particularly useful in a post-acceleration color television picture tube.
  • FIG. 1 is a vertical section of one embodiment of a post-acceleration color television picture tube having an electron scattering prevention film according to the invention
  • FIG. 2 is an enlarged vertical section of a part of the picture tube screen having one embodiment of the electron scattering prevention film according to the invention
  • FIG. 3 is a diagram showing a ratio of composition evaporated film
  • FIG. 4 is a schematic vertical section of one embodiment of an apparatus for manufacturing the electron scattering prevention film according to the invention.
  • FIG. 5 is a perspective view of a heating means for evaporating materials
  • FIG. 6 is an explanatory diagram showing each layer of the evaporated film as a model
  • FIG. 7 is a diagram for illustrating the state of each layer shown in FIG. 6 under a high temperature
  • FIG. 8 is a graph showing the relationship between the relative thickness of the metal backing layer and the electron scattering prevention layer and the range in which the peeling off of the layer can be prevented.
  • FIG. 9 is an enlarged vertical section of a part of a picture tube screen having another embodiment of the electron scattering prevention film according to the invention.
  • a post-acceleration type color television picture tube 10 generally comprises a glass bulb l1 and is externally provided with a deflection yoke 12. Three electron guns provided on a connecting base 14 are sealed within neck 13 of the funnel.
  • the bulb 11 generally comprises the funnel neck 13, a funnel l6 and a face plate 17.
  • On the inner surface of the face plate 17 are disposed a phosphor layer 18 consisting of three color dot phosphors, i.e., of red, green and blue and an electron scattering prevention film 19 later described and formed integrally with a metal backing in accordance with the present invention.
  • a shadow mask 20 which has apertures larger in diameter than each dot of phosphors of the phosphor layer 18 formed in correspondence to respective dot trios is provided spaced apart from respective layer 18 and film l9 and in parallel therewith.
  • a first electric power source E is connected to a metal backing layer and a transparent conducting electrode such as a nesa glass.
  • a second power source E of 8.8 KV is connected to a shadow mask 20 and a third power source E of 9.6 KV is connected to an anode 21 provided on the inner walls of the funnel 16.
  • the power voltages E to E of the above power sources may preferably have the mutual relationships of E E E so that there may be formed an intense post-acceleration electric field between the shadow mask 20 and the phosphor layer 18 with respect to the electron beams 22 emitted from the electron guns 15.
  • a weak negative acceleration electric field which permits a major portion of the secondary electron 23 emitted from the shadow mask 20 when the electron beam 22 strikes at the shadow mask 20 to be absorbed in the anode 21.
  • Some of the secondary electrons generated from the surroundings of the apertures of the shadow mask 20 are drawn to the post-acceleration electric field between the shadow mask 20 and the phosphor layer 18, and enter the acceleration electric field through the aperturs, where they are accelerated and strike the phosphor layer 18 partly causing deterioration of contrast.
  • the initial speed of the secondary electrons is about ten-odd volts when they are emitted from the shadow mask 20
  • the kinetic energy thereof is almost equivalent to the energy of the post-acceleration voltage when the secondary electrons strike at the phosphor layer 18 and said kinetic energy is smaller than that of the electron beams 22 striking the phosphor layer 18 through the shadow mask 20.
  • Thickness of the film coated on the phosphor layer 18 which may be enough to prevent the deterioration of contrast by the secondary electrons above described is about 5,000 A. in the conversion value of aluminum, where for instance the voltage of the phosphor layer is 20 KV and that of the shadow mask is 9 KV, and about 8,000 A. where the voltage of the phosphor layer is 25 KV and that of the shadow mask is 1 l KV.
  • the electron beams of high kinetic energy passing through the shadow mask 20 and striking the phosphor emit a large number of secondary electrons and scattering electrons during striking the screen. Due to small initial speed these secondary electrons will neither excite nor illuminate the phosphor.
  • the scattering electrons however are the electrons tending to disperse in diverse directions with nearly the same energy as of the incident electron beams.
  • electrons 24 emitted at angles larger than a critical angle (the angle is defined by the voltages of the phosphor layer and the shadow mask and the distance between the phosphor layer and the shadow mask) will draw a curved line in the post-acceleration electric field again to strike the phosphor layer almost losing no energy.
  • an electron scattering prevention film wherein the aforementioned secondary electrons are sufficiently absorbed, scattering electrons by the primary electron beams are not produced and an electrode layer such as a metal backing layer does not peel off from the phosphor layer under variation of temperature.
  • FIG. 2 shows a part of the electron scattering prevention film according to the invention in an enlarged vertical section.
  • a metal backing layer 30 is formed by evaporating aluminum (Al) on the phosphor layer 18 by means of an evaporating means later described.
  • the metal backing layer 30 is continuously formed a crossed layer 31 which is composed of boron carbide (3 C) used as a material having a small atomic number for preventing the scattering of electrons and aluminum in a mixed state. Then, a first electron scattering prevention layer 32 composed of boron carbide B C is formed continuously with the crossed layer 31. Further, a second electron scattering prevention layer 33 composed of lithium fluoride (LiF) having also a small atomic number is formed on the first electron scattering prevention layer 31. Thus, an electron scattering prevention film 19 which is integral with the metal backinglayer 30 is constituted.
  • the material composing the second electron scattering prevention fi1m 33 (in the present embodiment, lithium fluoride UP) is selected from among materials each having a different coefficient of thermal expansion and a smaller atomic number relative to the material composing the first electron scattering prevention layer 32 (in the present embodiment, boron carbide B C). It is to be understood that, if a reflecting electron emission ratio is in proportion to the atomic number, the atomic number required for obtaining a contrast ratio of 20 should be less than one half of the atomic number of aluminum (13). Besides, the material must-be of characteristics which meet the various manufacturing conditions for ratio of boron-carbide varies from 0 percent to 100 per- 7 cent.
  • the metal backing layer 30, the boron carbide layer 32 and the lithium fluoride layer 33 are treated in the form of a model as shown in FIG. 6. It is assumed that the crossed layer 31. is distributed to the metal backing layer 30 and the boron carbide layer 32.
  • the thickness of each of the layers 30, 32 and 33 is respectively represented as t t and r
  • the length of these layers is represented as 1,, and the width as s.
  • the layers are stable in terms of dynamics, i.e., energy is minimum at a certain temperature 0, to 0 the layers 30, 32 and 33 are distorted from the state as shown in FIG. 6 to the state as shown in FIG. 7 in which the layers are bent with a radius of curvature R and an angle 95, a state where energy stored in these layers is reduced to the minimum.
  • Length of the deposited film under the temperature Length if each of the layers 30, 32 and 33 existed alone under the temperature 0 i.e., if the layers were not superposed one upon another l,,, l 1
  • R VS:PW. PT/PS VQ' (17) fill/8R [Ka ⁇ (R r../2 z 20 Ki
  • the value of R obtained from the equation 17) is the 0/ 0 b) CK c/ 5 e 0 radius of curvature of the deposited film when the total (9) change U of the internal energy of the deposited film is at the minimum.
  • the deposited film can be so constructed that it will not be. distorted under variation of temperature by determining thickness of each layer in conjunction with the coefficient of thermal expansion and Youngs modulus of the material composing each layer.
  • the thickness of each layer mustsatisfy the, equation (20).
  • the graph shown in FIGS indicates relative thickness of the three layers in a state wherein the deposited film consisting of the three layers remains undistorted under variation of temperature, calculating the values by applying the constants.
  • a curve I shown by a full line in FIG.8 indicates a relationship between the thickness of the lithium fluoride layer 33 and the thickness of the boron carbide layer 32 respectively normalized by the thick: ness of the aluminum layer 30 in the state wherein the temperature. Accordingly, if therelative thicknesses of the layers 30, 32 and 33 are so selected as to satisfy the relationship indicated by the curve I shown by full line, stresses existing between each layer are cancelled with each other and the bimetal action which takes place between the layer 30 and the layer 32 is cancelled by the bimetal action which takes place between the layer 32 i deposited film remains undistorted under variation of and the layer 33 whereby no distortion occurs in the deposited film.
  • the shadowed portion 1] shown by oblique lines defined by dotted lines indicates the relative thickness between the layers 30, 32 and 33 at which there occurs a bending force in the deposited film which force is of a magnitude which is insufficient to cause the deposited film to peel of from the phosphor layer. Accordingly, the relationship between the thicknesses of the layers 30, 32 and 33 should be chosen within the shadowed portion II, most preferably on the curve I.
  • the deposited film is composed of three layers (i.e., the layers 30, 32 and 33) including the aluminum metal backing layer 30 .but excluding the crossed layer 31. If the deposited film is to be made thicker (for example, approximately in); the number of layers may be increased. Another embodiment of the construction of layers is shown in FIGS.
  • a boron carbide B,C layer 40 having a small coefficient of thermal expansion is superposed on the lithium fluoride LiF layer 33 constructed in the above described manner. Further, a lithium fluoride LiF layer 41 having a greater coefficient of thermal expansion is formed thereon.
  • the deposited film can be so constructed as not to produce bending which will cause the deposited film to peel off from the phosphor layer.
  • a heating device 53 consists, as shown in an enlarged view in FIGS, of a crucible 55 covered by an electrode 54 and a cathode filament 56 surrounding the crucible 55.
  • a press formed boron carbide (8 C, melting point 2450C) 57 which has been sintered in argon gas under a temperature of l300C is placed in the crucible 55.
  • a piece of solid aluminum (Al, melting point 660C) 58 (for example mg) is placed on top of the boron carbide 57.
  • the distance between the crucible 55 and the boat 62 is too great, the thickness of the film will become uneven whereas if the distance is too small the crucible 55 will be shaded by the boat 62. Accordingly, the distance should be properly selected. In the present embodiment, the distance is selected at 8 cm.
  • the face plate 17 having a phosphor layer is supported by a support 51 provided in the bell jar 50.
  • the support 51 is spaced away from the crucible 55 and the boat 62 by about 20 cm to 30 cm.
  • the leak valves 61 and 64 are closed.
  • a rotary pump 65 is started in its operation and a valve 66 is opened whereby the bell jar 50 is preliminarily evacuated.
  • the degree of the preliminary evacuation is checked by a Geissler tube 67 and, when the degree of vacuum has reached approximately 10 mm Hg, the valve 66 is changed over to a diffusion pump 68.
  • a main valve 69 is opened and the degree of vacuum in the bell jar 50 is increased to 2 X 10' mm Hg by the diffusion pump 68. This degree of vacuum is checked by a gauge 70.
  • evaporation commences.
  • the heater 56 is heated with voltage V of a power source 72 being set at 7V and with electric current A, flowing through an ammeter 75 being set at 80A.
  • Currents of thermions emitted from the heater 56 are bent by an electric field which is formed by the electrode 54 when voltage V of a power source 71 is made SKV and electric current A, flowing through an ammeter 74 is made 50mA.
  • the bent currents of thermions concentrate upon the materials 57 and 58, striking and heating them.
  • a shutter 59 is closed and the materials 57 and 58 are pre-heated for 2 to 3 minutes. By this pre-heating, gasses contained in the materials 57 and 58 escape therefrom. Aluminum 58 melts and a part thereof penetrates into boron carbide 57 to from a crossed part of the two materials. After pre-heating, the shutter 59 is opened and the voltage of the power source 71 is gradually increased from KV to 8 KV during about 5 minutes. Then, aluminum 58 which is of a lower melting point first evaporates on the phosphor layer of the face plate 17, forming the aforementioned metal backing layer 30 with a thickness of 1500A.
  • the aforementioned 8 KV voltage is maintained for a further 5 minutes.
  • the mixed part of the two materials then evaporates to form the crossed layer 31 in which aluminum and boron carbide are mixed together with the above described composition ratio gradient.
  • the crossed layer 31 is continuously formed without having a definite boundary between the layer 31 and the metal backing layer 30 with a thickness of 500A.
  • the present invention has been described with reference to a case in which the invention is applied to a post-acceleration color television picture tube.
  • the invention is not limited to this but it is applicable to electron beam devices in which scattering of electrons caused by striking electron beams should be held to the minimum, particularly general cathode-ray tubes.
  • various modifications and variations of the invention will be apparent to those skilled in the art without departing from the scope of which is not forth in the appended claims.
  • An electron scattering-prevention film deposited on a phosphor layer for an electron beam device comprising a metallic electrode layer which is penetrable by primary electron beams and deposited on a phosphor layer, first electron scattering-prevention layer deposited on the metallic electrode layer, said first electron scattering-prevention layer being of a first compound of elements having a first atomic number less than the atomic number of the metal of the electrode layer, and a second electron scatteringprevention layer deposited on said first electron scattering-prevention layer, said second electron scattering-prevention layer being of a second compound of elements having a second atomic number less than the atomic number of the metal of the electrode layer, the first and second compounds being different from each other in atomic number said metallic electrode layer and said first electron scattering-prevention layer having therebetween a crossed layer which has a continuously varying composition from said first electron scattering-prevention layer to said metallic electrode layer ranging from zero to percent of said metal and from 100 to 0 percent of said first compound, respective thicknesses of the
  • tb tb lta', t'c tc/ta; ta, lb and tc are thicknesses respectively of the metallic electrode layer, the first electron scattering-prevention layer; aa, ab and ac are coefficients of thermal expansion, and Ea, Eb and Ec are Youngs moduluses respectively of the metal of 14 the first compound, and a fourth electron scatteringprevention layer deposited on said third electron scattering-prevention layer, said fourth electron scattering-prevention layer being of the same compound as the second compound.

