US20170119047A1 - Article for Use with Apparatus for Heating Smokable Material - Google Patents

Article for Use with Apparatus for Heating Smokable Material Download PDF

Info

Publication number
US20170119047A1
US20170119047A1 US14/927,532 US201514927532A US2017119047A1 US 20170119047 A1 US20170119047 A1 US 20170119047A1 US 201514927532 A US201514927532 A US 201514927532A US 2017119047 A1 US2017119047 A1 US 2017119047A1
Authority
US
United States
Prior art keywords
heating
heater
smokable material
article
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/927,532
Inventor
Thomas P. Blandino
Andrew P. Wilke
James J. Frater
Benjamin J. Paprocki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British American Tobacco Investments Ltd
Original Assignee
British American Tobacco Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57389381&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170119047(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by British American Tobacco Investments Ltd filed Critical British American Tobacco Investments Ltd
Priority to US14/927,532 priority Critical patent/US20170119047A1/en
Assigned to BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED reassignment BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BB7, LLC, BLANDINO, THOMAS P., FRATER, JAMES J., PAPROCKI, BENJAMIN J., WILKE, ANDREW P.
Priority to AU2016344645A priority patent/AU2016344645B2/en
Priority to RU2018115288A priority patent/RU2687757C1/en
Priority to RU2019112521A priority patent/RU2019112521A/en
Priority to MYPI2018701474A priority patent/MY185583A/en
Priority to KR1020217020669A priority patent/KR20210084705A/en
Priority to PCT/EP2016/075739 priority patent/WO2017072149A1/en
Priority to EP16798651.2A priority patent/EP3367830B1/en
Priority to CN201680063457.4A priority patent/CN108348010A/en
Priority to JP2018521547A priority patent/JP6733878B2/en
Priority to BR112018008589A priority patent/BR112018008589A2/en
Priority to KR1020197038229A priority patent/KR20200001606A/en
Priority to KR1020187012355A priority patent/KR102061674B1/en
Priority to CA3003522A priority patent/CA3003522A1/en
Priority to US15/772,386 priority patent/US20180317553A1/en
Publication of US20170119047A1 publication Critical patent/US20170119047A1/en
Priority to HK18115509.2A priority patent/HK1256472A1/en
Priority to JP2020067569A priority patent/JP7222167B2/en
Priority to RU2020135860A priority patent/RU2809662C2/en
Priority to JP2020183056A priority patent/JP2021019640A/en
Priority to US17/187,077 priority patent/US11825870B2/en
Priority to JP2022107307A priority patent/JP2022126873A/en
Priority to US18/489,115 priority patent/US20240041095A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/01Making cigarettes for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/17Filters specially adapted for simulated smoking devices
    • A24F47/008
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/02Induction heating
    • H05B2206/023Induction heating using the curie point of the material in which heating current is being generated to control the heating temperature

Definitions

  • Embodiments relate to apparatus for heating smokable material to volatilize at least one component of the smokable material, to articles for use with such apparatus, to systems comprising such apparatus and such articles, and to methods of manufacturing products comprising heaters for use in heating smokable material to volatilize at least one component of the smokable material.
  • Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these articles by creating products that release compounds without combusting. Examples of such products are so-called “heat not burn” products or tobacco heating devices or products, which release compounds by heating, but not burning, material.
  • the material may be, for example, tobacco or other non-tobacco products, which may or may not contain nicotine.
  • a first aspect of embodiments provides a method of manufacturing a product comprising a heater for use in heating smokable material to volatilize at least one component of the smokable material, the method comprising:
  • a heater comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected on the basis of the determined maximum temperature.
  • the Curie point temperature is equal to or less than the maximum temperature.
  • the maximum temperature is less than the combustion temperature of the smokable material to be heated by the heater in use.
  • the combustion temperature of the smokable material is the autoignition temperature or kindling point of the smokable material.
  • the Curie point temperature is no more than 350 degrees Celsius.
  • the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • the method comprises forming an article comprising the heater and smokable material to be heated by the heater in use.
  • the smokable material comprises tobacco and/or one or more humectants.
  • the method comprises providing that the heater is in contact with the smokable material.
  • a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.
  • the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • the heater consists entirely, or substantially entirely, of the heating material.
  • a second aspect of embodiments provides an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material, the article comprising:
  • a heater for heating the smokable material wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material.
  • the combustion temperature of the smokable material is the autoignition temperature or kindling point of the smokable material.
  • the heating material is in contact with the smokable material.
  • the Curie point temperature is no more than 350 degrees Celsius.
  • the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • the smokable material comprises tobacco and/or one or more humectants.
  • the heater consists entirely, or substantially entirely, of the heating material.
  • a third aspect of embodiments provides apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising:
  • a heating zone for receiving an article comprising smokable material
  • the heater comprises heating material that is heatable by penetration with a varying magnetic field
  • a magnetic field generator for generating a varying magnetic field that penetrates the heating material
  • a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.
  • the Curie point temperature is no more than 350 degrees Celsius.
  • the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • the heater consists entirely, or substantially entirely, of the heating material.
  • a fourth aspect of embodiments provides a system, comprising:
  • the article comprises smokable material and a heater for heating the smokable material, wherein the heater is formed of heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material;
  • the apparatus comprises a heating zone for receiving the article, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material when the article is in the heating zone.
  • the article of the system may have any one or more of the features discussed above as being present in respective exemplary embodiments of the article of the second aspect.
  • a fifth aspect of embodiments provides a system, comprising:
  • the article comprises smokable material
  • the apparatus comprises:
  • a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.
  • the article of the system is the article of the second aspect of embodiments.
  • the article of the system may have any one or more of the features discussed above as being present in respective exemplary embodiments of the article of the second aspect.
  • FIG. 1 shows a schematic perspective view of an example of an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • FIG. 2 shows a schematic cross-sectional view of the article of FIG. 1 .
  • FIG. 3 shows a schematic cross-sectional view of an example of apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • FIG. 4 is a flow diagram showing an example of a method of manufacturing an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • FIG. 5 is a flow diagram showing an example of a method of manufacturing apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • the term “smokable material” includes materials that provide volatilized components upon heating, typically in the form of vapor or an aerosol.
  • “Smokable material” may be a non-tobacco-containing material or a tobacco-containing material.
  • “Smokable material” may, for example, include one or more of tobacco per se, tobacco derivatives, expanded tobacco, reconstituted tobacco, tobacco extract, homogenized tobacco or tobacco substitutes.
  • the smokable material can be in the form of ground tobacco, cut rag tobacco, extruded tobacco, reconstituted tobacco, reconstituted smokable material, liquid, gel, gelled sheet, powder, or agglomerates, or the like.
  • “Smokable material” also may include other, non-tobacco, products, which, depending on the product, may or may not contain nicotine. “Smokable material” may comprise one or more humectants, such as glycerol or propylene glycol.
  • heating material or “heater material” refers to material that is heatable by penetration with a varying magnetic field.
  • Induction heating is a process in which an electrically-conductive object is heated by penetrating the object with a varying magnetic field.
  • An induction heater may comprise an electromagnet and a device for passing a varying electrical current, such as an alternating current, through the electromagnet.
  • a varying electrical current such as an alternating current
  • the electromagnet and the object to be heated are suitably relatively positioned so that the resultant varying magnetic field produced by the electromagnet penetrates the object, one or more eddy currents are generated inside the object.
  • the object has a resistance to the flow of electrical currents. Therefore, when such eddy currents are generated in the object, their flow against the electrical resistance of the object causes the object to be heated. This process is called Joule, ohmic, or resistive heating.
  • An object that is capable of being inductively heated is known as a susceptor.
  • Magnetic hysteresis heating is a process in which an object made of a magnetic material is heated by penetrating the object with a varying magnetic field.
  • a magnetic material can be considered to comprise many atomic-scale magnets, or magnetic dipoles. When a magnetic field penetrates such material, the magnetic dipoles align with the magnetic field. Therefore, when a varying magnetic field, such as an alternating magnetic field, for example as produced by an electromagnet, penetrates the magnetic material, the orientation of the magnetic dipoles changes with the varying applied magnetic field. Such magnetic dipole reorientation causes heat to be generated in the magnetic material.
  • the Curie point temperature is the temperature at which certain magnetic materials undergo a sharp change in their magnetic properties. It is understood that the Curie point temperature is the temperature below which there is spontaneous magnetization in the absence of an externally applied magnetic field, and above which the material is paramagnetic.
  • the Curie point temperature is the magnetic transformation temperature of a ferromagnetic material between its ferromagnetic and paramagnetic phase. When such a magnetic material reaches its Curie point temperature, its magnetic permeability reduces or ceases, and the ability of the material to be heated by penetration with a varying magnetic field also reduces or ceases. That is, it may not be possible to heat the material above its Curie point temperature by magnetic hysteresis heating.
  • the magnetic material is electrically-conductive, then the material may still be heatable, to a lesser extent, by penetration with a varying magnetic field above the Curie point temperature by Joule heating. However, if the magnetic material is non-electrically-conductive, then heating of the material above its Curie point temperature by penetration with a varying magnetic field may be hindered or even impossible.
  • the article 1 comprises smokable material 10 , a heater 20 for heating the smokable material 10 , and a cover 30 that encircles the smokable material 10 and the heater 20 .
  • the heater 20 comprises heating material that is heatable by penetration with a varying magnetic field. Example such heating materials are discussed elsewhere herein.
  • the article 1 is for use with apparatus for heating the smokable material 10 to volatilize at least one component of the smokable material 10 without burning the smokable material 10 .
  • the article 1 is elongate and cylindrical with a substantially circular cross section in a plane normal to a longitudinal axis of the article 1 .
  • the article 1 may have a cross section other than circular and/or not be elongate and/or not be cylindrical.
  • the article 1 may have proportions approximating those of a cigarette.
  • the heater 20 is elongate and extends along a longitudinal axis that is substantially aligned with a longitudinal axis of the article 1 . This can help to provide more uniform heating of the smokable material 10 in use, and can also aid manufacturing of the article 1 .
  • the aligned axes are coincident. In a variation to this embodiment, the aligned axes may be parallel to each other. However, in other embodiments, the axes may be oblique to each other.
  • the heater 20 extends to opposite longitudinal ends of the mass of smokable material 10 . This can help to provide more uniform heating of the smokable material 10 in use, and can also aid manufacturing of the article 1 . However, in other embodiments, the heater 20 may not extend to either of the opposite longitudinal ends of the mass of smokable material 10 , or may extend to only one of the longitudinal ends of the mass of smokable material 10 and be spaced from the other of the longitudinal ends of the mass of smokable material 10 .
  • the heater 20 is within the smokable material 10 .
  • the smokable material 10 may be on only one side of the heater 20 , for example.
  • the heating material of the heater 20 is in contact with the smokable material 10 .
  • the heating material may be kept out of contact with the smokable material 10 .
  • the article 1 may comprise a thermally-conductive barrier that is free of heating material and that spaces the heater 20 from the smokable material 10 .
  • the thermally-conductive barrier may be a coating on the heater 20 . The provision of such a barrier may be advantageous to help to dissipate heat to alleviate hot spots in the heating material.
  • the heater 20 of this embodiment has two opposing major surfaces joined by two minor surfaces. Therefore, the depth or thickness of the heater 20 is relatively small as compared to the other dimensions of the heater 20 .
  • the heating material may have a skin depth, which is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs. By providing that the heating material has a relatively small thickness, a greater proportion of the heating material may be heatable by a given varying magnetic field, as compared to heating material having a depth or thickness that is relatively large as compared to the other dimensions of the heating material. Thus, a more efficient use of material is achieved and, in turn, costs are reduced.
  • the heater 20 may have a cross-section that is a shape other than rectangular, such as circular, elliptical, annular, polygonal, square, triangular, star-shaped, radially-finned, or the like.
  • the cover 30 of the article 1 helps to maintain the relative positions of the smokable material 10 and the heater 20 .
  • the cover 30 may be made of any suitable material, such as paper, card, a plastics material, or the like. Overlapping portions of the cover 30 may be adhered to each other to help maintain the shape of the cover 30 and the article 1 as a whole. In some embodiments, the cover 30 may take a different form or be omitted.
  • the Curie point temperature of a material is determined or controlled by the chemical composition of the material. Modern technology allows adjustment of the composition of a material to provide the material with a preset Curie point temperature. Some example heating materials that could be used in embodiments, along with their approximate Curie point temperatures, are as shown in Table 1, below.
  • the % values given for the above various alloys of Ni and Fe may be % wt values.
  • Low Curie temperature material for induction heating self - temperature controlling system T. Todaka et al.; Journal of Magnetism and Magnetic Materials 320 (2008) e702-e707, presents low Curie temperature magnetic materials for induction heating.
  • the materials are alloys based on SUS430 (a grade of stainless steel), could be used in embodiments, and are shown in Table 2, below, along with their approximate Curie point temperatures.
  • the chemical composition of the heating material of the heater 20 has been carefully and intentionally set, selected or provided so that the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material 10 .
  • the combustion temperature may be the autoignition temperature or kindling point of the smokable material 10 . That is, the lowest temperature at which the smokable material 10 will spontaneously ignite in normal atmosphere without an external source of ignition, such as a flame or spark.
  • the ability to further heat the heater 20 by penetration with a varying magnetic field is reduced or removed.
  • the heating material is electrically-conductive, Joule heating may still be effected by penetrating the heating material with a varying magnetic field.
  • the heating material is non-electrically-conductive, depending on the chemical composition of the heating material, such further heating by penetration with a varying magnetic field may be impossible.
  • this inherent mechanism of the heating material of the heater 20 may be used to limit or prevent further heating of the heater 20 , so as to help avoid the temperature of the adjacent smokable material 10 from reaching a magnitude at which the smokable material 10 burns or combusts.
  • the chemical composition of the heater 20 may help enable the smokable material 10 to be heated sufficiently to volatilize at least one component of the smokable material 10 without burning the smokable material 10 . In some embodiments, this may also help to prevent overheating of the apparatus with which the article 1 is being used, and/or help to prevent part(s), such as the cover 30 or an adhesive, of the article 1 being damaged by excessive heat during use of the article 1 .
  • the chemical composition of the heating material may be provided so that the Curie point temperature is no more than X degrees Celsius.
  • the combustion temperature of the smokable material 10 is greater than 350 degrees Celsius
  • the chemical composition of the heating material may be provided so that the Curie point temperature is no more than 350 degrees Celsius.
  • the Curie point temperature may be, for example, less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • the ability of the heating material to be heated by penetration with a varying magnetic field by magnetic hysteresis heating may return when the temperature of the heating material has dropped below the Curie point temperature.
  • the heater 20 may consist entirely, or substantially entirely, of the heating material.
  • the heating material may comprise, for example, one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • the heater of the product may comprise a first portion of heating material that has a first Curie point temperature, and a second portion of heating material that has a second Curie point temperature that is different to the first Curie point temperature.
  • the second Curie point temperature may be higher than the first Curie point temperature.
  • the second portion of heating material may thus be permitted to reach a higher temperature than the first portion of heating material when both are penetrated by a varying magnetic field. This may help progressive heating of the smokable material 10 , and thus progressive generation of vapor, to be achieved.
  • Both the first and second Curie point temperatures may be less than the combustion temperature of the smokable material 10 .
  • FIG. 4 there is shown a flow diagram showing an example of a method of manufacturing a product for use in heating smokable material to volatilize at least one component of the smokable material, according to an embodiment.
  • the article 1 of FIGS. 1 and 2 may be made according to this method.
  • the method 400 comprises determining 401 a maximum temperature to which a heater is to be heated in use.
  • This determining 401 may comprise, for example, determining the combustion temperature of the smokable material 10 to be heated by the heater 20 in use, and then determining the maximum temperature on the basis of that combustion temperature.
  • the maximum temperature may be less than the combustion temperature of the smokable material 10 , for the reasons discussed above.
  • the determining 401 may additionally or alternatively comprise determining a maximum temperature to which other part(s), such as a cover or an adhesive, of the article may be subjected in use without incurring damage, and then determining the maximum temperature on the basis of that temperature.
  • the maximum temperature may be less than the temperature to which the part(s) may be safely subjected in use.
  • the determining 401 may additionally or alternatively comprise determining a maximum temperature to which the smokable material 10 is to be heated on the basis of desired sensory properties, and then determining the maximum temperature on the basis of that temperature. For example, at different temperatures different components of the smokable material 10 may be volatilized.
  • the method 400 further comprises providing 402 a heater 20 comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected or determined on the basis of, or in dependence on, the maximum temperature determined at 401 .
  • the providing 402 may comprise, for example, manufacturing the heater 20 from suitable heating material.
  • the method may comprise adjusting the composition of the heating material during manufacture of the heater 20 .
  • the providing 402 may comprise selecting the heater 20 from a plurality of heaters 20 , wherein the plurality of heaters 20 are made of heating material having respective different Curie point temperatures.
  • the Curie point temperature of the heating material of the heater 20 provided in 402 may, for example, be equal to the maximum temperature determined in 401 , or may be less than the maximum temperature determined in 401 .
  • the heater 20 provided in 402 may consists entirely, or substantially entirely, of the heating material.
  • the heating material may comprise or consist of any one or more of the available heating materials discussed above, for example.
  • the method then comprises forming 403 an article, such as the article 1 of FIGS. 1 and 2 , comprising the heater 20 and smokable material 10 to be heated by the heater 20 in use.
  • the forming 403 may comprise providing that the heater 20 is in contact with the smokable material 10 , as is the case in the article 1 of FIGS. 1 and 2 .
  • the smokable material 10 may be out of contact with the heater 20 and yet still be heatable by the heater 20 .
  • the method 400 may additionally or alternatively comprise encircling or covering the smokable material 10 and the heater 20 with a cover, such as the cover 30 of the article 1 shown in FIGS. 1 and 2 .
  • the above-described article 1 and described variants thereof may be used with apparatus for heating the smokable material 10 to volatilize at least one component of the smokable material 10 without burning the smokable material 10 .
  • Any one of the article(s) 1 and such apparatus may be provided together as a system.
  • the system may take the form of a kit, in which the article 1 is separate from the apparatus.
  • the system may take the form of an assembly, in which the article 1 is combined with the apparatus.
  • the apparatus of the system comprises a heating zone for receiving the article 1 , and a magnetic field generator for generating a varying magnetic field that penetrates the heating material when the article 1 is in the heating zone.
  • the apparatus 100 comprises a heating zone 111 for receiving an article comprising smokable material; a heater 115 for heating the heating zone 111 , wherein the heater 115 comprises heating material that is heatable by penetration with a varying magnetic field; and a magnetic field generator 112 for generating a varying magnetic field that penetrates the heating material of the heater 115 .
  • a maximum temperature to which the heater 115 is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material of the heater 115 .
  • the apparatus 100 is for use with an article that comprises smokable material.
  • the apparatus 100 is for heating the smokable material to volatilize at least one component of the smokable material without burning the smokable material.
  • the article may comprise heating material, such as the article 1 of FIGS. 1 and 2 , or may be free of heating material.
  • the apparatus 100 of this embodiment comprises a body 110 and a mouthpiece 120 .
  • the mouthpiece 120 may be made of any suitable material, such as a plastics material, cardboard, cellulose acetate, paper, metal, glass, ceramic, or rubber.
  • the mouthpiece 120 defines a channel 122 therethrough.
  • the mouthpiece 120 is locatable relative to the body 110 so as to cover an opening into the heating zone 111 .
  • the channel 122 of the mouthpiece 120 is in fluid communication with the heating zone 111 .
  • the channel 122 acts as a passageway for permitting volatilized material to pass from an article inserted in the heating zone 111 to an exterior of the apparatus 100 .
  • the mouthpiece 120 of the apparatus 100 is releasably engageable with the body 110 so as to connect the mouthpiece 120 to the body 110 .
  • the mouthpiece 120 and the body 110 may be permanently connected, such as through a hinge or flexible member.
  • the mouthpiece 120 of the apparatus 100 may be omitted.
  • the apparatus 100 may define an air inlet that fluidly connects the heating zone 111 with the exterior of the apparatus 100 .
  • Such an air inlet may be defined by the body 110 of the apparatus 100 and/or by the mouthpiece 120 of the apparatus 100 .
  • a user may be able to inhale the volatilized component(s) of the smokable material by drawing the volatilized component(s) through the channel 122 of the mouthpiece 120 . As the volatilized component(s) are removed from the article, air may be drawn into the heating zone 111 via the air inlet of the apparatus 100 .
  • the body 110 comprises the heating zone 111 .
  • the heating zone 111 comprises a recess 111 for receiving at least a portion of the article.
  • the heating zone 111 may be other than a recess, such as a shelf, a surface, or a projection, and may require mechanical mating with the article in order to co-operate with, or receive, the article.
  • the heating zone 111 is elongate, and is sized and shaped to receive the article. In this embodiment, the heating zone 111 accommodates the whole article. In other embodiments, the heating zone 111 may be dimensioned to receive only a portion of the article.
  • the magnetic field generator 112 comprises an electrical power source 113 , a coil 114 , a device 116 for passing a varying electrical current, such as an alternating current, through the coil 114 , a controller 117 , and a user interface 118 for user-operation of the controller 117 .
  • the electrical power source 113 is a rechargeable battery.
  • the electrical power source 113 may be other than a rechargeable battery, such as a non-rechargeable battery, a capacitor, a battery-capacitor hybrid, or a connection to a mains electricity supply.
  • the coil 114 may take any suitable form.
  • the coil 114 is a helical coil of electrically-conductive material, such as copper.
  • the magnetic field generator 112 may comprise a magnetically permeable core around which the coil 114 is wound. Such a magnetically permeable core concentrates the magnetic flux produced by the coil 114 in use and makes a more powerful magnetic field.
  • the magnetically permeable core may be made of iron, for example.
  • the magnetically permeable core may extend only partially along the length of the coil 114 , so as to concentrate the magnetic flux only in certain regions.
  • the coil 114 is in a fixed position relative to the heater 115 and the heating zone 111 .
  • the coil 114 encircles the heater 115 and the heating zone 111 .
  • the coil 114 extends along a longitudinal axis that is substantially aligned with a longitudinal axis A-A of the heating zone 111 .
  • the aligned axes are coincident.
  • the aligned axes may be parallel to each other. However, in other embodiments, the axes may be oblique to each other.
  • the coil 114 extends along a longitudinal axis that is substantially coincident with a longitudinal axis of the heater 115 .
  • the longitudinal axes of the coil 114 and the heater 115 may be aligned with each other by being parallel to each other, or may be oblique to each other.
  • the device 116 for passing a varying current through the coil 114 is electrically connected between the electrical power source 113 and the coil 114 .
  • the controller 117 also is electrically connected to the electrical power source 113 , and is communicatively connected to the device 116 to control the device 116 . More specifically, in this embodiment, the controller 117 is for controlling the device 116 , so as to control the supply of electrical power from the electrical power source 113 to the coil 114 .
  • the controller 117 comprises an integrated circuit (IC), such as an IC on a printed circuit board (PCB). In other embodiments, the controller 117 may take a different form.
  • the apparatus may have a single electrical or electronic component comprising the device 116 and the controller 117 .
  • the controller 117 is operated in this embodiment by user-operation of the user interface 118 .
  • the user interface 118 is located at the exterior of the body 110 .
  • the user interface 118 may comprise a push-button, a toggle switch, a dial, a touchscreen, or the like.
  • the user interface 118 may be remote and connected to the rest of the apparatus wirelessly, such as via Bluetooth.
  • operation of the user interface 118 by a user causes the controller 117 to cause the device 116 to cause an alternating electrical current to pass through the coil 114 , so as to cause the coil 114 to generate an alternating magnetic field.
  • the coil 114 and the heater 115 of the apparatus 100 are suitably relatively positioned so that the alternating magnetic field produced by the coil 114 penetrates the heating material of the heater 115 .
  • the heating material of the heater 115 is an electrically-conductive material, this may cause the generation of one or more eddy currents in the heating material.
  • the flow of eddy currents in the heating material against the electrical resistance of the heating material causes the heating material to be heated by Joule heating.
  • the heating material is made of a magnetic material, and so the orientation of magnetic dipoles in the heating material changes with the changing applied magnetic field, which causes heat to be generated in the heating material.
  • a maximum temperature to which the heater 115 of the apparatus 100 is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material of the heater 115 . That is, the apparatus 100 may be free of any other system for limiting the temperature to which the heater 115 is heatable to below the maximum temperature.
  • the chemical composition of the heating material of the heater 115 of the apparatus 100 has been carefully and intentionally set, selected or provided so that the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material in an article to be used with the apparatus 100 . Accordingly, when the temperature of the heater 115 in use reaches the Curie point temperature, the ability to further heat the heater 115 by penetration with a varying magnetic field is reduced or removed, as discussed above.
  • this inherent mechanism of the heating material of the heater 115 may be used to limit or prevent further heating of the heater 115 , so as to help avoid the temperature of the heating zone 111 and an article located therein from reaching a magnitude at which the smokable material of the article burns or combusts.
  • the chemical composition of the heater 115 may help enable the smokable material to be heated sufficiently to volatilize at least one component of the smokable material without burning the smokable material. In some embodiments, this may also help to prevent overheating of the apparatus 100 or damage to components of the apparatus, such as the magnetic field generator 112 .
  • the ability of the heating material to be heated by penetration with a varying magnetic field by magnetic hysteresis heating may return when the temperature of the heating material has dropped below the Curie point temperature.
  • the chemical composition of the heating material may be provided so that the Curie point temperature is no more than X degrees Celsius.
  • the combustion temperature of the smokable material is greater than 350 degrees Celsius
  • the chemical composition of the heating material may be provided so that the Curie point temperature is no more than 350 degrees Celsius.
  • the Curie point temperature may be, for example, less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • the heater 115 may consist entirely, or substantially entirely, of the heating material.
  • the heating material may comprise, for example, one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • the apparatus 100 may comprise more than one coil.
  • the plurality of coils of the apparatus 100 could be operable to provide progressive heating of the smokable material 10 in an article 1 , and thereby progressive generation of vapor.
  • one coil may be able to heat a first region of the heating material relatively quickly to initialize volatilization of at least one component of the smokable material 10 and formation of a vapor in a first region of the smokable material 10 .
  • Another coil may be able to heat a second region of the heating material relatively slowly to initialize volatilization of at least one component of the smokable material 10 and formation of a vapor in a second region of the smokable material 10 .
  • a vapor is able to be formed relatively rapidly for inhalation by a user, and vapor can continue to be formed thereafter for subsequent inhalation by the user even after the first region of the smokable material 10 may have ceased generating vapor.
  • the initially-unheated second region of smokable material 10 could act as a heat sink, to reduce the temperature of created vapor or make the created vapor mild, during heating of the first region of smokable material 10 .
  • the apparatus 100 may have a sensor for detecting a Curie-related change in magnetism of the heater 20 , 115 .
  • the sensor may be communicatively-connected to the controller 117 .
  • the controller 117 may be configured to control the device 116 to cause the generation of the varying magnetic field to be halted or changed, on the basis of a signal received at the controller 117 from the sensor.
  • the apparatus 100 may have an amplifier for amplifying the Curie-related change in magnetism of the heater 20 , 115 of the article 1 or apparatus 100 .
  • the coil 114 may be configured or arranged so that a change in a property of the coil 114 in response to the Curie-related change in magnetism of the heater 20 , 115 is large.
  • the impedance of the coil 114 may be matched with the impedance of the heater 20 , 115 , to result in a Curie-related event being more reliably detectable.
  • FIG. 5 there is shown a flow diagram showing an example of a method of manufacturing a product for use in heating smokable material to volatilize at least one component of the smokable material, according to an embodiment.
  • the apparatus 100 of FIG. 3 may be made according to this method.
  • the method 500 comprises determining 501 a maximum temperature to which a heater is to be heated in use.
  • the determining 501 may comprise, for example, determining the combustion temperature of smokable material to be heated by the heater 115 in use, and then determining the maximum temperature on the basis of that combustion temperature.
  • the maximum temperature may be less than the combustion temperature of the smokable material, for the reasons discussed above.
  • the determining 501 may additionally or alternatively comprise determining a maximum comfortable temperature to which the exterior of the apparatus 100 is to be permitted to reach in use while still being comfortable to hold by a user, and then determining the maximum temperature on the basis of that temperature.
  • the determining 501 may additionally or alternatively comprise determining a maximum temperature to which components, such as electrical components, of the apparatus 100 may be subjected in use without incurring damage, and then determining the maximum temperature on the basis of that temperature.
  • the method further comprises providing 502 a heater 115 comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected or determined on the basis of, or in dependence on, the maximum temperature determined at 501 .
  • the providing 502 may comprise, for example, manufacturing the heater 115 from suitable heating material.
  • the method may comprise adjusting the composition of the heating material during manufacture of the heater 115 .
  • the providing 502 may comprise selecting the heater 115 from a plurality of heaters 115 , wherein the plurality of heaters 115 are made of heating material having respective different Curie point temperatures.
  • the Curie point temperature of the heating material of the heater 115 provided in 502 may, for example, be equal to the maximum temperature determined in 501 , or may be less than the maximum temperature determined in 501 .
  • the heater 115 provided in 502 may consists entirely, or substantially entirely, of the heating material.
  • the heating material may comprise or consist of any one or more of the available heating materials discussed above, for example.
  • the method then comprises forming 503 apparatus, such as the apparatus 100 of FIG. 3 , that comprises a heating zone 111 for receiving an article comprising smokable material, the heater 115 for heating the heating zone 111 , and a magnetic field generator 112 for generating a varying magnetic field that penetrates the heating material, wherein a maximum temperature to which the heater 115 is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.
  • 403 of the method 400 of FIG. 4 , and/or 503 of the method 500 of FIG. 5 may be omitted.
  • the product made using the method may be a component or system for future incorporation into apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • the product made using the method may be a component or system for future incorporation into an article for use with such apparatus.
  • a product such as the article 1 of FIGS. 1 and 2 or the apparatus 100 of FIG. 3 , may be provided with an automatic mechanism for limiting the temperature to which a heater 20 , 115 of the product is heatable by penetration with a varying magnetic field.
  • the heating material may have a skin depth, which is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs.
  • a skin depth is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs.
  • a component comprising the heating material may comprise discontinuities or holes therein. Such discontinuities or holes may act as thermal breaks to control the degree to which different regions of the smokable material 10 are heated in use. Areas of the heating material with discontinuities or holes therein may be heated to a lesser extent that areas without discontinuities or holes. This may help progressive heating of the smokable material 10 , and thus progressive generation of vapor, to be achieved. Such discontinuities or holes may, on the other hand, be used to optimize the creation of complex eddy currents in use.
  • the smokable material 10 comprises tobacco.
  • the smokable material 10 may consist of tobacco, may consist substantially entirely of tobacco, may comprise tobacco and smokable material other than tobacco, may comprise smokable material other than tobacco, or may be free of tobacco.
  • the smokable material 10 may comprise a vapor or aerosol forming agent or a humectant, such as glycerol, propylene glycol, triacetin, or diethylene glycol.
  • the article 1 is a consumable article. Once all, or substantially all, of the volatilizable component(s) of the smokable material 10 in the article 1 has/have been spent, the user may remove the article 1 from the apparatus and dispose of the article 1 . The user may subsequently re-use the apparatus with another of the articles 1 .
  • the article 1 may be non-consumable, and the apparatus and the article 1 may be disposed of together once the volatilizable component(s) of the smokable material 10 has/have been spent.
  • the apparatus 100 discussed above is sold, supplied or otherwise provided separately from the articles with which the apparatus 100 is usable.
  • the apparatus 100 and one or more of the articles may be provided together as a system.
  • the article 1 discussed above is sold, supplied or otherwise provided separately from the apparatus with which the article 1 is usable.
  • one or more of the articles 1 may be provided together with the apparatus as a system.
  • Such systems may be in the form of a kit or an assembly, possibly with additional components, such as cleaning utensils.
  • Embodiments could be implemented in a system comprising any one of the articles discussed herein, and any one of the apparatuses discussed herein. Heat generated in the heating material of the apparatus could be transferred to the article to heat, or further heat, the smokable material therein when the portion of the article is in the heating zone.
  • Some of the products discussed herein may be considered smoking industry products.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • General Induction Heating (AREA)
  • Resistance Heating (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

