US20170289761A1 - Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link - Google Patents

Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link Download PDF

Info

Publication number
US20170289761A1
US20170289761A1 US15/489,451 US201715489451A US2017289761A1 US 20170289761 A1 US20170289761 A1 US 20170289761A1 US 201715489451 A US201715489451 A US 201715489451A US 2017289761 A1 US2017289761 A1 US 2017289761A1
Authority
US
United States
Prior art keywords
wlan
link
enb
traffic
drbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/489,451
Inventor
Alexandre S. Stojanovski
Alexander Sirotkin
Pingping Zong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel IP Corp
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/314,256 external-priority patent/US9650794B2/en
Application filed by Intel IP Corp filed Critical Intel IP Corp
Priority to US15/489,451 priority Critical patent/US20170289761A1/en
Assigned to Intel IP Corporation reassignment Intel IP Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIROTKIN, ALEXANDER, STOJANOVSKI, Alexandre S., ZONG, PINGPING
Publication of US20170289761A1 publication Critical patent/US20170289761A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/025Structures with concrete columns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • H04W36/28Reselection being triggered by specific parameters by agreed or negotiated communication parameters involving a plurality of connections, e.g. multi-call or multi-bearer connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Some embodiments described herein generally relate to steering data radio bearer traffic to a wireless local area network link.
  • a wireless communication device e.g., a mobile device, may be configured to utilize multiple wireless communication technologies.
  • a User Equipment (UE) device may be configured to utilize a cellular connection, e.g., a Long Term Evolution (LTE) cellular connection, as well as a wireless-local-area-network (WLAN) connection, e.g., a Wireless-Fidelity (WiFi) connection.
  • a cellular connection e.g., a Long Term Evolution (LTE) cellular connection
  • WLAN wireless-local-area-network
  • WiFi Wireless-Fidelity
  • 3GPP 3 rd Generation Partnership Project
  • TR 37.834 Technical Specification Group Radio Access Network; WLAN/ 3 GPP Radio Interworking ( Release 12)
  • RAN Radio Access Network
  • the 3GPP specifies several features for 3GPP-WLAN interworking.
  • 3GPP TS 23.402 (“ Technical Specification Group Services and System Aspects; Architecture enhancements for non -3 GPP accesses ( Release 12)”) describes a Non-Seamless WLAN Offload (NSWO) feature, a Multiple Access Packet Data Network (PDN) Connectivity (MAPCON) feature, and an Internet Protocol (IP) Flow Mobility (IFOM) feature.
  • NSWO Non-Seamless WLAN Offload
  • PDN Multiple Access Packet Data Network
  • MAPCON Multiple Access Packet Data Network
  • IP Internet Protocol
  • IFOM Internet Protocol
  • FIG. 1 is a schematic block diagram illustration of a system, in accordance with some demonstrative embodiments.
  • FIG. 2 is a schematic illustration of a deployment of a system, in accordance with some demonstrative embodiments.
  • FIG. 3 is a schematic illustration of a sequence diagram of operations performed by a User Equipment (UE), a Wireless Local Area Network (WLAN) Access Point (AP), and an evolved Node B (eNB), in accordance with some demonstrative embodiments.
  • UE User Equipment
  • WLAN Wireless Local Area Network
  • eNB evolved Node B
  • FIG. 4 is a schematic illustration of a method of steering Data Radio Bearer (DRB) traffic to a WLAN link, in accordance with some demonstrative embodiments.
  • DRB Data Radio Bearer
  • FIG. 5 is a schematic illustration of a product, in accordance with some demonstrative embodiments.
  • Discussions herein utilizing terms such as, for example, “processing”, “computing”, “calculating”, “determining”, “establishing”, “analyzing”, “checking”, or the like, may refer to operation(s) and/or process(es) of a computer, a computing platform, a computing system, or other electronic computing device, that manipulate and/or transform data represented as physical (e.g., electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information storage medium that may store instructions to perform operations and/or processes.
  • processing may refer to operation(s) and/or process(es) of a computer, a computing platform, a computing system, or other electronic computing device, that manipulate and/or transform data represented as physical (e.g., electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information storage medium that may store instructions to perform operations and/or processes.
  • plural and “a plurality”, as used herein, include, for example, “multiple” or “two or more”.
  • “a plurality of items” includes two or more items.
  • references to “one embodiment,” “an embodiment,” “demonstrative embodiment,” “various embodiments,” etc., indicate that the embodiment(s) so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.
  • Some embodiments may be used in conjunction with various devices and systems, for example, a Personal Computer (PC), a desktop computer, a mobile computer, a laptop computer, a notebook computer, a tablet computer, a Smartphone device, a server computer, a handheld computer, a handheld device, a Personal Digital Assistant (PDA) device, a handheld PDA device, an on-board device, an off-board device, a hybrid device, a vehicular device, a non-vehicular device, a mobile or portable device, a consumer device, a non-mobile or non-portable device, a wireless communication station, a wireless communication device, a wireless Access Point (AP), a wired or wireless router, a wired or wireless modem, a video device, an audio device, an audio-video (A/V) device, a wired or wireless network, a wireless area network, a cellular network, a cellular node, a Wireless Local Area Network (WLAN), a Multiple Input Multiple Output (MIMO) transceiver
  • Some embodiments may be used in conjunction with devices and/or networks operating in accordance with existing Long Term Evolution (LTE) specifications (including 3 rd Generation Partnership Project (3 GPP ) TR 37.834 (“ Technical Specification Group Radio Access Network; WLAN/ 3 GPP Radio Interworking ( Release 12)”, V 0.2.1, Jun. 2, 2013); 3GPP TS 23.402 (“ Technical Specification Group Services and System Aspects; Architecture enhancements for non -3 GPP accesses ( Release 12)”, V 12.1.0, Jun.
  • LTE Long Term Evolution
  • 3 GPP 3 rd Generation Partnership Project
  • TR 37.834 Technical Specification Group Radio Access Network
  • WLAN/ 3 GPP Radio Interworking Release 12
  • 3GPP TS 23.402 Technical Specification Group Services and System Aspects; Architecture enhancements for non -3 GPP accesses ( Release 12)”, V 12.1.0, Jun.
  • Some embodiments may be used in conjunction with one or more types of wireless communication signals and/or systems, for example, Radio Frequency (RF), Frequency-Division Multiplexing (FDM), Orthogonal FDM (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Time-Division Multiplexing (TDM), Time-Division Multiple Access (TDMA), Extended TDMA (E-TDMA), General Packet Radio Service (GPRS), extended GPRS, Code-Division Multiple Access (CDMA), Wideband CDMA (WCDMA), CDMA 2000, single-carrier CDMA, multi-carrier CDMA, Multi-Carrier Modulation (MDM), Discrete Multi-Tone (DMT), Bluetooth®, Global Positioning System (GPS), Wireless Fidelity (Wi-Fi), Wi-Max, ZigBeeTM, Ultra-Wideband (UWB), Global System for Mobile communication (GSM), second generation (2G), 2.5G, 3G, 3.5G, 4G, Fifth Generation (5G) mobile networks
  • wireless device includes, for example, a device capable of wireless communication, a communication device capable of wireless communication, a communication station capable of wireless communication, a portable or non-portable device capable of wireless communication, or the like.
  • a wireless device may be or may include a peripheral that is integrated with a computer, or a peripheral that is attached to a computer.
  • the term “wireless device” may optionally include a wireless service.
  • a radio which is capable of communicating a wireless communication signal, may include a wireless transmitter to transmit the wireless communication signal to at least one other radio, and/or a wireless communication receiver to receive the wireless communication signal from at least one other radio.
  • the verb “communicating” may be used to refer to the action of transmitting or the action of receiving.
  • the phrase “communicating a signal” may refer to the action of transmitting the signal by a first device, and may not necessarily include the action of receiving the signal by a second device.
  • the phrase “communicating a signal” may refer to the action of receiving the signal by a first device, and may not necessarily include the action of transmitting the signal by a second device.
  • Some demonstrative embodiments are described herein with respect to a LTE cellular system. However, other embodiments may be implemented in any other suitable cellular network, e.g., a 3G cellular network, a 4G cellular network, a 5G cellular network, a WiMax cellular network, and the like.
  • a 3G cellular network e.g., a 3G cellular network, a 4G cellular network, a 5G cellular network, a WiMax cellular network, and the like.
  • HetNet Heterogeneous Network
  • the HetNet may utilize a deployment of a mix of technologies, frequencies, cell sizes and/or network architectures, e.g., including cellular, mmWave, and/or the like.
  • the HetNet may include a radio access network having layers of different-sized cells ranging from large macrocells to small cells, for example, picocells and femtocells.
  • antenna may include any suitable configuration, structure and/or arrangement of one or more antenna elements, components, units, assemblies and/or arrays.
  • the antenna may implement transmit and receive functionalities using separate transmit and receive antenna elements.
  • the antenna may implement transmit and receive functionalities using common and/or integrated transmit/receive elements.
  • the antenna may include, for example, a phased array antenna, a single element antenna, a dipole antenna, a set of switched beam antennas, and/or the like.
  • the term “cell”, as used herein, may include a combination of network resources, for example, downlink and optionally uplink resources.
  • the resources may be controlled and/or allocated, for example, by a cellular node (also referred to as a “base station”), or the like.
  • the linking between a carrier frequency of the downlink resources and a carrier frequency of the uplink resources may be indicated in system information transmitted on the downlink resources.
  • AP access point
  • STA station
  • WM Wireless Medium
  • STA station
  • MAC medium access control
  • PHY physical layer
  • DBand directional band
  • DMG directional multi-gigabit
  • DBand directional band
  • DMG STA and “mmWave STA (mSTA)” may relate to a STA having a radio transmitter, which is operating on a channel that is within the DMG band.
  • FIG. 1 schematically illustrates a block diagram of a system 100 , in accordance with some demonstrative embodiments.
  • system 100 may include one or more wireless communication devices capable of communicating content, data, information and/or signals via one or more wireless mediums 108 .
  • system 100 may include at least one User Equipment (UE) 102 capable of communicating with one or more wireless communication networks, e.g., as described below.
  • UE User Equipment
  • Wireless mediums 108 may include, for example, a radio channel, a cellular channel, an RF channel, a Wireless Fidelity (WiFi) channel, an IR channel, and the like.
  • a radio channel for example, a radio channel, a cellular channel, an RF channel, a Wireless Fidelity (WiFi) channel, an IR channel, and the like.
  • WiFi Wireless Fidelity
  • IR channel IR channel
  • system 100 may include at least one cellular network, e.g., including a cell controlled by a cellular node (“node”) 104 .
  • node cellular node
  • system 100 may include a non-cellular network 107 , for example, a WLAN, e.g., a Basic Service Set (BSS), managed by an Access Point (AP) 106 .
  • a WLAN e.g., a Basic Service Set (BSS), managed by an Access Point (AP) 106 .
  • BSS Basic Service Set
  • AP Access Point
  • network 107 may include a trusted WLAN Access network (TWAN), or any other WLAN.
  • TWAN trusted WLAN Access network
  • non-cellular network 107 may at least partially be within a coverage area of node 104 .
  • AP 106 may be within a coverage area of node 104 .
  • node 104 may include an Evolved Node B (eNB).
  • node 104 may be configured to perform radio resource management (RRM), radio bearer control, radio admission control (access control), connection mobility management, resource scheduling between UEs and eNB radios, e.g., Dynamic allocation of resources to UEs in both uplink and downlink, header compression, link encryption of user data streams, packet routing of user data towards a destination, e.g., another eNB or an Evolved Packet Core (EPC), scheduling and/or transmitting paging messages, e.g., incoming calls and/or connection requests, broadcast information coordination, measurement reporting, and/or any other operations.
  • RRM radio resource management
  • radio bearer control radio admission control
  • access control access control
  • connection mobility management e.g., Dynamic allocation of resources to UEs in both uplink and downlink
  • resource scheduling between UEs and eNB radios e.g., Dynamic allocation of resources to UEs in both uplink
  • node 104 may include any other functionality and/or may perform the functionality of any other cellular node, e.g., a Node B (NB), a base station or any other node or device.
  • NB Node B
  • UE 102 may include, for example, a mobile computer, a laptop computer, a notebook computer, a tablet computer, a mobile internet device, a handheld computer, a handheld device, a storage device, a PDA device, a handheld PDA device, an on-board device, an off-board device, a hybrid device (e.g., combining cellular phone functionalities with PDA device functionalities), a consumer device, a vehicular device, a non-vehicular device, a mobile or portable device, a mobile phone, a cellular telephone, a PCS device, a mobile or portable GPS device, a DVB device, a relatively small computing device, a non-desktop computer, a “Carry Small Live Large” (CSLL) device, an Ultra Mobile Device (UMD), an Ultra Mobile PC (UMPC), a Mobile Internet Device (MID), an “Origami” device or computing device, a video device, an audio device, an A/V device, a gaming device, a media
  • a hybrid device
  • UE 102 , node 104 and/or AP 106 may include one or more wireless communication units to perform wireless communication between UE 102 , node 104 , AP 106 and/or with one or more other wireless communication devices, e.g., as described below.
  • UE 102 may include a wireless communication unit 110 and/or node 104 may include a wireless communication unit 130 .
  • wireless communication unit 110 may be implemented in the form of a System on Chip (SoC) including circuitry and/or logic configured to perform the functionality of wireless communication unit 110 ; and/or wireless communication unit 130 may be implemented in the form of a SoC including circuitry and/or logic configured to perform the functionality of wireless communication unit 130 , e.g., as described below.
  • SoC System on Chip
  • wireless communication units 110 and 130 may include, or may be associated with, one or more antennas.
  • wireless communication unit 110 may be associated with at least two antennas, e.g., antennas 112 and 114 , or any other number of antennas, e.g., one antenna or more than two antennas; and/or wireless communication unit 130 may be associated with at least two antennas, e.g., antennas 132 and 134 , or any other number of antennas, e.g., one antenna or more than two antennas.
  • antennas 112 , 114 , 132 and/or 134 may include any type of antennas suitable for transmitting and/or receiving wireless communication signals, blocks, frames, transmission streams, packets, messages and/or data.
  • antennas 112 , 114 , 132 and/or 134 may include any suitable configuration, structure and/or arrangement of one or more antenna elements, components, units, assemblies and/or arrays.
  • antennas 112 , 114 , 132 and/or 134 may include a phased array antenna, a dipole antenna, a single element antenna, a set of switched beam antennas, and/or the like.
  • antennas 112 , 114 , 132 and/or 134 may implement transmit and receive functionalities using separate transmit and receive antenna elements. In some embodiments, antennas 112 , 114 , 132 and/or 134 may implement transmit and receive functionalities using common and/or integrated transmit/receive elements.
  • wireless communication unit 130 may include at least one radio 142 and at least one controller 144 to control communications performed by radio 142
  • wireless communication unit 110 may include at least one radio 143 and at least one controller 145 to control communications performed by radio 143 .
  • radios 142 and/or 143 may include one or more wireless transmitters, receivers and/or transceivers able to send and/or receive wireless communication signals, RF signals, frames, blocks, transmission streams, packets, messages, data items, and/or data.
  • At least one radio 143 may include a WLAN transceiver (TRX) 163 to communicate with AP 106 over a WLAN link, and a cellular transceiver 165 to communicate with node 104 over a cellular link.
  • TRX WLAN transceiver
  • radio 142 may include a cellular transceiver 167 to communicate with node 104 over the cellular link.
  • the WLAN link may include, for example, a Wireless Fidelity (WiFi) link, a Wireless Gigabit (WiGig) link, or any other link.
  • WiFi Wireless Fidelity
  • WiGig Wireless Gigabit
  • the WLAN link may include, for example, a link over the 2.4 Gigahertz (GHz) or 5 GHz frequency band, the 60 GHz frequency band, or any other frequency band.
  • GHz 2.4 Gigahertz
  • 5 GHz frequency band the 60 GHz frequency band, or any other frequency band.
  • radios 142 and/or 143 may include a multiple input multiple output (MIMO) transmitters receivers system (not shown), which may be capable of performing antenna beamforming methods, if desired. In other embodiments, radios 142 and/or 143 may include any other transmitters and/or receivers.
  • MIMO multiple input multiple output
  • radios 142 and/or 143 may include a turbo decoder and/or a turbo encoder (not shown) for encoding and/or decoding data bits into data symbols, if desired. In other embodiments, radios 142 and/or 143 may include any other encoder and/or decode.
  • UE 102 may communicate with node 104 via at least one cellular link.
  • radios 142 and/or 143 may include OFDM and/or SC-FDMA modulators and/or demodulators (not shown) configured to communicate OFDM signals over downlink channels, e.g., between node 104 and UE 102 , and SC-FDMA signals over uplink channels, e.g., between UE 102 and node 104 .
  • radios 142 and/or 143 may include any other modulators and/or demodulators.
  • wireless communication unit 110 may establish at least one WLAN link with AP 106 .
  • wireless communication unit 110 may perform the functionality of one or more STAs, e.g., one or more WiFi STAs, WLAN STAs, and/or DMG STAs.
  • the WLAN link may include an uplink and/or a downlink.
  • the WLAN downlink may include, for example, a unidirectional link from AP 106 to the one or more STAs.
  • the uplink may include, for example, a unidirectional link from a STA to AP 106 .
  • UE 102 , node 104 and/or AP 106 may also include, for example, one or more of a processor 124 , an input unit 116 , an output unit 118 , a memory unit 120 , and a storage unit 122 .
  • UE 102 , node 104 and/or AP 106 may optionally include other suitable hardware components and/or software components.
  • some or all of the components of one or more of UE 102 , node 104 and/or AP 106 may be enclosed in a common housing or packaging, and may be interconnected or operably associated using one or more wired or wireless links.
  • components of one or more of UE 102 , node 104 and/or AP 106 may be distributed among multiple or separate devices.
  • Processor 124 includes, for example, a Central Processing Unit (CPU), a Digital Signal Processor (DSP), one or more processor cores, a single-core processor, a dual-core processor, a multiple-core processor, a microprocessor, a host processor, a controller, a plurality of processors or controllers, a chip, a microchip, one or more circuits, circuitry, a logic unit, an Integrated Circuit (IC), an Application-Specific IC (ASIC), or any other suitable multi-purpose or specific processor or controller.
  • Processor 124 executes instructions, for example, of an Operating System (OS) of UE 102 , node 104 and/or AP 106 and/or of one or more suitable applications.
  • OS Operating System
  • Input unit 116 includes, for example, a keyboard, a keypad, a mouse, a touch-screen, a touch-pad, a track-ball, a stylus, a microphone, or other suitable pointing device or input device.
  • Output unit 118 includes, for example, a monitor, a screen, a touch-screen, a flat panel display, Light Emitting Diode (LED) display unit, a Liquid Crystal Display (LCD) display unit, a plasma display unit, one or more audio speakers or earphones, or other suitable output devices.
  • LED Light Emitting Diode
  • LCD Liquid Crystal Display
  • Memory unit 120 includes, for example, a Random Access Memory (RAM), a Read Only Memory (ROM), a Dynamic RAM (DRAM), a Synchronous DRAM (SD-RAM), a flash memory, a volatile memory, a non-volatile memory, a cache memory, a buffer, a short term memory unit, a long term memory unit, or other suitable memory units.
  • Storage unit 122 includes, for example, a hard disk drive, a floppy disk drive, a Compact Disk (CD) drive, a CD-ROM drive, a DVD drive, or other suitable removable or non-removable storage units.
  • Memory unit 120 and/or storage unit 122 may store data processed by UE 102 , node 104 and/or AP 106 .
  • UE 102 may be configured utilize a cellular connection, e.g., a Long Term Evolution (LTE) cellular connection, a Universal Mobile Telecommunications System (UMTS) connection or any other cellular connection, to communicate with node 104 ; and a WLAN connection, e.g., a Wireless-Fidelity (WiFi) connection or any other WLAN connection, to communicate with AP 106 .
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • WLAN connection e.g., a Wireless-Fidelity (WiFi) connection or any other WLAN connection
  • one or more elements of system 100 may perform the functionality of a HetNet, which may utilize a deployment of a mix of technologies, frequencies, cell sizes and/or network architectures, for example, including cellular, WLAN, and/or the like.
  • the HetNet may be configured to provide a service through a first wireless communication environment, e.g., a cellular network, and to maintain the service when switching to another communication environment, e.g., WLAN.
  • the HetNet architecture may enable utilizing a mixture of wireless communication environments, e.g., a WLAN environment and a cellular environment, for example, to optimally respond to rapid changes in customer demand, reduce power consumption, reduce cost, increase efficiency and/or achieve any other benefit.
  • system 100 may utilize a Multi-tier, Multi Radio Access technology (Multi-RAT) Het-Net architecture, including a tier of small cells, e.g., pico, femto, relay stations, WiFi APs, and the like, overlaid on top of a macro cellular deployment to augment network capacity.
  • Multi-RAT Multi Radio Access technology
  • system 100 may utilize Multi-RAT small cells integrating multiple radios such as WiFi and 3GPP air interfaces in a single infrastructure device.
  • node 104 and AP 106 may be implemented as part of a Multi-RAT small cell.
  • node 104 and AP 106 may be co-located or connected as part of an integrated multi-RAT small cell.
  • node 104 may be configured to directly interface with AP 106 , e.g., to enable node 104 to interact directly with AP 106 and/or to control one or more functionalities of AP 106 .
  • node 104 and AP 106 may be implemented as part of a single device.
  • node 104 and AP 106 may be implemented as separate and/or independent devices.
  • Interface 171 may include any suitable interface configured to provide connectivity between AP 106 and node 104 .
  • Interface 171 may include any wired and/or wireless communication links.
  • interface 171 may be configured to route and/or tunnel communications between node 104 and AP 106 .
  • interface 171 may include an Internet-Protocol (IP) based network, or any other network.
  • IP Internet-Protocol
  • system 100 may implement any other architecture and/or deployment.
  • UE 102 may establish a plurality of Evolved Packet-switched System (EPS) bearers to connect between UE 102 and one or more elements of a Core Network (CN) 149 via node 104 .
  • EPS Evolved Packet-switched System
  • UE 102 may establish at least one Packet Data Network (PDN) connection between UE 102 and at least one PDN 173 , e.g., to support one or more EPS bearers between UE 102 and the PDN 173 .
  • PDN Packet Data Network
  • the PDN connection may be maintained over a plurality of bearers between UE 102 and the PDN 173 .
  • system 100 may include an LTE system, and at least one EPS bearer may be established via the PDN connection between UE 102 and a PDN Gateway (GW) (P-GW) 169 of CN 149 .
  • the EPS bearer may include a Data Radio Bearer (DRB) between UE 102 and node 104 , a S1 bearer between node 104 and a Serving Gateway (S-GW) 167 of CN 149 , and a S5 bearer between the S-GW 167 and the P-GW 169 .
  • DRB Data Radio Bearer
  • S-GW Serving Gateway
  • an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) Radio Access Bearer may be established between UE 102 and the S-GW 167 , e.g., including the DRB and the S1 bearer.
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • E-RAB Radio Access Bearer
  • a bearer e.g., the EPS bearer
  • EPS bearer may be in the form of a virtual connection, which may provide a bearer service, e.g., a transport service with specific Quality of Service (QoS).
  • QoS Quality of Service
  • node 104 and UE 102 may be configured to enable cellular-WLAN interworking at the radio access network level, e.g., as described below.
  • node 104 and UE 102 may be configured to provide improved traffic balancing between WLAN access of UE 102 and cellular access of UE 102 . Additionally or alternatively, node 104 and UE 102 may be configured to enable radio access selection taking into account radio congestion levels, e.g., of the cellular and WLAN links. Additionally or alternatively, node 104 and UE 102 may be configured to provide improved battery life of UE 102 , and/or to provide any other improvements and/or benefits.
  • node 104 and UE 102 may be configured to enable a tightly coupled cellular-WLAN interworking system architecture, e.g., as described below.
  • node 104 and UE 102 may be configured according to a Multi-Homed Radio Bearer (MHRB) architecture, including a plurality of radio bearer connections (“radio bearer legs”) to communicate traffic of a DRB between node 104 and UE 102 , e.g., as described below.
  • MHRB Multi-Homed Radio Bearer
  • the MHRB architecture may include two radio bearer legs, for example, including a first radio bearer leg, which may be established over the cellular link between node 104 and UE 102 , and a second radio bearer leg, which may be established over the WLAN link between UE 102 and AP 106 , e.g., as described below.
  • the first and second radio bearer legs may be joined together at node 104 , for example, in a manner transparent to elements of CN 149 , e.g., as described below.
  • the MHRB architecture may be configured to enable seamless traffic offload between the first and second radio bearer legs, for example, such that packets of an EPS bearer may be steered between the cellular access link and the WLAN access link, e.g., without impacting session continuity.
  • the radio bearer leg may be established in the form of a point to point (P2P) link between UE 102 and node 104 , for example, over the WLAN link between UE 102 and WLAN AP 106 , e.g., as described below.
  • P2P point to point
  • UE 102 , node 104 , and/or AP 106 may be configured to enable steering one or more DRBs between UE 102 and node 104 via at least one P2P link 139 between UE 102 and node 104 , e.g., formed over the WLAN link between UE 102 and AP 106 , e.g., as described below.
  • controller 144 may be configured to establish the at least one P2P link 139 with UE 102 via the WLAN link between UE 102 and WLAN AP 106 .
  • node 104 may provide to UE 102 information corresponding to the at least one P2P link 139 , for example, to enable UE 102 to establish the P2P link 139 with node 104 , e.g., as described below.
  • node 104 may provide the information corresponding to the P2P link 139 to UE 102 via one or more Radio Resource Control (RRC) messages, which may be communicated over the cellular link between node 104 and UE 102 , e.g., as described below.
  • RRC Radio Resource Control
  • cellular TRX 167 may send to UE 102 a RRC message including WLAN identification information to identify WLAN AP 106 , and a transport address of node 104 .
  • the transport address of node 104 may include, for example, an address of a termination port at node 104 to be used for the P2P link 139 , or any other address to be used by node 104 for the P2P link 139 .
  • cellular TRX 165 may receive the RRC message, and controller 145 may establish the P2P link 139 with node 104 based on the WLAN identification information and the transport address.
  • controllers 144 and 145 may steer the traffic of one or more DRBs from the cellular link between node 104 and UE 102 to the P2P link 139 between node 104 and UE 102 , and/or controllers 144 and 145 may steer the traffic of one or more DRBs, which were steered to the P2P link 139 , back to the cellular link between node 104 and UE 102 , e.g., as described below.
  • the ability to steer DRBs may enable improved efficiency, bandwidth utilization, steering and/or offloading of traffic between UE 102 and node 104 , e.g., as described below.
  • controllers 144 and 145 may steer the traffic of the DRBs between the cellular link and the P2P link 139 , for example, while maintaining session continuity.
  • node 104 and UE 102 may be configured to offload traffic from the cellular link to the P2P link 139 on a per-bearer basis, e.g., per-EPS bearer, e.g., as described below.
  • the one or more DRBs between node 104 and UE 102 may include DRBs associated with a plurality of PDN connections between UE 102 and one or more PGWs 169 , e.g., as described above.
  • controllers 144 and 145 may be configured to steer to the P2P link 139 traffic of a first DRB, e.g., a DRB associated with a first PDN connection, while maintaining over the cellular link traffic of a second DRB, e.g., a DRB associated with a second PDN connection.
  • the selection to steer traffic of one or more DRBs between the cellular link and the P2P link 139 may be made at node 104 .
  • controller 144 may select to steer traffic of a DRB (“the node-steered DRB”) to the P2P link 139 .
  • node 104 may send to UE 102 downlink traffic of the node-steered DRB via the P2P link 139 .
  • UE 102 may follow the steering decision made by node 104 with respect to the node-steered DRB. For example, responsive to receiving at UE 102 the downlink traffic of the node-steered DRB via the P2P link 139 , controller 145 may steer uplink traffic of the node-steered DRB to P2P link 139 , and node 104 may receive the uplink traffic of the node-steered DRB via WLAN AP 106 .
  • the selection to steer traffic of one or more DRBs between the cellular link and the P2P link 139 may be made at UE 102 .
  • controller 145 may select to steer traffic of a DRB (“the UE-steered DRB”) to the P2P link 139 .
  • UE 102 may send to node 104 the uplink traffic of the UE-steered DRB via the P2P link 139 .
  • node 104 may follow the steering decision made by UE 102 with respect to the UE-steered DRB. For example, responsive to receiving at node 104 the uplink traffic of the UE-steered DRB via the P2P link 139 , controller 144 may steer downlink traffic of the UE-steered DRB to the P2P link 139 , and UE 102 may receive the downlink traffic of the UE-steered DRB via the P2P link 139 .
  • node 104 and UE 102 may establish one or more P2P links 139 corresponding to a plurality of DRBs according to a scheme (MHRB scheme) defining a relationship between the P2P links 139 and the DRBs.
  • MHRB scheme a scheme defining a relationship between the P2P links 139 and the DRBs.
  • node 104 and UE 102 may establish P2P links 139 according to a first scheme (“the 1:1 scheme”).
  • the 1:1 scheme may include a P2P link (WLAN radio bearer leg) per each DRB.
  • node 104 and UE 102 may establish a separate P2P link 139 over the WLAN link between UE 102 and AP 106 .
  • controllers 144 and 145 may establish a plurality of P2P links 139 configured to communicate traffic of respective ones of the plurality of DRBs between node 104 and UE 102 .
  • the 1:1 scheme may enable providing QoS differentiation for traffic sent via WLAN access, e.g., on a per-DRB basis.
  • node 104 and UE 102 may establish a P2P link 139 configured to communicate traffic of a plurality of DRBs.
  • the P2P link 139 may be established to communicate all DRBs to be offloaded or only some of the DRBs between node 104 and UE 102 , e.g., as described below.
  • node 104 and UE 102 may establish a P2P link 139 according to a second scheme (“all:1 scheme”).
  • the all:1 scheme may include establishing a single P2P link 139 to be used for all DRBs to be offloaded.
  • node 104 and UE 102 may establish a single P2P link over the WLAN link between UE 102 and AP 106 to communicate traffic from DRBs, e.g., DRBs of all PDN connections, between node 104 and UE 102 .
  • UE 102 may be configured to associate multiple IP addresses, e.g., one IP address per PDN connection, with the same, single, P2P link 139 .
  • node 104 and UE 102 may establish P2P links 139 according to a third scheme (“PDN:1 scheme”).
  • the PDN:1 scheme may include establishing a P2P link 139 per all DRBs of the same PDN connection.
  • node 104 and UE 102 may establish a separate P2P link 139 over the WLAN link between UE 102 and AP 106 .
  • the PDN:1 scheme may have low complexity, and may avoid using multiple IP addresses for the same P2P link 139 .
  • FIG. 2 schematically illustrates a deployment of a system 200 , in accordance with some demonstrative embodiments.
  • system 200 may include an LTE system.
  • system 200 may include a UE 202 configured to communicate with an eNB 204 via cellular link.
  • eNB 204 may have a cellular coverage of an LTE cell 209 .
  • UE 202 may also be configured to communicate with a WLAN AP 206 , which may be located within LTE cell 209 .
  • WLAN AP 206 may have a WLAN coverage area 207 .
  • UE 202 may perform the functionality of UE 102 ( FIG. 1 ), eNB 204 may perform the functionality of node 104 ( FIG. 1 ), and/or WLAN AP 206 may perform the functionality of WLAN AP 106 ( FIG. 1 ).
  • UE 202 may establish a first PDN connection 230 with a first PDN 212 , e.g., the Internet, via a first EPS bearer between UE 202 and a first PGW (“PGW1”) 218 of an Evolved Packet Core (EPC) network 216 .
  • PGW1 PGW
  • EPC Evolved Packet Core
  • UE 202 may establish a second PDN connection 232 with a second PDN 214 , e.g., an IP Multimedia Core Network Subsystem (IMS) network, via a second EPS bearer between UE 202 and a second PGW (“PGW2”) 220 of EPC network 216 .
  • a second PDN 214 e.g., an IP Multimedia Core Network Subsystem (IMS) network
  • IMS IP Multimedia Core Network Subsystem
  • PGW2 PGW
  • UE 202 may use a first DRB 240 , over the cellular link between UE 202 and eNB 204 , to communicate Internet traffic of the first PDN connection between UE 202 and EPC 216 ; and a second DRB 242 , over the cellular link between UE 202 and eNB 204 , to communicate IMS traffic of the second PDN connection between UE 202 and EPC 216 .
  • eNB 204 and UE 202 may establish a separate “detour” P2P link per each DRB, via the WLAN link between UE 202 and WLAN AP 206 , and a backhaul network 210 .
  • backhaul network 210 may perform the functionality of interface 171 ( FIG. 1 ).
  • eNB 204 and UE 202 may establish a first P2P link 236 between eNB 204 and UE 202 , via WLAN AP 206 .
  • P2P link 236 may be joined together with DRB 240 at eNB 204 , e.g., to form a first MHRB corresponding to the first PDN connection.
  • eNB 204 and UE 202 may establish a second P2P link 234 between eNB 204 and UE 202 , via WLAN AP 206 .
  • P2P link 234 may be joined together with DRB 242 at eNB 204 , e.g., to form a second MHRB corresponding to the second PDN connection.
  • P2P links 234 and/or 236 may perform the functionality of P2P links 139 ( FIG. 1 ).
