US20180308799A1 - Flexible electronic circuits with embedded integrated circuit die and methods of making and using the same - Google Patents

Flexible electronic circuits with embedded integrated circuit die and methods of making and using the same Download PDF

Info

Publication number
US20180308799A1
US20180308799A1 US15/889,009 US201815889009A US2018308799A1 US 20180308799 A1 US20180308799 A1 US 20180308799A1 US 201815889009 A US201815889009 A US 201815889009A US 2018308799 A1 US2018308799 A1 US 2018308799A1
Authority
US
United States
Prior art keywords
flexible
layer
encapsulating layer
substrate
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/889,009
Inventor
Mitul Dalal
Sanjay Gupta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC10 Inc
Original Assignee
MC10 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC10 Inc filed Critical MC10 Inc
Priority to US15/889,009 priority Critical patent/US20180308799A1/en
Publication of US20180308799A1 publication Critical patent/US20180308799A1/en
Assigned to LABORATORY CORPORATION OF AMERICA HOLDINGS, BRAEMAR ENERGY VENTURES III, L.P., ABERDARE PARTNERS IV, LP, ABERDARE VENTURES IV, LP, NORTH BRIDGE VENTURE PARTNERS VI, L.P., NORTH BRIDGE VENTURE PARTNERS 7, L.P., WINDHAM LIFE SCIENCES PARTNERS, LP, WINDHAM-MC INVESTMENT I, LLC reassignment LABORATORY CORPORATION OF AMERICA HOLDINGS SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MC10, INC.
Assigned to MC10, INC. reassignment MC10, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ABERDARE PARTNERS IV, LP, ABERDARE VENTURES IV, LP, BRAEMAR ENERGY VENTURES III, L.P., LABORATORY CORPORATION OF AMERICA HOLDINGS, NORTH BRIDGE VENTURE PARTNERS 7, L.P., NORTH BRIDGE VENTURE PARTNERS VI, L.P., WINDHAM LIFE SCIENCES PARTNERS, LP, WINDHAM-MC INVESTMENT I, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5387Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/0283Stretchable printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/145Arrangements wherein electric components are disposed between and simultaneously connected to two planar printed circuit boards, e.g. Cordwood modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4635Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating flexible circuit boards using additional insulating adhesive materials between the boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J169/00Adhesives based on polycarbonates; Adhesives based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92144Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0635Acrylic polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/07Polyamine or polyimide
    • H01L2924/07025Polyimide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12043Photo diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other