Disclosed is an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material. The article comprises smokable material, such as tobacco, and a heater for heating the smokable material. The heater comprises heating material that is heatable by penetration with a varying magnetic field. The heating material has a Curie point temperature that is less than the combustion temperature of the smokable material.

Description

    TECHNICAL FIELD
  • Embodiments relate to apparatus for heating smokable material to volatilize at least one component of the smokable material, to articles for use with such apparatus, to systems comprising such apparatus and such articles, and to methods of manufacturing products comprising heaters for use in heating smokable material to volatilize at least one component of the smokable material.
  • BACKGROUND
  • Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these articles by creating products that release compounds without combusting. Examples of such products are so-called “heat not burn” products or tobacco heating devices or products, which release compounds by heating, but not burning, material. The material may be, for example, tobacco or other non-tobacco products, which may or may not contain nicotine.
  • SUMMARY
  • A first aspect of embodiments provides a method of manufacturing a product comprising a heater for use in heating smokable material to volatilize at least one component of the smokable material, the method comprising:
  • determining a maximum temperature to which a heater is to be heated in use; and
  • providing a heater comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected on the basis of the determined maximum temperature.
  • In an exemplary embodiment, the Curie point temperature is equal to or less than the maximum temperature.
  • In an exemplary embodiment, the maximum temperature is less than the combustion temperature of the smokable material to be heated by the heater in use.
  • In an exemplary embodiment, the combustion temperature of the smokable material is the autoignition temperature or kindling point of the smokable material.
  • In an exemplary embodiment, the Curie point temperature is no more than 350 degrees Celsius.
  • In respective exemplary embodiments, the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • In an exemplary embodiment, the method comprises forming an article comprising the heater and smokable material to be heated by the heater in use.
  • In an exemplary embodiment, the smokable material comprises tobacco and/or one or more humectants.
  • In an exemplary embodiment, the method comprises providing that the heater is in contact with the smokable material.
  • In an exemplary embodiment, the method comprises forming apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising a heating zone for receiving an article comprising smokable material, the heater for heating the heating zone, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material;
  • and a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.
  • In an exemplary embodiment, the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • In an exemplary embodiment, the heater consists entirely, or substantially entirely, of the heating material.
  • A second aspect of embodiments provides an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material, the article comprising:
  • smokable material; and
  • a heater for heating the smokable material, wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material.
  • In an exemplary embodiment, the combustion temperature of the smokable material is the autoignition temperature or kindling point of the smokable material.
  • In an exemplary embodiment, the heating material is in contact with the smokable material.
  • In an exemplary embodiment, the Curie point temperature is no more than 350 degrees Celsius.
  • In respective exemplary embodiments, the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • In an exemplary embodiment, the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • In an exemplary embodiment, the smokable material comprises tobacco and/or one or more humectants.
  • In an exemplary embodiment, the heater consists entirely, or substantially entirely, of the heating material.
  • A third aspect of embodiments provides apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising:
  • a heating zone for receiving an article comprising smokable material;
  • a heater for heating the heating zone, wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field; and
  • a magnetic field generator for generating a varying magnetic field that penetrates the heating material;
  • wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.
  • In an exemplary embodiment, the Curie point temperature is no more than 350 degrees Celsius.
  • In respective exemplary embodiments, the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • In an exemplary embodiment, the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • In an exemplary embodiment, the heater consists entirely, or substantially entirely, of the heating material.
  • A fourth aspect of embodiments provides a system, comprising:
  • apparatus for heating the smokable material to volatilize at least one component of the smokable material; and
  • an article for use with the apparatus, wherein the article comprises smokable material and a heater for heating the smokable material, wherein the heater is formed of heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material;
  • wherein the apparatus comprises a heating zone for receiving the article, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material when the article is in the heating zone.
  • In respective exemplary embodiments, the article of the system may have any one or more of the features discussed above as being present in respective exemplary embodiments of the article of the second aspect.
  • A fifth aspect of embodiments provides a system, comprising:
  • apparatus for heating the smokable material to volatilize at least one component of the smokable material; and
  • an article for use with the apparatus, wherein the article comprises smokable material;
  • wherein the apparatus comprises:
      • a heating zone for receiving the article,
      • a heater for heating the smokable material when the article is in the heating zone, wherein the heater is formed of heating material that is heatable by penetration with a varying magnetic field, and
      • a magnetic field generator for generating a varying magnetic field that penetrates the heating material;
  • wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.
  • In an exemplary embodiment, the article of the system is the article of the second aspect of embodiments. The article of the system may have any one or more of the features discussed above as being present in respective exemplary embodiments of the article of the second aspect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments will now be described, by way of example only, with reference to the accompanying drawings, in which:
  • FIG. 1 shows a schematic perspective view of an example of an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • FIG. 2 shows a schematic cross-sectional view of the article of FIG. 1.
  • FIG. 3 shows a schematic cross-sectional view of an example of apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • FIG. 4 is a flow diagram showing an example of a method of manufacturing an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • FIG. 5 is a flow diagram showing an example of a method of manufacturing apparatus for heating smokable material to volatilize at least one component of the smokable material.
  • DETAILED DESCRIPTION
  • As used herein, the term “smokable material” includes materials that provide volatilized components upon heating, typically in the form of vapor or an aerosol. “Smokable material” may be a non-tobacco-containing material or a tobacco-containing material. “Smokable material” may, for example, include one or more of tobacco per se, tobacco derivatives, expanded tobacco, reconstituted tobacco, tobacco extract, homogenized tobacco or tobacco substitutes. The smokable material can be in the form of ground tobacco, cut rag tobacco, extruded tobacco, reconstituted tobacco, reconstituted smokable material, liquid, gel, gelled sheet, powder, or agglomerates, or the like. “Smokable material” also may include other, non-tobacco, products, which, depending on the product, may or may not contain nicotine. “Smokable material” may comprise one or more humectants, such as glycerol or propylene glycol.
  • As used herein, the term “heating material” or “heater material” refers to material that is heatable by penetration with a varying magnetic field.
  • Induction heating is a process in which an electrically-conductive object is heated by penetrating the object with a varying magnetic field. The process is described by Faraday's law of induction and Ohm's law. An induction heater may comprise an electromagnet and a device for passing a varying electrical current, such as an alternating current, through the electromagnet. When the electromagnet and the object to be heated are suitably relatively positioned so that the resultant varying magnetic field produced by the electromagnet penetrates the object, one or more eddy currents are generated inside the object. The object has a resistance to the flow of electrical currents. Therefore, when such eddy currents are generated in the object, their flow against the electrical resistance of the object causes the object to be heated. This process is called Joule, ohmic, or resistive heating. An object that is capable of being inductively heated is known as a susceptor.
  • It has been found that, when the susceptor is in the form of a closed circuit, magnetic coupling between the susceptor and the electromagnet in use is enhanced, which results in greater or improved Joule heating.
  • Magnetic hysteresis heating is a process in which an object made of a magnetic material is heated by penetrating the object with a varying magnetic field. A magnetic material can be considered to comprise many atomic-scale magnets, or magnetic dipoles. When a magnetic field penetrates such material, the magnetic dipoles align with the magnetic field. Therefore, when a varying magnetic field, such as an alternating magnetic field, for example as produced by an electromagnet, penetrates the magnetic material, the orientation of the magnetic dipoles changes with the varying applied magnetic field. Such magnetic dipole reorientation causes heat to be generated in the magnetic material.
  • When an object is both electrically-conductive and magnetic, penetrating the object with a varying magnetic field can cause both Joule heating and magnetic hysteresis heating in the object. Moreover, the use of magnetic material can strengthen the magnetic field, which can intensify the Joule heating.
  • In each of the above processes, as heat is generated inside the object itself, rather than by an external heat source by heat conduction, a rapid temperature rise in the object and more uniform heat distribution can be achieved, particularly through selection of suitable object material and geometry, and suitable varying magnetic field magnitude and orientation relative to the object. Moreover, as induction heating and magnetic hysteresis heating do not require a physical connection to be provided between the source of the varying magnetic field and the object, design freedom and control over the heating profile may be greater, and cost may be lower.
  • The Curie point temperature, or Curie Temperature, is the temperature at which certain magnetic materials undergo a sharp change in their magnetic properties. It is understood that the Curie point temperature is the temperature below which there is spontaneous magnetization in the absence of an externally applied magnetic field, and above which the material is paramagnetic. For example, the Curie point temperature is the magnetic transformation temperature of a ferromagnetic material between its ferromagnetic and paramagnetic phase. When such a magnetic material reaches its Curie point temperature, its magnetic permeability reduces or ceases, and the ability of the material to be heated by penetration with a varying magnetic field also reduces or ceases. That is, it may not be possible to heat the material above its Curie point temperature by magnetic hysteresis heating. If the magnetic material is electrically-conductive, then the material may still be heatable, to a lesser extent, by penetration with a varying magnetic field above the Curie point temperature by Joule heating. However, if the magnetic material is non-electrically-conductive, then heating of the material above its Curie point temperature by penetration with a varying magnetic field may be hindered or even impossible.
  • Referring to FIGS. 1 and 2 there are shown a schematic perspective view and a schematic cross-sectional view of an example of an article according to an embodiment. Broadly speaking, the article 1 comprises smokable material 10, a heater 20 for heating the smokable material 10, and a cover 30 that encircles the smokable material 10 and the heater 20. The heater 20 comprises heating material that is heatable by penetration with a varying magnetic field. Example such heating materials are discussed elsewhere herein. The article 1 is for use with apparatus for heating the smokable material 10 to volatilize at least one component of the smokable material 10 without burning the smokable material 10.
  • In this embodiment, the article 1 is elongate and cylindrical with a substantially circular cross section in a plane normal to a longitudinal axis of the article 1. However, in other embodiments, the article 1 may have a cross section other than circular and/or not be elongate and/or not be cylindrical. The article 1 may have proportions approximating those of a cigarette.
  • In this embodiment, the heater 20 is elongate and extends along a longitudinal axis that is substantially aligned with a longitudinal axis of the article 1. This can help to provide more uniform heating of the smokable material 10 in use, and can also aid manufacturing of the article 1. In this embodiment, the aligned axes are coincident. In a variation to this embodiment, the aligned axes may be parallel to each other. However, in other embodiments, the axes may be oblique to each other.
  • In this embodiment, the heater 20 extends to opposite longitudinal ends of the mass of smokable material 10. This can help to provide more uniform heating of the smokable material 10 in use, and can also aid manufacturing of the article 1. However, in other embodiments, the heater 20 may not extend to either of the opposite longitudinal ends of the mass of smokable material 10, or may extend to only one of the longitudinal ends of the mass of smokable material 10 and be spaced from the other of the longitudinal ends of the mass of smokable material 10.
  • In this embodiment, the heater 20 is within the smokable material 10. In other embodiments, the smokable material 10 may be on only one side of the heater 20, for example.
  • In this embodiment, the heating material of the heater 20 is in contact with the smokable material 10. Thus, when the heating material is heated by penetration with a varying magnetic field, heat may be transferred directly from the heating material to the smokable material 10. In other embodiments, the heating material may be kept out of contact with the smokable material 10. For example, in some embodiments, the article 1 may comprise a thermally-conductive barrier that is free of heating material and that spaces the heater 20 from the smokable material 10. In some embodiments, the thermally-conductive barrier may be a coating on the heater 20. The provision of such a barrier may be advantageous to help to dissipate heat to alleviate hot spots in the heating material.
  • The heater 20 of this embodiment has two opposing major surfaces joined by two minor surfaces. Therefore, the depth or thickness of the heater 20 is relatively small as compared to the other dimensions of the heater 20. The heating material may have a skin depth, which is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs. By providing that the heating material has a relatively small thickness, a greater proportion of the heating material may be heatable by a given varying magnetic field, as compared to heating material having a depth or thickness that is relatively large as compared to the other dimensions of the heating material. Thus, a more efficient use of material is achieved and, in turn, costs are reduced. However, in other embodiments, the heater 20 may have a cross-section that is a shape other than rectangular, such as circular, elliptical, annular, polygonal, square, triangular, star-shaped, radially-finned, or the like.
  • The cover 30 of the article 1 helps to maintain the relative positions of the smokable material 10 and the heater 20. The cover 30 may be made of any suitable material, such as paper, card, a plastics material, or the like. Overlapping portions of the cover 30 may be adhered to each other to help maintain the shape of the cover 30 and the article 1 as a whole. In some embodiments, the cover 30 may take a different form or be omitted.
  • The Curie point temperature of a material is determined or controlled by the chemical composition of the material. Modern technology allows adjustment of the composition of a material to provide the material with a preset Curie point temperature. Some example heating materials that could be used in embodiments, along with their approximate Curie point temperatures, are as shown in Table 1, below.
  • TABLE 1
    Curie point temperature
    Material (degrees Celsius)
    30% Ni 70% Fe 100
    36% Ni 64% Fe 279
    42% Ni 58% Fe 325
    46% Ni 54% Fe 460
    52% Ni 48% Fe 565
    80% Ni 20% Fe 460
    Cobalt 1120
    Iron 770
    Low carbon steel 760
    Iron (III) oxide 675
    Iron (II, III) oxide 585
    NiOFe2O3 585
    CuOFe2O3 455
    Strontium ferrite 450
    MgOFe2O3 440
    Kovar* 435
    MnBi 357
    Nickel 353
    MnSb 314
    MnOFe2O3 300
    Y3Fe5O12 287
    CrO2 113
    MnAs 45
    *A typical composition of Kovar is as follows, given in percentages of weight: Ni 29%, Co 17%, Si 0.2%, Mn 0.3%, C <0.01%, Fe balance.
  • The % values given for the above various alloys of Ni and Fe may be % wt values.
  • Low Curie temperature material for induction heating self-temperature controlling system”; T. Todaka et al.; Journal of Magnetism and Magnetic Materials 320 (2008) e702-e707, presents low Curie temperature magnetic materials for induction heating. The materials are alloys based on SUS430 (a grade of stainless steel), could be used in embodiments, and are shown in Table 2, below, along with their approximate Curie point temperatures.
  • TABLE 2
    Material Composition Curie point temperature
    (wt %) (degrees Celsius)
    SUS430-Al11.7Dy0.5 301
    SUS430-Al11.7Gd0.3 300
    SUS430-Al11.7Sm0.3 300
    SUS430-Al12.8Gd0.3 194
    SUS430-Al12.8Sm0.1 195
    SUS430-Al12.8Y0.3 198
    SUS430-Al13.5Gd0.3 106
    SUS430-Al13.5Sm0.1 116
    SUS430-Al13.5Y0.3 109
  • Low Curie temperature in Fe—Cr—Ni—Mn alloys”; Alexandru Iorga et al.; U.P.B. Sci. Bull., Series B, Vol. 73, Iss. 4 (2011) 195-202, provides a discussion of several Fe—Ni—Cr alloys. Some of the materials disclosed in this document could be used in embodiments, and are shown in Table 3, below, along with their approximate Curie point temperatures.
  • TABLE 3
    Material Composition Curie point temperature
    (wt %) (degrees Celsius)
    Cr4—Ni32—Fe62—Mn1.5—Si0.5 55
    Cr4—Ni33—Fe62.5—Si0.5 122
    Cr10—Ni33—Fe53.5—Mn3—Si0.5 11
    Cr11—Ni35—Fe53.5—Si0.5 66
  • A further material that could be used in some embodiments is NeoMax MS-135, which is from NeoMax Materials Co., Ltd. This material is described at the following URL: http://www.neomax-materials.co.ip/eng/pr0510.htm.
  • In this embodiment, the chemical composition of the heating material of the heater 20 has been carefully and intentionally set, selected or provided so that the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material 10. The combustion temperature may be the autoignition temperature or kindling point of the smokable material 10. That is, the lowest temperature at which the smokable material 10 will spontaneously ignite in normal atmosphere without an external source of ignition, such as a flame or spark.
  • Accordingly, when the temperature of the heater 20 in use reaches the Curie point temperature, the ability to further heat the heater 20 by penetration with a varying magnetic field is reduced or removed. For example, as noted above, when the heating material is electrically-conductive, Joule heating may still be effected by penetrating the heating material with a varying magnetic field. Alternatively, when the heating material is non-electrically-conductive, depending on the chemical composition of the heating material, such further heating by penetration with a varying magnetic field may be impossible.
  • Thus, in use, this inherent mechanism of the heating material of the heater 20 may be used to limit or prevent further heating of the heater 20, so as to help avoid the temperature of the adjacent smokable material 10 from reaching a magnitude at which the smokable material 10 burns or combusts. Thus, in some embodiments, the chemical composition of the heater 20 may help enable the smokable material 10 to be heated sufficiently to volatilize at least one component of the smokable material 10 without burning the smokable material 10. In some embodiments, this may also help to prevent overheating of the apparatus with which the article 1 is being used, and/or help to prevent part(s), such as the cover 30 or an adhesive, of the article 1 being damaged by excessive heat during use of the article 1.
  • In some embodiments, if the combustion temperature of the smokable material 10 is greater than X degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than X degrees Celsius. For example, if the combustion temperature of the smokable material 10 is greater than 350 degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than 350 degrees Celsius. The Curie point temperature may be, for example, less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius. In some embodiments, the ability of the heating material to be heated by penetration with a varying magnetic field by magnetic hysteresis heating may return when the temperature of the heating material has dropped below the Curie point temperature.
  • In some embodiments, the heater 20 may consist entirely, or substantially entirely, of the heating material. The heating material may comprise, for example, one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • In some embodiments, the heater of the product, such as the article, may comprise a first portion of heating material that has a first Curie point temperature, and a second portion of heating material that has a second Curie point temperature that is different to the first Curie point temperature. The second Curie point temperature may be higher than the first Curie point temperature. In use, the second portion of heating material may thus be permitted to reach a higher temperature than the first portion of heating material when both are penetrated by a varying magnetic field. This may help progressive heating of the smokable material 10, and thus progressive generation of vapor, to be achieved. Both the first and second Curie point temperatures may be less than the combustion temperature of the smokable material 10.
  • Referring to FIG. 4, there is shown a flow diagram showing an example of a method of manufacturing a product for use in heating smokable material to volatilize at least one component of the smokable material, according to an embodiment. The article 1 of FIGS. 1 and 2 may be made according to this method.
  • The method 400 comprises determining 401 a maximum temperature to which a heater is to be heated in use. This determining 401 may comprise, for example, determining the combustion temperature of the smokable material 10 to be heated by the heater 20 in use, and then determining the maximum temperature on the basis of that combustion temperature. For example, in some embodiments, the maximum temperature may be less than the combustion temperature of the smokable material 10, for the reasons discussed above. In other embodiments, the determining 401 may additionally or alternatively comprise determining a maximum temperature to which other part(s), such as a cover or an adhesive, of the article may be subjected in use without incurring damage, and then determining the maximum temperature on the basis of that temperature. For example, in some embodiments, the maximum temperature may be less than the temperature to which the part(s) may be safely subjected in use. In still other embodiments, the determining 401 may additionally or alternatively comprise determining a maximum temperature to which the smokable material 10 is to be heated on the basis of desired sensory properties, and then determining the maximum temperature on the basis of that temperature. For example, at different temperatures different components of the smokable material 10 may be volatilized.
  • The method 400 further comprises providing 402 a heater 20 comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected or determined on the basis of, or in dependence on, the maximum temperature determined at 401. The providing 402 may comprise, for example, manufacturing the heater 20 from suitable heating material. The method may comprise adjusting the composition of the heating material during manufacture of the heater 20. Alternatively or additionally, the providing 402 may comprise selecting the heater 20 from a plurality of heaters 20, wherein the plurality of heaters 20 are made of heating material having respective different Curie point temperatures. The Curie point temperature of the heating material of the heater 20 provided in 402 may, for example, be equal to the maximum temperature determined in 401, or may be less than the maximum temperature determined in 401. The heater 20 provided in 402 may consists entirely, or substantially entirely, of the heating material. The heating material may comprise or consist of any one or more of the available heating materials discussed above, for example.
  • The method then comprises forming 403 an article, such as the article 1 of FIGS. 1 and 2, comprising the heater 20 and smokable material 10 to be heated by the heater 20 in use. The forming 403 may comprise providing that the heater 20 is in contact with the smokable material 10, as is the case in the article 1 of FIGS. 1 and 2. However, in other embodiments, the smokable material 10 may be out of contact with the heater 20 and yet still be heatable by the heater 20. In 403 the method 400 may additionally or alternatively comprise encircling or covering the smokable material 10 and the heater 20 with a cover, such as the cover 30 of the article 1 shown in FIGS. 1 and 2.
  • The above-described article 1 and described variants thereof may be used with apparatus for heating the smokable material 10 to volatilize at least one component of the smokable material 10 without burning the smokable material 10. Any one of the article(s) 1 and such apparatus may be provided together as a system. The system may take the form of a kit, in which the article 1 is separate from the apparatus. Alternatively, the system may take the form of an assembly, in which the article 1 is combined with the apparatus. The apparatus of the system comprises a heating zone for receiving the article 1, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material when the article 1 is in the heating zone.
  • Referring to FIG. 3 there is shown a schematic cross-sectional view of an example of apparatus for heating smokable material to volatilize at least one component of the smokable material according to an embodiment. Broadly speaking, the apparatus 100 comprises a heating zone 111 for receiving an article comprising smokable material; a heater 115 for heating the heating zone 111, wherein the heater 115 comprises heating material that is heatable by penetration with a varying magnetic field; and a magnetic field generator 112 for generating a varying magnetic field that penetrates the heating material of the heater 115. A maximum temperature to which the heater 115 is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material of the heater 115. Example such heating materials are discussed elsewhere herein. The apparatus 100 is for use with an article that comprises smokable material. In some embodiments, the apparatus 100 is for heating the smokable material to volatilize at least one component of the smokable material without burning the smokable material. The article may comprise heating material, such as the article 1 of FIGS. 1 and 2, or may be free of heating material.
  • The apparatus 100 of this embodiment comprises a body 110 and a mouthpiece 120. The mouthpiece 120 may be made of any suitable material, such as a plastics material, cardboard, cellulose acetate, paper, metal, glass, ceramic, or rubber. The mouthpiece 120 defines a channel 122 therethrough. The mouthpiece 120 is locatable relative to the body 110 so as to cover an opening into the heating zone 111. When the mouthpiece 120 is so located relative to the body 110, the channel 122 of the mouthpiece 120 is in fluid communication with the heating zone 111. In use, the channel 122 acts as a passageway for permitting volatilized material to pass from an article inserted in the heating zone 111 to an exterior of the apparatus 100. In this embodiment, the mouthpiece 120 of the apparatus 100 is releasably engageable with the body 110 so as to connect the mouthpiece 120 to the body 110. In other embodiments, the mouthpiece 120 and the body 110 may be permanently connected, such as through a hinge or flexible member. In some embodiments, such as embodiments in which the article itself comprises a mouthpiece, the mouthpiece 120 of the apparatus 100 may be omitted.
  • The apparatus 100 may define an air inlet that fluidly connects the heating zone 111 with the exterior of the apparatus 100. Such an air inlet may be defined by the body 110 of the apparatus 100 and/or by the mouthpiece 120 of the apparatus 100. A user may be able to inhale the volatilized component(s) of the smokable material by drawing the volatilized component(s) through the channel 122 of the mouthpiece 120. As the volatilized component(s) are removed from the article, air may be drawn into the heating zone 111 via the air inlet of the apparatus 100.
  • In this embodiment, the body 110 comprises the heating zone 111. In this embodiment, the heating zone 111 comprises a recess 111 for receiving at least a portion of the article. In other embodiments, the heating zone 111 may be other than a recess, such as a shelf, a surface, or a projection, and may require mechanical mating with the article in order to co-operate with, or receive, the article. In this embodiment, the heating zone 111 is elongate, and is sized and shaped to receive the article. In this embodiment, the heating zone 111 accommodates the whole article. In other embodiments, the heating zone 111 may be dimensioned to receive only a portion of the article.
  • In this embodiment, the magnetic field generator 112 comprises an electrical power source 113, a coil 114, a device 116 for passing a varying electrical current, such as an alternating current, through the coil 114, a controller 117, and a user interface 118 for user-operation of the controller 117.
  • In this embodiment, the electrical power source 113 is a rechargeable battery. In other embodiments, the electrical power source 113 may be other than a rechargeable battery, such as a non-rechargeable battery, a capacitor, a battery-capacitor hybrid, or a connection to a mains electricity supply.
  • The coil 114 may take any suitable form. In this embodiment, the coil 114 is a helical coil of electrically-conductive material, such as copper. In some embodiments, the magnetic field generator 112 may comprise a magnetically permeable core around which the coil 114 is wound. Such a magnetically permeable core concentrates the magnetic flux produced by the coil 114 in use and makes a more powerful magnetic field. The magnetically permeable core may be made of iron, for example. In some embodiments, the magnetically permeable core may extend only partially along the length of the coil 114, so as to concentrate the magnetic flux only in certain regions.
  • In this embodiment, the coil 114 is in a fixed position relative to the heater 115 and the heating zone 111. In this embodiment, the coil 114 encircles the heater 115 and the heating zone 111. In this embodiment, the coil 114 extends along a longitudinal axis that is substantially aligned with a longitudinal axis A-A of the heating zone 111. In this embodiment, the aligned axes are coincident. In a variation to this embodiment, the aligned axes may be parallel to each other. However, in other embodiments, the axes may be oblique to each other. Moreover, in this embodiment, the coil 114 extends along a longitudinal axis that is substantially coincident with a longitudinal axis of the heater 115. This can help to provide more uniform heating of the heater 115 in use, and can also aid manufacturability of the apparatus 100. In other embodiments, the longitudinal axes of the coil 114 and the heater 115 may be aligned with each other by being parallel to each other, or may be oblique to each other.
  • In this embodiment, the device 116 for passing a varying current through the coil 114 is electrically connected between the electrical power source 113 and the coil 114. In this embodiment, the controller 117 also is electrically connected to the electrical power source 113, and is communicatively connected to the device 116 to control the device 116. More specifically, in this embodiment, the controller 117 is for controlling the device 116, so as to control the supply of electrical power from the electrical power source 113 to the coil 114. In this embodiment, the controller 117 comprises an integrated circuit (IC), such as an IC on a printed circuit board (PCB). In other embodiments, the controller 117 may take a different form. In some embodiments, the apparatus may have a single electrical or electronic component comprising the device 116 and the controller 117. The controller 117 is operated in this embodiment by user-operation of the user interface 118. In this embodiment, the user interface 118 is located at the exterior of the body 110. The user interface 118 may comprise a push-button, a toggle switch, a dial, a touchscreen, or the like. In other embodiments, the user interface 118 may be remote and connected to the rest of the apparatus wirelessly, such as via Bluetooth.
  • In this embodiment, operation of the user interface 118 by a user causes the controller 117 to cause the device 116 to cause an alternating electrical current to pass through the coil 114, so as to cause the coil 114 to generate an alternating magnetic field. The coil 114 and the heater 115 of the apparatus 100 are suitably relatively positioned so that the alternating magnetic field produced by the coil 114 penetrates the heating material of the heater 115. When the heating material of the heater 115 is an electrically-conductive material, this may cause the generation of one or more eddy currents in the heating material. The flow of eddy currents in the heating material against the electrical resistance of the heating material causes the heating material to be heated by Joule heating. In this embodiment, the heating material is made of a magnetic material, and so the orientation of magnetic dipoles in the heating material changes with the changing applied magnetic field, which causes heat to be generated in the heating material.
  • A maximum temperature to which the heater 115 of the apparatus 100 is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material of the heater 115. That is, the apparatus 100 may be free of any other system for limiting the temperature to which the heater 115 is heatable to below the maximum temperature. In this embodiment, the chemical composition of the heating material of the heater 115 of the apparatus 100 has been carefully and intentionally set, selected or provided so that the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material in an article to be used with the apparatus 100. Accordingly, when the temperature of the heater 115 in use reaches the Curie point temperature, the ability to further heat the heater 115 by penetration with a varying magnetic field is reduced or removed, as discussed above.
  • Thus, in use, this inherent mechanism of the heating material of the heater 115 may be used to limit or prevent further heating of the heater 115, so as to help avoid the temperature of the heating zone 111 and an article located therein from reaching a magnitude at which the smokable material of the article burns or combusts. Thus, in some embodiments, the chemical composition of the heater 115 may help enable the smokable material to be heated sufficiently to volatilize at least one component of the smokable material without burning the smokable material. In some embodiments, this may also help to prevent overheating of the apparatus 100 or damage to components of the apparatus, such as the magnetic field generator 112.
  • As noted above, in some embodiments, the ability of the heating material to be heated by penetration with a varying magnetic field by magnetic hysteresis heating may return when the temperature of the heating material has dropped below the Curie point temperature.
  • In some embodiments, if the combustion temperature of the smokable material to be used with the apparatus 100 is greater than X degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than X degrees Celsius. For example, if the combustion temperature of the smokable material is greater than 350 degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than 350 degrees Celsius. The Curie point temperature may be, for example, less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.
  • In some embodiments, the heater 115 may consist entirely, or substantially entirely, of the heating material. The heating material may comprise, for example, one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • The apparatus 100 may comprise more than one coil. The plurality of coils of the apparatus 100 could be operable to provide progressive heating of the smokable material 10 in an article 1, and thereby progressive generation of vapor. For example, one coil may be able to heat a first region of the heating material relatively quickly to initialize volatilization of at least one component of the smokable material 10 and formation of a vapor in a first region of the smokable material 10. Another coil may be able to heat a second region of the heating material relatively slowly to initialize volatilization of at least one component of the smokable material 10 and formation of a vapor in a second region of the smokable material 10. Accordingly, a vapor is able to be formed relatively rapidly for inhalation by a user, and vapor can continue to be formed thereafter for subsequent inhalation by the user even after the first region of the smokable material 10 may have ceased generating vapor. The initially-unheated second region of smokable material 10 could act as a heat sink, to reduce the temperature of created vapor or make the created vapor mild, during heating of the first region of smokable material 10.
  • In some embodiments, the apparatus 100 may have a sensor for detecting a Curie-related change in magnetism of the heater 20, 115. The sensor may be communicatively-connected to the controller 117. The controller 117 may be configured to control the device 116 to cause the generation of the varying magnetic field to be halted or changed, on the basis of a signal received at the controller 117 from the sensor.
  • In some embodiments, the apparatus 100 may have an amplifier for amplifying the Curie-related change in magnetism of the heater 20, 115 of the article 1 or apparatus 100. For example, the coil 114 may be configured or arranged so that a change in a property of the coil 114 in response to the Curie-related change in magnetism of the heater 20, 115 is large. The impedance of the coil 114 may be matched with the impedance of the heater 20, 115, to result in a Curie-related event being more reliably detectable.
  • Referring to FIG. 5, there is shown a flow diagram showing an example of a method of manufacturing a product for use in heating smokable material to volatilize at least one component of the smokable material, according to an embodiment. The apparatus 100 of FIG. 3 may be made according to this method.
  • The method 500 comprises determining 501 a maximum temperature to which a heater is to be heated in use. The determining 501 may comprise, for example, determining the combustion temperature of smokable material to be heated by the heater 115 in use, and then determining the maximum temperature on the basis of that combustion temperature. For example, in some embodiments, the maximum temperature may be less than the combustion temperature of the smokable material, for the reasons discussed above. In other embodiments, the determining 501 may additionally or alternatively comprise determining a maximum comfortable temperature to which the exterior of the apparatus 100 is to be permitted to reach in use while still being comfortable to hold by a user, and then determining the maximum temperature on the basis of that temperature. In still further embodiments, the determining 501 may additionally or alternatively comprise determining a maximum temperature to which components, such as electrical components, of the apparatus 100 may be subjected in use without incurring damage, and then determining the maximum temperature on the basis of that temperature.
  • The method further comprises providing 502 a heater 115 comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected or determined on the basis of, or in dependence on, the maximum temperature determined at 501. The providing 502 may comprise, for example, manufacturing the heater 115 from suitable heating material. The method may comprise adjusting the composition of the heating material during manufacture of the heater 115. Alternatively or additionally, the providing 502 may comprise selecting the heater 115 from a plurality of heaters 115, wherein the plurality of heaters 115 are made of heating material having respective different Curie point temperatures.
  • The Curie point temperature of the heating material of the heater 115 provided in 502 may, for example, be equal to the maximum temperature determined in 501, or may be less than the maximum temperature determined in 501. The heater 115 provided in 502 may consists entirely, or substantially entirely, of the heating material. The heating material may comprise or consist of any one or more of the available heating materials discussed above, for example.
  • The method then comprises forming 503 apparatus, such as the apparatus 100 of FIG. 3, that comprises a heating zone 111 for receiving an article comprising smokable material, the heater 115 for heating the heating zone 111, and a magnetic field generator 112 for generating a varying magnetic field that penetrates the heating material, wherein a maximum temperature to which the heater 115 is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.
  • In some embodiments, 403 of the method 400 of FIG. 4, and/or 503 of the method 500 of FIG. 5, may be omitted. For example, in some such embodiments, the product made using the method may be a component or system for future incorporation into apparatus for heating smokable material to volatilize at least one component of the smokable material. In some other such embodiments, the product made using the method may be a component or system for future incorporation into an article for use with such apparatus.
  • Accordingly, in accordance with some embodiments, a product, such as the article 1 of FIGS. 1 and 2 or the apparatus 100 of FIG. 3, may be provided with an automatic mechanism for limiting the temperature to which a heater 20, 115 of the product is heatable by penetration with a varying magnetic field.
  • In each of the embodiments discussed above, the heating material may have a skin depth, which is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs. By providing that the component comprising the heating material has a relatively small thickness, a greater proportion of the heating material may be heatable by a given varying magnetic field, as compared to heating material in a component having a depth or thickness that is relatively large as compared to the other dimensions of the component. Thus, a more efficient use of material is achieved. In turn, costs are reduced.
  • In some embodiments, a component comprising the heating material may comprise discontinuities or holes therein. Such discontinuities or holes may act as thermal breaks to control the degree to which different regions of the smokable material 10 are heated in use. Areas of the heating material with discontinuities or holes therein may be heated to a lesser extent that areas without discontinuities or holes. This may help progressive heating of the smokable material 10, and thus progressive generation of vapor, to be achieved. Such discontinuities or holes may, on the other hand, be used to optimize the creation of complex eddy currents in use.
  • In each of the above described embodiments, the smokable material 10 comprises tobacco. However, in respective variations to each of these embodiments, the smokable material 10 may consist of tobacco, may consist substantially entirely of tobacco, may comprise tobacco and smokable material other than tobacco, may comprise smokable material other than tobacco, or may be free of tobacco. In some embodiments, the smokable material 10 may comprise a vapor or aerosol forming agent or a humectant, such as glycerol, propylene glycol, triacetin, or diethylene glycol.
  • In each of the above described embodiments, the article 1 is a consumable article. Once all, or substantially all, of the volatilizable component(s) of the smokable material 10 in the article 1 has/have been spent, the user may remove the article 1 from the apparatus and dispose of the article 1. The user may subsequently re-use the apparatus with another of the articles 1. However, in other respective embodiments, the article 1 may be non-consumable, and the apparatus and the article 1 may be disposed of together once the volatilizable component(s) of the smokable material 10 has/have been spent.
  • In some embodiments, the apparatus 100 discussed above is sold, supplied or otherwise provided separately from the articles with which the apparatus 100 is usable. However, in some embodiments, the apparatus 100 and one or more of the articles may be provided together as a system. Similarly, in some embodiments, the article 1 discussed above is sold, supplied or otherwise provided separately from the apparatus with which the article 1 is usable. However, in some embodiments, one or more of the articles 1 may be provided together with the apparatus as a system. Such systems may be in the form of a kit or an assembly, possibly with additional components, such as cleaning utensils.
  • Embodiments could be implemented in a system comprising any one of the articles discussed herein, and any one of the apparatuses discussed herein. Heat generated in the heating material of the apparatus could be transferred to the article to heat, or further heat, the smokable material therein when the portion of the article is in the heating zone.
  • Some of the products discussed herein may be considered smoking industry products.
  • In order to address various issues and advance the art, the entirety of this disclosure shows by way of illustration and example various embodiments in which that which is claimed may be practiced and which provide for superior apparatus for heating smokable material to volatilize at least one component of the smokable material, superior articles for use with such apparatus, superior systems comprising such apparatus and such articles, and superior methods of manufacturing products comprising heaters. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed and otherwise disclosed features. It is to be understood that advantages, embodiments, examples, functions, features, structures and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope and/or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist in essence of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. The disclosure may include other inventions not presently claimed, but which may be claimed in future.