  • eNB 204 and/or UE 202 may steer traffic of the first EPS bearer from DRB 240 to P2P link 236 , and may steer traffic from P2P link 236 back to DRB 240 , for example, without affecting session continuity of a session between UE 202 and network 212 , e.g., as described above.
  • eNB 204 and/or UE 202 may steer traffic of the second EPS bearer from DRB 242 to P2P link 234 , and may steer traffic from P2P link 234 back to DRB 242 , for example, without affecting session continuity of a session between UE 202 and network 214 , e.g., as described above.
  • P2P links 234 and 236 may provide improved and/or efficient cellular-WLAN offloading and/or steering capabilities, for example, compared to other solutions for enhancing WLAN/3GPP Interworking, e.g., as described below.
  • a UE which may have two PDN connections, may associate with a WLAN AP, which may be connected to a certain network, e.g., the Internet.
  • the UE may offload certain IP flows of the certain network from the PDN connections to the WLAN AP, which, in turn, may route the IP flows to the certain network.
  • the offloading according to the NSWO architecture may be non-seamless, since the UE may be required to use an IP source address, which may be different from an IP source address of an offloaded IP flow.
  • every attempt to switch an active IP flow from cellular access to WLAN access will necessarily lead to service disruption.
  • the UE of the NSWO architecture may be restricted to offloading IP flows of only some types of networks, e.g., Internet traffic, while not being able to offload IP flows of other types of networks, e.g., IMS traffic, which may not be accessible via the WLAN AP.
  • networks e.g., Internet traffic
  • IMS traffic IMS traffic
  • P2P links 234 and 236 may enable seamless offload of the traffic of PDN connections 230 and 232 to the WLAN link between WLAN AP 206 and UE 202 .
  • the traffic flowing on a DRB between eNB 204 and UE 202 may be freely moved between cellular link and the WLAN link, e.g., without impacting session continuity.
  • P2P links 234 and 236 may enable steering traffic of PDN connections carrying any type of traffic, for example, since P2P links 234 and 236 enable to route the traffic back to eNB 204 , e.g., without imposing on WLAN AP 206 any requirement to be connected to any network.
  • a UE may establish two PDN connections over two different radio access technologies in parallel. For example, a first PDN connection, e.g., with the Internet, may be entirely established via WLAN access, and a second PDN connection, e.g., with an IMS network, may be entirely established via 3GPP access.
  • PDN Packet Data Network
  • MAPCON Multiple Access Packet Data Network
  • the MAPCON architecture is able to provide only an offloading granularity per PDN connection, e.g., since all traffic flowing on a PDN connection may be sent either via WLAN access or via 3GPP access.
  • switching access with MAPCON architecture requires explicit signaling between the UE and the EPC.
  • P2P links 234 and 236 may enable an offloading granularity on a per-bearer basis, e.g., as described above. Additionally, using P2P links 234 and 236 may enable switching access between the WLAN and cellular access links in a dynamic manner, for example, without requiring explicit signaling between the UE and the CN, e.g., as described above.
  • FIG. 3 schematically illustrates a sequence diagram of operations performed by a UE 302 , a WLAN AP 306 , and an eNB 304 , in accordance with some demonstrative embodiments.
  • UE 302 may perform the functionality of UE 102 ( FIG. 1 )
  • WLAN AP 306 may perform the functionality of WLAN AP 106 ( FIG. 1 )
  • eNB 304 may perform the functionality of node 104 ( FIG. 1 ).
  • UE 302 and eNB 304 may communicate ( 310 ) a plurality of DRBs via LTE access, e.g., via a cellular link between UE 302 and eNB 304 .
  • eNB 304 may decide ( 312 ) to trigger offloading of one or more DRBs to one or more P2P links via WLAN AP 306 , e.g., using a MHRB scheme.
  • eNB 304 may decide to trigger the offloading of the one or more DRBs based on any suitable criteria.
  • controller 144 may make an offloading decision to offload one or more DRBs based, for example, on a location of UE 302 , and pre-configured knowledge of appropriate WLAN access points in a vicinity of UE 302 .
  • the offloading decision may be based on knowledge, at eNB 304 , of a real-time load status of WLAN AP 306 , a load status of a cell controlled by eNB 304 , and/or any other parameter and/or criterion.
  • eNB 304 may obtain the load status of WLAN AP 306 based, for example, on measurements performed by UE 302 , via operations, administration and maintenance (OAM) messages, and/or via a direct interface between eNB 304 and WLAN AP 306 .
  • OAM operations, administration and maintenance
  • eNB 304 may select the one or more DRBs to be offloaded, for example, based on a QoS parameter associated with the DRBs.
  • eNB 304 may select whether or not to offload a DRB from the cellular link to the WLAN link, for example, based on a QoS Class Identifier (QCI) assigned to an EPS bearer associated with the DRB. In one example, eNB 304 may select to offload one or more DRBs, which are associated with EPS bearers having one or more particular QCIs.
  • QCI QoS Class Identifier
  • eNB 304 may select the one or more DRBs to be offloaded, based on any other additional or alternative criterion.
  • eNB 304 may send an RRC message 314 , e.g., an Establish MHRB message, to request UE 302 to trigger P2P link establishment via WLAN AP 306 .
  • RRC message 314 e.g., an Establish MHRB message
  • RRC message 314 may include a WLAN Identifier (ID) to identify WLAN AP 306 , e.g., a Service Set ID (SSID) address of WLAN AP 306 , a Basic SSID (BSSID) address of WLAN AP 306 , or any other address or identifier.
  • ID a WLAN Identifier
  • SSID Service Set ID
  • BSSID Basic SSID
  • RRC message 314 may include a transport address of eNB 304 to be used as a termination point of a P2P link between eNB 304 and UE 302 .
  • the transport address may include, for example, a virtual Media Access Control (MAC) address, a Virtual Local Area Network (VLAN) tag ID, a Generic Routing Encapsulation (GRE) tunnel key, or any other type of address.
  • MAC virtual Media Access Control
  • VLAN Virtual Local Area Network
  • GRE Generic Routing Encapsulation
  • UE 302 may search and associate ( 316 ) with WLAN AP 306 , e.g., based on the WLAN ID in RRC message 314 .
  • UE 302 may trigger establishment ( 318 ) of a P2P link, via the WLAN link with WLAN AP 306 , to the transport address of eNB 306 , e.g., based on the information included in RRC message 314 .
  • UE 320 may establish the P2P link, for example, using enhancements to a WLAN Control Protocol (WLCP), e.g., as defined by 3GPP TS 23.402, or any other signaling protocol.
  • WLCP WLAN Control Protocol
  • UE 302 and/or eNB 304 may steer ( 320 ) traffic of one or more of the DRBs to the P2P link.
  • eNB 304 or UE 302 may be in charge of traffic steering, e.g., in charge of selecting the radio access technology on which to forward the traffic of one or more DRB, e.g., as described below.
  • eNB 304 may start routing downlink traffic of one or more DRBs (“the eNB-steered DRBs”) via the WLAN access leg over the P2P link between eNB 304 and UE 302 .
  • UE 302 may follow the decision of eNB 304 with respect to the eNB-steered DRBs. For example, UE 302 may steer uplink traffic of the eNB-steered DRBs to the WLAN access leg over the P2P link between eNB 304 and UE 302 .
  • UE 302 may fall back to LTE access for all traffic, e.g., by continuing to route the uplink traffic of the eNB-steered DRBs on the cellular link and/or by steering the uplink traffic of the eNB-steered DRBs back to the cellular link, for example, if UE 302 realizes that UE 302 is about to exit the WLAN coverage area of WLAN AP 306 .
  • UE 302 may start routing uplink traffic of one or more DRBs (“the UE-steered DRBs) via the WLAN access leg over the P2P link between eNB 304 and UE 302 .
  • eNB 304 may follow the decision of UE 302 with respect to the UE-steered DRBs. For example, eNB 304 may steer downlink traffic of the UE-steered DRBs to the WLAN access leg over the P2P link between eNB 304 and UE 302 .
  • UE 302 may fall back to LTE access for all traffic, e.g., by steering the uplink traffic of the UE-steered DRBs back to the cellular link, for example, if UE 302 realizes that UE 302 is about to exit the WLAN coverage area of WLAN AP 306 .
  • the MHRB scheme between UE 302 and eNB 304 may be implicitly released, for example, if UE 302 is handed over from eNB 304 to another LTE cell.
  • UE may be aware of the implicit MHRB release, e.g., upon receiving a HANDOVER COMMAND message to indicate UE 302 is being handed over to another cell. Accordingly, UE 302 may establish a new MHRB with an eNB of the new cell.
  • FIG. 4 schematically illustrates a method of steering DRB traffic to a WLAN link, in accordance with some demonstrative embodiments.
  • one or more of the operations of the method of FIG. 4 may be performed by a wireless communication system e.g., system 100 ( FIG. 1 ) or system 200 ( FIG. 2 ); a wireless communication device, e.g., UE 102 ( FIG. 1 ), node 104 ( FIG. 1 ) and/or AP 106 ( FIG. 1 ); and/or a wireless communication unit, e.g., wireless communication units 110 and/or 130 ( FIG. 1 ).
  • a wireless communication system e.g., system 100 ( FIG. 1 ) or system 200 ( FIG. 2 ); a wireless communication device, e.g., UE 102 ( FIG. 1 ), node 104 ( FIG. 1 ) and/or AP 106 ( FIG. 1 ); and/or a wireless communication unit, e.g., wireless communication units 110 and/or 130 ( FIG. 1
  • the method may include communicating between a UE and a node traffic of a plurality of DRBs via a cellular link between the node and the UE.
  • node 104 ( FIG. 1 ) and UE 102 ( FIG. 1 ) may route traffic of a plurality of DRBs via a cellular link between UE 102 ( FIG. 1 ) and node 104 ( FIG. 1 ), e.g., as described above.
  • the method may include selecting one or more DRBs to be enabled for offloading to a WLAN link.
  • node 104 FIG. 1
  • the method may include communicating a RRC message from the node to the UE, the RRC message including WLAN identification information to identify a WLAN AP, and a transport address of the node.
  • node 104 FIG. 1
  • the method may include establishing at least one P2P link between the node and the UE, via a WLAN link between the UE and the WLAN AP.
  • UE 102 ( FIG. 1 ) and node 104 ( FIG. 1 ) may establish at least one P2P link 139 ( FIG. 1 ), e.g., as described above.
  • the method may include steering traffic of one or more of the DRBs (“the steered DRBs”) to the cellular link to the P2P link.
  • node 104 FIG. 1
  • UE 102 FIG. 1
  • the method may include moving traffic of one or more of the steered DRBs back to the cellular link.
  • node 104 FIG. 1
  • UE 102 FIG. 1
  • the method may include moving traffic of one or more of the steered DRBs back to the cellular link.
  • FIG. 5 is a schematic illustration of a product of manufacture, in accordance with some demonstrative embodiments.
  • Product 500 may include a non-transitory machine-readable storage medium 502 to store logic 504 , which may be used, for example, to perform at least part of the functionality of UE 102 ( FIG. 1 ), node 104 ( FIG. 1 ), AP 106 ( FIG. 1 ), wireless communication unit 110 ( FIG. 1 ), wireless communication unit 130 ( FIG. 1 ), controller 144 ( FIG. 1 ), and/or controller 145 ( FIG. 1 ), and/or to perform one or more operations of the method of FIG. 4 .
  • the phrase “non-transitory machine-readable medium” is directed to include all computer-readable media, with the sole exception being a transitory propagating signal.
  • product 500 and/or machine-readable storage medium 502 may include one or more types of computer-readable storage media capable of storing data, including volatile memory, non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and the like.
  • machine-readable storage medium 502 may include, RAM, DRAM, Double-Data-Rate DRAM (DDR-DRAM), SDRAM, static RAM (SRAM), ROM, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), Compact Disk ROM (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory, phase-change memory, ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, a disk, a floppy disk, a hard drive, an optical disk, a magnetic disk, a card, a magnetic card, an optical card, a tape, a cassette, and the like.
  • RAM random access memory
  • DDR-DRAM Double-Data-Rate DRAM
  • SDRAM static RAM
  • ROM read-only memory
  • the computer-readable storage media may include any suitable media involved with downloading or transferring a computer program from a remote computer to a requesting computer carried by data signals embodied in a carrier wave or other propagation medium through a communication link, e.g., a modem, radio or network connection.
  • a communication link e.g., a modem, radio or network connection.
  • logic 504 may include instructions, data, and/or code, which, if executed by a machine, may cause the machine to perform a method, process and/or operations as described herein.
  • the machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware, software, firmware, and the like.
  • logic 504 may include, or may be implemented as, software, a software module, an application, a program, a subroutine, instructions, an instruction set, computing code, words, values, symbols, and the like.
  • the instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like.
  • the instructions may be implemented according to a predefined computer language, manner or syntax, for instructing a processor to perform a certain function.
  • the instructions may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Matlab, Pascal, Visual BASIC, assembly language, machine code, and the like.
  • Example 1 includes a User Equipment (UE) comprising a Wireless Local Area Network (WLAN) transceiver; a cellular transceiver to communicate traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); and a controller to establish at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and a WLAN Access Point (AP), and to steer traffic of one or more of the DRB s from the cellular link to the P2P link.
  • UE User Equipment
  • WLAN Wireless Local Area Network
  • eNB evolved Node B
  • P2P Point-to-Point
  • Example 2 includes the subject matter of Example 1, and optionally, wherein the cellular transceiver is to receive from the eNB a Radio Resource Control (RRC) message including WLAN identification information to identify the WLAN AP, and a transport address of the eNB, the controller is to establish the P2P link based on the WLAN identification information and the transport address.
  • RRC Radio Resource Control
  • Example 3 includes the subject matter of Example 1 or 2, and optionally, wherein, responsive to receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, the controller is to steer to the P2P link uplink traffic of the DRB.
  • Example 4 includes the subject matter of any one of Examples 1-3, and optionally, wherein the controller is to select to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and, responsive to steering the uplink traffic to the P2P link, the UE is to receive from the eNB downlink traffic of the DRB via the P2P link.
  • Example 5 includes the subject matter of any one of Examples 1-4, and optionally, wherein the controller is to establish a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 6 includes the subject matter of any one of Examples 1-4, and optionally, wherein the controller is to establish a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 7 includes the subject matter of any one of Examples 1-6, and optionally, wherein the controller is to steer the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 8 includes the subject matter of any one of Examples 1-7, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 9 includes the subject matter of Example 8, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, and wherein the controller is to steer traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 10 includes the subject matter of any one of Examples 1-9, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 11 includes the subject matter of any one of Examples 1-10, and optionally, comprising one or more antennas, a memory and a processor.
  • Example 12 includes an evolved Node B (eNB) comprising a cellular transceiver to communicate with a User Equipment (UE) via a cellular link; and a controller to trigger offloading of one or more Data Radio Bearers (DRBs) to at least one Point to Point (P2P) link between the eNB and the UE, the P2P link being via a Wireless Local Area Network (WLAN) link between the UE and a WLAN access Point (AP), the cellular transceiver is to send to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify the WLAN AP, and a transport address of the eNB.
  • RRC Radio Resource Control
  • Example 13 includes the subject matter of Example 12, and optionally, wherein the controller is to select to steer traffic of a DRB of the one or more DRBs to the P2P link, and the eNB is to send to the UE downlink traffic of the DRB via the P2P link.
  • Example 14 includes the subject matter of Example 12 or 13, and optionally, wherein, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, the controller is to steer downlink traffic of the DRB to the P2P link.
  • Example 15 includes the subject matter of any one of Examples 12-14, and optionally, wherein the controller is to establish a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 16 includes the subject matter of any one of Examples 12-14, and optionally, wherein the controller is to establish a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 17 includes the subject matter of any one of Examples 12-16, and optionally, wherein the controller is to steer the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 18 includes the subject matter of any one of Examples 12-17, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 19 includes the subject matter of Example 18, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, and wherein the controller is to steer traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 20 includes the subject matter of any one of Examples 12-19, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Packet switched System
  • Example 21 includes the subject matter of any one of Examples 12-20, and optionally, comprising one or more antennas, a memory, and a processor.
  • Example 22 includes a method performed at a User Equipment (UE), the method comprising routing traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); receiving from the eNB a Radio Resource Control (RRC) message including Wireless Local Are Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and the WLAN AP; and steering traffic of one or more of the DRBs from the cellular link to the P2P link.
  • RRC Radio Resource Control
  • WLAN Wireless Local Are Network
  • P2P Point-to-Point
  • Example 23 includes the subject matter of Example 22, and optionally, comprising receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, and steering to the P2P link uplink traffic of the DRB.
  • Example 24 includes the subject matter of Example 22 or 23, and optionally, comprising selecting to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and receiving from the eNB downlink traffic of the DRB via the P2P link.
  • Example 25 includes the subject matter of any one of Examples 22-24, and optionally, comprising establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 26 includes the subject matter of any one of Examples 22-24, and optionally, comprising establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 27 includes the subject matter of any one of Examples 22-26, and optionally, comprising moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 28 includes the subject matter of any one of Examples 22-27, and optionally, comprising steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 29 includes the subject matter of any one of Examples 22-28, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 30 includes the subject matter of Example 29, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, the steering comprises steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 31 includes the subject matter of any one of Examples 22-30, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 32 includes a method performed at an evolved Node B (eNB), the method comprising communicating with a User Equipment (UE) via a cellular link; sending to the UE a Radio Resource Control (RRC) message including Wireless Local Area Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the UE via the WLAN AP; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular link to the P2P link.
  • RRC Radio Resource Control
  • WLAN Wireless Local Area Network
  • AP Wireless Local Area Network
  • DRB Data Radio Bearers
  • Example 33 includes the subject matter of Example 32, and optionally, comprising selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 34 includes the subject matter of 32 or 33, and optionally, comprising, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 35 includes the subject matter of any one of Examples 32-34, and optionally, comprising establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 36 includes the subject matter of any one of Examples 32-34, and optionally, comprising establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 37 includes the subject matter of any one of Examples 32-36, and optionally, comprising steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 38 includes the subject matter of any one of Examples 32-37, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 39 includes the subject matter of Example 38, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 40 includes the subject matter of any one of Examples 32-39, and optionally, comprising moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 41 includes the subject matter of any one of Examples 32-40, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Packet switched System
  • Example 42 includes a method performed at an evolved Node B (eNB), the method comprising communicating with a User Equipment (UE) via a cellular link; establishing with the UE a Multi-Homed-Radio-Bearer (MHRB), the MHRB including a cellular radio bearer over the cellular link and a Point to Point (P2P) link via a Wireless Local Area Network (WLAN) radio bearer; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular radio bearer to the P2P link.
  • eNB evolved Node B
  • UE User Equipment
  • MHRB Multi-Homed-Radio-Bearer
  • MHRB Multi-Homed-Radio-Bearer
  • P2P Point to Point
  • WLAN Wireless Local Area Network
  • Example 43 includes the subject matter of Example 42, and optionally, comprising sending to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; and establishing the P2P link with the UE via the WLAN AP.
  • RRC Radio Resource Control
  • Example 44 includes the subject matter of Example 42 or 43, and optionally, comprising selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 45 includes the subject matter of any one of Examples 42-44, and optionally, comprising, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 46 includes the subject matter of any one of Examples 42-45, and optionally, comprising establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 47 includes the subject matter of any one of Examples 42-45, and optionally, comprising establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 48 includes the subject matter of any one of Examples 42-47, and optionally, comprising steering the traffic of the DRBs from the cellular radio bearer to the P2P link while maintaining session continuity.
  • Example 49 includes the subject matter of any one of Examples 42-48, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 50 includes the subject matter of Example 49, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular radio bearer.
  • Example 51 includes the subject matter of any one of Examples 42-50, and optionally, comprising moving a DRB, which was steered to the P2P link, back to the cellular radio bearer.
  • Example 52 includes the subject matter of any one of Examples 42-51, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Packet switched System
  • Example 53 includes a product including one or more tangible computer-readable non-transitory storage media comprising computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement at a User Equipment (UE) a method comprising routing traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); receiving from the eNB a Radio Resource Control (RRC) message including Wireless Local Are Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and the WLAN AP; and steering traffic of one or more of the DRBs from the cellular link to the P2P link.
  • UE User Equipment
  • eNB evolved Node B
  • RRC Radio Resource Control
  • WLAN Wireless Local Are Network
  • P2P Point-to-Point
  • Example 54 includes the subject matter of Example 53, and optionally, wherein the method comprises receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, and steering to the P2P link uplink traffic of the DRB.
  • Example 55 includes the subject matter of Example 53 or 54, and optionally, wherein the method comprises selecting to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and receiving from the eNB downlink traffic of the DRB via the P2P link.
  • Example 56 includes the subject matter of any one of Examples 53-55, and optionally, wherein the method comprises establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 57 includes the subject matter of any one of Examples 53-55, and optionally, wherein the method comprises establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 58 includes the subject matter of any one of Examples 53-57, and optionally, wherein the method comprises moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 59 includes the subject matter of any one of Examples 53-58, and optionally, wherein the method comprises steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 60 includes the subject matter of any one of Examples 53-59, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 61 includes the subject matter of Example 60, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, the steering comprises steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 62 includes the subject matter of any one of Examples 53-61, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 63 includes a product including one or more tangible computer-readable non-transitory storage media comprising computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement at an evolved Node B (eNB) a method comprising communicating with a User Equipment (UE) via a cellular link; sending to the UE a Radio Resource Control (RRC) message including Wireless Local Area Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the UE via the WLAN AP; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular link to the P2P link.
  • RRC Radio Resource Control
  • WLAN Wireless Local Area Network
  • AP Wireless Local Area Network
  • DRB Data Radio Bearers
  • Example 64 includes the subject matter of Example 63, and optionally, wherein the method comprises selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 65 includes the subject matter of 63 or 64, and optionally, wherein the method comprises, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 66 includes the subject matter of any one of Examples 63-65, and optionally, wherein the method comprises establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 67 includes the subject matter of any one of Examples 63-65, and optionally, wherein the method comprises establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 68 includes the subject matter of any one of Examples 63-67, and optionally, wherein the method comprises steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 69 includes the subject matter of any one of Examples 63-68, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 70 includes the subject matter of Example 69, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 71 includes the subject matter of any one of Examples 63-70, and optionally, wherein the method comprises moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 72 includes the subject matter of any one of Examples 63-71, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 73 includes a product including one or more tangible computer-readable non-transitory storage media comprising computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement at an evolved Node B (eNB) a method comprising communicating with a User Equipment (UE) via a cellular link; establishing with the UE a Multi-Homed-Radio-Bearer (MHRB), the MHRB including a cellular radio bearer over the cellular link and a Point to Point (P2P) link via a Wireless Local Area Network (WLAN) radio bearer; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular radio bearer to the P2P link.
  • eNB evolved Node B
  • Example 74 includes the subject matter of Example 73, and optionally, wherein the method comprises sending to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; and establishing the P2P link with the UE via the WLAN AP.
  • RRC Radio Resource Control
  • Example 75 includes the subject matter of Example 73 or 74, and optionally, wherein the method comprises selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 76 includes the subject matter of any one of Examples 73-75, and optionally, wherein the method comprises, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 77 includes the subject matter of any one of Examples 73-76, and optionally, wherein the method comprises establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 78 includes the subject matter of any one of Examples 73-76, and optionally, wherein the method comprises establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 79 includes the subject matter of any one of Examples 73-78, and optionally, wherein the method comprises steering the traffic of the DRBs from the cellular radio bearer to the P2P link while maintaining session continuity.
  • Example 80 includes the subject matter of any one of Examples 73-79, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 81 includes the subject matter of Example 80, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular radio bearer.
  • Example 82 includes the subject matter of any one of Examples 73-81, and optionally, wherein the method comprises moving a DRB, which was steered to the P2P link, back to the cellular radio bearer.
  • Example 83 includes the subject matter of any one of Examples 73-82, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 84 includes an apparatus comprising means for routing traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between a User Equipment (UE) and an evolved Node B (eNB); means for receiving from the eNB a Radio Resource Control (RRC) message including Wireless Local Are Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; means for establishing at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and the WLAN AP; and means for steering traffic of one or more of the DRBs from the cellular link to the P2P link.
  • DRBs Data Radio Bearers
  • UE User Equipment
  • eNB evolved Node B
  • RRC Radio Resource Control
  • WLAN Wireless Local Are Network
  • AP Wireless Local Are Network
  • P2P Point-to-Point
  • Example 85 includes the subject matter of Example 84, and optionally, comprising means for receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, and steering to the P2P link uplink traffic of the DRB.
  • Example 86 includes the subject matter of Example 84 or 85, and optionally, comprising means for selecting to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and receiving from the eNB downlink traffic of the DRB via the P2P link.
  • Example 87 includes the subject matter of any one of Examples 84-86, and optionally, comprising means for establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 88 includes the subject matter of any one of Examples 84-86, and optionally, comprising means for establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 89 includes the subject matter of any one of Examples 84-88, and optionally, comprising means for moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 90 includes the subject matter of any one of Examples 84-89, and optionally, comprising means for steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 91 includes the subject matter of any one of Examples 84-90, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 92 includes the subject matter of Example 91, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, the steering comprises steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 93 includes the subject matter of any one of Examples 84-92, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 94 includes an apparatus comprising means for, at an Evolved Node B (eNB), communicating with a User Equipment (UE) via a cellular link; means for sending to the UE a Radio Resource Control (RRC) message including Wireless Local Area Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; means for establishing at least one Point-to-Point (P2P) link with the UE via the WLAN AP; and means for steering traffic of one or more Data Radio Bearers (DRBs) from the cellular link to the P2P link.
  • RRC Radio Resource Control
  • WLAN Wireless Local Area Network
  • AP Wireless Local Area Network
  • DRB Data Radio Bearers
  • Example 95 includes the subject matter of Example 94, and optionally, comprising means for selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 96 includes the subject matter of 94 or 95, and optionally, comprising means for, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 97 includes the subject matter of any one of Examples 94-96, and optionally, comprising means for establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 98 includes the subject matter of any one of Examples 94-96, and optionally, comprising means for establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 99 includes the subject matter of any one of Examples 94-98, and optionally, comprising means for steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 100 includes the subject matter of any one of Examples 90-99, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 101 includes the subject matter of Example 100, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 102 includes the subject matter of any one of Examples 94-101, and optionally, comprising means for moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 103 includes the subject matter of any one of Examples 94-102, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System
  • Example 104 includes an apparatus comprising means for, at an Evolved Node B (eNB), communicating with a User Equipment (UE) via a cellular link; means for establishing with the UE a Multi-Homed-Radio-Bearer (MHRB), the MHRB including a cellular radio bearer over the cellular link and a Point to Point (P2P) link via a Wireless Local Area Network (WLAN) radio bearer; and means for steering traffic of one or more Data Radio Bearers (DRBs) from the cellular radio bearer to the P2P link.
  • eNB Evolved Node B
  • UE User Equipment
  • MHRB Multi-Homed-Radio-Bearer
  • MHRB Multi-Homed-Radio-Bearer
  • P2P Point to Point
  • WLAN Wireless Local Area Network
  • Example 105 includes the subject matter of Example 104, and optionally, comprising means for sending to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; and establishing the P2P link with the UE via the WLAN AP.
  • RRC Radio Resource Control
  • Example 106 includes the subject matter of Example 104 or 105, and optionally, comprising means for selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 107 includes the subject matter of any one of Examples 104-106, and optionally, comprising means for, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 108 includes the subject matter of any one of Examples 104-107, and optionally, comprising means for establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 109 includes the subject matter of any one of Examples 104-107, and optionally, comprising means for establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 110 includes the subject matter of any one of Examples 104-109, and optionally, comprising means for steering the traffic of the DRBs from the cellular radio bearer to the P2P link while maintaining session continuity.
  • Example 111 includes the subject matter of any one of Examples 104-110, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • PDN Packet Data network
  • PGWs PDN Gateways
  • Example 112 includes the subject matter of Example 111, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular radio bearer.
  • Example 113 includes the subject matter of any one of Examples 104-112, and optionally, comprising means for moving a DRB, which was steered to the P2P link, back to the cellular radio bearer.
  • Example 114 includes the subject matter of any one of Examples 104-113, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • EPS Evolved Packet switched System