Abstract

An electron scattering prevention film in disclosed comprising at least the following three layers: an electrode layer deposited on a phosphor layer; a first electron scattering prevention layer deposited on the electrode layer composed of a first electron scattering prevention material having a smaller atomic number than that of the material constituting the electrode layer; and a second electron scattering prevention layer deposited on the first electron scattering prevention layer composed of a second electron scattering prevention material having a smaller atomic number than that of the material constituting the electrode layer. A bimetal action which occurs between the electrode layer and the first electron scattering prevention layer is cancelled by a bimetal action which occurs between the first electron scattering prevention layer and the second electron scattering prevention layer whereby the electron scattering prevention film is prevented from being distorted to an extent that the electrode layer peels off from the phosphor layer under variation of temperature.

Description

United States Patent Mizuno et a1.
[451 Oct. 23, 1973 Inventors: IIideaki Mizuno, Tokyo; Naoki Akiyama, Kanagawa, both of Japan [73] Victor Company 01 Japan, Ltd.,
Kanagawa-ken, Japan Filed: Apr. 16, 1971 Appl. No.: 134,653
' Assignee:
[30] Foreign Application Priority Data Apr. 17, 1970 Japan 45/32837 References Cited UNITED STATES PATENTS 3/1959 Alvarez, 313192 PD X 6/1970 Letter 7/1969 Letter,
Primary ExaminerAlfred L. Leavitt Assistant Examiner-Caleb Weston Attorney-Holman & Stern [57] ABSTRACT An electron scattering prevention film in disclosed comprising at least the following three layers: an electrode layer deposited on a phosphor layer; a first electron scattering prevention layer deposited on the electrode layer composed of a first electron scattering prevention material having a smaller atomic number than that of the material constituting the electrode layer; and a second electron scattering prevention layer deposited on the first electron scattering prevention layer composed of a second electron scattering prevention material having a smaller atomic number than that of the material constituting the electrode layer. A bimetal action which occurs between the electrode layer and the first electron scattering prevention layer is cancelled by a bimetal action which occurs between the first electron scattering prevention layer and the second electron scattering prevention layer whereby the electron scattering prevention film is prevented from being distorted to an extent that the electrode layer peels off from the phosphor layer under variation of temperature. I
4 Claims, 9 Drawing Figures 2 1 2 13 g l a 100 I; 1 1'! Q 1 l 1 Q. l 1 E i l i U 50 I B46 LL'F l i i O (/5 01 i (2a 000),, THICKNESS I i I I (A) METAL BACK/N6 CROSSEDLAYER ist .scA TTER/Nb 2M1 SCAfl'ER/M? LAYER PRE VENT/0N LAYER PREVENT/0N LAYER PAIENIEDnmza ms 3,767,447
sum 3 or 4 FIG. 6
l ELECTRON SCATTERING PREVENTION FILM AND METHOD OF MANUFACTURING THE SAME BACKGROUND OF THE INVENTION This invention relates to an electron scattering and reflecting prevention film and a method of manufacturing the same, and more particularly to a film'for use in color television picture tubes designed to minimize the reflection and scattering of electron beams and to prevent peeling off of a deposited film from a phosphor layer under variation of temperature. j Generally, in a post-acceleration color television picture tube, electron beams emitted from electron guns are accelerated in the accelerating field of a high volt? age and strike a phosphor surface in' electron beams of high kinetic energy exciting the phosphors to'produce a luminous output. At the same time, a large number of secondary electrons, reflecting electrons and scattering electrons are generated by the impact of the electron beams of high kinetic energy.
'These secondary electrons have no high kinetic energy as do the reflecting electrons. The secondary electrons, therefore, can be removed by utilizing the energy difference between the injected electrons and the secondary electrons.The scattering electrons, however, are accelerated by the post-accelerating field and strike the phosphor surface again with high kinetic energy of the same intensity as that of the incident electrons. As a result, halos take place around luminous points for the regular incident electrons. This deteriorates contrast of reproduced images and causes adverse color contamination. 1
In order to remove the phenomena, it has been proposed, as disclosed in U.S. Pat. No. 2,878,41 l, to provide an electron scattering prevention layer by sinterphosphor surface is reduced. However, this conventional electron scattering prevention layer made of a single thin layer is not capable of sufficiently preventing the scattering of electrons since theelectrons are scattered at the boundary between the electron scattering prevention layer and the metal backing layer. This layer is also incapable of sufficiently absorbing the secondary electrons emitted from the shadow mask and has a further disadvantage that the single layer is apt to peel off during heating process in the manufacturing of the color television picture tube which is usually conducted under temperature of approximately 430C and accordingly the manufacture is very difficult.
Furthermore, there is a tendency that the layer superposed upon the phosphor layer peels off more readily as the thickness of the superposed layer increases. In the meanwhile, the electron scattering prevention film must be of such a thickness that corresponds to the kinetic energy of the striking electrons so that the scattering of electrons will effectively be prevented. For example, phosphor screen voltage of the picture tube is in the order of 20 KV to 20-odd KV in which case the thickness of the electron scattering prevention film should be more than several thousand A. However, the thicker the electron scattering prevention film, the greater is the stress between the material composing the electron scattering prevention layer and the material composing the metal backing layer due to difference in the coefficient of thermal expansion between the two materials. Consequently, the electron scattering prevention layer is more apt to peel off from the metal backing layer because of a bimetal action between the two layers. Owing to such disadvantages, the above described conventional film has not been put to practical use.
With a view to eliminating such disadvantages, the applicant proposed a film which is capable of effectively preventing scattering of electrons and which is much less likely to peel off than the conventional films and a method of manufacturing the same, in U.S. Pat. application Ser. No. 1,647 U.S. Pat. No. 3,692,576, filed jam. 9, 1970, entitled Electrons scattering pre? vention film and method of manufacturing the same. According to this proposed method, the electron scattering prevention film is manufactured by forming a crossed layer of aluminum (Al) and boron carbide (B C) between the metal backing layer of aluminum and the electron scattering prevention layer of boron carbide. This electron scattering prevention film is advantageous in that the electron scattering prevention layer is formed integrally with the metal backing layer through the crossed layer so that the electron scattering prevention layer hardly peels off from the metal backing layer.
However, this proposed electron scattering prevention film is not still free from the problem that the metal backing layer sometimes peels off from the phosphor layer during heating process due to a bimetal action which takes place between the metal backing layer and the electron scattering prevention layer. Generally, there is an innumerable number of projections and depressions on the surface of the phosphor layer and, if aluminum is evaporated directly upon the surface of the phosphor layer, the phosphor layer side of the aluminum thin film formed as a metal backing layer cannot be made as a mirror surface. Hence, in forming the metal backing layer on the phosphor layer, an intermediate film is first coated on the phosphor layer to make a flat surface and then aluminum is evaporated on this flat surface. The intermediate film is removed later by a baking treatment. Accordingly, adhesion of the metal backing layer produced in the above described manner to the phosphor layer is extremely weak. As a result, the metal backing layer easily peels off from the phosphor layer when the bimetal actiontakes place between the metal backing layer and the electron scattering prevention layer as described above. This causes a problem that precision is required in various manufacturing conditions with a resultant increase in the manufacturing cost.
SUMMARY OF THE INVENTION It is, therefore, a general object of the present invention to provide a novel and useful electron scattering prevention film and a method of manufacturing the same eliminating the aforementioned disadvantages.
Another object of the invention is to provide an electron scattering prevention film and a method of manufacturing the same which film is capable of effectively preventing the scattering of electrons produced by the striking electron beams and in which an electrode layer does not peel off from a phosphor layer under variation of temperature.