Claims (19)

1. A method of manufacturing a product comprising a heater for use in heating smokable material to volatilize at least one component of the smokable material, the method comprising:
determining a maximum temperature to which a heater is to be heated in use; and
providing a heater comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected on the basis of the determined maximum temperature.
2. The method of claim 1, wherein the Curie point temperature is equal to or less than the maximum temperature.
3. The method of claim 1, wherein the maximum temperature is less than the combustion temperature of the smokable material to be heated by the heater in use.
4. The method of claim 1, comprising forming an article comprising the heater and smokable material to be heated by the heater in use.
5. The method of claim 4, wherein the smokable material comprises tobacco and/or one or more humectants.
6. The method of claim 4, comprising providing that the heater is in contact with the smokable material.
7. The method of claim 1, comprising forming apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising a heating zone for receiving an article comprising smokable material, the heater for heating the heating zone, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material;
wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.
8. The method of claim 1, wherein the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
9. The method of claim 1, wherein the heater consists entirely, or substantially entirely, of the heating material.
10. An article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material, the article comprising:
smokable material; and
a heater for heating the smokable material, wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material.
11. The article of claim 10, wherein the heating material is in contact with the smokable material.
12. The article of claim 10, wherein the Curie point temperature is no more than 350 degrees Celsius.
13. The article of claim 10, wherein the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
14. The article of claim 10, wherein the smokable material comprises tobacco and/or one or more humectants.
15. The article of claim 10, wherein the heater consists entirely, or substantially entirely, of the heating material.
16. Apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising:
a heating zone for receiving an article comprising smokable material;
a heater for heating the heating zone, wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field; and
a magnetic field generator for generating a varying magnetic field that penetrates the heating material;
wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.
17. The apparatus of claim 16, wherein the Curie point temperature is no more than 350 degrees Celsius.
18. The apparatus of claim 16, wherein the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
19. The apparatus of claim 16, wherein the heater consists entirely, or substantially entirely, of the heating material.
US14/927,532 2015-10-30 2015-10-30 Article for Use with Apparatus for Heating Smokable Material Abandoned US20170119047A1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
US14/927,532 US20170119047A1 (en) 2015-10-30 2015-10-30 Article for Use with Apparatus for Heating Smokable Material
CA3003522A CA3003522A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
US15/772,386 US20180317553A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
JP2018521547A JP6733878B2 (en) 2015-10-30 2016-10-26 Articles for use with a device for heating smoking material
KR1020187012355A KR102061674B1 (en) 2015-10-30 2016-10-26 Articles for use with devices for heating smokeable materials
RU2019112521A RU2019112521A (en) 2015-10-30 2016-10-26 PRODUCT FOR USE WITH A DEVICE FOR HEATING A COOPERING MATERIAL
MYPI2018701474A MY185583A (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
KR1020217020669A KR20210084705A (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
PCT/EP2016/075739 WO2017072149A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
EP16798651.2A EP3367830B1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
CN201680063457.4A CN108348010A (en) 2015-10-30 2016-10-26 With the product that the equipment for heating smokeable material is used together
AU2016344645A AU2016344645B2 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
BR112018008589A BR112018008589A2 (en) 2015-10-30 2016-10-26 A method of manufacturing a product comprising a heater, article for use with smokers heaters, smokers heater
KR1020197038229A KR20200001606A (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
RU2018115288A RU2687757C1 (en) 2015-10-30 2016-10-26 Article for use with device for heating smoking material
HK18115509.2A HK1256472A1 (en) 2015-10-30 2018-12-04 Article for use with apparatus for heating smokable material
JP2020067569A JP7222167B2 (en) 2015-10-30 2020-04-03 Articles for use with devices for heating smoking material
RU2020135860A RU2809662C2 (en) 2015-10-30 2020-10-30 Product for use with device for heating smoking material, device for heating smoking material, system containing the specified product and device, method for manufacturing article containing heater for heating smoking material
JP2020183056A JP2021019640A (en) 2015-10-30 2020-10-30 Article for use with apparatus for heating smokable material
US17/187,077 US11825870B2 (en) 2015-10-30 2021-02-26 Article for use with apparatus for heating smokable material
JP2022107307A JP2022126873A (en) 2015-10-30 2022-07-01 Article for use with apparatus for heating smokable material
US18/489,115 US20240041095A1 (en) 2015-10-30 2023-10-18 Article for use with apparatus for heating smokable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/927,532 US20170119047A1 (en) 2015-10-30 2015-10-30 Article for Use with Apparatus for Heating Smokable Material

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2016/075739 Continuation WO2017072149A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
US15/772,386 Continuation US20180317553A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material

Publications (1)

Publication Number Publication Date
US20170119047A1 true US20170119047A1 (en) 2017-05-04

Family

ID=57389381

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/927,532 Abandoned US20170119047A1 (en) 2015-10-30 2015-10-30 Article for Use with Apparatus for Heating Smokable Material
US15/772,386 Abandoned US20180317553A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
US17/187,077 Active 2035-12-06 US11825870B2 (en) 2015-10-30 2021-02-26 Article for use with apparatus for heating smokable material
US18/489,115 Pending US20240041095A1 (en) 2015-10-30 2023-10-18 Article for use with apparatus for heating smokable material

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/772,386 Abandoned US20180317553A1 (en) 2015-10-30 2016-10-26 Article for use with apparatus for heating smokable material
US17/187,077 Active 2035-12-06 US11825870B2 (en) 2015-10-30 2021-02-26 Article for use with apparatus for heating smokable material
US18/489,115 Pending US20240041095A1 (en) 2015-10-30 2023-10-18 Article for use with apparatus for heating smokable material

Country Status (12)

Country Link
US (4) US20170119047A1 (en)
EP (1) EP3367830B1 (en)
JP (4) JP6733878B2 (en)
KR (3) KR102061674B1 (en)
CN (1) CN108348010A (en)
AU (1) AU2016344645B2 (en)
BR (1) BR112018008589A2 (en)
CA (1) CA3003522A1 (en)
HK (1) HK1256472A1 (en)
MY (1) MY185583A (en)
RU (2) RU2687757C1 (en)
WO (1) WO2017072149A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170055581A1 (en) * 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
WO2018220558A1 (en) * 2017-05-31 2018-12-06 Philip Morris Products S.A. Heating component in aerosol generating devices
CN112739228A (en) * 2018-09-25 2021-04-30 菲利普莫里斯生产公司 Heating assembly and method for inductively heating an aerosol-forming substrate
US11064725B2 (en) 2015-08-31 2021-07-20 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
USD929651S1 (en) 2019-08-01 2021-08-31 Nicoventures Holdings Limited (A Uk Company) Electronic cigarette vaporizer
US11241042B2 (en) 2012-09-25 2022-02-08 Nicoventures Trading Limited Heating smokeable material
US11252992B2 (en) 2015-10-30 2022-02-22 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11357258B2 (en) * 2014-12-29 2022-06-14 Nicoventures Trading Limited Cartridge for having a sleeve with slots surrounding a contact piece with corresponding contact arms
US20220183373A1 (en) * 2019-03-11 2022-06-16 Nicoventures Trading Limited Aerosol provision device
US20220218034A1 (en) * 2014-05-21 2022-07-14 Philip Morris Products S.A. Aerosol-generating system comprising a fluid permeable susceptor element
US11412783B2 (en) 2014-12-29 2022-08-16 Nicoventures Trading Limited Apparatus for heating smokable material
US11452313B2 (en) 2015-10-30 2022-09-27 Nicoventures Trading Limited Apparatus for heating smokable material
US20220304387A1 (en) * 2019-08-02 2022-09-29 Kt&G Corporation Heating assembly, aerosol-generating device including the same, and aerosol-generating system including the same
US11457664B2 (en) 2016-06-29 2022-10-04 Nicoventures Trading Limited Apparatus for heating smokable material
WO2022233988A1 (en) * 2021-05-06 2022-11-10 Philip Morris Products S.A. Multi-layer susceptor arrangement for inductively heating an aerosol-forming substrate
US11589614B2 (en) 2015-08-31 2023-02-28 Nicoventures Trading Limited Cartridge for use with apparatus for heating smokable material
RU2793697C2 (en) * 2018-09-25 2023-04-04 Филип Моррис Продактс С.А. Heating assembly and method of induction heating of aerosol substrate
USD984730S1 (en) 2021-07-08 2023-04-25 Nicoventures Trading Limited Aerosol generator
USD985187S1 (en) 2021-01-08 2023-05-02 Nicoventures Trading Limited Aerosol generator
US11659863B2 (en) 2015-08-31 2023-05-30 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11672279B2 (en) 2011-09-06 2023-06-13 Nicoventures Trading Limited Heating smokeable material
WO2023104706A1 (en) * 2021-12-06 2023-06-15 Philip Morris Products S.A. Aerosol-generating article comprising hollow tubular substrate element
WO2023124528A1 (en) * 2021-12-31 2023-07-06 海南摩尔兄弟科技有限公司 Heating and atomizing device
US11805818B2 (en) 2015-10-30 2023-11-07 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11825870B2 (en) 2015-10-30 2023-11-28 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
EP4266831A3 (en) * 2018-01-03 2024-01-10 Cqens Technologies Inc. Heat-not-burn device and method
US11871790B2 (en) * 2017-04-05 2024-01-16 Altria Client Services Llc Susceptor for use with an inductively heated aerosol-generating device or system
US11896055B2 (en) 2015-06-29 2024-02-13 Nicoventures Trading Limited Electronic aerosol provision systems
US11924930B2 (en) * 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11956879B2 (en) 2017-09-15 2024-04-09 Nicoventures Trading Limited Apparatus for heating smokable material