Abstract

Some demonstrative embodiments include devices, systems of steering data radio bearer traffic to a wireless local area network link. For example, a User Equipment (UE) may include a Wireless Local Area Network (WLAN) transceiver; a cellular transceiver to communicate traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); and a controller to establish at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and a WLAN Access Point (AP), and to steer traffic of one or more of the DRBs from the cellular link to the P2P link.

Description

    CROSS REFERENCE
  • This application claims the benefit of and priority from U.S. Provisional Patent Application No. 61/863,902 entitled “Advanced Wireless Communication Systems and Techniques”, filed Aug. 8, 2013, the entire disclosure of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • Some embodiments described herein generally relate to steering data radio bearer traffic to a wireless local area network link.
  • BACKGROUND
  • A wireless communication device, e.g., a mobile device, may be configured to utilize multiple wireless communication technologies.
  • For example, a User Equipment (UE) device may be configured to utilize a cellular connection, e.g., a Long Term Evolution (LTE) cellular connection, as well as a wireless-local-area-network (WLAN) connection, e.g., a Wireless-Fidelity (WiFi) connection.
  • There exists a need for solutions to enhance a level of cooperation and/or integration between WLAN and cellular networks. For example, 3rd Generation Partnership Project (3GPP) TR 37.834 (“Technical Specification Group Radio Access Network; WLAN/3GPP Radio Interworking (Release 12)”), relates to potential Radio Access Network (RAN) level enhancements for WLAN/3GPP Interworking. The 3GPP specifies several features for 3GPP-WLAN interworking. For example, 3GPP TS 23.402 (“Technical Specification Group Services and System Aspects; Architecture enhancements for non-3GPP accesses (Release 12)”) describes a Non-Seamless WLAN Offload (NSWO) feature, a Multiple Access Packet Data Network (PDN) Connectivity (MAPCON) feature, and an Internet Protocol (IP) Flow Mobility (IFOM) feature.
  • However, these features may be limited to specific implementations and/or architectures, may increase complexity, may affect efficiency, and/or may not be transparent to some elements of the system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity of presentation. Furthermore, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. The figures are listed below.
  • FIG. 1 is a schematic block diagram illustration of a system, in accordance with some demonstrative embodiments.
  • FIG. 2 is a schematic illustration of a deployment of a system, in accordance with some demonstrative embodiments.
  • FIG. 3 is a schematic illustration of a sequence diagram of operations performed by a User Equipment (UE), a Wireless Local Area Network (WLAN) Access Point (AP), and an evolved Node B (eNB), in accordance with some demonstrative embodiments.
  • FIG. 4 is a schematic illustration of a method of steering Data Radio Bearer (DRB) traffic to a WLAN link, in accordance with some demonstrative embodiments.
  • FIG. 5 is a schematic illustration of a product, in accordance with some demonstrative embodiments.
  • DETAILED DESCRIPTION
  • In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of some embodiments. However, it will be understood by persons of ordinary skill in the art that some embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, units and/or circuits have not been described in detail so as not to obscure the discussion.
  • Discussions herein utilizing terms such as, for example, “processing”, “computing”, “calculating”, “determining”, “establishing”, “analyzing”, “checking”, or the like, may refer to operation(s) and/or process(es) of a computer, a computing platform, a computing system, or other electronic computing device, that manipulate and/or transform data represented as physical (e.g., electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information storage medium that may store instructions to perform operations and/or processes.
  • The terms “plurality” and “a plurality”, as used herein, include, for example, “multiple” or “two or more”. For example, “a plurality of items” includes two or more items.
  • References to “one embodiment,” “an embodiment,” “demonstrative embodiment,” “various embodiments,” etc., indicate that the embodiment(s) so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.
  • As used herein, unless otherwise specified the use of the ordinal adjectives “first,” “second,” “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
  • Some embodiments may be used in conjunction with various devices and systems, for example, a Personal Computer (PC), a desktop computer, a mobile computer, a laptop computer, a notebook computer, a tablet computer, a Smartphone device, a server computer, a handheld computer, a handheld device, a Personal Digital Assistant (PDA) device, a handheld PDA device, an on-board device, an off-board device, a hybrid device, a vehicular device, a non-vehicular device, a mobile or portable device, a consumer device, a non-mobile or non-portable device, a wireless communication station, a wireless communication device, a wireless Access Point (AP), a wired or wireless router, a wired or wireless modem, a video device, an audio device, an audio-video (A/V) device, a wired or wireless network, a wireless area network, a cellular network, a cellular node, a Wireless Local Area Network (WLAN), a Multiple Input Multiple Output (MIMO) transceiver or device, a Single Input Multiple Output (SIMO) transceiver or device, a Multiple Input Single Output (MISO) transceiver or device, a device having one or more internal antennas and/or external antennas, Digital Video Broadcast (DVB) devices or systems, multi-standard radio devices or systems, a wired or wireless handheld device, e.g., a Smartphone, a Wireless Application Protocol (WAP) device, vending machines, sell terminals, and the like.
  • Some embodiments may be used in conjunction with devices and/or networks operating in accordance with existing Long Term Evolution (LTE) specifications (including 3rd Generation Partnership Project (3GPP) TR 37.834 (“Technical Specification Group Radio Access Network; WLAN/3GPP Radio Interworking (Release 12)”, V0.2.1, Jun. 2, 2013); 3GPP TS 23.402 (“Technical Specification Group Services and System Aspects; Architecture enhancements for non-3GPP accesses (Release 12)”, V12.1.0, Jun. 21, 2013); 3GPP TR 23.852 (“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on S2a Mobility based On GTP and WLAN access to EPC (SaMOG); Stage 2 (Release 12)”, V1.7.0, July 2013); TS 23.401 (“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 12)”, V12.1.0, June 2013); and TS 36.300 (“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2”, V12.1.0, June 2013))) and/or future versions and/or derivatives thereof, devices and/or networks operating in accordance with existing Wireless-Gigabit-Alliance (WGA) specifications (Wireless Gigabit Alliance, Inc WiGig MAC and PHY Specification Version 1.1, April 2011, Final specification) and/or future versions and/or derivatives thereof, devices and/or networks operating in accordance with existing IEEE 802.11 standards (IEEE 802.11-2012, IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Mar. 29, 2012), and/or future versions and/or derivatives thereof, devices and/or networks operating in accordance with existing IEEE 802.16 standards (IEEE-Std 802.16, 2009 Edition, Air Interface for Fixed Broadband Wireless Access Systems; IEEE-Std 802.16e, 2005 Edition, Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands; amendment to IEEE Std 802.16-2009, developed by Task Group m) and/or future versions and/or derivatives thereof, devices and/or networks operating in accordance with existing WirelessHD™ specifications and/or future versions and/or derivatives thereof, units and/or devices which are part of the above networks, and the like.
  • Some embodiments may be used in conjunction with one or more types of wireless communication signals and/or systems, for example, Radio Frequency (RF), Frequency-Division Multiplexing (FDM), Orthogonal FDM (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Time-Division Multiplexing (TDM), Time-Division Multiple Access (TDMA), Extended TDMA (E-TDMA), General Packet Radio Service (GPRS), extended GPRS, Code-Division Multiple Access (CDMA), Wideband CDMA (WCDMA), CDMA 2000, single-carrier CDMA, multi-carrier CDMA, Multi-Carrier Modulation (MDM), Discrete Multi-Tone (DMT), Bluetooth®, Global Positioning System (GPS), Wireless Fidelity (Wi-Fi), Wi-Max, ZigBee™, Ultra-Wideband (UWB), Global System for Mobile communication (GSM), second generation (2G), 2.5G, 3G, 3.5G, 4G, Fifth Generation (5G) mobile networks, 3GPP, Long Term Evolution (LTE) cellular system, LTE advance cellular system, High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), High-Speed Packet Access (HSPA), HSPA+, Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EV-DO), Enhanced Data rates for GSM Evolution (EDGE), and the like. Other embodiments may be used in various other devices, systems and/or networks.
  • The term “wireless device”, as used herein, includes, for example, a device capable of wireless communication, a communication device capable of wireless communication, a communication station capable of wireless communication, a portable or non-portable device capable of wireless communication, or the like. In some demonstrative embodiments, a wireless device may be or may include a peripheral that is integrated with a computer, or a peripheral that is attached to a computer. In some demonstrative embodiments, the term “wireless device” may optionally include a wireless service.
  • The term “communicating” as used herein with respect to a wireless communication signal includes transmitting the wireless communication signal and/or receiving the wireless communication signal. For example, a radio, which is capable of communicating a wireless communication signal, may include a wireless transmitter to transmit the wireless communication signal to at least one other radio, and/or a wireless communication receiver to receive the wireless communication signal from at least one other radio. The verb “communicating” may be used to refer to the action of transmitting or the action of receiving. In one example, the phrase “communicating a signal” may refer to the action of transmitting the signal by a first device, and may not necessarily include the action of receiving the signal by a second device. In another example, the phrase “communicating a signal” may refer to the action of receiving the signal by a first device, and may not necessarily include the action of transmitting the signal by a second device.
  • Some demonstrative embodiments are described herein with respect to a LTE cellular system. However, other embodiments may be implemented in any other suitable cellular network, e.g., a 3G cellular network, a 4G cellular network, a 5G cellular network, a WiMax cellular network, and the like.
  • Some demonstrative embodiments are described herein with respect to a WLAN system. However, other embodiments may be implemented in any other suitable non-cellular network.
  • Some demonstrative embodiments may be used in conjunction with a Heterogeneous Network (HetNet), which may utilize a deployment of a mix of technologies, frequencies, cell sizes and/or network architectures, e.g., including cellular, mmWave, and/or the like. In one example, the HetNet may include a radio access network having layers of different-sized cells ranging from large macrocells to small cells, for example, picocells and femtocells.
  • Other embodiments may be used in conjunction with any other wireless communication network.
  • The term “antenna”, as used herein, may include any suitable configuration, structure and/or arrangement of one or more antenna elements, components, units, assemblies and/or arrays. In some embodiments, the antenna may implement transmit and receive functionalities using separate transmit and receive antenna elements. In some embodiments, the antenna may implement transmit and receive functionalities using common and/or integrated transmit/receive elements. The antenna may include, for example, a phased array antenna, a single element antenna, a dipole antenna, a set of switched beam antennas, and/or the like.
  • The term “cell”, as used herein, may include a combination of network resources, for example, downlink and optionally uplink resources. The resources may be controlled and/or allocated, for example, by a cellular node (also referred to as a “base station”), or the like. The linking between a carrier frequency of the downlink resources and a carrier frequency of the uplink resources may be indicated in system information transmitted on the downlink resources.
  • The phrase “access point” (AP), as used herein, may include an entity that includes a station (STA) and provides access to distribution services, via the Wireless Medium (WM) for associated STAs.
  • The term “station” (STA), as used herein, may include any logical entity that is a singly addressable instance of a medium access control (MAC) and a physical layer (PHY) interface to the WM.
  • The phrases “directional multi-gigabit (DMG)” and “directional band” (DBand), as used herein, may relate to a frequency band wherein the Channel starting frequency is above 56 GHz.
  • The phrases “DMG STA” and “mmWave STA (mSTA)” may relate to a STA having a radio transmitter, which is operating on a channel that is within the DMG band.
  • Reference is now made to FIG. 1, which schematically illustrates a block diagram of a system 100, in accordance with some demonstrative embodiments.
  • As shown in FIG. 1, in some demonstrative embodiments, system 100 may include one or more wireless communication devices capable of communicating content, data, information and/or signals via one or more wireless mediums 108. For example, system 100 may include at least one User Equipment (UE) 102 capable of communicating with one or more wireless communication networks, e.g., as described below.
  • Wireless mediums 108 may include, for example, a radio channel, a cellular channel, an RF channel, a Wireless Fidelity (WiFi) channel, an IR channel, and the like. One or more elements of system 100 may optionally be capable of communicating over any suitable wired communication links.
  • In some demonstrative embodiments, system 100 may include at least one cellular network, e.g., including a cell controlled by a cellular node (“node”) 104.
  • In some demonstrative embodiments, system 100 may include a non-cellular network 107, for example, a WLAN, e.g., a Basic Service Set (BSS), managed by an Access Point (AP) 106.
  • In some demonstrative embodiments, network 107 may include a trusted WLAN Access network (TWAN), or any other WLAN.
  • In some demonstrative embodiments, non-cellular network 107 may at least partially be within a coverage area of node 104. For example, AP 106 may be within a coverage area of node 104.
  • In some demonstrative embodiments, node 104 may include an Evolved Node B (eNB). For example, node 104 may be configured to perform radio resource management (RRM), radio bearer control, radio admission control (access control), connection mobility management, resource scheduling between UEs and eNB radios, e.g., Dynamic allocation of resources to UEs in both uplink and downlink, header compression, link encryption of user data streams, packet routing of user data towards a destination, e.g., another eNB or an Evolved Packet Core (EPC), scheduling and/or transmitting paging messages, e.g., incoming calls and/or connection requests, broadcast information coordination, measurement reporting, and/or any other operations.
  • In other embodiments, node 104 may include any other functionality and/or may perform the functionality of any other cellular node, e.g., a Node B (NB), a base station or any other node or device.
  • In some demonstrative embodiments, UE 102 may include, for example, a mobile computer, a laptop computer, a notebook computer, a tablet computer, a mobile internet device, a handheld computer, a handheld device, a storage device, a PDA device, a handheld PDA device, an on-board device, an off-board device, a hybrid device (e.g., combining cellular phone functionalities with PDA device functionalities), a consumer device, a vehicular device, a non-vehicular device, a mobile or portable device, a mobile phone, a cellular telephone, a PCS device, a mobile or portable GPS device, a DVB device, a relatively small computing device, a non-desktop computer, a “Carry Small Live Large” (CSLL) device, an Ultra Mobile Device (UMD), an Ultra Mobile PC (UMPC), a Mobile Internet Device (MID), an “Origami” device or computing device, a video device, an audio device, an A/V device, a gaming device, a media player, a Smartphone, or the like.
  • In some demonstrative embodiments, UE 102, node 104 and/or AP 106 may include one or more wireless communication units to perform wireless communication between UE 102, node 104, AP 106 and/or with one or more other wireless communication devices, e.g., as described below. For example, UE 102 may include a wireless communication unit 110 and/or node 104 may include a wireless communication unit 130.
  • In some demonstrative embodiments, wireless communication unit 110 may be implemented in the form of a System on Chip (SoC) including circuitry and/or logic configured to perform the functionality of wireless communication unit 110; and/or wireless communication unit 130 may be implemented in the form of a SoC including circuitry and/or logic configured to perform the functionality of wireless communication unit 130, e.g., as described below.
  • In some demonstrative embodiments, wireless communication units 110 and 130 may include, or may be associated with, one or more antennas. In one example, wireless communication unit 110 may be associated with at least two antennas, e.g., antennas 112 and 114, or any other number of antennas, e.g., one antenna or more than two antennas; and/or wireless communication unit 130 may be associated with at least two antennas, e.g., antennas 132 and 134, or any other number of antennas, e.g., one antenna or more than two antennas.
  • In some demonstrative embodiments, antennas 112, 114, 132 and/or 134 may include any type of antennas suitable for transmitting and/or receiving wireless communication signals, blocks, frames, transmission streams, packets, messages and/or data. For example, antennas 112, 114,132 and/or 134 may include any suitable configuration, structure and/or arrangement of one or more antenna elements, components, units, assemblies and/or arrays. For example, antennas 112, 114, 132 and/or 134 may include a phased array antenna, a dipole antenna, a single element antenna, a set of switched beam antennas, and/or the like.
  • In some embodiments, antennas 112, 114, 132 and/or 134 may implement transmit and receive functionalities using separate transmit and receive antenna elements. In some embodiments, antennas 112, 114, 132 and/or 134 may implement transmit and receive functionalities using common and/or integrated transmit/receive elements.
  • In some demonstrative embodiments, wireless communication unit 130 may include at least one radio 142 and at least one controller 144 to control communications performed by radio 142, and/or wireless communication unit 110 may include at least one radio 143 and at least one controller 145 to control communications performed by radio 143. For example, radios 142 and/or 143 may include one or more wireless transmitters, receivers and/or transceivers able to send and/or receive wireless communication signals, RF signals, frames, blocks, transmission streams, packets, messages, data items, and/or data.
  • In some demonstrative embodiments, at least one radio 143 may include a WLAN transceiver (TRX) 163 to communicate with AP 106 over a WLAN link, and a cellular transceiver 165 to communicate with node 104 over a cellular link.
  • In some demonstrative embodiments, radio 142 may include a cellular transceiver 167 to communicate with node 104 over the cellular link.
  • In some demonstrative embodiments, the WLAN link may include, for example, a Wireless Fidelity (WiFi) link, a Wireless Gigabit (WiGig) link, or any other link.
  • In some demonstrative embodiments, the WLAN link may include, for example, a link over the 2.4 Gigahertz (GHz) or 5 GHz frequency band, the 60 GHz frequency band, or any other frequency band.
  • In some demonstrative embodiments, radios 142 and/or 143 may include a multiple input multiple output (MIMO) transmitters receivers system (not shown), which may be capable of performing antenna beamforming methods, if desired. In other embodiments, radios 142 and/or 143 may include any other transmitters and/or receivers.
  • In some demonstrative embodiments, radios 142 and/or 143 may include a turbo decoder and/or a turbo encoder (not shown) for encoding and/or decoding data bits into data symbols, if desired. In other embodiments, radios 142 and/or 143 may include any other encoder and/or decode.
  • In some demonstrative embodiments, UE 102 may communicate with node 104 via at least one cellular link. For example, radios 142 and/or 143 may include OFDM and/or SC-FDMA modulators and/or demodulators (not shown) configured to communicate OFDM signals over downlink channels, e.g., between node 104 and UE 102, and SC-FDMA signals over uplink channels, e.g., between UE 102 and node 104. In other embodiments, radios 142 and/or 143 may include any other modulators and/or demodulators.
  • In some demonstrative embodiments, wireless communication unit 110 may establish at least one WLAN link with AP 106. For example, wireless communication unit 110 may perform the functionality of one or more STAs, e.g., one or more WiFi STAs, WLAN STAs, and/or DMG STAs. The WLAN link may include an uplink and/or a downlink. The WLAN downlink may include, for example, a unidirectional link from AP 106 to the one or more STAs. The uplink may include, for example, a unidirectional link from a STA to AP 106.
  • In some demonstrative embodiments, UE 102, node 104 and/or AP 106 may also include, for example, one or more of a processor 124, an input unit 116, an output unit 118, a memory unit 120, and a storage unit 122. UE 102, node 104 and/or AP 106 may optionally include other suitable hardware components and/or software components. In some demonstrative embodiments, some or all of the components of one or more of UE 102, node 104 and/or AP 106 may be enclosed in a common housing or packaging, and may be interconnected or operably associated using one or more wired or wireless links. In other embodiments, components of one or more of UE 102, node 104 and/or AP 106 may be distributed among multiple or separate devices.
  • Processor 124 includes, for example, a Central Processing Unit (CPU), a Digital Signal Processor (DSP), one or more processor cores, a single-core processor, a dual-core processor, a multiple-core processor, a microprocessor, a host processor, a controller, a plurality of processors or controllers, a chip, a microchip, one or more circuits, circuitry, a logic unit, an Integrated Circuit (IC), an Application-Specific IC (ASIC), or any other suitable multi-purpose or specific processor or controller. Processor 124 executes instructions, for example, of an Operating System (OS) of UE 102, node 104 and/or AP 106 and/or of one or more suitable applications.
  • Input unit 116 includes, for example, a keyboard, a keypad, a mouse, a touch-screen, a touch-pad, a track-ball, a stylus, a microphone, or other suitable pointing device or input device. Output unit 118 includes, for example, a monitor, a screen, a touch-screen, a flat panel display, Light Emitting Diode (LED) display unit, a Liquid Crystal Display (LCD) display unit, a plasma display unit, one or more audio speakers or earphones, or other suitable output devices.
  • Memory unit 120 includes, for example, a Random Access Memory (RAM), a Read Only Memory (ROM), a Dynamic RAM (DRAM), a Synchronous DRAM (SD-RAM), a flash memory, a volatile memory, a non-volatile memory, a cache memory, a buffer, a short term memory unit, a long term memory unit, or other suitable memory units. Storage unit 122 includes, for example, a hard disk drive, a floppy disk drive, a Compact Disk (CD) drive, a CD-ROM drive, a DVD drive, or other suitable removable or non-removable storage units. Memory unit 120 and/or storage unit 122, for example, may store data processed by UE 102, node 104 and/or AP 106.
  • In some demonstrative embodiments, UE 102 may be configured utilize a cellular connection, e.g., a Long Term Evolution (LTE) cellular connection, a Universal Mobile Telecommunications System (UMTS) connection or any other cellular connection, to communicate with node 104; and a WLAN connection, e.g., a Wireless-Fidelity (WiFi) connection or any other WLAN connection, to communicate with AP 106.
  • In some demonstrative embodiments, one or more elements of system 100 may perform the functionality of a HetNet, which may utilize a deployment of a mix of technologies, frequencies, cell sizes and/or network architectures, for example, including cellular, WLAN, and/or the like.
  • For example, the HetNet may be configured to provide a service through a first wireless communication environment, e.g., a cellular network, and to maintain the service when switching to another communication environment, e.g., WLAN. The HetNet architecture may enable utilizing a mixture of wireless communication environments, e.g., a WLAN environment and a cellular environment, for example, to optimally respond to rapid changes in customer demand, reduce power consumption, reduce cost, increase efficiency and/or achieve any other benefit.
  • In one example, system 100 may utilize a Multi-tier, Multi Radio Access technology (Multi-RAT) Het-Net architecture, including a tier of small cells, e.g., pico, femto, relay stations, WiFi APs, and the like, overlaid on top of a macro cellular deployment to augment network capacity.
  • In another example, system 100 may utilize Multi-RAT small cells integrating multiple radios such as WiFi and 3GPP air interfaces in a single infrastructure device.
  • In some demonstrative embodiments, node 104 and AP 106 may be implemented as part of a Multi-RAT small cell.
  • In some demonstrative embodiments, node 104 and AP 106 may be co-located or connected as part of an integrated multi-RAT small cell. In one example, node 104 may be configured to directly interface with AP 106, e.g., to enable node 104 to interact directly with AP 106 and/or to control one or more functionalities of AP 106.
  • In some embodiments, node 104 and AP 106 may be implemented as part of a single device.
  • In other embodiments, node 104 and AP 106 may be implemented as separate and/or independent devices.
  • For example, node 104 and AP 106 may communicate via an interface 171. Interface 171 may include any suitable interface configured to provide connectivity between AP 106 and node 104. Interface 171 may include any wired and/or wireless communication links. In one example, interface 171 may be configured to route and/or tunnel communications between node 104 and AP 106. For example, interface 171 may include an Internet-Protocol (IP) based network, or any other network.
  • In other embodiments, system 100 may implement any other architecture and/or deployment.
  • In some demonstrative embodiments, UE 102 may establish a plurality of Evolved Packet-switched System (EPS) bearers to connect between UE 102 and one or more elements of a Core Network (CN) 149 via node 104.
  • In one example, UE 102 may establish at least one Packet Data Network (PDN) connection between UE 102 and at least one PDN 173, e.g., to support one or more EPS bearers between UE 102 and the PDN 173. The PDN connection may be maintained over a plurality of bearers between UE 102 and the PDN 173.
  • In one example, system 100 may include an LTE system, and at least one EPS bearer may be established via the PDN connection between UE 102 and a PDN Gateway (GW) (P-GW) 169 of CN 149. The EPS bearer may include a Data Radio Bearer (DRB) between UE 102 and node 104, a S1 bearer between node 104 and a Serving Gateway (S-GW) 167 of CN 149, and a S5 bearer between the S-GW 167 and the P-GW 169. In some implementations, an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) Radio Access Bearer (E-RAB) may be established between UE 102 and the S-GW 167, e.g., including the DRB and the S1 bearer.
  • In some demonstrative embodiments, a bearer, e.g., the EPS bearer, may be in the form of a virtual connection, which may provide a bearer service, e.g., a transport service with specific Quality of Service (QoS).
  • In some demonstrative embodiments, node 104 and UE 102 may be configured to enable cellular-WLAN interworking at the radio access network level, e.g., as described below.
  • In one example, node 104 and UE 102 may be configured to provide improved traffic balancing between WLAN access of UE 102 and cellular access of UE 102. Additionally or alternatively, node 104 and UE 102 may be configured to enable radio access selection taking into account radio congestion levels, e.g., of the cellular and WLAN links. Additionally or alternatively, node 104 and UE 102 may be configured to provide improved battery life of UE 102, and/or to provide any other improvements and/or benefits.
  • In some demonstrative embodiments, node 104 and UE 102 may be configured to enable a tightly coupled cellular-WLAN interworking system architecture, e.g., as described below.
  • In some demonstrative embodiments, node 104 and UE 102 may be configured according to a Multi-Homed Radio Bearer (MHRB) architecture, including a plurality of radio bearer connections (“radio bearer legs”) to communicate traffic of a DRB between node 104 and UE 102, e.g., as described below.
  • In some demonstrative embodiments, the MHRB architecture may include two radio bearer legs, for example, including a first radio bearer leg, which may be established over the cellular link between node 104 and UE 102, and a second radio bearer leg, which may be established over the WLAN link between UE 102 and AP 106, e.g., as described below.
  • In some demonstrative embodiments, according to the MHRB architecture, the first and second radio bearer legs may be joined together at node 104, for example, in a manner transparent to elements of CN 149, e.g., as described below.
  • In some demonstrative embodiments, the MHRB architecture may be configured to enable seamless traffic offload between the first and second radio bearer legs, for example, such that packets of an EPS bearer may be steered between the cellular access link and the WLAN access link, e.g., without impacting session continuity.
  • In some demonstrative embodiments, the radio bearer leg may be established in the form of a point to point (P2P) link between UE 102 and node 104, for example, over the WLAN link between UE 102 and WLAN AP 106, e.g., as described below.
  • In some demonstrative embodiments, UE 102, node 104, and/or AP 106 may be configured to enable steering one or more DRBs between UE 102 and node 104 via at least one P2P link 139 between UE 102 and node 104, e.g., formed over the WLAN link between UE 102 and AP 106, e.g., as described below.
  • In some demonstrative embodiments, controller 144 may be configured to establish the at least one P2P link 139 with UE 102 via the WLAN link between UE 102 and WLAN AP 106.
  • In some demonstrative embodiments, node 104 may provide to UE 102 information corresponding to the at least one P2P link 139, for example, to enable UE 102 to establish the P2P link 139 with node 104, e.g., as described below.
  • In some demonstrative embodiments, node 104 may provide the information corresponding to the P2P link 139 to UE 102 via one or more Radio Resource Control (RRC) messages, which may be communicated over the cellular link between node 104 and UE 102, e.g., as described below.
  • In some demonstrative embodiments, cellular TRX 167 may send to UE 102 a RRC message including WLAN identification information to identify WLAN AP 106, and a transport address of node 104. The transport address of node 104 may include, for example, an address of a termination port at node 104 to be used for the P2P link 139, or any other address to be used by node 104 for the P2P link 139.
  • In some demonstrative embodiments, cellular TRX 165 may receive the RRC message, and controller 145 may establish the P2P link 139 with node 104 based on the WLAN identification information and the transport address.
  • In some demonstrative embodiments, controllers 144 and 145 may steer the traffic of one or more DRBs from the cellular link between node 104 and UE 102 to the P2P link 139 between node 104 and UE 102, and/or controllers 144 and 145 may steer the traffic of one or more DRBs, which were steered to the P2P link 139, back to the cellular link between node 104 and UE 102, e.g., as described below.
  • In some demonstrative embodiments, the ability to steer DRBs, e.g., from the cellular link between UE 102 and node 104, via the P2P link 139 over the WLAN link, may enable improved efficiency, bandwidth utilization, steering and/or offloading of traffic between UE 102 and node 104, e.g., as described below.
  • In some demonstrative embodiments, controllers 144 and 145 may steer the traffic of the DRBs between the cellular link and the P2P link 139, for example, while maintaining session continuity.
  • In some demonstrative embodiments, node 104 and UE 102 may be configured to offload traffic from the cellular link to the P2P link 139 on a per-bearer basis, e.g., per-EPS bearer, e.g., as described below.
  • In some demonstrative embodiments, the one or more DRBs between node 104 and UE 102 may include DRBs associated with a plurality of PDN connections between UE 102 and one or more PGWs 169, e.g., as described above.
  • In some demonstrative embodiments, controllers 144 and 145 may be configured to steer to the P2P link 139 traffic of a first DRB, e.g., a DRB associated with a first PDN connection, while maintaining over the cellular link traffic of a second DRB, e.g., a DRB associated with a second PDN connection.
  • In some demonstrative embodiments, the selection to steer traffic of one or more DRBs between the cellular link and the P2P link 139 may be made at node 104. For example, controller 144 may select to steer traffic of a DRB (“the node-steered DRB”) to the P2P link 139. According to this example, node 104 may send to UE 102 downlink traffic of the node-steered DRB via the P2P link 139.
  • In some demonstrative embodiments, UE 102 may follow the steering decision made by node 104 with respect to the node-steered DRB. For example, responsive to receiving at UE 102 the downlink traffic of the node-steered DRB via the P2P link 139, controller 145 may steer uplink traffic of the node-steered DRB to P2P link 139, and node 104 may receive the uplink traffic of the node-steered DRB via WLAN AP 106.
  • Additionally or alternatively, in some demonstrative embodiments, the selection to steer traffic of one or more DRBs between the cellular link and the P2P link 139 may be made at UE 102. For example, controller 145 may select to steer traffic of a DRB (“the UE-steered DRB”) to the P2P link 139. According to this example, UE 102 may send to node 104 the uplink traffic of the UE-steered DRB via the P2P link 139.
  • In some demonstrative embodiments, node 104 may follow the steering decision made by UE 102 with respect to the UE-steered DRB. For example, responsive to receiving at node 104 the uplink traffic of the UE-steered DRB via the P2P link 139, controller 144 may steer downlink traffic of the UE-steered DRB to the P2P link 139, and UE 102 may receive the downlink traffic of the UE-steered DRB via the P2P link 139.
  • In some demonstrative embodiments, node 104 and UE 102 may establish one or more P2P links 139 corresponding to a plurality of DRBs according to a scheme (MHRB scheme) defining a relationship between the P2P links 139 and the DRBs.
  • In some demonstrative embodiment, node 104 and UE 102 may establish P2P links 139 according to a first scheme (“the 1:1 scheme”). For example, the 1:1 scheme may include a P2P link (WLAN radio bearer leg) per each DRB. For example, for each DRB to be offloaded from the cellular link between node 104 and 102, node 104 and UE 102 may establish a separate P2P link 139 over the WLAN link between UE 102 and AP 106.
  • In some demonstrative embodiments, controllers 144 and 145 may establish a plurality of P2P links 139 configured to communicate traffic of respective ones of the plurality of DRBs between node 104 and UE 102.
  • In some demonstrative embodiments, the 1:1 scheme may enable providing QoS differentiation for traffic sent via WLAN access, e.g., on a per-DRB basis.
  • In some demonstrative embodiments, node 104 and UE 102 may establish a P2P link 139 configured to communicate traffic of a plurality of DRBs. The P2P link 139 may be established to communicate all DRBs to be offloaded or only some of the DRBs between node 104 and UE 102, e.g., as described below.
  • In some demonstrative embodiments, node 104 and UE 102 may establish a P2P link 139 according to a second scheme (“all:1 scheme”). For example, the all:1 scheme may include establishing a single P2P link 139 to be used for all DRBs to be offloaded. For example, node 104 and UE 102 may establish a single P2P link over the WLAN link between UE 102 and AP 106 to communicate traffic from DRBs, e.g., DRBs of all PDN connections, between node 104 and UE 102.
  • In one example, if implementing the all:1 scheme, UE 102 may be configured to associate multiple IP addresses, e.g., one IP address per PDN connection, with the same, single, P2P link 139.
  • In some demonstrative embodiments, node 104 and UE 102 may establish P2P links 139 according to a third scheme (“PDN:1 scheme”). For example, the PDN:1 scheme may include establishing a P2P link 139 per all DRBs of the same PDN connection. For example, for all DRBs of the same PDN connection, node 104 and UE 102 may establish a separate P2P link 139 over the WLAN link between UE 102 and AP 106.
  • In some demonstrative embodiments, the PDN:1 scheme may have low complexity, and may avoid using multiple IP addresses for the same P2P link 139.
  • Reference is made to FIG. 2, which schematically illustrates a deployment of a system 200, in accordance with some demonstrative embodiments.
  • In some demonstrative embodiments, system 200 may include an LTE system. For example, system 200 may include a UE 202 configured to communicate with an eNB 204 via cellular link. For example, eNB 204 may have a cellular coverage of an LTE cell 209.
  • In some demonstrative embodiments, UE 202 may also be configured to communicate with a WLAN AP 206, which may be located within LTE cell 209. For example, WLAN AP 206 may have a WLAN coverage area 207.
  • In some demonstrative embodiments, UE 202 may perform the functionality of UE 102 (FIG. 1), eNB 204 may perform the functionality of node 104 (FIG. 1), and/or WLAN AP 206 may perform the functionality of WLAN AP 106 (FIG. 1).
  • In some demonstrative embodiments, UE 202 may establish a first PDN connection 230 with a first PDN 212, e.g., the Internet, via a first EPS bearer between UE 202 and a first PGW (“PGW1”) 218 of an Evolved Packet Core (EPC) network 216.
  • In some demonstrative embodiments, UE 202 may establish a second PDN connection 232 with a second PDN 214, e.g., an IP Multimedia Core Network Subsystem (IMS) network, via a second EPS bearer between UE 202 and a second PGW (“PGW2”) 220 of EPC network 216.