A further object of the invention is to provide an electron scattering prevention film and a method of manufacturing the same in which an electron scattering prevention layer does not peel off from an electrode layer and the electrode layer does not peel off from a phosphor layer under variation of temperature.
A still further object of the invention is to provide an electron scattering prevention film and a method of manufacturing the same which film is particularly useful in a post-acceleration color television picture tube.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects and features of the invention will become apparent from the description made hereinbelow with reference to the accompanying drawings, in
which:
FIG. 1 is a vertical section of one embodiment of a post-acceleration color television picture tube having an electron scattering prevention film according to the invention; I
FIG. 2 is an enlarged vertical section of a part of the picture tube screen having one embodiment of the electron scattering prevention film according to the invention;
FIG. 3 is a diagram showing a ratio of composition evaporated film;
FIG. 4 is a schematic vertical section of one embodiment of an apparatus for manufacturing the electron scattering prevention film according to the invention;
FIG. 5 is a perspective view of a heating means for evaporating materials;
FIG. 6 is an explanatory diagram showing each layer of the evaporated film as a model;
FIG. 7 is a diagram for illustrating the state of each layer shown in FIG. 6 under a high temperature;
FIG. 8 is a graph showing the relationship between the relative thickness of the metal backing layer and the electron scattering prevention layer and the range in which the peeling off of the layer can be prevented; and
FIG. 9 is an enlarged vertical section of a part of a picture tube screen having another embodiment of the electron scattering prevention film according to the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS First, one embodiment of a post-acceleration color television picture tube having the electron scattering prevention film according to the invention will be illustrated with reference to FIG. 1.
A post-acceleration type color television picture tube 10 generally comprises a glass bulb l1 and is externally provided with a deflection yoke 12. Three electron guns provided on a connecting base 14 are sealed within neck 13 of the funnel. The bulb 11 generally comprises the funnel neck 13, a funnel l6 and a face plate 17. On the inner surface of the face plate 17 are disposed a phosphor layer 18 consisting of three color dot phosphors, i.e., of red, green and blue and an electron scattering prevention film 19 later described and formed integrally with a metal backing in accordance with the present invention. A shadow mask 20 which has apertures larger in diameter than each dot of phosphors of the phosphor layer 18 formed in correspondence to respective dot trios is provided spaced apart from respective layer 18 and film l9 and in parallel therewith.
According to one aspect of the present invention, a first electric power source E is connected to a metal backing layer and a transparent conducting electrode such as a nesa glass. A second power source E of 8.8 KV is connected to a shadow mask 20 and a third power source E of 9.6 KV is connected to an anode 21 provided on the inner walls of the funnel 16. The power voltages E to E of the above power sources may preferably have the mutual relationships of E E E so that there may be formed an intense post-acceleration electric field between the shadow mask 20 and the phosphor layer 18 with respect to the electron beams 22 emitted from the electron guns 15. Between the shadow mask 20 and the anode 21 is formed a weak negative acceleration electric field, which permits a major portion of the secondary electron 23 emitted from the shadow mask 20 when the electron beam 22 strikes at the shadow mask 20 to be absorbed in the anode 21.
Some of the secondary electrons generated from the surroundings of the apertures of the shadow mask 20 are drawn to the post-acceleration electric field between the shadow mask 20 and the phosphor layer 18, and enter the acceleration electric field through the aperturs, where they are accelerated and strike the phosphor layer 18 partly causing deterioration of contrast. As the initial speed of the secondary electrons is about ten-odd volts when they are emitted from the shadow mask 20, the kinetic energy thereof is almost equivalent to the energy of the post-acceleration voltage when the secondary electrons strike at the phosphor layer 18 and said kinetic energy is smaller than that of the electron beams 22 striking the phosphor layer 18 through the shadow mask 20. By preferred selection of thicknesses of the metal backing layer evaporated on the phosphor layer 18 and the scattering prevention film it is possible to allow the primary electron beams 22 only to reach the phosphor screen 18 for illumination.
Thickness of the film coated on the phosphor layer 18 which may be enough to prevent the deterioration of contrast by the secondary electrons above described is about 5,000 A. in the conversion value of aluminum, where for instance the voltage of the phosphor layer is 20 KV and that of the shadow mask is 9 KV, and about 8,000 A. where the voltage of the phosphor layer is 25 KV and that of the shadow mask is 1 l KV.
The electron beams of high kinetic energy passing through the shadow mask 20 and striking the phosphor emit a large number of secondary electrons and scattering electrons during striking the screen. Due to small initial speed these secondary electrons will neither excite nor illuminate the phosphor. The scattering electrons however are the electrons tending to disperse in diverse directions with nearly the same energy as of the incident electron beams. Hence, among the scattering electrons, electrons 24 emitted at angles larger than a critical angle (the angle is defined by the voltages of the phosphor layer and the shadow mask and the distance between the phosphor layer and the shadow mask) will draw a curved line in the post-acceleration electric field again to strike the phosphor layer almost losing no energy. As they do this, they cause halos surrounding the luminous point due to striking of normal electron beams. In consequence, the contrast of the image deteriorates and the color contamination takes place. As the scattering electrons 24 have nearly same energy as the primary electron beams, the contrast and the color contamination can not be freed from the influence of said scattering electrons only by coating a thicker layer or film on the phosphor layer. This has been a major factor which has obstructed the practical use of the post-accleration color television tubes.
According to the present invention, an electron scattering prevention film is provided wherein the aforementioned secondary electrons are sufficiently absorbed, scattering electrons by the primary electron beams are not produced and an electrode layer such as a metal backing layer does not peel off from the phosphor layer under variation of temperature.
7 I FIG. 2 shows a part of the electron scattering prevention film according to the invention in an enlarged vertical section. A metal backing layer 30 is formed by evaporating aluminum (Al) on the phosphor layer 18 by means of an evaporating means later described. On
I the metal backing layer 30 is continuously formed a crossed layer 31 which is composed of boron carbide (3 C) used as a material having a small atomic number for preventing the scattering of electrons and aluminum in a mixed state. Then, a first electron scattering prevention layer 32 composed of boron carbide B C is formed continuously with the crossed layer 31. Further, a second electron scattering prevention layer 33 composed of lithium fluoride (LiF) having also a small atomic number is formed on the first electron scattering prevention layer 31. Thus, an electron scattering prevention film 19 which is integral with the metal backinglayer 30 is constituted. The material composing the second electron scattering prevention fi1m 33 (in the present embodiment, lithium fluoride UP) is selected from among materials each having a different coefficient of thermal expansion and a smaller atomic number relative to the material composing the first electron scattering prevention layer 32 (in the present embodiment, boron carbide B C). It is to be understood that, if a reflecting electron emission ratio is in proportion to the atomic number, the atomic number required for obtaining a contrast ratio of 20 should be less than one half of the atomic number of aluminum (13). Besides, the material must-be of characteristics which meet the various manufacturing conditions for ratio of boron-carbide varies from 0 percent to 100 per- 7 cent. By forming the crossed layer 31 in the foregoing manner, possibility of undesired production of pin holes in the boron carbide layer 32 is eliminated. Accordingly, such an accident that the aluminum layer becomes transparent due to reaction of lithium fluoride UP and aluminum A] through these pin holes can be avoided.
Next, the reason why the electron scattering prevention film 119 and the metal backing layer 30 having the foregoing construction are prevented from being distorted under variation of temperature to the extent that they peel off from the phosphor layer 18 will be explained. For simplicity, the metal backing layer 30, the boron carbide layer 32 and the lithium fluoride layer 33 are treated in the form of a model as shown in FIG. 6. It is assumed that the crossed layer 31. is distributed to the metal backing layer 30 and the boron carbide layer 32. The thickness of each of the layers 30, 32 and 33 is respectively represented as t t and r The length of these layers is represented as 1,, and the width as s. It is assumed that the layers are stable in terms of dynamics, i.e., energy is minimum at a certain temperature 0, to 0 the layers 30, 32 and 33 are distorted from the state as shown in FIG. 6 to the state as shown in FIG. 7 in which the layers are bent with a radius of curvature R and an angle 95, a state where energy stored in these layers is reduced to the minimum.
First the radius of curvature R is obtained and then conditions in which the radius of curvature R becomes infinite i.e., corresponding to the condition that the deposited film composed of the layers 30, 32 and 33 is not distorted, are obtained. Each constant to be used in the equation described later is represented as follows:
Initial temperature in the variation of temperature Final temperature in the variation of temperature Magnitude of the variation of temperature Coefficient of thermal expansion of the materials respectively composing the layers 30, 32 and 33 aa,ab,ac respectively The suffixes a, b and c correspond respectively to the layers 30, 32 and 33. The same is the case with suffixes used for each following constant.
Thickness of each of the layers 30, 32 and 33 Youngs modulus of composite material of the layers 30, 32 and 33 E E E Spring constant of each composite material of the layers 30, 32 and 33 K K,,, K,.
Length of the deposited film under the temperature Length if each of the layers 30, 32 and 33 existed alone under the temperature 0 i.e., if the layers were not superposed one upon another l,,, l 1
Average length of each of the layers 30, 32 and 33 at its center of thickness under the temperature 6 L,,, L,,, L,
Radius of curvature and angle of the bend of the deposited film under the temperature 0 R and First, the average lengths L L, and L of the respective layers 30, 32 and 33 at their center of thickness under the temperature 0 are respectively expressed by the following equations:
L (R+ t /2) 14 Again, lengths I I and l of the respective layers 30, 32 and 33 under the temperature 0, if each of the layers existed alone are expressed by the equations;
I l,,(l a A9) 2.3 From the equation (9),
. 4) O 1| Further, from the relationship existing between spring constants and Youngs modulus the following equa- Or, tions are obtained; K, {(R+ t /2 r,, t I K, {(R !,/2 t K,,=t,,/l,,sEa... 3-1 0 c +'c/ c Thus, two solutions (I l) and 12) are obtained. If the Kb 8 Eb (3'2) equation (I l);= O is adopted, the following equation will result from the equation Kc 6/10 8 EC (3-3) (K,,(R+ ,,/2 1,)1, K, R+ 1,,/2 1, 1, Kc(R t /2 l 0 10 Next, the change of internal energy in the respective c C} a) layers 30, 32 and 33 accompanying the change of temperature from 0 to 6 can be considered as two separate changes, namely a change due to extension of the deposited film and a change due to bending thereof. The changes of energy due to extension are expressed However, since each constant of any actually available material is positive, it is apparent that the equation (10a) cannot hold by using an actually available material. Accordingly, the result of the equation (1 l 0 cannot be adopted and the result which can be adopted and the changes of energy due to bending are expressed lion/ ier, if is sought by using the equation (l0),
2 K 2 2 w w n 2 o e) -i-Kb(R+- -+te) +Ke(R+- by the equations; If the equation l 3) is equal to the equation 14), the U l/24K t 5 1 radius of curvature R of the deposited film when the total change U of the internal energy of the deposited U l/24K If 5-2 film is minimum can be obtained. For simplicity of calculation, the following equations will be used:
U l/24K qb t 5-3 P K l K l K l (IS-l) The total change U of energy is obtainable by summing Q K K, K (15-2) the foregoing equations (4-1 (4-2), (4-3), (5 l 40 (5-2) and (S-3) and can be expressed by the equation; V= K, l u /2 t 15-3 Conditions under which the total change U of internal energy of the deposited film relative to the change S /g in tc) /g u /2 of temperature of the deposited film is at the minimum can be obtained by the equations; Ka( 2 [b y u z KcQC/g) l 0 From the equations (l3), (l4) and (15),
(8) From the equation (16), R is obtained by the equation;
From the equation (7), R=VS:PW. PT/PS VQ' (17) fill/8R [Ka{(R r../2 z 20 Ki The value of R obtained from the equation 17) is the 0/ 0 b) CK c/ 5 e 0 radius of curvature of the deposited film when the total (9) change U of the internal energy of the deposited film is at the minimum.
If a condition under which the radius of curvature R becomes infinite is sought, the denominator of the equation (17) must be 0. Accordingly, this condition is In order that U is held at the minimu, both equations The equation (18) can be arranged using the original (9) and (10) must hold at the same time. symbols and the following equation can be obtained;
deposited on a phosphor screen, .the deposited film can be so constructed that it will not be. distorted under variation of temperature by determining thickness of each layer in conjunction with the coefficient of thermal expansion and Youngs modulus of the material composing each layer.
Physical constants of each material used in the embodiment having the above described construction are shown in the following table;
If the deposited film consisting of the three layers 30, 32 and 33 composed respectively of Al, 3 C and UP is to remain undistorted under variation of temperature, the thickness of each layer mustsatisfy the, equation (20). The graph shown in FIGS indicates relative thickness of the three layers in a state wherein the deposited film consisting of the three layers remains undistorted under variation of temperature, calculating the values by applying the constants. of each material indicated in the above table to the equation (20) and taking the thickness of the aluminum layer 30 as a standard which is made one l In FIGL8, t (=t lt i.e., the thickness of the lithium fluoride layer 33 normalized by the thickness t of the aluminum metal backing layer 30 is indicated on the abscissa whereas t (=t,,/t,,),i.e., the thickness of the boron carbide layer 32 normalized by the thickness t of the aluminum metal backing layer 30 is indicated on the ordinate. A curve I shown by a full line in FIG.8 indicates a relationship between the thickness of the lithium fluoride layer 33 and the thickness of the boron carbide layer 32 respectively normalized by the thick: ness of the aluminum layer 30 in the state wherein the temperature. Accordingly, if therelative thicknesses of the layers 30, 32 and 33 are so selected as to satisfy the relationship indicated by the curve I shown by full line, stresses existing between each layer are cancelled with each other and the bimetal action which takes place between the layer 30 and the layer 32 is cancelled by the bimetal action which takes place between the layer 32 i deposited film remains undistorted under variation of and the layer 33 whereby no distortion occurs in the deposited film.
A slight bending which may occur in the deposited film will not cause the deposited film to peel off from the phosphor layer by adhesion between the deposited film and the phosphor layer if the degree of bending is small. In FIG.8, the shadowed portion 1] shown by oblique lines defined by dotted lines indicates the relative thickness between the layers 30, 32 and 33 at which there occurs a bending force in the deposited film which force is of a magnitude which is insufficient to cause the deposited film to peel of from the phosphor layer. Accordingly, the relationship between the thicknesses of the layers 30, 32 and 33 should be chosen within the shadowed portion II, most preferably on the curve I.
Specific numerical examples of preferable thickness of each layer will be given hereinbelow.
Examples:
l 2 3 4 Thickness Whole deposited film 5500A. 5000A. 6500A. 3000A. Layer 30 7 (Aluminum) 1500 1200 I700 I000 Layer 3] (Crossed layer) 500 500 800 600 Layer 32 (Boron carbide) 2500 2500 2500 900 Layer 33 (Lithium I000 800 I500 500 Fluoride) In the foregoing embodiment, the deposited film is composed of three layers (i.e., the layers 30, 32 and 33) including the aluminum metal backing layer 30 .but excluding the crossed layer 31. If the deposited film is to be made thicker (for example, approximately in); the number of layers may be increased. Another embodiment of the construction of layers is shown in FIGS. In this embodiment, a boron carbide B,C layer 40 having a small coefficient of thermal expansion is superposed on the lithium fluoride LiF layer 33 constructed in the above described manner. Further, a lithium fluoride LiF layer 41 having a greater coefficient of thermal expansion is formed thereon. In this embodiment also, if "the thicknesses of the layers 30 to 33 and 40, 41-are properly selected based on the relationship as described above, the deposited film can be so constructed as not to produce bending which will cause the deposited film to peel off from the phosphor layer.
Next, the method of manufacturing the electron scattering prevention film shown in F162 and the apparatus for carrying out the method will be illustrated with reference to FIGA and FIG.5.
Air is introduced into the bell jar 50. through a leak valve 61 and after the pressure inside the bell jar 50 becomes the same as the atmospheric pressure the bell jar 50 is raised. A heating device 53 consists, as shown in an enlarged view in FIGS, of a crucible 55 covered by an electrode 54 and a cathode filament 56 surrounding the crucible 55. A press formed boron carbide (8 C, melting point 2450C) 57 which has been sintered in argon gas under a temperature of l300C is placed in the crucible 55. A piece of solid aluminum (Al, melting point 660C) 58 (for example mg) is placed on top of the boron carbide 57. On a boat 62 made of tantahim there is placed lithium fluoride (LiF, melting point 660C). If the distance between the crucible 55 and the boat 62 is too great, the thickness of the film will become uneven whereas if the distance is too small the crucible 55 will be shaded by the boat 62. Accordingly, the distance should be properly selected. In the present embodiment, the distance is selected at 8 cm.
Further, the face plate 17 having a phosphor layer is supported by a support 51 provided in the bell jar 50.
The support 51 is spaced away from the crucible 55 and the boat 62 by about 20 cm to 30 cm.
Then the bell jar 50 is lowered. The leak valves 61 and 64 are closed. A rotary pump 65 is started in its operation and a valve 66 is opened whereby the bell jar 50 is preliminarily evacuated. The degree of the preliminary evacuation is checked by a Geissler tube 67 and, when the degree of vacuum has reached approximately 10 mm Hg, the valve 66 is changed over to a diffusion pump 68. Then, a main valve 69 is opened and the degree of vacuum in the bell jar 50 is increased to 2 X 10' mm Hg by the diffusion pump 68. This degree of vacuum is checked by a gauge 70.
After the degree of vacuum in the bell jar 50 has reached the aforementioned value, evaporation commences. The heater 56 is heated with voltage V of a power source 72 being set at 7V and with electric current A, flowing through an ammeter 75 being set at 80A. Currents of thermions emitted from the heater 56 are bent by an electric field which is formed by the electrode 54 when voltage V of a power source 71 is made SKV and electric current A, flowing through an ammeter 74 is made 50mA. The bent currents of thermions concentrate upon the materials 57 and 58, striking and heating them.
A shutter 59 is closed and the materials 57 and 58 are pre-heated for 2 to 3 minutes. By this pre-heating, gasses contained in the materials 57 and 58 escape therefrom. Aluminum 58 melts and a part thereof penetrates into boron carbide 57 to from a crossed part of the two materials. After pre-heating, the shutter 59 is opened and the voltage of the power source 71 is gradually increased from KV to 8 KV during about 5 minutes. Then, aluminum 58 which is of a lower melting point first evaporates on the phosphor layer of the face plate 17, forming the aforementioned metal backing layer 30 with a thickness of 1500A.
The aforementioned 8 KV voltage is maintained for a further 5 minutes. The mixed part of the two materials then evaporates to form the crossed layer 31 in which aluminum and boron carbide are mixed together with the above described composition ratio gradient. The crossed layer 31 is continuously formed without having a definite boundary between the layer 31 and the metal backing layer 30 with a thickness of 500A.
Heating is further continued and all the aluminum evaporates. Then, the remaining boron carbide 57 evaporates to form the electron scattering prevention layer 32 continuously on the crossed layer 31 without having a definite boundary between the two layers with a thickness of 2500A.
When the boron carbide layer 32 has reached the aforementioned predetermined thickness, electric current flows through the boat 62 to heat it with voltage V of a power source 73 being set at 2V and with electric current A flowing through an ammeter 76 being set at 100 mA. Lithium fluoride 63 on the boat 62 evaporates by heating on the boron carbide layer 32 with a thickness of 1000A. A collector electrode 60 is provided to absorb leaking thermions and charged evaporation material molecules and maintained at earth potential or a suitably biased potential.
When the lithium fluoride layer 33 has reached the aforementioned thickness, evaporation is stopped. About 5 minutes later, the main valve 69 is closed and the leak valve 61 is opened. Atmosphere is introduced into the bell jar 50 which is then lifted up to enable the face plate 17 to be taken out. It is to be noted that although the face place 17 is not specially heated, temperature of the face plate 17 rises to about 50C above room temperature due to factors such as radiant heat. The face plate 17 which has been taken out of the bell jar 50 is heated in the air at a temperature of 425C for about one hour so as to frit-weld it with the funnel part.
In the foregoing embodiments, the present invention has been described with reference to a case in which the invention is applied to a post-acceleration color television picture tube. However, the invention is not limited to this but it is applicable to electron beam devices in which scattering of electrons caused by striking electron beams should be held to the minimum, particularly general cathode-ray tubes. Moreover, various modifications and variations of the invention will be apparent to those skilled in the art without departing from the scope of which is not forth in the appended claims.
What we claim is:
1. An electron scattering-prevention film deposited on a phosphor layer for an electron beam device, said film comprising a metallic electrode layer which is penetrable by primary electron beams and deposited on a phosphor layer, first electron scattering-prevention layer deposited on the metallic electrode layer, said first electron scattering-prevention layer being of a first compound of elements having a first atomic number less than the atomic number of the metal of the electrode layer, and a second electron scatteringprevention layer deposited on said first electron scattering-prevention layer, said second electron scattering-prevention layer being of a second compound of elements having a second atomic number less than the atomic number of the metal of the electrode layer, the first and second compounds being different from each other in atomic number said metallic electrode layer and said first electron scattering-prevention layer having therebetween a crossed layer which has a continuously varying composition from said first electron scattering-prevention layer to said metallic electrode layer ranging from zero to percent of said metal and from 100 to 0 percent of said first compound, respective thicknesses of the metallic electrode layer and the first and second electron scatteringprevention layers being respectively of such values in connection with respective coefficients of thermal expansion and Young's moduluses of the metallic electrode layer and the first and second electron scatteringprevention layers that a bimetal action which occurs between said metallic electrode layer and said first electron scattering-prevention layer is substantially cancelled by a bimetal action which occurs between the first and second electron scattering-prevention layers under variation of temperature whereby the electron scattering-prevention film comprising the metallic electrode layer and the first and second electron scattering-prevention layers do not peel off from said phosphor layer.
2. The electron scattering-prevention film as defined in claim 1 wherein the respective thicknesses of the metallic electrode layer and the first and second electron scattering-prevention layers satisfy a relationship expressed by or approximated by the following equation:
where tb tb lta', t'c tc/ta; ta, lb and tc are thicknesses respectively of the metallic electrode layer, the first electron scattering-prevention layer; aa, ab and ac are coefficients of thermal expansion, and Ea, Eb and Ec are Youngs moduluses respectively of the metal of 14 the first compound, and a fourth electron scatteringprevention layer deposited on said third electron scattering-prevention layer, said fourth electron scattering-prevention layer being of the same compound as the second compound.
4. The electron scattering-prevention film as defined in claim 1 wherein the metal of the electrode layer is aluminum (Al), the first compound is boron carbide (8 C) and the second compound is lithium fluoride (LiF)