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170055580A1 (en) * 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Apparatus for heating smokable material
WO2018002085A1 (en) 2016-06-29 2018-01-04 British American Tobacco (Investments) Limited Apparatus for heating smokable material
WO2019030363A1 (en) 2017-08-09 2019-02-14 Philip Morris Products S.A. Aerosol-generating device with flat inductor coil
BR112020002379A2 (en) 2017-08-09 2020-09-01 Philip Morris Products S.A. aerosol generator system with multiple susceptors
KR102500901B1 (en) 2017-08-09 2023-02-17 필립모리스 프로덕츠 에스.에이. Aerosol generating device with removable susceptor
CA3072291A1 (en) 2017-08-09 2019-02-14 Philip Morris Products S.A. Aerosol generating system with multiple inductor coils
RU2769393C2 (en) 2017-08-09 2022-03-31 Филип Моррис Продактс С.А. Aerosol generating system with non-circular induction coil
KR102551450B1 (en) 2017-08-09 2023-07-06 필립모리스 프로덕츠 에스.에이. Aerosol generating device with susceptor layer
CN110913712A (en) 2017-08-09 2020-03-24 菲利普莫里斯生产公司 Aerosol-generating device with reduced spacing of inductor coils
DE102017122752A1 (en) 2017-09-29 2019-04-04 Hauni Maschinenbau Gmbh Device for processing articles of the tobacco processing industry
CN207766584U (en) * 2018-01-31 2018-08-24 深圳市合元科技有限公司 A kind of heating device and electronic cigarette
CN109287017A (en) * 2018-09-21 2019-01-29 安徽中烟工业有限责任公司 A kind of heating chamber device and application thereof for electromagnetic heater
CN109512028A (en) * 2018-09-21 2019-03-26 安徽中烟工业有限责任公司 A kind of inductive heating element and application thereof for cigarette electromagnetic heater
US20220030948A1 (en) * 2018-09-25 2022-02-03 Philip Morris Products S.A. Inductively heating aerosol-generating device comprising a susceptor assembly
CN110063523A (en) * 2019-02-27 2019-07-30 广东达昊科技有限公司 A kind of cigarette/electronic cigarette heating device
US20220287376A1 (en) * 2019-08-23 2022-09-15 Philip Morris Products S.A. Temperature detection in peripherally heated aerosol-generating device
WO2021049218A1 (en) * 2019-09-12 2021-03-18 株式会社カネカ Surface layer porous graphite sheet
CN113712285A (en) * 2021-09-06 2021-11-30 湖北中烟工业有限责任公司 Curie temperature controllable electromagnetic heating material for low-temperature cigarettes and preparation method thereof
DE102022101392A1 (en) 2022-01-21 2023-07-27 Körber Technologies Gmbh Handling device for rod-shaped articles in the tobacco processing industry