  • In some demonstrative embodiments, UE 202 may use a first DRB 240, over the cellular link between UE 202 and eNB 204, to communicate Internet traffic of the first PDN connection between UE 202 and EPC 216; and a second DRB 242, over the cellular link between UE 202 and eNB 204, to communicate IMS traffic of the second PDN connection between UE 202 and EPC 216.
  • In some demonstrative embodiments, eNB 204 and UE 202 may establish a separate “detour” P2P link per each DRB, via the WLAN link between UE 202 and WLAN AP 206, and a backhaul network 210. For example, backhaul network 210 may perform the functionality of interface 171 (FIG. 1).
  • In some demonstrative embodiments, eNB 204 and UE 202 may establish a first P2P link 236 between eNB 204 and UE 202, via WLAN AP 206.
  • In some demonstrative embodiments, P2P link 236 may be joined together with DRB 240 at eNB 204, e.g., to form a first MHRB corresponding to the first PDN connection.
  • In some demonstrative embodiments, eNB 204 and UE 202 may establish a second P2P link 234 between eNB 204 and UE 202, via WLAN AP 206.
  • In some demonstrative embodiments, P2P link 234 may be joined together with DRB 242 at eNB 204, e.g., to form a second MHRB corresponding to the second PDN connection.
  • In some demonstrative embodiments, P2P links 234 and/or 236 may perform the functionality of P2P links 139 (FIG. 1).
  • In some demonstrative embodiments, eNB 204 and/or UE 202 may steer traffic of the first EPS bearer from DRB 240 to P2P link 236, and may steer traffic from P2P link 236 back to DRB 240, for example, without affecting session continuity of a session between UE 202 and network 212, e.g., as described above.
  • In some demonstrative embodiments, eNB 204 and/or UE 202 may steer traffic of the second EPS bearer from DRB 242 to P2P link 234, and may steer traffic from P2P link 234 back to DRB 242, for example, without affecting session continuity of a session between UE 202 and network 214, e.g., as described above.
  • In some demonstrative embodiments, P2P links 234 and 236 may provide improved and/or efficient cellular-WLAN offloading and/or steering capabilities, for example, compared to other solutions for enhancing WLAN/3GPP Interworking, e.g., as described below.
  • In one example, according to a Non-Seamless WLAN Offload (NSWO) architecture, e.g., as described by 3GPP TS 23.402, a UE, which may have two PDN connections, may associate with a WLAN AP, which may be connected to a certain network, e.g., the Internet. The UE may offload certain IP flows of the certain network from the PDN connections to the WLAN AP, which, in turn, may route the IP flows to the certain network.
  • However, the offloading according to the NSWO architecture may be non-seamless, since the UE may be required to use an IP source address, which may be different from an IP source address of an offloaded IP flow. As a result, every attempt to switch an active IP flow from cellular access to WLAN access will necessarily lead to service disruption.
  • In addition, the UE of the NSWO architecture may be restricted to offloading IP flows of only some types of networks, e.g., Internet traffic, while not being able to offload IP flows of other types of networks, e.g., IMS traffic, which may not be accessible via the WLAN AP.
  • In contrast to the deficiencies of the NSWO architecture, P2P links 234 and 236 may enable seamless offload of the traffic of PDN connections 230 and 232 to the WLAN link between WLAN AP 206 and UE 202. For example, the traffic flowing on a DRB between eNB 204 and UE 202 may be freely moved between cellular link and the WLAN link, e.g., without impacting session continuity. In addition, P2P links 234 and 236 may enable steering traffic of PDN connections carrying any type of traffic, for example, since P2P links 234 and 236 enable to route the traffic back to eNB 204, e.g., without imposing on WLAN AP 206 any requirement to be connected to any network.
  • In another example, according to a Multiple Access Packet Data Network (PDN) Connectivity (MAPCON) architecture, e.g., as described by 3GPP TS 23.402, a UE may establish two PDN connections over two different radio access technologies in parallel. For example, a first PDN connection, e.g., with the Internet, may be entirely established via WLAN access, and a second PDN connection, e.g., with an IMS network, may be entirely established via 3GPP access.
  • However, the MAPCON architecture is able to provide only an offloading granularity per PDN connection, e.g., since all traffic flowing on a PDN connection may be sent either via WLAN access or via 3GPP access. In addition, switching access with MAPCON architecture requires explicit signaling between the UE and the EPC.
  • In contrast to the deficiencies of the MAPCON architecture, P2P links 234 and 236 may enable an offloading granularity on a per-bearer basis, e.g., as described above. Additionally, using P2P links 234 and 236 may enable switching access between the WLAN and cellular access links in a dynamic manner, for example, without requiring explicit signaling between the UE and the CN, e.g., as described above.
  • Reference is made to FIG. 3, which schematically illustrates a sequence diagram of operations performed by a UE 302, a WLAN AP 306, and an eNB 304, in accordance with some demonstrative embodiments. For example, UE 302 may perform the functionality of UE 102 (FIG. 1), WLAN AP 306 may perform the functionality of WLAN AP 106 (FIG. 1), and/or eNB 304 may perform the functionality of node 104 (FIG. 1).
  • In some demonstrative embodiments, UE 302 and eNB 304 may communicate (310) a plurality of DRBs via LTE access, e.g., via a cellular link between UE 302 and eNB 304.
  • In some demonstrative embodiments, eNB 304 may decide (312) to trigger offloading of one or more DRBs to one or more P2P links via WLAN AP 306, e.g., using a MHRB scheme.
  • In some demonstrative embodiments, eNB 304 may decide to trigger the offloading of the one or more DRBs based on any suitable criteria.
  • In one example, controller 144 (FIG. 1) may make an offloading decision to offload one or more DRBs based, for example, on a location of UE 302, and pre-configured knowledge of appropriate WLAN access points in a vicinity of UE 302.
  • In another example, the offloading decision may be based on knowledge, at eNB 304, of a real-time load status of WLAN AP 306, a load status of a cell controlled by eNB 304, and/or any other parameter and/or criterion. In one example, eNB 304 may obtain the load status of WLAN AP 306 based, for example, on measurements performed by UE 302, via operations, administration and maintenance (OAM) messages, and/or via a direct interface between eNB 304 and WLAN AP 306.
  • In some demonstrative embodiments, eNB 304 may select the one or more DRBs to be offloaded, for example, based on a QoS parameter associated with the DRBs.
  • For example, eNB 304 may select whether or not to offload a DRB from the cellular link to the WLAN link, for example, based on a QoS Class Identifier (QCI) assigned to an EPS bearer associated with the DRB. In one example, eNB 304 may select to offload one or more DRBs, which are associated with EPS bearers having one or more particular QCIs.
  • In other embodiments, eNB 304 may select the one or more DRBs to be offloaded, based on any other additional or alternative criterion.
  • In some demonstrative embodiments, eNB 304 may send an RRC message 314, e.g., an Establish MHRB message, to request UE 302 to trigger P2P link establishment via WLAN AP 306.
  • In some demonstrative embodiments, RRC message 314 may include a WLAN Identifier (ID) to identify WLAN AP 306, e.g., a Service Set ID (SSID) address of WLAN AP 306, a Basic SSID (BSSID) address of WLAN AP 306, or any other address or identifier.
  • In some demonstrative embodiments, RRC message 314 may include a transport address of eNB 304 to be used as a termination point of a P2P link between eNB 304 and UE 302. The transport address may include, for example, a virtual Media Access Control (MAC) address, a Virtual Local Area Network (VLAN) tag ID, a Generic Routing Encapsulation (GRE) tunnel key, or any other type of address.
  • In some demonstrative embodiments, UE 302 may search and associate (316) with WLAN AP 306, e.g., based on the WLAN ID in RRC message 314.
  • In some demonstrative embodiments, UE 302 may trigger establishment (318) of a P2P link, via the WLAN link with WLAN AP 306, to the transport address of eNB 306, e.g., based on the information included in RRC message 314. In one example, UE 320 may establish the P2P link, for example, using enhancements to a WLAN Control Protocol (WLCP), e.g., as defined by 3GPP TS 23.402, or any other signaling protocol.
  • In some demonstrative embodiments, UE 302 and/or eNB 304 may steer (320) traffic of one or more of the DRBs to the P2P link.
  • In some demonstrative embodiments, eNB 304 or UE 302 may be in charge of traffic steering, e.g., in charge of selecting the radio access technology on which to forward the traffic of one or more DRB, e.g., as described below.
  • In some demonstrative embodiments, eNB 304 may start routing downlink traffic of one or more DRBs (“the eNB-steered DRBs”) via the WLAN access leg over the P2P link between eNB 304 and UE 302. According to these embodiments, UE 302 may follow the decision of eNB 304 with respect to the eNB-steered DRBs. For example, UE 302 may steer uplink traffic of the eNB-steered DRBs to the WLAN access leg over the P2P link between eNB 304 and UE 302. UE 302 may fall back to LTE access for all traffic, e.g., by continuing to route the uplink traffic of the eNB-steered DRBs on the cellular link and/or by steering the uplink traffic of the eNB-steered DRBs back to the cellular link, for example, if UE 302 realizes that UE 302 is about to exit the WLAN coverage area of WLAN AP 306.
  • In some demonstrative embodiments, UE 302 may start routing uplink traffic of one or more DRBs (“the UE-steered DRBs) via the WLAN access leg over the P2P link between eNB 304 and UE 302. According to these embodiments, eNB 304 may follow the decision of UE 302 with respect to the UE-steered DRBs. For example, eNB 304 may steer downlink traffic of the UE-steered DRBs to the WLAN access leg over the P2P link between eNB 304 and UE 302. UE 302 may fall back to LTE access for all traffic, e.g., by steering the uplink traffic of the UE-steered DRBs back to the cellular link, for example, if UE 302 realizes that UE 302 is about to exit the WLAN coverage area of WLAN AP 306.
  • In some demonstrative embodiments, the MHRB scheme between UE 302 and eNB 304 may be implicitly released, for example, if UE 302 is handed over from eNB 304 to another LTE cell. For example, UE may be aware of the implicit MHRB release, e.g., upon receiving a HANDOVER COMMAND message to indicate UE 302 is being handed over to another cell. Accordingly, UE 302 may establish a new MHRB with an eNB of the new cell.
  • Reference is made to FIG. 4, which schematically illustrates a method of steering DRB traffic to a WLAN link, in accordance with some demonstrative embodiments. In some embodiments, one or more of the operations of the method of FIG. 4 may be performed by a wireless communication system e.g., system 100 (FIG. 1) or system 200 (FIG. 2); a wireless communication device, e.g., UE 102 (FIG. 1), node 104 (FIG. 1) and/or AP 106 (FIG. 1); and/or a wireless communication unit, e.g., wireless communication units 110 and/or 130 (FIG. 1).
  • As indicated at block 402, the method may include communicating between a UE and a node traffic of a plurality of DRBs via a cellular link between the node and the UE. For example, node 104 (FIG. 1) and UE 102 (FIG. 1) may route traffic of a plurality of DRBs via a cellular link between UE 102 (FIG. 1) and node 104 (FIG. 1), e.g., as described above.
  • As indicated at block 404, the method may include selecting one or more DRBs to be enabled for offloading to a WLAN link. For example, node 104 (FIG. 1) may select one or more DRBs to be enabled for offloading to one or more P2P links 139 (FIG. 1), e.g., as described above.
  • As indicated at block 406, the method may include communicating a RRC message from the node to the UE, the RRC message including WLAN identification information to identify a WLAN AP, and a transport address of the node. For example, node 104 (FIG. 1) may transmit to UE 102 (FIG. 1) an RRC message including WLAN identification information corresponding to WLAN AP 106 (FIG. 1), and a transport address of node 104 (FIG. 1), e.g., as described above.
  • As indicated at block 408, the method may include establishing at least one P2P link between the node and the UE, via a WLAN link between the UE and the WLAN AP. For example, UE 102 (FIG. 1) and node 104 (FIG. 1) may establish at least one P2P link 139 (FIG. 1), e.g., as described above.
  • As indicated at block 410, the method may include steering traffic of one or more of the DRBs (“the steered DRBs”) to the cellular link to the P2P link. In one example, node 104 (FIG. 1) may steer downlink traffic of one or more DRBs to P2P link 139 (FIG. 1), e.g., as described above. In another example, UE 102 (FIG. 1) may steer uplink traffic of one or more DRBs to P2P link 139 (FIG. 1), e.g., as described above.
  • As indicated at block 412, the method may include moving traffic of one or more of the steered DRBs back to the cellular link. For example, node 104 (FIG. 1) may move a steered DRB back to the cellular link, and/or UE 102 (FIG. 1) may move a steered DRB back to the cellular link, e.g., as described above.
  • FIG. 5 is a schematic illustration of a product of manufacture, in accordance with some demonstrative embodiments. Product 500 may include a non-transitory machine-readable storage medium 502 to store logic 504, which may be used, for example, to perform at least part of the functionality of UE 102 (FIG. 1), node 104 (FIG. 1), AP 106 (FIG. 1), wireless communication unit 110 (FIG. 1), wireless communication unit 130 (FIG. 1), controller 144 (FIG. 1), and/or controller 145 (FIG. 1), and/or to perform one or more operations of the method of FIG. 4. The phrase “non-transitory machine-readable medium” is directed to include all computer-readable media, with the sole exception being a transitory propagating signal.
  • In some demonstrative embodiments, product 500 and/or machine-readable storage medium 502 may include one or more types of computer-readable storage media capable of storing data, including volatile memory, non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and the like. For example, machine-readable storage medium 502 may include, RAM, DRAM, Double-Data-Rate DRAM (DDR-DRAM), SDRAM, static RAM (SRAM), ROM, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), Compact Disk ROM (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory, phase-change memory, ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, a disk, a floppy disk, a hard drive, an optical disk, a magnetic disk, a card, a magnetic card, an optical card, a tape, a cassette, and the like. The computer-readable storage media may include any suitable media involved with downloading or transferring a computer program from a remote computer to a requesting computer carried by data signals embodied in a carrier wave or other propagation medium through a communication link, e.g., a modem, radio or network connection.
  • In some demonstrative embodiments, logic 504 may include instructions, data, and/or code, which, if executed by a machine, may cause the machine to perform a method, process and/or operations as described herein. The machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware, software, firmware, and the like.
  • In some demonstrative embodiments, logic 504 may include, or may be implemented as, software, a software module, an application, a program, a subroutine, instructions, an instruction set, computing code, words, values, symbols, and the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like. The instructions may be implemented according to a predefined computer language, manner or syntax, for instructing a processor to perform a certain function. The instructions may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Matlab, Pascal, Visual BASIC, assembly language, machine code, and the like.
  • Examples
  • The following examples pertain to further embodiments.
  • Example 1 includes a User Equipment (UE) comprising a Wireless Local Area Network (WLAN) transceiver; a cellular transceiver to communicate traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); and a controller to establish at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and a WLAN Access Point (AP), and to steer traffic of one or more of the DRB s from the cellular link to the P2P link.
  • Example 2 includes the subject matter of Example 1, and optionally, wherein the cellular transceiver is to receive from the eNB a Radio Resource Control (RRC) message including WLAN identification information to identify the WLAN AP, and a transport address of the eNB, the controller is to establish the P2P link based on the WLAN identification information and the transport address.
  • Example 3 includes the subject matter of Example 1 or 2, and optionally, wherein, responsive to receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, the controller is to steer to the P2P link uplink traffic of the DRB.
  • Example 4 includes the subject matter of any one of Examples 1-3, and optionally, wherein the controller is to select to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and, responsive to steering the uplink traffic to the P2P link, the UE is to receive from the eNB downlink traffic of the DRB via the P2P link.
  • Example 5 includes the subject matter of any one of Examples 1-4, and optionally, wherein the controller is to establish a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 6 includes the subject matter of any one of Examples 1-4, and optionally, wherein the controller is to establish a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 7 includes the subject matter of any one of Examples 1-6, and optionally, wherein the controller is to steer the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 8 includes the subject matter of any one of Examples 1-7, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 9 includes the subject matter of Example 8, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, and wherein the controller is to steer traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 10 includes the subject matter of any one of Examples 1-9, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • Example 11 includes the subject matter of any one of Examples 1-10, and optionally, comprising one or more antennas, a memory and a processor.
  • Example 12 includes an evolved Node B (eNB) comprising a cellular transceiver to communicate with a User Equipment (UE) via a cellular link; and a controller to trigger offloading of one or more Data Radio Bearers (DRBs) to at least one Point to Point (P2P) link between the eNB and the UE, the P2P link being via a Wireless Local Area Network (WLAN) link between the UE and a WLAN access Point (AP), the cellular transceiver is to send to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify the WLAN AP, and a transport address of the eNB.
  • Example 13 includes the subject matter of Example 12, and optionally, wherein the controller is to select to steer traffic of a DRB of the one or more DRBs to the P2P link, and the eNB is to send to the UE downlink traffic of the DRB via the P2P link.
  • Example 14 includes the subject matter of Example 12 or 13, and optionally, wherein, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, the controller is to steer downlink traffic of the DRB to the P2P link.
  • Example 15 includes the subject matter of any one of Examples 12-14, and optionally, wherein the controller is to establish a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 16 includes the subject matter of any one of Examples 12-14, and optionally, wherein the controller is to establish a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 17 includes the subject matter of any one of Examples 12-16, and optionally, wherein the controller is to steer the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 18 includes the subject matter of any one of Examples 12-17, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 19 includes the subject matter of Example 18, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, and wherein the controller is to steer traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 20 includes the subject matter of any one of Examples 12-19, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Example 21 includes the subject matter of any one of Examples 12-20, and optionally, comprising one or more antennas, a memory, and a processor.
  • Example 22 includes a method performed at a User Equipment (UE), the method comprising routing traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); receiving from the eNB a Radio Resource Control (RRC) message including Wireless Local Are Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and the WLAN AP; and steering traffic of one or more of the DRBs from the cellular link to the P2P link.
  • Example 23 includes the subject matter of Example 22, and optionally, comprising receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, and steering to the P2P link uplink traffic of the DRB.
  • Example 24 includes the subject matter of Example 22 or 23, and optionally, comprising selecting to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and receiving from the eNB downlink traffic of the DRB via the P2P link.
  • Example 25 includes the subject matter of any one of Examples 22-24, and optionally, comprising establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 26 includes the subject matter of any one of Examples 22-24, and optionally, comprising establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 27 includes the subject matter of any one of Examples 22-26, and optionally, comprising moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 28 includes the subject matter of any one of Examples 22-27, and optionally, comprising steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 29 includes the subject matter of any one of Examples 22-28, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 30 includes the subject matter of Example 29, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, the steering comprises steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 31 includes the subject matter of any one of Examples 22-30, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • Example 32 includes a method performed at an evolved Node B (eNB), the method comprising communicating with a User Equipment (UE) via a cellular link; sending to the UE a Radio Resource Control (RRC) message including Wireless Local Area Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the UE via the WLAN AP; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular link to the P2P link.
  • Example 33 includes the subject matter of Example 32, and optionally, comprising selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 34 includes the subject matter of 32 or 33, and optionally, comprising, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 35 includes the subject matter of any one of Examples 32-34, and optionally, comprising establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 36 includes the subject matter of any one of Examples 32-34, and optionally, comprising establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 37 includes the subject matter of any one of Examples 32-36, and optionally, comprising steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 38 includes the subject matter of any one of Examples 32-37, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 39 includes the subject matter of Example 38, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 40 includes the subject matter of any one of Examples 32-39, and optionally, comprising moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 41 includes the subject matter of any one of Examples 32-40, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Example 42 includes a method performed at an evolved Node B (eNB), the method comprising communicating with a User Equipment (UE) via a cellular link; establishing with the UE a Multi-Homed-Radio-Bearer (MHRB), the MHRB including a cellular radio bearer over the cellular link and a Point to Point (P2P) link via a Wireless Local Area Network (WLAN) radio bearer; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular radio bearer to the P2P link.
  • Example 43 includes the subject matter of Example 42, and optionally, comprising sending to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; and establishing the P2P link with the UE via the WLAN AP.
  • Example 44 includes the subject matter of Example 42 or 43, and optionally, comprising selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 45 includes the subject matter of any one of Examples 42-44, and optionally, comprising, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 46 includes the subject matter of any one of Examples 42-45, and optionally, comprising establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 47 includes the subject matter of any one of Examples 42-45, and optionally, comprising establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 48 includes the subject matter of any one of Examples 42-47, and optionally, comprising steering the traffic of the DRBs from the cellular radio bearer to the P2P link while maintaining session continuity.
  • Example 49 includes the subject matter of any one of Examples 42-48, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 50 includes the subject matter of Example 49, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular radio bearer.
  • Example 51 includes the subject matter of any one of Examples 42-50, and optionally, comprising moving a DRB, which was steered to the P2P link, back to the cellular radio bearer.
  • Example 52 includes the subject matter of any one of Examples 42-51, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Example 53 includes a product including one or more tangible computer-readable non-transitory storage media comprising computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement at a User Equipment (UE) a method comprising routing traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); receiving from the eNB a Radio Resource Control (RRC) message including Wireless Local Are Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and the WLAN AP; and steering traffic of one or more of the DRBs from the cellular link to the P2P link.
  • Example 54 includes the subject matter of Example 53, and optionally, wherein the method comprises receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, and steering to the P2P link uplink traffic of the DRB.
  • Example 55 includes the subject matter of Example 53 or 54, and optionally, wherein the method comprises selecting to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and receiving from the eNB downlink traffic of the DRB via the P2P link.
  • Example 56 includes the subject matter of any one of Examples 53-55, and optionally, wherein the method comprises establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 57 includes the subject matter of any one of Examples 53-55, and optionally, wherein the method comprises establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 58 includes the subject matter of any one of Examples 53-57, and optionally, wherein the method comprises moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 59 includes the subject matter of any one of Examples 53-58, and optionally, wherein the method comprises steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 60 includes the subject matter of any one of Examples 53-59, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 61 includes the subject matter of Example 60, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, the steering comprises steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 62 includes the subject matter of any one of Examples 53-61, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • Example 63 includes a product including one or more tangible computer-readable non-transitory storage media comprising computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement at an evolved Node B (eNB) a method comprising communicating with a User Equipment (UE) via a cellular link; sending to the UE a Radio Resource Control (RRC) message including Wireless Local Area Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; establishing at least one Point-to-Point (P2P) link with the UE via the WLAN AP; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular link to the P2P link.
  • Example 64 includes the subject matter of Example 63, and optionally, wherein the method comprises selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 65 includes the subject matter of 63 or 64, and optionally, wherein the method comprises, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 66 includes the subject matter of any one of Examples 63-65, and optionally, wherein the method comprises establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 67 includes the subject matter of any one of Examples 63-65, and optionally, wherein the method comprises establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 68 includes the subject matter of any one of Examples 63-67, and optionally, wherein the method comprises steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 69 includes the subject matter of any one of Examples 63-68, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 70 includes the subject matter of Example 69, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 71 includes the subject matter of any one of Examples 63-70, and optionally, wherein the method comprises moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 72 includes the subject matter of any one of Examples 63-71, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Example 73 includes a product including one or more tangible computer-readable non-transitory storage media comprising computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement at an evolved Node B (eNB) a method comprising communicating with a User Equipment (UE) via a cellular link; establishing with the UE a Multi-Homed-Radio-Bearer (MHRB), the MHRB including a cellular radio bearer over the cellular link and a Point to Point (P2P) link via a Wireless Local Area Network (WLAN) radio bearer; and steering traffic of one or more Data Radio Bearers (DRBs) from the cellular radio bearer to the P2P link.
  • Example 74 includes the subject matter of Example 73, and optionally, wherein the method comprises sending to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; and establishing the P2P link with the UE via the WLAN AP.
  • Example 75 includes the subject matter of Example 73 or 74, and optionally, wherein the method comprises selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 76 includes the subject matter of any one of Examples 73-75, and optionally, wherein the method comprises, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 77 includes the subject matter of any one of Examples 73-76, and optionally, wherein the method comprises establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 78 includes the subject matter of any one of Examples 73-76, and optionally, wherein the method comprises establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 79 includes the subject matter of any one of Examples 73-78, and optionally, wherein the method comprises steering the traffic of the DRBs from the cellular radio bearer to the P2P link while maintaining session continuity.
  • Example 80 includes the subject matter of any one of Examples 73-79, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 81 includes the subject matter of Example 80, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular radio bearer.
  • Example 82 includes the subject matter of any one of Examples 73-81, and optionally, wherein the method comprises moving a DRB, which was steered to the P2P link, back to the cellular radio bearer.
  • Example 83 includes the subject matter of any one of Examples 73-82, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Example 84 includes an apparatus comprising means for routing traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between a User Equipment (UE) and an evolved Node B (eNB); means for receiving from the eNB a Radio Resource Control (RRC) message including Wireless Local Are Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; means for establishing at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and the WLAN AP; and means for steering traffic of one or more of the DRBs from the cellular link to the P2P link.
  • Example 85 includes the subject matter of Example 84, and optionally, comprising means for receiving at the UE downlink traffic of a DRB of the plurality of DRBs via the P2P link, and steering to the P2P link uplink traffic of the DRB.
  • Example 86 includes the subject matter of Example 84 or 85, and optionally, comprising means for selecting to steer to the P2P link uplink traffic of a DRB of the plurality of DRBs, and receiving from the eNB downlink traffic of the DRB via the P2P link.
  • Example 87 includes the subject matter of any one of Examples 84-86, and optionally, comprising means for establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 88 includes the subject matter of any one of Examples 84-86, and optionally, comprising means for establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 89 includes the subject matter of any one of Examples 84-88, and optionally, comprising means for moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 90 includes the subject matter of any one of Examples 84-89, and optionally, comprising means for steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 91 includes the subject matter of any one of Examples 84-90, and optionally, wherein the plurality of DRBs is associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 92 includes the subject matter of Example 91, and optionally, wherein the plurality of DRBs include first and second DRBs associated with a PDN connection, the steering comprises steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 93 includes the subject matter of any one of Examples 84-92, and optionally, wherein the plurality of DRBs are associated with a plurality of Evolved Packet switched System (EPS) bearers.
  • Example 94 includes an apparatus comprising means for, at an Evolved Node B (eNB), communicating with a User Equipment (UE) via a cellular link; means for sending to the UE a Radio Resource Control (RRC) message including Wireless Local Area Network (WLAN) identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; means for establishing at least one Point-to-Point (P2P) link with the UE via the WLAN AP; and means for steering traffic of one or more Data Radio Bearers (DRBs) from the cellular link to the P2P link.
  • Example 95 includes the subject matter of Example 94, and optionally, comprising means for selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 96 includes the subject matter of 94 or 95, and optionally, comprising means for, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 97 includes the subject matter of any one of Examples 94-96, and optionally, comprising means for establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 98 includes the subject matter of any one of Examples 94-96, and optionally, comprising means for establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 99 includes the subject matter of any one of Examples 94-98, and optionally, comprising means for steering the traffic of the DRBs from the cellular link to the P2P link while maintaining session continuity.
  • Example 100 includes the subject matter of any one of Examples 90-99, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 101 includes the subject matter of Example 100, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular link.
  • Example 102 includes the subject matter of any one of Examples 94-101, and optionally, comprising means for moving a DRB, which was steered to the P2P link, back to the cellular link.
  • Example 103 includes the subject matter of any one of Examples 94-102, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Example 104 includes an apparatus comprising means for, at an Evolved Node B (eNB), communicating with a User Equipment (UE) via a cellular link; means for establishing with the UE a Multi-Homed-Radio-Bearer (MHRB), the MHRB including a cellular radio bearer over the cellular link and a Point to Point (P2P) link via a Wireless Local Area Network (WLAN) radio bearer; and means for steering traffic of one or more Data Radio Bearers (DRBs) from the cellular radio bearer to the P2P link.
  • Example 105 includes the subject matter of Example 104, and optionally, comprising means for sending to the UE a Radio Resource Control (RRC) message including WLAN identification information to identify a WLAN Access Point (AP), and a transport address of the eNB; and establishing the P2P link with the UE via the WLAN AP.
  • Example 106 includes the subject matter of Example 104 or 105, and optionally, comprising means for selecting to steer traffic of a DRB of the one or more DRBs to the P2P link, and sending to the UE downlink traffic of the DRB via the P2P link.
  • Example 107 includes the subject matter of any one of Examples 104-106, and optionally, comprising means for, responsive to receiving at the eNB uplink traffic of a DRB of the one or more DRBs via the P2P link, steering downlink traffic of the DRB to the P2P link.
  • Example 108 includes the subject matter of any one of Examples 104-107, and optionally, comprising means for establishing a plurality of P2P links configured to communicate traffic of respective ones of the plurality of DRBs.
  • Example 109 includes the subject matter of any one of Examples 104-107, and optionally, comprising means for establishing a single P2P link configured to communicate traffic of the plurality of DRBs.
  • Example 110 includes the subject matter of any one of Examples 104-109, and optionally, comprising means for steering the traffic of the DRBs from the cellular radio bearer to the P2P link while maintaining session continuity.
  • Example 111 includes the subject matter of any one of Examples 104-110, and optionally, wherein the one or more DRBs are associated with one or more Packet Data network (PDN) connections between the UE and one or more PDN Gateways (PGWs).
  • Example 112 includes the subject matter of Example 111, and optionally, wherein the one or more DRBs include first and second DRBs over a PDN connection, the steering comprising steering traffic of the first DRB to the P2P link, while maintaining traffic of the second DRB over the cellular radio bearer.
  • Example 113 includes the subject matter of any one of Examples 104-112, and optionally, comprising means for moving a DRB, which was steered to the P2P link, back to the cellular radio bearer.
  • Example 114 includes the subject matter of any one of Examples 104-113, and optionally, wherein the one or more DRBs are associated with one or more Evolved Packet switched System (EPS) bearers.
  • Functions, operations, components and/or features described herein with reference to one or more embodiments, may be combined with, or may be utilized in combination with, one or more other functions, operations, components and/or features described herein with reference to one or more other embodiments, or vice versa.
  • While certain features have been illustrated and described herein, many modifications, substitutions, changes, and equivalents may occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure.