Claims (3)

  1. 2. The electron scattering-prevention fiLm as defined in claim 1 wherein the respective thicknesses of the metallic electrode layer and the first and second electron scattering-prevention layers satisfy a relationship expressed by or approximated by the following equation: t''b(l + t''b)( Alpha a - Alpha b) EaEb + t''bt''c(t''b + t''c)( Alpha b - Alpha c) EbEc - t''c(l - 2t''b + t''c)( Alpha c - Alpha a)EcEa 0 where t''b tb/ta'', t''c tc/ta; ta, tb and tc are thicknesses respectively of the metallic electrode layer, the first electron scattering-prevention layer; Alpha a, Alpha b and Alpha c are coefficients of thermal expansion, and Ea, Eb and Ec are Young''s moduluses respectively of the metal of the electrode layer, the first compound and the second compound.
  2. 3. The electron scattering-prevention film as defined in claim 1 further comprising a third electron scattering-prevention layer deposited on said second electron scattering-prevention layer, said third electron scattering-prevention layer being of the same compound as the first compound, and a fourth electron scattering-prevention layer deposited on said third electron scattering-prevention layer, said fourth electron scattering-prevention layer being of the same compound as the second compound.
  3. 4. The electron scattering-prevention film as defined in claim 1 wherein the metal of the electrode layer is aluminum (Al), the first compound is boron carbide (B4C) and the second compound is lithium fluoride (LiF).
US3767447D 1970-04-17 1971-04-16 Electron scattering prevention film and method of manufacturing the same Expired - Lifetime US3767447A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283770A JPS4840294B1 (en) 1970-04-17 1970-04-17

Publications (1)

Publication Number Publication Date
US3767447A true US3767447A (en) 1973-10-23

Family

ID=12369916

Family Applications (2)

Application Number Title Priority Date Filing Date
US3764367D Expired - Lifetime US3764367A (en) 1970-04-17 1971-04-15 Television picture tube having an electron scattering prevention film
US3767447D Expired - Lifetime US3767447A (en) 1970-04-17 1971-04-16 Electron scattering prevention film and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US3764367D Expired - Lifetime US3764367A (en) 1970-04-17 1971-04-15 Television picture tube having an electron scattering prevention film

Country Status (4)

Country Link
US (2) US3764367A (en)
JP (1) JPS4840294B1 (en)
DE (1) DE2118449A1 (en)
NL (1) NL7105184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193011A (en) * 1978-05-17 1980-03-11 The United States Of America As Represented By The Secretary Of The Army Thin antireflection coating for electro-optical device
US4210681A (en) * 1978-05-17 1980-07-01 The United States Of America As Represented By The Secretary Of The Army Method of making thin antireflection coating for electro-optical device
US4221990A (en) * 1973-02-14 1980-09-09 Hitachi, Ltd. Phosphor screen for post-focusing type color picture tube
WO1988001824A1 (en) * 1986-08-26 1988-03-10 Tds Patent Management, Inc. Cathode ray tube with integral mirror optics for three-tube projection television systems having increased light output
US5146313A (en) * 1988-08-18 1992-09-08 Murata Manufacturing Co., Ltd. Metallized ceramic structure comprising aluminum nitride and tungsten layers
US5912087A (en) * 1997-08-04 1999-06-15 General Electric Company Graded bond coat for a thermal barrier coating system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878411A (en) * 1955-03-21 1959-03-17 Chromatic Television Lab Inc Color television display screen
US3455683A (en) * 1964-08-05 1969-07-15 Bausch & Lomb Method of making reticle using a three-layer photoelectric element
US3515587A (en) * 1963-04-06 1970-06-02 Bausch & Lomb Method for changing the optical characteristics of an article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878411A (en) * 1955-03-21 1959-03-17 Chromatic Television Lab Inc Color television display screen
US3515587A (en) * 1963-04-06 1970-06-02 Bausch & Lomb Method for changing the optical characteristics of an article
US3455683A (en) * 1964-08-05 1969-07-15 Bausch & Lomb Method of making reticle using a three-layer photoelectric element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221990A (en) * 1973-02-14 1980-09-09 Hitachi, Ltd. Phosphor screen for post-focusing type color picture tube
US4193011A (en) * 1978-05-17 1980-03-11 The United States Of America As Represented By The Secretary Of The Army Thin antireflection coating for electro-optical device
US4210681A (en) * 1978-05-17 1980-07-01 The United States Of America As Represented By The Secretary Of The Army Method of making thin antireflection coating for electro-optical device
WO1988001824A1 (en) * 1986-08-26 1988-03-10 Tds Patent Management, Inc. Cathode ray tube with integral mirror optics for three-tube projection television systems having increased light output
US5146313A (en) * 1988-08-18 1992-09-08 Murata Manufacturing Co., Ltd. Metallized ceramic structure comprising aluminum nitride and tungsten layers
US5912087A (en) * 1997-08-04 1999-06-15 General Electric Company Graded bond coat for a thermal barrier coating system

Also Published As

Publication number Publication date
US3764367A (en) 1973-10-09
JPS4840294B1 (en) 1973-11-29
DE2118449A1 (en) 1971-10-28
NL7105184A (en) 1971-10-19

Similar Documents

Publication Publication Date Title
US2233786A (en) Fluorescent screen assembly and method of manufacture
JPS61220250A (en) Cathode-ray tube
US3767447A (en) Electron scattering prevention film and method of manufacturing the same
US3525679A (en) Method of electrodepositing luminescent material on insulating substrate
EP0067470B1 (en) Display tube and method of manufacturing a display screen for such a display tube
US2798823A (en) Fluorescent screen for X-ray image tube and method for preparing same
EP0187860A1 (en) Cathode ray tube
US3692576A (en) Electron scattering prevention film and method of manufacturing the same
US3911165A (en) Method of fabricating secondary electron emission preventive film and colour picture tube having same
US5170093A (en) Method for manufacturing color cathode ray tube
US3651362A (en) Screens for cathode ray tubes with discrete phosphor layers
US3904502A (en) Method of fabricating a color display screen employing a plurality of layers of phosphors
CN1086345A (en) A kind of X ray casting image intensifier and preparation method thereof
US3778266A (en) Method of forming a black patterned portion on a phosphor screen of a cathode-ray tube for color television sets
US3480482A (en) Method for making storage targets for cathode ray tubes
US4362933A (en) Multistage vacuum x-ray image intensifier
US3819409A (en) Method of manufacturing a display screen
US3243644A (en) Storage tube with secondary emissive storage grid
US3898498A (en) Channel multiplier having non-reflective amorphous aluminum layer obturating channel entrances on side facing photocathode
US3814977A (en) Image storage device
US2879406A (en) Electron discharge tube structure
US2740062A (en) Cathode ray picture tube
Knoll et al. Viewing storage tubes
US3454808A (en) Color television picture tube having a fluorescent screen with a metal back of thickness to pass incident electrons and to limit the passage of secondary electrons
US3447020A (en) Dark trace storage tube