Family Cites Families (504)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US219634A (en) 1879-09-16 Improvement in ore-roasting furnaces
US219628A (en) 1879-09-16 Improvement in electric lights
US219635A (en) 1879-09-16 Improvement in drag-sawing machines
US219643A (en) 1879-09-16 Improvement in metallic coffins
DE360431C (en) 1922-10-03 Gotthard Keiner Cigar and cigarette holder with protruding gripping claws
GB347650A (en) 1928-10-26 1931-04-29 Hirsch Kupfer & Messingwerke Apparatus for heating liquids
GB353745A (en) 1930-09-02 1931-07-30 George Williamson Improvements in or relating to cigarette and cigar holders
FR718708A (en) 1931-06-16 1932-01-28 Cigar and cigarette holder
US2462563A (en) 1945-07-31 1949-02-22 Rome C Seyforth Portable atomizer
US2689150A (en) 1951-11-30 1954-09-14 Coty Inc Pressurized dispenser
FR1150416A (en) 1956-05-02 1958-01-13 Vaporisateurs Marcel Franck Improvements to sprayers, in particular to perfume sprayers
FR1243445A (en) 1959-08-29 1960-10-14 Improvements to automatic sprayers for liquids
NL257538A (en) 1959-11-10
GB958867A (en) 1961-09-22 1964-05-27 Internat Medical & Surgical Su Improvements in or relating to atomisers
NL285511A (en) 1961-11-17
US3347231A (en) 1963-04-17 1967-10-17 Chang Chien-Hshuing Imitation cigarette
US3258015A (en) 1964-02-04 1966-06-28 Battelle Memorial Institute Smoking device
US3289949A (en) 1964-07-09 1966-12-06 Geigy Chem Corp Pushbutton dispenser for products in the fluid state
CH421847A (en) 1964-07-09 1966-09-30 Geigy Ag J R Apparatus for the fractional distribution of a liquid or powder product
FR1418189A (en) 1964-10-06 1965-11-19 Spray apparatus, in particular for the production of aerosols
GB1104214A (en) 1965-07-06 1968-02-21 Shiraimatsu Shinyaku Co Improvements in or relating to liquid spray devices for use with ampoules
GB1227333A (en) 1967-06-29 1971-04-07
US3522806A (en) 1968-08-07 1970-08-04 G S Intern Lab Corp Aerosol apparatus for inhalation therapy
DE1813993C3 (en) 1968-12-11 1974-01-24 Paul Ritzau Pari-Werk Kg, 8135 Soecking Device for atomizing and atomizing liquid or powdery substances
US3647143A (en) 1970-04-06 1972-03-07 Champion Spark Plug Co Atomizer
DE2220252C3 (en) 1971-04-30 1974-08-08 Ciba-Geigy Ag, Basel (Schweiz) Aerosol dispenser for liquid products
US3733010A (en) 1971-04-30 1973-05-15 Ciba Geigy Corp Air pressure operated dispenser
US4017701A (en) 1972-02-29 1977-04-12 Illinois Tool Works Inc. Induction heating unit with combined tank circuit and heating coil
ZA732105B (en) 1972-03-31 1974-01-30 Ciba Geigy Ag Improvements in aerosol dispenser having a compressed air-generating piston pump as propellant source
CH577923A5 (en) 1972-03-31 1976-07-30 Ciba Geigy Ag
US3864326A (en) 1972-05-22 1975-02-04 Robert S Babington Spraying devices, in particular nebulizing devices
GB1445124A (en) 1973-07-09 1976-08-04 Ici Ltd Smoking mixtures
JPS5238331Y2 (en) 1973-09-21 1977-08-31
US3856185A (en) 1973-12-26 1974-12-24 Ciba Geigy Corp Single dose, replaceable supply air pressure operated dispenser
US3913843A (en) 1974-10-30 1975-10-21 Respiratory Care Humidifier
US4149548A (en) 1978-09-21 1979-04-17 Bradshaw John C Therapeutic cigarette-substitute
US4284089A (en) 1978-10-02 1981-08-18 Ray Jon P Simulated smoking device
FI64288C (en) 1979-01-05 1983-11-10 Taisto Haekkinen LAEKEMEDELSSPRAYANORDNING
US4299274A (en) 1979-05-01 1981-11-10 Pipe Systems, Incorporated Thermal energy storage device and method for making the same
DE2937959C2 (en) 1979-09-20 1985-05-15 Benckiser-Knapsack Gmbh, 6802 Ladenburg Use of salt hydrates as a heat storage medium for charging latent heat storage
FR2472955A1 (en) 1980-01-08 1981-07-10 Daulange Jacques PROCESS AND APPARATUS FOR PRODUCING DRY PARTICULATE AEROSOLS OR WET FOG
DE3043377A1 (en) 1980-11-17 1982-07-01 Brugger, Inge, 8130 Starnberg SPRAYER
EP0076897B1 (en) 1981-08-19 1986-05-07 STIFFLER, Mario Latent heat accumulator, manufacturing process and uses thereof
US4393884A (en) 1981-09-25 1983-07-19 Jacobs Allen W Demand inhaler for oral administration of tobacco, tobacco-like, or other substances
ES262308U (en) 1981-12-24 1982-06-16 Procedimientos Automaticos,S.A. Letter on simplified. (Machine-translation by Google Translate, not legally binding)
JPS60500980A (en) 1983-05-26 1985-06-27 メトカル インコ−ポレ−テツド Heating equipment and chemical reaction chamber
US4813437A (en) 1984-01-09 1989-03-21 Ray J Philip Nicotine dispensing device and method for the manufacture thereof
US4793365A (en) 1984-09-14 1988-12-27 R. J. Reynolds Tobacco Company Smoking article
US5042509A (en) 1984-09-14 1991-08-27 R. J. Reynolds Tobacco Company Method for making aerosol generating cartridge
WO1986001730A1 (en) 1984-09-18 1986-03-27 Vortran Corporation Aerosol producing device
SE8405479D0 (en) 1984-11-01 1984-11-01 Nilsson Sven Erik WANT TO ADMINISTER VOCABULARY, PHYSIOLOGY, ACTIVE SUBJECTS AND DEVICE FOR THIS
FR2573985B1 (en) 1984-11-30 1989-03-17 Diffusion Tech Fse IMPROVED NEBULIZER APPARATUS FOR THE DELIVERY OF MEDICATED AEROSOLS
US5119834A (en) 1985-04-15 1992-06-09 R. J. Reynolds Tobacco Company Smoking article with improved substrate
US5105831A (en) 1985-10-23 1992-04-21 R. J. Reynolds Tobacco Company Smoking article with conductive aerosol chamber
US4771795A (en) 1986-05-15 1988-09-20 R. J. Reynolds Tobacco Company Smoking article with dual burn rate fuel element
US4917120A (en) 1986-05-21 1990-04-17 Advanced Tobacco Products, Inc. Nicotine impact modification
US4827950A (en) 1986-07-28 1989-05-09 R. J. Reynolds Tobacco Company Method for modifying a substrate material for use with smoking articles and product produced thereby
FR2604093B1 (en) 1986-09-19 1996-10-25 Massart Herve AEROSOL GENERATING DEVICE FOR MEDICAL USE
US4746067A (en) 1986-11-07 1988-05-24 Svoboda Steven A Liquid atomizing device and method
IE873108L (en) 1986-12-12 1988-06-12 Huels Chemische Werke Ag Impact modifying agent for use with smoking articles
US4765348A (en) 1986-12-12 1988-08-23 Brown & Williamson Tobacco Corporation Non-combustible simulated cigarette device
JPS63153666A (en) 1986-12-17 1988-06-27 Morita Mfg Co Ltd Medical total processing system utilizing computer
US4819665A (en) 1987-01-23 1989-04-11 R. J. Reynolds Tobacco Company Aerosol delivery article
US4924883A (en) 1987-03-06 1990-05-15 R. J. Reynolds Tobacco Company Smoking article
US5019122A (en) 1987-08-21 1991-05-28 R. J. Reynolds Tobacco Company Smoking article with an enclosed heat conductive capsule containing an aerosol forming substance
FR2620055B1 (en) 1987-09-03 1991-05-10 Atochem CHEMICAL PROCESS OF DESTRUCTION OF HALOGENATED ORGANIC PRODUCTS
JP2846637B2 (en) 1988-01-26 1999-01-13 日本たばこ産業株式会社 Aroma inhalation article
EP0363494B1 (en) 1988-03-18 1994-02-16 Nissin Food Products Co., Ltd. Heat-generating member
JPH01166953U (en) 1988-05-13 1989-11-22
US4979521A (en) 1988-07-19 1990-12-25 R. J. Reynolds Tobacco Company Process for manufacturing cigarette rods
US4991606A (en) 1988-07-22 1991-02-12 Philip Morris Incorporated Smoking article
US5345951A (en) 1988-07-22 1994-09-13 Philip Morris Incorporated Smoking article
US5159940A (en) 1988-07-22 1992-11-03 Philip Morris Incorporated Smoking article
GB8819291D0 (en) 1988-08-12 1988-09-14 British American Tobacco Co Improvements relating to smoking articles
US4947874A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Smoking articles utilizing electrical energy
JPH0292986A (en) 1988-09-30 1990-04-03 Kubota Ltd Heat accumulating composition
US4955399A (en) 1988-11-30 1990-09-11 R. J. Reynolds Tobacco Company Smoking article
US4913168A (en) 1988-11-30 1990-04-03 R. J. Reynolds Tobacco Company Flavor delivery article
US4917119A (en) 1988-11-30 1990-04-17 R. J. Reynolds Tobacco Company Drug delivery article
US5040552A (en) 1988-12-08 1991-08-20 Philip Morris Incorporated Metal carbide heat source
DE3915500A1 (en) 1989-05-12 1990-11-15 Wilhelm Guenter Aug Schumacher DEVICE FOR GENERATING AEROSOLS FOR INHALATION TREATMENT OF PEOPLE IN AN INHALATION NEXT SPACE
JPH034479A (en) * 1989-05-31 1991-01-10 Sony Corp Container for electromagnetic cooker
US4938236A (en) 1989-09-18 1990-07-03 R. J. Reynolds Tobacco Company Tobacco smoking article
US4941483A (en) 1989-09-18 1990-07-17 R. J. Reynolds Tobacco Company Aerosol delivery article
US4987291A (en) * 1989-11-15 1991-01-22 Metcal, Inc. Heater straps
US5188130A (en) 1989-11-29 1993-02-23 Philip Morris, Incorporated Chemical heat source comprising metal nitride, metal oxide and carbon
US5093894A (en) 1989-12-01 1992-03-03 Philip Morris Incorporated Electrically-powered linear heating element
US5269327A (en) 1989-12-01 1993-12-14 Philip Morris Incorporated Electrical smoking article
US5224498A (en) 1989-12-01 1993-07-06 Philip Morris Incorporated Electrically-powered heating element
US5144962A (en) 1989-12-01 1992-09-08 Philip Morris Incorporated Flavor-delivery article
US5408574A (en) 1989-12-01 1995-04-18 Philip Morris Incorporated Flat ceramic heater having discrete heating zones
US5060671A (en) 1989-12-01 1991-10-29 Philip Morris Incorporated Flavor generating article
US5099861A (en) 1990-02-27 1992-03-31 R. J. Reynolds Tobacco Company Aerosol delivery article
US5502743A (en) 1990-03-05 1996-03-26 Comalco Aluminium Limited High temperature furnace
FR2661849B1 (en) 1990-05-10 1995-03-17 Siderurgie Fse Inst Rech METHOD AND DEVICES FOR INDUCTION HEATING OF A METALLURGICAL PRODUCT IN AN ELONGATE SHAPE.
US5167242A (en) 1990-06-08 1992-12-01 Kabi Pharmacia Aktiebolaq Nicotine-impermeable container and method of fabricating the same
WO1993002729A1 (en) 1990-07-12 1993-02-18 Habley Medical Technology Corporation Super atomizing nonchlorinated fluorocarbon medication inhaler
US5080115A (en) 1990-07-19 1992-01-14 Brown & Williamson Tobacco Corporation Simulated smoking article
US5415186A (en) 1990-08-15 1995-05-16 R. J. Reynolds Tobacco Company Substrates material for smoking articles
US5396911A (en) 1990-08-15 1995-03-14 R. J. Reynolds Tobacco Company Substrate material for smoking articles
US5060667A (en) 1990-08-16 1991-10-29 Brown & Williamson Tobacco Corporation Smoking article
US5097850A (en) 1990-10-17 1992-03-24 Philip Morris Incorporated Reflector sleeve for flavor generating article
DE69104956T2 (en) 1990-11-10 1995-03-09 Dowa Iron Powder Co Ltd An exothermic composition and can containing this composition.
US5095921A (en) 1990-11-19 1992-03-17 Philip Morris Incorporated Flavor generating article
US5179966A (en) 1990-11-19 1993-01-19 Philip Morris Incorporated Flavor generating article
US5272216A (en) * 1990-12-28 1993-12-21 Westinghouse Electric Corp. System and method for remotely heating a polymeric material to a selected temperature
DE4105370A1 (en) 1991-02-21 1992-08-27 Draegerwerk Ag Storage vessel for diluent for anaesthetic - utilises latent heat of wax to maintain diluent at constant temp.
US5665262A (en) 1991-03-11 1997-09-09 Philip Morris Incorporated Tubular heater for use in an electrical smoking article
US5591368A (en) 1991-03-11 1997-01-07 Philip Morris Incorporated Heater for use in an electrical smoking system
US5249586A (en) 1991-03-11 1993-10-05 Philip Morris Incorporated Electrical smoking
US5505214A (en) 1991-03-11 1996-04-09 Philip Morris Incorporated Electrical smoking article and method for making same
US5726421A (en) 1991-03-11 1998-03-10 Philip Morris Incorporated Protective and cigarette ejection system for an electrical smoking system
ES2072093T3 (en) 1991-03-11 1995-07-01 Philip Morris Prod AROMA GENERATION ARTICLE.
AU656556B2 (en) 1991-03-13 1995-02-09 Minnesota Mining And Manufacturing Company Radio frequency induction heatable compositions
US5146934A (en) 1991-05-13 1992-09-15 Philip Morris Incorporated Composite heat source comprising metal carbide, metal nitride and metal
US5261424A (en) 1991-05-31 1993-11-16 Philip Morris Incorporated Control device for flavor-generating article
CA2069687A1 (en) 1991-06-28 1992-12-29 Chandra Kumar Banerjee Tobacco smoking article with electrochemical heat source
US5235992A (en) 1991-06-28 1993-08-17 R. J. Reynolds Tobacco Company Processes for producing flavor substances from tobacco and smoking articles made therewith
US5285798A (en) 1991-06-28 1994-02-15 R. J. Reynolds Tobacco Company Tobacco smoking article with electrochemical heat source
US5500511A (en) 1991-10-18 1996-03-19 The Boeing Company Tailored susceptors for induction welding of thermoplastic
EP0540774B1 (en) 1991-11-07 1995-05-03 PAUL RITZAU PARI-WERK GmbH Fluid atomizing device
DK0540775T3 (en) 1991-11-07 1997-08-25 Ritzau Pari Werk Gmbh Paul Especially for use in inhalation therapy apparatus
US5293883A (en) 1992-05-04 1994-03-15 Edwards Patrica T Non-combustible anti-smoking device with nicotine impregnated mouthpiece
DE4225928A1 (en) 1992-08-05 1994-02-10 Ritzau Pari Werk Gmbh Paul Atomizer device with heating device
US5322075A (en) 1992-09-10 1994-06-21 Philip Morris Incorporated Heater for an electric flavor-generating article
US5613505A (en) 1992-09-11 1997-03-25 Philip Morris Incorporated Inductive heating systems for smoking articles
US5692525A (en) 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5666976A (en) 1992-09-11 1997-09-16 Philip Morris Incorporated Cigarette and method of manufacturing cigarette for electrical smoking system
US5369723A (en) 1992-09-11 1994-11-29 Philip Morris Incorporated Tobacco flavor unit for electrical smoking article comprising fibrous mat
US5498850A (en) 1992-09-11 1996-03-12 Philip Morris Incorporated Semiconductor electrical heater and method for making same
US5345955A (en) 1992-09-17 1994-09-13 R. J. Reynolds Tobacco Company Composite fuel element for smoking articles
WO1994009842A1 (en) 1992-10-28 1994-05-11 Rosen Charles A Method and devices for delivering drugs by inhalation
US5327915A (en) 1992-11-13 1994-07-12 Brown & Williamson Tobacco Corp. Smoking article
FR2700697B1 (en) 1993-01-27 1997-01-24 Fact Anal Scp ELECTRIC POCKET INHALER.
US5441060A (en) 1993-02-08 1995-08-15 Duke University Dry powder delivery system
DE4307144C2 (en) 1993-03-06 1995-01-19 Gundrum Edwin Dipl Ing Fh Process for filling heat storage bags
US5378879A (en) 1993-04-20 1995-01-03 Raychem Corporation Induction heating of loaded materials
US5549906A (en) 1993-07-26 1996-08-27 Pharmacia Ab Nicotine lozenge and therapeutic method for smoking cessation
EP0653218B1 (en) 1993-11-15 1998-09-23 PARI GmbH Spezialisten für effektive Inhalation Atomizer device
DE4343578C2 (en) 1993-12-21 1997-07-17 Rettenmaier Horst Dr Device for inductive heating of electrically conductive workpieces
US5534020A (en) 1994-01-24 1996-07-09 Cheney, Iii; Henry H. Instant reusable compress
SG44831A1 (en) 1994-01-26 1997-12-19 Japan Tobacco Inc Flavor-tasting article
US5845649A (en) 1994-01-26 1998-12-08 Japan Tobacco Inc. Flavor-tasting article
SE502503C2 (en) 1994-03-18 1995-10-30 Aga Ab Apparatus for the preparation of non-homogeneous aerosol and use of the apparatus
DE4420366A1 (en) 1994-06-09 1995-12-14 Schatz Thermo System Gmbh Method of manufacturing thin=walled flat membrane closed containers for latent heat storage
US5517981A (en) 1994-06-21 1996-05-21 The United States Of America As Represented By The Secretary Of The Army Water-activated chemical heater with suppressed hydrogen
JP3347886B2 (en) 1994-08-05 2002-11-20 アピックヤマダ株式会社 External lead bending equipment
US5454363A (en) 1994-10-14 1995-10-03 Japan As Represented By Director General Of Agency Of Industrial Science And Technology High-temperature exothermic device
US6000394A (en) 1994-10-26 1999-12-14 Paul Rizau Pari-Werk Gmbh Generation of an aerosol of an exact dose
DE4438292C2 (en) 1994-10-26 1999-07-22 Pari Gmbh Dose-accurate aerosol generation for inhalation therapy
GB9422821D0 (en) 1994-11-11 1995-01-04 Aid Medic Ltd Atomizer
EP0713655A3 (en) 1994-11-23 1997-08-13 Reynolds Tobacco Co R Cigarette substitute article and method of making the same
FR2730166B1 (en) 1995-02-08 1997-10-31 Stas Sa AEROSOL GENERATOR WITH MEANS OF STERILIZATION
US5474059A (en) 1995-04-08 1995-12-12 Cooper; Guy F. Aerosol dispensing apparatus for dispensing a medicated vapor into the lungs of a patient
US5483953A (en) 1995-04-08 1996-01-16 The United States Of America As Represented By The Secretary Of The Navy Aerosol dispensing apparatus for dispensing a medicated vapor into the lungs of a patient
CA2146954C (en) 1995-04-12 2008-06-17 Arthur Slutsky Breath activated nicotine inhalers
AR002035A1 (en) 1995-04-20 1998-01-07 Philip Morris Prod A CIGARETTE, A CIGARETTE AND LIGHTER ADAPTED TO COOPERATE WITH THEMSELVES, A METHOD TO IMPROVE THE DELIVERY OF A SPRAY OF A CIGARETTE, A CONTINUOUS MATERIAL OF TOBACCO, A WORKING CIGARETTE, A MANUFACTURING MANUFACTURING METHOD , A METHOD FOR FORMING A HEATER AND AN ELECTRICAL SYSTEM FOR SMOKING
US5736110A (en) 1995-05-16 1998-04-07 Angelillo; Stephen P. Activator for initiating crystallization of a supersaturated solution
DE29509286U1 (en) 1995-06-06 1995-08-24 Medanz Starnberg Gmbh Device for atomizing fluids
DE19520622C2 (en) 1995-06-06 2003-05-15 Pari Gmbh Device for atomizing fluids
US5645749A (en) 1995-08-04 1997-07-08 Wang; Charles Heat pack capable of being recharged by microwave energy
US5649554A (en) 1995-10-16 1997-07-22 Philip Morris Incorporated Electrical lighter with a rotatable tobacco supply
TW317509B (en) 1995-10-31 1997-10-11 Sanyo Electric Co
US5564442A (en) 1995-11-22 1996-10-15 Angus Collingwood MacDonald Battery powered nicotine vaporizer
DE19600123A1 (en) 1996-01-04 1997-07-10 Pfeiffer Erich Gmbh & Co Kg Discharge head for media, especially for drug treatment of the throat
US5823179A (en) 1996-02-13 1998-10-20 1263152 Ontario Inc. Nebulizer apparatus and method
EP0857431B1 (en) 1996-06-17 2003-03-12 Japan Tobacco Inc. Flavor generating product and flavor generating tool
US6089857A (en) 1996-06-21 2000-07-18 Japan Tobacco, Inc. Heater for generating flavor and flavor generation appliance
WO1997048496A1 (en) 1996-06-21 1997-12-24 Hughes Technology Group L.L.C. Micro-atomizing device
US5935486A (en) 1996-08-02 1999-08-10 Tda Research, Inc. Portable heat source
IT1289590B1 (en) 1996-08-19 1998-10-15 Guido Belli DEVICE FOR THE DELIVERY OF NEBULIZED SUBSTANCES TO INDUCE ABUSE FROM DRUGS AND IN PARTICULAR FROM SMOKING AND TO TREAT
SE9603804D0 (en) 1996-10-16 1996-10-16 Aga Ab Method and apparatus for producing a atomized aerosol
US5878752A (en) 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
DE29700307U1 (en) 1997-01-10 1997-04-17 Hartung Harald Atomizers for medical purposes
GB2321419B (en) 1997-01-27 2001-02-07 Medic Aid Ltd Atomizer
AU5881498A (en) 1997-02-17 1998-09-08 Chugai Seiyaku Kabushiki Kaisha Heat-generating agent for heating fumigant
US6634417B1 (en) 1997-04-07 2003-10-21 J. Bruce Kolowich Thermal receptacle with phase change material
US5865186A (en) 1997-05-21 1999-02-02 Volsey, Ii; Jack J Simulated heated cigarette
US20090127253A1 (en) 1997-06-06 2009-05-21 Philip Stark Temperature-controlled induction heating of polymeric materials
EP0884928B1 (en) 1997-06-11 2007-03-28 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus for fluids
US5921233A (en) 1997-09-04 1999-07-13 Pincgold Llc Liquid dispenser assembly particularly for medical applications
DE19740673C2 (en) 1997-09-16 2001-10-31 Krupp Uhde Gmbh Electrolysis apparatus
US5902501A (en) 1997-10-20 1999-05-11 Philip Morris Incorporated Lighter actuation system
JPH11178562A (en) 1997-12-19 1999-07-06 Japan Tobacco Inc Noncombustible-type flavor-emissive article
US7335186B2 (en) 1998-03-13 2008-02-26 Alexander George Brian O'Neil Patient controlled drug delivery device
US6113078A (en) 1998-03-18 2000-09-05 Lytesyde, Llc Fluid processing method
JP3053426U (en) 1998-04-21 1998-10-27 ジン キム,ドゥー Pack with vents formed
US6164287A (en) 1998-06-10 2000-12-26 R. J. Reynolds Tobacco Company Smoking method
US6209457B1 (en) 1998-08-13 2001-04-03 Technology Commercialization Corp. Method and preformed composition for controlled localized heating of a base material using an exothermic reaction
JP2000082576A (en) * 1998-09-08 2000-03-21 Matsushita Graphic Communication Systems Inc Manufacture of pipe for induction heating
JP2000093155A (en) 1998-09-28 2000-04-04 Kenichi Mori Vessel filled with palatable substance
DE19845487C2 (en) 1998-10-02 2000-08-03 Pari Gmbh Device and method for dose-specific aerosol generation for inhalation purposes
DE19854012C2 (en) 1998-11-12 2001-05-10 Reemtsma H F & Ph Inhalable aerosol delivery system
DE19854007C2 (en) 1998-11-12 2001-05-17 Reemtsma H F & Ph Inhalable aerosol delivery system
DE19854005C2 (en) 1998-11-12 2001-05-17 Reemtsma H F & Ph Inhalable aerosol delivery system
DE19854009C2 (en) 1998-11-12 2001-04-26 Reemtsma H F & Ph Inhalable aerosol delivery system
KR200178505Y1 (en) 1998-11-19 2000-04-15 백창평 Heat pack
US20050196345A1 (en) 1999-02-03 2005-09-08 Max-Delbruck-Centrum Fur Molekulare Medizin Compressed air inhaler for pulmonary application of liposomal powder aerosols and powder aerosols
DE10004860A1 (en) 1999-02-03 2000-10-05 Max Delbrueck Centrum Pressurized air inhaler for administering drug-containing liposomal powder aerosol for treatment of respiratory disease, has nebulization chamber for drying aqueous liposome suspension
US6708846B1 (en) 1999-02-14 2004-03-23 Ing. Erich Pfeiffer Gmbh Dispenser for flowable media
US6053176A (en) 1999-02-23 2000-04-25 Philip Morris Incorporated Heater and method for efficiently generating an aerosol from an indexing substrate
EP1702639B1 (en) 1999-05-28 2009-02-18 Nektar Therapeutics Apparatus for dispensing metered amount of aerosolized medication
US6230703B1 (en) 1999-06-02 2001-05-15 Michael Bono Aerosol inhalation device providing improved aerosol delivery
US20060169800A1 (en) 1999-06-11 2006-08-03 Aradigm Corporation Aerosol created by directed flow of fluids and devices and methods for producing same
US6289889B1 (en) 1999-07-12 2001-09-18 Tda Research, Inc. Self-heating flexible package
DE19944211A1 (en) 1999-09-15 2001-03-22 Pfeiffer Erich Gmbh & Co Kg Device for the optionally atomized application of an in particular liquid medium
US6079405A (en) 1999-11-30 2000-06-27 Justo; Jose A. Container with in situ dual food product mixing and heating
DE29921341U1 (en) 1999-12-03 2000-02-17 Schlesiger Axel Heating pad
US6439838B1 (en) 1999-12-18 2002-08-27 General Electric Company Periodic stator airfoils
KR200187589Y1 (en) 2000-02-01 2000-07-15 양용성 Portable bag warmer
US6283116B1 (en) 2000-02-10 2001-09-04 Yong Sung Yang Trigger for a portable heat pack
DE10007521A1 (en) 2000-02-18 2001-08-23 Goldemann Raul The atomizer unit comprises a storage container which holds a medium to be atomized and is hermetically sealed from the surrounding air by means of a slidable piston element
US6267110B1 (en) 2000-02-25 2001-07-31 Convenience Heating Technologies Ltd. Disposable heating unit for food containers
CA2414166A1 (en) 2000-07-13 2002-01-24 The Procter & Gamble Company Multi-layer reaction mixtures and apparatuses for delivering a volatile component via a controlled exothermic reaction
AU2001213246A1 (en) 2000-07-13 2002-01-30 The Procter And Gamble Company Methods and apparatuses for delivering a volatile component via a controlled exothermic reaction
US20030101984A1 (en) 2000-07-13 2003-06-05 The Procter & Gamble Company Methods and reaction mixtures for controlling exothermic reactions
US7235187B2 (en) 2000-07-13 2007-06-26 The Procter & Gamble Company Methods and apparatuses for delivering a volatile component via a controlled exothermic reaction
ES2272307T3 (en) 2000-07-13 2007-05-01 THE PROCTER &amp; GAMBLE COMPANY METHODS AND REACTION MIXTURES TO CONTROL EXOTHERMAL REACTIONS.
US7081211B2 (en) 2000-07-13 2006-07-25 The Procter & Gamble Company Multi-layer reaction mixtures and apparatuses for delivering a volatile component via a controlled exothermic reaction
US20040065314A1 (en) 2000-07-20 2004-04-08 Layer James H. Apparatus, systems, and methods for warming materials
US20020043260A1 (en) 2000-07-20 2002-04-18 Layer James H. Apparatus, systems, and methods for warming materials
EP1409051A2 (en) 2000-09-20 2004-04-21 Franco Del Bon Inhalator and pertaining atomizer
JP3652239B2 (en) 2000-12-04 2005-05-25 第一高周波工業株式会社 Induction heating power supply
FR2818152A1 (en) 2000-12-14 2002-06-21 Alain Alexandre Netter Scent inhaler with scent capsule has tube to pierce scent capsule and chemical heat source to activate scent
EP1217320A3 (en) 2000-12-22 2003-12-03 Yong Sung Yang Trigger for a portable heat pack
US6681998B2 (en) 2000-12-22 2004-01-27 Chrysalis Technologies Incorporated Aerosol generator having inductive heater and method of use thereof
US7077130B2 (en) 2000-12-22 2006-07-18 Chrysalis Technologies Incorporated Disposable inhaler system
US6799572B2 (en) 2000-12-22 2004-10-05 Chrysalis Technologies Incorporated Disposable aerosol generator system and methods for administering the aerosol
JP2002253593A (en) 2001-03-01 2002-09-10 Motochi Kenkyusho:Kk Heating element and its producing method
US20020121624A1 (en) 2001-03-01 2002-09-05 Akio Usui Flowing exothermic composition, heater element using the same and process for manufacturing the same
JP2002336290A (en) 2001-05-21 2002-11-26 Motochi Kenkyusho:Kk Fluid exothermic composition and heating element using it
IL157302A0 (en) 2001-03-02 2004-02-19 Smithkline Beecham Corp Method and apparatus to stress test medicament inhalation aerosol device by inductive heating
US20080038363A1 (en) 2001-05-24 2008-02-14 Zaffaroni Alejandro C Aerosol delivery system and uses thereof
US7458374B2 (en) 2002-05-13 2008-12-02 Alexza Pharmaceuticals, Inc. Method and apparatus for vaporizing a compound
US7766013B2 (en) 2001-06-05 2010-08-03 Alexza Pharmaceuticals, Inc. Aerosol generating method and device
US7585493B2 (en) 2001-05-24 2009-09-08 Alexza Pharmaceuticals, Inc. Thin-film drug delivery article and method of use
US7645442B2 (en) 2001-05-24 2010-01-12 Alexza Pharmaceuticals, Inc. Rapid-heating drug delivery article and method of use
WO2002096532A1 (en) 2001-05-31 2002-12-05 The Procter & Gamble Company Trigger mechanism for initiating a phase change in a variable liquid element
US7132084B1 (en) 2001-06-07 2006-11-07 Pende, Inc. Candle warmer
JP2003034785A (en) 2001-07-24 2003-02-07 Sumitomo Chem Co Ltd Method for manufacturing thermal storage medium
US7041123B2 (en) 2001-08-09 2006-05-09 Arizant Technologies Llc Warming pack with temperature uniformity and temperature stabilization
DE10146815B4 (en) 2001-09-18 2005-05-04 Ing. Erich Pfeiffer Gmbh Donor for media
US6598607B2 (en) 2001-10-24 2003-07-29 Brown & Williamson Tobacco Corporation Non-combustible smoking device and fuel element
GB0126150D0 (en) 2001-10-31 2002-01-02 Gw Pharma Ltd A device method and resistive element for vaporising a substance
US20030106551A1 (en) 2001-12-06 2003-06-12 Sprinkel F. Murphy Resistive heater formed inside a fluid passage of a fluid vaporizing device
GB0130627D0 (en) 2001-12-21 2002-02-06 British American Tobacco Co Improvements relating to smokable filler materials
DE10164587B4 (en) 2001-12-21 2004-06-03 Opticon Gesellschaft für Optik und Elektronik mit beschränkter Haftung Device for evaporating fragrances
US20030159702A1 (en) 2002-01-21 2003-08-28 Lindell Katarina E.A. Formulation and use manufacture thereof
US7434584B2 (en) 2002-03-22 2008-10-14 Vaporgenie, Llc Vaporization pipe with flame filter
FR2837830B1 (en) 2002-04-02 2004-05-21 Rhodia Cons Spec Ltd SELF-HEATING COMPOSITION BASED ON ORTHOPHOSPHORIC ACID IMPREGNATED ON A LARGE POROSITY MINERAL OXIDE, PREPARATION METHOD AND USE THEREOF
GB0209316D0 (en) 2002-04-24 2002-06-05 Relco Uk Ltd Cutting device
GB2388040B (en) 2002-05-02 2005-12-14 Robert Jeremy West Nicotine inhalation device
US6761164B2 (en) 2002-05-23 2004-07-13 Shahin Amirpour Herbal vaporizer
US6803545B2 (en) 2002-06-05 2004-10-12 Philip Morris Incorporated Electrically heated smoking system and methods for supplying electrical power from a lithium ion power source
US6734405B2 (en) 2002-06-12 2004-05-11 Steris Inc. Vaporizer using electrical induction to produce heat
US6769436B2 (en) 2002-06-28 2004-08-03 Richard C. Horian Volatile inhaler and method
FR2842791B1 (en) 2002-07-26 2005-04-01 FLUID PRODUCT TANK AND FLUID PRODUCT DISPENSING DEVICE HAVING SUCH A TANK
US6994096B2 (en) 2003-01-30 2006-02-07 Philip Morris Usa Inc. Flow distributor of an electrically heated cigarette smoking system
US6803550B2 (en) 2003-01-30 2004-10-12 Philip Morris Usa Inc. Inductive cleaning system for removing condensates from electronic smoking systems
US7185659B2 (en) 2003-01-31 2007-03-06 Philip Morris Usa Inc. Inductive heating magnetic structure for removing condensates from electrical smoking device
GB0305104D0 (en) 2003-03-06 2003-04-09 Relco Uk Ltd Sealing Arrangement
US20060191546A1 (en) 2003-04-01 2006-08-31 Shusei Takano Nicotine suction pipe and nicotine holder
CN100381083C (en) 2003-04-29 2008-04-16 韩力 Electronic nonflammable spraying cigarette
DE10321379A1 (en) 2003-05-12 2004-12-30 Nicstic Ag Smokeless Cigarette
ITTO20030372A1 (en) 2003-05-20 2004-11-21 Fiat Ricerche DISPOSABLE CARTRIDGE FOR THE MIXING OF REACTION SUBSTANCES
EP1625334B9 (en) 2003-05-21 2012-07-25 Alexza Pharmaceuticals, Inc. Percussively ignited self-contained heating unit
US7290549B2 (en) 2003-07-22 2007-11-06 R. J. Reynolds Tobacco Company Chemical heat source for use in smoking articles
JP2005050624A (en) 2003-07-31 2005-02-24 Harison Toshiba Lighting Corp Induction heating device, fixing device, and image forming device
EP1506792A3 (en) 2003-08-14 2006-06-07 Nathaniel Hughes Liquid medicament delivery system
US7234470B2 (en) 2003-08-28 2007-06-26 Philip Morris Usa Inc. Electromagnetic mechanism for positioning heater blades of an electrically heated cigarette smoking system
GB0405477D0 (en) 2004-03-11 2004-04-21 Glaxo Group Ltd A fluid dispensing device
DE102004009434A1 (en) 2004-02-24 2005-12-15 Boehringer Ingelheim International Gmbh atomizer
US20060162344A1 (en) 2004-03-15 2006-07-27 Ontech Delaware Inc. Container with module for heating or cooling the contents
GB2412326A (en) 2004-03-26 2005-09-28 Bespak Plc Hand-held dispenser
GB2412876A (en) 2004-04-08 2005-10-12 Gasflow Services Ltd Nicotine inhaler with airflow regulator
JP4940132B2 (en) 2004-04-21 2012-05-30 インダクトヒート インコーポレイテッド Multi-frequency heat treatment of processed products by induction heating
US20050236006A1 (en) 2004-04-24 2005-10-27 Anderson Cowan Smoking cessation devices, methods of use and methods of conducting business therewith
US7540286B2 (en) 2004-06-03 2009-06-02 Alexza Pharmaceuticals, Inc. Multiple dose condensation aerosol devices and methods of forming condensation aerosols
FR2873584B1 (en) 2004-08-02 2006-11-17 Jean Jacques Hubinois TOBACCO WEANING SYSTEM
US20100006092A1 (en) 2004-08-12 2010-01-14 Alexza Pharmaceuticals, Inc. Aerosol Drug Delivery Device Incorporating Percussively Activated Heat Packages
AU2004322756B2 (en) 2004-08-12 2011-04-14 Alexza Pharmaceuticals, Inc. Aerosol drug delivery device incorporating percussively activated heat packages
JP4922934B2 (en) 2004-08-12 2012-04-25 アレックザ ファーマシューティカルズ, インコーポレイテッド Aerosol drug delivery device incorporating impact-activated heat package
US20060043067A1 (en) 2004-08-26 2006-03-02 Lam Research Corporation Yttria insulator ring for use inside a plasma chamber
US20060102175A1 (en) 2004-11-18 2006-05-18 Nelson Stephen G Inhaler
JP2008520292A (en) 2004-11-22 2008-06-19 ベルナー,ヨハネス Disposable inhaler
DE102005024803A1 (en) 2004-12-17 2006-06-29 Müller, Bernd, Dipl.-Ing. (FH) Heat storing bag, useful in heat storing devices and boilers, comprises a flexible covering having a filling (made of heat storing material e.g. paraffin) in a liquid condition
US20060137681A1 (en) 2004-12-28 2006-06-29 Ric Investments, Llc. Actuator for a metered dose inhaler
CA2492255A1 (en) 2005-01-11 2006-07-11 Ursapharm Arzneimittel Gmbh & Co. Kg Fluid dispenser
DE102005005175A1 (en) 2005-02-01 2006-08-10 Reemtsma Cigarettenfabriken Gmbh Filter cigarette
EA201000473A1 (en) 2005-02-02 2010-12-30 Оглсби Энд Батлер Рисерч Энд Девелопмент Лимитед DEVICE FOR EVAPORATION OF EVAPORABLE SUBSTANCE
US7766900B2 (en) 2005-02-21 2010-08-03 Biomet Manufacturing Corp. Method and apparatus for application of a fluid
CH698603B1 (en) 2005-04-29 2009-09-15 Burger Soehne Man Ag Portable inhaler especially for nicotine has micro plate heater fed by capillary from integral reservoir
DE102005024779B4 (en) 2005-05-31 2008-02-21 Pari GmbH Spezialisten für effektive Inhalation Breath-controlled inhalation therapy device
US9675109B2 (en) 2005-07-19 2017-06-13 J. T. International Sa Method and system for vaporization of a substance
US20070074734A1 (en) 2005-09-30 2007-04-05 Philip Morris Usa Inc. Smokeless cigarette system
US20070102013A1 (en) 2005-09-30 2007-05-10 Philip Morris Usa Inc. Electrical smoking system
US7712472B2 (en) 2005-10-28 2010-05-11 National Honey Almond/Nha, Inc. Smoking article with removably secured additional wrapper and packaging for smoking article
DE102005054255A1 (en) 2005-11-11 2007-05-24 Hauni Maschinenbau Ag Smoke-free cigarette
US8001959B2 (en) 2005-11-14 2011-08-23 Heat Wave Technologies, Llc Self-heating container
SE0502503L (en) 2005-11-15 2006-10-17 Scania Cv Abp A method for the purification of crankcase gases and an internal combustion engine
DE102005056885A1 (en) 2005-11-28 2007-05-31 Schöpflin, Andrea Mobile oxygen-liquid atomizer for administering an active ingredient to a person comprises a cartridge for administering oxygen and a further substance such as vitamins, minerals, amino acids or medicines as an aerosol
US20070289720A1 (en) 2005-12-13 2007-12-20 University Of South Florida Self-Heating Chemical System for Sustained Modulation of Temperature
WO2007078273A1 (en) 2005-12-22 2007-07-12 Augite Incorporation No-tar electronic smoking utensils
US7832397B2 (en) 2005-12-28 2010-11-16 Philip Morris Usa Inc. Aerosol powder delivery device
FR2895644B1 (en) 2006-01-03 2008-05-16 Didier Gerard Martzel SUBSTITUTE OF CIGARETTE
DE102006041544A1 (en) 2006-01-27 2007-08-09 Werner, Johannes One-way inhalator for inhaling e.g. medical substances, has rod-shaped, air-permeable combustion body made of metal foil, where active substances are conveyed by heating with hot air or with aerosol in gaseous aggregate condition
DE202006001663U1 (en) 2006-02-03 2006-04-27 Kieslich, Dirk Smoke-free cigarette with nicotine and flavor cushions but without harmful combustion substances and side effects
WO2007098337A2 (en) 2006-02-17 2007-08-30 Jake Brenneise Portable vaporizing device and method for inhalation and/or aromatherapy without combustion
US9220301B2 (en) 2006-03-16 2015-12-29 R.J. Reynolds Tobacco Company Smoking article
US8580171B2 (en) 2006-03-24 2013-11-12 Sgl Carbon Ag Process for manufacture of a latent heat storage device
US8925556B2 (en) 2006-03-31 2015-01-06 Philip Morris Usa Inc. Banded papers, smoking articles and methods
UA92214C2 (en) 2006-03-31 2010-10-11 Филип Моррис Продактс С.А. Filter element, a cigarette, comprising thereof, and a method for making the filter element
JP5155524B2 (en) 2006-04-04 2013-03-06 小林製薬株式会社 Liquid pharmaceutical preparation for oral administration contained in a container equipped with a discharge device
DE102006022002A1 (en) 2006-05-10 2007-11-15 Boehringer Ingelheim International Gmbh Atomizers and methods for atomizing fluid
CN201067079Y (en) 2006-05-16 2008-06-04 韩力 Simulation aerosol inhaler
EP1867357A1 (en) 2006-06-13 2007-12-19 TrendTech A/S Inhaler
US20080027694A1 (en) 2006-07-12 2008-01-31 Yury Michael Gitman Heartbeat Simulation Method And Apparatus
JP2008035742A (en) 2006-08-03 2008-02-21 British American Tobacco Pacific Corporation Evaporating apparatus
EP1885098B1 (en) 2006-08-04 2011-04-06 Canon Kabushiki Kaisha Communication apparatus and communication control method
DE102006037031A1 (en) 2006-08-08 2008-02-14 Alexander Stirzel Evaporation element for liquids
JP2008043290A (en) 2006-08-21 2008-02-28 Tsukasa Matsumoto Pipe having highly functional texture and pipe cartridge
DE202006013439U1 (en) 2006-09-01 2006-10-26 W + S Wagner + Söhne Mess- und Informationstechnik GmbH & Co.KG Device for generating nicotine aerosol, for use as a cigarette or cigar substitute, comprises mouthpiece, air inlet, nebulizer and a cartridge containing nicotine solution which is punctured by an opener on the nebulizer side
DE102006041042B4 (en) 2006-09-01 2009-06-25 W + S Wagner + Söhne Mess- und Informationstechnik GmbH & Co.KG Device for dispensing a nicotine-containing aerosol
IES20070633A2 (en) 2006-09-05 2008-09-17 Oglesby & Butler Res & Dev Ltd A container comprising vaporisable matter for use in a vaporising device for vaporising a vaporisable constituent thereof
DE102006047146A1 (en) 2006-10-05 2008-04-10 Michael Calefice Smokeless cigarette for inhaling thermally soluble aromatic materials and nicotine, has outer paper sleeve, which is connected with mouth piece
WO2008051909A1 (en) 2006-10-25 2008-05-02 Tempra Technology, Inc. Portable flameless heat pack
WO2008069883A1 (en) 2006-11-06 2008-06-12 Rock Sci Intellectual, L.L.C. Mechanically regulated vaporization pipe
US9061300B2 (en) 2006-12-29 2015-06-23 Philip Morris Usa Inc. Bent capillary tube aerosol generator
WO2008092677A1 (en) 2007-01-31 2008-08-07 Behr Gmbh & Co. Kg Heat exchanger
DE102007011120A1 (en) 2007-03-07 2008-09-11 Bel Air International Corp., Nashville Electrically-rechargeable, smoke-free cigarette, includes sensor measuring airflow, with controller to time and modulate electrical heating which vaporizes nicotine
ES2594867T3 (en) 2007-03-09 2016-12-23 Alexza Pharmaceuticals, Inc. Heating unit for use in a drug delivery device
CN104906669A (en) 2007-03-30 2015-09-16 菲利普莫里斯生产公司 Device and method for delivery of a medicament
GB2448478A (en) 2007-04-20 2008-10-22 Lincoln Augustus George Simpson Device used to heat or cool food or drink by an exothermic or an endothermic reaction
US20080257367A1 (en) 2007-04-23 2008-10-23 Greg Paterno Electronic evaporable substance delivery device and method
EP1989946A1 (en) 2007-05-11 2008-11-12 Rauchless Inc. Smoking device, charging means and method of using it
DE102007026853A1 (en) 2007-06-11 2009-01-08 Bel Air International Corp., West Farmington Nicotine depot, in particular for a smoke-free cigarette, and process for its preparation
TW200848010A (en) 2007-06-15 2008-12-16 Avita Corp Nose vacuum device
JP2010532463A (en) 2007-07-03 2010-10-07 テンプラ テクノロジー,インコーポレーテッド Chemical heating composition and method
US8111331B2 (en) 2007-07-09 2012-02-07 Cisco Technology, Inc. Image resizer and resizing method
CN201199922Y (en) 2007-07-16 2009-03-04 李德红 Electronic cigarette and inducted switch thereof
DE102007034970B4 (en) 2007-07-26 2010-05-12 Zenergy Power Gmbh Method and device for inductive heating of at least one billet
CN201076006Y (en) 2007-08-17 2008-06-25 北京格林世界科技发展有限公司 Electric cigarette
CN100577043C (en) 2007-09-17 2010-01-06 北京格林世界科技发展有限公司 Electronic cigarette
TW200914073A (en) 2007-09-21 2009-04-01 Hsiner Co Ltd Medical atomized apparatus
US8556108B2 (en) 2007-09-26 2013-10-15 Heat Wave Technologies, Llc Self-heating systems and methods for rapidly heating a comestible substance
US20090078711A1 (en) 2007-09-26 2009-03-26 Heat Wave Technologies, Llc Self-heating apparatuses using solid chemical reactants
EP2044967A1 (en) 2007-10-01 2009-04-08 Boehringer Ingelheim Pharma GmbH & Co. KG Atomiser
US20110030671A1 (en) 2007-10-05 2011-02-10 James A. Donovan Heater device
US20090090349A1 (en) 2007-10-05 2009-04-09 Donovan James A Pan in pan heater
US20090090351A1 (en) 2007-10-05 2009-04-09 James A. Donovan Heater device
US9155848B2 (en) 2007-10-15 2015-10-13 Vapir, Inc. Method and system for vaporization of a substance
JP2009106467A (en) 2007-10-30 2009-05-21 Canon Inc Inhaler
EP2213321B1 (en) 2007-11-29 2014-07-23 Japan Tobacco Inc. Aerosol inhaling system
US8991402B2 (en) 2007-12-18 2015-03-31 Pax Labs, Inc. Aerosol devices and methods for inhaling a substance and uses thereof
US20090180968A1 (en) 2008-01-11 2009-07-16 Alexza Pharmaceuticals, Inc. Metal Coordination Complexes Of Volatile Drugs
FI121361B (en) 2008-01-22 2010-10-29 Stagemode Oy Tobacco product and process for its manufacture
AU2008351672B2 (en) 2008-02-29 2012-08-30 Yunqiang Xiu Electronic simulated cigarette and atomizing liquid thereof, smoking set for electronic simulated cigarette and smoking liquid capsule thereof
DE102008013303A1 (en) 2008-03-09 2009-09-10 Purwin, Waldemar Releasing aromates from organic compound, comprises hindering the formation of aromates from the pyrolytic crack products and heating the carbon dioxide by thermal pyrolysis, which releases the aromates and is taken away as a gas current
EP2100525A1 (en) 2008-03-14 2009-09-16 Philip Morris Products S.A. Electrically heated aerosol generating system and method
EP2110033A1 (en) 2008-03-25 2009-10-21 Philip Morris Products S.A. Method for controlling the formation of smoke constituents in an electrical aerosol generating system
US7581718B1 (en) 2008-04-16 2009-09-01 Hsiner Co., Ltd. Atomizer
EP2110034A1 (en) 2008-04-17 2009-10-21 Philip Morris Products S.A. An electrically heated smoking system
US20090280043A1 (en) 2008-05-12 2009-11-12 James A. Donovan Activation device
US20090302019A1 (en) 2008-06-05 2009-12-10 Tim Selenski Apparatus and Method for Vaporizing Volatile Material
CN201213951Y (en) 2008-06-19 2009-04-01 常州市富艾发进出口有限公司 Mouth suction type portable atomization health-care instrument
CN107822204A (en) 2008-06-27 2018-03-23 奥利格股份公司 Smokeless cigarette
DE102008030549A1 (en) 2008-06-27 2009-12-31 Olig Ag Smoke-free cigarette
DE102008030548B4 (en) 2008-06-27 2019-07-04 Olig Ag Smoke-free cigarette
EP2191735B1 (en) 2008-11-28 2011-04-13 Olig AG Smoke-free cigarette
EP2227973B1 (en) 2009-03-12 2016-12-28 Olig AG Smoke-free cigarette
GB0813686D0 (en) 2008-07-25 2008-09-03 Gamucci Ltd A method and apparatus relating to electronic smoking-substitute devices
JP2010041354A (en) 2008-08-05 2010-02-18 Victor Co Of Japan Ltd Moving image coding method, coding device and coding program
TW201010750A (en) 2008-08-11 2010-03-16 Silphion Pty Ltd Inhaler
DE102008038121A1 (en) 2008-08-17 2010-02-18 Purwin, Waldemar Liberating aromatics from organic compounds by chemically exothermic process and pyrolytic processes, involves providing carbonate-salts as carbonate gas sources, which are selected from different granule size distributions
US7834295B2 (en) 2008-09-16 2010-11-16 Alexza Pharmaceuticals, Inc. Printable igniters
US20100065052A1 (en) 2008-09-16 2010-03-18 Alexza Pharmaceuticals, Inc. Heating Units
TW201023769A (en) 2008-10-23 2010-07-01 Japan Tobacco Inc Non-burning type flavor inhalation article
CA2641869A1 (en) 2008-11-06 2010-05-06 Hao Ran Xia Environmental friendly, non-combustible, atomizing electronic cigarette having the function of a cigarette substitute
WO2010053467A1 (en) 2008-11-06 2010-05-14 Donovan Industries, Inc. Heater device
CA2647771A1 (en) 2008-12-23 2010-06-23 Philippe Thiry Cigarette making method and apparatus
EP2201850A1 (en) 2008-12-24 2010-06-30 Philip Morris Products S.A. An article including identification information for use in an electrically heated smoking system
CN201379072Y (en) 2009-02-11 2010-01-13 韩力 Improved atomizing electronic cigarette
UA105038C2 (en) 2009-03-17 2014-04-10 Філіп Морріс Продактс С.А. Tobacco-based nicotine aerosol generation system
ES2674139T5 (en) 2009-03-23 2024-05-08 Japan Tobacco Inc Article for aroma inhalation, non-combustion type
CN101518361B (en) 2009-03-24 2010-10-06 北京格林世界科技发展有限公司 High-simulation electronic cigarette
US9055841B2 (en) 2009-04-07 2015-06-16 Heatgenie, Inc. Package heating apparatus
US20100258585A1 (en) 2009-04-13 2010-10-14 Jamison Tommy L Warming device for heating a cartridge containing a viscous fluid
CN201375023Y (en) 2009-04-15 2010-01-06 中国科学院理化技术研究所 Heating atomizing electronic cigarette using capacitance for supplying power
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
GB2470210B (en) 2009-05-14 2011-07-06 Relco Uk Ltd Apparatus and method for sealing a container
EP2253233A1 (en) 2009-05-21 2010-11-24 Philip Morris Products S.A. An electrically heated smoking system
CN201445686U (en) 2009-06-19 2010-05-05 李文博 High-frequency induction atomizing device
EP2277398A1 (en) 2009-07-22 2011-01-26 Wedegree GmbH Smoke-free cigarette substitute
US8701682B2 (en) 2009-07-30 2014-04-22 Philip Morris Usa Inc. Banded paper, smoking article and method
DE202009010400U1 (en) 2009-07-31 2009-11-12 Asch, Werner, Dipl.-Biol. Control and control of electronic inhalation smoke machines
EP2316286A1 (en) 2009-10-29 2011-05-04 Philip Morris Products S.A. An electrically heated smoking system with improved heater
EP2327318A1 (en) 2009-11-27 2011-06-01 Philip Morris Products S.A. An electrically heated smoking system with internal or external heater
US20100181387A1 (en) 2009-12-01 2010-07-22 Zaffaroni Alejandro C Aerosol delivery system and uses thereof
WO2011088132A1 (en) 2010-01-12 2011-07-21 Sylvan Source, Inc. Heat transfer interface
EP2361516A1 (en) 2010-02-19 2011-08-31 Philip Morris Products S.A. Aerosol-generating substrate for smoking articles
RU94815U1 (en) 2010-03-18 2010-06-10 Евгений Иванович Евсюков ELECTRONIC CIGARETTE
GB201004861D0 (en) 2010-03-23 2010-05-05 Kind Consumer Ltd A simulated cigarette
US20110283458A1 (en) 2010-05-18 2011-11-24 Samuel Mark Gillette Ticking Layers that Reduce Flame Propagation and Upholstered Articles Incorporating Same
JP5459813B2 (en) 2010-07-30 2014-04-02 日本たばこ産業株式会社 Smokeless flavor suction tool
DE202010011436U1 (en) 2010-08-16 2010-11-04 Sungur, Cetin Electric inhaler
WO2012054973A1 (en) 2010-10-27 2012-05-03 Flinders Medical Centre Portable fluid warmer
DE102010053284A1 (en) 2010-12-02 2012-06-06 Zenergy Power Gmbh Method and induction heater for heating a billet
EP2460423A1 (en) 2010-12-03 2012-06-06 Philip Morris Products S.A. An electrically heated aerosol generating system having improved heater control
US20120145189A1 (en) 2010-12-08 2012-06-14 Knopow Jeremy F Portable Self-Heating Steam Generating Device
JP5942206B2 (en) 2010-12-13 2016-06-29 アルトリア クライアント サービシーズ エルエルシー Process for preparing printing solution and process for creating patterned tobacco packaging material
US8928277B2 (en) 2011-01-28 2015-01-06 Kimree Hi-Tech Inc Electronic cigarette and a wireless charging device for the same
KR20130029697A (en) 2011-09-15 2013-03-25 주식회사 에바코 Vaporizing and inhaling apparatus and vaporizing member applied the vaporizing and inhaling apparatus
CN102212340A (en) 2011-04-11 2011-10-12 北京京润宝网络技术有限公司 Sodium acetate trihydrate phase change energy storage material compositions
JP2011135901A (en) 2011-04-13 2011-07-14 Kazuhiko Shimizu Smokeless smoking tool
JP2014518367A (en) 2011-09-06 2014-07-28 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Insulation
US10729176B2 (en) * 2011-09-06 2020-08-04 British American Tobacco (Investments) Limited Heating smokeable material
GB201207054D0 (en) 2011-09-06 2012-06-06 British American Tobacco Co Heating smokeable material
JP6008971B2 (en) 2011-09-20 2016-10-19 アール・ジエイ・レイノルズ・タバコ・カンパニー Segmented smoking product with substrate cavity
GB201116541D0 (en) 2011-09-26 2011-11-09 British American Tobacco Co Smoking articles and methods of manufacturing the same
GB2495923A (en) 2011-10-25 2013-05-01 British American Tobacco Co Flavoured patch for smoking article
JP6050826B2 (en) 2011-11-21 2016-12-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Extractor for aerosol generator
UA112883C2 (en) 2011-12-08 2016-11-10 Філіп Морріс Продактс С.А. DEVICE FOR THE FORMATION OF AEROSOL WITH A CAPILLARY BORDER LAYER
CN202351223U (en) 2011-12-12 2012-07-25 云南烟草科学研究院 Solid-phase extraction column used for measuring benzo[alpha]pyrene in cigarette smoke
US9498588B2 (en) 2011-12-14 2016-11-22 Atmos Nation, LLC Portable pen sized electric herb vaporizer with ceramic heating chamber
CN102499466B (en) 2011-12-24 2013-10-30 华南理工大学 Method for preparing tobacco flavors from tobacco waste
SG11201403623YA (en) 2011-12-30 2014-07-30 Philip Morris Products Sa Aerosol generating device with improved temperature distribution
EP2609820A1 (en) 2011-12-30 2013-07-03 Philip Morris Products S.A. Detection of aerosol-forming substrate in an aerosol generating device
AR089602A1 (en) 2011-12-30 2014-09-03 Philip Morris Products Sa AEROSOL GENERATOR ARTICLE FOR USE WITH AN AEROSOL GENERATOR DEVICE
EP2609821A1 (en) 2011-12-30 2013-07-03 Philip Morris Products S.A. Method and apparatus for cleaning a heating element of aerosol-generating device
JP6227555B2 (en) 2011-12-30 2017-11-08 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Smoking article with front plug and method thereof
JP6227554B2 (en) 2011-12-30 2017-11-08 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Smoking article with front plug and aerosol-forming substrate and method thereof
ES2600458T3 (en) 2012-01-03 2017-02-09 Philip Morris Products S.A. Aerosol generator device and system with improved air flow
SG11201403941VA (en) 2012-01-09 2014-09-26 Philip Morris Products Sa Smoking article with dual function cap
TWI590769B (en) 2012-02-13 2017-07-11 菲利浦莫里斯製品股份有限公司 Smoking article including dual heat-conducting elements and method of adjusting the puff-by-puff aerosol delivery of a smoking article
JP6193363B2 (en) 2012-05-16 2017-09-06 アルトリア クライアント サービシーズ エルエルシー Cigarette wrapper with a band having a band with an open area
CN204292193U (en) * 2012-07-23 2015-04-29 惠州市吉瑞科技有限公司 Electronic cigarette
GB2504732B (en) 2012-08-08 2015-01-14 Reckitt & Colman Overseas Device for evaporating a volatile material
GB201217067D0 (en) * 2012-09-25 2012-11-07 British American Tobacco Co Heating smokable material
JP5751453B2 (en) 2012-10-04 2015-07-22 株式会社デンソー Induction heating device
PL2907397T3 (en) 2012-10-18 2018-04-30 Japan Tobacco, Inc. Non-combustion-type flavor inhaler
WO2014110740A1 (en) 2013-01-16 2014-07-24 Liu Qiuming Electronic cigarette device and electronic cigarette thereof
US20140216482A1 (en) 2013-02-01 2014-08-07 J-Wraps, LLC Ornamental wrap for electronic cigarettes and method for wrapping an electronic cigarette
US9270797B2 (en) 2013-02-27 2016-02-23 Nokia Technologies Oy Reducing inductive heating
GB2515992A (en) 2013-03-22 2015-01-14 British American Tobacco Co Heating smokeable material
CN203369386U (en) 2013-05-23 2014-01-01 红云红河烟草(集团)有限责任公司 Visible heating atomizing type cigarette
US9931705B2 (en) 2013-09-20 2018-04-03 Hakko Corp. Process for fabricating inductive heated solder cartridge
CN103489894B (en) 2013-10-09 2016-08-17 合肥京东方光电科技有限公司 Active matrix organic electroluminescent display device, display device and preparation method thereof
US10189087B2 (en) 2013-10-22 2019-01-29 The Boeing Company Methods of making parts from at least one elemental metal powder
KR101576137B1 (en) 2013-11-08 2015-12-09 주식회사 다원시스 Induction heating soldering device
UA119333C2 (en) 2013-12-05 2019-06-10 Філіп Морріс Продактс С.А. Heated aerosol generating article with thermal spreading wrap
ES2734577T3 (en) 2013-12-05 2019-12-10 Philip Morris Products Sa Article that contains non-tobacco nicotine
CN103689812A (en) 2013-12-30 2014-04-02 深圳市合元科技有限公司 Smoke generator and electronic cigarette with same
CN203762288U (en) 2013-12-30 2014-08-13 深圳市合元科技有限公司 Atomization device applicable to solid tobacco materials and electronic cigarette
AU2015222843B8 (en) 2014-02-28 2019-12-12 Altria Client Services Llc Electronic vaping device and components thereof
US10062492B2 (en) 2014-04-18 2018-08-28 Apple Inc. Induction coil having a conductive winding formed on a surface of a molded substrate
SI3142503T1 (en) 2014-05-12 2019-01-31 Loto Labs, Inc. Improved vaporizer device
TWI660685B (en) 2014-05-21 2019-06-01 瑞士商菲利浦莫里斯製品股份有限公司 Electrically heated aerosol-generating system and cartridge for use in such a system
TWI664918B (en) * 2014-05-21 2019-07-11 瑞士商菲利浦莫里斯製品股份有限公司 Inductively heatable tobacco product
PT2996504T (en) 2014-05-21 2017-01-02 Philip Morris Products Sa Aerosol-generating article with multi-material susceptor
TWI667964B (en) 2014-05-21 2019-08-11 瑞士商菲利浦莫里斯製品股份有限公司 Inductive heating device and system for aerosol-generation
TWI635897B (en) * 2014-05-21 2018-09-21 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-forming substrate and aerosol-delivery system
TWI692274B (en) 2014-05-21 2020-04-21 瑞士商菲利浦莫里斯製品股份有限公司 Inductive heating device for heating an aerosol-forming substrate and method of operating an inductive heating system
TWI664920B (en) 2014-05-21 2019-07-11 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-forming substrate and aerosol-delivery system
TWI670017B (en) 2014-05-21 2019-09-01 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-forming substrate and aerosol-delivery system
US9955726B2 (en) 2014-05-23 2018-05-01 Rai Strategic Holdings, Inc. Sealed cartridge for an aerosol delivery device and related assembly method
GB2527597B (en) 2014-06-27 2016-11-23 Relco Induction Dev Ltd Electronic Vapour Inhalers
CN204091003U (en) 2014-07-18 2015-01-14 云南中烟工业有限责任公司 A kind of electromagnetic induction that utilizes carries out the smoking set heated
CN104095295A (en) 2014-07-18 2014-10-15 云南中烟工业有限责任公司 Smoking set with function of electromagnetic induction heating
RU2679980C2 (en) 2014-07-24 2019-02-14 Олтриа Клайент Сервисиз Ллк Electronic vaping (smoking) device and components thereof
CN104095291B (en) 2014-07-28 2017-01-11 四川中烟工业有限责任公司 tobacco suction system based on electromagnetic heating
JP2016036222A (en) 2014-08-04 2016-03-17 田淵電機株式会社 System control device for distributed power source, system control method for distributed power source, and power conditioner
CN104223359A (en) 2014-08-22 2014-12-24 云南中烟工业有限责任公司 Novel cigarette heater provided with aerogel heat-insulating layer
CN104256899A (en) 2014-09-28 2015-01-07 深圳市艾维普思科技有限公司 Electronic cigarette and atomizer
WO2016090037A1 (en) 2014-12-02 2016-06-09 Goldstein Gabriel Marc Vaporizing reservoir
CN204519364U (en) 2015-02-07 2015-08-05 深圳市杰仕博科技有限公司 heating atomization device
CN204519365U (en) 2015-02-07 2015-08-05 深圳市杰仕博科技有限公司 Wave heating atomizer
US10226073B2 (en) 2015-06-09 2019-03-12 Rai Strategic Holdings, Inc. Electronic smoking article including a heating apparatus implementing a solid aerosol generating source, and associated apparatus and method
GB201511358D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic aerosol provision systems
RU2702425C2 (en) 2015-07-06 2019-10-08 Филип Моррис Продактс С.А. Method of making aerosol-generating substrate capable of inductive heating
US10869504B2 (en) 2015-08-17 2020-12-22 Philip Morris Products S.A. Aerosol-generating system and aerosol-generating article for use in such a system
CN204949521U (en) 2015-08-18 2016-01-13 李文杰 Cigarette dry combustion method smoking set
US20170055583A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Apparatus for heating smokable material
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170055581A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US20170055582A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US20170055580A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Apparatus for heating smokable material
US20170055574A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Cartridge for use with apparatus for heating smokable material
US20170055575A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
EP3364794A1 (en) 2015-10-22 2018-08-29 Philip Morris Products S.a.s. Aerosol-generating article and method for manufacturing such aerosol-generating article; aerosol-generating device and system
US20170119048A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
US20170119051A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
US20170119050A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
US20170119047A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material
US20180317554A1 (en) 2015-10-30 2018-11-08 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US20170119049A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
WO2018002085A1 (en) 2016-06-29 2018-01-04 British American Tobacco (Investments) Limited Apparatus for heating smokable material
RU2737937C2 (en) 2016-06-29 2020-12-07 Никовенчерс Трейдинг Лимитед Article for use with smoking material heating device
EP3935976A1 (en) 2016-10-19 2022-01-12 Nicoventures Trading Limited Inductive heating arrangement
EP4007449A1 (en) 2017-01-25 2022-06-01 Nicoventures Trading Limited Apparatus for heating smokable material
JP7224849B2 (en) 2018-10-24 2023-02-20 キヤノン株式会社 image forming device
JP7175713B2 (en) 2018-10-25 2022-11-21 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
US20240068804A1 (en) 2022-08-23 2024-02-29 Kla Corporation Multi-pitch grid overlay target for scanning overlay metrology

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672279B2 (en) 2011-09-06 2023-06-13 Nicoventures Trading Limited Heating smokeable material
US11241042B2 (en) 2012-09-25 2022-02-08 Nicoventures Trading Limited Heating smokeable material
US11606979B2 (en) * 2014-05-21 2023-03-21 Philip Morris Products S.A. Aerosol-generating system comprising a fluid permeable susceptor element
US20220218034A1 (en) * 2014-05-21 2022-07-14 Philip Morris Products S.A. Aerosol-generating system comprising a fluid permeable susceptor element
US11856993B2 (en) 2014-05-21 2024-01-02 Philip Morris Products S.A. Aerosol-generating system comprising a fluid permeable susceptor element
US11357258B2 (en) * 2014-12-29 2022-06-14 Nicoventures Trading Limited Cartridge for having a sleeve with slots surrounding a contact piece with corresponding contact arms
US11412783B2 (en) 2014-12-29 2022-08-16 Nicoventures Trading Limited Apparatus for heating smokable material
US11896055B2 (en) 2015-06-29 2024-02-13 Nicoventures Trading Limited Electronic aerosol provision systems
US11064725B2 (en) 2015-08-31 2021-07-20 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
US11659863B2 (en) 2015-08-31 2023-05-30 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170055581A1 (en) * 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) * 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11589614B2 (en) 2015-08-31 2023-02-28 Nicoventures Trading Limited Cartridge for use with apparatus for heating smokable material
US11825870B2 (en) 2015-10-30 2023-11-28 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11252992B2 (en) 2015-10-30 2022-02-22 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11805818B2 (en) 2015-10-30 2023-11-07 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11452313B2 (en) 2015-10-30 2022-09-27 Nicoventures Trading Limited Apparatus for heating smokable material
US11457664B2 (en) 2016-06-29 2022-10-04 Nicoventures Trading Limited Apparatus for heating smokable material
US11871790B2 (en) * 2017-04-05 2024-01-16 Altria Client Services Llc Susceptor for use with an inductively heated aerosol-generating device or system
KR102597805B1 (en) * 2017-05-31 2023-11-06 필립모리스 프로덕츠 에스.에이. Heating components in aerosol generating devices
JP7471822B2 (en) 2017-05-31 2024-04-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Heating components in aerosol generating devices
US11452180B2 (en) 2017-05-31 2022-09-20 Philip Morris Products S.A. Heating component in aerosol generating devices
WO2018220558A1 (en) * 2017-05-31 2018-12-06 Philip Morris Products S.A. Heating component in aerosol generating devices
KR20200013648A (en) * 2017-05-31 2020-02-07 필립모리스 프로덕츠 에스.에이. Heating parts in aerosol generator
JP2020521439A (en) * 2017-05-31 2020-07-27 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Heating components in an aerosol generator
US11956879B2 (en) 2017-09-15 2024-04-09 Nicoventures Trading Limited Apparatus for heating smokable material
EP4266831A3 (en) * 2018-01-03 2024-01-10 Cqens Technologies Inc. Heat-not-burn device and method
US20220030947A1 (en) * 2018-09-25 2022-02-03 Philip Morris Products S.A. Heating assembly and method for inductively heating an aerosol-forming substrate
RU2793697C2 (en) * 2018-09-25 2023-04-04 Филип Моррис Продактс С.А. Heating assembly and method of induction heating of aerosol substrate
CN112739228A (en) * 2018-09-25 2021-04-30 菲利普莫里斯生产公司 Heating assembly and method for inductively heating an aerosol-forming substrate
US20220183373A1 (en) * 2019-03-11 2022-06-16 Nicoventures Trading Limited Aerosol provision device
USD943168S1 (en) 2019-08-01 2022-02-08 Nicoventures Holdings Limited Electronic cigarette vaporizer housing plate
USD929651S1 (en) 2019-08-01 2021-08-31 Nicoventures Holdings Limited (A Uk Company) Electronic cigarette vaporizer
USD945057S1 (en) 2019-08-01 2022-03-01 Nicoventures Trading Limited (a UK company) Electronic cigarette vaporizer mouthpiece
US20220304387A1 (en) * 2019-08-02 2022-09-29 Kt&G Corporation Heating assembly, aerosol-generating device including the same, and aerosol-generating system including the same
USD985187S1 (en) 2021-01-08 2023-05-02 Nicoventures Trading Limited Aerosol generator
WO2022233988A1 (en) * 2021-05-06 2022-11-10 Philip Morris Products S.A. Multi-layer susceptor arrangement for inductively heating an aerosol-forming substrate
USD984730S1 (en) 2021-07-08 2023-04-25 Nicoventures Trading Limited Aerosol generator
WO2023104706A1 (en) * 2021-12-06 2023-06-15 Philip Morris Products S.A. Aerosol-generating article comprising hollow tubular substrate element
WO2023124528A1 (en) * 2021-12-31 2023-07-06 海南摩尔兄弟科技有限公司 Heating and atomizing device

Also Published As

Publication number Publication date
AU2016344645A1 (en) 2018-05-10
KR20180059918A (en) 2018-06-05
WO2017072149A1 (en) 2017-05-04
US20220015408A1 (en) 2022-01-20
JP2020115877A (en) 2020-08-06
JP6733878B2 (en) 2020-08-05
US20180317553A1 (en) 2018-11-08
HK1256472A1 (en) 2019-09-27
RU2019112521A (en) 2019-05-31
RU2687757C1 (en) 2019-05-16
CN108348010A (en) 2018-07-31
RU2019112521A3 (en) 2022-04-13
KR20210084705A (en) 2021-07-07
EP3367830A1 (en) 2018-09-05
US11825870B2 (en) 2023-11-28
MY185583A (en) 2021-05-24
RU2020135860A (en) 2022-05-04
JP7222167B2 (en) 2023-02-15
KR20200001606A (en) 2020-01-06
EP3367830B1 (en) 2020-10-07
JP2021019640A (en) 2021-02-18
CA3003522A1 (en) 2017-05-04
JP2019501633A (en) 2019-01-24
JP2022126873A (en) 2022-08-30
KR102061674B1 (en) 2020-01-02
US20240041095A1 (en) 2024-02-08
AU2016344645B2 (en) 2019-07-18
BR112018008589A2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
US11825870B2 (en) Article for use with apparatus for heating smokable material
US11457664B2 (en) Apparatus for heating smokable material
CA3028023C (en) Apparatus for heating smokable material
EP3478104B1 (en) Apparatus for heating smokable material
EP3656233B1 (en) Apparatus for heating smokable material
KR20190090070A (en) Apparatus for heating smoking materials
JP2024023569A (en) Aerosol-generating consumable
RU2809662C2 (en) Product for use with device for heating smoking material, device for heating smoking material, system containing the specified product and device, method for manufacturing article containing heater for heating smoking material
KR20230129465A (en) Aerosol delivery device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED, UN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLANDINO, THOMAS P.;WILKE, ANDREW P.;FRATER, JAMES J.;AND OTHERS;REEL/FRAME:037535/0165

Effective date: 20151021

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION