US3764367A - Television picture tube having an electron scattering prevention film - Google Patents

Television picture tube having an electron scattering prevention film Download PDF

Info

Publication number
US3764367A
US3764367A US3764367DA US3764367A US 3764367 A US3764367 A US 3764367A US 3764367D A US3764367D A US 3764367DA US 3764367 A US3764367 A US 3764367A
Authority
US
United States
Prior art keywords
layer
electron scattering
scattering prevention
electron
metal backing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
H Mizuno
N Akiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Application granted granted Critical
Publication of US3764367A publication Critical patent/US3764367A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/30Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines
    • H01J29/32Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines with adjacent dots or lines of different luminescent material, e.g. for colour television
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • a television picture tube has an electron scattering prevention film provided on inner surface of a face plate.
  • the electron scattering prevention film comprises at least the following three layers: a metal backing layer deposited on a phosphor layer; a first electron scattering prevention layer deposited on the metal backing layer composed of a first electron scattering prevention material having a small atomic number than that of the material constituting the metal backing layer; and a second electron scattering prevention layer deposited on the first electron scattering prevention layer composed of a second electron scattering prevention material having a smaller atomic number than that of the material constituting the metal backing layer.
  • a bimetal action which occurs between the metal backing layer and the first electron scattering prevention layer is cancelled by a bimetal action which occurs between the first electron scattering prevention layer and the second electron scattering prevention layer whereby the electron scattering prevention film is prevented from being distorted to an extent that the metal backing layer peels off from the phosphor layer under variation of temperature.
  • This invention relates to a television picture tube having an electron scattering and reflecting prevention film and more particularly to a color television picture tube having an electron scattering prevention film designed to minimize the reflection and scattering of electron beams and to prevent peeling off of a deposited film from a phosphor layer under variation of temperature.
  • electron beams emitted from electron guns are accelerated in the accelerating field of a high voltage and strike at a phosphor surface in electron beams of high kinetic energy exciting the phosphors to produce a luminous output.
  • a large number of secondary electrons, reflecting electrons and scattering electrons are generated by the impacts of the electron beams of high kinetic energy.
  • These secondary electrons have no high kinetic energy as do the reflecting electrons.
  • the secondary electrons therefore, can be removed by utilizing energy dilference between the injected electrons and the secondary electrons.
  • the scattering electrons are accelerated by the post-accelerating field and strike again at the phosphor surface with high kinetic energy of the same intensity as that of the incident electrons. As a result, halos take place around luminous points for the regular incident electrons. This deteriorates contrast of reproduced images and causes adverse color contamination.
  • This layer is also incapable of sufficiently absorbing the secondary electrons emitted from the shadow mask and has a further disadvantage that the single layer is apt to peel oif during heating process in the manufacturing of the color television picture tube which is usually conducted under temperature of approximately 430 C. and accordingly the manufacture is very difiicult.
  • the electron scattering prevention film must'be of such a thickness that corresponds to the kinetic energy of the striking electrons so that the scattering of electrons will effectively be prevented.
  • phosphor screen voltage of the picture tube is in the order of 20 kv. to 20-odd kv. in which case the thickness of the electron scattering prevention film should be more than several thousand A.
  • the thicker is the electron scattering prevention film the greater is the stress between the material composing the electron scattering prevention layer and the material composing the metal backing layer due to difference in the coefficient of thermal expansion between the two materials. Consequently, the electron scattering prevention layer is more apt to peel off from the metal backing layer because of a bimetal action between the two layers. Owing to such disadvantages, the above described conventional film has not been put to a practical use.
  • the ap plicant proposed a film which is capable of effectively preventing scattering of electrons and which is much less likely to peel off than the conventional films and a method of manufacturing the same, in US. Pat. No. 3,692,576, filed Jan. 9, 1970, entitled Electrons Scattering Prevention film and Method of Manufacturing the ,Same.
  • the electron scattering prevention film is manufactured by forming a crossed layer aluminum (Al) and boron carbide (B 0) between the metal backing layer of aluminum and the electron scattering prevention layer of boron carbide.
  • This electron scattering prevention film is advantageous in that the electron scattering prevention layer is formed integrally with the metal backing layer through the crossed layer so that the electron scattering prevention layer hardly peels oif from the metal backing layer.
  • this proposed electron scattering prevention film is not still free from a problem that the metal backing layer sometimes peels off from the phosphor layer during heating process due to a bimetal action which takes place between the metal backing layer and the electron scattering prevention layer.
  • an intermediate film is first coated on the phosphor layer to make a fiat surface and then aluminum is evaporated on this fiat surface. The intermediate film is removed latter by a baking treatment.
  • adhesion of the metal backing layer produced in the above described manner to the phosphor layer is extremely weak.
  • the metal backing layer easily peels off from the phosphor layer when the bimetal action takes place between the metal backing layer and the electron scattering prevention layer as described above. This causes a problem that precision is required in various manufacturing conditions with a resultant increase in the manufacturing cost.
  • Another object of the invention is to provide a a television picture tube having an electron scattering prevention film which is capable of effectively preventing the scattering of electrons produced by the striking electron beams and in which a metal backing layer does not peel off from a phosphor layer under variation of temperature.
  • a further object of the invention is to provide a television picture tube having an electron scattering prevention film in which an electron scattering prevention layer does not peel oif from a metal backing layer and the metal backing layer does not peel olf from a phosphor layer under variation of temperature.
  • a still further object of the invention is to provide a color television picture tube having an electron scattering prevention film which does not peel off from a phosphor layer under variation of temperature and is capable of elfectively preventing the scattering of electrons and the adverse color contamination.
  • FIG. 1 is a vertical section of one embodiment of a color television picture tube having an electron scarttering prevention film according to the invention
  • FIG. 2 is an enlarged vertical section of a part of the picture tube screen shown in FIG. 1;
  • FIG. 3 is a diagram showing a ratio of composition of evaporated film
  • FIG. 4 is a schematic vertical section of one embodiment of an apparatus for manufacturing the electron scattering prevention film
  • FIG. 5 is a perspective view of a heating means for evaporating materials
  • FIG. 6 is an explanatory diagram showing each layer of the evaporated film as a model
  • FIG. 7 is a diagram for illustrating the state of each layer shown in FIG. 6 under a high temperature
  • FIG. 8 is a graph showing relationship between a relative thickness of the metal backing layer and the electron scattering prevention layer and a range in which the peeling off of the layer can be prevented.
  • FIG. 9 is an enlarged vertical section of apart of a picture tube screen having another embodiment of the electron scattering prevention film according to the invention.
  • a post-acceleration type color television picture tube 10 generally comprises a glass bulb 11 and is externally provided with a deflection yoke 12. Three electron guns provided on a connecting base 14 are sealed within neck 13 of the funnel.
  • the bulb 11 generally comprises the funnel neck 13, a funnel 16 and a face plate 17.
  • On the inner surface of the face plate 17 are disposed a phosphor layer 18 consisting of three color dot phosphors, i.e., of red, green and blue and an electron scattering prevention film 19 later described and formed integrally with a metal backing.
  • a shadow mask 20 which has apertures larger in diameter than each dot of phosphors of the phosphor layer 18 formed in correspondence to respective dot trios is provided spaced apart from respective layer 18 and film 19 and in parallel therewith.
  • a first electric power source E is connected to a metal backing layer and a transparent conducting electrode such as a nesa glass.
  • a second power source E of 8.8 kv. is connected to a shadow mask 20 and a third power source E of 9.6 kv. is connected to an anode 21 provided on the inner walls of the funnel 16.
  • the power voltages E to E of the above power sources may preferably have the mutual relationships of E E E so that there may be formed an intense post-acceleration electric field between the shadow mask 20 and the phosphor layer 18 with respect to the electron beams 22 emitted from the electron guns 15.
  • a weak negative acceleration electric field which permits a major portion of the secondary electron 23 emitted from the shadow mask 20 when the electron beam 22 strikes at the shadow mask 20 to be absorbed in the anode 21.
  • Some of the secondary electrons generated from the surroundings of the apertures of the shadow mask 20 are drawn to the post-acceleration electric field between the shadow mask 20 and the phosphor layer 18, and enter the acceleration electric field through the apertures, hence accelerated and strike at the phosphor layer 18 partly causing deterioration of contrast.
  • the initial speed of the secondary electrons is about ten-odd volts when they are emitted from the shadow mask 20
  • the kinetic energy thereof is almost equivalent to the energy of the post-acceleration voltage when the secondary electrons strike at the phosphor layer 18 and said kinetic energy is smaller than that of the electron beams 22 striking at the phosphor layer 18 through the shadow mask 20.
  • Thickness of the film coated on the phosphor layer 18 which may be enough to prevent the deterioration of contrast by the secondary electrons above described is about 5,000 A. in the conversion value of aluminum, where for instance the voltage of the phosphor layer is 20 kv. and that of the shadow mask is 9 kv., and about 8,000 A. where the voltage of the phosphor layer is 25 kv. and that of the shadow mask is 11 kv.
  • the electron beams of high kinetic energy passing through the shadow mask 20 and striking at the phosphors emit a large number of secondary electrons and scattering electrons during striking at the screen. Due to small initial speed these secondary electrons will not excite nor illuminate the phosphors.
  • the scattering electrons however are the electrons tending to disperse in diverse directions with nearly the same energy as of the incident electron beams.
  • electrons 24 emitted at angles larger than a critical angle (the angle is defined by the voltages of the phosphor layer and the shadow mask and the distance between the phosphor layer and the shadow mask) will draw a curved line in the post-acceleration electric field again to strike the phosphor layer almost losing no energy.
  • a television picture tube having an electron scattering prevention film wherein the aforementioned secondary electrons are sufliciently absorbed, scattering electrons by the primary electron beams are not produced and a metal backing layer does not peel off from the phosphor layer under variation of temperature.
  • FIG. 2 shows a part of the electron scattering prevention film of the television picture tube shown in FIG. 1 in an enlarged vertical section.
  • a metal backing layer 30 is formed by evaporating aluminum (Al) on the phosphor layer 18 by means of an evaporating means later described.
  • a crossed layer 31 which is composed of boron carbide (3 C) used as a material having a small atomic number forpreventing the scattering of electrons and aluminum in a mixed state.
  • a first electron scattering prevention layer 32 composed of boron carbide B C is formed continuously with the crossed layer 31.
  • a second electron scattering prevention layer 33 composed of lithium fluoride (LiF) having also a small atomic number is formed on the first electron scattering prevention layer 31.
  • an electron scattering prevention film 19 which is integral with the metal backing layer 30 is constituted.
  • the material composing the second electron scattering prevention film 33 (in the present embodiment, lithium fluoride LiF) is selected from among materials each having a different coefficient of thermal expansion and a smaller atomic number relative to the material composing the first electron scattering prevention layer 32 (in the present embodiment, boron carbide B 0).
  • the atomic number required for obtaining a contrast ratio of twenty should be less than one half of the atomic number of aluminum (13).
  • the material must be of characteristics meeting various manufacturing conditions for the picture tube. Taking these conditions into consideration, the inventors have conducted experiments with materials such as B, C, LiF, LiCO and B C. As a result, boron carbide B C and lithium fluoride LiF have been selected as most suitable materials.
  • the crossed layer 31 has, as shown in FIG. 3, a continuously varying density gradient of composite materials. Namely, from the metal backing layer 30 to the electron scattering prevention layer 32, in the diagram the composition ratio of aluminum gradually varies from 100% to 0% whereas the composition ratio of boron carbide varies from 0% to 100%.
  • the crossed layer 31 in the foregoing manner, possibility of undesired production of pin holes in the boron carbide layer 32 is eliminated. Accordingly, such an accident that the aluminum layer becomes transparent due to reaction of lithium fluoride LiF and aluminum Al through these pin holes can be avoided.
  • the metal backing layer 30, the boron carbide layer 32 and the lithium fluoride layer 33 are treated in the form of a model as shown in FIG. 6. It is assumed that the crossed layer 31 is distributed to the metal backing layer 30 and the boron carbide layer 32.
  • the thickness of each of the layers 30, 32 and 33 is respectively represented at t,,, t and t
  • the length of these layers is represented as l and the width as s.
  • the layers are stable in terms of dynamics, i.e., energy is minimum at a certain temperature 0 It is assumed that if the temperature changes from 9 to 0 the layers 30, 32 and 33 are distorted from the state as shown in FIG. 6 to the state as shown in FIG. 7 in which the layers are bent with a radius of curvature R and an angle (p, a state where energy stored in these layers is reduced to the minimum.
  • the total change U of energy is obtainable by summing the foregoing Equations 4-1, 4-2, 4-3, 51, 5-2 and 5-3 and can be expressed by the equation;
  • Equation 13 the radius of curvature R of the deposited film when the total change U of the internal energy of the deposited film is miniurn can be obtained.
  • Equation 14 the radius of curvature R of the deposited film when the total change U of the internal energy of the deposited film is miniurn can be obtained.
  • the value of R obtained from the Equation 17 is the radius of curvature of the deposited film when the total change U of the internal energy of the deposited film is at the minimum.
  • Equation 18 can be arranged using the original symbols and the following equation can be obtained;
  • the deposited film can be so conmodulus of thermal (dyne/ expansion Material cm?) (E) (degfl) (or) Al 0. 706x10 2. 3X10 B 4. 50x10" 0. 45x10- LiF 0. 880x 3. 7X10- If the deposited film consisting of the three layers 30, 32 and 33 composed respectively of Al, B C and Lil? is to remain undistorted under variation of temperature, the thickness of each layer must satisfy the Equation 20.
  • a curve I shown by a full line in FIG. 8 indicates a relationship between the thickness of the lithium fluoride layer 33 and the thickness of the boron carbide layer 32 respectively normalized by the thickness of the aluminum layer 30' in the state wherein the deposited film remains undistorted under variation of temperature.
  • the shadowed portion II shown by oblique lines defined by dotted lines indicates the relative thickness between the layers 30, 32 and 33 at which there occurs a bending force in the deposited film which force is of a magnitude which is insuflicient to cause the deposited film to peel off from the phosphor layer. Accordingly, the relationship between the thicknesses of the layers 30, 32 and 33 should be chosen within the shadowed portion 11, most preferably on the curve I.
  • the deposited film is composed of three layers (i.e. the layers 30, 32 and 33) including the aluminum metal backing layer 30 but excluding the crossed layer 31. If the deposited film is to be made thicker (for example, approximately In), the number of layers may be increased.
  • FIG. 9 Another embodiment of the construction of layers is shown in FIG. 9. In this embodiment, a boron carbide B C layer 40 having a small coefiicient of thermal expansion is superposed on the lithium fluoride LiF layer 33 constructed in the above described manner. Further, a lithium fluoride LiF layer 41 having a greater coefficient of thermal expansion is formed thereon.
  • the deposited film can be so constructed as not to produce bending which will cause the deposited film to peel off from the phosphor layer.
  • a heating device 53 consists, as shown in an enlarged view in FIG. 5, of a crucible 55 covered by an electrode 54 and a cathode filament 56 surrounding the crucible 55.
  • a press formed boron carbide (B C, melting point 2450 C.) 57 which has been sintered in argon gas under a temperature of 1300 C. is placed in the crucible 55.
  • a piece of solid aluminum (Al, melting point 660 C.) 58 (for example 70 mg.) is placed on top of the boron carbide 57.
  • the dis tance is selected at 8 cm.
  • the face plate 17 having a phosphor layer is supported by a support 51 provided in the bell jar 50.
  • the support 51 is spaced away from the crucible 55 and the boat 62 by about 20 cm. to 30 cm.
  • the leak valves 61 and 64 are closed.
  • a rotary pump 65 is started in its operation and a valve 66 is opened whereby the bell jar 50 is preliminarily evacuated.
  • the degree of the preliminary evacuation is checked by a Geissler tube 67 and, when the degree of vacuum has reached approximately 10* mm. Hg, the valve 66 is changed over to a diffusion pump 68.
  • a main valve 69 is opened and the degree of vacuum in the bell jar 50' is increased to 2X1O- mm. Hg by the diffusion pump 68. This degree of vacuum is checked by a gauge 70.
  • the heater 56 is heated with voltage V of a power source 72 being set at 7 v. and with electric current A flowing through an ammeter 75 being set at A.
  • Currents of thermions emitted from the heater 56 are bent by an electric field which is formed by the electrode 54 when voltage V of a power source 71 is made 5 kv. and electric current A flowing through an ammeter 74 is made 50 ma.
  • the bent currents of thermions concentrate upon the materials 57 and 58, striking and beating them.
  • a shutter 59 is closed and the materials 57 and 58 are pre-heated for two to three minutes. By this pre-heating, gasses contained in the materials 57 and 58 escape therefrom. Aluminum 58 melts and a part thereof penetrates into boron carbide 57 to form a crossed part of the two materials. After pre-heating, the shutter 59 is opened and the voltage of the power source 71 is gradually increased from kv. to 8 kv. during about 5 minutes. Then, aluminum 58 which is of a lower melting point first evaporates on the phosphor layer of the face plate 17, forming the aforementioned metal backing layer 30 with a thickness of 1500 A.
  • the aforementioned 8 kv. voltage is maintained for further 5 minutes.
  • the mixed part of the two materials then evaporates to form the crossed layer 31 in which aluminum and boron carbide are mixed together with the above described composition ratio gradient.
  • the crossed layer 31 is continuously formed without having a definite boundary between the layer 31 and the metal backing layer 30 with a thickness of 500 A.
  • a television picture tube comprising at least one electron gun for emitting electron beams, a phosphor layer provided on an inner surface of a face plate, a metallic electrode layer deposited on the phosphor layer, first electron scattering-prevention layer, said first electron scattering-prevention layer being of a first compound of elements having a first atomic number less than the atomic number of the metal of the electrode layer, a crossed layer formed between the metallic electrode layer and the first electron scattering-prevention layer, said crossed layer having a continuously varying composition from said first electron scattering-prevention layer to said metallic electrode layer ranging from zero to 100% of said metal and from 100 to 0% of said first compound, and a second electron scattering-prevention layer deposited on said first electron scatteringprevention layer, said second electron scatteringprevention layer being of a second compound ofelements having a second atomic number less than the atomic number of the metal of the electrode layer, the first and second compounds being different from each other in atomic number, said electron beams exciting said phosphor layer through the first and second
  • the television picture tube as defined in claim 2 further comprising a third electron scattering-prevention layer deposited on said second electron scattering-prevention layer, said third electron scattering-prevention layer being of the same compound as the first compound, and a fourth electron scattering-prevention layer deposited on said third electron scattering-prevention layer, said fourth electron scattering-prevention layer being of the same compound as the second compound.

Abstract

A TELEVISION PICTURE TUBE HAS AN ELECTRON SCATTERING PREVENTION FILM PROVIDED ON INNER SURFACE OF A FACE PLATE. THE ELECTRON SCATTERING PREVENTION FILM COMPRISES AT LEAST THE FOLLOWING THREE LAYERS: A METAL BACKING LAYER DEPOSITED ON A PHOSPHOR LAYER; A FIRST ELECTRON SCATTERING PREVENTION LAYER DEPOSITED ON THE METAL BACKING LAYER COMPOSED OF A FIRST ELECTRON SCATTERING PREVENTION MATERIAL HAVING A SMALL ATOMIC NUMBER THAN THAT OF THE MATERIAL CONSTITUTING THE METAL BACKING LAYER; AND A SECOND ELECTRON SCATTERING PREVENTION LAYER DEPOSITED ON THE FIRST ELECTRON SCATTERING PREVENTION LAYER COMPOSED OF A SECOND ELECTRON SCATTERING PREVENTION MATERIAL HAVING A SMALLER ATOMIC NUMBER THAN THAT OF THE MATERIAL CONSTITUTING THE METAL BACKING LAYER. A BIMETAL ACTION WHICH OCCURS BETWEEN THE METAL BACKING LAYER AND THE FIRST ELECTRON SCATTERING PREVENTION LAYER IS CANCELLED BY A BIMETAL ACTION WHICH

OCCURS BETWEEN THE FIRST ELECTRON SCATTERING PREVENTION LAYER AND THE SECOND ELECTRON SCATTERING PREVENTION LAYER WHEREBY THE ELECTRON SCATTERING PREVENTION FILM IS PREVENTED FROM BEING DISTORTED TO AN EXTENT THAT THE METAL BACKING LAYER PEELS OFF FROM THE PHOSPHOR LAYER UNDER VARIATION OF TEMPERATURE.

Description

Oct. 9, 1973 HlDEAKl MIZUNO ETAL 3,764,367
TELEVISION PICTURE TUBE HAVING AN ELECTRON SCATTERING PREVENTION FLIM Filed April 15, 1971 4 Sheets-Sheet 1 FIG. 4
Oct. 9, 1973 Filed April 15, 1971 HIDEAKI MIZUNO ET AL 3,764,367
TELEVISION PICTURE TUBE HAVING AN ELECTRON L I L9 SCATTERING PREVENTION FLIM 4 Sheets-Sheet 2 FIG. 2
v L/TH/UH FLUOR/DE BURON CARBIDE ALUH/NUH 3 PHOSPHORS emss 3I j QCROSSED LAYER 54 LzF :0 lH/C/WESS HETAL BACK/N6 CROSSED LAYER AYER 7st .scATTER/Nb 2nd SCATTERING PREVENT/0N LAYER PREVENT/0N LAYER FIG. 9
L/TH/UN FLUOE/DE BORON CARBIDE LI TH/UH FLUOEIDE .93 32 sake/v CARBIDE cleossso LA YER 30 ALHINUM Pi/USPWRS Oct. 9, 1973 H D MIZUNQ ET AL 3,764,367
TELEVISION PICTURE TUBE HAVING AN ELECTRON SCATTERING PREVENTION FLIM Filed April 15, 1971 4 Sheets-Sheet 5 Get. 9, 173 HIDEAK] M|ZUNQ E AL 3,764,367
TELEVISION PICTURE TUBE HAVING AN ELECTRON SCATTERING PREVENTION FLIM 4 Sheets-Sheet '4 Filed April 15, 1971 UnitedStates Patent US. Cl. 117-33.5 C 3 Claims ABSTRACT OF THE DISCLOSURE A television picture tube has an electron scattering prevention film provided on inner surface of a face plate. The electron scattering prevention film comprises at least the following three layers: a metal backing layer deposited on a phosphor layer; a first electron scattering prevention layer deposited on the metal backing layer composed of a first electron scattering prevention material having a small atomic number than that of the material constituting the metal backing layer; and a second electron scattering prevention layer deposited on the first electron scattering prevention layer composed of a second electron scattering prevention material having a smaller atomic number than that of the material constituting the metal backing layer. A bimetal action which occurs between the metal backing layer and the first electron scattering prevention layer is cancelled by a bimetal action which occurs between the first electron scattering prevention layer and the second electron scattering prevention layer whereby the electron scattering prevention film is prevented from being distorted to an extent that the metal backing layer peels off from the phosphor layer under variation of temperature.
This invention relates to a television picture tube having an electron scattering and reflecting prevention film and more particularly to a color television picture tube having an electron scattering prevention film designed to minimize the reflection and scattering of electron beams and to prevent peeling off of a deposited film from a phosphor layer under variation of temperature.
Generally, in a post-acceleration color television picture tube, electron beams emitted from electron guns are accelerated in the accelerating field of a high voltage and strike at a phosphor surface in electron beams of high kinetic energy exciting the phosphors to produce a luminous output. At the same time, a large number of secondary electrons, reflecting electrons and scattering electrons are generated by the impacts of the electron beams of high kinetic energy.
These secondary electrons have no high kinetic energy as do the reflecting electrons. The secondary electrons, therefore, can be removed by utilizing energy dilference between the injected electrons and the secondary electrons. The scattering electrons, however, are accelerated by the post-accelerating field and strike again at the phosphor surface with high kinetic energy of the same intensity as that of the incident electrons. As a result, halos take place around luminous points for the regular incident electrons. This deteriorates contrast of reproduced images and causes adverse color contamination.
In order to remove the phenomena, it has been proposed, as disclosed in US. Pat. No. 2,878,411, to provide an electron scattering prevention layer by sintering a single thin layer of material of small atomic number such as boron or carbon deposited on the metal backing of aluminum evaporated on the phosphor layer so that the amount of electrons scattering from the phosphor surice face is reduced. However, this conventional electron scattering prevention layer made of a single thin layer is not capable of sufliciently preventing the scattering of electrons since the electrons are scattered at the boundary between the electron scattering prevention layer and the metal backing layer. This layer is also incapable of sufficiently absorbing the secondary electrons emitted from the shadow mask and has a further disadvantage that the single layer is apt to peel oif during heating process in the manufacturing of the color television picture tube which is usually conducted under temperature of approximately 430 C. and accordingly the manufacture is very difiicult.
Furthermore, there is a tendency that the layer superposed upon the phosphor layer peels off more readily as the thickness of the superposed layer increases. In the meanwhile, the electron scattering prevention film must'be of such a thickness that corresponds to the kinetic energy of the striking electrons so that the scattering of electrons will effectively be prevented. For example, phosphor screen voltage of the picture tube is in the order of 20 kv. to 20-odd kv. in which case the thickness of the electron scattering prevention film should be more than several thousand A. However, the thicker is the electron scattering prevention film, the greater is the stress between the material composing the electron scattering prevention layer and the material composing the metal backing layer due to difference in the coefficient of thermal expansion between the two materials. Consequently, the electron scattering prevention layer is more apt to peel off from the metal backing layer because of a bimetal action between the two layers. Owing to such disadvantages, the above described conventional film has not been put to a practical use.
With a view to eliminating such disadvantages, the ap plicant proposed a film which is capable of effectively preventing scattering of electrons and which is much less likely to peel off than the conventional films and a method of manufacturing the same, in US. Pat. No. 3,692,576, filed Jan. 9, 1970, entitled Electrons Scattering Prevention film and Method of Manufacturing the ,Same. According to this proposed method, the electron scattering prevention film is manufactured by forming a crossed layer aluminum (Al) and boron carbide (B 0) between the metal backing layer of aluminum and the electron scattering prevention layer of boron carbide. This electron scattering prevention film is advantageous in that the electron scattering prevention layer is formed integrally with the metal backing layer through the crossed layer so that the electron scattering prevention layer hardly peels oif from the metal backing layer.
However, this proposed electron scattering prevention film is not still free from a problem that the metal backing layer sometimes peels off from the phosphor layer during heating process due to a bimetal action which takes place between the metal backing layer and the electron scattering prevention layer. Generally, there is an innumerable number of projections and depressions on the surface of the phosphor layer and, if aluminum is evaporated directly upon the surface of the phosphor layer, the phosphor layer side of the aluminum thin film formed as a metal backing layer cannot be made as a mirror surface. Hence, in forming the metal backing layer on the phosphor layer, an intermediate film is first coated on the phosphor layer to make a fiat surface and then aluminum is evaporated on this fiat surface. The intermediate film is removed latter by a baking treatment. Accordingly, adhesion of the metal backing layer produced in the above described manner to the phosphor layer is extremely weak. As a result, the metal backing layer easily peels off from the phosphor layer when the bimetal action takes place between the metal backing layer and the electron scattering prevention layer as described above. This causes a problem that precision is required in various manufacturing conditions with a resultant increase in the manufacturing cost.
. It is, therefore, a general object of the present invention to provide a novel and useful television picture tube having and electron scattering prevention film eliminating the aforementioned disadvantages.
Another object of the invention is to provide a a television picture tube having an electron scattering prevention film which is capable of effectively preventing the scattering of electrons produced by the striking electron beams and in which a metal backing layer does not peel off from a phosphor layer under variation of temperature.
A further object of the invention is to provide a television picture tube having an electron scattering prevention film in which an electron scattering prevention layer does not peel oif from a metal backing layer and the metal backing layer does not peel olf from a phosphor layer under variation of temperature.
A still further object of the invention is to provide a color television picture tube having an electron scattering prevention film which does not peel off from a phosphor layer under variation of temperature and is capable of elfectively preventing the scattering of electrons and the adverse color contamination.
Other objects and features of the invention will become apparent from the description made hereinbelow with reference to the accompanying drawings, in which:
FIG. 1 is a vertical section of one embodiment of a color television picture tube having an electron scarttering prevention film according to the invention;
FIG. 2 is an enlarged vertical section of a part of the picture tube screen shown in FIG. 1;
FIG. 3 is a diagram showing a ratio of composition of evaporated film;
FIG. 4 is a schematic vertical section of one embodiment of an apparatus for manufacturing the electron scattering prevention film;
FIG. 5 is a perspective view of a heating means for evaporating materials;
FIG. 6 is an explanatory diagram showing each layer of the evaporated film as a model;
FIG. 7 is a diagram for illustrating the state of each layer shown in FIG. 6 under a high temperature;
FIG. 8 is a graph showing relationship between a relative thickness of the metal backing layer and the electron scattering prevention layer and a range in which the peeling off of the layer can be prevented; and
FIG. 9 is an enlarged vertical section of apart of a picture tube screen having another embodiment of the electron scattering prevention film according to the invention.
First, one embodiment of a color television picture tube having the electron scattering prevention film according to the invention will be illustrated with reference to FIG. 1.
A post-acceleration type color television picture tube 10 generally comprises a glass bulb 11 and is externally provided with a deflection yoke 12. Three electron guns provided on a connecting base 14 are sealed within neck 13 of the funnel. The bulb 11 generally comprises the funnel neck 13, a funnel 16 and a face plate 17. On the inner surface of the face plate 17 are disposed a phosphor layer 18 consisting of three color dot phosphors, i.e., of red, green and blue and an electron scattering prevention film 19 later described and formed integrally with a metal backing. A shadow mask 20 which has apertures larger in diameter than each dot of phosphors of the phosphor layer 18 formed in correspondence to respective dot trios is provided spaced apart from respective layer 18 and film 19 and in parallel therewith.
According to one aspect of the present invention, a first electric power source E is connected to a metal backing layer and a transparent conducting electrode such as a nesa glass. A second power source E of 8.8 kv. is connected to a shadow mask 20 and a third power source E of 9.6 kv. is connected to an anode 21 provided on the inner walls of the funnel 16. The power voltages E to E of the above power sources may preferably have the mutual relationships of E E E so that there may be formed an intense post-acceleration electric field between the shadow mask 20 and the phosphor layer 18 with respect to the electron beams 22 emitted from the electron guns 15. Between the shadow mask 20 and the anode 21 is formed a weak negative acceleration electric field, which permits a major portion of the secondary electron 23 emitted from the shadow mask 20 when the electron beam 22 strikes at the shadow mask 20 to be absorbed in the anode 21.
Some of the secondary electrons generated from the surroundings of the apertures of the shadow mask 20 are drawn to the post-acceleration electric field between the shadow mask 20 and the phosphor layer 18, and enter the acceleration electric field through the apertures, hence accelerated and strike at the phosphor layer 18 partly causing deterioration of contrast. As the initial speed of the secondary electrons is about ten-odd volts when they are emitted from the shadow mask 20, the kinetic energy thereof is almost equivalent to the energy of the post-acceleration voltage when the secondary electrons strike at the phosphor layer 18 and said kinetic energy is smaller than that of the electron beams 22 striking at the phosphor layer 18 through the shadow mask 20. By preferred selection of thicknesses of the metal backing layer evaporated on the phosphor layer 18 and the scattering prevention 'film it is possible to allow the primary electron beams 22 only to reach the phosphor screen 18 for illumination.
Thickness of the film coated on the phosphor layer 18 which may be enough to prevent the deterioration of contrast by the secondary electrons above described is about 5,000 A. in the conversion value of aluminum, where for instance the voltage of the phosphor layer is 20 kv. and that of the shadow mask is 9 kv., and about 8,000 A. where the voltage of the phosphor layer is 25 kv. and that of the shadow mask is 11 kv.
The electron beams of high kinetic energy passing through the shadow mask 20 and striking at the phosphors emit a large number of secondary electrons and scattering electrons during striking at the screen. Due to small initial speed these secondary electrons will not excite nor illuminate the phosphors. The scattering electrons however are the electrons tending to disperse in diverse directions with nearly the same energy as of the incident electron beams. Hence, among the scattering electrons, electrons 24 emitted at angles larger than a critical angle (the angle is defined by the voltages of the phosphor layer and the shadow mask and the distance between the phosphor layer and the shadow mask) will draw a curved line in the post-acceleration electric field again to strike the phosphor layer almost losing no energy. As they do this, they cause halos surrounding the luminous point due to striking of normal electron beams. In consequence, the contrast of the image deteriorates and the color contamination takes place. As the scattering electrons 24 have nearly same energy as the primary electron beams, the contrast and the color contamination cannot be freed from the influence of said scattering electrons only by coating a thicker layer or film on the phosphor layer. This has been a major factor which has obstructed the practical use of the post-acceleration color television tubes.
According to the present invention, a television picture tube having an electron scattering prevention film is provided wherein the aforementioned secondary electrons are sufliciently absorbed, scattering electrons by the primary electron beams are not produced and a metal backing layer does not peel off from the phosphor layer under variation of temperature.
FIG. 2 shows a part of the electron scattering prevention film of the television picture tube shown in FIG. 1 in an enlarged vertical section. A metal backing layer 30 is formed by evaporating aluminum (Al) on the phosphor layer 18 by means of an evaporating means later described. On the metal backing layer 30 iscontinuously formed a crossed layer 31 which is composed of boron carbide (3 C) used as a material having a small atomic number forpreventing the scattering of electrons and aluminum in a mixed state. Then, a first electron scattering prevention layer 32 composed of boron carbide B C is formed continuously with the crossed layer 31. Further, a second electron scattering prevention layer 33 composed of lithium fluoride (LiF) having also a small atomic number is formed on the first electron scattering prevention layer 31. Thus, an electron scattering prevention film 19 which is integral with the metal backing layer 30 is constituted. The material composing the second electron scattering prevention film 33 (in the present embodiment, lithium fluoride LiF) is selected from among materials each having a different coefficient of thermal expansion and a smaller atomic number relative to the material composing the first electron scattering prevention layer 32 (in the present embodiment, boron carbide B 0). It is to be understood that, if a reflecting electron emission ratio is in proportion to the atomic number, the atomic number required for obtaining a contrast ratio of twenty should be less than one half of the atomic number of aluminum (13). Besides, the materialmust be of characteristics meeting various manufacturing conditions for the picture tube. Taking these conditions into consideration, the inventors have conducted experiments with materials such as B, C, LiF, LiCO and B C. As a result, boron carbide B C and lithium fluoride LiF have been selected as most suitable materials.
The crossed layer 31 has, as shown in FIG. 3, a continuously varying density gradient of composite materials. Namely, from the metal backing layer 30 to the electron scattering prevention layer 32, in the diagram the composition ratio of aluminum gradually varies from 100% to 0% whereas the composition ratio of boron carbide varies from 0% to 100%. By forming the crossed layer 31 in the foregoing manner, possibility of undesired production of pin holes in the boron carbide layer 32 is eliminated. Accordingly, such an accident that the aluminum layer becomes transparent due to reaction of lithium fluoride LiF and aluminum Al through these pin holes can be avoided.
Nextly, the reason why the electron scattering prevention film 19 and the metal'backing layer 30 having the foregoing construction are prevented from being distorted under variation of temperature to the extent that they peel off from the phosphor layer 18 will be explained. For simplicity, the metal backing layer 30, the boron carbide layer 32 and the lithium fluoride layer 33 are treated in the form of a model as shown in FIG. 6. It is assumed that the crossed layer 31 is distributed to the metal backing layer 30 and the boron carbide layer 32. The thickness of each of the layers 30, 32 and 33 is respectively represented at t,,, t and t The length of these layers is represented as l and the width as s. It is assumed that the layers are stable in terms of dynamics, i.e., energy is minimum at a certain temperature 0 It is assumed that if the temperature changes from 9 to 0 the layers 30, 32 and 33 are distorted from the state as shown in FIG. 6 to the state as shown in FIG. 7 in which the layers are bent with a radius of curvature R and an angle (p, a state where energy stored in these layers is reduced to the minimum.
First the radius of curvature R is to be obtained and then conditions in which the radius of curvature R becomes infinite i.e., the deposited film composed of the layers 30, 32 and 33 is not distorted are to be obtained. Each constant to be used in the equation described later is represented as follows:
Initial temperature in the variation of temperature Final temperature in the variation of temperature 0 Magnitude of the variation of temperature A0=0 -0 Coeflicient of thermal expansion of the materials respectively composing the layers 30, 32 and 33 m a a respectively. The sufiixes a, b and c correspond respectively to the layers 30, 32 and 33. The same is the case with suffixes used for each following constant.
Thickness of each of the layers 30, 32 and 33 t,,,
he o Youngs modulus of composite material of the layers 30,
32 and 33 E E E Spring constant of each composite material of the layers 30, 32 and 33 K K K Length of the deposited film under the temperature Length of each of the layers 30, 32 and 33 existed alone under the temperature 0 i.e., if the layers were not superposed one upon another l l l Average length of each of the layers 30, 32 and 33 at its center of thickness under the temperature 0 L b: LO
Radius of curvature and angle of the bend of the deposited film under the temperature 6 R and (p First, the average lengths L L and L of the respective layers 30, 32 and 33 at their center of thickness under the temperature 0 are respectively expressed by the following equations:
Again, lengths l 1,, and 1 of the respective layers 30, 32 and 33 under the temperature 0 if each of the layers existed alone are expressed by the equations;
Further, from the relationship existing between spring constants and Youngs modulus the following equations are obtained;
o K =zj SE3 li -lo SE1,
changes of energy due to extension are expressed by the equations;
a (Lb-lb (4-2) K0 (LFW (4-3) and the changes of energy due to'bending by the equations; i
are expressed 8 Then, if is sought by adopting the Equation 12,
In the meanwhile, if o is sought by using the Equation 10,
The total change U of energy is obtainable by summing the foregoing Equations 4-1, 4-2, 4-3, 51, 5-2 and 5-3 and can be expressed by the equation;
BI+ bX+ ci+ a2+ b2+ 02 Conditions under which the total change U of internal energy of the deposited film relative to the change of temperature of the deposited film is at the minimum can be obtained by the equations;
DU TF From the Equation 7,
a U s m [K.{(R+ +zb+t,) we} 9 and 10 must hold at the same time.
From the Equation 9,
If the Equation 13 is equal to the Equation 14, the radius of curvature R of the deposited film when the total change U of the internal energy of the deposited film is miniurn can be obtained. For simplicity of calculation, the following equations will be used:
The value of R obtained from the Equation 17 is the radius of curvature of the deposited film when the total change U of the internal energy of the deposited film is at the minimum.
If a condition under which the radius of curvature R becomes infinite is sought, the denominator of the Equation 17 must be 0. Accordingly, this condition is given by the equation;
The Equation 18 can be arranged using the original symbols and the following equation can be obtained;
In the above equation, the relationship between thicknesses of the layers is not clear. Hence, 2,, and z, are normalized by t and represented as 'Ze i Then, the equation can be rewritten as follows;
From the foregoing consideration, it will be possible to theoretically prove that in case layers consisting of plurality of different kinds of-materials respectively having dilferent coefficient of thermal expansion are formed as a film consisting of more than three layers deposited on a phosphor screen, the deposited film can be so conmodulus of thermal (dyne/ expansion Material cm?) (E) (degfl) (or) Al 0. 706x10 2. 3X10 B 4. 50x10" 0. 45x10- LiF 0. 880x 3. 7X10- If the deposited film consisting of the three layers 30, 32 and 33 composed respectively of Al, B C and Lil? is to remain undistorted under variation of temperature, the thickness of each layer must satisfy the Equation 20. The graph shown in FIG. 8 indicates relative thickness of the three layers in a state wherein the deposited film consisting of the three layers remains undistorted under variation of temperature, calculating the values by applying the constants of each material indicated in the above table to the Equation 20 and taking the thickness of the aluminum layer 30 as a standard which is made one (1).
In FIG. 8,
J in (a.
i.e. the thickness of the lithium fluoride layer 33- normalized by the thickness 1,, of the aluminum metal backing layer 30 is indicated on the abscissa whereas i.e. the thickness of the boron carbide layer 32 normalized by the thickness if, of the aluminum metal backing layer 30 is indicated on the ordinate. A curve I shown by a full line in FIG. 8 indicates a relationship between the thickness of the lithium fluoride layer 33 and the thickness of the boron carbide layer 32 respectively normalized by the thickness of the aluminum layer 30' in the state wherein the deposited film remains undistorted under variation of temperature. Accordingly, if the relative thicknesses of the layers 30, 32 and 33 are so selected as to satisfy the relationship indicated by the curve I, shown by full line stresses existing between each layer are cancelled with each other and the bimetal action which takes place between the layer 30 and the layer 32 is cancelled by the bimetal action which takes place between the layer 32 and the layer 33 whereby no distortion occurs in the deposited film.
A slight bending which may occur in the deposited film will not cause the deposited film to peel 01f from the phosphor layer by adhesion between the deposited film and the phosphor layer if the degree of bending is small. In FIG. 8, the shadowed portion II shown by oblique lines defined by dotted lines indicates the relative thickness between the layers 30, 32 and 33 at which there occurs a bending force in the deposited film which force is of a magnitude which is insuflicient to cause the deposited film to peel off from the phosphor layer. Accordingly, the relationship between the thicknesses of the layers 30, 32 and 33 should be chosen within the shadowed portion 11, most preferably on the curve I.
Specific numerical examples of preferable thickness of each layer will be given hereinbelow.
In the foregoing embodiment, the deposited film is composed of three layers (i.e. the layers 30, 32 and 33) including the aluminum metal backing layer 30 but excluding the crossed layer 31. If the deposited film is to be made thicker (for example, approximately In), the number of layers may be increased. Another embodiment of the construction of layers is shown in FIG. 9. In this embodiment, a boron carbide B C layer 40 having a small coefiicient of thermal expansion is superposed on the lithium fluoride LiF layer 33 constructed in the above described manner. Further, a lithium fluoride LiF layer 41 having a greater coefficient of thermal expansion is formed thereon. In this embodiment also, if the thicknesses of the layers 30 to 33 and 40, 41 are properly selected based on the relationship as described above, the deposited film can be so constructed as not to produce bending which will cause the deposited film to peel off from the phosphor layer.
Nextly, the method of manufacturing the electron scattering prevention film shown in FIG. 2 and the apparatus for carrying out the method will be illustrated with reference to FIG. 4 and FIG. 5.
Air is introduced into the bell jar 50 through a leak valve 61 and after the pressure inside the bell jar 50 becomes same as the atmospheric pressure the bell jar 50 is lifted up. A heating device 53 consists, as shown in an enlarged view in FIG. 5, of a crucible 55 covered by an electrode 54 and a cathode filament 56 surrounding the crucible 55. A press formed boron carbide (B C, melting point 2450 C.) 57 which has been sintered in argon gas under a temperature of 1300 C. is placed in the crucible 55. A piece of solid aluminum (Al, melting point 660 C.) 58 (for example 70 mg.) is placed on top of the boron carbide 57. On a boat 62 made of tantalum, there is placed lithium fluoride (LiF, melting point 660 C.).. If the distance between the crucible 55 and the boat 62 is too great, the thickness of the film will become uneven whereas if the distance is too small the crucible 55 will be shaded by the boat 62. Accordingly, the distance should be properly selected. In the present embodiment, the dis tance is selected at 8 cm.
Further, the face plate 17 having a phosphor layer is supported by a support 51 provided in the bell jar 50. The support 51 is spaced away from the crucible 55 and the boat 62 by about 20 cm. to 30 cm.
Then the bell jar 50 is lowered. The leak valves 61 and 64 are closed. A rotary pump 65 is started in its operation and a valve 66 is opened whereby the bell jar 50 is preliminarily evacuated. The degree of the preliminary evacuation is checked by a Geissler tube 67 and, when the degree of vacuum has reached approximately 10* mm. Hg, the valve 66 is changed over to a diffusion pump 68. Then, a main valve 69 is opened and the degree of vacuum in the bell jar 50' is increased to 2X1O- mm. Hg by the diffusion pump 68. This degree of vacuum is checked by a gauge 70.
After the degree of vacuum in the bell jar 50 has reached the aforementioned value, evaporation is started. The heater 56 is heated with voltage V of a power source 72 being set at 7 v. and with electric current A flowing through an ammeter 75 being set at A. Currents of thermions emitted from the heater 56 are bent by an electric field which is formed by the electrode 54 when voltage V of a power source 71 is made 5 kv. and electric current A flowing through an ammeter 74 is made 50 ma. The bent currents of thermions concentrate upon the materials 57 and 58, striking and beating them.
A shutter 59 is closed and the materials 57 and 58 are pre-heated for two to three minutes. By this pre-heating, gasses contained in the materials 57 and 58 escape therefrom. Aluminum 58 melts and a part thereof penetrates into boron carbide 57 to form a crossed part of the two materials. After pre-heating, the shutter 59 is opened and the voltage of the power source 71 is gradually increased from kv. to 8 kv. during about 5 minutes. Then, aluminum 58 which is of a lower melting point first evaporates on the phosphor layer of the face plate 17, forming the aforementioned metal backing layer 30 with a thickness of 1500 A.
The aforementioned 8 kv. voltage is maintained for further 5 minutes. The mixed part of the two materials then evaporates to form the crossed layer 31 in which aluminum and boron carbide are mixed together with the above described composition ratio gradient. The crossed layer 31 is continuously formed without having a definite boundary between the layer 31 and the metal backing layer 30 with a thickness of 500 A.
Heating is further continued and all aluminum evaporates. Then, the remaining boron carbide 57 evaporates to form the electron scattering prevention layer 32 continuously on the crossed layer 31 without having a definite boundary between the two layers with a thickness of 2 500 A.
When the boron carbide layer 32 has reached the aforementioned predetermined thickness, electric current flows through the boat 62 to heat it with voltage V of a power source 73 being set at 2 v. and with electric current A flowing through an ammeter 76 being set at 100 ma. Lithium fluoride 63 on the boat 62 evaporates by heating on the boron carbide layer 32 with a thickness of 1000 A. A collector electrode 60 is provided to absorb leaking thermions and charged evaporation material molecules and maintained at earth potential or a suitably biased potential.
When the lithium fluoride layer 33 has reached the aforementioned thickness, evaporation is stopped. About 5 minutes later, the main valve 49 is closed and the leak valve 61 is opened. Atmosphere is introduced into the bell jar 50 which is then lifted up to enable the face plate 17 to be taken out. It is to be noted that although the face plate 17 is not specially heated, temperature of the face plate 17 rises to about 50 C. above room temperature due to factors such as radiant heat. The face plate 17 which has been taken out of the bell jar 50 is heated in the air at a temperature of 425 C. for about one hour so as to frit-weld it with the funnel part.
While the invention has been described with respect to the specific preferable embodiment, various modifications and variations thereof will be apparent to those skilled in the art without departing from the scope of which is set forth in the appended claims.
What we claim is:
1. A television picture tube comprising at least one electron gun for emitting electron beams, a phosphor layer provided on an inner surface of a face plate, a metallic electrode layer deposited on the phosphor layer, first electron scattering-prevention layer, said first electron scattering-prevention layer being of a first compound of elements having a first atomic number less than the atomic number of the metal of the electrode layer, a crossed layer formed between the metallic electrode layer and the first electron scattering-prevention layer, said crossed layer having a continuously varying composition from said first electron scattering-prevention layer to said metallic electrode layer ranging from zero to 100% of said metal and from 100 to 0% of said first compound, and a second electron scattering-prevention layer deposited on said first electron scatteringprevention layer, said second electron scatteringprevention layer being of a second compound ofelements having a second atomic number less than the atomic number of the metal of the electrode layer, the first and second compounds being different from each other in atomic number, said electron beams exciting said phosphor layer through the first and second electron scatteringprevention layers and said metallic electrode layer, respective thicknesses of the metallic electrode layer and the first and second electron scattering-prevention layers being respectively of such values in connection with respective coefiicients of thermal expansion and Youngs moduluses of the metallic electrode layer and the first and second electron scattering-prevention layers that a bimetal action which occurs between said metallic electrode layer and said first electron scattering-prevention layer is substantially cancelled by a bimetal action which occurs between the first and second electron scatteringprevention layers under variation of temperature whereby the three layers of the metallic electrode layer and the first and second electron scattering-prevention layers do not peel off from said phosphor layer under variation of temperature during a manufacturing process of the television picture tube.
2. The television picture tube as defined in claim 1 wherein the thicknesses of the metallic electrode layer, the first and second electron scattering-prevention layers satisfy a relationship expressed by or approximated by the following equation:
where t,,, I and r are thicknesses respectively of the metallic electrode layer, the first electron scattering-prevention layer and the second electron scattering-prevention layer; 06 a and et are coefficients of thermal expansion, and E E and E are Youngs moduluses respectively of the metal of the electrode layer, the first compound and the second compound.
3. The television picture tube as defined in claim 2 further comprising a third electron scattering-prevention layer deposited on said second electron scattering-prevention layer, said third electron scattering-prevention layer being of the same compound as the first compound, and a fourth electron scattering-prevention layer deposited on said third electron scattering-prevention layer, said fourth electron scattering-prevention layer being of the same compound as the second compound.
References Cited UNITED STATES PATENTS 2,878,411 3/1959 Alvarez 313-92 PD X 3,515,587 6/ 1970 Letter 1l7217 3,455,683 7/ 1969 Letter 250- X ALFRED L. LEAVITT, Primary Examiner C. WESTON, Assistant Examiner US. Cl. X.R.
l172l7; 25080', 313-92 PD, 92 PH, 108 A
US3764367D 1970-04-17 1971-04-15 Television picture tube having an electron scattering prevention film Expired - Lifetime US3764367A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283770A JPS4840294B1 (en) 1970-04-17 1970-04-17

Publications (1)

Publication Number Publication Date
US3764367A true US3764367A (en) 1973-10-09

Family

ID=12369916

Family Applications (2)

Application Number Title Priority Date Filing Date
US3764367D Expired - Lifetime US3764367A (en) 1970-04-17 1971-04-15 Television picture tube having an electron scattering prevention film
US3767447D Expired - Lifetime US3767447A (en) 1970-04-17 1971-04-16 Electron scattering prevention film and method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US3767447D Expired - Lifetime US3767447A (en) 1970-04-17 1971-04-16 Electron scattering prevention film and method of manufacturing the same

Country Status (4)

Country Link
US (2) US3764367A (en)
JP (1) JPS4840294B1 (en)
DE (1) DE2118449A1 (en)
NL (1) NL7105184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001824A1 (en) * 1986-08-26 1988-03-10 Tds Patent Management, Inc. Cathode ray tube with integral mirror optics for three-tube projection television systems having increased light output

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49107173A (en) * 1973-02-14 1974-10-11
US4210681A (en) * 1978-05-17 1980-07-01 The United States Of America As Represented By The Secretary Of The Army Method of making thin antireflection coating for electro-optical device
US4193011A (en) * 1978-05-17 1980-03-11 The United States Of America As Represented By The Secretary Of The Army Thin antireflection coating for electro-optical device
JPH0679995B2 (en) * 1988-08-18 1994-10-12 株式会社村田製作所 WN metallization structure of AlN substrate
US5912087A (en) * 1997-08-04 1999-06-15 General Electric Company Graded bond coat for a thermal barrier coating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878411A (en) * 1955-03-21 1959-03-17 Chromatic Television Lab Inc Color television display screen
US3515587A (en) * 1963-04-06 1970-06-02 Bausch & Lomb Method for changing the optical characteristics of an article
US3455683A (en) * 1964-08-05 1969-07-15 Bausch & Lomb Method of making reticle using a three-layer photoelectric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001824A1 (en) * 1986-08-26 1988-03-10 Tds Patent Management, Inc. Cathode ray tube with integral mirror optics for three-tube projection television systems having increased light output

Also Published As

Publication number Publication date
DE2118449A1 (en) 1971-10-28
US3767447A (en) 1973-10-23
JPS4840294B1 (en) 1973-11-29
NL7105184A (en) 1971-10-19

Similar Documents

Publication Publication Date Title
EP0042149B1 (en) Radiation excited phosphor screen and method for manufacturing the same
US2233786A (en) Fluorescent screen assembly and method of manufacture
EP0067470A1 (en) Display tube and method of manufacturing a display screen for such a display tube
US3764367A (en) Television picture tube having an electron scattering prevention film
US3692576A (en) Electron scattering prevention film and method of manufacturing the same
US4528210A (en) Method of manufacturing a radiation excited input phosphor screen
JPS601735B2 (en) cathode ray tube
JPH0317930A (en) Manufacture of color cathode-ray tube
US3904502A (en) Method of fabricating a color display screen employing a plurality of layers of phosphors
US6713121B2 (en) Cathode ray tube and method for manufacturing thereof
US5039551A (en) Method of manufacturing a phosphor screen of a cathode ray tube
US3819409A (en) Method of manufacturing a display screen
US3778266A (en) Method of forming a black patterned portion on a phosphor screen of a cathode-ray tube for color television sets
US2980550A (en) Evaporated phosphor screen
JP3044072B2 (en) Method for manufacturing plasma display panel
US3526527A (en) Process of forming a cathodoluminescent screen
US3454808A (en) Color television picture tube having a fluorescent screen with a metal back of thickness to pass incident electrons and to limit the passage of secondary electrons
US6428840B2 (en) Method of producing cathode ray tube and method of forming films
US3179835A (en) Pickup tube having a cesiated photocathode and a substantially leakagefree target, and method of making the same
US2833948A (en) Cathode ray tube screen
JPH04160732A (en) Plasma display panel and manufacture thereof
US3199939A (en) Phosphor deposition
JPH04101323A (en) Manufacture of cathode-ray tube
JPH046733A (en) Gas discharge display panel
JPS6153816B2 (en)