Definitions

  • the present disclosure relates generally to printed circuit boards (PCB) and integrated circuits (IC). More particularly, aspects of this disclosure relate to flexible integrated circuitry with embedded IC die.
  • Integrated circuits are the cornerstone of the information age and the foundation of today's information technology industries.
  • the integrated circuit a.k.a. “chip” or “microchip,” is a set of interconnected electronic components, such as transistors, capacitors, and resistors, which are etched or imprinted onto a tiny wafer of semiconducting material, such as silicon or germanium.
  • Integrated circuits take on various forms including, as some non-limiting examples, microprocessors, amplifiers, Flash memories, application specific integrated circuits (ASICs), static random access memories (SRAMs), digital signal processors (DSPs), dynamic random access memories (DRAMs), erasable programmable read only memories (EPROMs), and programmable logic.
  • Integrated circuits are used in innumerable products, including personal computers, laptop and tablet computers, smartphones, flat-screen televisions, medical instruments, telecommunication and networking equipment, airplanes, watercraft and automobiles.
  • Embodiments of this disclosure are directed to embedding a silicon (Si) die (or other semiconductor dies, including those fabricated from gallium arsenide (GaAs) and those intended for photovoltaic applications) of an integrated circuit in a layer of thermoplastic polymer, polyimide adhesive, or other flexible polymeric adhesives.
  • Si silicon
  • GaAs gallium arsenide
  • thermoplastic polymer polyimide adhesive
  • PI polyimide
  • the substrate with embedded die can be sandwiched between multiple layers of thermoset polymer sheets with electrically conductive metallic coatings.
  • Two sheets of double-sided copper clad polyimide film, for example, can surround the embedding substrate material. The result is a four-metal-layer flexible printed circuit board.
  • the flexible IC module includes a flexible substrate with a semiconductor die attached to the flexible substrate.
  • the flexible IC module also includes an encapsulating layer that is attached or coupled to the flexible substrate.
  • the encapsulating layer includes a thermoplastic resin or a polyimide adhesive, or both, encasing therein the semiconductor die.
  • the encapsulating layer may be an acrylic-based thermally conductive and electrically isolating polyimide adhesive.
  • the encapsulating layer may be a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer, copolymer or blend.
  • the die may be embedded between two flexible substrates, each of which includes a layer of flexible polymer, such as a polyimide sheet, with two layers of conductive material, such as copper cladding, on opposing sides of each layer of flexible polymer. Modules with greater or fewer layers are also envisioned as being within the scope and spirit of the present disclosure.
  • a flexible integrated circuit (IC) package for an extremely flexible electronic device includes a first flexible substrate with a first layer of flexible polymer and a first pair of layers of conductive material. Each layer of conductive material is disposed on a respective side of the layer of flexible polymer.
  • a silicon die is attached to the first flexible substrate. The silicon die includes a wafer of electronic-grade silicon with an integrated circuit formed thereon.
  • the flexible IC module also includes a second flexible substrate with a second layer of flexible polymer and a second pair of layers of conductive material. Each layer of conductive material is disposed on a respective side of the flexible polymer.
  • An encapsulating layer is disposed between and laminated to both the first and second flexible substrates.
  • the encapsulating layer includes a thermoplastic resin or a polyimide adhesive, or both, encasing therein the silicon die.
  • a method for assembling a flexible integrated circuit module includes: providing first and second flexible substrates, each of the flexible substrates including a respective layer of flexible polymer with two layers of conductive material each disposed on a respective side of the layer of flexible polymer; attaching a semiconductor die to the second flexible substrate; laminating an encapsulating layer to the first flexible substrate, the encapsulating layer including a thermoplastic resin or a polyimide adhesive, or both; and, laminating the encapsulating layer and the second flexible substrate to the first flexible substrate such that the thermoplastic resin or the polyimide adhesive, or both, flow around and encase therein the semiconductor die.
  • the encapsulating layer can be heat-set laminated to one substrate and subsequently heat-set laminated to the another substrate without requiring an additional layer of adhesive material. This, in turn, reduces manufacturing and material costs, and helps to minimize the module thickness and overall volume.
  • FIG. 1 is a perspective-view illustration of an example of a flexible electronic circuit system with integrated circuit (IC) packages connected by pliant wirebonded interconnects in accord with aspects of the present disclosure.
  • IC integrated circuit
  • FIG. 2 is a cross-sectional side-view illustration of a representative flexible electronic circuit with a multi-layer IC module in accord with aspects of the present disclosure.
  • FIG. 3 is a cross-sectional side-view illustration of another representative flexible electronic circuit system with a multi-layer IC module in accord with aspects of the present disclosure.
  • FIG. 4 is a workflow diagram illustrating a representative method for assembling a flexible circuit (IC) module in accord with aspects of the present disclosure.
  • flexible and “stretchable” and “bendable,” including roots and derivatives thereof, when used as an adjective to modify electrical circuitry, electrical systems, and electrical devices or apparatuses, are meant to encompass electronics that comprise at least some components having pliant or elastic properties such that the circuit is capable of being flexed, stretched and/or bent, respectively, without tearing or breaking or compromising their electrical characteristics.
  • circuitry having components whether or not the components themselves are individually stretchable, flexible or bendable) that are configured in such a way so as to accommodate and remain functional when applied to a stretchable, bendable, inflatable, or otherwise pliant surface.
  • the circuitry is capable of stretching and/or compressing and/or bending while withstanding high translational strains, such as in the range of ⁇ 100% to 100% and, in some embodiments, up to ⁇ 100,000% to +100,000%, and/or high rotational strains, such as to an extent of 180° or greater, without fracturing or breaking and while substantially maintaining electrical performance found in an unstrained state.
  • the discrete “islands” or “packages” mentioned herein are discrete operative devices, e.g., arranged in a “device island” arrangement, and are themselves capable of performing the functionality described herein, or portions thereof.
  • Such functionality of the operative devices can include, for example, integrated circuits, physical sensors (e.g. temperature, pH, light, radiation, etc.), biological sensors, chemical sensors, amplifiers, A/D and D/A converters, optical collectors, electro-mechanical transducers, piezoelectric actuators, light emitting electronics (e.g., LEDs), and any combination thereof.
  • a purpose and an advantage of using one or more standard are discrete operative devices, e.g., arranged in a “device island” arrangement, and are themselves capable of performing the functionality described herein, or portions thereof.
  • Such functionality of the operative devices can include, for example, integrated circuits, physical sensors (e.g. temperature, pH, light, radiation, etc.), biological sensors, chemical sensors, amplifiers, A/D and D/
  • ICs e.g., CMOS on single crystal silicon
  • CMOS complementary metal-oxide-semiconductor
  • the discrete islands may range from about, but not limited to, 10-100 micrometers ( ⁇ m) in size measured on an edge or by diameter.
  • FIG. 1 illustrates an example of a flexible integrated circuit (IC) system, designated generally as 10 , which may be adapted as or integrated into an “extremely stretchable” IC apparatus.
  • IC integrated circuit
  • the flexible IC system 10 of FIG. 1 comprises various electronic components (collectively referred to as “circuitry”), such as a laminated battery 12 , a set of microchips 14 , a sensor 16 , a sensor hub 18 , antenna 20 , and an assortment of integrated passive devices (IPU) 22 A, 22 B and 22 C.
  • the circuitry is applied, secured, embedded or otherwise affixed to substrate 24 , which is flexible—e.g., stretchable, bendable and/or compressible—as described herein.
  • the substrate 24 can be made of a plastic material or an elastomeric material, or combinations thereof.
  • suitable flexible elastomers for the IC substrate material include polymeric organosilicon compounds (commonly referred to as “silicones”), including Polydimethylsiloxane (PDMS).
  • PDMS Polydimethylsiloxane
  • Other non-limiting examples of materials suitable for the substrate 24 include polyimide, photopatternable silicon, SU8 polymer, PDS polydustrene, parylene and its derivatives and copolymers (parylene-N), ultrahigh molecular weight polyethylene, polyether ether ketones (PEEK), polyurethanes, polylactic acid, polyglycolic acid, polymer composites, silicones/siloxanes, polytetrafluoroethylene, polyamic acid, polymethyl acrylate, and combinations thereof.
  • the substrate 24 can take on any possible number of shapes, sizes, and configurations. In the illustrated example, the substrate is substantially flat and, in some embodiments, configured to be an elongated sheet or strip.
  • the circuitry of FIG. 1 comprises one or more sensors 16 (also termed “sensor devices”) to detect any of various parameters. These parameters can include, in any combination, thermal parameters (e.g., temperature), optical parameters (e.g., infrared energy), electrochemical and biochemical parameters, such as pH, enzymatic activity, blood components (e.g., glucose), ion concentrations, and protein concentrations, electrical parameters (e.g., resistance, conductivity, impedance, etc.), acoustic parameters, tactile parameters (e.g., pressure, surface characteristics, or other topographic features), etc.
  • thermal parameters e.g., temperature
  • optical parameters e.g., infrared energy
  • electrochemical and biochemical parameters such as pH, enzymatic activity, blood components (e.g., glucose), ion concentrations, and protein concentrations
  • electrical parameters e.g., resistance, conductivity, impedance, etc.
  • tactile parameters e.g., pressure, surface characteristics, or other topographic features
  • one or more of the sensors 16 may be a thermocouple, a silicon band gap temperature sensor, a thin-film resistance temperature device, an LED emitter, a photodetector, a piezoelectric sensor, an ultrasonic sensor, an ion sensitive field effect transistor, etc.
  • one or more of the sensors 16 can be coupled to a differential amplifier and/or a buffer and/or an analog to digital converter.
  • the sensor hub 18 which may be in the nature of a microcontroller or digital signal processor (DSP), operates to integrate data signals from the sensor(s) 16 and process such signals. Signals from the sensor(s) 16 can be processed using multiplexing techniques, and can be switched into and processed by one or a few amplifier/logic circuits, including one or more of the microchips 14 .
  • Battery 12 acts as a power source to supply power to the circuitry in the flexible IC system 10 of FIG. 1 .
  • Any suitable battery which is small in size and has a sufficiently long life with a suitable amp-hour capacity may be employed. It is also within the scope of this disclosure to employ alternative means for powering the system 10 , including external power supplies.
  • the flexible IC system 10 also includes a data transmission facility with an RF antenna 20 to wirelessly communicate with external devices.
  • the antenna 20 can take on various forms, including a printed trace antenna coil with vias, which may be operable as a low frequency, high frequency or ultra-high frequency antenna. Other forms of wired and wireless signal transmission are also within the scope of this disclosure.
  • Each integrated passive device (IPD) 22 A- 22 C may comprise, as some non-limiting examples, a filter, a transformer, a photodiode, LED, TUFT, electrode, semiconductor, duplexer, coupler, phase shifter, thin-film device, circuit element, control elements, microprocessor, capacitors, resistors, inductors, buffer or other passive component.
  • the illustrated circuitry is configured in applicable manners, such as those described herein, to be stretchable or compressible and/or to accommodate such stretching/compressing of the substrate 24 .
  • the illustrated circuitry is configured in applicable manners, such as those described herein, to be bendable and/or accommodate such bending of the substrate.
  • each of the illustrated modules or “islands” is connected to one or more adjacent modules with flexible wirebonded interconnects, some of which are designated generally as 26 in FIG. 1 .
  • connection point of the individual interconnects to a device island may be anywhere along the device island edge, or may be at a point on the top surface of the device island (i.e., the surface opposite the substrate 24 ).
  • the bond wires 26 are attached to externally mounted bond pads 28 on the modules and extend to a corresponding externally mounted bond pad 28 on an adjacent module.
  • the bond wires can be attached through any known wirebonding technique, such as: ultrasonic bonding which uses a combination of pressure and ultrasonic vibration bursts to form a metallurgical cold weld; thermocompression bonding which uses a combination of pressure and elevated temperature to form a weld; and thermosonic bonding which uses a combination of pressure, elevated temperature, and ultrasonic vibration bursts to form a weld joint.
  • ultrasonic bonding which uses a combination of pressure and ultrasonic vibration bursts to form a metallurgical cold weld
  • thermocompression bonding which uses a combination of pressure and elevated temperature to form a weld
  • thermosonic bonding which uses a combination of pressure, elevated temperature, and ultrasonic vibration bursts to form a weld joint.
  • FIG. 2 there is shown a cross-sectional illustration of a representative flexible electronic circuit system, designated generally as 100 , with one or more multi-layer IC modules. While differing in appearance, the flexible IC system 100 of FIG. 2 can take on any of the various forms, optional configurations, and functional alternatives described herein with respect to the examples shown in FIGS. 1 and 3 , and thus can include any of the corresponding options and features. Like the system 10 of FIG. 1 , for example, the system 100 of FIG. 2 may be configured as an ultrathin, extremely stretchable integrated circuit system. Moreover, system 100 may comprise an assortment of discrete devices—one of which is represented in FIG.
  • a flexible IC module 102 that are arranged in a “device island” arrangement and electrically coupled, for example, by pliant electrical interconnects. It is contemplated that the system 100 comprise greater or fewer than the number of discrete devices shown in the drawings, each of which may take on alternative forms and configurations.
  • the IC module 102 includes, but is not necessarily limited to, a flexible multi-layer integrated circuit (IC) package or “stack” capable of performing one or more of the functions described herein.
  • the module 102 includes at least one semiconductor die 104 that is seated between at least two flexible substrates 106 A and 106 B.
  • the semiconductor die 104 (also referred to herein as “silicon die”) comprises a wafer of electronic-grade silicon 103 with an integrated circuit (or microchip) 105 formed thereon (e.g., via photolithography or any other known and industry accepted techniques).
  • the semiconductor die 104 is adhered directly to the second flexible substrate 106 B.
  • the microchip 105 may be a “thin chip” configuration with a thickness of about 2-7 ⁇ m or, in some embodiments, a thickness of about 5-7 ⁇ m or, in some embodiments, a thickness of about 3-5 ⁇ m or, in some embodiments, a thickness of about 2-3 ⁇ m.
  • the semiconductor die 104 has a thickness of approximately 10-50 ⁇ m or, in sonic embodiments, a thickness of approximately 35-50 ⁇ m or, in some embodiments, a thickness of approximately 15-25 ⁇ m or, in some embodiments, a thickness of approximately 10-15 ⁇ m, for example.
  • each thin chip can be one or more passive electronic devices and/or one or more active electronic devices.
  • Non-limiting examples of devices that can be embedded according to any of the principles described herein include an amplifier, a transistor, a photodiode array, a photodetector, a sensor, a light-emitting device, a photovoltaic device, a semiconductor laser array, an optical imaging device, a logic gate array, a microprocessor, an opto-electronic device, a microelectromechanical device, a microfluidic device, a nanoelectromechanical device, a thermal device, or other device structures.
  • Silicon die 104 is shown in FIG. 2 sandwiched between first and second flexible substrates 106 A, 106 B, each of which comprises one or more flexible polymeric layers interposed with one or more flexible electrically conductive layers.
  • first flexible substrate 106 A includes two (first) layers of conductive material 110 A, each disposed on a respective side of a (first) layer of flexible polymer 112 A.
  • second flexible substrate 106 B includes two (second) layers of conductive material 110 B, each disposed on a respective side of a (second) layer of flexible polymer 112 B.
  • the layers of flexible polymer 112 A, 112 B may be fabricated as sheets of thermoset polyimide polymer, while the layers of conductive material 110 A, 110 B may be fabricated as metallic sheets or coatings.
  • the flexible polymer layers 112 A, 112 B are fabricated from a liquid crystal polymer or a polyimide polymer, such as KAPTON® film available from DuPontTM.
  • the flexible polymer layers 112 A, 112 B may be fabricated from any of the materials described above with respect to the substrate 24 of FIG. 1 or other materials suitable for flexible electronic circuitry.
  • the polymeric layers 112 A, 112 B can each have a thickness of about 7 ⁇ m to about 85 ⁇ m or, in some embodiments, about 60 ⁇ m to about 85 ⁇ m or, in some embodiments, about 25 ⁇ m to about 50 ⁇ m or, in some embodiments, about 7 ⁇ m to about 10 ⁇ m. It is envisioned that the module 102 comprise greater or fewer layers than that shown in FIG. 2 of the drawings.
  • First and second electrically conductive (polymeric or metallic) layers 110 A, 110 B are disposed on opposing sides of the flexible polymeric layers 112 A, 112 B, as seen in FIG. 2 .
  • layers of copper cladding are applied, e.g., via electroplating, bonding, or other known cladding techniques, to opposing sides of elongated and flat polyimide sheets.
  • the sheets of double-sided copper clad polyimide can subsequently be patterned with circuitry using ablation, etching or other similar patterning processes.
  • Each electrically conductive layer 110 A, 110 B can have a thickness of about 5 ⁇ m to about 20 ⁇ m or, in some embodiments, a thickness of about 15 ⁇ m to about 20 ⁇ m or, in some embodiments, a thickness of about 10 ⁇ m to about 12 ⁇ m or, in some embodiments, a thickness of about 5 ⁇ m to about 8 ⁇ m. Electrically conductive layers can also be fabricated, for example, from other metallic materials, including aluminum or a combination of copper and aluminum, as well as non-metallic materials.
  • Encapsulating layer 108 is disposed between and attached or coupled to the two flexible substrates 106 A, 106 B of FIG. 2 .
  • Encapsulating layer 108 may be a polyimide (PI) adhesive which covers the semiconductor die 104 such that the die 104 is encased between the flexible substrate 106 B and the encapsulating layer 108 .
  • the encapsulating layer 108 is an acrylic-based thermally conductive and electrically isolating polyimide adhesive that is first laminated onto one flexible substrate 106 B, flowing over and surrounding die 104 , and subsequently laminated to another substrate 106 A to form the multi-layer stack.
  • the encapsulating layer 108 can have a thickness of about 15 ⁇ m to about 65 ⁇ m or, in some embodiments, about 20 ⁇ m to about 55 ⁇ m or, in some embodiments, about 25 ⁇ m to about 50 ⁇ m.
  • Encapsulating layer 108 can be a conductive adhesive or a non-conductive (dielectric) adhesive that is configured to withstand the temperatures of assembly and processing.
  • encapsulating layer 108 can be a fluoropolymer adhesive, a polyimide blend adhesive, an epoxy adhesive, or an acrylic adhesive, such as PYRALUX®, Bond-Ply available from DuPontTM, or any combination thereof.
  • Polyimide adhesive is a non-metallic organic adhesive capable of bonding composite laminates and a wide variety of high temperature metallic substrates, such as copper, stainless steel and titanium, while maintaining thermal oxidative stability, high service temperature performance (e.g., 575° F.+), moisture resistance and environmental durability.
  • PI adhesives can be laminated and re-laminated without compromising the structural integrity of the resultant bond.
  • a polyimide adhesive or a thermoplastic resin discussed below in FIG. 3
  • the encapsulating layer can be heat-set laminated to one substrate and subsequently heat-set laminated to another substrate without requiring any additional layers of adhesive material. This, in turn, reduces manufacturing and material costs, and also helps minimize the module's thickness and overall volume.
  • One or more vias can be generated as channels, e.g., with a laser drill, extending through outer layers of the flexible IC package to allow for conductive connections between different layers of the multi-layer stack.
  • the flexible IC module 102 includes a pair of vias 116 that extend through the top layers of the module 102 (e.g., the three-layer substrate 106 A) to the microchip 105 .
  • the vias 116 can be electroplated or filled through sputtering or other known technique to create electrical connections from the top conductive layer 110 A to one or more electrical contact pads of the die.
  • the conductive layers can then be patterned and an overlay can be applied to the outer surface of each conductive layer.
  • the overlay is a non-conductive polymer.
  • the illustrated multi-layer IC package comprises additional or fewer layers than the sandwich constructions shown in FIG. 2 .
  • layer in the description and claims does not necessarily require that particular segment of the sandwich construction be continuous or span the entirety of (i.e., be coextensive with) all remaining layers unless otherwise explicitly stated in the claims. While preferable in some applications, it is not necessary in practice that the layers of one flexible substrate be fabricated from the same materials as the layers of the other flexible substrate. It may be desirable, for some implementations, that the multi-layer package be vacuum laminated as a discrete, unitary structure prior to electrical coupling with one or more adjacent devices.
  • FIG. 3 illustrates another representative flexible electronic circuit system, designated generally as 200 , with one or more multi-layer IC modules.
  • the system 200 of FIG. 3 may comprise an assortment of discrete devices, including a flexible IC module 202 , which are arranged in a “device island” arrangement and electrically coupled, for example, by pliant electrical interconnects.
  • the flexible IC system 200 can take on any of the various forms, optional configurations, and functional alternatives described herein with respect to the other examples shown in the figures, and vice versa, unless explicitly or logically prohibited.
  • the IC module 202 of FIG. 3 includes a flexible multi-layer integrated circuit (IC) package with at least one semiconductor die 204 that is seated between at least two flexible substrates 206 A and 206 B.
  • the semiconductor die 204 is adhered directly to the second flexible substrate 206 B.
  • Each of the first and second flexible substrates 206 A, 206 B comprises one or more flexible polymeric layers interposed with one or more flexible electrically conductive layers.
  • the semiconductor die 204 and flexible substrates 206 A, 206 B of FIG. 3 may be structurally and functionally identical to their counterparts illustrated in 2 ; as such, for brevity and conciseness, a duplicated description of these elements will be omitted.
  • An encapsulating layer 208 is disposed between and attached to the two flexible substrates 206 A, 206 B of FIG. 3 .
  • the encapsulating layer 208 of FIG. 3 may be a thermoplastic polymer, copolymer or polymer blend (collectively referred to therein as “thermoplastic resin”) which covers the semiconductor die 204 such that the die 204 is encased between the flexible substrate 206 B and the encapsulating layer 208 .
  • the encapsulating layer 208 is a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer or copolymer or blend that is first laminated onto one flexible substrate 206 B, flowing over and surrounding die 204 , and subsequently laminated to another substrate 206 A to form the multi-layer stack.
  • the thermoplastic based resins include polycarbonate (PC), polyethylene (PET), and polyurethane (PU), and any composites or copolymer blends of these materials.
  • a copolymer blend can include a polyimide layer on one of these thermoplastic polymers.
  • the encapsulating layer 208 can have a thickness of about 15 ⁇ m to about 65 ⁇ m or, in some embodiments, about 20 ⁇ m to about 55 ⁇ m or, in some embodiments, about 25 ⁇ m to about 50 ⁇ m.
  • thermoplastic polymers can be melted and re-melted back into a plasticized or liquid state, whereas thermoset plastics remain in a permanent solid state. Thermoplastics soften when heated and become more fluid as additional heat is applied; the curing process is reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be reheated and remolded without negatively affecting the material's physical properties.
  • thermoplastic resins that offer various performance benefits, but most materials commonly offer high strength, shrink-resistance and easy bendability.
  • a method 300 is illustrated in FIG. 4 as comprising, first, providing first and second flexible substrates (e.g., substrates 106 A, B of FIG. 2 or substrates 206 A, B of FIG. 3 ) at step 301 .
  • each substrate may include a layer of flexible polymer (e.g., flexible polymer layers 112 A, B of FIG. 2 ) with a layer of conductive material (e.g., conductive material layers 110 A, B of FIG. 2 ) disposed on each side of the flexible polymer layer.
  • the flexible substrates may comprise sheets of double sided copper-clad polyimide film.
  • the method 300 may then require, at step 303 , patterning circuitry on both substrates.
  • a silicon-based semiconductor die (e.g., semiconductor dies 104 and 204 of FIGS. 2 and 3 ) is then placed directly on one flexible substrate (e.g., the second flexible substrate 106 B or 206 B of FIGS. 2 and 3 ) and attached or coupled thereto, e.g., by non-conditioned epoxy, directly to an outer metal layer thereof.
  • the method 300 thereafter includes at step 307 laminating an encapsulating layer (e.g., a PI adhesive or a thermoplastic resin) to the other flexible substrate (e.g., the first flexible substrate 106 A or 206 A of FIGS. 2 and 3 ).
  • an encapsulating layer e.g., a PI adhesive or a thermoplastic resin
  • the flexible substrate with encapsulating layer are then laminated to the other flexible substrate with silicon die such that the thermoplastic resin and/or polyimide adhesive of the encapsulating layer flow around and encase the semiconductor die.
  • one or more vias may then be drilled or otherwise formed through the second flexible substrate and the encapsulating layer to contacts on the semiconductor die.
  • the method 300 may then include electroplating the vias to connect the first flexible substrate to the semiconductor die. Additional circuit patterning may then be performed, and a protective solder mask applied to the outer surfaces of the stack.
  • the aforementioned method includes at least those steps enumerated above. It is also within the scope and spirit of the present disclosure to omit steps, include additional steps, and/or modify the order presented herein. It should be further noted that each of the foregoing methods can be representative of a single sequence of related steps; however, it is expected that each of these method will be practiced in a systematic and repetitive manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Flexible integrated circuit (IC) modules, flexible IC devices, and methods of making and using flexible IC modules are presented herein. A flexible integrated circuit module is disclosed which includes a flexible substrate and a semiconductor die attached to the flexible substrate. An encapsulating layer, which is attached to the flexible substrate, includes a thermoplastic resin and/or a polyimide adhesive encasing therein the semiconductor die. The encapsulating layer may be an acrylic-based thermally conductive and electrically isolating polyimide adhesive. Optionally, the encapsulating layer may be a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer or copolymer or blend. The die may be embedded between two flexible substrates, each of which includes a layer of flexible polymer, such as a polyimide sheet, with two layers of conductive material, such as copper cladding, disposed on opposing sides of the layer of flexible polymer.

Description

    CLAIM OF PRIORITY AND CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of U.S. patent application Ser. No. 14/870,719, which was filed on Sep. 30, 2015, which claims the benefit of U.S. Provisional Patent Application No. 62/059,478, which was filed on Oct. 3, 2014, each of which is hereby incorporated by reference herein in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates generally to printed circuit boards (PCB) and integrated circuits (IC). More particularly, aspects of this disclosure relate to flexible integrated circuitry with embedded IC die.
  • BACKGROUND
  • Integrated circuits (IC) are the cornerstone of the information age and the foundation of today's information technology industries. The integrated circuit, a.k.a. “chip” or “microchip,” is a set of interconnected electronic components, such as transistors, capacitors, and resistors, which are etched or imprinted onto a tiny wafer of semiconducting material, such as silicon or germanium. Integrated circuits take on various forms including, as some non-limiting examples, microprocessors, amplifiers, Flash memories, application specific integrated circuits (ASICs), static random access memories (SRAMs), digital signal processors (DSPs), dynamic random access memories (DRAMs), erasable programmable read only memories (EPROMs), and programmable logic. Integrated circuits are used in innumerable products, including personal computers, laptop and tablet computers, smartphones, flat-screen televisions, medical instruments, telecommunication and networking equipment, airplanes, watercraft and automobiles.
  • Advances in integrated circuit technology and microchip manufacturing have led to a steady decrease in chip size and an increase in circuit density and circuit performance. The scale of semiconductor integration has advanced to the point where a single semiconductor chip can hold tens of millions to over a billion devices in a space smaller than a U.S. penny. Moreover, the width of each conducting line in a modern microchip can be made as small as a fraction of a nanometer. The operating speed and overall performance of a semiconductor chip (e.g., clock speed and signal net switching speeds) has concomitantly increased with the level of integration. To keep pace with increases in on-chip circuit switching frequency and circuit density, semiconductor packages currently offer higher pin counts, greater power dissipation, more protection, and higher speeds than packages of just a few years ago.
  • Conventional microchips are generally rigid structures that are not designed to be bent or stretched during normal operating conditions. In addition, most IC's are typically mounted on a printed circuit board (PCB) that is as thick or thicker than the IC and similarly rigid. Processes using thick and rigid printed circuit boards are generally incompatible for applications requiring stretchable or bendable circuitry. Consequently, many schemes have been proposed for embedding microchips on or in a flexible polymeric substrate. This, in turn, enables many useful device configurations not otherwise possible with rigid silicon-based electronic devices. However, many of these schemes are based on the assumption that the embedded chips are considerably thicker than the individual layers of flexible polymer that make up the PCBs. Such schemes are not compatible for “thin chip” configurations. In addition, available processes for making flexible circuits oftentimes require multiple layers of expensive materials, which not only increases material and manufacturing costs but also results in a composite structure that is undesirably thick.
  • SUMMARY
  • Disclosed herein are flexible electronic circuits with an embedded semiconductor die, including methods of making and methods of using the same. Embodiments of this disclosure are directed to embedding a silicon (Si) die (or other semiconductor dies, including those fabricated from gallium arsenide (GaAs) and those intended for photovoltaic applications) of an integrated circuit in a layer of thermoplastic polymer, polyimide adhesive, or other flexible polymeric adhesives. Aspects of this disclosure describe a stack of flexible substrate materials used in embedding a silicon IC chip directly into the substrate. Some configurations, for example, entrench the die in a layer of polyimide (PI) adhesive. Other configurations entrench the die in a layer of thermoplastic resin. For either of the foregoing examples, the substrate with embedded die can be sandwiched between multiple layers of thermoset polymer sheets with electrically conductive metallic coatings. Two sheets of double-sided copper clad polyimide film, for example, can surround the embedding substrate material. The result is a four-metal-layer flexible printed circuit board.
  • Aspects of the present disclosure are directed to a flexible integrated circuit (IC) module. The flexible IC module includes a flexible substrate with a semiconductor die attached to the flexible substrate. The flexible IC module also includes an encapsulating layer that is attached or coupled to the flexible substrate. The encapsulating layer includes a thermoplastic resin or a polyimide adhesive, or both, encasing therein the semiconductor die. The encapsulating layer may be an acrylic-based thermally conductive and electrically isolating polyimide adhesive. Optionally, the encapsulating layer may be a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer, copolymer or blend. The die may be embedded between two flexible substrates, each of which includes a layer of flexible polymer, such as a polyimide sheet, with two layers of conductive material, such as copper cladding, on opposing sides of each layer of flexible polymer. Modules with greater or fewer layers are also envisioned as being within the scope and spirit of the present disclosure.
  • According to other aspects of the present disclosure, a flexible integrated circuit (IC) package for an extremely flexible electronic device is presented. The flexible IC module includes a first flexible substrate with a first layer of flexible polymer and a first pair of layers of conductive material. Each layer of conductive material is disposed on a respective side of the layer of flexible polymer. A silicon die is attached to the first flexible substrate. The silicon die includes a wafer of electronic-grade silicon with an integrated circuit formed thereon. The flexible IC module also includes a second flexible substrate with a second layer of flexible polymer and a second pair of layers of conductive material. Each layer of conductive material is disposed on a respective side of the flexible polymer. An encapsulating layer is disposed between and laminated to both the first and second flexible substrates. The encapsulating layer includes a thermoplastic resin or a polyimide adhesive, or both, encasing therein the silicon die.
  • Other aspects of the present disclosure are directed to methods for making and methods for using flexible integrated circuits. In one aspect, a method for assembling a flexible integrated circuit module is disclosed. The method includes: providing first and second flexible substrates, each of the flexible substrates including a respective layer of flexible polymer with two layers of conductive material each disposed on a respective side of the layer of flexible polymer; attaching a semiconductor die to the second flexible substrate; laminating an encapsulating layer to the first flexible substrate, the encapsulating layer including a thermoplastic resin or a polyimide adhesive, or both; and, laminating the encapsulating layer and the second flexible substrate to the first flexible substrate such that the thermoplastic resin or the polyimide adhesive, or both, flow around and encase therein the semiconductor die. By using a thermoplastic resin or a polyimide adhesive, the encapsulating layer can be heat-set laminated to one substrate and subsequently heat-set laminated to the another substrate without requiring an additional layer of adhesive material. This, in turn, reduces manufacturing and material costs, and helps to minimize the module thickness and overall volume.
  • The above summary is not intended to represent each embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an exemplification of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of representative embodiments and modes for carrying out the present invention when taken in connection with the accompanying drawings and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective-view illustration of an example of a flexible electronic circuit system with integrated circuit (IC) packages connected by pliant wirebonded interconnects in accord with aspects of the present disclosure.
  • FIG. 2 is a cross-sectional side-view illustration of a representative flexible electronic circuit with a multi-layer IC module in accord with aspects of the present disclosure.
  • FIG. 3 is a cross-sectional side-view illustration of another representative flexible electronic circuit system with a multi-layer IC module in accord with aspects of the present disclosure.
  • FIG. 4 is a workflow diagram illustrating a representative method for assembling a flexible circuit (IC) module in accord with aspects of the present disclosure.
  • The present disclosure is susceptible to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, combinations, subcombinations, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • This disclosure is susceptible of embodiment in many different forms. There are shown in the drawings, and will herein be described in detail, representative embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the present disclosure and is not intended to limit the broad aspects of the disclosure to the embodiments illustrated. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise. For purposes of the present detailed description, unless specifically disclaimed or logically prohibited: the singular includes the plural and vice versa; and the word “including” or “comprising” or “having” means “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, can be used herein in the sense of “at, near, or nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.
  • The terms “flexible” and “stretchable” and “bendable,” including roots and derivatives thereof, when used as an adjective to modify electrical circuitry, electrical systems, and electrical devices or apparatuses, are meant to encompass electronics that comprise at least some components having pliant or elastic properties such that the circuit is capable of being flexed, stretched and/or bent, respectively, without tearing or breaking or compromising their electrical characteristics. These terms are also meant to encompass circuitry having components (whether or not the components themselves are individually stretchable, flexible or bendable) that are configured in such a way so as to accommodate and remain functional when applied to a stretchable, bendable, inflatable, or otherwise pliant surface. In configurations deemed “extremely stretchable,” the circuitry is capable of stretching and/or compressing and/or bending while withstanding high translational strains, such as in the range of −100% to 100% and, in some embodiments, up to −100,000% to +100,000%, and/or high rotational strains, such as to an extent of 180° or greater, without fracturing or breaking and while substantially maintaining electrical performance found in an unstrained state.
  • The discrete “islands” or “packages” mentioned herein are discrete operative devices, e.g., arranged in a “device island” arrangement, and are themselves capable of performing the functionality described herein, or portions thereof. Such functionality of the operative devices can include, for example, integrated circuits, physical sensors (e.g. temperature, pH, light, radiation, etc.), biological sensors, chemical sensors, amplifiers, A/D and D/A converters, optical collectors, electro-mechanical transducers, piezoelectric actuators, light emitting electronics (e.g., LEDs), and any combination thereof. A purpose and an advantage of using one or more standard. ICs (e.g., CMOS on single crystal silicon) is to use high-quality, high-performance, and high-functioning circuit components that are readily accessible and mass-produced with well-known processes, and which provide a range of functionality and generation of data far superior to that produced by passive means. The discrete islands may range from about, but not limited to, 10-100 micrometers (μm) in size measured on an edge or by diameter.
  • Referring now to the drawings, wherein like reference numerals refer to like components throughout the several views, FIG. 1 illustrates an example of a flexible integrated circuit (IC) system, designated generally as 10, which may be adapted as or integrated into an “extremely stretchable” IC apparatus. Many of the disclosed concepts are discussed with reference to the representative systems depicted in the drawings; the systems illustrated herein, however, are provided merely as exemplary applications by which the various inventive aspects and features of this disclosure can be applied. Thus, the novel aspects and features of the present disclosure are not per se limited to the particular arrangements and components presented in the drawings. Moreover, only selected components of the system(s) have been shown and will be described in additional detail hereinbelow. Nevertheless, the systems and devices discussed herein can include numerous additional and alternative features, and other well-known peripheral components, for example, for carrying out the various methods and functions disclosed herein. Some of the illustrated components are optional and, thus, can be removed.
  • The flexible IC system 10 of FIG. 1 comprises various electronic components (collectively referred to as “circuitry”), such as a laminated battery 12, a set of microchips 14, a sensor 16, a sensor hub 18, antenna 20, and an assortment of integrated passive devices (IPU) 22A, 22B and 22C. The circuitry is applied, secured, embedded or otherwise affixed to substrate 24, which is flexible—e.g., stretchable, bendable and/or compressible—as described herein. As such, the substrate 24 can be made of a plastic material or an elastomeric material, or combinations thereof. Examples of suitable flexible elastomers for the IC substrate material include polymeric organosilicon compounds (commonly referred to as “silicones”), including Polydimethylsiloxane (PDMS). Other non-limiting examples of materials suitable for the substrate 24 include polyimide, photopatternable silicon, SU8 polymer, PDS polydustrene, parylene and its derivatives and copolymers (parylene-N), ultrahigh molecular weight polyethylene, polyether ether ketones (PEEK), polyurethanes, polylactic acid, polyglycolic acid, polymer composites, silicones/siloxanes, polytetrafluoroethylene, polyamic acid, polymethyl acrylate, and combinations thereof. The substrate 24 can take on any possible number of shapes, sizes, and configurations. In the illustrated example, the substrate is substantially flat and, in some embodiments, configured to be an elongated sheet or strip.
  • The circuitry of FIG. 1 comprises one or more sensors 16 (also termed “sensor devices”) to detect any of various parameters. These parameters can include, in any combination, thermal parameters (e.g., temperature), optical parameters (e.g., infrared energy), electrochemical and biochemical parameters, such as pH, enzymatic activity, blood components (e.g., glucose), ion concentrations, and protein concentrations, electrical parameters (e.g., resistance, conductivity, impedance, etc.), acoustic parameters, tactile parameters (e.g., pressure, surface characteristics, or other topographic features), etc. In this regard, one or more of the sensors 16 may be a thermocouple, a silicon band gap temperature sensor, a thin-film resistance temperature device, an LED emitter, a photodetector, a piezoelectric sensor, an ultrasonic sensor, an ion sensitive field effect transistor, etc. For some implementations, one or more of the sensors 16 can be coupled to a differential amplifier and/or a buffer and/or an analog to digital converter. The sensor hub 18, which may be in the nature of a microcontroller or digital signal processor (DSP), operates to integrate data signals from the sensor(s) 16 and process such signals. Signals from the sensor(s) 16 can be processed using multiplexing techniques, and can be switched into and processed by one or a few amplifier/logic circuits, including one or more of the microchips 14.
  • Battery 12 acts as a power source to supply power to the circuitry in the flexible IC system 10 of FIG. 1. Any suitable battery which is small in size and has a sufficiently long life with a suitable amp-hour capacity may be employed. It is also within the scope of this disclosure to employ alternative means for powering the system 10, including external power supplies. According to some embodiments, the flexible IC system 10 also includes a data transmission facility with an RF antenna 20 to wirelessly communicate with external devices. The antenna 20 can take on various forms, including a printed trace antenna coil with vias, which may be operable as a low frequency, high frequency or ultra-high frequency antenna. Other forms of wired and wireless signal transmission are also within the scope of this disclosure. Each integrated passive device (IPD) 22A-22C may comprise, as some non-limiting examples, a filter, a transformer, a photodiode, LED, TUFT, electrode, semiconductor, duplexer, coupler, phase shifter, thin-film device, circuit element, control elements, microprocessor, capacitors, resistors, inductors, buffer or other passive component.
  • For embodiments where the substrate 24 is stretchable or compressible, the illustrated circuitry is configured in applicable manners, such as those described herein, to be stretchable or compressible and/or to accommodate such stretching/compressing of the substrate 24. Similarly, for embodiments where the substrate 24 is bendable, but not necessarily stretchable, the illustrated circuitry is configured in applicable manners, such as those described herein, to be bendable and/or accommodate such bending of the substrate. For example, each of the illustrated modules or “islands” is connected to one or more adjacent modules with flexible wirebonded interconnects, some of which are designated generally as 26 in FIG. 1. The connection point of the individual interconnects to a device island may be anywhere along the device island edge, or may be at a point on the top surface of the device island (i.e., the surface opposite the substrate 24). The bond wires 26 are attached to externally mounted bond pads 28 on the modules and extend to a corresponding externally mounted bond pad 28 on an adjacent module. The bond wires can be attached through any known wirebonding technique, such as: ultrasonic bonding which uses a combination of pressure and ultrasonic vibration bursts to form a metallurgical cold weld; thermocompression bonding which uses a combination of pressure and elevated temperature to form a weld; and thermosonic bonding which uses a combination of pressure, elevated temperature, and ultrasonic vibration bursts to form a weld joint.
  • Turning next to FIG. 2, there is shown a cross-sectional illustration of a representative flexible electronic circuit system, designated generally as 100, with one or more multi-layer IC modules. While differing in appearance, the flexible IC system 100 of FIG. 2 can take on any of the various forms, optional configurations, and functional alternatives described herein with respect to the examples shown in FIGS. 1 and 3, and thus can include any of the corresponding options and features. Like the system 10 of FIG. 1, for example, the system 100 of FIG. 2 may be configured as an ultrathin, extremely stretchable integrated circuit system. Moreover, system 100 may comprise an assortment of discrete devices—one of which is represented in FIG. 2 by a flexible IC module 102—that are arranged in a “device island” arrangement and electrically coupled, for example, by pliant electrical interconnects. It is contemplated that the system 100 comprise greater or fewer than the number of discrete devices shown in the drawings, each of which may take on alternative forms and configurations.
  • In the embodiment of FIG. 2, the IC module 102 includes, but is not necessarily limited to, a flexible multi-layer integrated circuit (IC) package or “stack” capable of performing one or more of the functions described herein. The module 102 includes at least one semiconductor die 104 that is seated between at least two flexible substrates 106A and 106B. As shown, the semiconductor die 104 (also referred to herein as “silicon die”) comprises a wafer of electronic-grade silicon 103 with an integrated circuit (or microchip) 105 formed thereon (e.g., via photolithography or any other known and industry accepted techniques). For some embodiments, the semiconductor die 104 is adhered directly to the second flexible substrate 106B. The microchip 105 may be a “thin chip” configuration with a thickness of about 2-7 μm or, in some embodiments, a thickness of about 5-7 μm or, in some embodiments, a thickness of about 3-5 μm or, in some embodiments, a thickness of about 2-3 μm. By comparison, the semiconductor die 104 has a thickness of approximately 10-50 μm or, in sonic embodiments, a thickness of approximately 35-50 μm or, in some embodiments, a thickness of approximately 15-25 μm or, in some embodiments, a thickness of approximately 10-15 μm, for example. In the representative systems, methods and devices described herein, each thin chip can be one or more passive electronic devices and/or one or more active electronic devices. Non-limiting examples of devices that can be embedded according to any of the principles described herein include an amplifier, a transistor, a photodiode array, a photodetector, a sensor, a light-emitting device, a photovoltaic device, a semiconductor laser array, an optical imaging device, a logic gate array, a microprocessor, an opto-electronic device, a microelectromechanical device, a microfluidic device, a nanoelectromechanical device, a thermal device, or other device structures.
  • Silicon die 104 is shown in FIG. 2 sandwiched between first and second flexible substrates 106A, 106B, each of which comprises one or more flexible polymeric layers interposed with one or more flexible electrically conductive layers. As shown, the first flexible substrate 106A includes two (first) layers of conductive material 110A, each disposed on a respective side of a (first) layer of flexible polymer 112A. Likewise, the second flexible substrate 106B includes two (second) layers of conductive material 110B, each disposed on a respective side of a (second) layer of flexible polymer 112B. The layers of flexible polymer 112A, 112B may be fabricated as sheets of thermoset polyimide polymer, while the layers of conductive material 110A, 110B may be fabricated as metallic sheets or coatings. In one specific implementation, the flexible polymer layers 112A, 112B are fabricated from a liquid crystal polymer or a polyimide polymer, such as KAPTON® film available from DuPont™. Alternatively, the flexible polymer layers 112A, 112B may be fabricated from any of the materials described above with respect to the substrate 24 of FIG. 1 or other materials suitable for flexible electronic circuitry. The polymeric layers 112A, 112B can each have a thickness of about 7 μm to about 85 μm or, in some embodiments, about 60 μm to about 85 μm or, in some embodiments, about 25 μm to about 50 μm or, in some embodiments, about 7 μm to about 10 μm. It is envisioned that the module 102 comprise greater or fewer layers than that shown in FIG. 2 of the drawings.
  • First and second electrically conductive (polymeric or metallic) layers 110A, 110B are disposed on opposing sides of the flexible polymeric layers 112A, 112B, as seen in FIG. 2. In an example, layers of copper cladding are applied, e.g., via electroplating, bonding, or other known cladding techniques, to opposing sides of elongated and flat polyimide sheets. The sheets of double-sided copper clad polyimide can subsequently be patterned with circuitry using ablation, etching or other similar patterning processes. Each electrically conductive layer 110A, 110B can have a thickness of about 5 μm to about 20 μm or, in some embodiments, a thickness of about 15 μm to about 20 μm or, in some embodiments, a thickness of about 10 μm to about 12 μm or, in some embodiments, a thickness of about 5 μm to about 8 μm. Electrically conductive layers can also be fabricated, for example, from other metallic materials, including aluminum or a combination of copper and aluminum, as well as non-metallic materials.
  • An encapsulating layer 108 is disposed between and attached or coupled to the two flexible substrates 106A, 106B of FIG. 2. Encapsulating layer 108 may be a polyimide (PI) adhesive which covers the semiconductor die 104 such that the die 104 is encased between the flexible substrate 106B and the encapsulating layer 108. For some embodiments, the encapsulating layer 108 is an acrylic-based thermally conductive and electrically isolating polyimide adhesive that is first laminated onto one flexible substrate 106B, flowing over and surrounding die 104, and subsequently laminated to another substrate 106A to form the multi-layer stack. The encapsulating layer 108 can have a thickness of about 15 μm to about 65 μm or, in some embodiments, about 20 μm to about 55 μm or, in some embodiments, about 25 μm to about 50 μm. Encapsulating layer 108 can be a conductive adhesive or a non-conductive (dielectric) adhesive that is configured to withstand the temperatures of assembly and processing. In some optional and alternative configurations, encapsulating layer 108 can be a fluoropolymer adhesive, a polyimide blend adhesive, an epoxy adhesive, or an acrylic adhesive, such as PYRALUX®, Bond-Ply available from DuPont™, or any combination thereof.
  • Polyimide adhesive is a non-metallic organic adhesive capable of bonding composite laminates and a wide variety of high temperature metallic substrates, such as copper, stainless steel and titanium, while maintaining thermal oxidative stability, high service temperature performance (e.g., 575° F.+), moisture resistance and environmental durability. Unlike many other available adhesive compositions suitable for integrated circuit applications, PI adhesives can be laminated and re-laminated without compromising the structural integrity of the resultant bond. By using a polyimide adhesive or a thermoplastic resin (discussed below in FIG. 3), the encapsulating layer can be heat-set laminated to one substrate and subsequently heat-set laminated to another substrate without requiring any additional layers of adhesive material. This, in turn, reduces manufacturing and material costs, and also helps minimize the module's thickness and overall volume.
  • One or more vias can be generated as channels, e.g., with a laser drill, extending through outer layers of the flexible IC package to allow for conductive connections between different layers of the multi-layer stack. In FIG. 2, for example, the flexible IC module 102 includes a pair of vias 116 that extend through the top layers of the module 102 (e.g., the three-layer substrate 106A) to the microchip 105. Once these vias 116 have been created, the vias 116 can be electroplated or filled through sputtering or other known technique to create electrical connections from the top conductive layer 110A to one or more electrical contact pads of the die. The conductive layers can then be patterned and an overlay can be applied to the outer surface of each conductive layer. In some implementations, the overlay is a non-conductive polymer.
  • It is contemplated that the illustrated multi-layer IC package comprises additional or fewer layers than the sandwich constructions shown in FIG. 2. It should also be noted that the use of the term “layer” in the description and claims does not necessarily require that particular segment of the sandwich construction be continuous or span the entirety of (i.e., be coextensive with) all remaining layers unless otherwise explicitly stated in the claims. While preferable in some applications, it is not necessary in practice that the layers of one flexible substrate be fabricated from the same materials as the layers of the other flexible substrate. It may be desirable, for some implementations, that the multi-layer package be vacuum laminated as a discrete, unitary structure prior to electrical coupling with one or more adjacent devices.
  • FIG. 3 illustrates another representative flexible electronic circuit system, designated generally as 200, with one or more multi-layer IC modules. Like reference numerals are used in FIG. 3 to indicate similar structure from FIG. 2. For example, the system 200 of FIG. 3 may comprise an assortment of discrete devices, including a flexible IC module 202, which are arranged in a “device island” arrangement and electrically coupled, for example, by pliant electrical interconnects. Moreover, the flexible IC system 200 can take on any of the various forms, optional configurations, and functional alternatives described herein with respect to the other examples shown in the figures, and vice versa, unless explicitly or logically prohibited.
  • Similar to the example illustrated in FIG. 2, the IC module 202 of FIG. 3 includes a flexible multi-layer integrated circuit (IC) package with at least one semiconductor die 204 that is seated between at least two flexible substrates 206A and 206B. For some embodiments, the semiconductor die 204 is adhered directly to the second flexible substrate 206B. Each of the first and second flexible substrates 206A, 206B comprises one or more flexible polymeric layers interposed with one or more flexible electrically conductive layers. While not per se required to practice the inventive aspects disclosed herein, the semiconductor die 204 and flexible substrates 206A, 206B of FIG. 3 may be structurally and functionally identical to their counterparts illustrated in 2; as such, for brevity and conciseness, a duplicated description of these elements will be omitted.
  • An encapsulating layer 208 is disposed between and attached to the two flexible substrates 206A, 206B of FIG. 3. In addition to or in lieu of the polyimide adhesive described in FIG. 2, the encapsulating layer 208 of FIG. 3 may be a thermoplastic polymer, copolymer or polymer blend (collectively referred to therein as “thermoplastic resin”) which covers the semiconductor die 204 such that the die 204 is encased between the flexible substrate 206B and the encapsulating layer 208. For some embodiments, the encapsulating layer 208 is a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer or copolymer or blend that is first laminated onto one flexible substrate 206B, flowing over and surrounding die 204, and subsequently laminated to another substrate 206A to form the multi-layer stack. In some non-limiting examples, the thermoplastic based resins include polycarbonate (PC), polyethylene (PET), and polyurethane (PU), and any composites or copolymer blends of these materials. A copolymer blend can include a polyimide layer on one of these thermoplastic polymers. The encapsulating layer 208 can have a thickness of about 15 μm to about 65 μm or, in some embodiments, about 20 μm to about 55 μm or, in some embodiments, about 25 μm to about 50 μm.
  • A functional advantage of using a thermoplastic core over a thermoset core to encase the die(s) is that thermoplastic polymers can be melted and re-melted back into a plasticized or liquid state, whereas thermoset plastics remain in a permanent solid state. Thermoplastics soften when heated and become more fluid as additional heat is applied; the curing process is reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be reheated and remolded without negatively affecting the material's physical properties. There are multiple thermoplastic resins that offer various performance benefits, but most materials commonly offer high strength, shrink-resistance and easy bendability.
  • Also disclosed herein are methods for manufacturing flexible integrated circuits. These methods will be described with reference to the various configurations and features shown in FIGS. 1 through 3 of the drawings; such reference is being provided purely by way of explanation and clarification. In an example, a method 300 is illustrated in FIG. 4 as comprising, first, providing first and second flexible substrates (e.g., substrates 106A, B of FIG. 2 or substrates 206A, B of FIG. 3) at step 301. As indicated above, each substrate may include a layer of flexible polymer (e.g., flexible polymer layers 112A, B of FIG. 2) with a layer of conductive material (e.g., conductive material layers 110A, B of FIG. 2) disposed on each side of the flexible polymer layer. As indicated above, the flexible substrates may comprise sheets of double sided copper-clad polyimide film. The method 300 may then require, at step 303, patterning circuitry on both substrates.
  • At step 305, a silicon-based semiconductor die (e.g., semiconductor dies 104 and 204 of FIGS. 2 and 3) is then placed directly on one flexible substrate (e.g., the second flexible substrate 106B or 206B of FIGS. 2 and 3) and attached or coupled thereto, e.g., by non-conditioned epoxy, directly to an outer metal layer thereof. As seen in FIG. 4, the method 300 thereafter includes at step 307 laminating an encapsulating layer (e.g., a PI adhesive or a thermoplastic resin) to the other flexible substrate (e.g., the first flexible substrate 106A or 206A of FIGS. 2 and 3). At step 3-9, the flexible substrate with encapsulating layer are then laminated to the other flexible substrate with silicon die such that the thermoplastic resin and/or polyimide adhesive of the encapsulating layer flow around and encase the semiconductor die. At step 311, one or more vias may then be drilled or otherwise formed through the second flexible substrate and the encapsulating layer to contacts on the semiconductor die. The method 300 may then include electroplating the vias to connect the first flexible substrate to the semiconductor die. Additional circuit patterning may then be performed, and a protective solder mask applied to the outer surfaces of the stack.
  • In some embodiments, the aforementioned method includes at least those steps enumerated above. It is also within the scope and spirit of the present disclosure to omit steps, include additional steps, and/or modify the order presented herein. It should be further noted that each of the foregoing methods can be representative of a single sequence of related steps; however, it is expected that each of these method will be practiced in a systematic and repetitive manner.
  • The present disclosure is not limited to the precise construction and compositions disclosed herein; any and all modifications, changes, and variations apparent from the foregoing descriptions are within the spirit and scope of the disclosure as defined in the appended claims. Moreover, the present concepts expressly include any and all combinations and subcombinations of the preceding elements and aspects.

Claims (7)

1-14. (canceled)
15. A method for assembling a flexible circuit (IC) module, the method
comprising:
providing first and second flexible substrates, each of the flexible substrates including a respective layer of flexible polymer with two layers of conductive material each disposed on a respective side of the layer of flexible polymer;
attaching a semiconductor die to the second flexible substrate;
laminating an encapsulating layer to the first flexible substrate, the encapsulating layer including a thermoplastic resin or a polyimide adhesive, or both; and
laminating the encapsulating layer and the first flexible substrate to the second flexible substrate such that the thermoplastic resin or the polyimide adhesive, or both, flow around and encase therein the semiconductor die.
16. The method of claim 15, further comprising patterning circuitry on one or more of the layers of conductive material of the first and second flexible substrates.
17. The method of claim 15, further comprising laser drilling one or more vias through the first flexible substrate to the semiconductor die.
18. The method of claim 17, further comprising electroplating the one or more vias to connect the first flexible substrate to the semiconductor die.
19. The method of claim 15, wherein the encapsulating layer is the polyimide adhesive, the polyimide adhesive comprising an acrylic-based thermally conductive and electrically isolating polyimide adhesive.
20. The method of claim 15, wherein the encapsulating layer is the thermoplastic resin, the thermoplastic resin comprising a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer or copolymer or blend.
US15/889,009 2014-10-03 2018-02-05 Flexible electronic circuits with embedded integrated circuit die and methods of making and using the same Abandoned US20180308799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/889,009 US20180308799A1 (en) 2014-10-03 2018-02-05 Flexible electronic circuits with embedded integrated circuit die and methods of making and using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462059478P 2014-10-03 2014-10-03
US14/870,719 US9899330B2 (en) 2014-10-03 2015-09-30 Flexible electronic circuits with embedded integrated circuit die
US15/889,009 US20180308799A1 (en) 2014-10-03 2018-02-05 Flexible electronic circuits with embedded integrated circuit die and methods of making and using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/870,719 Division US9899330B2 (en) 2014-10-03 2015-09-30 Flexible electronic circuits with embedded integrated circuit die

Publications (1)

Publication Number Publication Date
US20180308799A1 true US20180308799A1 (en) 2018-10-25

Family

ID=55631611

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/870,719 Active US9899330B2 (en) 2014-10-03 2015-09-30 Flexible electronic circuits with embedded integrated circuit die
US15/889,009 Abandoned US20180308799A1 (en) 2014-10-03 2018-02-05 Flexible electronic circuits with embedded integrated circuit die and methods of making and using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/870,719 Active US9899330B2 (en) 2014-10-03 2015-09-30 Flexible electronic circuits with embedded integrated circuit die

Country Status (7)

Country Link
US (2) US9899330B2 (en)
EP (1) EP3201946A4 (en)
JP (1) JP2017531919A (en)
KR (1) KR20170063936A (en)
CN (1) CN106716627A (en)
CA (1) CA2959699C (en)
WO (1) WO2016054512A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
US10567152B2 (en) 2016-02-22 2020-02-18 Mc10, Inc. System, devices, and method for on-body data and power transmission
US10986465B2 (en) 2015-02-20 2021-04-20 Medidata Solutions, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
US11145580B1 (en) 2020-03-25 2021-10-12 International Business Machines Corporation IoT and AI system package with solid-state battery enhanced performance
US11239150B2 (en) 2020-03-25 2022-02-01 International Business Machines Corporation Battery-free and substrate-free IoT and AI system package
US20230050951A1 (en) * 2021-08-06 2023-02-16 Au Optronics Corporation Display device and manufacturing method thereof
US11992326B2 (en) 2021-09-27 2024-05-28 Medidata Solutions, Inc. Method and system for measuring perspiration

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9226402B2 (en) 2012-06-11 2015-12-29 Mc10, Inc. Strain isolation structures for stretchable electronics
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
WO2014058473A1 (en) 2012-10-09 2014-04-17 Mc10, Inc. Conformal electronics integrated with apparel
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9706647B2 (en) 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
EP3030873A4 (en) 2013-08-05 2017-07-05 Mc10, Inc. Flexible temperature sensor including conformable electronics
US10467926B2 (en) 2013-10-07 2019-11-05 Mc10, Inc. Conformal sensor systems for sensing and analysis
WO2015077559A1 (en) 2013-11-22 2015-05-28 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
EP3092661A4 (en) 2014-01-06 2017-09-27 Mc10, Inc. Encapsulated conformal electronic systems and devices, and methods of making and using the same
CN106063392B (en) 2014-03-04 2020-06-02 Mc10股份有限公司 Multi-part flexible enclosure for electronic devices
US9899330B2 (en) * 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
USD781270S1 (en) 2014-10-15 2017-03-14 Mc10, Inc. Electronic device having antenna
JPWO2016080333A1 (en) * 2014-11-21 2017-08-24 株式会社村田製作所 module
JP6620318B2 (en) 2014-11-27 2019-12-18 パナソニックIpマネジメント株式会社 Sheet-like stretchable structure
US10653332B2 (en) 2015-07-17 2020-05-19 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
US10755158B2 (en) * 2015-07-30 2020-08-25 Sony Corporation Electric circuit, communication device, and method for manufacturing electric circuit
US10709384B2 (en) 2015-08-19 2020-07-14 Mc10, Inc. Wearable heat flux devices and methods of use
CN108290070A (en) 2015-10-01 2018-07-17 Mc10股份有限公司 Method and system for interacting with virtual environment
CN108289630A (en) 2015-10-05 2018-07-17 Mc10股份有限公司 Method and system for nerve modulation and stimulation
EP3420733A4 (en) 2016-02-22 2019-06-26 Mc10, Inc. System, device, and method for coupled hub and sensor node on-body acquisition of sensor information
US11154235B2 (en) 2016-04-19 2021-10-26 Medidata Solutions, Inc. Method and system for measuring perspiration
US20190287881A1 (en) 2018-03-19 2019-09-19 Stmicroelectronics S.R.L. Semiconductor package with die stacked on surface mounted devices
KR102538704B1 (en) * 2018-12-04 2023-06-01 에스케이하이닉스 주식회사 Stack package including flexible bridge die
US11076491B2 (en) 2019-10-16 2021-07-27 Compass Technology Company Limited Integrated electro-optical flexible circuit board
US11464451B1 (en) 2020-03-11 2022-10-11 Huxley Medical, Inc. Patch for improved biometric data capture and related processes
US11123011B1 (en) 2020-03-23 2021-09-21 Nix, Inc. Wearable systems, devices, and methods for measurement and analysis of body fluids
US11610851B2 (en) 2020-04-29 2023-03-21 Stmicroelectronics, Inc. Die embedded in substrate with stress buffer
US11660005B1 (en) 2021-06-04 2023-05-30 Huxley Medical, Inc. Processing and analyzing biometric data

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112726A (en) * 1986-12-30 1992-05-12 E. I. Du Pont De Nemours And Company Embedded catalyst receptors for metallization of dielectrics
US5356698A (en) * 1990-03-27 1994-10-18 Hitachi, Ltd. Adhesive agent for substrate of electroless plating, printed circuit board using same, and method of producing same
US5374469A (en) * 1991-09-19 1994-12-20 Nitto Denko Corporation Flexible printed substrate
US5426263A (en) * 1993-12-23 1995-06-20 Motorola, Inc. Electronic assembly having a double-sided leadless component
US5703400A (en) * 1995-12-04 1997-12-30 General Electric Company Fabrication and structures of two-sided molded circuit modules with flexible interconnect layers
US6197407B1 (en) * 1998-05-14 2001-03-06 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6458234B1 (en) * 1997-05-16 2002-10-01 Micron Technology, Inc. Methods of fixturing a flexible substrate and a processing carrier and methods of processing a flexible substrate
US20030038379A1 (en) * 2001-08-20 2003-02-27 Mitsui Mining & Smelting Co., Ltd. Laminate film for mounting electronic devices and film carrier tape for mounting electronic devices
US20030082363A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Industrial Co., Ltd. Prepreg and circuit board and method for manufacturing the same
US6703114B1 (en) * 2002-10-17 2004-03-09 Arlon Laminate structures, methods for production thereof and uses therefor
US20050006142A1 (en) * 2003-07-09 2005-01-13 Matsushita Electric Industrial Co., Ltd. Circuit board with in-built electronic component and method for manufacturing the same
US6902949B2 (en) * 2001-04-02 2005-06-07 Nitto Denko Corporation Multi-layer wiring circuit board and method for producing the same
US20060032669A1 (en) * 2004-08-11 2006-02-16 Sony Corporation Electronic circuit device
US20060056161A1 (en) * 2004-09-10 2006-03-16 Samsung Electronics Co., Ltd. Flexible device, flexible pressure sensor, and fabrication method thereof
US20060084254A1 (en) * 2004-01-06 2006-04-20 Attarwala Abbas I Method for making electronic packages
US7045897B2 (en) * 2004-07-28 2006-05-16 Endicott Interconnect Technologies, Inc. Electrical assembly with internal memory circuitized substrate having electronic components positioned thereon, method of making same, and information handling system utilizing same
US7045884B2 (en) * 2002-10-04 2006-05-16 International Rectifier Corporation Semiconductor device package
US20060292756A1 (en) * 2005-06-24 2006-12-28 Cardiac Pacemakers, Inc. Flip chip die assembly using thin flexible substrates
US7255919B2 (en) * 2002-03-13 2007-08-14 Mitsui Mining & Smelting Co., Ltd. Mold release layer transferring film and laminate film
US7293353B2 (en) * 2005-01-20 2007-11-13 Samsung Electro Mechanics Co., Ltd. Method of fabricating rigid flexible printed circuit board
US20070272124A1 (en) * 2003-12-26 2007-11-29 Toyo Boseki Kabushiki Kaisha Polyimide film
US20080054875A1 (en) * 2006-09-01 2008-03-06 Ivi Smart Technologies, Inc. Biometric sensor and sensor panel
US20100002402A1 (en) * 2008-03-05 2010-01-07 Rogers John A Stretchable and Foldable Electronic Devices
US7656673B1 (en) * 2004-05-25 2010-02-02 University Of South Florida Wireless micro-electro-opto-fluidic-mechanical foldable flex system
US20100090781A1 (en) * 2005-09-30 2010-04-15 Kenichi Yamamoto Sheet-like composite electronic component and method for manufacturing same
US7759167B2 (en) * 2005-11-23 2010-07-20 Imec Method for embedding dies
US20100317132A1 (en) * 2009-05-12 2010-12-16 Rogers John A Printed Assemblies of Ultrathin, Microscale Inorganic Light Emitting Diodes for Deformable and Semitransparent Displays
US20110051384A1 (en) * 2006-02-02 2011-03-03 Arno Kriechbaum Printed circuit board element having at least one component embedded therein and method for embedding at least one component in a printed circuit board element
US20110277813A1 (en) * 2008-09-24 2011-11-17 Rogers John A Arrays of Ultrathin Silicon Solar Microcells
US20110284268A1 (en) * 2010-05-20 2011-11-24 3M Innovative Properties Company Flexible circuit coverfilm adhesion enhancement
US8110118B2 (en) * 2006-10-18 2012-02-07 Yazaki Corporation Method of manufacturing circuit board
US8143530B1 (en) * 2010-09-17 2012-03-27 Endicott Interconnect Technologies, Inc. Liquid crystal polymer layer for encapsulation and improved hermiticity of circuitized substrates
US20120091594A1 (en) * 2010-10-18 2012-04-19 Christof Landesberger Method of Producing a Chip Package, and Chip Package
US8198621B2 (en) * 2004-06-04 2012-06-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US20120261174A1 (en) * 2009-12-24 2012-10-18 Toshiaki Chuma Conductive connecting material, method for producing electronic component, electronic member with conductive connecting material and electronic component
US8319334B2 (en) * 2009-08-10 2012-11-27 Infineon Technologies Ag Embedded laminated device
US20130099358A1 (en) * 2011-05-27 2013-04-25 Mc10, Inc. Electronic, optical and/or mechanical apparatus and systems and methods for fabricating same
US8547701B2 (en) * 2004-11-26 2013-10-01 Imbera Electronics Oy Electronics module and method for manufacturing the same
US20140110859A1 (en) * 2012-10-09 2014-04-24 Mc10, Inc. Embedding thin chips in polymer
US20150156864A1 (en) * 2013-12-03 2015-06-04 Shinko Electric Industries Co., Ltd. Electronic Device
US20150200147A1 (en) * 2014-01-10 2015-07-16 Sfi Electronics Technology Inc. Miniaturized smd diode package and prscess for producing the same
US20150245487A1 (en) * 2014-02-25 2015-08-27 Jin Gyu Kim Semiconductor package
US20150336352A1 (en) * 2014-05-23 2015-11-26 Airbus Defence and Space GmbH Sandwich Component and Method for Producing a Sandwich Component
US20160059535A1 (en) * 2014-08-29 2016-03-03 Materion Corporation Conductive bond foils
US20160099227A1 (en) * 2014-10-06 2016-04-07 Mc10, Inc. Flexible interconnects for modules of integrated circuits and methods of making and using the same
US20170246849A1 (en) * 2016-02-25 2017-08-31 Ford Motor Company Method of manufacturing a lightweight laminate
US9899330B2 (en) * 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die

Family Cites Families (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716861A (en) 1971-03-22 1973-02-13 J Root Serpentine antenna mounted on a rotatable capacitive coupler
US3805427A (en) 1972-12-18 1974-04-23 H Epstein Medical alarm bracelet
CA1105565A (en) 1978-09-12 1981-07-21 Kaufman (John G.) Hospital Products Ltd. Electrosurgical electrode
US4416288A (en) 1980-08-14 1983-11-22 The Regents Of The University Of California Apparatus and method for reconstructing subsurface electrophysiological patterns
US4658153A (en) 1984-06-18 1987-04-14 Amnon Brosh Planar coil apparatus for providing a frequency output vs. position
US6387052B1 (en) 1991-01-29 2002-05-14 Edwards Lifesciences Corporation Thermodilution catheter having a safe, flexible heating element
AU654552B2 (en) 1991-04-05 1994-11-10 Medtronic, Inc. Subcutaneous multi-electrode sensing system
JPH0587511A (en) 1991-07-24 1993-04-06 Yamaha Corp Bending detection device
US5272375A (en) 1991-12-26 1993-12-21 E. I. Du Pont De Nemours And Company Electronic assembly with optimum heat dissipation
US5491651A (en) 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
US5306917A (en) 1992-08-12 1994-04-26 Reliant Laser Corporation Electro-optical system for measuring and analyzing accumulated short-wave and long-wave ultraviolet radiation exposure
US6233491B1 (en) 1993-03-16 2001-05-15 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5617870A (en) 1993-04-29 1997-04-08 Scimed Life Systems, Inc. Intravascular flow measurement system
US5326521A (en) 1993-05-26 1994-07-05 East Douglas A Method for preparing silicone mold tooling
CA2170402C (en) 1993-08-24 2000-07-18 Michael P. Allen Novel disposable electronic assay device
US5360987A (en) 1993-11-17 1994-11-01 At&T Bell Laboratories Semiconductor photodiode device with isolation region
EP1213754A3 (en) * 1994-03-18 2005-05-25 Hitachi Chemical Co., Ltd. Fabrication process of semiconductor package and semiconductor package
US5454270A (en) 1994-06-06 1995-10-03 Motorola, Inc. Hermetically sealed pressure sensor and method thereof
US5567975A (en) 1994-06-30 1996-10-22 Santa Barbara Research Center Group II-VI radiation detector for simultaneous visible and IR detection
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5612513A (en) 1995-09-19 1997-03-18 Micron Communications, Inc. Article and method of manufacturing an enclosed electrical circuit using an encapsulant
SE9600334D0 (en) 1996-01-30 1996-01-30 Radi Medical Systems Combined flow, pressure and temperature sensor
JP3957803B2 (en) 1996-02-22 2007-08-15 キヤノン株式会社 Photoelectric conversion device
US5880369A (en) 1996-03-15 1999-03-09 Analog Devices, Inc. Micromachined device with enhanced dimensional control
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US6063046A (en) 1997-04-11 2000-05-16 Allum; John H. Method and apparatus for the diagnosis and rehabilitation of balance disorders
US20050096513A1 (en) 1997-11-11 2005-05-05 Irvine Sensors Corporation Wearable biomonitor with flexible thinned integrated circuit
US6479890B1 (en) 1998-01-22 2002-11-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Semiconductor microsystem embedded in flexible foil
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
JP2000195904A (en) * 1998-12-25 2000-07-14 Sumitomo Bakelite Co Ltd Assembling method for semiconductor element
IT1310000B1 (en) 1999-01-26 2002-02-05 Consiglio Nazionale Ricerche OPTICAL FIBER SENSOR AND PHOTOCROMIC TRANSDUCER FOR PHOTOMETRY ERADIOMETRY AND RELATED METHOD
US20020082515A1 (en) 1999-07-01 2002-06-27 Campbell Thomas H. Thermography catheter
GB2355116B (en) 1999-10-08 2003-10-08 Nokia Mobile Phones Ltd An antenna assembly and method of construction
US6641860B1 (en) 2000-01-03 2003-11-04 T-Ink, L.L.C. Method of manufacturing printed circuit boards
US6489178B2 (en) 2000-01-26 2002-12-03 Texas Instruments Incorporated Method of fabricating a molded package for micromechanical devices
AU2001251134B2 (en) 2000-03-31 2006-02-02 Angiodynamics, Inc. Tissue biopsy and treatment apparatus and method
EP1310992A1 (en) 2000-06-14 2003-05-14 Sekisui Chemical Co., Ltd. Microparticle arrangement film, electrical connection film, electrical connection structure, and microparticle arrangement method
US6511478B1 (en) 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
US6640120B1 (en) 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US6775906B1 (en) 2000-10-20 2004-08-17 Silverbrook Research Pty Ltd Method of manufacturing an integrated circuit carrier
US6421016B1 (en) 2000-10-23 2002-07-16 Motorola, Inc. Antenna system with channeled RF currents
US6743982B2 (en) 2000-11-29 2004-06-01 Xerox Corporation Stretchable interconnects using stress gradient films
US6603440B2 (en) 2000-12-14 2003-08-05 Protura Wireless, Inc. Arrayed-segment loop antenna
US6944482B2 (en) 2001-01-22 2005-09-13 Wildseed Ltd. Visualization supplemented wireless mobile telephony
US20030017848A1 (en) 2001-07-17 2003-01-23 Engstrom G. Eric Personalizing electronic devices and smart covering
EP1370322B1 (en) 2001-03-08 2005-11-09 Medtronic, Inc. Lead with adjustable angular and spatial relationships between electrodes
US6600363B2 (en) 2001-04-05 2003-07-29 Cornell Research Foundation, Inc. Folded floating-gate differential pair amplifier
US6477417B1 (en) 2001-04-12 2002-11-05 Pacesetter, Inc. System and method for automatically selecting electrode polarity during sensing and stimulation
KR100380107B1 (en) 2001-04-30 2003-04-11 삼성전자주식회사 Circuit board having a heating means and multichip package having hermetic sealing part
US6410971B1 (en) 2001-07-12 2002-06-25 Ferrotec (Usa) Corporation Thermoelectric module with thin film substrates
US6770966B2 (en) 2001-07-31 2004-08-03 Intel Corporation Electronic assembly including a die having an integrated circuit and a layer of diamond to transfer heat
JP4638626B2 (en) 2001-08-01 2011-02-23 北川工業株式会社 Magnetic body molding method, magnetic body, and printed circuit board
AU2002330718A1 (en) 2001-09-03 2003-03-18 National Microelectronic Research Centre University College Cork - National University Of Ireland Co Integrated circuit structure and a method of making an integrated circuit structure
US7146221B2 (en) 2001-11-16 2006-12-05 The Regents Of The University Of California Flexible electrode array for artifical vision
AU2002360407A1 (en) 2001-11-20 2003-09-02 California Institute Of Technology Neural prosthetic micro system
US20040092806A1 (en) 2001-12-11 2004-05-13 Sagon Stephen W Microelectrode catheter for mapping and ablation
DE10202123A1 (en) 2002-01-21 2003-07-31 Infineon Technologies Ag Method and device for integrating electronics in textiles
US20030162507A1 (en) 2002-02-20 2003-08-28 Vatt Gregory B. Semiconductor structure for high speed digital and radio frequency processing
US20060134713A1 (en) 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
US6930608B2 (en) 2002-05-14 2005-08-16 Motorola, Inc Apparel having multiple alternative sensors and corresponding method
US6906415B2 (en) * 2002-06-27 2005-06-14 Micron Technology, Inc. Semiconductor device assemblies and packages including multiple semiconductor devices and methods
US6980777B2 (en) 2002-07-31 2005-12-27 Nokia Corporation Smart pouch cover for mobile device
US6965160B2 (en) 2002-08-15 2005-11-15 Micron Technology, Inc. Semiconductor dice packages employing at least one redistribution layer
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US20040085469A1 (en) 2002-10-30 2004-05-06 Eastman Kodak Company Method to eliminate bus voltage drop effects for pixel source follower amplifiers
JP2006509537A (en) 2002-11-14 2006-03-23 エシコン・エンド−サージェリィ・インコーポレイテッド Method and apparatus for detecting tissue cells
JP2004179258A (en) 2002-11-25 2004-06-24 Hamamatsu Photonics Kk Ultraviolet sensor
JP4554152B2 (en) * 2002-12-19 2010-09-29 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor chip
JP2006517117A (en) 2003-01-16 2006-07-20 ガリル メディカル リミテッド Apparatus, system, and method for detecting, locating, and identifying plaque-induced stenosis of blood vessels
US6894265B2 (en) 2003-01-31 2005-05-17 Foveon, Inc. Vertical color filter sensor group and semiconductor integrated circuit fabrication method for fabricating same
US20040149921A1 (en) 2003-02-05 2004-08-05 Alexander Smyk Personal solar adviser
US7187060B2 (en) * 2003-03-13 2007-03-06 Sanyo Electric Co., Ltd. Semiconductor device with shield
US7491892B2 (en) 2003-03-28 2009-02-17 Princeton University Stretchable and elastic interconnects
US7337012B2 (en) 2003-04-30 2008-02-26 Lawrence Livermore National Security, Llc Stretchable polymer-based electronic device
US7265298B2 (en) 2003-05-30 2007-09-04 The Regents Of The University Of California Serpentine and corduroy circuits to enhance the stretchability of a stretchable electronic device
WO2004112356A1 (en) 2003-06-12 2004-12-23 Nokia Corporation Mobile communication device cover and method for its operation
US7413919B2 (en) 2003-06-20 2008-08-19 Acellent Technologies, Inc. Method of manufacturing a structural health monitoring layer
CA2539547A1 (en) 2003-08-20 2005-03-03 Philometron, Inc. Hydration monitoring
JP4050682B2 (en) 2003-09-29 2008-02-20 日東電工株式会社 Method for manufacturing flexible printed circuit board
US20050113744A1 (en) 2003-11-21 2005-05-26 Cyberkinetics, Inc. Agent delivery systems and related methods under control of biological electrical signals
KR20050066128A (en) 2003-12-26 2005-06-30 주식회사 팬택앤큐리텔 Change structure and method of memory card using change cover
US7150745B2 (en) 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US20060003709A1 (en) 2004-06-30 2006-01-05 Nokia Corporation Protective enclosure for a mobile terminal
EP1721237B1 (en) 2004-02-27 2012-08-29 Simon Richard Daniel Wearable modular interface strap
US20050203366A1 (en) 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US7727228B2 (en) 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US7259030B2 (en) 2004-03-29 2007-08-21 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US7302751B2 (en) 2004-04-30 2007-12-04 Hewlett-Packard Development Company, L.P. Method of fabricating a rat's nest RFID antenna
CN100583432C (en) * 2004-05-06 2010-01-20 Nxp股份有限公司 A method of assembly and assembly thus made
JP4471735B2 (en) * 2004-05-31 2010-06-02 三洋電機株式会社 Circuit equipment
KR101260981B1 (en) 2004-06-04 2013-05-10 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
EP1605502A1 (en) 2004-06-08 2005-12-14 Interuniversitair Microelektronica Centrum Vzw Transfer method for the manufacturing of electronic devices
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US6987314B1 (en) 2004-06-08 2006-01-17 Amkor Technology, Inc. Stackable semiconductor package with solder on pads on which second semiconductor package is stacked
EP1761792A2 (en) 2004-06-17 2007-03-14 Koninklijke Philips Electronics N.V. Flexible and wearable radio frequency coil garments for magnetic resonance imaging
US20080114228A1 (en) 2004-08-31 2008-05-15 Mccluskey Joseph Method Of Manufacturing An Auto-Calibrating Sensor
JP2006108431A (en) 2004-10-06 2006-04-20 Sharp Corp Semiconductor device
US7183140B2 (en) * 2004-11-08 2007-02-27 Intel Corporation Injection molded metal bonding tray for integrated circuit device fabrication
JP4517845B2 (en) 2004-12-13 2010-08-04 日本電気株式会社 Flexible cable and method for manufacturing electronic device
US8118740B2 (en) 2004-12-20 2012-02-21 Ipventure, Inc. Moisture sensor for skin
US20090291508A1 (en) 2008-05-20 2009-11-26 Rapid Pathogen Screening Inc. Nanoparticles in diagnostic tests
CN101164356A (en) 2005-02-15 2008-04-16 沃达方集团有限公司 Improving security of wireless communication
GB0505826D0 (en) 2005-03-22 2005-04-27 Uni Microelektronica Ct Vsw Methods for embedding of conducting material and devices resulting from said methods
US7300631B2 (en) 2005-05-02 2007-11-27 Bioscale, Inc. Method and apparatus for detection of analyte using a flexural plate wave device and magnetic particles
CA2608252A1 (en) 2005-05-13 2006-11-16 Imbibo Incorporated Method for customizing cover for electronic device
US8688189B2 (en) 2005-05-17 2014-04-01 Adnan Shennib Programmable ECG sensor patch
US20060266475A1 (en) 2005-05-24 2006-11-30 American Standard Circuits, Inc. Thermally conductive interface
WO2007002579A2 (en) 2005-06-23 2007-01-04 Bioveris Corporation Assay cartridges and methods for point of care instruments
EP1900018A2 (en) * 2005-06-29 2008-03-19 Koninklijke Philips Electronics N.V. Method of manufacturing an assembly and assembly
DE602006012327D1 (en) 2005-07-01 2010-04-01 Leuven K U Res & Dev MEANS FOR THE FUNCTIONAL RESTORATION OF A DAMAGED NERVOUS SYSTEM
US7769472B2 (en) 2005-07-29 2010-08-03 Medtronic, Inc. Electrical stimulation lead with conformable array of electrodes
US20070027485A1 (en) 2005-07-29 2007-02-01 Kallmyer Todd A Implantable medical device bus system and method
JPWO2007034647A1 (en) * 2005-09-20 2009-03-19 コニカミノルタホールディングス株式会社 Method for manufacturing organic electroluminescence element, organic electroluminescence display device
JP2009512209A (en) 2005-10-13 2009-03-19 エヌエックスピー ビー ヴィ Electronic device or circuit and manufacturing method thereof
JP2007105316A (en) 2005-10-14 2007-04-26 Konica Minolta Sensing Inc Bioinformation measuring instrument
US7271393B2 (en) 2005-11-15 2007-09-18 Nokia Corporation UV radiation meter using visible light sensors
IL174211A0 (en) 2006-03-09 2007-07-04 Rotschild Carmel Method and system for using a cellular phone in water activities
EP2008303B1 (en) 2006-04-07 2010-06-16 Koninklijke Philips Electronics N.V. Elastically deformable integrated-circuit device
EP2024018A4 (en) 2006-05-18 2010-04-21 Ndi Medical Llc Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation
US20080046080A1 (en) 2006-07-07 2008-02-21 Interuniversitair Microelektronica Centrum (Imec) Method for forming packaged microelectronic devices and devices thus obtained
US20080036097A1 (en) 2006-08-10 2008-02-14 Teppei Ito Semiconductor package, method of production thereof and encapsulation resin
TWI654770B (en) 2006-09-06 2019-03-21 美國伊利諾大學理事會 Two-dimensional extendable and flexible device and method of manufacturing same
US20080074383A1 (en) 2006-09-27 2008-03-27 Dean Kenneth A Portable electronic device having appearance customizable housing
US8046039B2 (en) 2006-10-20 2011-10-25 Lg Electronics Inc. Mobile terminal and case for mobile terminal
US8979755B2 (en) 2006-12-08 2015-03-17 The Boeing Company Devices and systems for remote physiological monitoring
DE102006060411B3 (en) 2006-12-20 2008-07-10 Infineon Technologies Ag Chip module and method for producing a chip module
WO2008088349A1 (en) 2007-01-19 2008-07-24 3M Innovative Properties Company Cable for a capacitive proximity sensor
US9944031B2 (en) 2007-02-13 2018-04-17 3M Innovative Properties Company Molded optical articles and methods of making same
US7851906B2 (en) 2007-03-26 2010-12-14 Endicott Interconnect Technologies, Inc. Flexible circuit electronic package with standoffs
US8761846B2 (en) 2007-04-04 2014-06-24 Motorola Mobility Llc Method and apparatus for controlling a skin texture surface on a device
US7964961B2 (en) * 2007-04-12 2011-06-21 Megica Corporation Chip package
US7729570B2 (en) * 2007-05-18 2010-06-01 Ibiden Co., Ltd. Photoelectric circuit board and device for optical communication
US7693167B2 (en) 2007-05-22 2010-04-06 Rockwell Collins, Inc. Mobile nodal based communication system, method and apparatus
US7918018B2 (en) * 2007-06-12 2011-04-05 Texas Instruments Incorporated Method of fabricating a semiconductor device
US8877565B2 (en) 2007-06-28 2014-11-04 Intel Corporation Method of forming a multilayer substrate core structure using sequential microvia laser drilling and substrate core structure formed according to the method
US20090000377A1 (en) 2007-06-29 2009-01-01 Shipps J Clay Brain impact measurement system
US20090015560A1 (en) 2007-07-13 2009-01-15 Motorola, Inc. Method and apparatus for controlling a display of a device
WO2009022461A1 (en) * 2007-08-10 2009-02-19 Sanyo Electric Co., Ltd. Circuit device, circuit device manufacturing method and portable device
JP2010536434A (en) 2007-08-17 2010-12-02 イシス バイオポリマー エルエルシー Iontophoretic drug delivery system
US20090088750A1 (en) 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Insulating Boot with Silicone Overmold for Electrosurgical Forceps
US7739791B2 (en) 2007-10-26 2010-06-22 Delphi Technologies, Inc. Method of producing an overmolded electronic module with a flexible circuit pigtail
KR100919642B1 (en) 2007-12-17 2009-09-30 한국전자통신연구원 Directive Speaker and mobile station thereof
JP2009170173A (en) 2008-01-11 2009-07-30 Denso Corp El element, and manufacturing method thereof
JP4530180B2 (en) 2008-01-22 2010-08-25 Okiセミコンダクタ株式会社 Ultraviolet sensor and manufacturing method thereof
US9107592B2 (en) 2008-03-12 2015-08-18 The Trustees Of The University Of Pennsylvania Flexible and scalable sensor arrays for recording and modulating physiologic activity
US7619416B2 (en) 2008-04-17 2009-11-17 Universität Zürich Prorektorat Forschung Eidgenössische Technische Hochschule Coil assembly and multiple coil arrangement for magnetic resonance imaging
US8207473B2 (en) 2008-06-24 2012-06-26 Imec Method for manufacturing a stretchable electronic device
US20090322480A1 (en) 2008-06-30 2009-12-31 Robert Leon Benedict Rfid tag and method of vehicle attachment thereof
KR20110069084A (en) 2008-09-19 2011-06-22 센서즈 포 메드슨 앤드 사이언스 인코포레이티드 Optical sensor assembly
US9119533B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
WO2010042653A1 (en) 2008-10-07 2010-04-15 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
WO2010042957A2 (en) 2008-10-07 2010-04-15 Mc10, Inc. Systems, devices, and methods utilizing stretchable electronics to measure tire or road surface conditions
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US20100271191A1 (en) 2008-10-07 2010-10-28 De Graff Bassel Systems, devices, and methods utilizing stretchable electronics to measure tire or road surface conditions
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8056819B2 (en) 2008-10-14 2011-11-15 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Miniature and multi-band RF coil design
FR2937511B1 (en) 2008-10-23 2014-05-16 Oreal DEVICE FOR DISTRIBUTING A PRODUCT WITH AUTOMATIC OR SEMI-AUTOMATIC ADJUSTMENT OF PRODUCT PROPERTIES THROUGH INTEGRATED ROOM SENSOR
JPWO2010052856A1 (en) * 2008-11-06 2012-04-05 パナソニック株式会社 Lead, wiring member, package component, resin-coated metal component, resin-encapsulated semiconductor device, and manufacturing method thereof
EP2356680B1 (en) 2008-11-12 2015-04-08 Mc10, Inc. Extremely stretchable electronics
US20110101789A1 (en) 2008-12-01 2011-05-05 Salter Jr Thomas Steven Rf power harvesting circuit
WO2010082993A2 (en) 2008-12-11 2010-07-22 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
EP2386117A4 (en) 2009-01-12 2017-12-27 Mc10, Inc. Methods and applications of non-planar imaging arrays
GR1006723B (en) 2009-01-16 2010-03-09 ������������ ������������-������� ����������� ����������� ��������� ������� (���� ������� 5%) Integral or printed daisy-like coil
WO2010086033A1 (en) 2009-01-30 2010-08-05 Interuniversitair Microelektronica Centrum Vzw Stretchable electronic device
WO2010086034A1 (en) 2009-01-30 2010-08-05 Interuniversitair Microelektronica Centrum Vzw Stretchable electronic device
WO2010102310A2 (en) 2009-03-03 2010-09-10 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8593256B2 (en) 2009-06-23 2013-11-26 Avery Dennison Corporation Washable RFID device for apparel tracking
US20100327387A1 (en) 2009-06-26 2010-12-30 Ichiro Kasai Avalanche Photodiode
CN102474009B (en) 2009-07-03 2015-01-07 株式会社村田制作所 Antenna and antenna module
US9188963B2 (en) 2009-07-06 2015-11-17 Autonomous Id Canada Inc. Gait-based authentication system
JP2011018805A (en) 2009-07-09 2011-01-27 Sumitomo Bakelite Co Ltd Film for semiconductor, and method of manufacturing semiconductor device
EP2275805A1 (en) 2009-07-16 2011-01-19 Acreo AB Moister sensor
US20110019370A1 (en) * 2009-07-27 2011-01-27 Gainteam Holdings Limited Flexible circuit module
WO2011127331A2 (en) 2010-04-07 2011-10-13 Mc10, Inc. Methods and apparatus for measuring technical parameters of equipment, tools and components via conformal electronics
US20130192356A1 (en) 2009-10-01 2013-08-01 Mc10, Inc. Methods and apparatus for measuring technical parameters of equipment, tools, and components via conformal electronics
US20120065937A1 (en) 2009-10-01 2012-03-15 Mc10, Inc. Methods and apparatus for measuring technical parameters of equipment, tools and components via conformal electronics
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US20110218756A1 (en) 2009-10-01 2011-09-08 Mc10, Inc. Methods and apparatus for conformal sensing of force and/or acceleration at a person's head
US8390516B2 (en) 2009-11-23 2013-03-05 Harris Corporation Planar communications antenna having an epicyclic structure and isotropic radiation, and associated methods
US10918298B2 (en) * 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
JP5632927B2 (en) 2009-12-17 2014-11-26 エムシー10 インコーポレイテッドMc10,Inc. Method and apparatus for conformally detecting at least one of force and motion change
US20110168785A1 (en) * 2010-01-14 2011-07-14 Rfmarq, Inc. System and Method To Embed A Wireless Communication Device Into Semiconductor Packages
US8872663B2 (en) 2010-01-19 2014-10-28 Avery Dennison Corporation Medication regimen compliance monitoring systems and methods
WO2011094307A1 (en) 2010-01-26 2011-08-04 Meggitt ( San Juan Capistrano) , Inc. Measurement system using body mounted physically decoupled sensor
CN102725912B (en) * 2010-01-29 2016-04-06 住友电木株式会社 The formation method of the method for attachment between conductive connecting piece, terminal, splicing ear, semiconductor device and electronic equipment
US9343651B2 (en) * 2010-06-04 2016-05-17 Industrial Technology Research Institute Organic packaging carrier
US8715204B2 (en) 2010-07-14 2014-05-06 Prima Temp, Inc. Wireless vaginal sensor probe
US8198109B2 (en) 2010-08-27 2012-06-12 Quarkstar Llc Manufacturing methods for solid state light sheet or strip with LEDs connected in series for general illumination
US8836101B2 (en) 2010-09-24 2014-09-16 Infineon Technologies Ag Multi-chip semiconductor packages and assembly thereof
US8506158B2 (en) 2010-10-12 2013-08-13 P.S.L. Limited Watch
WO2012049895A1 (en) * 2010-10-15 2012-04-19 日本電気株式会社 Module with built-in component, electronic device comprising same, and method for manufacturing module with built-in component
US20120101413A1 (en) 2010-10-20 2012-04-26 Medtronic Ardian Luxembourg S.a.r.I. Catheter apparatuses having expandable mesh structures for renal neuromodulation and associated systems and methods
CN103313671B (en) 2010-10-25 2017-06-06 美敦力Af卢森堡有限责任公司 Device, the system and method for estimation and feedback for nerve modulation treatment
US8456021B2 (en) 2010-11-24 2013-06-04 Texas Instruments Incorporated Integrated circuit device having die bonded to the polymer side of a polymer substrate
US8391947B2 (en) 2010-12-30 2013-03-05 Biosense Webster (Israel), Ltd. Catheter with sheet array of electrodes
EP2484750A1 (en) 2011-02-07 2012-08-08 Ecole Polytechnique Fédérale de Lausanne (EPFL) Monitoring system for cell culture
US8581731B2 (en) 2011-02-16 2013-11-12 Connor Kent Purks Circuits, systems, and methods for monitoring and reporting foot impact, foot placement, shoe life, and other running/walking characteristics
EP2681538B1 (en) 2011-03-11 2019-03-06 Mc10, Inc. Integrated devices to facilitate quantitative assays and diagnostics
JP2012218147A (en) 2011-04-11 2012-11-12 Imec Method for sealing microcavity
US20120316455A1 (en) 2011-06-10 2012-12-13 Aliphcom Wearable device and platform for sensory input
KR20140090135A (en) 2011-07-14 2014-07-16 엠씨10, 인크 Detection of a force on a foot or footwear
US9757050B2 (en) 2011-08-05 2017-09-12 Mc10, Inc. Catheter balloon employing force sensing elements
WO2013022853A1 (en) 2011-08-05 2013-02-14 Mc10, Inc. Catheter balloon methods and apparatus employing sensing elements
US8702619B2 (en) 2011-08-26 2014-04-22 Symap Holding Limited Mapping sympathetic nerve distribution for renal ablation and catheters for same
EP2786131B1 (en) 2011-09-01 2018-11-07 Mc10, Inc. Electronics for detection of a condition of tissue
EP2753242A4 (en) 2011-09-08 2015-01-14 Paofit Holdings Pte Ltd Sensor device and system for fitness equipment
JP2014532178A (en) 2011-09-28 2014-12-04 エムシー10 インコーポレイテッドMc10,Inc. Electronic equipment for detecting surface properties
JP6277130B2 (en) 2011-10-05 2018-02-14 エムシーテン、インコーポレイテッド Medical device and method of manufacturing the same
JP5892780B2 (en) * 2011-12-19 2016-03-23 日東電工株式会社 Manufacturing method of semiconductor device
EP2626755B1 (en) 2012-02-10 2019-04-10 Nxp B.V. Calibration method, calibration device and measurement device
EP2817708B1 (en) 2012-02-21 2020-08-26 Zebra Technologies Corporation Method and apparatus for implementing near field communications with a printer
US9184798B2 (en) 2012-03-12 2015-11-10 Broadcom Corporation Near field communications (NFC) device having adjustable gain
US20140121540A1 (en) 2012-05-09 2014-05-01 Aliphcom System and method for monitoring the health of a user
US20130321373A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Electronic device, program, and recording medium
US9247637B2 (en) 2012-06-11 2016-01-26 Mc10, Inc. Strain relief structures for stretchable interconnects
US9226402B2 (en) 2012-06-11 2015-12-29 Mc10, Inc. Strain isolation structures for stretchable electronics
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
US9168094B2 (en) 2012-07-05 2015-10-27 Mc10, Inc. Catheter device including flow sensing
WO2014058473A1 (en) 2012-10-09 2014-04-17 Mc10, Inc. Conformal electronics integrated with apparel
US20140188426A1 (en) 2012-12-27 2014-07-03 Steven FASTERT Monitoring hit count for impact events
EP2943901A4 (en) 2013-01-08 2016-10-19 Mc10 Inc Application for monitoring a property of a surface
US9706647B2 (en) 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
WO2014197443A1 (en) 2013-06-03 2014-12-11 Kacyvenski Isaiah Motion sensor and analysis
EP3010360A4 (en) 2013-06-21 2017-02-22 Mc10, Inc. Band with conformable electronics
EP3030873A4 (en) 2013-08-05 2017-07-05 Mc10, Inc. Flexible temperature sensor including conformable electronics
KR20160068795A (en) 2013-10-09 2016-06-15 엠씨10, 인크 Utility gear including conformal sensors
WO2015077559A1 (en) 2013-11-22 2015-05-28 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
KR20160106582A (en) 2014-01-03 2016-09-12 엠씨10, 인크 Catheter or guidewire device including flow sensing and use thereof
EP3089656A4 (en) 2014-01-03 2017-09-06 Mc10, Inc. Integrated devices for low power quantitative measurements
EP3092661A4 (en) 2014-01-06 2017-09-27 Mc10, Inc. Encapsulated conformal electronic systems and devices, and methods of making and using the same
WO2015127458A1 (en) 2014-02-24 2015-08-27 Mc10, Inc. Conformal electronics with deformation indicators
CN106063392B (en) 2014-03-04 2020-06-02 Mc10股份有限公司 Multi-part flexible enclosure for electronic devices
TW201602549A (en) 2014-03-12 2016-01-16 Mc10公司 Quantification of a change in assay

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112726A (en) * 1986-12-30 1992-05-12 E. I. Du Pont De Nemours And Company Embedded catalyst receptors for metallization of dielectrics
US5356698A (en) * 1990-03-27 1994-10-18 Hitachi, Ltd. Adhesive agent for substrate of electroless plating, printed circuit board using same, and method of producing same
US5374469A (en) * 1991-09-19 1994-12-20 Nitto Denko Corporation Flexible printed substrate
US5426263A (en) * 1993-12-23 1995-06-20 Motorola, Inc. Electronic assembly having a double-sided leadless component
US5703400A (en) * 1995-12-04 1997-12-30 General Electric Company Fabrication and structures of two-sided molded circuit modules with flexible interconnect layers
US6458234B1 (en) * 1997-05-16 2002-10-01 Micron Technology, Inc. Methods of fixturing a flexible substrate and a processing carrier and methods of processing a flexible substrate
US6197407B1 (en) * 1998-05-14 2001-03-06 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6902949B2 (en) * 2001-04-02 2005-06-07 Nitto Denko Corporation Multi-layer wiring circuit board and method for producing the same
US20030038379A1 (en) * 2001-08-20 2003-02-27 Mitsui Mining & Smelting Co., Ltd. Laminate film for mounting electronic devices and film carrier tape for mounting electronic devices
US20030082363A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Industrial Co., Ltd. Prepreg and circuit board and method for manufacturing the same
US7255919B2 (en) * 2002-03-13 2007-08-14 Mitsui Mining & Smelting Co., Ltd. Mold release layer transferring film and laminate film
US7045884B2 (en) * 2002-10-04 2006-05-16 International Rectifier Corporation Semiconductor device package
US6703114B1 (en) * 2002-10-17 2004-03-09 Arlon Laminate structures, methods for production thereof and uses therefor
US20050006142A1 (en) * 2003-07-09 2005-01-13 Matsushita Electric Industrial Co., Ltd. Circuit board with in-built electronic component and method for manufacturing the same
US20070272124A1 (en) * 2003-12-26 2007-11-29 Toyo Boseki Kabushiki Kaisha Polyimide film
US20060084254A1 (en) * 2004-01-06 2006-04-20 Attarwala Abbas I Method for making electronic packages
US7656673B1 (en) * 2004-05-25 2010-02-02 University Of South Florida Wireless micro-electro-opto-fluidic-mechanical foldable flex system
US8198621B2 (en) * 2004-06-04 2012-06-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7045897B2 (en) * 2004-07-28 2006-05-16 Endicott Interconnect Technologies, Inc. Electrical assembly with internal memory circuitized substrate having electronic components positioned thereon, method of making same, and information handling system utilizing same
US20060032669A1 (en) * 2004-08-11 2006-02-16 Sony Corporation Electronic circuit device
US20060056161A1 (en) * 2004-09-10 2006-03-16 Samsung Electronics Co., Ltd. Flexible device, flexible pressure sensor, and fabrication method thereof
US20090273909A1 (en) * 2004-09-10 2009-11-05 Samsung Electronics Co., Ltd. Flexible device, flexible pressure sensor, and fabrication method thereof
US8547701B2 (en) * 2004-11-26 2013-10-01 Imbera Electronics Oy Electronics module and method for manufacturing the same
US7293353B2 (en) * 2005-01-20 2007-11-13 Samsung Electro Mechanics Co., Ltd. Method of fabricating rigid flexible printed circuit board
US20060292756A1 (en) * 2005-06-24 2006-12-28 Cardiac Pacemakers, Inc. Flip chip die assembly using thin flexible substrates
US20100090781A1 (en) * 2005-09-30 2010-04-15 Kenichi Yamamoto Sheet-like composite electronic component and method for manufacturing same
US7759167B2 (en) * 2005-11-23 2010-07-20 Imec Method for embedding dies
US20110051384A1 (en) * 2006-02-02 2011-03-03 Arno Kriechbaum Printed circuit board element having at least one component embedded therein and method for embedding at least one component in a printed circuit board element
US20080054875A1 (en) * 2006-09-01 2008-03-06 Ivi Smart Technologies, Inc. Biometric sensor and sensor panel
US8110118B2 (en) * 2006-10-18 2012-02-07 Yazaki Corporation Method of manufacturing circuit board
US20100002402A1 (en) * 2008-03-05 2010-01-07 Rogers John A Stretchable and Foldable Electronic Devices
US8552299B2 (en) * 2008-03-05 2013-10-08 The Board Of Trustees Of The University Of Illinois Stretchable and foldable electronic devices
US20110277813A1 (en) * 2008-09-24 2011-11-17 Rogers John A Arrays of Ultrathin Silicon Solar Microcells
US20100317132A1 (en) * 2009-05-12 2010-12-16 Rogers John A Printed Assemblies of Ultrathin, Microscale Inorganic Light Emitting Diodes for Deformable and Semitransparent Displays
US8865489B2 (en) * 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US8319334B2 (en) * 2009-08-10 2012-11-27 Infineon Technologies Ag Embedded laminated device
US20120261174A1 (en) * 2009-12-24 2012-10-18 Toshiaki Chuma Conductive connecting material, method for producing electronic component, electronic member with conductive connecting material and electronic component
US20110284268A1 (en) * 2010-05-20 2011-11-24 3M Innovative Properties Company Flexible circuit coverfilm adhesion enhancement
US8143530B1 (en) * 2010-09-17 2012-03-27 Endicott Interconnect Technologies, Inc. Liquid crystal polymer layer for encapsulation and improved hermiticity of circuitized substrates
US20120091594A1 (en) * 2010-10-18 2012-04-19 Christof Landesberger Method of Producing a Chip Package, and Chip Package
US20130099358A1 (en) * 2011-05-27 2013-04-25 Mc10, Inc. Electronic, optical and/or mechanical apparatus and systems and methods for fabricating same
US20140110859A1 (en) * 2012-10-09 2014-04-24 Mc10, Inc. Embedding thin chips in polymer
US20150156864A1 (en) * 2013-12-03 2015-06-04 Shinko Electric Industries Co., Ltd. Electronic Device
US20150200147A1 (en) * 2014-01-10 2015-07-16 Sfi Electronics Technology Inc. Miniaturized smd diode package and prscess for producing the same
US20150245487A1 (en) * 2014-02-25 2015-08-27 Jin Gyu Kim Semiconductor package
US20150336352A1 (en) * 2014-05-23 2015-11-26 Airbus Defence and Space GmbH Sandwich Component and Method for Producing a Sandwich Component
US20160059535A1 (en) * 2014-08-29 2016-03-03 Materion Corporation Conductive bond foils
US9899330B2 (en) * 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
US20160099227A1 (en) * 2014-10-06 2016-04-07 Mc10, Inc. Flexible interconnects for modules of integrated circuits and methods of making and using the same
US20170246849A1 (en) * 2016-02-25 2017-08-31 Ford Motor Company Method of manufacturing a lightweight laminate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Pyralux LF Bond-Ply (Year: 2019) *
Pyralux RF Bond-Ply (Year: 2019) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10986465B2 (en) 2015-02-20 2021-04-20 Medidata Solutions, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
US10567152B2 (en) 2016-02-22 2020-02-18 Mc10, Inc. System, devices, and method for on-body data and power transmission
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
US11145580B1 (en) 2020-03-25 2021-10-12 International Business Machines Corporation IoT and AI system package with solid-state battery enhanced performance
US11239150B2 (en) 2020-03-25 2022-02-01 International Business Machines Corporation Battery-free and substrate-free IoT and AI system package
US20230050951A1 (en) * 2021-08-06 2023-02-16 Au Optronics Corporation Display device and manufacturing method thereof
US11992326B2 (en) 2021-09-27 2024-05-28 Medidata Solutions, Inc. Method and system for measuring perspiration

Also Published As

Publication number Publication date
CA2959699C (en) 2023-12-19
US20160099214A1 (en) 2016-04-07
EP3201946A4 (en) 2018-08-01
CA2959699A1 (en) 2016-04-07
CN106716627A (en) 2017-05-24
KR20170063936A (en) 2017-06-08
WO2016054512A1 (en) 2016-04-07
US9899330B2 (en) 2018-02-20
EP3201946A1 (en) 2017-08-09
JP2017531919A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US9899330B2 (en) Flexible electronic circuits with embedded integrated circuit die
US10297572B2 (en) Discrete flexible interconnects for modules of integrated circuits
JP2016504751A (en) Embedding thin chips in polymers
US9418927B2 (en) Stretchable electronic device
US11688677B2 (en) Continuous interconnects between heterogeneous materials
US10645803B2 (en) Soft, multilayered electronics for wearable devices and methods to produce the same
JP2013519242A (en) Component placement on flexible and / or extensible substrates
WO2009028596A1 (en) Passive element built-in substrate, manufacturing method, and semiconductor device
CN110164824B (en) Flexible packaging structure, manufacturing method and wearable device with flexible packaging structure
JP5427476B2 (en) Semiconductor sensor device
US10573597B1 (en) Electronic device and manufacturing method thereof
WO2006057729A3 (en) Monolithic multi-level module and method

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NORTH BRIDGE VENTURE PARTNERS VI, L.P., MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: ABERDARE PARTNERS IV, LP, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: ABERDARE VENTURES IV, LP, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: WINDHAM LIFE SCIENCES PARTNERS, LP, MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: NORTH BRIDGE VENTURE PARTNERS 7, L.P., MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: LABORATORY CORPORATION OF AMERICA HOLDINGS, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: WINDHAM-MC INVESTMENT I, LLC, MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

Owner name: BRAEMAR ENERGY VENTURES III, L.P., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:MC10, INC.;REEL/FRAME:052296/0969

Effective date: 20191112

AS Assignment

Owner name: MC10, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:BRAEMAR ENERGY VENTURES III, L.P.;NORTH BRIDGE VENTURE PARTNERS VI, L.P.;NORTH BRIDGE VENTURE PARTNERS 7, L.P.;AND OTHERS;REEL/FRAME:054456/0903

Effective date: 20200930