Claims (21)

1. (canceled)
2. An apparatus comprising logic and circuitry configured to cause a User Equipment (UE) to:
communicate traffic of one or more Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB);
receive via the cellular link a Radio Resource Control (RRC) message from the eNB comprising a plurality of parameters to initiate establishment of a Point-to-Point (P2P) tunnel between the UE and the eNB via a Wireless Local Area Network (WLAN) link between said UE and a WLAN and via an Internet Protocol (IP) interface between the eNB and the WLAN; and
steer traffic of at least one DRB of said one or more DRBs from said cellular link to the P2P tunnel.
3. The apparatus of claim 2 configured to cause the UE to, based on an indication from the eNB to configure Uplink (UL) traffic steering via WLAN, offload UL traffic of the DRB to the P2P tunnel.
4. The apparatus of claim 3 configured to cause the UE to offload all UL traffic of the DRB to the P2P tunnel.
5. The apparatus of claim 2 configured to cause the UE to release the P2P tunnel upon receipt of a handover command to handover the UE to another cell.
6. The apparatus of claim 2, wherein the RRC message comprises a transport address of said eNB to identify a termination point of the P2P tunnel between the UE and the eNB.
7. The apparatus of claim 6 configured to cause the UE to trigger establishment of the P2P tunnel via the WLAN to the transport address of the eNB.
8. The apparatus of claim 7 configured to cause the UE to trigger establishment of the P2P tunnel according to a WLAN Control Protocol (WPC) using the transport address of the eNB as a termination point of the P2P tunnel.
9. The apparatus of claim 2, wherein the RRC message comprises WLAN identification information to identify a WLAN Access Point (AP), the apparatus configured to cause the UE to associate with the WLAN AP based on the WLAN identification information, and to establish the P2P tunnel via a WLAN link with the WLAN AP.
10. The apparatus of claim 2 configured to cause the UE to establish a single P2P tunnel for a plurality of DRBs.
11. The apparatus of claim 2 configured to cause the UE to transmit to the eNB WLAN measurement information of WLAN measurements corresponding to the WLAN.
12. The apparatus of claim 2 comprising a memory, a processor, and one or more antennas.
13. An apparatus comprising logic and circuitry configured to cause an evolved Node B (eNB) to:
communicate traffic of one or more Data Radio Bearers (DRBs) via a cellular link between the eNB and a User Equipment (UE);
transmit via the cellular link a Radio Resource Control (RRC) message to the UE comprising a plurality of parameters to initiate establishment of a Point-to-Point (P2P) tunnel between the UE and the eNB via a Wireless Local Area Network (WLAN) link between said UE and a WLAN and via an Internet Protocol (IP) interface between the eNB and the WLAN; and
steer traffic of at least one DRB of said one or more DRBs from said cellular link to the P2P tunnel.
14. The apparatus of claim 13 configured to cause the eNB to indicate to the UE to configure Uplink (UL) traffic steering to offload UL traffic of the DRB to the P2P tunnel.
15. The apparatus of claim 14 configured to cause the eNB to indicate to the UE to offload all UL traffic of the DRB to the P2P tunnel.
16. The apparatus of claim 13, wherein the RRC message comprises a transport address of said eNB to identify a termination point of the P2P tunnel between the UE and the eNB.
17. The apparatus of claim 13, wherein the RRC message comprises WLAN identification information to identify a WLAN Access Point (AP) to be used for the P2P tunnel.
18. The apparatus of claim 13 configured to cause the eNB to trigger initiation of the P2P tunnel with the UE based on WLAN measurements from the UE corresponding to the WLAN.
19. The apparatus of claim 13 comprising a memory, a processor, and one or more antennas.
20. A product comprising a tangible computer-readable non-transitory storage medium comprising computer-executable instructions operable to, when executed by at least one processor, enable the at least one processor to cause a User Equipment (UE) to:
communicate traffic of one or more Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB);
receive via the cellular link a Radio Resource Control (RRC) message from the eNB comprising a plurality of parameters to initiate establishment of a Point-to-Point (P2P) tunnel between the UE and the eNB via a Wireless Local Area Network (WLAN) link between said UE and a WLAN and via an Internet Protocol (IP) interface between the eNB and the WLAN; and
steer traffic of at least one DRB of said one or more DRBs from said cellular link to the P2P tunnel.
21. The product of claim 20, wherein the instructions, when executed, cause the UE to, based on an indication from the eNB to configure Uplink (UL) traffic steering via WLAN, offload UL traffic of the DRB to the P2P tunnel.
US15/489,451 2013-08-08 2017-04-17 Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link Abandoned US20170289761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/489,451 US20170289761A1 (en) 2013-08-08 2017-04-17 Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361863902P 2013-08-08 2013-08-08
US14/314,256 US9650794B2 (en) 2013-08-08 2014-06-25 Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link
PCT/US2014/044629 WO2015020736A1 (en) 2013-08-08 2014-06-27 Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US15/489,451 US20170289761A1 (en) 2013-08-08 2017-04-17 Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/314,256 Continuation US9650794B2 (en) 2013-08-08 2014-06-25 Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link

Publications (1)

Publication Number Publication Date
US20170289761A1 true US20170289761A1 (en) 2017-10-05

Family

ID=66048946

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/911,262 Active 2034-07-05 US9762306B2 (en) 2013-08-08 2014-06-27 Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US15/186,779 Active US10321294B2 (en) 2013-08-08 2016-06-20 Signaling for proximity services and D2D discovery in an LTE network
US15/357,032 Active US9900786B2 (en) 2013-08-08 2016-11-21 Coverage extension level for coverage limited device
US15/424,429 Abandoned US20170245213A1 (en) 2013-08-08 2017-02-03 Power saving mode optimizations and related procedures
US15/489,451 Abandoned US20170289761A1 (en) 2013-08-08 2017-04-17 Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US14/911,262 Active 2034-07-05 US9762306B2 (en) 2013-08-08 2014-06-27 Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US15/186,779 Active US10321294B2 (en) 2013-08-08 2016-06-20 Signaling for proximity services and D2D discovery in an LTE network
US15/357,032 Active US9900786B2 (en) 2013-08-08 2016-11-21 Coverage extension level for coverage limited device
US15/424,429 Abandoned US20170245213A1 (en) 2013-08-08 2017-02-03 Power saving mode optimizations and related procedures

Country Status (6)

Country Link
US (5) US9762306B2 (en)
EP (1) EP3031146B1 (en)
CN (1) CN105393470B (en)
ES (1) ES2716903T3 (en)
HK (1) HK1222049A1 (en)
WO (1) WO2015020736A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638390B2 (en) * 2015-12-31 2020-04-28 Huawei Technologies Co., Ltd. Terminal handover method, controller, terminal, base station, and system
US20200195321A1 (en) * 2018-12-18 2020-06-18 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US10880702B1 (en) * 2019-06-04 2020-12-29 Sprint Communications Company L.P. Data communications for user applications that are executing in a wireless user device
US20210112626A1 (en) * 2020-12-23 2021-04-15 Intel Corporation Ap coordinated p2p communications in wi-fi network
US20210337422A1 (en) * 2020-04-24 2021-10-28 Parallel Wireless, Inc. QCI Based Traffic-Offload of PDN Traffic at Trusted Wifi Access Gateway
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US11363668B2 (en) 2017-09-07 2022-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method, network device and terminal device
US11622331B2 (en) 2018-01-10 2023-04-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining state of terminal device, and terminal device and access network device

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2621242A1 (en) * 2012-01-26 2013-07-31 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
US9681354B2 (en) 2013-08-08 2017-06-13 Intel IP Corporation Signaling radio bearer optimizations and other techniques for supporting small data transmissions
EP3031146B1 (en) 2013-08-08 2019-02-20 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US9564958B2 (en) 2013-08-08 2017-02-07 Intel IP Corporation Power saving mode optimizations and related procedures
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
EP3031150B1 (en) 2013-08-08 2019-12-18 Intel IP Corporation Coverage extension level for coverage limited device
WO2015018702A2 (en) * 2013-08-09 2015-02-12 Nokia Solutions And Networks Oy Identifying and communicating coverage shortfall for machine type communication devices
CN105474558B (en) * 2013-08-18 2019-11-08 Lg电子株式会社 Repeater operation method and apparatus in wireless communication system
CN105519181B (en) * 2013-09-25 2019-09-27 日电(中国)有限公司 Method and apparatus for the uplink data transmission in wireless communication system
JP2015065603A (en) * 2013-09-26 2015-04-09 株式会社Nttドコモ Radio communication terminal, radio base station and radio communication method
EP3301995B1 (en) * 2013-09-27 2019-08-21 Sony Corporation Communications device and method
KR102236020B1 (en) * 2013-10-08 2021-04-05 삼성전자 주식회사 Method and apparatus for power control and multiplexing of discovery resource in a wireless communication system
KR101823480B1 (en) * 2013-10-10 2018-01-30 엘지전자 주식회사 Method for managing uplink transmission resource in wireless communication system, and apparatus therefor
JP5864034B2 (en) * 2013-10-11 2016-02-17 京セラ株式会社 COMMUNICATION CONTROL METHOD, USER TERMINAL, AND COMMUNICATION DEVICE
CN104602245B (en) * 2013-10-31 2019-10-22 索尼公司 Enhance the method and the network equipment of adjacent service device-to-device discovery resource allocation
WO2015080488A1 (en) * 2013-11-27 2015-06-04 엘지전자 주식회사 Method for scanning resource for device-to-device direct communication in wireless communication system and apparatus therefor
KR101891636B1 (en) * 2014-01-13 2018-08-24 후아웨이 디바이스 (둥관) 컴퍼니 리미티드 Reference signal transmission method and user equipment
EP3101980B1 (en) * 2014-01-30 2019-05-08 Nec Corporation M2m terminal, base station and corresponding methods
US9456405B2 (en) * 2014-01-30 2016-09-27 Intel Corporation User equipment and methods for operation in coverage enhancement mode with physical random access channel preamble
JPWO2015119003A1 (en) * 2014-02-04 2017-03-23 株式会社Nttドコモ Service control system, user apparatus, and service control method
TWI612837B (en) * 2014-03-11 2018-01-21 財團法人資訊工業策進會 Direct mode communication system and communication resource scheduling method thereof
US10660146B2 (en) * 2014-03-21 2020-05-19 Samsung Electronics Co., Ltd. Methods and apparatus for device to device synchronization priority
CN105472646B (en) * 2014-08-08 2020-09-25 中兴通讯股份有限公司 Method and device for reporting information of device-to-device resource acquisition failure
EP3179817A4 (en) * 2014-09-04 2017-08-30 Huawei Technologies Co., Ltd. Information transmission method, user side device and network side device
EP3198970A1 (en) 2014-09-25 2017-08-02 Intel IP Corporation Apparatuses, systems, and methods for probabilistic transmission of device-to-device (d2d) discovery messages
JPWO2016140275A1 (en) * 2015-03-03 2017-12-14 京セラ株式会社 Mobile communication method, network device, and base station
US10595280B2 (en) * 2015-03-06 2020-03-17 Qualcomm Incorporated Repetition level coverage enhancement techniques for physical random access channel transmissions
US10631330B2 (en) 2015-04-03 2020-04-21 Qualcomm Incorporated Random access procedures under coverage limitations
US10433339B2 (en) * 2015-04-14 2019-10-01 Qualcomm Incorporated Random access for low latency wireless communications
US10111113B2 (en) * 2015-06-19 2018-10-23 Qualcomm Incorporated Coverage enhancement level determination
US10122500B2 (en) 2015-08-26 2018-11-06 Apple Inc. Efficient sparse network resource usage and connection release
US10624059B2 (en) 2015-12-17 2020-04-14 Sony Corporation Telecommunications apparatus and methods
US10356608B2 (en) * 2016-02-18 2019-07-16 Huawei Technologies Co., Ltd. System and method of user equipment state configurations
US10278212B2 (en) * 2016-04-01 2019-04-30 Htc Corporation Device and method of handling random access procedure
US10098059B2 (en) * 2016-04-29 2018-10-09 Qualcomm Incorporated Discovering physical cell identifiers in wireless communications
US9992800B2 (en) * 2016-05-13 2018-06-05 Qualcomm Incorporated Techniques for performing a random access procedure in an unlicensed spectrum
WO2018031300A1 (en) * 2016-08-11 2018-02-15 Intel IP Corporation Systems and method for selecting carrier resources for narowband physical random access channel procedures
CN110234171B (en) 2016-08-12 2023-04-14 中兴通讯股份有限公司 Wireless resource configuration method and device
CN109076547B (en) * 2016-09-20 2020-05-29 Oppo广东移动通信有限公司 Communication method of terminal equipment in equipment-to-equipment, terminal equipment and network equipment
CN109891967B (en) * 2016-10-26 2023-12-15 Lg电子株式会社 Method of sensing resources for direct communication between terminals in wireless communication system and apparatus therefor
CN108093360B (en) * 2016-11-20 2019-12-24 上海朗帛通信技术有限公司 Method and equipment in UE, base station and service center
BR112019014484A2 (en) * 2017-01-13 2020-02-11 Motorola Mobility Llc METHOD AND APPARATUS TO PERFORM RANDOM ACCESS BASED ON CONTAINMENT IN A CARRIER FREQUENCY
EP3358754A1 (en) * 2017-02-02 2018-08-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Antenna array codebook with beamforming coefficients adapted to an arbitrary antenna response of the antenna array
CN110249669B (en) * 2017-02-02 2022-06-28 Lg 电子株式会社 Method and apparatus for transmitting uplink
KR20190139973A (en) * 2017-04-19 2019-12-18 후아웨이 테크놀러지 컴퍼니 리미티드 Method and apparatus for identifying coverage mode
CN107071916A (en) * 2017-05-05 2017-08-18 宇龙计算机通信科技(深圳)有限公司 A kind of resource regulating method and relevant device
KR101859564B1 (en) 2017-08-01 2018-05-18 에스케이 텔레콤주식회사 Method and Apparatus for Mobility Management in Wireless Communication System
US20190053157A1 (en) * 2017-08-11 2019-02-14 Mediatek Inc. NB-IoT UE Differentiation
KR102372029B1 (en) * 2017-09-07 2022-03-08 삼성전자주식회사 Method for random access based on mobility and the appratus thereof
US10856230B2 (en) * 2017-09-13 2020-12-01 Apple Inc. Low power measurements mode
US11219088B2 (en) * 2017-09-28 2022-01-04 Lg Electronics Inc. Method and apparatus for configuring release cause
EP3689044B1 (en) * 2017-09-29 2022-05-18 Telefonaktiebolaget LM Ericsson (Publ) Systems and methods providing an idle early data transmission solution accommodating power-saving mode
TWI672928B (en) * 2017-11-03 2019-09-21 財團法人資訊工業策進會 Base station, and method for operating the base station
WO2019092196A1 (en) * 2017-11-13 2019-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Implicit temporal network access load distribution
CN111935808B (en) * 2018-05-07 2022-02-18 Oppo广东移动通信有限公司 Method and device for suspending RRC connection and computer storage medium
US10778322B2 (en) * 2018-05-14 2020-09-15 Samsung Electronics Co., Ltd. Methods and systems for dynamically configuring mode of operation for a prose enabled user equipment
CN110868738B (en) * 2018-08-27 2022-07-12 中兴通讯股份有限公司 Cell switching method, base station, eMTC terminal, and storage medium
EP3858070A4 (en) * 2018-09-27 2022-05-11 Lenovo (Beijing) Limited Method and apparatus for ue information transmission for network optimization
DK3874860T3 (en) * 2018-11-02 2022-08-01 Ericsson Telefon Ab L M Closed-loop remote interference control
WO2020166618A1 (en) * 2019-02-12 2020-08-20 京セラ株式会社 Communication control method, user device, and base station
JP7271581B2 (en) * 2019-02-12 2023-05-11 京セラ株式会社 Communication control method and user device
WO2021024016A1 (en) * 2019-08-02 2021-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Determination of a beam in a rat with angular information provided by another rat for performing a handover
US11310836B2 (en) 2019-08-19 2022-04-19 Samsung Electronics Co., Ltd. Repetition of PRACH preamble transmission for UEs
US20210100027A1 (en) * 2019-09-26 2021-04-01 Qualcomm Incorporated Techniques for performing sidelink discovery in wireless communications
CN112653493B (en) * 2019-10-11 2022-04-08 中国移动通信集团陕西有限公司 Antenna weight optimization method and device, computing equipment and storage medium
WO2021092734A1 (en) * 2019-11-11 2021-05-20 北京小米移动软件有限公司 Random access method and device, terminal, and storage medium
US11509408B1 (en) * 2021-07-30 2022-11-22 Inntot Technologies Private Limited System and method for large data transmission in digital radio broadcasting

Family Cites Families (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321882A (en) 1995-05-24 1996-12-03 Fujitsu Ltd System for simultaneously transferring plural calls
US6788702B1 (en) 1999-10-15 2004-09-07 Nokia Wireless Routers, Inc. Protocol for neighborhood-established transmission scheduling
ATE441990T1 (en) 2000-04-22 2009-09-15 Atheros Comm Inc METHOD FOR CONTROLLING SHARED ACCESS TO A WIRELESS TRANSMISSION SYSTEM AND INCREASE THE THROUGHPUT THEREOF
JP2001308258A (en) 2000-04-26 2001-11-02 Sony Corp Semiconductor package and method of manufacturing it
DE10105093A1 (en) * 2001-02-05 2002-08-08 Nokia Corp Paging method and system for a radio access network
US7280517B2 (en) 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
US7474686B2 (en) 2003-02-28 2009-01-06 Texas Instruments Incorporated Wireless personal area networks with rotation of frequency hopping sequences
US7990883B2 (en) 2003-05-16 2011-08-02 Sony Corporation Communication system, communication method, communication apparatus, communication control method, and computer program
US7162234B1 (en) * 2003-05-20 2007-01-09 Mark J. Smith Wireless communication device
KR100964679B1 (en) * 2003-08-19 2010-06-22 엘지전자 주식회사 Method of counting RRC Connected Mode in MBMS Service
JP4569328B2 (en) 2004-03-18 2010-10-27 パナソニック株式会社 Wireless communication apparatus and route search method
JP4779438B2 (en) 2004-05-31 2011-09-28 パナソニック株式会社 Wireless communication method and wireless communication apparatus
US20060045083A1 (en) 2004-08-25 2006-03-02 Meshnetworks, Inc. System and method for enabling the coexistence of non-802.11 waveforms in the presence of 802.11 compliant waveforms in a communication network
KR100678939B1 (en) 2004-08-27 2007-02-07 삼성전자주식회사 A method for transmitting wireless data in network environment of infrastructure mode
EP1784894A1 (en) 2004-08-31 2007-05-16 Fractus, S.A. Slim multi-band antenna array for cellular base stations
WO2007007338A2 (en) 2005-07-14 2007-01-18 Siano Mobile Silicon Ltd. A method for efficient energy consumption in battery powered handheld and mobile devices
JP4664772B2 (en) 2005-08-18 2011-04-06 三菱電機株式会社 Intermittent transmission / reception system and intermittent transmission / reception management method
US7573859B2 (en) 2005-10-13 2009-08-11 Trapeze Networks, Inc. System and method for remote monitoring in a wireless network
US7664085B2 (en) 2005-12-30 2010-02-16 Intel Corporation Wireless communication device and method for coordinating communications among wireless local area networks (WLANs) and broadband wireless access (BWA) networks
US9369246B2 (en) 2005-12-30 2016-06-14 Vtech Telecommunications Limited System and method of enhancing WiFi real-time communications
EP1835677A1 (en) 2006-03-15 2007-09-19 STMicroelectronics N.V. Method of calibrating the transmission chain of a wireless transceiver and corresponding wireless transceiver
KR101208133B1 (en) 2006-04-26 2012-12-04 한국전자통신연구원 Method for paging information in cellular system
US7792138B2 (en) 2006-09-13 2010-09-07 Seoul National University Foundation Distributed opportunistic scheduling in IEEE 802.11 wireless location area networks (WLANs)
US8014359B2 (en) 2006-10-27 2011-09-06 Interdigital Technology Corporation Method and apparatus for assigning radio resources and controlling transmission parameters on a random access channel
KR100965712B1 (en) 2006-11-20 2010-06-24 삼성전자주식회사 Method and apparatus for transmitting and receiving signal in a communication system
WO2008064270A2 (en) 2006-11-20 2008-05-29 Micropower Appliance Wireless network camera systems
US7783300B2 (en) 2006-11-22 2010-08-24 Airdefense, Inc. Systems and methods for proactively enforcing a wireless free zone
WO2008081531A1 (en) 2006-12-28 2008-07-10 Fujitsu Limited Wireless communication system, base station, and random access channel transmission method
EP2127269B1 (en) 2007-01-11 2017-08-30 Qualcomm Incorporated Using dtx and drx in a wireless communication system
US8169957B2 (en) 2007-02-05 2012-05-01 Qualcomm Incorporated Flexible DTX and DRX in a wireless communication system
US9014765B2 (en) 2007-02-28 2015-04-21 Intel Corporation Mobile platform tracking in wireless networks
US20080225772A1 (en) 2007-03-12 2008-09-18 Shugong Xu Explicit layer two signaling for discontinuous reception
JP4899098B2 (en) 2007-03-19 2012-03-21 富士通株式会社 Optical loss detection device
JP4332567B2 (en) 2007-03-27 2009-09-16 Okiセミコンダクタ株式会社 Manufacturing method and mounting method of semiconductor device
US8867518B2 (en) 2007-04-30 2014-10-21 Avaya Inc. Method and apparatus performing express forwarding bypass for time-critical frames
US7984314B2 (en) 2007-05-14 2011-07-19 Intel Corporation Power management of low power link states
KR101466897B1 (en) 2007-07-09 2014-12-02 삼성전자주식회사 Method and apparatus for supporting connectivity management for peer to peer in wirless commumication system
US8265065B2 (en) 2007-09-14 2012-09-11 Sharp Laboratories Of America, Inc. Method and system for voice-over-internet-protocol (VoIP) transmission in a wireless communications network
WO2009073744A2 (en) 2007-12-04 2009-06-11 Nextwave Broadband Inc. Intercell interference mitigation
US8024590B2 (en) 2007-12-10 2011-09-20 Intel Corporation Predicting future power level states for processor cores
US8599802B2 (en) * 2008-03-14 2013-12-03 Interdigital Patent Holdings, Inc. Method and apparatus to deliver public warning messages
CN101540951A (en) * 2008-03-21 2009-09-23 夏普株式会社 Radio resource control state converting method, base station and user equipment
US8204505B2 (en) 2008-06-17 2012-06-19 Qualcomm Incorporated Managing network-initiated quality of service setup in mobile device and network
US7984132B2 (en) 2008-06-27 2011-07-19 Qualcomm Incorporated Multi-rate peer discovery methods and apparatus
US8577363B2 (en) 2008-07-14 2013-11-05 Nokia Corporation Setup of device-to-device connection
EP2161783A1 (en) * 2008-09-04 2010-03-10 Alcatel Lucent Method for multi-antenna signal processing at an antenna element arrangement, corresponding transceiver and corresponding antenna element arrangement
US8737421B2 (en) 2008-09-04 2014-05-27 Apple Inc. MAC packet data unit construction for wireless systems
KR101296021B1 (en) 2008-10-29 2013-08-12 노키아 코포레이션 Apparatus and method for dynamic communication resource allocation for device-to-device communications in a wireless communication system
US8121097B2 (en) 2008-11-04 2012-02-21 Qualcomm Incorporated Transmission with hopping for peer-peer communication
US9014104B2 (en) 2008-11-04 2015-04-21 Qualcomm Incorporated Transmit power control based on receiver gain setting in a wireless communication network
WO2010055749A1 (en) 2008-11-14 2010-05-20 シャープ株式会社 Antenna device and base station device
US9320067B2 (en) * 2008-11-24 2016-04-19 Qualcomm Incorporated Configuration of user equipment for peer-to-peer communication
US8493887B2 (en) 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
EP2384598B1 (en) 2009-01-16 2018-05-23 Nokia Technologies Oy Apparatus and method ofscheduling resources for device-to-device communications
US8743823B2 (en) 2009-02-12 2014-06-03 Qualcomm Incorporated Transmission with collision detection and mitigation for wireless communication
EP2230866B1 (en) 2009-03-20 2012-10-10 HTC Corporation Method of measurement reporting for CSG cells in a LTE system
JPWO2010110396A1 (en) * 2009-03-26 2012-10-04 京セラ株式会社 ANTENNA CONTROL DEVICE, WIRELESS COMMUNICATION SYSTEM, AND ANTENNA CONTROL METHOD
US8730938B2 (en) 2009-04-08 2014-05-20 Qualcomm Incorporated Minimizing the impact of self synchronization on wireless communication devices
KR101679173B1 (en) 2009-04-10 2016-11-24 코닌클리케 필립스 엔.브이. Signaling method and apparatus to enable multiple antenna communications in wireless systems
US8614984B2 (en) 2009-05-29 2013-12-24 Lg Electronics Inc. Method and device for efficiently transmitting precoded reference signal in radio communication system
CN101932103B (en) * 2009-06-19 2015-08-12 中兴通讯股份有限公司 A kind of method of via node access
KR20110000479A (en) 2009-06-26 2011-01-03 엘지전자 주식회사 Apparatus and method for operating sleep mode
CN101945429B (en) 2009-07-08 2014-09-17 华为技术有限公司 Method, device and system for data routing of mobile network user interface
JP2011037833A (en) 2009-07-16 2011-02-24 Sumitomo Chemical Co Ltd Compound, resin and resist composition
US8248996B2 (en) 2009-07-28 2012-08-21 Qualcomm Incorporated Methods and apparatus for using a licensed spectrum to transmit a signal when an unlicensed spectrum is congested
CN102014441A (en) 2009-09-08 2011-04-13 中兴通讯股份有限公司 DRX (Discontinuous Reception) parameter configuration method and system
US20120184306A1 (en) * 2009-09-28 2012-07-19 Nokia Corporation Random Access Process Reusing For D2D Probing in Cellular-Aided D2D Networks
US8891647B2 (en) 2009-10-30 2014-11-18 Futurewei Technologies, Inc. System and method for user specific antenna down tilt in wireless cellular networks
CN107018579B (en) * 2009-11-23 2021-02-19 黑莓有限公司 State or mode transition triggering based on SRI message transmission
US8630230B2 (en) 2009-12-07 2014-01-14 Mediatek Inc. Method of reducing interference between two communication systems operating in adjacent frequency bands
US8885507B2 (en) * 2009-12-11 2014-11-11 Nokia Corporation Method, apparatus and computer program product for allocating resources in wireless communication network
KR101670746B1 (en) 2009-12-15 2016-11-09 엘지전자 주식회사 Method for allocating resouce for multicast and broadcast service data in wireless communication system and an appratus therefor
CN101765210B (en) * 2009-12-31 2012-05-23 上海华为技术有限公司 Method, device and base station for utilizing cell edge frequency band resources
JP5599900B2 (en) 2010-01-06 2014-10-01 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート Machine type communication system
KR101761419B1 (en) 2010-01-13 2017-07-26 엘지전자 주식회사 Method and Apparatus for updating location information of User Equipment
WO2011094954A1 (en) 2010-02-08 2011-08-11 上海贝尔股份有限公司 Method and device for transmitting data in machine to machine communication system
KR101674222B1 (en) 2010-02-09 2016-11-09 엘지전자 주식회사 Apparatus and method of reporting logged measurement in wireless communication system
KR101824987B1 (en) 2010-02-11 2018-02-02 엘지전자 주식회사 Method for efficiently transmitting downlink small data of machine type communication in mobile communications system
JP2013520100A (en) 2010-02-12 2013-05-30 インターデイジタル パテント ホールディングス インコーポレイテッド Access control and congestion control in machine-to-machine communication
US9253798B2 (en) 2010-02-12 2016-02-02 Interdigital Patent Holdings, Inc. Method and apparatus for optimizing uplink random access channel transmission
KR101714109B1 (en) 2010-02-12 2017-03-08 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for supporting machine-type communications
WO2011112051A2 (en) 2010-03-11 2011-09-15 엘지전자 주식회사 Method and apparatus for mtc in a wireless communication system
CN101814961B (en) 2010-03-18 2013-11-06 华为终端有限公司 Data transmission method and device thereof
CN106028273B (en) 2010-03-23 2020-01-14 Iot控股公司 Method for machine type communication and WTRU
US8615241B2 (en) 2010-04-09 2013-12-24 Qualcomm Incorporated Methods and apparatus for facilitating robust forward handover in long term evolution (LTE) communication systems
US8666398B2 (en) 2010-04-13 2014-03-04 Qualcomm Incorporated Random access procedure enhancements for heterogeneous networks
US9485069B2 (en) 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
US9264954B2 (en) 2010-04-28 2016-02-16 Qualcomm Incorporated Neighbor relation information management
US8867458B2 (en) 2010-04-30 2014-10-21 Nokia Corporation Network controlled device to device / machine to machine cluster operation
KR20110126034A (en) 2010-05-14 2011-11-22 엘지전자 주식회사 Method and apparatus of transmitting aperiodic sounding reference signal in wireless communication system
WO2011152773A1 (en) 2010-06-02 2011-12-08 Telefonaktiebolaget L M Ericsson (Publ) Method for controlling change of a radio resource control (rrc) state for a user equipment
KR101335782B1 (en) 2010-06-10 2013-12-02 엘지전자 주식회사 Communication method and communication apparatus for mtc in a wireless communication system
ES2454468T3 (en) 2010-06-11 2014-04-10 Intel Mobile Communications GmbH Method to control measurements in a wireless telecommunications terminal
US8750926B2 (en) 2010-06-18 2014-06-10 Mediatek Inc. System and method for coordinating multiple radio transceivers within the same device platform
JP2012010202A (en) 2010-06-25 2012-01-12 Sony Corp Communication apparatus and communication method, and communication system
US20120033613A1 (en) 2010-08-04 2012-02-09 National Taiwan University Enhanced rach design for machine-type communications
WO2012023280A1 (en) 2010-08-20 2012-02-23 Panasonic Corporation Apparatus and methods for data transmission synchronization for low power devices
CN102387563B (en) 2010-08-26 2015-05-27 华为技术有限公司 Service control method of machine type communication equipment, and related device and system
US8416741B2 (en) 2010-09-07 2013-04-09 Verizon Patent And Licensing Inc. Machine-to-machine communications over fixed wireless networks
US8380234B2 (en) 2010-09-14 2013-02-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting available radio access possibilities in a communications area
US9125120B2 (en) 2010-09-21 2015-09-01 Via Telecom Co., Ltd. Apparatus and method for internetworking interface in multimode wireless communication
US8792900B2 (en) 2010-09-23 2014-07-29 Nokia Corporation Autonomous unlicensed band reuse in mixed cellular and device-to-device network
KR101684999B1 (en) 2010-09-27 2016-12-09 삼성전자 주식회사 Method and apparatus for connecting to network in mobile terminal
KR101671261B1 (en) 2010-10-08 2016-11-17 삼성전자주식회사 Apparatus and method for supporting coverage expansion of compact cell in heterogeneous network system
GB2484921B (en) 2010-10-25 2014-10-08 Sca Ipla Holdings Inc Communications device and method
KR20130087029A (en) 2010-11-04 2013-08-05 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for establishing peer-to-peer communication
US9072110B2 (en) * 2010-11-08 2015-06-30 Mediatek Inc. Method for UE pattern indication and measurement for interference coordination
US20140079016A1 (en) 2010-11-12 2014-03-20 Yuying Dai Method and apparatus for performing channel aggregation and medium access control retransmission
EP2643989B1 (en) 2010-11-25 2018-09-26 Nokia Technologies Oy Network assisted sensing on a shared band for local communications
EP2647256A1 (en) 2010-11-30 2013-10-09 Telefonaktiebolaget L M Ericsson (PUBL) Methods and devices for supporting state reconfiguration of user equipments
EP2647137B1 (en) 2010-12-03 2020-05-20 Samsung Electronics Co., Ltd Method and apparatus for wireless communication on multiple spectrum bands
US9832993B2 (en) 2010-12-07 2017-12-05 Kimberly-Clark Worldwide, Inc. Melt processed antimicrobial composition
US9185700B2 (en) 2010-12-07 2015-11-10 Lg Electronics Inc. Method and device for communication between terminals in wireless communication system
KR20120068147A (en) 2010-12-17 2012-06-27 삼성전자주식회사 Apparatus and method for delivery of discared packet in broadband wireless access system
KR101746668B1 (en) 2010-12-21 2017-06-13 한국전자통신연구원 Method for Transmitting Data for Detached MTC Devices and Cellular Communication Systems Using the Method
KR20120071229A (en) 2010-12-22 2012-07-02 한국전자통신연구원 Method for transmitting data for mobile communication systems
KR101561474B1 (en) 2010-12-23 2015-10-20 한국전자통신연구원 Method of transmitting small amount of up-link data and method of receiving small amount of up-link data
US8958307B2 (en) 2010-12-25 2015-02-17 Intel Corporation Enabling coexistence of high-density and low-density transmissions
US9635624B2 (en) 2011-02-22 2017-04-25 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
JP5798340B2 (en) 2011-02-25 2015-10-21 京セラ株式会社 Base station and control method thereof
JP5351917B2 (en) 2011-03-09 2013-11-27 株式会社エヌ・ティ・ティ・ドコモ Mobile station
EP3110221B1 (en) 2011-03-18 2018-05-09 LG Electronics, Inc. Method and device for communicating device-to-device
US9503833B2 (en) 2011-03-23 2016-11-22 Qualcomm Incorporated System and method for network provisioning of mobile entities for peer-to-peer service
US9482734B2 (en) 2011-03-28 2016-11-01 Qualcomm Incorporated Methods and apparatus for triggering cooperative positioning or learning in a wireless network
US9088924B2 (en) 2011-04-01 2015-07-21 Mediatek Inc. Signaling design to support in-device coexistence interference avoidance
EP2509374A1 (en) 2011-04-05 2012-10-10 Panasonic Corporation Detachment of a mobile terminal (MTC) from a mobile communication system
EP2509345A1 (en) 2011-04-05 2012-10-10 Panasonic Corporation Improved small data transmissions for machine-type-communication (MTC) devices
WO2012139278A1 (en) 2011-04-12 2012-10-18 Renesas Mobile Corporation Methods and apparatuses of spectrum sharing for cellular-controlled offloading using unlicensed band
CN103477678B (en) 2011-04-15 2017-08-25 安华高科技通用Ip(新加坡)公司 LTE carrier aggregation configuration on TV blank wave band
US8923178B2 (en) 2011-04-29 2014-12-30 Blackberry Limited Managing group messages for LTE wakeup
JP2014515908A (en) 2011-04-29 2014-07-03 インターデイジタル パテント ホールディングス インコーポレイテッド Carrier aggregation for carriers with subframe restrictions
KR102066425B1 (en) * 2011-05-10 2020-01-15 삼성전자 주식회사 Method and appratus of applying time alignment timer in mobile communication system using carrier aggregation
US8660109B2 (en) 2011-05-20 2014-02-25 Renesas Mobile Corporation Apparatus and method for controlling communication
DE112011105271T5 (en) 2011-05-25 2014-03-06 Renesas Mobile Corporation Resource allocation for D2D communication
US8824301B2 (en) 2011-06-15 2014-09-02 Innovative Sonic Corporation Method and apparatus to provide assistance information for reconfiguration in a wireless communication system
WO2012177002A2 (en) 2011-06-21 2012-12-27 엘지전자 주식회사 Method for performing communication between devices in a wireless access system, and device for same
US20130010880A1 (en) * 2011-07-05 2013-01-10 Renesas Mobile Corporation Feedback Framework for MIMO Operation in Heterogeneous Communication Network
CN103765824B (en) 2011-07-14 2017-03-22 美国博通公司 Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
US8965415B2 (en) 2011-07-15 2015-02-24 Qualcomm Incorporated Short packet data service
US9294932B2 (en) * 2011-07-21 2016-03-22 Qualcomm Incorporated Apparatus and method for wireless network enhancement via variable down tilt
CN102223715A (en) 2011-07-21 2011-10-19 电信科学技术研究院 Data transmission method and device
US9461792B2 (en) 2011-07-28 2016-10-04 Broadcom Corporation Signaling and procedure design for cellular cluster contending on license-exempt bands
GB2493349A (en) 2011-07-29 2013-02-06 Intellectual Ventures Holding 81 Llc Mobile communications network with simplified handover
CN102916262B (en) * 2011-08-04 2015-03-04 中国电信股份有限公司 Multimode antenna and base station
US9467930B2 (en) 2011-08-16 2016-10-11 Lg Electronics Inc. Method and apparatus for performing device-to-device communication in wireless access system
GB2493781B (en) 2011-08-19 2016-07-27 Nvidia Corp Wireless communications system and method
KR20140058644A (en) 2011-08-25 2014-05-14 엘지전자 주식회사 Method of performing direct communication between terminals, method of supporting same, and apparatus for same
WO2013028128A1 (en) * 2011-08-25 2013-02-28 Telefonaktiebolaget L M Ericsson (Publ) Adapting a triggering threshold for cell re -selection measurements
US10038993B2 (en) * 2011-08-30 2018-07-31 Lg Electronics Inc. Method for supporting device-to-device communication in a cellular network, and apparatus for same
CN103002497A (en) * 2011-09-08 2013-03-27 华为技术有限公司 AAS (advanced antenna system) based information interaction method, AAS based information interaction system, UE (user equipment) and base station
KR101918797B1 (en) * 2011-09-09 2018-11-14 인터디지탈 패튼 홀딩스, 인크 Methods and apparatus for accessing localized applications
US8787280B2 (en) 2011-09-09 2014-07-22 Qualcomm Incorporated Methods and apparatus for WAN assisted contention detection and resolution in peer to peer networks
US8812680B2 (en) 2011-09-14 2014-08-19 Qualcomm Incorporated Methods and apparatus for peer discovery interference management in a wireless wide area network
US9973877B2 (en) 2011-09-23 2018-05-15 Htc Corporation Method of handling small data transmission
WO2013048193A1 (en) 2011-09-28 2013-04-04 Lg Electronics Inc. Method and apparatus for transmitting establishment cause value in wireless communication system
KR20130035964A (en) 2011-09-30 2013-04-09 한국전자통신연구원 Method for device-to-device communication based on cellular telecommunication system
US8848700B2 (en) 2011-09-30 2014-09-30 Electronics And Telecommunications Research Institute Method for device-to-device communication based on cellular telecommunication system
US9137841B2 (en) 2011-10-03 2015-09-15 Mediatek Inc. Enhancement for scheduling request triggering based on traffic condition
US20130107727A1 (en) 2011-10-27 2013-05-02 Nokia Corporation Apparatus and Method for the Management of Reception Parameters in a Communication System
GB2496153B (en) 2011-11-02 2014-07-02 Broadcom Corp Device-to-device communications
US9042286B2 (en) 2011-11-04 2015-05-26 Intel Corporation Reducing wireless power consumption and signaling overhead for internet application background messages
CN107197481B (en) * 2011-11-15 2020-08-28 三星电子株式会社 Method and apparatus for distributing idle user equipment in mobile communication system
CN102412885B (en) * 2011-11-25 2015-05-06 西安电子科技大学 Three-dimensional wave beam forming method in long term evolution (LET)
US9397895B2 (en) 2011-12-13 2016-07-19 Viavi Solutions Inc. Method and system for collecting topology information
US9973967B2 (en) 2011-12-15 2018-05-15 Nokia Solutions And Networks Oy Radio operations in a carrier aggregation system
CN103167512B (en) * 2011-12-19 2015-11-25 中国移动通信集团公司 Antenna for base station angle of declination defining method, device and base station equipment
GB2497741A (en) * 2011-12-19 2013-06-26 Renesas Mobile Corp A verification system for use in requesting access to a D2D communication service
GB2497745B (en) * 2011-12-19 2014-11-05 Broadcom Corp Improvements to wireless communication systems and methods
CN103178882B (en) * 2011-12-23 2016-01-27 中国移动通信集团公司 A kind of 3D MIMO downdip adjusting method, device and base station
GB2498575A (en) 2012-01-20 2013-07-24 Renesas Mobile Corp Device-to-device discovery resource allocation for multiple cells in a device-to-device discovery area
US8953478B2 (en) 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
WO2013113137A1 (en) 2012-01-30 2013-08-08 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for rrc switching
CN103249169B (en) * 2012-02-03 2016-08-31 华为技术有限公司 Method, base station and the subscriber equipment of transmission Stochastic accessing response message
US9185690B2 (en) * 2012-02-29 2015-11-10 Sharp Kabushiki Kaisha Allocating and determining resources for a device-to-device link
WO2013130998A1 (en) 2012-03-02 2013-09-06 Interdigital Patent Holdings, Inc. Method and system for providing beacon information
CN103298090B (en) 2012-03-02 2017-04-12 华为技术有限公司 Information transmission method, base station and user device
WO2013138701A2 (en) * 2012-03-16 2013-09-19 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
US9554406B2 (en) * 2012-03-19 2017-01-24 Industrial Technology Research Institute Method for device to device communication and control node using the same
US8805300B2 (en) * 2012-03-19 2014-08-12 Intel Mobile Communications GmbH Agile and adaptive wideband MIMO antenna isolation
US9450667B2 (en) * 2012-03-19 2016-09-20 Industrial Technology Research Institute Method for device to device communication and base station and user equipment using the same
US9420535B2 (en) 2012-03-26 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, a network node and methods therein for adjusting the length of a discontinuous reception cycle in a user equipment in a wireless communication system
US9247575B2 (en) 2012-03-27 2016-01-26 Blackberry Limited eNB storing RRC configuration information at another network component
KR101815167B1 (en) * 2012-04-11 2018-01-04 인텔 코포레이션 Operator-assisted device-to-device(d2d) discovery
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9408014B2 (en) 2012-04-24 2016-08-02 Electronics And Telecommunications Research Institute Data transmission method for machine type communication (MTC) and MTC apparatus
US9002281B2 (en) 2012-04-30 2015-04-07 Intel Corporation Apparatus and method to enable device-to-device (D2D) communication in cellular networks
CN104285496B (en) * 2012-05-04 2019-04-05 瑞典爱立信有限公司 Method and arrangement for D2D discovery
WO2013169074A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving frame configuration information in tdd wireless communication system
EP2850897A1 (en) 2012-05-11 2015-03-25 Nokia Solutions and Networks Oy Wireless communication scheduling on shared spectra
US9407391B2 (en) 2012-05-11 2016-08-02 Intel Corporation User equipment power savings for machine type communications
US9584297B2 (en) 2012-05-11 2017-02-28 Qualcomm Incorporated Interference management for adaptive TDD with frequency domain separations
WO2013172684A1 (en) 2012-05-17 2013-11-21 Samsung Electronics Co., Ltd. Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
US20140084543A1 (en) * 2012-05-30 2014-03-27 Shfl Entertainment, Inc. Methods and gaming tables for wagering games that permit rewagering
US9345039B2 (en) 2012-05-31 2016-05-17 Interdigital Patent Holdings, Inc. Device-to-device (D2D) link adaptation
US8831655B2 (en) 2012-06-05 2014-09-09 Apple Inc. Methods and apparatus for coexistence of wireless subsystems in a wireless communication device
US9125122B2 (en) * 2012-06-09 2015-09-01 Apple Inc. Paging for circuit switched fallback (CSFB) in long term evolution (LTE) connected mode
US9713167B2 (en) 2012-06-13 2017-07-18 Verizon Patent And Licensing Inc. Multistage hierarchical packet scheduling
CN104521210B (en) * 2012-06-21 2019-03-05 诺基亚通信公司 The adjacent service session management of network assistance
US9154267B2 (en) * 2012-07-02 2015-10-06 Intel Corporation Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
WO2014007574A1 (en) 2012-07-05 2014-01-09 Lg Electronics Inc. Method and apparatus of providing a proximity-based service for public safety
US9504029B2 (en) 2012-08-01 2016-11-22 Lg Electronics Inc. Method for signaling control information, and apparatus therefor
WO2014019618A1 (en) * 2012-08-01 2014-02-06 Nokia Siemens Networks Oy Methods, computer program products and apparatuses enabling to improve network controlled discovery in mobile communication networks
US9100160B2 (en) 2012-08-03 2015-08-04 Intel Corporation Apparatus and method for small data transmission in 3GPP-LTE systems
US9578630B2 (en) 2012-08-03 2017-02-21 Nokia Solutions And Networks Oy Data transmission
US9363702B2 (en) 2012-08-03 2016-06-07 Intel Corporation Method and system for enabling device-to-device communication
US9191828B2 (en) 2012-08-03 2015-11-17 Intel Corporation High efficiency distributed device-to-device (D2D) channel access
CN104471876B (en) 2012-08-03 2018-08-10 英特尔公司 Include the 3GPP/M2M method and apparatus of equipment triggering recall/replacement feature
KR102030516B1 (en) * 2012-08-10 2019-11-08 삼성전자주식회사 Method of reception of secondary notification after etws message is received by user equipment in connected mode
CN104584670B (en) * 2012-08-23 2019-04-19 交互数字专利控股公司 The method and apparatus found for executive device to device
US9781767B2 (en) * 2012-08-24 2017-10-03 Samsung Electronics Co., Ltd. Method for achieving fast dormancy of user equipment (UE) in Cell—PCH or URA—PCH state in UMTS
WO2014034573A1 (en) * 2012-08-28 2014-03-06 京セラ株式会社 Base station, user terminal, and processor
CN103686676A (en) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 Communication method and device of device-to-device communication system and system
US8903419B2 (en) * 2012-08-31 2014-12-02 Nokia Solutions And Networks Oy Optimization on network assisted proximity services discovery management
US10623938B2 (en) * 2012-09-06 2020-04-14 Qualcomm Incorporated Methods and apparatus for paging based peer discovery
US20140066018A1 (en) * 2012-09-06 2014-03-06 Telecommunication Systems, Inc. Location Based Privacy for Proximity Services
CN103686691B (en) * 2012-09-18 2018-01-05 电信科学技术研究院 Signal and configuration information are sent and terminal finds method and apparatus
US9813920B2 (en) 2012-09-19 2017-11-07 Qualcomm, Incorporated Systems and methods for transmitting and receiving discovery messages
CN104854927A (en) * 2012-10-17 2015-08-19 美国博通公司 Low power communication in connected mode
US9100929B2 (en) * 2012-11-02 2015-08-04 Intel Mobile Communications GmbH Terminal and a method for establishing a cellular network connection between a terminal and a base station
ES2728202T3 (en) * 2012-11-13 2019-10-22 Ericsson Telefon Ab L M Method to modify parameter values for a long-range extension, corresponding memory and wireless device
JP5957614B2 (en) * 2012-12-09 2016-07-27 エルジー エレクトロニクス インコーポレイティド Synchronization acquisition method and apparatus for direct communication between coverage external terminals in a wireless communication system
CN104854945B (en) * 2012-12-14 2018-09-18 Lg 电子株式会社 The dispatching method and its device of direct communication between terminals in a wireless communication system
IN2015DN04173A (en) 2012-12-21 2015-10-16 Ericsson Telefon Ab L M
WO2014105893A1 (en) 2012-12-26 2014-07-03 Ict Research Llc Mobility extensions to industrial-strength wireless sensor networks
CN104969641B (en) * 2012-12-27 2018-12-28 瑞典爱立信有限公司 The method and subframe of measurement process for the compound dynamic subframe in dynamic TDD
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9042938B2 (en) * 2012-12-27 2015-05-26 Google Technology Holdings LLC Method and apparatus for device-to-device communication
JP6266651B2 (en) 2012-12-28 2018-01-24 テレコム・イタリア・エッセ・ピー・アー Activating deactivated small coverage nodes in heterogeneous cellular networks
WO2014104854A1 (en) * 2012-12-30 2014-07-03 엘지전자 주식회사 Method for sharing wireless resource information in multi-cell wireless communication system and apparatus for same
WO2014110361A1 (en) 2013-01-11 2014-07-17 Interdigital Patent Holdings, Inc. Range extension in wireless local area networks
RU2629430C2 (en) 2013-01-16 2017-08-29 Интердиджитал Пэйтент Холдингз, Инк. Generation and detection signal reception
GB2509910B (en) 2013-01-16 2019-02-20 Sony Corp Telecommunications apparatus and methods
WO2014110727A1 (en) 2013-01-16 2014-07-24 华为技术有限公司 Positioning processing method, device, and system
CN104956612B (en) 2013-01-17 2018-10-09 Lg 电子株式会社 The method and its equipment of control information are received in a wireless communication system
CN104521294B (en) 2013-01-18 2019-05-10 华为技术有限公司 It was found that the transmission and detection method and device of reference signal
US9986380B2 (en) 2013-01-25 2018-05-29 Blackberry Limited Proximity and interest determination by a wireless device
EP3518444B1 (en) 2013-01-26 2021-08-25 LG Electronics Inc. Method for receiving downlink control information by ue in wireless communication system, and apparatus for same
EP3445133B1 (en) * 2013-02-19 2020-04-01 Kyocera Corporation Mobile communication system, user terminal, and base station
KR101710817B1 (en) * 2013-02-22 2017-02-27 인텔 아이피 코포레이션 Systems and methods for access network selection and traffic routing
US9173200B2 (en) 2013-02-28 2015-10-27 Intel Mobile Communications GmbH Communication terminal, network component, base station and method for communicating
WO2014133589A1 (en) * 2013-03-01 2014-09-04 Intel Corporation Wireless local area network (wlan) traffic offloading
US9179451B2 (en) 2013-03-04 2015-11-03 Qualcomm Incorporated Apparatus and methods of frequency spectrum usage in a wireless communication system
EP2975782B1 (en) * 2013-03-11 2018-03-07 LG Electronics Inc. Service identifier included in a discovery signal for preparing a device to device service
US9232460B2 (en) 2013-03-14 2016-01-05 Fujitsu Limited Network supervised wireless device neighbor discovery
US9706481B2 (en) * 2013-03-15 2017-07-11 Futurewei Technologies, Inc. System and method for time-power frequency hopping for D2D discovery
US9473906B2 (en) * 2013-03-22 2016-10-18 Mediatek Inc. Idle mode reception for group communication over LTE eMBMS
CN105191178B (en) * 2013-05-01 2019-06-28 三星电子株式会社 Method and apparatus for device-to-device communication system
WO2014182340A1 (en) * 2013-05-09 2014-11-13 Intel IP Corporation Reduction of buffer overflow
US9398532B2 (en) 2013-05-10 2016-07-19 Mediatek Inc. Long paging cycle and paging enhancement for power saving LTE devices
EP2997764B1 (en) 2013-05-16 2017-09-06 Telefonaktiebolaget LM Ericsson (publ) A wireless device, network nodes and methods therein for handling a device-to-device (d2d) communication during handover in a wireless telecommunications network
WO2014193373A1 (en) 2013-05-30 2014-12-04 Intel IP Corporation Device, system and method of determining whether a mobile device is located in an indoor location or an outdoor location
CN105144600B (en) * 2013-05-31 2018-11-02 英特尔Ip公司 Hybrid digital and analog beam for large-scale antenna array shape
CN104244354A (en) 2013-06-09 2014-12-24 中兴通讯股份有限公司 Method and device for reducing coexistence equipment mutual interference of networks of adjacent frequency bands
US20140370904A1 (en) * 2013-06-12 2014-12-18 Research In Motion Limited Device-to-device discovery
WO2014200307A1 (en) * 2013-06-13 2014-12-18 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources for d2d communication
EP3742810B1 (en) * 2013-06-26 2022-01-19 Telefonaktiebolaget LM Ericsson (publ) Cluster head selection in a communications network
EP3014942A1 (en) * 2013-06-27 2016-05-04 Telefonaktiebolaget LM Ericsson (publ) Managing resources for device-to-device d2d discovery in an ad-hoc radio communication network
WO2015002432A1 (en) * 2013-07-01 2015-01-08 엘지전자 주식회사 Signal transmission method and transmission device
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
EP3020245A4 (en) * 2013-07-11 2016-11-23 Nokia Technologies Oy Device-to-device synchronization method and apparatus for partial coverage
KR102241077B1 (en) * 2013-07-19 2021-04-16 엘지전자 주식회사 Method for detecting search signal for device-to-device(d2d) communication in wireless communication system, and apparatus therefor
EP3028526B1 (en) * 2013-08-04 2019-04-10 LG Electronics Inc. Method and apparatus for stopping device-to-device operation in wireless communication system
US9900029B2 (en) 2013-08-07 2018-02-20 Qualcomm Incorporated Intra-frequency and inter-RAT receiver
US9681354B2 (en) 2013-08-08 2017-06-13 Intel IP Corporation Signaling radio bearer optimizations and other techniques for supporting small data transmissions
ES2701254T3 (en) 2013-08-08 2019-02-21 Intel Corp Signaling for proximity services and D2D discovery in an LTE network
KR101754837B1 (en) 2013-08-08 2017-07-06 인텔 코포레이션 User equipment and method for packet based device-to-device (d2d) discovery in an lte network
US9445431B2 (en) 2013-08-08 2016-09-13 Mediatek Inc. Wireless communications devices supporting WiFi and LTE communications and methods for transmission control thereof
US9499995B2 (en) 2013-08-08 2016-11-22 Intel IP Corporation Coverage extension level for coverage limited device
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US9564958B2 (en) 2013-08-08 2017-02-07 Intel IP Corporation Power saving mode optimizations and related procedures
EP3031150B1 (en) 2013-08-08 2019-12-18 Intel IP Corporation Coverage extension level for coverage limited device
EP3031146B1 (en) 2013-08-08 2019-02-20 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US9210690B2 (en) * 2013-08-08 2015-12-08 Blackberry Limited Method and system for initial synchronization and collision avoidance in device to device communications without network coverage
US9510222B2 (en) 2013-08-23 2016-11-29 Qualcomm Incorporated Detection of bursty WiFi interference in LTE/LTE-A communications in an unlicensed spectrum
US10034283B2 (en) 2013-08-23 2018-07-24 Qualcomm Incorporated CSI and ACK reporting enhancements in LTE/LTE-A with unlicensed spectrum
US20150063148A1 (en) 2013-09-04 2015-03-05 Qualcomm Incorporated Robust inter-radio access technology operations in unlicensed spectrum
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
US9332465B2 (en) 2013-10-15 2016-05-03 Qualcomm Incorporated Long term evolution interference management in unlicensed bands for wi-fi operation
US9220115B2 (en) 2013-10-23 2015-12-22 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
WO2015060760A1 (en) 2013-10-25 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Receiver channel reservation
US20150116162A1 (en) * 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining a frequency offset based on a differential magnitude
US9271205B2 (en) 2013-10-31 2016-02-23 Google Technology Holdings LLC Measurement management in small-cell systems
US20160262184A1 (en) 2013-11-14 2016-09-08 Qualcomm Incorporated Wi-fi compatible dedicated protocol interval announcement
US9661657B2 (en) 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US9407734B2 (en) 2014-01-31 2016-08-02 Aruba Networks, Inc. System and method for efficient frame aggregation based on aggregation limits or parameters
US9560574B2 (en) * 2014-01-31 2017-01-31 Intel IP Corporation User equipment and method for transmit power control for D2D tranmissions
EP3103277B1 (en) 2014-02-05 2018-08-01 Telefonaktiebolaget LM Ericsson (publ) Autonomous determination of overlapping coverage in heterogeneous networks
US9769644B2 (en) * 2014-03-14 2017-09-19 Intel IP Corporation Systems, methods, and devices for device-to-device communication mode selection
US9578484B2 (en) 2014-03-24 2017-02-21 Intel IP Corporation Apparatuses, systems, and methods for differentiation of payload size for D2D discovery
WO2015160197A1 (en) 2014-04-17 2015-10-22 엘지전자(주) Method for determining resource for transmitting signal in wireless communication system and apparatus therefor
US10813068B2 (en) * 2014-05-08 2020-10-20 Apple Inc. Systems, methods, and devices for synchronization source selection for device-to-device communication
CN106464403B (en) * 2014-05-09 2019-07-09 三星电子株式会社 Device and method for avoiding the interference in device-to-device wireless communication system
KR101800827B1 (en) 2014-06-26 2017-11-23 인터디지탈 패튼 홀딩스, 인크 Application layer group services for machine type communications
WO2016003199A1 (en) * 2014-07-01 2016-01-07 엘지전자 주식회사 Method for performing d2d communication in wireless communication system and device therefor
US10225810B2 (en) * 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
EP3179766B1 (en) * 2014-08-08 2020-02-12 Innovative Technology Lab Co., Ltd. Method and apparatus for managing buffer state report in wireless communication system supporting device to device communication
US9591686B2 (en) * 2014-08-11 2017-03-07 Qualcomm Incorporated Access class barring for device-to-device proximity service communications
US11356834B2 (en) * 2015-01-21 2022-06-07 Samsung Electronics Co., Ltd. System and method of D2D discovery message transmission
US20160249344A1 (en) * 2015-02-23 2016-08-25 Rohde & Schwarz Gmbh & Co. Kg Method and Apparatus for Providing a Degree of a Resource Pool Occupation of Resources Used in Device-to-Device Communication
US9893894B2 (en) * 2015-03-13 2018-02-13 Intel IP Corporation Systems, methods, and devices for secure device-to-device discovery and communication

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638390B2 (en) * 2015-12-31 2020-04-28 Huawei Technologies Co., Ltd. Terminal handover method, controller, terminal, base station, and system
US11363668B2 (en) 2017-09-07 2022-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method, network device and terminal device
US11622331B2 (en) 2018-01-10 2023-04-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining state of terminal device, and terminal device and access network device
US20200195321A1 (en) * 2018-12-18 2020-06-18 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11063645B2 (en) * 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US11128356B2 (en) 2018-12-18 2021-09-21 XCOM Labs, Inc. Multiple-input multiple-output communication with wireless communication devices
US11742911B2 (en) 2018-12-18 2023-08-29 XCOM Labs, Inc. User equipment configured for increased data rate
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10880702B1 (en) * 2019-06-04 2020-12-29 Sprint Communications Company L.P. Data communications for user applications that are executing in a wireless user device
US20210337422A1 (en) * 2020-04-24 2021-10-28 Parallel Wireless, Inc. QCI Based Traffic-Offload of PDN Traffic at Trusted Wifi Access Gateway
US20210112626A1 (en) * 2020-12-23 2021-04-15 Intel Corporation Ap coordinated p2p communications in wi-fi network

Also Published As

Publication number Publication date
US20160191135A1 (en) 2016-06-30
EP3031146B1 (en) 2019-02-20
US9900786B2 (en) 2018-02-20
EP3031146A1 (en) 2016-06-15
WO2015020736A1 (en) 2015-02-12
CN105393470A (en) 2016-03-09
US20170245213A1 (en) 2017-08-24
US9762306B2 (en) 2017-09-12
US10321294B2 (en) 2019-06-11
HK1222049A1 (en) 2017-06-16
EP3031146A4 (en) 2017-04-05
US20160302251A1 (en) 2016-10-13
CN105393470B (en) 2018-11-02
ES2716903T3 (en) 2019-06-17
US20170105127A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US20170289761A1 (en) Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link
US9650794B2 (en) Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link
US10911984B2 (en) Apparatus, system and method of providing offloadability information to a user-equipment (UE)
US10897732B2 (en) Apparatus, system and method of access network discovery and selection function (ANDSF) for traffic offloading
EP3158818B1 (en) Apparatus, system and method of tunneling data radio bearers via a wireless local area network link
US9426649B2 (en) Apparatus, system and method of securing communications of a user equipment (UE) in a wireless local area network
US10219281B2 (en) Apparatus, system and method of user-equipment (UE) centric access network selection
US10104705B2 (en) Apparatus, system and method of communicating between a cellular manager and a user equipment (UE) via a WLAN access device
US20150109997A1 (en) Apparatus, system and method of interfacing between a cellular manager and a wlan access device
US9838957B2 (en) Apparatus, system and method of selecting a mobility mode of a user equipment (UE)

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL IP CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOJANOVSKI, ALEXANDRE S.;SIROTKIN, ALEXANDER;ZONG, PINGPING;REEL/FRAME:043339/0819

Effective date: 20140624

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE