US20040265933A1 - Proteins - Google Patents

Proteins Download PDF

Info

Publication number
US20040265933A1
US20040265933A1 US10/476,460 US47646004A US2004265933A1 US 20040265933 A1 US20040265933 A1 US 20040265933A1 US 47646004 A US47646004 A US 47646004A US 2004265933 A1 US2004265933 A1 US 2004265933A1
Authority
US
United States
Prior art keywords
leu
ala
ile
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/476,460
Inventor
Richard William Le Page
Daniel Badcock
Philip James Sizer
Keith Peek
Jeremy Wells
Sean Hanniffy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Pasteur Ltd
Microbial Technics Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to PROVALIS UK LIMITED, MICROBIAL TECHNICS LIMITED reassignment PROVALIS UK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WELLS, JEREMY MARK, PEEK, KEITH, HANNIFFY, SEAN BOSCO, SIZER, PHILIP JAMES HOLDEN, BADCOCK, DANIEL, LE PAGE, RICHARD WILLIAM FALLA
Publication of US20040265933A1 publication Critical patent/US20040265933A1/en
Priority to US12/180,896 priority Critical patent/US8101187B2/en
Assigned to SANOFI PASTEUR LIMITED reassignment SANOFI PASTEUR LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROVALIS DIAGNOSTICS LIMITED/CORTECS (OM) PTY LIMITED/PROVALIS UK LIMITED/MICROBIAL TECHNICS LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Novel proteins from Streptococcus pneumoniae are described, together with nucleic acid sequences encoding them. Their use in vaccines and in screening methods is also described.

Description

  • The present invention relates to proteins derived from [0001] Streptococcus pneumoniae, nucleic acid molecules encoding such proteins, the use of the nucleic acid and/or proteins as antigens/immunogens and in detection/diagnosis, as well as methods for screening the proteins/nucleic acid sequences as potential anti-microbial targets. Streptococcus pneumoniae, commonly referred to as the pneumococcus, is an important pathogenic organism. The continuing significance of Streptoccocus pneumoniae infections in relation to human disease in developing and developed countries has been authoritatively reviewed (Fiber, G. R., Science, 265: 1385-1387 (1994)). That indicates that on a global scale this organism is believed to be the most common bacterial cause of acute respiratory infections, and is estimated to result in one million childhood deaths each year, mostly in developing countries (Stansfield, S. K., Pediatr. Infect. Dis., 6: 622 (1987)). In the USA it has been suggested (Breiman et al, Arch. Intern. Med., 150: 1401 (1990)) that the pneumococcus is still the most common cause of bacterial pneumonia, and that disease rates are particularly high in young children, in the elderly, and in patients with predisposing conditions such as asplenia, heart, lung and kidney disease, diabetes, alcoholism, or with immunosupressive disorders, especially AIDS. These groups are at higher risk of pneumococcal septicaemia and hence meningitis and therefore have a greater risk of dying from pneumococcal infection. Over 50,000 cases of invasive pneumococcal disease (meningitis and bacteraemia) are believed to occur annually in the United States. The pneumococcus is also the leading cause of otitis media and sinusitis, which remain prevalent infections in children in developed countries, and which incur substantial costs. S. pneumoniae is responsible for approximately seven million cases of middle ear infections in children under two years of age in the United States alone.
  • The need for effective preventative strategies against pneumococcal infection is highlighted by the recent emergence of penicillin-resistant pneumococci. It has been reported that 6.6% of pneumoccal isolates in 13 US hospitals in 12 states were found to be resistant to penicillin and some isolates were also resistant to other antibiotics including third generation cyclosporins (Schappert, S. M., [0002] Vital and Health Statistics of the Centres for Disease Control/National Centre for Health Statistics, 214:1 (1992)). The rates of penicillin resistance can be higher (up to 20%), in some hospitals (Breiman et al, J. Am. Med. Assoc., 271: 1831 (1994)). Since the development of penicillin resistance among pneumococci is both recent and sudden, coming after decades during which penicillin remained an effective treatment, these findings are regarded as alarming.
  • For the reasons given above, there are therefore compelling grounds for considering improvements in the means of preventing, controlling, diagnosing or treating pneumococcal diseases. [0003]
  • Various approaches have been taken in order to provide vaccines for the prevention of pneumococcal infections. Difficulties arise for instance in view of the variety of serotypes (at least 90) based on the structure of the polysaccharide capsule surrounding the organism. Vaccines against individual serotypes are not effective against other serotypes and this means that vaccines must include polysaccharide antigens from a whole range of serotypes in order to be effective in a majority of cases. An additional problem arises because it has been found that the capsular polysaccharides (each of which determines the serotype and is the major protective antigen) when purified and used as a vaccine do not reliably induce protective antibody responses in children under two years of age, the age group which suffers the highest incidence of invasive pneumococcal infection and meningitis. [0004]
  • A modification of the approach using capsule antigens relies on conjugating the polysaccharide to a protein in order to derive an enhanced immune response, particularly by giving the response T-cell dependent characteristics. This approach has been used in the development of a vaccine against [0005] Haemophilus influenzae, for instance. There are, however, issues of cost concerning both the multi-polysaccharide vaccines and those based on conjugates. In addition, the composition of the conjugate vaccines preferably requires to be varied to accommodate different geographical and demographical populations as the serotype coverage that they offer is limited. There may also be a problems with conjugate carrier-induced suppression or overload due to the relatively large total dose of carrier protein administered.
  • A third approach is to look for other antigenic components which offer the potential to be vaccine candidates. This is the basis of the present invention. Using a specially developed bacterial expression system, we have been able to identify a group of protein antigens from pneomococcus which are associated with the bacterial envelope or which are secreted. [0006]
  • Thus, in a first aspect the present invention provides a [0007] Streptococcus pneumoniae protein or polypeptide having a sequence selected from those shown in Table 1.
  • A protein or polypeptide of the present invention may be provided in substantially pure form. For example, it may be provided in a form which is substantially free of other proteins. [0008]
  • As discussed herein, the proteins and polypeptides of the invention are useful as antigenic material. Such material can be “antigenic” and/or “immunogenic”. Generally, “antigenic” is taken to mean that the protein or polypeptide is capable of being used to raise antibodies or indeed is capable of inducing an antibody response in a subject. “Immunogenic” is taken to mean that the protein or polypeptide is capable of eliciting a protective immune response in a subject. Thus, in the latter case, the protein or polypeptide may be capable of not only generating an antibody response but, in addition, a non-antibody based immune response. [0009]
  • The skilled person will appreciate that homologues or derivatives of the proteins or polypeptides of the invention will also find use in the context of the present invention, ie as antigenic/immunogenic material. Thus, for instance proteins or polypeptides which include one or more additions, deletions, substitutions or the like are encompassed by the present invention. In addition, it may be possible to replace one amino acid with another of similar “type”. For instance replacing one hydrophobic amino acid with another. [0010]
  • One can use a program such as the CLUSTAL™ program to compare amino acid sequences. This program compares amino acid sequences and finds the optimal alignment by inserting spaces in either sequence as appropriate. It is possible to calculate amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment. A program like BLASTx will align the longest stretch of similar sequences and assign a value to the fit. It is thus possible to obtain a comparison where several regions of similarity are found, each having a different score. Both types of identity analysis are contemplated in the present invention. [0011]
  • In the case of homologues and derivatives, the degree of identity with a protein or polypeptide as described herein is less important than that the homologue or derivative should retain the antigenicity or immunogenicity of the original protein or polypeptide. However, suitably, homologues or derivatives having at least 60% similarity (as discussed above) with the proteins or polypeptides described herein are provided. Preferably, homologues or derivatives having at least 70% similarity, more preferably at least 80% similarity are provided. Most preferably, homologues or derivatives having at least 90% or even 95% similarity are provided. [0012]
  • In an alternative approach, the homologues or derivatives could be fusion proteins, incorporating moieties which render purification easier, for example by effectively tagging the desired protein or polypeptide. It may be necessary to remove the “tag” or it may be the case that the fusion protein itself retains sufficient antigenicity to be useful. [0013]
  • In an additional aspect of the invention there are provided antigenic/immunogenic fragments of the proteins or polypeptides of the invention, or of homologues or derivatives thereof. [0014]
  • For fragments of the proteins or polypeptides described herein, or of homologues or derivatives thereof, the situation is slightly different. It is well known that is possible to screen an antigenic protein or polypeptide to identify epitopic regions, ie those regions which are responsible for the protein or polypeptide's antigenicity or immunogenicity. Methods for carrying out such screening are well known in the art. Thus, the fragments of the present invention should include one or more such epitopic regions or be sufficiently similar to such regions to retain their antigenic/immunogenic properties. Thus, for fragments according to the present invention the degree of identity is perhaps irrelevant, since they may be 100% identical to a particular part of a protein or polypeptide, homologue or derivative as described herein. The key issue, once again, is that the fragment retains the antigenic/immunogenic properties. [0015]
  • Thus, what is important for homologues, derivatives and fragments is that they possess at least a degree of the antigenicity/immunogenicity of the protein or polypeptide from which they are derived. [0016]
  • Gene cloning techniques may be used to provide a protein of the invention in substantially pure form. These techniques are disclosed, for example, in J. Sambrook et al [0017] Molecular Cloning 2nd Edition, Cold Spring Harbor Laboratory Press (1989).
  • Thus, in a second aspect, the present invention provides a nucleic acid molecule comprising or consisting of a sequence which is: [0018]
  • (i) any of the DNA sequences set out in Table 1 or their RNA equivalents; [0019]
  • (ii) a sequence which is complementary to any of the sequences of (i); [0020]
  • (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii); [0021]
  • (iv) a sequence which has substantial identity with any of those of (i), (ii) and (iii); [0022]
  • (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 1. [0023]
  • The nucleic acid molecules of the invention may include a plurality of such sequences, and/or fragments. The skilled person will appreciate that the present invention can include novel variants of those particular novel nucleic acid molecules which are exemplified herein. Such variants are encompassed by the present invention. These may occur in nature, for example because of strain variation. For example, additions, substitutions and/or deletions are included. In addition, and particularly when utilising microbial expression systems, one may wish to engineer the nucleic acid sequence by making use of known preferred codon usage in the particular organism being used for expression. Thus, synthetic or non-naturally occurring variants are also included within the scope of the invention. [0024]
  • The term “RNA equivalent” when used above indicates that a given RNA molecule has a sequence which is complementary to that of a given DNA molecule (allowing for the fact that in RNA “U” replaces “T” in the genetic code). [0025]
  • When comparing nucleic acid sequences for the purposes of determining the degree of homology or identity one can use programs such as BESTFIT and GAP (both from the Wisconsin Genetics Computer Group (GCG) software package) BESTFIT, for example, compares two sequences and produces an optimal alignment of the most similar segments. GAP enables sequences to be aligned along their whole length and finds the optimal alignment by inserting spaces in either sequence as appropriate. [0026]
  • Suitably, in the context of the present invention when discussing identity of nucleic acid sequences, the comparison is made by alignment of the sequences along their whole length. [0027]
  • Preferably, sequences which have substantial identity have at least 50% sequence identity, desirably at least 75% sequence identity and more desirably at least 90 or at least 95% sequence identity with said sequences. In some cases the sequence identity may be 99% or above. [0028]
  • Desirably, the term “substantial identity” indicates that said sequence has a greater degree of identity with any of the sequences described herein than with prior art nucleic acid sequences. [0029]
  • It should however be noted that where a nucleic acid sequence of the present invention codes for at least part of a novel gene product the present invention includes within its scope all possible sequence coding for the gene product or for a novel part thereof. [0030]
  • The nucleic acid molecule may be in isolated or recombinant form. It may be incorporated into a vector and the vector may be incorporated into a host. Such vectors and suitable hosts form yet further aspects of the present invention. [0031]
  • Therefore, for example, by using probes based upon the nucleic acid sequences provided herein, genes in [0032] Streptococcus pneumoniae can be identified. They can then be excised using restriction enzymes and cloned into a vector. The vector can be introduced into a suitable host for expression.
  • Nucleic acid molecules of the present invention may be obtained from [0033] S. pneumoniae by the use of appropriate probes complementary to part of the sequences of the nucleic acid molecules. Restriction enzymes or sonication techniques can be used to obtain appropriately sized fragments for probing.
  • Alternatively PCR techniques may be used to amplify a desired nucleic acid sequence. Thus the sequence data provided herein can be used to design two primers for use in PCR so that a desired sequence, including whole genes or fragments thereof, can be targeted and then amplified to a high degree. [0034]
  • Typically primers will be at least 15-25 nucleotides long. [0035]
  • As a further alternative chemical synthesis may be used. This may be automated. Relatively short sequences may be chemically synthesised and ligated together to provide a longer sequence. [0036]
  • There is another group of proteins from [0037] S. pneumoniae which have been identified using the bacterial expression system described herein. These are known proteins from S. pneumoniae, which have not previously been identified as antigenic proteins. The amino acid sequences of this group of proteins, together with DNA sequences coding for them are shown in Table 2. These proteins, or homologues, derivatives and/or fragments thereof also find use as antigens/immunogens.
  • A further group of proteins have been identified from recently published [0038] S. pnuemoniae genomes that have a degreeof homology with ID-304L1 which all possess the following highly conserved sequence of 23 amino acids either at or near the N-terminus:
    MELVLPNNYVV(D,A)I (L)D(E)E(Q)EEMMYLDGG(E)
  • where the bracketed residues represent alternatives to the preceding amino acid. Amino acid sequences for these homologues, and the DNA sequences encoding them are given in Table 3. [0039]
  • Thus, in a further aspect the present invention provides a [0040] Streptococcus pneumoniae protein which has the N terminal sequence
    MELVLPNNYVV(D,A)I(L)D(E)E(Q)EEMMYLDGG(E)
  • or fragment or homologue or derivative thereof. [0041]
  • In another aspect the present invention provides the use of a protein or polypeptide having a sequence selected from those shown in Tables 1 to 3, or homologues, derivatives and/or fragments thereof, as an immunogen/antigen. [0042]
  • In yet a further aspect the present invention provides an immunogenic/antigenic composition comprising one or more proteins or polypeptides selected from those whose sequences are shown in Tables 1 to 3, or homologues or derivatives thereof, and/or fragments of any of these. In preferred embodiments, the immunogenic/antigenic composition is a vaccine or is for use in a diagnostic assay. [0043]
  • In the case of vaccines, suitable additional excipients, diluents, adjuvants or the like may be included. Numerous examples of these are well known in the art. [0044]
  • It is also possible to utilise the nucleic acid sequences shown in Tables 1 and 2 in the preparation of so-called DNA vaccines. Thus, the invention also provides a vaccine composition comprising one or more nucleic acid sequences as defined herein. DNA vaccines are described in the art (see for instance, Donnelly et al, [0045] Ann. Rev. Immunol., 15:617-648 (1997)) and the skilled person can use such art described techniques to produce and use DNA vaccines according to the present invention.
  • As already discussed herein the proteins or polypeptides described herein, their homologues or derivatives, and/or fragments of any of these, can be used in methods of detecting/diagnosing [0046] S. pneumoniae. Such methods can be based on the detection of antibodies against such proteins which may be present in a subject. Therefore the present invention provides a method for the detection/diagnosis of S. pneumoniae which comprises the step of bringing into contact a sample to be tested with at least one protein, or homologue, derivative or fragment thereof, as described herein. Suitably, the sample is a biological sample, such as a tissue sample or a sample of blood or saliva obtained from a subject to be tested.
  • In an alternative approach, the proteins described herein, or homologues, derivatives and/or fragments thereof, can be used to raise antibodies, which in turn can be used to detect the antigens, and hence [0047] S. pneumoniae. Such antibodies form another aspect of the invention. Antibodies within the scope of the present invention may be monoclonal or polyclonal.
  • Polyclonal antibodies can be raised by stimulating their production in a suitable animal host (e.g. a mouse, rat, guinea pig, rabbit, sheep, goat or monkey) when a protein as described herein, or a homologue, derivative or fragment thereof, is injected into the animal. If desired, an adjuvant may be administered together with the protein. Well-known adjuvants include Freund's adjuvant (complete and incomplete) and aluminium hydroxide. The antibodies can then be purified by virtue of their binding to a protein as described herein. [0048]
  • Monoclonal antibodies can be produced from hybridomas. These can be formed by fusing myeloma cells and spleen cells which produce the desired antibody in order to form an immortal cell line. Thus the well-known Kohler & Milstein technique ([0049] Nature 256 (1975)) or subsequent variations upon this technique can be used.
  • Techniques for producing monoclonal and polyclonal antibodies that bind to a particular polypeptide/protein are now well developed in the art. They are discussed in standard immunology textbooks, for example in Roitt et al, Immunology second edition (1989), Churchill Livingstone, London. [0050]
  • In addition to whole antibodies, the present invention includes derivatives thereof which are capable of binding to proteins etc as described herein. Thus the present invention includes antibody fragments and synthetic constructs. Examples of antibody fragments and synthetic constructs are given by Dougall et al in Tibtec, 12: 372-379 (September 1994). [0051]
  • Antibody fragments include, for example, Fab, F(ab′)[0052] 2 and Fv fragments. Fab fragments are discussed in Roitt et al [supra]. Fv fragments can be modified to produce a synthetic construct known as a single chain Fv (scFv) molecule. This includes a peptide linker covalently joining Vh and Vl regions, which contributes to the stability of the molecule. Other synthetic constructs that can be used include Complementarity Determining Regions (CDR) peptides. These are synthetic peptides comprising antigen-binding determinants. Peptide mimetics may also be used. These molecules are usually conformationally restricted organic rings that mimic the structure of a CDR loop and that include antigen-interactive side chains.
  • Synthetic constructs include chimaeric molecules. Thus, for example, humanised (or primatised) antibodies or derivatives thereof are within the scope of the present invention. An example of a humanised antibody is an antibody having human framework regions, but rodent hypervariable regions. Ways of producing chimaeric antibodies are discussed for example by Morrison et al in PNAS, 81: 6851-6855 (1984) and by Takeda et al in Nature. 314: 452454 (1985). [0053]
  • Synthetic constructs also include molecules comprising an additional moiety that provides the molecule with some desirable property in addition to antigen binding. For example the moiety may be a label (e.g. a fluorescent or radioactive label). Alternatively, it may be a pharmaceutically active agent. [0054]
  • Antibodies, or derivatives thereof, find use in detection/diagnosis of [0055] S. pneumoniae.
  • Thus, in another aspect the present invention provides a method for the detection/diagnosis of [0056] S. pneumoniae which comprises the step of bringing into contact a sample to be tested and antibodies capable of binding to one or more proteins described herein, or to homologues; derivatives and/or fragments thereof.
  • In addition, so-called “Affibodies” may be utilised. These are binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain (Nord et al in Nature Biotechnology, 15: 772-7 (1997)). Thus, small protein domains, capable of specific binding to different target proteins can be selected using combinatorial approaches. [0057]
  • It will also be clear that the nucleic acid sequences described herein may be used to detect/diagnose [0058] S. pneumoniae. Thus, in yet a further aspect, the present invention provides a method for the detection/diagnosis of S. pneumoniae which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid sequence as described herein. Suitably, the sample is a biological sample, such as a tissue sample or a sample of blood or saliva obtained from a subject to be tested. Such samples may be pre-treated before being used in the methods of the invention. Thus, for example, a sample may be treated to extract DNA. Then, DNA probes based on the nucleic acid sequences described herein (ie usually fragments of such sequences) may be used to detect nucleic acid from S. pneumoniae.
  • In additional aspects, the present invention provides: [0059]
  • (a) a method of vaccinating a subject against [0060] S. pneumoniae which comprises the step of administering to a subject a protein or polypeptide of the invention, or a derivative, homologue or fragment thereof, or an immunogenic composition of the invention;
  • (b) a method of vaccinating a subject against [0061] S. pneumoniae which comprises the step of administering to a subject a nucleic acid molecule as defined herein;
  • (c) a method for the prophylaxis or treatment of [0062] S. pneumoniae infection which comprises the step of administering to a subject a protein or polypeptide of the invention, or a derivative, homologue or fragment thereof, or an immunogenic composition of the invention;
  • (d) a method for the prophylaxis or treatment of [0063] S. pneumoniae infection which comprises the step of administering to a subject a nucleic acid molecule as defined herein;
  • (e) a kit for use in detecting/diagnosing [0064] S. pneumoniae infection comprising one or more proteins or polypeptides of the invention, or homologues, derivatives or fragments thereof, or an antigenic composition of the invention; and
  • (f) a kit for use in detecting/diagnosing [0065] S. pneumoniae infection comprising one or more nucleic acid molecules as defined herein.
  • Given that we have identified a group of important proteins, such proteins are potential targets for anti-microbial therapy. It is necessary, however, to determine whether each individual protein is essential for the organism's viability. Thus, the present invention also provides a method of determining whether a protein or polypeptide as described herein represents a potential anti-microbial target which comprises antagonising, inhibiting or otherwise interfering with the function or expression of said protein and determining whether [0066] S. pneumoniae is still viable.
  • A suitable method for inactivating the protein is to effect selected gene knockouts, ie prevent expression of the protein and determine whether this results in a lethal change. Suitable methods for carrying out such gene knockouts are described in Li et al, [0067] P.N.A.S., 94:13251-13256 (1997) and Kolkman et al, J. Bacteriol., 178:3736-3741 (1996).
  • In a final aspect the present invention provides the use of an agent capable of antagonising, inhibiting or otherwise interfering with the function or expression of a protein or polypeptide of the invention in the manufacture of a medicament for use in the treatment or prophylaxis of [0068] S. pneumoniae infection.
  • As mentioned above, we have used a bacterial expression system as a means of identifying those proteins which are surface associated, secreted or exported and thus, would find use as antigens or antimicrobial targets. [0069]
  • The information necessary for the secretion/export of proteins has been extensively studied in bacteria. In the majority of cases, protein export requires a signal peptide to be present at the N-terminus of the precursor protein so that it becomes directed to the translocation machinery on the cytoplasmic membrane. During or after translocation, the signal peptide is removed by a membrane associated signal peptidase. Ultimately the localization of the protein (i.e. whether it be secreted, an integral membrane protein or attached to the cell wall) is determined by sequences other than the leader peptide itself. [0070]
  • We are specifically interested in surface located or exported proteins as these are likely to be antigens for use in vaccines, as diagnostic reagents or as targets for therapy with novel chemical entities. We have therefore developed a screening vector-system in [0071] Lactococcus lactis that permits genes encoding exported proteins to be identified and isolated. We provide below a representative example showing how given novel surface associated proteins from Streptococcus pneumoniae have been identified and characterized. The screening vector incorporates the staphylococcal nuclease gene nuc lacking its own export signal as a secretion reporter. Staphylococcal nuclease is a naturally secreted heat-stable, monomeric enzyme which has been efficiently expressed and secreted in a range of Gram positive bacteria (Shortle, Gene, 22:181-189 (1983); Kovacevic et al., J. Bacteriol., 162:521-528 (1985); Miller et al., J. Bacteriol., 169:3508-3514 (1987); Liebl et al., J. Bacteriol., 174:1854-1861 (1992); Le Loir et al., J. Bacteriol., 176:5135-5139 (1994); Poquet et al., J. Bacteriol., 180:1904-1912 (1998)).
  • Recently, Poquet et al. ((1998), supra) have described a screening vector incorporating the nuc gene lacking its own signal leader as a reporter to identify exported proteins in Gram positive bacteria, and have applied it to [0072] L. lactis. This vector (pFUN) contains the pAMβ1 replicon which functions in a broad host range of Gram-positive bacteria in addition to the ColE1 replicon that promotes replication in Escherichia coli and certain other Gram negative bacteria. Unique cloning sites present in the vector can be used to generate transcriptional and translational fusions between cloned genomic DNA fragments and the open reading frame of the truncated nuc gene devoid of its own signal secretion leader. The nuc gene makes an ideal reporter gene because the secretion of nuclease can readily be detected using a simple and sensitive plate test; recombinant colonies secreting the nuclease develop a pink halo whereas control colonies remain white (Shortle, (1983), supra; Le Loir et al., (1994), supra).
  • Thus, the invention will now be described with reference to the following representative example, which provides details of how the proteins, polypeptides and nucleic acid sequences described herein identified as antigenic targets. [0073]
  • We describe herein the construction of three reporter vectors and their use in [0074] L. lactis to identify and isolate genomic DNA fragments from Streptococcus pneumoniae encoding secreted or surface associated proteins. Furthermore, Southern blot hybridisation experiments have been conducted to demonstrate the presence of a vaccine candidate gene in a range of Streptococcus pneumoniae strains. The invention will now be described with reference to the examples, which should not be construed as in any way limiting the invention.
  • EXAMPLE 1
  • (i) Construction of the pTREP1-nuc Series of Reporter Vectors [0075]
  • (a) Construction of Expression Plasmid pTREP1 [0076]
  • The PTREP1 plasmid is a high-copy number (40-80 per cell) theta-replicating gram positive plasmid, which is a derivative of the pTREX plasmid which is itself a derivative of the previously published pIL253 plasmid. pIL253 incorporates the broad Gram-positive host range replicon of pAMβ1 (Simon and Chopin, Biochimie, 70:559-567 (1988)) and is non-mobilisable by the [0077] L lactis sex-factor. pIL253 also lacks the tra function which is necessary for transfer or efficient mobilisation by conjugative parent plasmids exemplified by pIL501. The Enterococcal pAMβ1 replicon has previously been transferred to various species including Streptococcus, Lactobacillus and Bacillus species as well as Clostridium acetobutylicum, (Oultram and Klaenhammer, FEMS Microbiological Letters, 27:129-134 (1985); Gibson et al., (1979); LeBlanc et al., Proceedings of the National Academy of Science USA, 75:3484-3487 (1978)) indicating the potential broad host range utility. The pTREP1 plasmid represents a constitutive transcription vector.
  • The pTREX vector was constructed as follows. An artificial DNA fragment containing a putative RNA stabilising sequence, a translation initiation region (TIR), a multiple cloning site for insertion of the target genes and a transcription terminator was created by annealing two complementary oligonucleotides and extending with Tfl DNA polymerase. The sense and anti-sense oligonucleotides contained the recognition sites for NheI and BamHI at their 5′ ends respectively to facilitate cloning. This fragment was cloned between the XbaI and BamHI sites in pUC19NT7, a derivative of pUC19 which contains the T7 expression cassette from pLET1 (Wells et al, [0078] J. Appl. Bacteriol., 74:629-636 (1993)) cloned between the EcoRI and HindIII sites. The resulting construct was designated pUCLEX. The complete expression cassette of pUCLEX was then removed by cutting with HindIII and blunting followed by cutting with EcoRI before cloning into EcoRI and SacI (blunted) sites of pIL253 to generate the vector pTREX (Wells and Schofield, In Current advances in metabolism, genetics and applications-NATO ASI Series, H 98:37-62 (1996)). The putative RNA stabilising sequence and TIR are derived from the Escherichia coli T7 bacteriophage sequence and modified at one nucleotide position to enhance the complementarity of the Shine Dalgarno (SD) motif to the ribosomal 16s RNA of Lactococcus lactis (Schofield et al. pers. coms. University of Cambridge Dept. Pathology.).
  • A [0079] Lactococcus lactis MG1363 chromosomal DNA fragment exhibiting promoter activity which was subsequently designated P7 was cloned between the EcoRI and BglII sites present in the expression cassette, creating pTREX7. This active promoter region had been previously isolated using the promoter probe vector pSB292 (Waterfield et al., Gene, 165:9-15 (1995)). The promoter fragment was amplified by PCR using the Vent DNA polymerase according to the manufacturer.
  • The pTREP1 vector was then constructed as follows. An artificial DNA fragment which included a transcription terminator, the forward pUC sequencing primer, a promoter multiple-cloning site region and a universal translation stop sequence was created by annealing two overlapping partially complementary synthetic oligonucleotides together and extending with sequenase according to manufacturers instructions. The sense and anti-sense (pTREP[0080] F and pTREPR) oligonucleotides contained the recognition sites for EcoRV and BamHI at their 5′ ends respectively to facilitate cloning into pTREX7. The transcription terminator was that of the Bacillus penicillinase gene, which has been shown to be effective in Lactococcus (Jos et al., Applied and Environmental Microbiology, 50:540-542 (1985)). This was considered necessary as expression of target genes in the pTREX vectors was observed to be leaky and is thought to be the result of cryptic promoter activity in the origin region (Schofield et al. pers. coms. University of Cambridge Dept. Pathology.). The forward pUC primer sequencing was included to enable direct sequencing of cloned DNA fragments. The translation stop sequence which encodes a stop codon in 3 different frames was included to prevent translational fusions between vector genes and cloned DNA fragments. The pTREX7 vector was first digested with EcoRI and blunted using the 5′-3′ polymerase activity of T4 DNA polymerase (NEB) according to manufacturer's instructions. The EcoRI digested and blunt ended pTREX7 vector was then digested with Bgl II thus removing the P7 promoter. The artificial DNA fragment derived from the annealed synthetic oligonucleotides was then digested with EcoRV and Bam HI and cloned into the EcoRI (blunted)-Bgl II digested pTREX7 vector to generate pTREP. A Lactococcus lactis MG1363 chromosomal promoter designated P1 was then cloned between the EcoRI and BglII sites present in the pTREP expression cassette forming pTREP1. This promoter was also isolated using the promoter probe vector pSB292 and characterised by Waterfield et al., (1995), supra. The P1 promoter fragment was originally amplified by PCR using vent DNA polymerase according to manufacturers instructions and cloned into the pTREX as an EcoRI-BglII DNA fragment. The EcoRI-BglII P1 promoter containing fragment was removed from pTREX1 by restriction enzyme digestion and used for cloning into pTREP (Schofield et al. pers. coms. University of Cambridge, Dept. Pathology.).
  • (b) PCR Amplification of the [0081] S. aureus nuc Gene.
  • The nucleotide sequence of the [0082] S. aureus nuc gene (EMBL database accession number V01281) was used to design synthetic oligonucleotide primers for PCR amplification. The primers were designed to amplify the mature form of the nuc gene designated nucA which is generated by proteolytic cleavage of the N-terminal 19 to 21 amino acids of the secreted propeptide designated Snase B (Shortle, (1983), supra). Three sense primers (nucS1, nucS2 and nucS3, Appendix 1) were designed, each one having a blunt-ended restriction endonuclease cleavage site for EcoRV or SmaI in a different reading frame with respect to the nuc gene. Additionally BglII and BamHI were incorporated at the 5′ ends of the sense and anti-sense primers respectively to facilitate cloning into BamHI and BglII cut pTREP1. The sequences of all the primers are given in Appendix 1. Three nuc gene DNA fragments encoding the mature form of the nuclease gene (NucA) were amplified by PCR using each of the sense primers combined with the anti-sense primer described above. The nuc gene fragments were amplified by PCR using S. aureus genomic DNA template, Vent DNA Polymerase (NEB) and the conditions recommended by the manufacturer. An initial denaturation step at 93° C. for 2 min was followed by 30 cycles of denaturation at 93° C. for 45 sec, annealing at 50° C. for 45 seconds, and extension at 73° C. for 1 minute and then a final 5 min extension step at 73° C. The PCR amplified products were purified using a Wizard clean up column (Promega) to remove unincorporated nucleotides and primers.
  • (c) Construction of the pTREP1-nuc Vectors [0083]
  • The purified nuc gene fragments. described in section (b) were digested with Bgl II and BamHI using standard conditions and ligated to BamHI and BglII cut and dephosphorylated pTREP1 to generate the pTREP1-nuc1, pTREP1-nuc2 and pTREP1-nuc3 series of reporter vectors. General molecular biology techniques were carried out using the reagents and buffer supplied by the manufacturer or using standard conditions(Sambrook and Maniatis, (1989), supra). In each of the pTREP1-nuc vectors the expression cassette comprises a transcription terminator, lactococcal promoter P1, unique cloning sites (BglII, EcoRV or SmaI) followed by the mature form of the nuc gene and a second transcription terminator. Note that the sequences required for translation and secretion of the nuc gene were deliberately excluded in this construction. Such elements can only be provided by appropriately digested foreign DNA fragments (representing the target bacterium) which can be cloned into the unique restriction sites present immediately upstream of the nuc gene. [0084]
  • In possessing a promoter, the pTREP1-nuc vectors differ from the pFUN vector described by Poquet et al. (1998), supra, which was used to identify [0085] L. lactis exported proteins by screening directly for Nuc activity directly in L. lactis. As the PFUN vector does not contain a promoter upstream of the nuc open reading frame the cloned genomic DNA fragment must also provide the signals for transcription in addition to those elements required for translation initiation and secretion of Nuc. This limitation may prevent the isolation of genes that are distant from a promoter, for example genes which are within polycistronic operons. Additionally there can be no guarantee that promoters derived from other species of bacteria will be recognised and functional in L. lactis. Certain promoters may be under stringent regulation in the natural host but not in L. lactis. In contrast, the presence of the P1 promoter in the pTREP1-nuc series of vectors ensures that promoterless DNA fragments (or DNA fragments containing promoter sequences not active in L. lactis) will still be transcribed.
  • (ii) Screening for [0086] S. pneumoniae Secreted Proteins
  • Genomic DNA isolated from [0087] S. pneumoniae was digested with the restriction enzyme Tru9I. This enzyme which recognises the sequence 5′-TTAA-3′ was used because it cuts A/T rich genomes efficiently and can generate random genomic DNA fragments within the preferred size range (usually averaging 0.5-1.0 kb). This size range was preferred because there is an increased probability that the P1 promoter can be utilised to transcribe a novel gene sequence. However, the P1 promoter may not be necessary in all cases as it is possible that many Streptococcal promoters are recognised in L. lactis. DNA fragments of different size ranges were purified from partial Tru9I digests of S. pneumoniae genomic DNA. As the Tru 9I restriction enzyme generates staggered ends the DNA fragments had to be made blunt ended before ligation to the EcoRV or SmaI cut pTREP1-nuc vectors. This was achieved by the partial fill-in enzyme reaction using the 5′-3′ polymerase activity of Klenow enzyme. Briefly Tru9I digested DNA was dissolved in a solution (usually between 10-20 μl in total) supplemented with T4 DNA ligase buffer (New England Biolabs; NEB) (1×) and 33 μM of each of the required dNTPs, in this case dATP and dTTP. Klenow enzyme was added (1 unit Klenow enzyme (NEB) per μg of DNA) and the reaction incubated at 25° C. for 15 minutes. The reaction was stopped by incubating the mix at 75° C. for 20 minutes. EcoRV or SmaI digested pTREP-nuc plasmid DNA was then added (usually between 200-400 ng). The mix was then supplemented with 400 units of T4 DNA ligase (NEB) and T4 DNA ligase buffer (1×) and incubated overnight at 16° C. The ligation mix was precipitated directly in 100% Ethanol and {fraction (1/10)} volume of 3M sodium acetate (pH 5.2) and used to transform L. lactis MG1363 (Gasson, 1983). Alternatively, the gene cloning site of the pTREP-nuc vectors also contains a BglII site which can be used to clone for example Sau3AI digested genomic DNA fragments. L. lactis transformant colonies were grown on brain heart infusion agar and nuclease secreting (Nuc+) clones were detected by a toluidine blue-DNA-agar overlay (0.05 M Tris pH 9.0, 10 g of agar per litre, 10 g of NaCl per liter, 0.1 mM CaCl2, 0.03% wt/vol. salmon sperm DNA and 90 mg of Toluidine blue 0 dye) essentially as described by Shortle, 1983, supra and Le Loir et al., 1994, supra). The plates were then incubated at 37° C. for up to 2 hours. Nuclease secreting clones develop an easily identifiable pink halo. Plasmid DNA was isolated from Nuc+ recombinant L. lactis clones and DNA inserts were sequenced on one strand using the NucSeq sequencing primer described in Appendix 1, which sequences directly through the DNA insert.
  • (iii) Isolation of Genes Encoding Exported Proteins from [0088] S. pneumoniae
  • A large number of gene sequences putatively encoding exported proteins in [0089] S. pneumoniae have been identified using the nuclease screening system. These have now been further analysed to remove artefacts. The sequences identified using the screening system have been analysed using a number of parameters.
  • 1. All putative surface proteins were analysed for leader/signal peptide sequences using the software programs Sequencher (Gene Codes Corporation) and DNA Strider (Marck, [0090] Nucleic Acids Res., 16:1829-1836 (1988)). Bacterial signal peptide sequences share a common design. They are characterised by a short positively charged N-terminus (N region) immediately preceding a stretch of hydrophobic residues (central portion-h region) followed by a more polar C-terminal portion which contains the cleavage site (c-region). Computer software is available which allows hydropathy profiling of putative proteins and which can readily identify the very distinctive hydrophobic portion (h-region) typical of leader peptide sequences. In addition, the sequences were checked for the presence of or absence of a potential ribosomal binding site (Shine-Dalgarno motif) required for translation initiation of the putative nuc reporter fusion protein.
  • 2. All putative surface protein sequences were also matched with all of the protein/DNA sequences using the publicly available databases [OWL-proteins inclusive of SwissProt and GenBank translations]. This allows us to identify sequences similar to known genes or homologues of genes for which some function has been ascribed. Hence it has been possible to predict a function for some of the genes identified using the LEEP system and to unequivocally establish that the system can be used to identify and isolate gene sequences of surface associated proteins. We should also be able to confirm that these proteins are indeed surface related and not artifacts. The LEEP system has been used to identify novel gene targets for vaccine and therapy. [0091]
  • 3. Some of the genes identified proteins did not possess a typical leader peptide sequence and did not show homology with any DNA/protein sequences in the database. Indeed these proteins may indicate the primary advantage of our screening method, i.e. the isolation of atypical surface-related proteins, which may have been missed in all previously described screening protocols or approaches based on sequence homology searches. [0092]
  • In all cases, only partial gene sequences were initially obtained. Full length genes given in Table 2 were obtained in all cases by reference to the TIGR [0093] S. pneumoniae database (www@tigr.org). Thus, by matching the originally obtained partial sequences with the database, we were able to identify the full length gene sequences. Hence, as described herein, two groups of genes were clearly identified, ie a group of genes encoding previously unidentified S. pneumoniae proteins (Table 1), and a second group which encoded known S. pneumoniae proteins, which were, however, not known as antigens (Table 2).
  • Two further [0094] S. pneumoniae genomes have been recently sequenced and the information published and subsequently made available on the NCBI database. The “Annotated Draft Genomic Sequence from a Streptococcus pneumoniae Type 19F Clinical Isolate” was published in July 2001 by Dopazo et al. (Microbial Drug Resistance, Volume 7, pp 99-125). The “Genome of the Bacterium Streptococcus pneumoniae Strain R6 was published in October 2001 by Hoskins et al. (Journal of Bacteriology, Volume 183, pp 5709-5717). Through BLAST analysis, homologues of ID-304L1 have been identified in these genomes which all possess a highly conserved sequence of 23 amino acids either at or near their N-terminus:
  • MELVLPNNYVV(D,A)I(L)D(E)E(O)EEMMYLDGG(E), where the bracketed residues represent alternatives to the preceding amino acid. Sequences for these homologues are given in Table 3. [0095]
  • EXAMPLE 2
  • Conservation and Variability of ID304L Variants Among Different Isolates of [0096] Streptococcus pneumoniae
  • The presence of genes ID304L1 and ID305 in the [0097] S. pneumoniae serotype 3 strain ATCC 49619 was investigated. Oligonucleotide primers were designed based upon the known nucleic acid sequences given in Table 1 and these gene targets were amplified by PCR
  • (i) Amplification and Labelling of Specific Target Genes as DNA Probes for Southern Blot Analysis. [0098]
  • Oligonucleotide primers were designed to amplify corresponding gene-specific DNA probes (Appendix 2). Specific gene targets (ID304L1 and ID305) were amplified by PCR using Pfu Turbo DNA polymerase (Stratagene) according to the manufacturer's instructions. Typical reactions were carried out in a 50 μl volume containing 100 ng of template DNA, a one tenth volume of enzyme reaction buffer, 100 ng of each primer, 200 μM of each dNTP and 1.25 Units of Pfu Turbo DNA polymerase. A typical reaction contained an initial 3 minute denaturation at 95C, followed by a single 60 second cycle at 94C, followed by 30 cycles at 50C for 60 seconds. A single cycle of 2 minutes at 72C was then followed with a final extension period of 10 minutes at 72C. [0099]
  • All PCR amplified products were purified using the QIAquick PCR Purification Kit (Qiagen). The presence of homologues to ID304L1 and ID305 in strain ATCC49619 was thereby confirmed. [0100]
  • For use as DNA probes, purified amplified gene DNA fragments from ID304L1 were labelled with digoxygenin using the DIG Nucleic Acid High Prime Labelling Kit (Roche) according to the manufacturer's instructions. [0101]
  • (ii) Southern Blot Hybridisation Analysis of Group B Streptococcal Genomic DNA [0102]
  • A Southern blot analysis was carried out to determine cross-serotype conservation of novel [0103] Streptococcus pneumoniae genes isolated using the LEEP system. The Streptococcus pneumoniae strains used in this analysis are given in the legend to FIG. 1.
  • Genomic DNA isolated from strains of [0104] Streptococcus pneumoniae were investigated for conservation of ID 304L1 derived gene targets. Appropriate DNA concentrations were digested using Hin DIII restriction enzymes (Roche) according to the manufacturer's instructions and analysed by agarose gel electrophoresis. Following agarose gel electrophoresis of DNA samples, the gel was denatured in 0.5M NaOH-1.5M NaCl for 20 minutes, neutralised in 0.5M Tris.HCl (pH 7.5)-1.5M NaCl for 40 minutes and DNA was transferred onto Hybond™ N+ membrane (Amersham) by overnight capillary blotting. The method is essentially as described in “The DIG System User's Guide for Filter Hybridization” (Boehringer Mannheim, 1995) using Whatman 3MM wicks on a platform over a reservoir of 20×SSC (salt sodium citrate). After transfer, the filter was washed briefly in 2×SSC and stored at −20C.
  • Filters were pre-hybridised, hybridised with the digoxygenin labelled DNA probes and washed using conditions recommended by Boehringer Mannheim when using their DIG Nucleic Acid Detection Kit. Filters were pre-hybridised at 42C for one hour in DIG “EasyHyb”. The digoxygenin labelled DNA probe was denatured at 100C for 10 minutes and chilled on ice before being added to the hybridisation buffer (DIG “EasyHyb”). Hybridisation was allowed to proceed overnight in a rotating Hybaid tube in a Hybaid Mini-hybridisation oven. Unbound probe was removed by washing the filter twice with 2×SSC-0.1% SDS for 5 minutes at room temperature. For increased stringency, filters were then washed twice with 0.5×SSC-0.1% SDS for 15 minutes at 68C. The DIG Nucleic Acid Detection Kit (Roche) was used to detect specifically bound digoxygenin labelled DNA-probes immunologically. [0105]
  • The Southern blot hybridisation demonstrates the presence of an ID-304L1 homologue in the majority of the strains analysed. [0106] Lane 12, from which the probe was amplified, has only a very faint band, but this is due to a low level of DNA being applied to the gel in this case. This may also explain the absence of a band in Lane 5, where the background is significantly fainter than for the other lanes. In some strains two bands are observed which suggests that there may be more than one homologue present (as found in the G54 and R6 strains). The presence of genes for this protein in a wide number of clinically relevant strains indicates that this is a conserved protein that is a good vaccine candidate.
  • [0107] Appendix 1—Oligonucleotide Primers for LEEP Screening
    nucS1
           Bg1 II  Eco RV
    5′-cgagatctgatatctcacaaacagataacggcgtaaatag-3′
    nucS2
           Bg1 II     Sma I
    5′-gaagatcttccccgggatcacaaacagataacggcgtaaatag-3′
    nucS3
           Bg1 II  Eco RV
    5′-cgagatctgatatccatcacaaacagataacggcgtaaatag-3′
    nucR
           Bam HI
    5′-cgggatccttatggacctgaatcagcgttgtc-3
    NucSeq
    5′-ggatgctttgtttcaggtgtatc-3
    pTREP
    F
    5′-catgatatcggtacctcaagctcatatcattgtccggcaatggtgtg
    ggctttttttgttttagcggataacaatttcacac-3
    pTREP
    R
    5′-gcggatcccccgggcttaattaatgtttaaacactagtcgaagatct
    cgcgaattctcctgtgtgaaattgttatccgcta-3
    pUC
    F
    5′-cgccagggttttcccagtcacgac-3
    V
    R
    5′-tcaggggggcggagcctatg-3
    V
    1
    5′-tcgtatgttgtgtggaattgtg-3
    V
    2
    5′-tccggctcgtatgttgtgtggaattg-3′
  • [0108] Appendix 2—Oligonucleotide Primers for PCR Analysis and Southern Blotting
  • The primers were engineered to provide restriction enzyme sites for later use in cloning (given in bold type below). GGC clamps allowing the restriction enzymes greater binding capacity are underlined. [0109]
    ID 305 Bam5′ GGCGGATCC ATA AAC GAA GAA ATA
    AGC AAG GAA GC
    ID 305 Hind3′ GGCAAGCTT TTA GAT TTC TCT GGT
    CAT ATC
    ID 304 L1 Bam5′ GGCGGATCC AAA CAA TTT CAA CTA
    AGG AGG
    LID 304 L1 Hind3′ GGCAAGCTT TCA TCT TAC TGT CGC
    AGA TAT G
  • [0110]
    TABLE 1
    ID-303A MAGNSFHLTLTSVSQAGQQTLRHNHSPI
    ID-303B ATGGCAGGCAATTCCTTTCACCTAACTCTCACTTCTGTATC
    TCAGGCAGGACAACAAACGCTTCGACACAATCACAGTCCT
    ATT
    ID-305A MINEEISKEAGQAAQTIISYTIKATKESINLEKEIRKKMNE
    TLEKANGNLKSLMGDEMKIKDLYKKGQLENISIDQIDLKDL
    KKELNKLGVSFSVMKNKESKNYEIFFQAKDIKVMEYAFKQV
    IAKENKKEKESILKQIKKYKDLSKNKDKTKEKGKRKVKPNK
    KDMTREI
    ID-305B ATGATAAACGAAGAAATAAGCAAGGAAGCAGGTCAAGCAGC
    ACAAACCATAATATCATACACAATAAAGGCAACAAAAGAAT
    CAATCAATTTAGAAAAAGAAATAAGAAAAAAGATGAATGAA
    ACTTTAGAAAAAGCAAATGGAAACTTAAAAAGTCTTATGGG
    CGATGAAATGAAAATAAAAGACCTCTACAAGAAAGGACAAC
    TAGAAAATATAAGCATAGATCAAATCGACCTCAAAGACTTA
    AAAAAAGAACTAAACAAACTTGGAGTAAGTTTCTCAGTAAT
    GAAAAACAAAGAAAGCAAAAACTATGAAATATTCTTCCAAG
    CCAAAGACATAAAAGTAATGGAATATGCCTTTAAGCAAGTC
    ATAGCCAAGGAAAATAAAAAAGAAAAAGAAAGTATCCTAAA
    ACAAATAAAGAAATACAAAGACCTATCCAAAAACAAAGATA
    AGACAAAAGAAAAAGGAAAAAGGAAAGTAAAAGAAAAAGTA
    AAACCAAACAAAAAAGATATGACCAGAGAAATC
    ID-306A MKVSKKITLFSLSFAGFVLLTLPQAGKAFELKEDWAFKGGI
    RYENGKVSKINNGYEVNIKVLDLPSTSAIEWTVRLNGEKQN
    TNFLAEERTVSKTEDKGRFLHFYIPYGYRGDIVVEAKSGNE
    VKTWSTKVVDDVYSDSAKSGYFILDGEQILESSWDSVNESY
    IATLPTVTSGKTVVAWREKGTLNLI
    ID-306B ATGAAAGTATCAAAAAAAATTACACTATTTAGTTTGTCTTT
    TGCAGGTTTTGTTTTATTGACTTTACCTCAAGCAGGAAAGG
    CTTTTGAACTTAAAGAAGACTGGGCATTTAAAGGTGGCATT
    CGATACGAGAATGGGAAAGTCAGCAAAATTAATAATGGATA
    TGAAGTAAATATTAAAGTGTTAGATTTACCTAGTACTAGCG
    CAATCGAATGGACAGTTAGATTGAATGGAGAAAAGCAAAAT
    ACTAACTTCTTAGCGGAGGAAAGAACTGTATCTAAAACTGA
    AGATAAGGGACGTTTCTTGCACTTTTATATCCCCTATGGAT
    ATCGTGGGGATATTGTAGTAGAGGCTAAGAGTGGAAACGAA
    GTGAAGACTTGGTCTACTAAGGTAGTTGACGATGTTTATTC
    AGATTCTGCTAAGAGTGGCTACTTTATTCTCGATGGGGAAC
    AAATCTTAGAAAGTTCATGGGATTCCGTAAATGAGTCTTAT
    ATTGCAACGCTTCCAACTGTAACATCAGGAAAAACTGTTGT
    TGCTTGGCGTGAAAAAGGAACTCTTAATTTAATT
    ID-304L1A MELVLPNNYVVLEQEEMMYLDGGFSIPRWPVATAINIAFNG
    VLGGGAISLVRNYIRNYGLRRVTSAIAGAAARYVGVRVANR
    VAGFALSAINGFAAWMSIGDAITTIWANNDVNRRDPNLNAL
    W
    ID-304L1B ATGGAACTCGTATTACCAAATAATTATGTTGTTCTTGAGCA
    AGAAGAGATGATGTATCTTGATGGGGGATTTTCTATTCCGA
    GATGGCCTGTTGCAACAGCCATTAATATAGCTTTTAATGGT
    GTTTTAGGTGGAGGAGCAATCAGTCTAGTTAGAAATTATAT
    TCGTAATTATGGTTTGCGGCGAGTTACAAGCGCAATTGCTG
    GAGCAGCTGCAAGATATGTTGGGGTACGAGTTGCAAATAGA
    GTGGCAGGATTTGCACTGTCTGCTATTAATGGATTTGCAGC
    TTGGATGTCAATTGGCGATGCTATTACAACAATCTGGGCCA
    ACAATGATGTAAATAGGAGAGACCCAAATTTAAACGCCTTG
    TGGTAA
  • [0111]
    TABLE 2
    Bracketed residues represent an
    alternative to the residue immediately
    preceeding. IUPAC nucleic acid ambiguity
    codes have been amplied.
    ID-204A MKDTFKNVLSFEFWQKFGKALMVVIAVMPAAGLMISIGKSIV
    MINPTFAPLVITGGILEQIGWGVIGNLHILFALAIGGSWAKE
    RAGGAFAAGLAFILINRITGTIFGVSGDMLKNPDAMVTTFFG
    GSIKVADYFISVLEAPALNMGVFVGIISGFVGATAYNKYYNF
    RKLPDALSFFNGKRFVPFVVILRSAIAAILLAAFWPVVQTGI
    NNFGIWIANSQETAPILAPFLYGTLERLLLPFGLHHMLTIPM
    NYTALGGTYDILTGAAKGTQVFGQDPLWLAWVTDLVNLKGTD
    ASQYQHLLDTVHPARFKVGQMIGSFGILMGVIVAIYRNVDAD
    KKHKYKGMMIATALATFLTGVTEPIEYMFMFIATPMYLVYSL
    VQGAAFAMADVVNLRMHSFGSIEFLTRTPIAISAGIGMDIVN
    FVWVTVLFAVIMYFIANFMIQKFNYATPGRNGNYETAEGSEE
    TSSEVKVAAGSQAVNIINLLGGRVNIVDVDACMTRLRVTVKD
    ADKVGNAEQWKAEGAMGLVMKGQGVQAIYGPKADILKSDIQD
    ILDSGEIIPETLPSQMTEAQQNTVHFKDLTEEVYSVADGQVV
    ALEQVKDPVFAQKMMGDGFAVEPANGNIVSPVSGTVSSIFPT
    KHAFGIVTEAGLEVLVHIGLDTVSLEGKPFTVHVAEGQKVAA
    GDLLVTADLDAIRAAGRETSTVVVFTNGDAIKSVKLEKTGSL
    AAKTAVAKVEL*
    ID-204B GGTAAGGCTTTGATGGTAGTTATCGCGGTTATGCCGGCTGCT
    GGTTTGATGATTTCAATCGGTAAGTCTATCGTGATGATTAAC
    CCAACCTTTGCACCACTTGTCATCACAGGTGGAATTCTTGAG
    CAAATCGGTTGGGGGGTTATCGGTAACCTTCACATTTTGTTT
    GCCCTAGCCATTGGAGGAAGCTGGGCTAAAGAACGTGCTGGT
    GGTGCTTTCGCCGCTGGTCTTGCCTTCATCTTGATTAACCGT
    ATCACTGGTACAATCTTTGGTGTATCAGGCGATATGTTGAAA
    AATCCAGATGCTATGGTAACTACTTTCTTTGGTGGTTCAATC
    AAAGTTGCTGATTACTTTATCAGTGTTCTTGAAGCTCCAGCC
    TTGAACATGGGGGTATTCGTAGGGATTATCTCAGGTTTTGTA
    GGGGCAACTGCTTACAACAAATACTACAACTTCCGTAAACTT
    CCTGATGCACTTTCATTCTTCAACGGGAAACGTTTCGTACCA
    TTTGTAGTTATTCTTCGTTCAGCAATCGCTGCAATTCTACTT
    GCTGCTTTCTGGCCAGTAGTTCAAACAGGTATCAATAACTTC
    GGTATCTGGATTGCCAACTCACAAGAAACTGCTCCAATTCTT
    GCACCATTCTTGTATGGTACTTTGGAACGTTTGCTCTTGCCA
    TTTGGTCTTCACCACATGTTGACTATCCCAATGAACTACACA
    GCTCTTGGTGGTACTTATGACATTTTAACTGGTGCAGCTAAA
    GGTACTCAAGTATTCGGTCAAGACCCACTATGGCTTGCATGG
    GTAACAGACCTTGTAAACCTTAAAGGTACTGATGCTAGTCAA
    TATCAACACTTGTTAGATACAGTACATCCAGCTCGTTTCAAA
    GTTGGACAAATGATCGGTTCATTCGGTATCTTGATGGGTGTG
    ATTGTTGCTATCTACCGTAATGTTGATGCTGACAAGAAACAT
    AAATACAAAGGTATGATGATTGCAACAGCTCTTGCAACATTC
    TTGACAGGGGTTACTGAACCAATCGAATACATGTTCATGTTC
    ATCGCAACACCTATGTATCTTGTTTACTCACTTGTTCAAGGT
    GCTGCCTTCGCTATGGCTGACGTCGTAAACCTACGTATGCAC
    TCATTCGGTTCAATCGAGTTCTTGACTCGTACACCTATTGCA
    ATCAGTGCTGGTATTGGTATGGATATCGTTAACTTCGTTTGG
    GTAACTGTTCTCTTTGCTGTAATCATGTACTTTATCGCAAAC
    TTCATGATTCAAAAATTCAACTACGCAACTCCAGGGCGCAAC
    GGAAACTACGAAACTGCTGAAGGTTCAGAAGAAACCAGCAGC
    GAAGTGAAAGTTGCAGCAGGCTCTCAAGCTGTAAACATTATC
    AACCTTCTTGGTGGACGTGTAAACATCGTTGATGTTGATGCA
    TGTATGACTCGTCTTCGTGTAACTGTTAAAGATGCAGATAAA
    GTAGGAAATGCAGAGCAATGGAAAGCAGAAGGAGCTATGGGT
    CTTGTCATGAAAGGACAAGGGGTTCAAGCTATCTACGGTCCA
    AAAGCTGACATTTTGAAATCTGATATCCAAGATATCCTTGAT
    TCAGGTGAAATCATTCCTGAAACTCTTCCAAGCCAAATGACT
    GAAGCACAACAAAACACTGTTCACTTCAAAGATCTTACTGAG
    GAAGTTTACTCAGTAGCAGACGGTCAAGTTGTTGCTTTGGAA
    CAAGTAAAGGATCCAGTATTTGCTCAAAAAATGATGGGTGAT
    GGATTTGCAGTAGAACCTGCAAATGGAAACATTGTATCTCCA
    GTTTCAGGTACTGTGTCAAGCATCTTCCCAACAAAACATGCT
    TTTGGTATTGTGACGGAAGCAGGTCTTGAAGTATTGGTTCAC
    ATTGGTTTGGACACAGTAAGTCTTGAAGGTAAACCATTTACA
    GTTCATGTTGCTGAAGGACAAAAAGTTGCAGCAGGAGATCTC
    CTTGTCACAGCTGACTTGGATGCTATCCGTGCAGCAGGACGT
    GAAACTTCAACAGTAGTTGTCTTCACAAATGGTGATGCAATT
    AAATCAGTTAAGTTAGAAAAAACAGGTTCTCTTGCAGCTAAA
    ACAGCAGTTGCTAAAGTAGAATTGTAA
    ID-212A MLLQKELIPMIEANLPNMAYAEKDIAKFFLKQQPLNN (D)
    YSC (S) KALCEYLNVSKATLTRFAKKCGFKGFRQFIFKYQ
    EMIHEKEKLALYTEATEKVLSDYEEMLRKTYTVLDEVQLERI
    AEMIETAERVYLYGKGSSVLALQEMKMRFMRLGVIGEVLSDE
    DMILWSSLLLNENCLVIGASISGQTDIVLEGLQKAADKGAKT
    VLMTTRKFDEEDCFFDELLLLASTDHLSYGNRISPQFPILLI
    TDCLFSNYLESPERQYYYNQTIIHKEE*
    ID-212B ATGTTACTGCAAAAAGAACTAATTCCAATGATAGAAGCTAAC
    TTACCAAATATGGCATATGCTGAAAAAGACATTGCTAAATTC
    TTCTTAAAACAGCAACCTCTGAATRATTATTCATSTAARGCA
    TTGTGCGAATACCTTAATGTATCCAAAGCAACATTGACTCGA
    TTTGCGAAAAAATGTGGTTTTAAAGGTTTTAGACAATTCATT
    TTCAAATACCAAGAGATGATTCATGAGAAAGAAAAGTTGGCA
    TTATATACAGAGGCAACAGAAAAAGTTTTATCCGACTATGAG
    GAAATGTTGAGAAAAACTTACACGGTTCTTGATGAAGTTCAA
    CTTGAGCGTATTGCTGAGATGATAGAAACTGCTGAGCGTGTA
    TATCTCTACGGTAAAGGAAGTTCTGTTCTTGCTTTACAAGAA
    ATGAAGATGAGATTTATGCGTCTCGGAGTGATTGGTGAAGTA
    TTATCAGACGAGGATATGATTTTGTGGAGTAGCTTACTACTT
    AATGAAAATTGCCTTGTCATTGGAGCATCCATTTCAGGTCAA
    ACTGATATTGTACTAGAAGGTCTACAAAAAGCTGCAGATAAA
    GGCGCTAAAACAGTTTTAATGACTACAAGAAAATTTGACGAA
    GAAGATTGTTTCTTTGATGAACTATTGTTATTAGCTTCGACC
    GATCATCTCTCGTATGGCAATCGCATATCACCTCAGTTTCCA
    ATACTTTTAATTACAGACTGCTTATTCTCTAATTATCTGGAA
    AGTCCAGAGAGACAATATTATTACAATCAAACTATTATCCAT
    AAGGAGGAATAA
    ID-213A MNKSRLGRGRHGKTRHILLALIGILAISICLLGGFIAFKIYQ
    QKSFEQKIESLKKEKDDQLSEGNQKEHFRQGQAEVIAYYPLQ
    GEKVISSVRELINQDVKDKLESKDNLVFYYTEQEESGLKGVV
    NRNVTKQIYDLVAFKIEETEKTSLGKVHLTEDGQPFTLDQLF
    SDASKAKEQLIKELTSFIEDKKIEQDQSEQIVKNFSDQDLSA
    WNFDYKDSQIILYPSPVVENLEEIALPVSAFFDVIQSSYLLE
    KDAALYQSYFDKKHQKVVALTFDDGPNPATTPQVLETLAKYD
    IKAFFVLGKNVSGNEDLVKRIKSEGHVVGNHSWSHPILSQLS
    LDEAKKQITDTEDVLTKVLGSSSKLMRPPYGAITDDIRNSLD
    LSFIMWDVDSLDWKSKNEASILTEIQYQVANGSIVLMHDIHS
    PTVNALPRVIEYLKNQGYTFVTIPEMLNTRLKAHELYYS
    RDE*
    ID-213B ATGAATAAAAGTAGACTAGGACGTGGCAGACACGGGAAAACG
    AGACATRTATTATTGGCTTTGATTGGTATTTTAGCAATTTCT
    ATTTGCCTATTAGGCGGATTTATTGCTTTTAAGATCTACCAG
    CAAAAAAGTTTTGAGCAAAAGATTGAATCGCTCAAAAAAGAG
    AAAGATGATCAATTGAGTGAGGGAAATCAGAAGGAGCATTTT
    CGTCAGGGGCAAGCCGAAGTGATTGCCTATTATCCTCTCCAA
    GGGGAGAAAGTGATTTCCTCTGTTAGGGAGT(C)TGATAAAT
    CAAGATGTTAAGGACAAGCTAGAAAGTAAGGACAATCTTGTT
    TTCTACTATACAGAGCAAGAAGAGTCAGGTTTAAAGGGAGTC
    GTTAATCGTAATGTGACCAAACAAATCTATGATTTAGTTGCT
    TTTAAGATTGAAGAGACTGAAAAGACCAGTCTAGGAAAGGTT
    CACTTAACAGAAGATGGGCAACCTTTTACACTTGACCAACTG
    TTTTCAGATGCTAGTAAGGCTAAGGAACAGCTGATAAAAGAG
    TTGACCTCCTTCATAGAGGATAAAAAAATAGAGCAAGACCAG
    AGTGAGCAGATTGTAAAAAACTTCTCTGACCAAGACTTGTCT
    GCATGGAATTTTGATTACAAGGATAGTCAGATTATCCTTTAT
    CCAAGTCCTGTGGTTGAAAATTTAGAAGAGATAGCCTTGCCA
    GTATCTGCTTTCTTTGATGTTATCCAATCTTCGTACTTACTC
    GAAAAAGATGCGGCCTTGTACCAATCTTACTTTGATAAGAAA
    CATCAAAAAGTTGTCGCTCTAACCTTTGATGATGGTCCAAAT
    CCAGCAACGACCCCGCAGGTATTAGAGACCCTAGCTAAATAT
    GATATTAAAGCGA(_)C(_)T(_)TTCTTTGTGCTTGGGAAA
    AATGTTTCTGGGAATGAGGACTTGGTGAAGAGGATAAAATCT
    GAAGGTCATGTTGTTGGAAACCATAGCTGGAGCCATCCGATT
    CTCTCGCAACTCTCTCTTGATGAAGCTAAAAAGCAGATTACT
    GATACTGAGGATGTGCTAACTAAAGTGCTGGGTTCTAGTTCT
    AAACTCATGCGTCCACCTTATGGTGCTATTACAGATGATATT
    CGCAATAGCTTGGATTTGAGCTTTATCATGTGGGATGTGGAT
    AGTCTGGACTGGAAGAGTAAAAATGAAGCATCTATTTTGACA
    GAAATTCAGTATCAAGTAGCTAATGGCTCTATCGTTTTGATG
    CATGATATTCACAGTCCGACAGTCAATGCCTTGCCAAGGGTC
    ATTGAGTATTTGAAAAATCAAGGTTATACCTTTGTGACCATA
    CCAGAGATGCTCAATACTCGCCTAAAAGCTCATGAGCTGTAC
    TATAGTCGTGATGAATAA
    ID-214A MFVKKGDKVRVIAGKDKGTEAVVLTALPKVNKVIVEGVNIVK
    KHQRPTNELPQGGIIEKEAAIHVSNVQVLDKNGVAGRVGYKF
    VDGKKVRYNKKSGEVLD*
    ID-214B ATGTTTGTAAAAAAAGGCGACAAAGTTCGCGTAATCGCTGGT
    AAAGATAAGGGAACAGAAGCTGTTGTCCTTACTGCCCTTCCA
    AAAGTAAACAAAGTTATCGTTGAAGGTGTTAACATTGTTAAG
    AAACACCAACGTCCAACTAACGAGCTTCCTCAAGGTGGTATC
    ATCGAGAAAGAAGCAGCTATCCACGTATCAAACGTTCAACTT
    TTGGACAAAAATGGTGTAGCTGGTCGTGTTGGATACAAATTT
    GTAGACGGTAAAAAAGTTCGCTACAACAAAAAATCAGGCGAA
    GTGCTTGATTAA
    ID-215A MKKISNFCMLLLLLCTTFFVFNVNYTREVVRIQEMGKTVDSL
    DLYLKDINEPAASVLRFFEDVSKEYKVSIIKTDSGDEVVKSG
    VFDKDTFPYQEFGISSLDFTTDGEGVYSNKEISNKLGTIPTF
    LKAKPIQLMTFQTYIKDTSRSLNGRYTITSTQEMDKDRIVQK
    WSDFFKIDQATLLEPTYKSAVEVINRDLLLSAIVFVLAILLL
    VLVTVYQPMMEMKRVGVQKLLGFQDRAVLADVVKGNLYLLLG
    GALVINLGVFFLLDYKPKDLFPMLWLSHFLLLQLYLFISWLT
    YLLIQKMTISSLLKGFSSFKFGLIFNYVMKIGTTILLTALLI
    GVGRSLEQENKELAYQQQWVSQGNYLTLETFKLNDNLWQEEL
    AGSGKSTDYFYRFYQDLVEKTQAGYVQSSSLPVKNFVQSEQI
    QQYQLTDTVDVYYANRNFLKSKGFKLPNTGIKKVILMPASTK
    GEEDKNQLLGKLIAFHSMKYEEQQKRTIEEMDVEIAYYEGDW
    SFFPYSDKRKENLSNPIISLVNDSDMMWDEKASLSTTGLNNP
    IKIENTVQHQKEITELVEKLSDGNYLKFSSIQAIQQEKVDSY
    RDAVRNFNLLFALFGLLSMMISYFLLVTTFLLKRRDIITKKF
    MGWKLVDRYRPLLVLLLLGYSFPLLVLIFFAHAFLPLLLFAG
    FTCLDILFVLGLASRMEKRSLVELLKGGIL*
    ID-215B ATGAAAAAAATCAGTAATTTCTGTATGTTACTCCTGCTTCTG
    TGTACCACTTTTTTTGTTTTTAATGTAAACTATACACGAGAA
    GTGGTTCGGATTCAAGAAATGGGAAAGACTGTAGATTCTTTG
    GATTTGTATTTGAAAGATATTAACGAACCTGCAGCGTCTGTT
    CTTCGATTTTTTGAGGATGTATCAAAGGAGTATAAAGTCTCC
    ATCATCAAAACAGACAGTGGTGATGAGGTGGTCAAGTCTGGT
    GTTTTTGATAAAGATACCTTCCCCTACCAAGAGTTTGGGAT
    TTCTTCTCTTGATTTTACCACAGATGGTGAAGGAGTCTATAG
    TAATAAAGAAATTTCCAATAAACTTGGTACGATTCCGACCTT
    TCTAAAAGCCAAACCTATTCAGCTTATGACTTTTCAAACCTA
    TATCAAGGATACATCTCGTAGTTTAAATGGTCGCTATACGAT
    AACTTCTACACAAGAGATGGACAAGGATAGGATTGTACAGAA
    ATGGAGCGATTTTTTCAAGATAGACCAGGCTACCTTGCTAGA
    GCCGACCTACAAAAGTGCAGTGGAAGTCATAAATCGAGATTT
    GCTTTTATCTGCCATTGTTTTTGTCTTGGCTATTTTGCTTCT
    TGTGTTAGTGACAGTGTATCAACCGATGATGGAGATGAAAAG
    AGTTGGGGTACAAAAATTACTTGGTTTTCAAGATAGGGCTGT
    TTTAGCTGATGTTGTAAAAGGCAACCTTTACCTCCTCCTAGG
    TGGGGCTCTTGTGATCAATCTAGGCGTGTTTTTCTTGCTTGA
    TTATAAGCCAAAAGATTTGTTTCCTATGCTGTGGTTGTCTCA
    TTTTTTGCTGTTGCAGCTTTATCTCTTTATCAGTTGGTTGAC
    TTACCTCTTAATCCAAAAAATGACAATCAGCTCTCTGCTGAA
    AGGTTTTTCATCTTTCAAATTTGGTCTTATCTTCAATTATGT
    GATGAAAATAGGGACAACTATTTTACTGACGGCCTTACTGAT
    TGGGGTGGGCAGAAGTTTAGAACAAGAAAACAAAGAACTTGC
    TTATCAGCAACAGTGGGTAAGTCAAGGTAATTACCTGACCTT
    AGAAACCTTCAAACTCAATGATAATCTGTGGCAAGAAGAGCT
    AGCAGGGTCAGGGAAATCTACAGATTATTTCTATCGATTTTA
    TCAGGATTTGGTAGAAAAAACGCAGGCGGGCTATGTGCAGAG
    TAGCAGTCTTCCTGTAAAAAATTTTGTCCAATCAGAACAGAT
    TCAGCAATATCAGTTAACAGATACGGTGGATGTTTACTATGC
    CAATCGCAATTTTCTAAAGAGCAAGGGATTCAAGCTACCAAA
    TACCGGTATTAAAAAAGTTATTTTGATGCCAGCAAGTACGAA
    AGGTGAAGAAGATAAAAATCAGCTCTTGGGGAAGTTAATTGC
    CTTTCATTCGATGAAGTATGAAGAGCAGCAAAAACGAACGAT
    AGAGGAGATGGATGTCGAGATTGCCTATTATGAAGGAGATTG
    GTCATTTTTCCCATATAGTGATAAGCGAAAGGAAAATCTCTC
    CAATCCAATTATTAGCTTGGTCAATGATTCTGATATGATGTG
    GGATGAGAAAGCCTCCCTGTCAACAACTGGCTTAAATAATCC
    GATTAAAATTGAAAATACGGTTCAACATCAAAAAGAGATTAC
    AGAGTTAGTTGAGAAATTGTCAGATGGAAATTATTTAAAATT
    TTCATCTATTCAAGCCATTCAACAAGAGAAAGTGGATTCTTA
    TCGAGATGCTGTTCGGAATTTTAACCTACTCTTTGCTTTGTT
    TGGTCTCCTTAGCATGATGATTTCCTACTTCTTACTAGTAAC
    AACTTTCTTATTGAAGCGCAGGGATATCATTACCAAGAAGTT
    TATGGGGTGGAAACTGGTCGATCGCTACCGTCCTCTCCTCGT
    TCTGCTCTTGCTGGGCTATAGTTTCCCTCTTCTAGTCTTGAT
    TTTCTTTGCCCATGCGTTCTTACCACTTCTACTGTTTGCAGG
    TTTTACATGTCTGGATATACTATTTGTGCTAGGCTTAGCTTC
    TAGGATGGAGAAAAGAAGTCTAGTAGAGTTATTGAAAGGGGG
    CATCTTATGA
    ID-216A MPITAADIRREVKEKNVTFIRLMFSDILGTMKNVEIPATDEQ
    LDKVLSNKVMFDGSSIEGFVRINESDMYLYPDLDTWTVFPWG
    DENGSVAGLICDVYTTEGEPFAGDPRGNLKRALRHMEEVGFK
    SFNLGPEPEFFLFKLDENGDPTLEVNDKGGYFDLAPTDLADN
    TRREIVNVLTKMGFEVEASHHEVAVGQHEIDFKYDEVLRACD
    KIQIFKLVVKTIARKHGLYATFMAKPKFGIAGSGMHCNMSLF
    DAEGNNAFFDPNDPKGMQLSETAYHFLGGLIKHAYNYTAIMN
    PTVNSYKRLVPGYEAPVYIAWAGRNRSPLVRVPASRGMGTRL
    ELRSVDPMANPYVAMAVLLEVGLYGIENKIEAPAPIEENIYI
    MTAEERKEAGITDLPSTLHNALKALTEDEVVKAALGDHIYTS
    FLEAKRIEWASYATFVSQWEIDNYLDLY*
    ID-216B ATGCCAATCACAGCTGCAGATATTCGTCGTGAAGTCAAGGAA
    AAAAATGTTACCTTTATTCGTCTTATGTTCTCAGATATTTTG
    GGAACCATGAAAAACGTCGAAATTCCTGCTACAGATGAACAG
    TTAGATAAGGTCTTGTCGAACAAGGTTATGTTTGATGGATCT
    TCTATTGAAGGTTTTGTACGTATCAATGAGTCGGATATGTAC
    TTGTACCCGGACTTGGATACATGGACAGTCTTCCCTTGGGGA
    GATGAAAATGGAAGTGTTGCAGGTCTGATCTGTGATGTT
    (C) TATACAACAGAAGGTGAACCATTTGCGGGTGACCCTCG
    TGGTAATTTGAAACGAGCTCTTCGTCACATGGAAGAAGTTGG
    ATTCAAATCCTTCAACCTTGGTCCAGAGCCAGAATTCTTCCT
    ATTTAAGTTGGATGAAAATGGGGACCCAACACTTGAAGTGAA
    TGACAAGGGTGGCTACTTTGACTTGGCACCTACTGACCTTGC
    GGACAACACACGTCGTGAGATTGTGAATGTCTTGACCAAAAT
    GGGATTTGAAGTAGAAGCGAGTCACCACGAGGTTGCGGTTGG
    ACAGCATGAGATTGACTTTAAGTACGATGAAGTTCTCCGTGC
    TTGTGATAAGATTCAAATCTTTAAGCTTGTTGTTAAAACCAT
    TGCTCGCAAACACGGACTTTACGCAACATTTATGGCGAAGCC
    AAAATTTGGTATTGCTGGATCAGGTATGCACTGTAATATGTC
    CTTGTTTGATGCAGAAGGAAATAACGCCTTCTTTGATCCAAA
    TGATCCAAAAGGAATGCAGTTGTCAGAAACAGCTTACCATTT
    CCTAGGCGGTTTGATCAAGCATGCTTACAACTATACTGCCAT
    CATGAACCCAACAGTTAACTCATACAAACGTTTGGTTCCAGG
    TTATGAAGCGCCTGTTTACATTGCTTGGGCTGGTCGTAACCG
    TTCGCCACTTGTGCGCGTACCTGCTTCACGTGGTATGGGAAC
    TCGTCTTGAGTTGCGTTCAGTGGATCCAATGGCGAACCCTTA
    CGTTGCTATGGCTGTTCTTTTGGAAGTTGGTTTGTATGGTAT
    TGAAAATAAAATCGAAGCACCAGCTCCTATCGAAGAAAATAT
    CTACATCATGACAGCAGAAGAGCGCAAGGAAGCTGGTATTAC
    AGACCTTCCATCAACTCTTCACAACGCTTTGAAAGCTTTGAC
    AGAAGATGAAGTGGTTAAAGCTGCTCTCGGAGATCACATCTA
    TACTAGCTTCCTTGAAGCCAAACGAATCGAATGGGCAAGTTA
    TGCAACCTTCGTTTCACAATGGGAAATTGATAATTATTTAGA
    CCTTTACTAA
    ID-217A MVYLVLGILLLLLYVFATPESIKGTVNIVAMVCILVALLILL
    VLSFLKIFQLPTEIFLAIAMLILAYFSVRDITLMPVKKSK
    RR*
    ID-217B ATGGTCTATTTAGTCCTAGGAATTTTACTGCTCCTACTCTAT
    GTATTTGCGACACCAGAAAGCATTAAAGGGACTGTCAATATC
    GTCGCTATGGTATGTATTTTAGTGGCACTCTTGATTTTATTG
    GTTCTATCTTTTCTGAAAATTTTTCAATTACCAACAGAAATA
    TTCCTAGCAATAGCCATGTTGATCCTAGCTTACTTTAGTGTT
    AGAGACATCACACTCATGCCAGTCAAAAAAAGTAAAAGAAGA
    TAA
    ID-219A SGLGLNFYALSSYYLGSFLAPLVYFFDLTNMPDAIYLTTLLK
    FGLIGLSTFFSLNKLFQSIPQILKLALSTSYALMSFTVSQLE
    IKTWLDVFILIPLIITGLHLLITEKKLLLYFTSLSILFIQNY
    YFGYMTVLFLIFWYLCQISWDFKTRKSSVLDFIVISFLAGMA
    SLIMTLPTLFDLQTHGEKLTEVTKFQTESSWYLDLFAKQFIG
    SFDTTKYGAIPMIFVGLFPFILTILFFTLKSIKFHVKLIYVI
    FFAFLIASFYIEALDLFWQGMHTPNMFLHRYAWIFSTLLIYT
    AAEVLKRLKELKVWNFLVSLFLVVAGFLATIYLKSHYSLTDL
    NILLTLEFLVVYSLLLLAVIKKFISVNLFAILISLFILVEMS
    LNASSQMDGIAKEWGFASRSAYSRDIPAMESFSTYIGNQFTR
    TEKLQTQTGNDSMKFNYNGISQFSSVRNRSSSSTLDKLGFKS
    SGTNLNLRYANNSILADSLFGIQYNISDSPIDKYGFKDIYQK
    DNLTLYENQYSLPIAVASQSVYNDVKFNEHTLDNQASFLNQL
    ANVNFDYFSPIPYEKTEKIENTNDLISVTSSSNEDAAIQYQI
    EVPENSQVYLSFINLHFSNDKQKKVDILVNGEKKTFTTDNVF
    SFFNLGYTKEKKTFNINVSFPGNSQVSFESPTFYRLDTKTFT
    EAIQKIKEQPVTVSTSKNKVFATYDVQQDTSIFFTIPYDKGW
    SAYQDGKKIEIKQAQTGFMKVDIPKGKGTITLSFIPNGFITG
    AICSFTSLLLFGIYNHRRKSSKA*
    ID-219B AGTGGTCTAGGGCTAAACTTCTATGCCCTATCTAGTTATTAC
    TTGGGTAGTTTTCTCGCGCCTCTGGTTTACTTTTTTGATCTA
    ACGAATATGCCAGATGCTATCTATCTGACAACTCTCTTAAAA
    TTTGGATTGATTGGTCTGTCAACCTTTTTTAGTTTGAATAAA
    TTGTTTCAATCTATCCCTCAGATTTTAAAACTAGCCTTATCT
    ACTTCCTATGCTCTGATGAGTTTCACTGTCAGTCAATTAGAG
    ATAAAAACCTGGCTAGATGTTTTTATCTTGATTCCTTTAATT
    ATAACTGGTTTACATCTACTGATAACTGAAAAGAAACTCCTA
    TTGTACTTTACAAGTCTGTCAATCTTATTTATTCAAAATTAT
    TATTTTGGATATATGACAGTATTGTTTCTTATTTTCTGGTAT
    CTCTGTCAAATTTCGTGGGACTTTAAGACTCGAAAATCATCT
    GTTCTTGATTTCATAGTTATCTCCTTTTTAGCTGGTATGGCT
    AGTTTGATTATGACTCTTCCCACTCTATTTGATTTACAGACA
    CATGGGGAAAAATTGACTGAAGTTACAAAGTTTCAAACTGAA
    AGTAGCTGGTATCTTGATCTCTTTGCTAAGCAATTCATTGGT
    TCCTTTGACACAACAAAGTATGGGGCCATCCCAATGATTTTT
    GTTGGACTATTTCCCTTTATTTTGACCATTTTATTTTTTACG
    CTGAAATCTATTAAGTTTCACGTGAAACTCATATATGTAATA
    TTCTTTGCATTTCTAATTGCAAGCTTTTACATAGAAGCTCTT
    GACTTATTTTGGCAAGGCATGCATACTCCAAACATGTTTTTA
    CATCGCTATGCTTGGATTTTCTCTACCTTGTTAATTTACACA
    GCAGCAGAAGTCTTAAAGCGTCTGAAAGAACTTAAAGTCTGG
    AATTTTTTAGTTTCGCTTTTTCTTGTAGTAGCAGGATTTTTA
    GCTACCATCTATCTAAAATCGCATTATTCTTTTTTAACAGAT
    TTGAATATTCTGCTTACTCTTGAATTTTTGGTTGTCTATTCT
    CTTTTACTCCTTGCAGTTATCAAAAAGTTTATATCTGTGAAT
    CTATTTGCCATTCTAATCTCTTTATTTATACTGGTTGAAATG
    AGTTTAAATGCTTCATCTCAAATGGACGGAATTGCTAAGGAA
    TGGGGATTTGCTTCTCGAAGTGCTTATAGTCGAGATATCCCA
    GCTATGGAATCTTTCTCAACATATATTGGAAATCAATTTACT
    CGTACTGAAAAACTACAAACTCAGACAGGAAATGACAGTATG
    AAATTCAACTACAATGGAATCTCTCAATTTTCATCTGTTCGA
    AATCGTTCATCAAGCTCTACTTTAGATAAACTTGGTTTTAAA
    TCCTCTGGGACTAATCTCAATCTCCGATATGCAAATAATAGT
    ATTTTGGCTGATAGTTTATTTGGTATCCAGTACAATATCTCA
    GACAGTCCTATTGATAAGTATGGCTTTAAAGATATCTATCAA
    AAAGATAATCTTACCCTATATGAAAATCAATACTCTCTTCCG
    ATTGCAGTTGCGAGTCAATCTGTTTACAATGATGTCAAGTTC
    AATGAACATACCTTGGATAATCAGGCCTCATTTTTAAATCAA
    CTTGCTAACGTCAATTTTGATTATTTTTCTCCAATACCTTAT
    GAAAAAACAGAAAAAATAGAAAATACTAATGATTTGATTAGT
    GTCACAAGTTCTTCAAATCAAGATGCAGCAATCCAGTATCAA
    ATTGAAGTTCCAGAAAACAGCCAAGTTTATCTCTCTTTCATA
    AACCTTCACTTTTCTAACGATAAACAAAAGAAGGTTGACATC
    CTTGTAAATGGTGAAAAAAAGACTTTTACAACTGATAATGTC
    TTCTCCTTCTTTAATCTAGGATATACTAAAGAGAAAAAAACT
    TTCAATATCAATGTTAGTTTCCCTGGAAATTCACAAGTATCA
    TTTGAATCTCCTACCTTCTATCGTTTAGATACCAAAACTTTC
    ACCGAGGCAATTCAAAAAATTAAAGAACAACCTGTCACAGTA
    TCAACTTCTAAAAACAAGGTTTTTGCTACATATGATGTCCAA
    CAAGATACATCTATTTTCTTCACCATTCCTTATGACAAAGGT
    TGGTCTGCCTACCAAGATGGTAAGAAAATAGAAATTAAACAA
    GCTCAAACTGGATTTATGAAAGTTGACATTCCCAAGGGGAAA
    GGAACTATTACACTTTCCTTCATTCCCAATGGTTTTATTACT
    GGAGCAATCTGTTCCTTTACTTCTCTCTTACTATTTGGAATC
    TATAATCACAGACGAAAGTCATCTAAGGCATAA
    ID-220A MNEKVFRDPVHNYIHVNNQIIYDLINP (T) Q (K) EFQR
    LRRIKQLGTSSYTFHGGEHSRFSHCLGVYEIARRITEIFEEK
    YPEEWNPAESLLTMTAALLHDLGHGAYSHTFEHLFDTDHEAI
    TQEIIQNPETEIHQVLLQVAPDFPEKVASVIDHTYPNKQVVQ
    LISSQIDADRMDYLLRDSYFTGASYGEFDLTRILRVIRPIEN
    GIAFQRNGMHAIEDYVLSRYQMYMQVYFHPATRAMEVLLQNL
    LKRAKELYPEDKDFFARTSPHLLPFFEKNVTLTDYLALDDGV
    MNTYFQLWMTSPDKILADLSHRFVNRKVFKSITFSQEDQDQL
    TSMRKLVEDIGFDPDYYTAIHKNFDLPYDIYRPESENPRTQI
    EILQKNGELAELSSLSPIVQSLAGSRHGDNRFYFPKEMLDQN
    SIFASITQQFLHL*
    ID-220B ATGAACGAAAAAGTATTCCGTGACCCTGTTCACAACTACATC
    CATGTCAATAATCAAATCATCTATGACTTGATTAATMCAMAA
    GAATTTCAGCGTTTGCGCCGGATCAAACAACTGGGAACTTCC
    AGTTATACCTTCCACGGTGGAGAACACAGTCGCTTCTCTCAC
    TGTCTAGGAGTCTATGAAATTGCACGACGCATCACAGAGATT
    TTCGAAGAAAAATATCCTGAGGAATGGAATCCTGCCGAGTCT
    CTCTTGACCATGACCGCTGCTCTCCTACACGACCTTGGGCAT
    GGTGCCTACTCCCATACTTTTGAACATCTCTTTGATACAGAC
    CATGAAGCCATTACTCAGGAGATTATTCAAAATCCTGAGACA
    GAGATTCACCAAGTCCTGCTACAAGTGGCACCTGATTTCCCA
    GAAAAGGTGGCCAGTGTCATTGACCATACCTATCCTAATAAG
    CAGGTCGTGCAGCTCATTTCTAGTCAGATTGACGCAGATCGC
    ATGGACTATCTCTTGCGCGACTCCTATTTTACAGGAGCATCC
    TATGGGGAATTTGACCTGACTCGAATCCTCCGAGTCATTCGT
    CCTATCGAAAATGGTATCGCCTTTCAGCGCAATGGCATGCAC
    GCCATCGAAGACTACGTCCTCAGTCGCTACCAGATGTACATG
    CAGGTTTATTTCCACCCCGCAACACGCGCCATGGAAGTTCTC
    CTACAGAATCTTCTCAAACGCGCCAAGGAACTCTATCCTGAG
    GACAAGGATTTCTTTGCCCGAACTTCTCCACACCTCCTGCCT
    TTCTTCGAAAAAAATGTGACCTTGACTGACTATCTGGCTCTG
    GATGATGGCGTGATGAATACCTACTTCCAGCTTTGGATGACC
    AGTCCTGACAAGATTCTTGCAGATTTATCGCATCGCTTTGTC
    AACCGCAAGGTCTTTAAATCCATTACCTTTTCACAAGAGGAC
    CAAGATCAACTTACTAGCATGAGAAAATTGGTTGAGGATATC
    GGCTTTGATCCCGACTACTACACTGCCATTCATAAGAACTTT
    GACCTCCCTTATGATATCTATCGTCCCGAATCTGAAAACCCA
    CGGACACAGATTGAGATTTTACAAAAAAATGGAGAACTGGCC
    GAACTCTCTAGCCTGTCTCCTATCGTCCAATCCCTTGCTGGC
    AGTCGCCACGGAGATAATCGCTTTTATTTTCCAAAAGAAATG
    TTGGACCAAAACAGCATCTTTGCAAGCATTACCCAGCAATTT
    TTACACTTGA
    ID-225A MNPSLEDINATIATGYSSDTAIKESIDFFQNRTQTFLTNNHA
    HLEHTTKEVRC*
    ID-225B ATGAATCCCAGCTTGGAGGATATCAATGCAACCATAGCCACT
    GGATAGAGCTCGGACACGGCCATCAAAGAGAGCATTGATTTC
    TTCCAAAACCGAACTCAAACGTTCCTCACCACAACCATGCTC
    ATCTTGAGCACACCACCAAAGAGGTCAGATGTTAA
    ID-301A MLHLKLVKQEIEAEKPASVEAWIISVKFKKGCYRHI*
    ID-301B ATGCTACACTTAAAATTAGTAAAACAAGAAATAGAAGCTGAA
    AAGCCAGCATCTGTAGAAGCTTGGATCATTTCCGTCAAATTT
    AAAAAAGGTTGCTACCGACATATATAG
    ID-304TA MELVLPNNYVALEQEEMMYLDGGGVGRNWWNSRGSFATVLDV
    DLAIYSGGATIYSAYAIKKAISANRGAITRTLRSLIIKHVGS
    AAGHLVNTALNVALTVTGFSLGGAIAYGADWADGSLDGY
    IFA*
    ID-304TB ATGGAACTCGTATTACCAATAATTATGTTGCTCTTGAGCAAG
    AAGAGATGATGTATCTTGATGGGGGTGGTGGTGGTCGTAACT
    GGTGGAATAGTAGAGGTAGTTTTGCAACAGTTCTGGATGTAG
    ATTTGGCCATCTATAGTGGTGGTGCAACAATTTATTCTGCTT
    ATGCGATAAAAAAAGCTATCTCAGCTAATAGAGGGGCTATTA
    CGAGAACATTACGTAGTTTAATAATTAAACATGTAGGTAGTG
    CAGCTGGCCATTTAGTCAATACTGCACTAAACGTTGCACTAA
    CTGTTACTGGATTTTCACTAGGTGGAGCAATCGCATATGGGG
    CTGAGTGGGCTGACGGTAGCTTAGATGGTTATATTTTTGCTT
    AA
  • [0112]
    TABLE 3
    ID-304L2A MELVLPNNYVALEQEEMMYLDGGFSILRWPVATAINIAFNG
    VLGGGAISLVRNYIRNYGLGRVTSAIAGAAARYVGVRVANR
    VAGFALSAINGFAAWMSIGDAITTIWANNDVNRRDPNLN
    ALW
    ID-304L2B ATGGAACTCGTATTACCAAATAATTATGTTGCTCTTGAGCA
    AGAAGAGATGATGTATCTTGATGGGGGATTTTCTATTCTGA
    GATGGCCTGTTGCAACAGCCATTAATATAGCTTTTAATGGT
    GTTTTAGGTGGAGGAGCAATCAGTCTAGTTAGAAATTATAT
    TCGTAATTATGGTTTGGGGCGAGTTACAAGCGCAATTGCTG
    GAGCAGCTGCAAGATATGTTGGGGTACGAGTTGCAAATAGA
    GTGGCAGGATTTGCACTGTCTGCTATTAATGGATTTGCAGC
    TTGGATGTCAATTGGCGATGCTATTACAACAATCTGGGCCA
    ACAATGATGTAAATAGGAGAGACCCAAATTTAAACGCCTTG
    TGGTAA
    ID-304L3A MELVLPNNYVVIDEEEMMYLDGGAYLSKRACQGICAALAMS
    PGTFIALAGAAVLTKKLINYIKVGGLGGWLIGAAAGVLAGA
    AGRIAYCIGYGALNRGCDISGNPYPWDGFISATVR
    ID-304L3B ATGGAACTTGTATTACCAAATAATTATGTTGTGATTGATGA
    AGAAGAGATGATGTACCTTGATGGGGGAGCTTATTTAAGCA
    AGCGTGCTTGTCAAGGAATTTGCGCAGCTTTAGCTATGAGT
    CCAGGAACTTTTATAGCATTAGCTGGAGCTGCAGTTTTAAC
    CAAAAAACTAATAAACTATATTAAAGTTGGAGGCCTTGGAG
    GTTGGCTTATTGGTGCAGCAGCAGGTGTATTGGCTGGGGCG
    GCAGGAAGAATAGCTTACTGTATTGGATATGGTGCTCTTAA
    TAGAGGTTGTGATATTAGCGGGAACCCTTATCCTTGGGATG
    GATTCATATCTGCGACAGTAAGATGA
    ID-304L4A MELVLPNNYVVIDEEEMMYLDGEAYLSKRACQGICAALAMS
    SGTFIALAGAAVLTKKLINYIKVGGLGGWLIGAAAGVLATA
    AGKIAYYIGYGVLNRGCDINGNPYPWDGFISATVR
    ID-304L4B ATGGAACTTGTATTACCAAATAATTATGTTGTGATTGATGA
    AGAAGAAATGATGTATCTTGATGGGGAAGCTTATTTAAGCA
    AGCGTGCTTGTCAAGGAATTTGCGCAGCTTTAGCTATGAGT
    TCAGGCACTTTTATAGCATTAGCTGGAGCTGCAGTTTTAAC
    CAAAAAACTAATAAACTATATTAAGGTTGGAGGTCTTGGAG
    GCTGGCTTATTGGTGCAGCAGCAGGTGTATTGGCTACAGCA
    GCAGGGAAAATAGCTTACTATATTGGATATGGTGTTCTTAA
    TAGAGGTTGTGATATTAACGGGAACCCTTATCCTTGGGATG
    GATTCATATCTGCGACAGTAAGATGAGTAATGTAG
    ID-304L5A MKQFQLRRRKQMELVLPNNYVVIDEEEMMYLDGGAYLSKRA
    CQGICVALAMSPGIFIALAGAAVLTKKLINYIKVGGLGGWL
    IGAAAGVLATAAGKIAYCIGYGALNRGCDISGNPYPWDGFI
    SATVR
    ID-304L5B ATGGAACTTGTATTACCAAATAATTATGTTGTGATTGATGA
    AGAAGAAATGATGTATCTTGATGGGGGAGCTTATTTAAGCA
    AGCGTGCTTGTCAAGGAATTTGCGTAGCTTTAGCTATGAGT
    CCAGGAATTTTTATAGCATTAGCTGGAGCTGCAGTTTTAAC
    CAAAAAACTAATAAACTATATTAAGGTTGGAGGTCTTGGAG
    GCTGGCTTATTGGTGCAGCAGCAGGTGTATTGGCTACAGCA
    GCAGGAAAAATAGCTTACTGTATTGGATATGGTGCTCTTAA
    TAGAGGTTGTGATATTAGCGGGAACCCTTATCCTTGGGATG
    GATTCATATCTGCGACAGTAAGATGA
    ID-304L6A MELVLPNNYVVIDEEEMMYLDGGAIYIPRWAITGAITGAAY
    AALAAAGGGGLQLVLASYGLRSALVAGIVKGLGVLGIHIGN
    AFANTVIRSIASAGIGAGADWIFTNIIDGWDGRRDNQLRIG
    ID-304L6B ATGGAACTTGTATTACCAAATAATTATGTTGTGATTGATGA
    AGAAGAGATGATGTACCTTGATGGGGGGGCTATATATATAC
    CCAGGTGGGCAATTACAGGAGCCATTACTGGTGCAGCATAT
    GCAGCATTAGCAGCAGCAGGAGGTGGAGGCCTTCAACTAGT
    TCTTGCATCTTATGGATTACGCTCCGCACTGGTAGCTGGGA
    TTGTTAAAGGTTTAGGAGTATTAGGAATTCATATTGGAAAT
    GCTTTTGCAAATACTGTTATTAGAAGTATTGCATCTGCTGG
    AATTGGTGCTGGAGCTGATTGGATTTTTACCAATATTATTG
    ATGGCTGGGATGGGCGACGTGATAATCAATTGAGAATAGGT
    TAA
    ID-304L7A MELVLPNNYVDLEQEEMMYLDGGGVGRNWWNSRGSFATVLD
    VGLAIYSGGATIYSAYAIKKAISANRGAITRTLRSLIIKHV
    GSAAGHLVNTALNVALTVTGFSLGGAIAYGADWADGSLDGY
    IFA
    ID-304L7B ATGGAACTCGTATTACCAAATAATTATGTTGATCTTGAGCA
    AGAAGAGATGATGTATCTTGATGGGGGTGGTGTTGGTCGTA
    ACTGGTGGAATAGTAGAGGTAGTTTTGCAACAGTTCTGGAT
    GTAGGTTTGGCCATCTATAGTGGTGGTGCAACAATTTATTC
    TGCTTATGCGATAAAAAAAGCTATCTCAGCTAATAGAGGGG
    CTATTACGAGAACATTACGTAGTTTAATAATTAAACATGTA
    GGTAGTGCAGCTGGCCATTTAGTCAATACTGCACTAAACGT
    TGCACTAACTGTTACTGGATTTTCACTAGGTGGAGCAATCG
    CATATGGGGCTGATTGGGCTGACGGTAGCTTAGATGGTTAT
    ATTTTTGCTTAA
  • [0113]
  • 1 60 1 28 PRT Streptococcus pneumoniae 1 Met Ala Gly Asn Ser Phe His Leu Thr Leu Thr Ser Val Ser Gln Ala 1 5 10 15 Gly Gln Gln Thr Leu Arg His Asn His Ser Pro Ile 20 25 2 84 DNA Streptococcus pneumoniae 2 atggcaggca attcctttca cctaactctc acttctgtat ctcaggcagg acaacaaacg 60 cttcgacaca atcacagtcc tatt 84 3 171 PRT Streptococcus pneumoniae 3 Met Ile Asn Glu Glu Ile Ser Lys Glu Ala Gly Gln Ala Ala Gln Thr 1 5 10 15 Ile Ile Ser Tyr Thr Ile Lys Ala Thr Lys Glu Ser Ile Asn Leu Glu 20 25 30 Lys Glu Ile Arg Lys Lys Met Asn Glu Thr Leu Glu Lys Ala Asn Gly 35 40 45 Asn Leu Lys Ser Leu Met Gly Asp Glu Met Lys Ile Lys Asp Leu Tyr 50 55 60 Lys Lys Gly Gln Leu Glu Asn Ile Ser Ile Asp Gln Ile Asp Leu Lys 65 70 75 80 Asp Leu Lys Lys Glu Leu Asn Lys Leu Gly Val Ser Phe Ser Val Met 85 90 95 Lys Asn Lys Glu Ser Lys Asn Tyr Glu Ile Phe Phe Gln Ala Lys Asp 100 105 110 Ile Lys Val Met Glu Tyr Ala Phe Lys Gln Val Ile Ala Lys Glu Asn 115 120 125 Lys Lys Glu Lys Glu Ser Ile Leu Lys Gln Ile Lys Lys Tyr Lys Asp 130 135 140 Leu Ser Lys Asn Lys Asp Lys Thr Lys Glu Lys Gly Lys Arg Lys Val 145 150 155 160 Lys Pro Asn Lys Lys Asp Met Thr Arg Glu Ile 165 170 4 525 DNA Streptococcus pneumoniae 4 atgataaacg aagaaataag caaggaagca ggtcaagcag cacaaaccat aatatcatac 60 acaataaagg caacaaaaga atcaatcaat ttagaaaaag aaataagaaa aaagatgaat 120 gaaactttag aaaaagcaaa tggaaactta aaaagtctta tgggcgatga aatgaaaata 180 aaagacctct acaagaaagg acaactagaa aatataagca tagatcaaat cgacctcaaa 240 gacttaaaaa aagaactaaa caaacttgga gtaagtttct cagtaatgaa aaacaaagaa 300 agcaaaaact atgaaatatt cttccaagcc aaagacataa aagtaatgga atatgccttt 360 aagcaagtca tagccaagga aaataaaaaa gaaaaagaaa gtatcctaaa acaaataaag 420 aaatacaaag acctatccaa aaacaaagat aagacaaaag aaaaaggaaa aaggaaagta 480 aaagaaaaag taaaaccaaa caaaaaagat atgaccagag aaatc 525 5 189 PRT Streptococcus pneumoniae 5 Met Lys Val Ser Lys Lys Ile Thr Leu Phe Ser Leu Ser Phe Ala Gly 1 5 10 15 Phe Val Leu Leu Thr Leu Pro Gln Ala Gly Lys Ala Phe Glu Leu Lys 20 25 30 Glu Asp Trp Ala Phe Lys Gly Gly Ile Arg Tyr Glu Asn Gly Lys Val 35 40 45 Ser Lys Ile Asn Asn Gly Tyr Glu Val Asn Ile Lys Val Leu Asp Leu 50 55 60 Pro Ser Thr Ser Ala Ile Glu Trp Thr Val Arg Leu Asn Gly Glu Lys 65 70 75 80 Gln Asn Thr Asn Phe Leu Ala Glu Glu Arg Thr Val Ser Lys Thr Glu 85 90 95 Asp Lys Gly Arg Phe Leu His Phe Tyr Ile Pro Tyr Gly Tyr Arg Gly 100 105 110 Asp Ile Val Val Glu Ala Lys Ser Gly Asn Glu Val Lys Thr Trp Ser 115 120 125 Thr Lys Val Val Asp Asp Val Tyr Ser Asp Ser Ala Lys Ser Gly Tyr 130 135 140 Phe Ile Leu Asp Gly Glu Gln Ile Leu Glu Ser Ser Trp Asp Ser Val 145 150 155 160 Asn Glu Ser Tyr Ile Ala Thr Leu Pro Thr Val Thr Ser Gly Lys Thr 165 170 175 Val Val Ala Trp Arg Glu Lys Gly Thr Leu Asn Leu Ile 180 185 6 567 DNA Streptococcus pneumoniae 6 atgaaagtat caaaaaaaat tacactattt agtttgtctt ttgcaggttt tgttttattg 60 actttacctc aagcaggaaa ggcttttgaa cttaaagaag actgggcatt taaaggtggc 120 attcgatacg agaatgggaa agtcagcaaa attaataatg gatatgaagt aaatattaaa 180 gtgttagatt tacctagtac tagcgcaatc gaatggacag ttagattgaa tggagaaaag 240 caaaatacta acttcttagc ggaggaaaga actgtatcta aaactgaaga taagggacgt 300 ttcttgcact tttatatccc ctatggatat cgtggggata ttgtagtaga ggctaagagt 360 ggaaacgaag tgaagacttg gtctactaag gtagttgacg atgtttattc agattctgct 420 aagagtggct actttattct cgatggggaa caaatcttag aaagttcatg ggattccgta 480 aatgagtctt atattgcaac gcttccaact gtaacatcag gaaaaactgt tgttgcttgg 540 cgtgaaaaag gaactcttaa tttaatt 567 7 124 PRT Streptococcus pneumoniae 7 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Val Leu Glu Gln Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Gly Phe Ser Ile Pro Arg Trp Pro Val Ala 20 25 30 Thr Ala Ile Asn Ile Ala Phe Asn Gly Val Leu Gly Gly Gly Ala Ile 35 40 45 Ser Leu Val Arg Asn Tyr Ile Arg Asn Tyr Gly Leu Arg Arg Val Thr 50 55 60 Ser Ala Ile Ala Gly Ala Ala Ala Arg Tyr Val Gly Val Arg Val Ala 65 70 75 80 Asn Arg Val Ala Gly Phe Ala Leu Ser Ala Ile Asn Gly Phe Ala Ala 85 90 95 Trp Met Ser Ile Gly Asp Ala Ile Thr Thr Ile Trp Ala Asn Asn Asp 100 105 110 Val Asn Arg Arg Asp Pro Asn Leu Asn Ala Leu Trp 115 120 8 375 DNA Streptococcus pneumoniae 8 atggaactcg tattaccaaa taattatgtt gttcttgagc aagaagagat gatgtatctt 60 gatgggggat tttctattcc gagatggcct gttgcaacag ccattaatat agcttttaat 120 ggtgttttag gtggaggagc aatcagtcta gttagaaatt atattcgtaa ttatggtttg 180 cggcgagtta caagcgcaat tgctggagca gctgcaagat atgttggggt acgagttgca 240 aatagagtgg caggatttgc actgtctgct attaatggat ttgcagcttg gatgtcaatt 300 ggcgatgcta ttacaacaat ctgggccaac aatgatgtaa ataggagaga cccaaattta 360 aacgccttgt ggtaa 375 9 725 PRT Streptococcus pneumoniae 9 Met Lys Asp Thr Phe Lys Asn Val Leu Ser Phe Glu Phe Trp Gln Lys 1 5 10 15 Phe Gly Lys Ala Leu Met Val Val Ile Ala Val Met Pro Ala Ala Gly 20 25 30 Leu Met Ile Ser Ile Gly Lys Ser Ile Val Met Ile Asn Pro Thr Phe 35 40 45 Ala Pro Leu Val Ile Thr Gly Gly Ile Leu Glu Gln Ile Gly Trp Gly 50 55 60 Val Ile Gly Asn Leu His Ile Leu Phe Ala Leu Ala Ile Gly Gly Ser 65 70 75 80 Trp Ala Lys Glu Arg Ala Gly Gly Ala Phe Ala Ala Gly Leu Ala Phe 85 90 95 Ile Leu Ile Asn Arg Ile Thr Gly Thr Ile Phe Gly Val Ser Gly Asp 100 105 110 Met Leu Lys Asn Pro Asp Ala Met Val Thr Thr Phe Phe Gly Gly Ser 115 120 125 Ile Lys Val Ala Asp Tyr Phe Ile Ser Val Leu Glu Ala Pro Ala Leu 130 135 140 Asn Met Gly Val Phe Val Gly Ile Ile Ser Gly Phe Val Gly Ala Thr 145 150 155 160 Ala Tyr Asn Lys Tyr Tyr Asn Phe Arg Lys Leu Pro Asp Ala Leu Ser 165 170 175 Phe Phe Asn Gly Lys Arg Phe Val Pro Phe Val Val Ile Leu Arg Ser 180 185 190 Ala Ile Ala Ala Ile Leu Leu Ala Ala Phe Trp Pro Val Val Gln Thr 195 200 205 Gly Ile Asn Asn Phe Gly Ile Trp Ile Ala Asn Ser Gln Glu Thr Ala 210 215 220 Pro Ile Leu Ala Pro Phe Leu Tyr Gly Thr Leu Glu Arg Leu Leu Leu 225 230 235 240 Pro Phe Gly Leu His His Met Leu Thr Ile Pro Met Asn Tyr Thr Ala 245 250 255 Leu Gly Gly Thr Tyr Asp Ile Leu Thr Gly Ala Ala Lys Gly Thr Gln 260 265 270 Val Phe Gly Gln Asp Pro Leu Trp Leu Ala Trp Val Thr Asp Leu Val 275 280 285 Asn Leu Lys Gly Thr Asp Ala Ser Gln Tyr Gln His Leu Leu Asp Thr 290 295 300 Val His Pro Ala Arg Phe Lys Val Gly Gln Met Ile Gly Ser Phe Gly 305 310 315 320 Ile Leu Met Gly Val Ile Val Ala Ile Tyr Arg Asn Val Asp Ala Asp 325 330 335 Lys Lys His Lys Tyr Lys Gly Met Met Ile Ala Thr Ala Leu Ala Thr 340 345 350 Phe Leu Thr Gly Val Thr Glu Pro Ile Glu Tyr Met Phe Met Phe Ile 355 360 365 Ala Thr Pro Met Tyr Leu Val Tyr Ser Leu Val Gln Gly Ala Ala Phe 370 375 380 Ala Met Ala Asp Val Val Asn Leu Arg Met His Ser Phe Gly Ser Ile 385 390 395 400 Glu Phe Leu Thr Arg Thr Pro Ile Ala Ile Ser Ala Gly Ile Gly Met 405 410 415 Asp Ile Val Asn Phe Val Trp Val Thr Val Leu Phe Ala Val Ile Met 420 425 430 Tyr Phe Ile Ala Asn Phe Met Ile Gln Lys Phe Asn Tyr Ala Thr Pro 435 440 445 Gly Arg Asn Gly Asn Tyr Glu Thr Ala Glu Gly Ser Glu Glu Thr Ser 450 455 460 Ser Glu Val Lys Val Ala Ala Gly Ser Gln Ala Val Asn Ile Ile Asn 465 470 475 480 Leu Leu Gly Gly Arg Val Asn Ile Val Asp Val Asp Ala Cys Met Thr 485 490 495 Arg Leu Arg Val Thr Val Lys Asp Ala Asp Lys Val Gly Asn Ala Glu 500 505 510 Gln Trp Lys Ala Glu Gly Ala Met Gly Leu Val Met Lys Gly Gln Gly 515 520 525 Val Gln Ala Ile Tyr Gly Pro Lys Ala Asp Ile Leu Lys Ser Asp Ile 530 535 540 Gln Asp Ile Leu Asp Ser Gly Glu Ile Ile Pro Glu Thr Leu Pro Ser 545 550 555 560 Gln Met Thr Glu Ala Gln Gln Asn Thr Val His Phe Lys Asp Leu Thr 565 570 575 Glu Glu Val Tyr Ser Val Ala Asp Gly Gln Val Val Ala Leu Glu Gln 580 585 590 Val Lys Asp Pro Val Phe Ala Gln Lys Met Met Gly Asp Gly Phe Ala 595 600 605 Val Glu Pro Ala Asn Gly Asn Ile Val Ser Pro Val Ser Gly Thr Val 610 615 620 Ser Ser Ile Phe Pro Thr Lys His Ala Phe Gly Ile Val Thr Glu Ala 625 630 635 640 Gly Leu Glu Val Leu Val His Ile Gly Leu Asp Thr Val Ser Leu Glu 645 650 655 Gly Lys Pro Phe Thr Val His Val Ala Glu Gly Gln Lys Val Ala Ala 660 665 670 Gly Asp Leu Leu Val Thr Ala Asp Leu Asp Ala Ile Arg Ala Ala Gly 675 680 685 Arg Glu Thr Ser Thr Val Val Val Phe Thr Asn Gly Asp Ala Ile Lys 690 695 700 Ser Val Lys Leu Glu Lys Thr Gly Ser Leu Ala Ala Lys Thr Ala Val 705 710 715 720 Ala Lys Val Glu Leu 725 10 2127 DNA Streptococcus pneumoniae 10 ggtaaggctt tgatggtagt tatcgcggtt atgccggctg ctggtttgat gatttcaatc 60 ggtaagtcta tcgtgatgat taacccaacc tttgcaccac ttgtcatcac aggtggaatt 120 cttgagcaaa tcggttgggg ggttatcggt aaccttcaca ttttgtttgc cctagccatt 180 ggaggaagct gggctaaaga acgtgctggt ggtgctttcg ccgctggtct tgccttcatc 240 ttgattaacc gtatcactgg tacaatcttt ggtgtatcag gcgatatgtt gaaaaatcca 300 gatgctatgg taactacttt ctttggtggt tcaatcaaag ttgctgatta ctttatcagt 360 gttcttgaag ctccagcctt gaacatgggg gtattcgtag ggattatctc aggttttgta 420 ggggcaactg cttacaacaa atactacaac ttccgtaaac ttcctgatgc actttcattc 480 ttcaacggga aacgtttcgt accatttgta gttattcttc gttcagcaat cgctgcaatt 540 ctacttgctg ctttctggcc agtagttcaa acaggtatca ataacttcgg tatctggatt 600 gccaactcac aagaaactgc tccaattctt gcaccattct tgtatggtac tttggaacgt 660 ttgctcttgc catttggtct tcaccacatg ttgactatcc caatgaacta cacagctctt 720 ggtggtactt atgacatttt aactggtgca gctaaaggta ctcaagtatt cggtcaagac 780 ccactatggc ttgcatgggt aacagacctt gtaaacctta aaggtactga tgctagtcaa 840 tatcaacact tgttagatac agtacatcca gctcgtttca aagttggaca aatgatcggt 900 tcattcggta tcttgatggg tgtgattgtt gctatctacc gtaatgttga tgctgacaag 960 aaacataaat acaaaggtat gatgattgca acagctcttg caacattctt gacaggggtt 1020 actgaaccaa tcgaatacat gttcatgttc atcgcaacac ctatgtatct tgtttactca 1080 cttgttcaag gtgctgcctt cgctatggct gacgtcgtaa acctacgtat gcactcattc 1140 ggttcaatcg agttcttgac tcgtacacct attgcaatca gtgctggtat tggtatggat 1200 atcgttaact tcgtttgggt aactgttctc tttgctgtaa tcatgtactt tatcgcaaac 1260 ttcatgattc aaaaattcaa ctacgcaact ccagggcgca acggaaacta cgaaactgct 1320 gaaggttcag aagaaaccag cagcgaagtg aaagttgcag caggctctca agctgtaaac 1380 attatcaacc ttcttggtgg acgtgtaaac atcgttgatg ttgatgcatg tatgactcgt 1440 cttcgtgtaa ctgttaaaga tgcagataaa gtaggaaatg cagagcaatg gaaagcagaa 1500 ggagctatgg gtcttgtcat gaaaggacaa ggggttcaag ctatctacgg tccaaaagct 1560 gacattttga aatctgatat ccaagatatc cttgattcag gtgaaatcat tcctgaaact 1620 cttccaagcc aaatgactga agcacaacaa aacactgttc acttcaaaga tcttactgag 1680 gaagtttact cagtagcaga cggtcaagtt gttgctttgg aacaagtaaa ggatccagta 1740 tttgctcaaa aaatgatggg tgatggattt gcagtagaac ctgcaaatgg aaacattgta 1800 tctccagttt caggtactgt gtcaagcatc ttcccaacaa aacatgcttt tggtattgtg 1860 acggaagcag gtcttgaagt attggttcac attggtttgg acacagtaag tcttgaaggt 1920 aaaccattta cagttcatgt tgctgaagga caaaaagttg cagcaggaga tctccttgtc 1980 acagctgact tggatgctat ccgtgcagca ggacgtgaaa cttcaacagt agttgtcttc 2040 acaaatggtg atgcaattaa atcagttaag ttagaaaaaa caggttctct tgcagctaaa 2100 acagcagttg ctaaagtaga attgtaa 2127 11 269 PRT Streptococcus pneumoniae misc_feature (37)..(37) X is Asn or Asp 11 Met Leu Leu Gln Lys Glu Leu Ile Pro Met Ile Glu Ala Asn Leu Pro 1 5 10 15 Asn Met Ala Tyr Ala Glu Lys Asp Ile Ala Lys Phe Phe Leu Lys Gln 20 25 30 Gln Pro Leu Asn Xaa Tyr Ser Xaa Lys Ala Leu Cys Glu Tyr Leu Asn 35 40 45 Val Ser Lys Ala Thr Leu Thr Arg Phe Ala Lys Lys Cys Gly Phe Lys 50 55 60 Gly Phe Arg Gln Phe Ile Phe Lys Tyr Gln Glu Met Ile His Glu Lys 65 70 75 80 Glu Lys Leu Ala Leu Tyr Thr Glu Ala Thr Glu Lys Val Leu Ser Asp 85 90 95 Tyr Glu Glu Met Leu Arg Lys Thr Tyr Thr Val Leu Asp Glu Val Gln 100 105 110 Leu Glu Arg Ile Ala Glu Met Ile Glu Thr Ala Glu Arg Val Tyr Leu 115 120 125 Tyr Gly Lys Gly Ser Ser Val Leu Ala Leu Gln Glu Met Lys Met Arg 130 135 140 Phe Met Arg Leu Gly Val Ile Gly Glu Val Leu Ser Asp Glu Asp Met 145 150 155 160 Ile Leu Trp Ser Ser Leu Leu Leu Asn Glu Asn Cys Leu Val Ile Gly 165 170 175 Ala Ser Ile Ser Gly Gln Thr Asp Ile Val Leu Glu Gly Leu Gln Lys 180 185 190 Ala Ala Asp Lys Gly Ala Lys Thr Val Leu Met Thr Thr Arg Lys Phe 195 200 205 Asp Glu Glu Asp Cys Phe Phe Asp Glu Leu Leu Leu Leu Ala Ser Thr 210 215 220 Asp His Leu Ser Tyr Gly Asn Arg Ile Ser Pro Gln Phe Pro Ile Leu 225 230 235 240 Leu Ile Thr Asp Cys Leu Phe Ser Asn Tyr Leu Glu Ser Pro Glu Arg 245 250 255 Gln Tyr Tyr Tyr Asn Gln Thr Ile Ile His Lys Glu Glu 260 265 12 810 DNA Streptococcus pneumoniae 12 atgttactgc aaaaagaact aattccaatg atagaagcta acttaccaaa tatggcatat 60 gctgaaaaag acattgctaa attcttctta aaacagcaac ctctgaatra ttattcatst 120 aargcattgt gcgaatacct taatgtatcc aaagcaacat tgactcgatt tgcgaaaaaa 180 tgtggtttta aaggttttag acaattcatt ttcaaatacc aagagatgat tcatgagaaa 240 gaaaagttgg cattatatac agaggcaaca gaaaaagttt tatccgacta tgaggaaatg 300 ttgagaaaaa cttacacggt tcttgatgaa gttcaacttg agcgtattgc tgagatgata 360 gaaactgctg agcgtgtata tctctacggt aaaggaagtt ctgttcttgc tttacaagaa 420 atgaagatga gatttatgcg tctcggagtg attggtgaag tattatcaga cgaggatatg 480 attttgtgga gtagcttact acttaatgaa aattgccttg tcattggagc atccatttca 540 ggtcaaactg atattgtact agaaggtcta caaaaagctg cagataaagg cgctaaaaca 600 gttttaatga ctacaagaaa atttgacgaa gaagattgtt tctttgatga actattgtta 660 ttagcttcga ccgatcatct ctcgtatggc aatcgcatat cacctcagtt tccaatactt 720 ttaattacag actgcttatt ctctaattat ctggaaagtc cagagagaca atattattac 780 aatcaaacta ttatccataa ggaggaataa 810 13 462 PRT Streptococcus pneumoniae 13 Met Asn Lys Ser Arg Leu Gly Arg Gly Arg His Gly Lys Thr Arg His 1 5 10 15 Ile Leu Leu Ala Leu Ile Gly Ile Leu Ala Ile Ser Ile Cys Leu Leu 20 25 30 Gly Gly Phe Ile Ala Phe Lys Ile Tyr Gln Gln Lys Ser Phe Glu Gln 35 40 45 Lys Ile Glu Ser Leu Lys Lys Glu Lys Asp Asp Gln Leu Ser Glu Gly 50 55 60 Asn Gln Lys Glu His Phe Arg Gln Gly Gln Ala Glu Val Ile Ala Tyr 65 70 75 80 Tyr Pro Leu Gln Gly Glu Lys Val Ile Ser Ser Val Arg Glu Leu Ile 85 90 95 Asn Gln Asp Val Lys Asp Lys Leu Glu Ser Lys Asp Asn Leu Val Phe 100 105 110 Tyr Tyr Thr Glu Gln Glu Glu Ser Gly Leu Lys Gly Val Val Asn Arg 115 120 125 Asn Val Thr Lys Gln Ile Tyr Asp Leu Val Ala Phe Lys Ile Glu Glu 130 135 140 Thr Glu Lys Thr Ser Leu Gly Lys Val His Leu Thr Glu Asp Gly Gln 145 150 155 160 Pro Phe Thr Leu Asp Gln Leu Phe Ser Asp Ala Ser Lys Ala Lys Glu 165 170 175 Gln Leu Ile Lys Glu Leu Thr Ser Phe Ile Glu Asp Lys Lys Ile Glu 180 185 190 Gln Asp Gln Ser Glu Gln Ile Val Lys Asn Phe Ser Asp Gln Asp Leu 195 200 205 Ser Ala Trp Asn Phe Asp Tyr Lys Asp Ser Gln Ile Ile Leu Tyr Pro 210 215 220 Ser Pro Val Val Glu Asn Leu Glu Glu Ile Ala Leu Pro Val Ser Ala 225 230 235 240 Phe Phe Asp Val Ile Gln Ser Ser Tyr Leu Leu Glu Lys Asp Ala Ala 245 250 255 Leu Tyr Gln Ser Tyr Phe Asp Lys Lys His Gln Lys Val Val Ala Leu 260 265 270 Thr Phe Asp Asp Gly Pro Asn Pro Ala Thr Thr Pro Gln Val Leu Glu 275 280 285 Thr Leu Ala Lys Tyr Asp Ile Lys Ala Phe Phe Val Leu Gly Lys Asn 290 295 300 Val Ser Gly Asn Glu Asp Leu Val Lys Arg Ile Lys Ser Glu Gly His 305 310 315 320 Val Val Gly Asn His Ser Trp Ser His Pro Ile Leu Ser Gln Leu Ser 325 330 335 Leu Asp Glu Ala Lys Lys Gln Ile Thr Asp Thr Glu Asp Val Leu Thr 340 345 350 Lys Val Leu Gly Ser Ser Ser Lys Leu Met Arg Pro Pro Tyr Gly Ala 355 360 365 Ile Thr Asp Asp Ile Arg Asn Ser Leu Asp Leu Ser Phe Ile Met Trp 370 375 380 Asp Val Asp Ser Leu Asp Trp Lys Ser Lys Asn Glu Ala Ser Ile Leu 385 390 395 400 Thr Glu Ile Gln Tyr Gln Val Ala Asn Gly Ser Ile Val Leu Met His 405 410 415 Asp Ile His Ser Pro Thr Val Asn Ala Leu Pro Arg Val Ile Glu Tyr 420 425 430 Leu Lys Asn Gln Gly Tyr Thr Phe Val Thr Ile Pro Glu Met Leu Asn 435 440 445 Thr Arg Leu Lys Ala His Glu Leu Tyr Tyr Ser Arg Asp Glu 450 455 460 14 1392 DNA Streptococcus pneumoniae misc_feature (892)..(892) n is A or no nucleotide 14 atgaataaaa gtagactagg acgtggcaga cacgggaaaa cgagacatrt attattggct 60 ttgattggta ttttagcaat ttctatttgc ctattaggcg gatttattgc ttttaagatc 120 taccagcaaa aaagttttga gcaaaagatt gaatcgctca aaaaagagaa agatgatcaa 180 ttgagtgagg gaaatcagaa ggagcatttt cgtcaggggc aagccgaagt gattgcctat 240 tatcctctcc aaggggagaa agtgatttcc tctgttaggg agytgataaa tcaagatgtt 300 aaggacaagc tagaaagtaa ggacaatctt gttttctact atacagagca agaagagtca 360 ggtttaaagg gagtcgttaa tcgtaatgtg accaaacaaa tctatgattt agttgctttt 420 aagattgaag agactgaaaa gaccagtcta ggaaaggttc acttaacaga agatgggcaa 480 ccttttacac ttgaccaact gttttcagat gctagtaagg ctaaggaaca gctgataaaa 540 gagttgacct ccttcataga ggataaaaaa atagagcaag accagagtga gcagattgta 600 aaaaacttct ctgaccaaga cttgtctgca tggaattttg attacaagga tagtcagatt 660 atcctttatc caagtcctgt ggttgaaaat ttagaagaga tagccttgcc agtatctgct 720 ttctttgatg ttatccaatc ttcgtactta ctcgaaaaag atgcggcctt gtaccaatct 780 tactttgata agaaacatca aaaagttgtc gctctaacct ttgatgatgg tccaaatcca 840 gcaacgaccc cgcaggtatt agagacccta gctaaatatg atattaaagc gnnnttcttt 900 gtgcttggga aaaatgtttc tgggaatgag gacttggtga agaggataaa atctgaaggt 960 catgttgttg gaaaccatag ctggagccat ccgattctct cgcaactctc tcttgatgaa 1020 gctaaaaagc agattactga tactgaggat gtgctaacta aagtgctggg ttctagttct 1080 aaactcatgc gtccacctta tggtgctatt acagatgata ttcgcaatag cttggatttg 1140 agctttatca tgtgggatgt ggatagtctg gactggaaga gtaaaaatga agcatctatt 1200 ttgacagaaa ttcagtatca agtagctaat ggctctatcg ttttgatgca tgatattcac 1260 agtccgacag tcaatgcctt gccaagggtc attgagtatt tgaaaaatca aggttatacc 1320 tttgtgacca taccagagat gctcaatact cgcctaaaag ctcatgagct gtactatagt 1380 cgtgatgaat aa 1392 15 101 PRT Streptococcus pneumoniae 15 Met Phe Val Lys Lys Gly Asp Lys Val Arg Val Ile Ala Gly Lys Asp 1 5 10 15 Lys Gly Thr Glu Ala Val Val Leu Thr Ala Leu Pro Lys Val Asn Lys 20 25 30 Val Ile Val Glu Gly Val Asn Ile Val Lys Lys His Gln Arg Pro Thr 35 40 45 Asn Glu Leu Pro Gln Gly Gly Ile Ile Glu Lys Glu Ala Ala Ile His 50 55 60 Val Ser Asn Val Gln Val Leu Asp Lys Asn Gly Val Ala Gly Arg Val 65 70 75 80 Gly Tyr Lys Phe Val Asp Gly Lys Lys Val Arg Tyr Asn Lys Lys Ser 85 90 95 Gly Glu Val Leu Asp 100 16 306 DNA Streptococcus pneumoniae 16 atgtttgtaa aaaaaggcga caaagttcgc gtaatcgctg gtaaagataa gggaacagaa 60 gctgttgtcc ttactgccct tccaaaagta aacaaagtta tcgttgaagg tgttaacatt 120 gttaagaaac accaacgtcc aactaacgag cttcctcaag gtggtatcat cgagaaagaa 180 gcagctatcc acgtatcaaa cgttcaagtt ttggacaaaa atggtgtagc tggtcgtgtt 240 ggatacaaat ttgtagacgg taaaaaagtt cgctacaaca aaaaatcagg cgaagtgctt 300 gattaa 306 17 702 PRT Streptococcus pneumoniae 17 Met Lys Lys Ile Ser Asn Phe Cys Met Leu Leu Leu Leu Leu Cys Thr 1 5 10 15 Thr Phe Phe Val Phe Asn Val Asn Tyr Thr Arg Glu Val Val Arg Ile 20 25 30 Gln Glu Met Gly Lys Thr Val Asp Ser Leu Asp Leu Tyr Leu Lys Asp 35 40 45 Ile Asn Glu Pro Ala Ala Ser Val Leu Arg Phe Phe Glu Asp Val Ser 50 55 60 Lys Glu Tyr Lys Val Ser Ile Ile Lys Thr Asp Ser Gly Asp Glu Val 65 70 75 80 Val Lys Ser Gly Val Phe Asp Lys Asp Thr Phe Pro Tyr Gln Glu Phe 85 90 95 Gly Ile Ser Ser Leu Asp Phe Thr Thr Asp Gly Glu Gly Val Tyr Ser 100 105 110 Asn Lys Glu Ile Ser Asn Lys Leu Gly Thr Ile Pro Thr Phe Leu Lys 115 120 125 Ala Lys Pro Ile Gln Leu Met Thr Phe Gln Thr Tyr Ile Lys Asp Thr 130 135 140 Ser Arg Ser Leu Asn Gly Arg Tyr Thr Ile Thr Ser Thr Gln Glu Met 145 150 155 160 Asp Lys Asp Arg Ile Val Gln Lys Trp Ser Asp Phe Phe Lys Ile Asp 165 170 175 Gln Ala Thr Leu Leu Glu Pro Thr Tyr Lys Ser Ala Val Glu Val Ile 180 185 190 Asn Arg Asp Leu Leu Leu Ser Ala Ile Val Phe Val Leu Ala Ile Leu 195 200 205 Leu Leu Val Leu Val Thr Val Tyr Gln Pro Met Met Glu Met Lys Arg 210 215 220 Val Gly Val Gln Lys Leu Leu Gly Phe Gln Asp Arg Ala Val Leu Ala 225 230 235 240 Asp Val Val Lys Gly Asn Leu Tyr Leu Leu Leu Gly Gly Ala Leu Val 245 250 255 Ile Asn Leu Gly Val Phe Phe Leu Leu Asp Tyr Lys Pro Lys Asp Leu 260 265 270 Phe Pro Met Leu Trp Leu Ser His Phe Leu Leu Leu Gln Leu Tyr Leu 275 280 285 Phe Ile Ser Trp Leu Thr Tyr Leu Leu Ile Gln Lys Met Thr Ile Ser 290 295 300 Ser Leu Leu Lys Gly Phe Ser Ser Phe Lys Phe Gly Leu Ile Phe Asn 305 310 315 320 Tyr Val Met Lys Ile Gly Thr Thr Ile Leu Leu Thr Ala Leu Leu Ile 325 330 335 Gly Val Gly Arg Ser Leu Glu Gln Glu Asn Lys Glu Leu Ala Tyr Gln 340 345 350 Gln Gln Trp Val Ser Gln Gly Asn Tyr Leu Thr Leu Glu Thr Phe Lys 355 360 365 Leu Asn Asp Asn Leu Trp Gln Glu Glu Leu Ala Gly Ser Gly Lys Ser 370 375 380 Thr Asp Tyr Phe Tyr Arg Phe Tyr Gln Asp Leu Val Glu Lys Thr Gln 385 390 395 400 Ala Gly Tyr Val Gln Ser Ser Ser Leu Pro Val Lys Asn Phe Val Gln 405 410 415 Ser Glu Gln Ile Gln Gln Tyr Gln Leu Thr Asp Thr Val Asp Val Tyr 420 425 430 Tyr Ala Asn Arg Asn Phe Leu Lys Ser Lys Gly Phe Lys Leu Pro Asn 435 440 445 Thr Gly Ile Lys Lys Val Ile Leu Met Pro Ala Ser Thr Lys Gly Glu 450 455 460 Glu Asp Lys Asn Gln Leu Leu Gly Lys Leu Ile Ala Phe His Ser Met 465 470 475 480 Lys Tyr Glu Glu Gln Gln Lys Arg Thr Ile Glu Glu Met Asp Val Glu 485 490 495 Ile Ala Tyr Tyr Glu Gly Asp Trp Ser Phe Phe Pro Tyr Ser Asp Lys 500 505 510 Arg Lys Glu Asn Leu Ser Asn Pro Ile Ile Ser Leu Val Asn Asp Ser 515 520 525 Asp Met Met Trp Asp Glu Lys Ala Ser Leu Ser Thr Thr Gly Leu Asn 530 535 540 Asn Pro Ile Lys Ile Glu Asn Thr Val Gln His Gln Lys Glu Ile Thr 545 550 555 560 Glu Leu Val Glu Lys Leu Ser Asp Gly Asn Tyr Leu Lys Phe Ser Ser 565 570 575 Ile Gln Ala Ile Gln Gln Glu Lys Val Asp Ser Tyr Arg Asp Ala Val 580 585 590 Arg Asn Phe Asn Leu Leu Phe Ala Leu Phe Gly Leu Leu Ser Met Met 595 600 605 Ile Ser Tyr Phe Leu Leu Val Thr Thr Phe Leu Leu Lys Arg Arg Asp 610 615 620 Ile Ile Thr Lys Lys Phe Met Gly Trp Lys Leu Val Asp Arg Tyr Arg 625 630 635 640 Pro Leu Leu Val Leu Leu Leu Leu Gly Tyr Ser Phe Pro Leu Leu Val 645 650 655 Leu Ile Phe Phe Ala His Ala Phe Leu Pro Leu Leu Leu Phe Ala Gly 660 665 670 Phe Thr Cys Leu Asp Ile Leu Phe Val Leu Gly Leu Ala Ser Arg Met 675 680 685 Glu Lys Arg Ser Leu Val Glu Leu Leu Lys Gly Gly Ile Leu 690 695 700 18 2109 DNA Streptococcus pneumoniae 18 atgaaaaaaa tcagtaattt ctgtatgtta ctcctgcttc tgtgtaccac tttttttgtt 60 tttaatgtaa actatacacg agaagtggtt cggattcaag aaatgggaaa gactgtagat 120 tctttggatt tgtatttgaa agatattaac gaacctgcag cgtctgttct tcgatttttt 180 gaggatgtat caaaggagta taaagtctcc atcatcaaaa cagacagtgg tgatgaggtg 240 gtcaagtctg gtgtttttga taaagatacc ttcccctacc aagagtttgg gatttcttct 300 cttgatttta ccacagatgg tgaaggagtc tatagtaata aagaaatttc caataaactt 360 ggtacgattc cgacctttct aaaagccaaa cctattcagc ttatgacttt tcaaacctat 420 atcaaggata catctcgtag tttaaatggt cgctatacga taacttctac acaagagatg 480 gacaaggata ggattgtaca gaaatggagc gattttttca agatagacca ggctaccttg 540 ctagagccga cctacaaaag tgcagtggaa gtcataaatc gagatttgct tttatctgcc 600 attgtttttg tcttggctat tttgcttctt gtgttagtga cagtgtatca accgatgatg 660 gagatgaaaa gagttggggt acaaaaatta cttggttttc aagatagggc tgttttagct 720 gatgttgtaa aaggcaacct ttacctcctc ctaggtgggg ctcttgtgat caatctaggc 780 gtgtttttct tgcttgatta taagccaaaa gatttgtttc ctatgctgtg gttgtctcat 840 tttttgctgt tgcagcttta tctctttatc agttggttga cttacctctt aatccaaaaa 900 atgacaatca gctctctgct gaaaggtttt tcatctttca aatttggtct tatcttcaat 960 tatgtgatga aaatagggac aactatttta ctgacggcct tactgattgg ggtgggcaga 1020 agtttagaac aagaaaacaa agaacttgct tatcagcaac agtgggtaag tcaaggtaat 1080 tacctgacct tagaaacctt caaactcaat gataatctgt ggcaagaaga gctagcaggg 1140 tcagggaaat ctacagatta tttctatcga ttttatcagg atttggtaga aaaaacgcag 1200 gcgggctatg tgcagagtag cagtcttcct gtaaaaaatt ttgtccaatc agaacagatt 1260 cagcaatatc agttaacaga tacggtggat gtttactatg ccaatcgcaa ttttctaaag 1320 agcaagggat tcaagctacc aaataccggt attaaaaaag ttattttgat gccagcaagt 1380 acgaaaggtg aagaagataa aaatcagctc ttggggaagt taattgcctt tcattcgatg 1440 aagtatgaag agcagcaaaa acgaacgata gaggagatgg atgtcgagat tgcctattat 1500 gaaggagatt ggtcattttt cccatatagt gataagcgaa aggaaaatct ctccaatcca 1560 attattagct tggtcaatga ttctgatatg atgtgggatg agaaagcctc cctgtcaaca 1620 actggcttaa ataatccgat taaaattgaa aatacggttc aacatcaaaa agagattaca 1680 gagttagttg agaaattgtc agatggaaat tatttaaaat tttcatctat tcaagccatt 1740 caacaagaga aagtggattc ttatcgagat gctgttcgga attttaacct actctttgct 1800 ttgtttggtc tccttagcat gatgatttcc tacttcttac tagtaacaac tttcttattg 1860 aagcgcaggg atatcattac caagaagttt atggggtgga aactggtcga tcgctaccgt 1920 cctctcctcg ttctgctctt gctgggctat agtttccctc ttctagtctt gattttcttt 1980 gcccatgcgt tcttaccact tctactgttt gcaggtttta catgtctgga tatactattt 2040 gtgctaggct tagcttctag gatggagaaa agaagtctag tagagttatt gaaagggggc 2100 atcttatga 2109 19 448 PRT Streptococcus pneumoniae 19 Met Pro Ile Thr Ala Ala Asp Ile Arg Arg Glu Val Lys Glu Lys Asn 1 5 10 15 Val Thr Phe Ile Arg Leu Met Phe Ser Asp Ile Leu Gly Thr Met Lys 20 25 30 Asn Val Glu Ile Pro Ala Thr Asp Glu Gln Leu Asp Lys Val Leu Ser 35 40 45 Asn Lys Val Met Phe Asp Gly Ser Ser Ile Glu Gly Phe Val Arg Ile 50 55 60 Asn Glu Ser Asp Met Tyr Leu Tyr Pro Asp Leu Asp Thr Trp Thr Val 65 70 75 80 Phe Pro Trp Gly Asp Glu Asn Gly Ser Val Ala Gly Leu Ile Cys Asp 85 90 95 Val Tyr Thr Thr Glu Gly Glu Pro Phe Ala Gly Asp Pro Arg Gly Asn 100 105 110 Leu Lys Arg Ala Leu Arg His Met Glu Glu Val Gly Phe Lys Ser Phe 115 120 125 Asn Leu Gly Pro Glu Pro Glu Phe Phe Leu Phe Lys Leu Asp Glu Asn 130 135 140 Gly Asp Pro Thr Leu Glu Val Asn Asp Lys Gly Gly Tyr Phe Asp Leu 145 150 155 160 Ala Pro Thr Asp Leu Ala Asp Asn Thr Arg Arg Glu Ile Val Asn Val 165 170 175 Leu Thr Lys Met Gly Phe Glu Val Glu Ala Ser His His Glu Val Ala 180 185 190 Val Gly Gln His Glu Ile Asp Phe Lys Tyr Asp Glu Val Leu Arg Ala 195 200 205 Cys Asp Lys Ile Gln Ile Phe Lys Leu Val Val Lys Thr Ile Ala Arg 210 215 220 Lys His Gly Leu Tyr Ala Thr Phe Met Ala Lys Pro Lys Phe Gly Ile 225 230 235 240 Ala Gly Ser Gly Met His Cys Asn Met Ser Leu Phe Asp Ala Glu Gly 245 250 255 Asn Asn Ala Phe Phe Asp Pro Asn Asp Pro Lys Gly Met Gln Leu Ser 260 265 270 Glu Thr Ala Tyr His Phe Leu Gly Gly Leu Ile Lys His Ala Tyr Asn 275 280 285 Tyr Thr Ala Ile Met Asn Pro Thr Val Asn Ser Tyr Lys Arg Leu Val 290 295 300 Pro Gly Tyr Glu Ala Pro Val Tyr Ile Ala Trp Ala Gly Arg Asn Arg 305 310 315 320 Ser Pro Leu Val Arg Val Pro Ala Ser Arg Gly Met Gly Thr Arg Leu 325 330 335 Glu Leu Arg Ser Val Asp Pro Met Ala Asn Pro Tyr Val Ala Met Ala 340 345 350 Val Leu Leu Glu Val Gly Leu Tyr Gly Ile Glu Asn Lys Ile Glu Ala 355 360 365 Pro Ala Pro Ile Glu Glu Asn Ile Tyr Ile Met Thr Ala Glu Glu Arg 370 375 380 Lys Glu Ala Gly Ile Thr Asp Leu Pro Ser Thr Leu His Asn Ala Leu 385 390 395 400 Lys Ala Leu Thr Glu Asp Glu Val Val Lys Ala Ala Leu Gly Asp His 405 410 415 Ile Tyr Thr Ser Phe Leu Glu Ala Lys Arg Ile Glu Trp Ala Ser Tyr 420 425 430 Ala Thr Phe Val Ser Gln Trp Glu Ile Asp Asn Tyr Leu Asp Leu Tyr 435 440 445 20 1347 DNA Streptococcus pneumoniae 20 atgccaatca cagctgcaga tattcgtcgt gaagtcaagg aaaaaaatgt tacctttatt 60 cgtcttatgt tctcagatat tttgggaacc atgaaaaacg tcgaaattcc tgctacagat 120 gaacagttag ataaggtctt gtcgaacaag gttatgtttg atggatcttc tattgaaggt 180 tttgtacgta tcaatgagtc ggatatgtac ttgtacccgg acttggatac atggacagtc 240 ttcccttggg gagatgaaaa tggaagtgtt gcaggtctga tctgtgatgt ytatacaaca 300 gaaggtgaac catttgcggg tgaccctcgt ggtaatttga aacgagctct tcgtcacatg 360 gaagaagttg gattcaaatc cttcaacctt ggtccagagc cagaattctt cctatttaag 420 ttggatgaaa atggggaccc aacacttgaa gtgaatgaca agggtggcta ctttgacttg 480 gcacctactg accttgcgga caacacacgt cgtgagattg tgaatgtctt gaccaaaatg 540 ggatttgaag tagaagcgag tcaccacgag gttgcggttg gacagcatga gattgacttt 600 aagtacgatg aagttctccg tgcttgtgat aagattcaaa tctttaagct tgttgttaaa 660 accattgctc gcaaacacgg actttacgca acatttatgg cgaagccaaa atttggtatt 720 gctggatcag gtatgcactg taatatgtcc ttgtttgatg cagaaggaaa taacgccttc 780 tttgatccaa atgatccaaa aggaatgcag ttgtcagaaa cagcttacca tttcctaggc 840 ggtttgatca agcatgctta caactatact gccatcatga acccaacagt taactcatac 900 aaacgtttgg ttccaggtta tgaagcgcct gtttacattg cttgggctgg tcgtaaccgt 960 tcgccacttg tgcgcgtacc tgcttcacgt ggtatgggaa ctcgtcttga gttgcgttca 1020 gtggatccaa tggcgaaccc ttacgttgct atggctgttc ttttggaagt tggtttgtat 1080 ggtattgaaa ataaaatcga agcaccagct cctatcgaag aaaatatcta catcatgaca 1140 gcagaagagc gcaaggaagc tggtattaca gaccttccat caactcttca caacgctttg 1200 aaagctttga cagaagatga agtggttaaa gctgctctcg gagatcacat ctatactagc 1260 ttccttgaag ccaaacgaat cgaatgggca agttatgcaa ccttcgtttc acaatgggaa 1320 attgataatt atttagacct ttactaa 1347 21 84 PRT Streptococcus pneumoniae 21 Met Val Tyr Leu Val Leu Gly Ile Leu Leu Leu Leu Leu Tyr Val Phe 1 5 10 15 Ala Thr Pro Glu Ser Ile Lys Gly Thr Val Asn Ile Val Ala Met Val 20 25 30 Cys Ile Leu Val Ala Leu Leu Ile Leu Leu Val Leu Ser Phe Leu Lys 35 40 45 Ile Phe Gln Leu Pro Thr Glu Ile Phe Leu Ala Ile Ala Met Leu Ile 50 55 60 Leu Ala Tyr Phe Ser Val Arg Asp Ile Thr Leu Met Pro Val Lys Lys 65 70 75 80 Ser Lys Arg Arg 22 255 DNA Streptococcus pneumoniae 22 atggtctatt tagtcctagg aattttactg ctcctactct atgtatttgc gacaccagaa 60 agcattaaag ggactgtcaa tatcgtcgct atggtatgta ttttagtggc actcttgatt 120 ttattggttc tatcttttct gaaaattttt caattaccaa cagaaatatt cctagcaata 180 gccatgttga tcctagctta ctttagtgtt agagacatca cactcatgcc agtcaaaaaa 240 agtaaaagaa gataa 255 23 779 PRT Streptococcus pneumoniae 23 Ser Gly Leu Gly Leu Asn Phe Tyr Ala Leu Ser Ser Tyr Tyr Leu Gly 1 5 10 15 Ser Phe Leu Ala Pro Leu Val Tyr Phe Phe Asp Leu Thr Asn Met Pro 20 25 30 Asp Ala Ile Tyr Leu Thr Thr Leu Leu Lys Phe Gly Leu Ile Gly Leu 35 40 45 Ser Thr Phe Phe Ser Leu Asn Lys Leu Phe Gln Ser Ile Pro Gln Ile 50 55 60 Leu Lys Leu Ala Leu Ser Thr Ser Tyr Ala Leu Met Ser Phe Thr Val 65 70 75 80 Ser Gln Leu Glu Ile Lys Thr Trp Leu Asp Val Phe Ile Leu Ile Pro 85 90 95 Leu Ile Ile Thr Gly Leu His Leu Leu Ile Thr Glu Lys Lys Leu Leu 100 105 110 Leu Tyr Phe Thr Ser Leu Ser Ile Leu Phe Ile Gln Asn Tyr Tyr Phe 115 120 125 Gly Tyr Met Thr Val Leu Phe Leu Ile Phe Trp Tyr Leu Cys Gln Ile 130 135 140 Ser Trp Asp Phe Lys Thr Arg Lys Ser Ser Val Leu Asp Phe Ile Val 145 150 155 160 Ile Ser Phe Leu Ala Gly Met Ala Ser Leu Ile Met Thr Leu Pro Thr 165 170 175 Leu Phe Asp Leu Gln Thr His Gly Glu Lys Leu Thr Glu Val Thr Lys 180 185 190 Phe Gln Thr Glu Ser Ser Trp Tyr Leu Asp Leu Phe Ala Lys Gln Phe 195 200 205 Ile Gly Ser Phe Asp Thr Thr Lys Tyr Gly Ala Ile Pro Met Ile Phe 210 215 220 Val Gly Leu Phe Pro Phe Ile Leu Thr Ile Leu Phe Phe Thr Leu Lys 225 230 235 240 Ser Ile Lys Phe His Val Lys Leu Ile Tyr Val Ile Phe Phe Ala Phe 245 250 255 Leu Ile Ala Ser Phe Tyr Ile Glu Ala Leu Asp Leu Phe Trp Gln Gly 260 265 270 Met His Thr Pro Asn Met Phe Leu His Arg Tyr Ala Trp Ile Phe Ser 275 280 285 Thr Leu Leu Ile Tyr Thr Ala Ala Glu Val Leu Lys Arg Leu Lys Glu 290 295 300 Leu Lys Val Trp Asn Phe Leu Val Ser Leu Phe Leu Val Val Ala Gly 305 310 315 320 Phe Leu Ala Thr Ile Tyr Leu Lys Ser His Tyr Ser Leu Thr Asp Leu 325 330 335 Asn Ile Leu Leu Thr Leu Glu Phe Leu Val Val Tyr Ser Leu Leu Leu 340 345 350 Leu Ala Val Ile Lys Lys Phe Ile Ser Val Asn Leu Phe Ala Ile Leu 355 360 365 Ile Ser Leu Phe Ile Leu Val Glu Met Ser Leu Asn Ala Ser Ser Gln 370 375 380 Met Asp Gly Ile Ala Lys Glu Trp Gly Phe Ala Ser Arg Ser Ala Tyr 385 390 395 400 Ser Arg Asp Ile Pro Ala Met Glu Ser Phe Ser Thr Tyr Ile Gly Asn 405 410 415 Gln Phe Thr Arg Thr Glu Lys Leu Gln Thr Gln Thr Gly Asn Asp Ser 420 425 430 Met Lys Phe Asn Tyr Asn Gly Ile Ser Gln Phe Ser Ser Val Arg Asn 435 440 445 Arg Ser Ser Ser Ser Thr Leu Asp Lys Leu Gly Phe Lys Ser Ser Gly 450 455 460 Thr Asn Leu Asn Leu Arg Tyr Ala Asn Asn Ser Ile Leu Ala Asp Ser 465 470 475 480 Leu Phe Gly Ile Gln Tyr Asn Ile Ser Asp Ser Pro Ile Asp Lys Tyr 485 490 495 Gly Phe Lys Asp Ile Tyr Gln Lys Asp Asn Leu Thr Leu Tyr Glu Asn 500 505 510 Gln Tyr Ser Leu Pro Ile Ala Val Ala Ser Gln Ser Val Tyr Asn Asp 515 520 525 Val Lys Phe Asn Glu His Thr Leu Asp Asn Gln Ala Ser Phe Leu Asn 530 535 540 Gln Leu Ala Asn Val Asn Phe Asp Tyr Phe Ser Pro Ile Pro Tyr Glu 545 550 555 560 Lys Thr Glu Lys Ile Glu Asn Thr Asn Asp Leu Ile Ser Val Thr Ser 565 570 575 Ser Ser Asn Glu Asp Ala Ala Ile Gln Tyr Gln Ile Glu Val Pro Glu 580 585 590 Asn Ser Gln Val Tyr Leu Ser Phe Ile Asn Leu His Phe Ser Asn Asp 595 600 605 Lys Gln Lys Lys Val Asp Ile Leu Val Asn Gly Glu Lys Lys Thr Phe 610 615 620 Thr Thr Asp Asn Val Phe Ser Phe Phe Asn Leu Gly Tyr Thr Lys Glu 625 630 635 640 Lys Lys Thr Phe Asn Ile Asn Val Ser Phe Pro Gly Asn Ser Gln Val 645 650 655 Ser Phe Glu Ser Pro Thr Phe Tyr Arg Leu Asp Thr Lys Thr Phe Thr 660 665 670 Glu Ala Ile Gln Lys Ile Lys Glu Gln Pro Val Thr Val Ser Thr Ser 675 680 685 Lys Asn Lys Val Phe Ala Thr Tyr Asp Val Gln Gln Asp Thr Ser Ile 690 695 700 Phe Phe Thr Ile Pro Tyr Asp Lys Gly Trp Ser Ala Tyr Gln Asp Gly 705 710 715 720 Lys Lys Ile Glu Ile Lys Gln Ala Gln Thr Gly Phe Met Lys Val Asp 725 730 735 Ile Pro Lys Gly Lys Gly Thr Ile Thr Leu Ser Phe Ile Pro Asn Gly 740 745 750 Phe Ile Thr Gly Ala Ile Cys Ser Phe Thr Ser Leu Leu Leu Phe Gly 755 760 765 Ile Tyr Asn His Arg Arg Lys Ser Ser Lys Ala 770 775 24 2343 DNA Streptococcus pneumoniae 24 agtggtctag ggctaaactt ctatgcccta tctagttatt acttgggtag ttttctcgcg 60 cctctggttt acttttttga tctaacgaat atgccagatg ctatctatct gacaactctc 120 ttaaaatttg gattgattgg tctgtcaacc ttttttagtt tgaataaatt gtttcaatct 180 atccctcaga ttttaaaact agccttatct acttcctatg ctctgatgag tttcactgtc 240 agtcaattag agataaaaac ctggctagat gtttttatct tgattccttt aattataact 300 ggtttacatc tactgataac tgaaaagaaa ctcctattgt actttacaag tctgtcaatc 360 ttatttattc aaaattatta ttttggatat atgacagtat tgtttcttat tttctggtat 420 ctctgtcaaa tttcgtggga ctttaagact cgaaaatcat ctgttcttga tttcatagtt 480 atctcctttt tagctggtat ggctagtttg attatgactc ttcccactct atttgattta 540 cagacacatg gggaaaaatt gactgaagtt acaaagtttc aaactgaaag tagctggtat 600 cttgatctct ttgctaagca attcattggt tcctttgaca caacaaagta tggggccatc 660 ccaatgattt ttgttggact atttcccttt attttgacca ttttattttt tacgctgaaa 720 tctattaagt ttcacgtgaa actcatatat gtaatattct ttgcatttct aattgcaagc 780 ttttacatag aagctcttga cttattttgg caaggcatgc atactccaaa catgttttta 840 catcgctatg cttggatttt ctctaccttg ttaatttaca cagcagcaga agtcttaaag 900 cgtctgaaag aacttaaagt ctggaatttt ttagtttcgc tttttcttgt agtagcagga 960 tttttagcta ccatctatct aaaatcgcat tattcttttt taacagattt gaatattctg 1020 cttactcttg aatttttggt tgtctattct cttttactcc ttgcagttat caaaaagttt 1080 atatctgtga atctatttgc cattctaatc tctttattta tactggttga aatgagttta 1140 aatgcttcat ctcaaatgga cggaattgct aaggaatggg gatttgcttc tcgaagtgct 1200 tatagtcgag atatcccagc tatggaatct ttctcaacat atattggaaa tcaatttact 1260 cgtactgaaa aactacaaac tcagacagga aatgacagta tgaaattcaa ctacaatgga 1320 atctctcaat tttcatctgt tcgaaatcgt tcatcaagct ctactttaga taaacttggt 1380 tttaaatcct ctgggactaa tctcaatctc cgatatgcaa ataatagtat tttggctgat 1440 agtttatttg gtatccagta caatatctca gacagtccta ttgataagta tggctttaaa 1500 gatatctatc aaaaagataa tcttacccta tatgaaaatc aatactctct tccgattgca 1560 gttgcgagtc aatctgttta caatgatgtc aagttcaatg aacatacctt ggataatcag 1620 gcctcatttt taaatcaact tgctaacgtc aattttgatt atttttctcc aataccttat 1680 gaaaaaacag aaaaaataga aaatactaat gatttgatta gtgtcacaag ttcttcaaat 1740 gaagatgcag caatccagta tcaaattgaa gttccagaaa acagccaagt ttatctctct 1800 ttcataaacc ttcacttttc taacgataaa caaaagaagg ttgacatcct tgtaaatggt 1860 gaaaaaaaga cttttacaac tgataatgtc ttctccttct ttaatctagg atatactaaa 1920 gagaaaaaaa ctttcaatat caatgttagt ttccctggaa attcacaagt atcatttgaa 1980 tctcctacct tctatcgttt agataccaaa actttcaccg aggcaattca aaaaattaaa 2040 gaacaacctg tcacagtatc aacttctaaa aacaaggttt ttgctacata tgatgtccaa 2100 caagatacat ctattttctt caccattcct tatgacaaag gttggtctgc ctaccaagat 2160 ggtaagaaaa tagaaattaa acaagctcaa actggattta tgaaagttga cattcccaag 2220 gggaaaggaa ctattacact ttccttcatt cccaatggtt ttattactgg agcaatctgt 2280 tcctttactt ctctcttact atttggaatc tataatcaca gacgaaagtc atctaaggca 2340 taa 2343 25 423 PRT Streptococcus pneumoniae misc_feature (27)..(27) X is Pro or Thr 25 Met Asn Glu Lys Val Phe Arg Asp Pro Val His Asn Tyr Ile His Val 1 5 10 15 Asn Asn Gln Ile Ile Tyr Asp Leu Ile Asn Xaa Xaa Glu Phe Gln Arg 20 25 30 Leu Arg Arg Ile Lys Gln Leu Gly Thr Ser Ser Tyr Thr Phe His Gly 35 40 45 Gly Glu His Ser Arg Phe Ser His Cys Leu Gly Val Tyr Glu Ile Ala 50 55 60 Arg Arg Ile Thr Glu Ile Phe Glu Glu Lys Tyr Pro Glu Glu Trp Asn 65 70 75 80 Pro Ala Glu Ser Leu Leu Thr Met Thr Ala Ala Leu Leu His Asp Leu 85 90 95 Gly His Gly Ala Tyr Ser His Thr Phe Glu His Leu Phe Asp Thr Asp 100 105 110 His Glu Ala Ile Thr Gln Glu Ile Ile Gln Asn Pro Glu Thr Glu Ile 115 120 125 His Gln Val Leu Leu Gln Val Ala Pro Asp Phe Pro Glu Lys Val Ala 130 135 140 Ser Val Ile Asp His Thr Tyr Pro Asn Lys Gln Val Val Gln Leu Ile 145 150 155 160 Ser Ser Gln Ile Asp Ala Asp Arg Met Asp Tyr Leu Leu Arg Asp Ser 165 170 175 Tyr Phe Thr Gly Ala Ser Tyr Gly Glu Phe Asp Leu Thr Arg Ile Leu 180 185 190 Arg Val Ile Arg Pro Ile Glu Asn Gly Ile Ala Phe Gln Arg Asn Gly 195 200 205 Met His Ala Ile Glu Asp Tyr Val Leu Ser Arg Tyr Gln Met Tyr Met 210 215 220 Gln Val Tyr Phe His Pro Ala Thr Arg Ala Met Glu Val Leu Leu Gln 225 230 235 240 Asn Leu Leu Lys Arg Ala Lys Glu Leu Tyr Pro Glu Asp Lys Asp Phe 245 250 255 Phe Ala Arg Thr Ser Pro His Leu Leu Pro Phe Phe Glu Lys Asn Val 260 265 270 Thr Leu Thr Asp Tyr Leu Ala Leu Asp Asp Gly Val Met Asn Thr Tyr 275 280 285 Phe Gln Leu Trp Met Thr Ser Pro Asp Lys Ile Leu Ala Asp Leu Ser 290 295 300 His Arg Phe Val Asn Arg Lys Val Phe Lys Ser Ile Thr Phe Ser Gln 305 310 315 320 Glu Asp Gln Asp Gln Leu Thr Ser Met Arg Lys Leu Val Glu Asp Ile 325 330 335 Gly Phe Asp Pro Asp Tyr Tyr Thr Ala Ile His Lys Asn Phe Asp Leu 340 345 350 Pro Tyr Asp Ile Tyr Arg Pro Glu Ser Glu Asn Pro Arg Thr Gln Ile 355 360 365 Glu Ile Leu Gln Lys Asn Gly Glu Leu Ala Glu Leu Ser Ser Leu Ser 370 375 380 Pro Ile Val Gln Ser Leu Ala Gly Ser Arg His Gly Asp Asn Arg Phe 385 390 395 400 Tyr Phe Pro Lys Glu Met Leu Asp Gln Asn Ser Ile Phe Ala Ser Ile 405 410 415 Thr Gln Gln Phe Leu His Leu 420 26 1270 DNA Streptococcus pneumoniae 26 atgaacgaaa aagtattccg tgaccctgtt cacaactaca tccatgtcaa taatcaaatc 60 atctatgact tgattaatmc amaagaattt cagcgtttgc gccggatcaa acaactggga 120 acttccagtt ataccttcca cggtggagaa cacagtcgct tctctcactg tctaggagtc 180 tatgaaattg cacgacgcat cacagagatt ttcgaagaaa aatatcctga ggaatggaat 240 cctgccgagt ctctcttgac catgaccgct gctctcctac acgaccttgg gcatggtgcc 300 tactcccata cttttgaaca tctctttgat acagaccatg aagccattac tcaggagatt 360 attcaaaatc ctgagacaga gattcaccaa gtcctgctac aagtggcacc tgatttccca 420 gaaaaggtgg ccagtgtcat tgaccatacc tatcctaata agcaggtcgt gcagctcatt 480 tctagtcaga ttgacgcaga tcgcatggac tatctcttgc gcgactccta ttttacagga 540 gcatcctatg gggaatttga cctgactcga atcctccgag tcattcgtcc tatcgaaaat 600 ggtatcgcct ttcagcgcaa tggcatgcac gccatcgaag actacgtcct cagtcgctac 660 cagatgtaca tgcaggttta tttccacccc gcaacacgcg ccatggaagt tctcctacag 720 aatcttctca aacgcgccaa ggaactctat cctgaggaca aggatttctt tgcccgaact 780 tctccacacc tcctgccttt cttcgaaaaa aatgtgacct tgactgacta tctggctctg 840 gatgatggcg tgatgaatac ctacttccag ctttggatga ccagtcctga caagattctt 900 gcagatttat cgcatcgctt tgtcaaccgc aaggtcttta aatccattac cttttcacaa 960 gaggaccaag atcaacttac tagcatgaga aaattggttg aggatatcgg ctttgatccc 1020 gactactaca ctgccattca taagaacttt gacctccctt atgatatcta tcgtcccgaa 1080 tctgaaaacc cacggacaca gattgagatt ttacaaaaaa atggagaact ggccgaactc 1140 tctagcctgt ctcctatcgt ccaatccctt gctggcagtc gccacggaga taatcgcttt 1200 tattttccaa aagaaatgtt ggaccaaaac agcatctttg caagcattac ccagcaattt 1260 ttacacttga 1270 27 53 PRT Streptococcus pneumoniae 27 Met Asn Pro Ser Leu Glu Asp Ile Asn Ala Thr Ile Ala Thr Gly Tyr 1 5 10 15 Ser Ser Asp Thr Ala Ile Lys Glu Ser Ile Asp Phe Phe Gln Asn Arg 20 25 30 Thr Gln Thr Phe Leu Thr Asn Asn His Ala His Leu Glu His Thr Thr 35 40 45 Lys Glu Val Arg Cys 50 28 162 DNA Streptococcus pneumoniae 28 atgaatccca gcttggagga tatcaatgca accatagcca ctggatacag ctcggacacg 60 gccatcaaag agagcattga tttcttccaa aaccgaactc aaacgttcct caccaacaac 120 catgctcatc ttgagcacac caccaaagag gtcagatgtt aa 162 29 36 PRT Streptococcus pneumoniae 29 Met Leu His Leu Lys Leu Val Lys Gln Glu Ile Glu Ala Glu Lys Pro 1 5 10 15 Ala Ser Val Glu Ala Trp Ile Ile Ser Val Lys Phe Lys Lys Gly Cys 20 25 30 Tyr Arg His Ile 35 30 111 DNA Streptococcus pneumoniae 30 atgctacact taaaattagt aaaacaagaa atagaagctg aaaagccagc atctgtagaa 60 gcttggatca tttccgtcaa atttaaaaaa ggttgctacc gacatatata g 111 31 126 PRT Streptococcus pneumoniae 31 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Ala Leu Glu Gln Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Gly Gly Val Gly Arg Asn Trp Trp Asn Ser 20 25 30 Arg Gly Ser Phe Ala Thr Val Leu Asp Val Asp Leu Ala Ile Tyr Ser 35 40 45 Gly Gly Ala Thr Ile Tyr Ser Ala Tyr Ala Ile Lys Lys Ala Ile Ser 50 55 60 Ala Asn Arg Gly Ala Ile Thr Arg Thr Leu Arg Ser Leu Ile Ile Lys 65 70 75 80 His Val Gly Ser Ala Ala Gly His Leu Val Asn Thr Ala Leu Asn Val 85 90 95 Ala Leu Thr Val Thr Gly Phe Ser Leu Gly Gly Ala Ile Ala Tyr Gly 100 105 110 Ala Asp Trp Ala Asp Gly Ser Leu Asp Gly Tyr Ile Phe Ala 115 120 125 32 381 DNA Streptococcus pneumoniae 32 atggaactcg tattaccaaa taattatgtt gctcttgagc aagaagagat gatgtatctt 60 gatgggggtg gtggtggtcg taactggtgg aatagtagag gtagttttgc aacagttctg 120 gatgtagatt tggccatcta tagtggtggt gcaacaattt attctgctta tgcgataaaa 180 aaagctatct cagctaatag aggggctatt acgagaacat tacgtagttt aataattaaa 240 catgtaggta gtgcagctgg ccatttagtc aatactgcac taaacgttgc actaactgtt 300 actggatttt cactaggtgg agcaatcgca tatggggctg agtgggctga cggtagctta 360 gatggttata tttttgctta a 381 33 124 PRT Streptococcus pneumoniae 33 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Ala Leu Glu Gln Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Gly Phe Ser Ile Leu Arg Trp Pro Val Ala 20 25 30 Thr Ala Ile Asn Ile Ala Phe Asn Gly Val Leu Gly Gly Gly Ala Ile 35 40 45 Ser Leu Val Arg Asn Tyr Ile Arg Asn Tyr Gly Leu Gly Arg Val Thr 50 55 60 Ser Ala Ile Ala Gly Ala Ala Ala Arg Tyr Val Gly Val Arg Val Ala 65 70 75 80 Asn Arg Val Ala Gly Phe Ala Leu Ser Ala Ile Asn Gly Phe Ala Ala 85 90 95 Trp Met Ser Ile Gly Asp Ala Ile Thr Thr Ile Trp Ala Asn Asn Asp 100 105 110 Val Asn Arg Arg Asp Pro Asn Leu Asn Ala Leu Trp 115 120 34 375 DNA Streptococcus pneumoniae 34 atggaactcg tattaccaaa taattatgtt gctcttgagc aagaagagat gatgtatctt 60 gatgggggat tttctattct gagatggcct gttgcaacag ccattaatat agcttttaat 120 ggtgttttag gtggaggagc aatcagtcta gttagaaatt atattcgtaa ttatggtttg 180 gggcgagtta caagcgcaat tgctggagca gctgcaagat atgttggggt acgagttgca 240 aatagagtgg caggatttgc actgtctgct attaatggat ttgcagcttg gatgtcaatt 300 ggcgatgcta ttacaacaat ctgggccaac aatgatgtaa ataggagaga cccaaattta 360 aacgccttgt ggtaa 375 35 117 PRT Streptococcus pneumoniae 35 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Val Ile Asp Glu Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Gly Ala Tyr Leu Ser Lys Arg Ala Cys Gln 20 25 30 Gly Ile Cys Ala Ala Leu Ala Met Ser Pro Gly Thr Phe Ile Ala Leu 35 40 45 Ala Gly Ala Ala Val Leu Thr Lys Lys Leu Ile Asn Tyr Ile Lys Val 50 55 60 Gly Gly Leu Gly Gly Trp Leu Ile Gly Ala Ala Ala Gly Val Leu Ala 65 70 75 80 Gly Ala Ala Gly Arg Ile Ala Tyr Cys Ile Gly Tyr Gly Ala Leu Asn 85 90 95 Arg Gly Cys Asp Ile Ser Gly Asn Pro Tyr Pro Trp Asp Gly Phe Ile 100 105 110 Ser Ala Thr Val Arg 115 36 354 DNA Streptococcus pneumoniae 36 atggaacttg tattaccaaa taattatgtt gtgattgatg aagaagagat gatgtacctt 60 gatgggggag cttatttaag caagcgtgct tgtcaaggaa tttgcgcagc tttagctatg 120 agtccaggaa cttttatagc attagctgga gctgcagttt taaccaaaaa actaataaac 180 tatattaaag ttggaggcct tggaggttgg cttattggtg cagcagcagg tgtattggct 240 ggggcggcag gaagaatagc ttactgtatt ggatatggtg ctcttaatag aggttgtgat 300 attagcggga acccttatcc ttgggatgga ttcatatctg cgacagtaag atga 354 37 117 PRT Streptococcus pneumoniae 37 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Val Ile Asp Glu Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Glu Ala Tyr Leu Ser Lys Arg Ala Cys Gln 20 25 30 Gly Ile Cys Ala Ala Leu Ala Met Ser Ser Gly Thr Phe Ile Ala Leu 35 40 45 Ala Gly Ala Ala Val Leu Thr Lys Lys Leu Ile Asn Tyr Ile Lys Val 50 55 60 Gly Gly Leu Gly Gly Trp Leu Ile Gly Ala Ala Ala Gly Val Leu Ala 65 70 75 80 Thr Ala Ala Gly Lys Ile Ala Tyr Tyr Ile Gly Tyr Gly Val Leu Asn 85 90 95 Arg Gly Cys Asp Ile Asn Gly Asn Pro Tyr Pro Trp Asp Gly Phe Ile 100 105 110 Ser Ala Thr Val Arg 115 38 363 DNA Streptococcus pneumoniae 38 atggaacttg tattaccaaa taattatgtt gtgattgatg aagaagaaat gatgtatctt 60 gatggggaag cttatttaag caagcgtgct tgtcaaggaa tttgcgcagc tttagctatg 120 agttcaggca cttttatagc attagctgga gctgcagttt taaccaaaaa actaataaac 180 tatattaagg ttggaggtct tggaggctgg cttattggtg cagcagcagg tgtattggct 240 acagcagcag ggaaaatagc ttactatatt ggatatggtg ttcttaatag aggttgtgat 300 attaacggga acccttatcc ttgggatgga ttcatatctg cgacagtaag atgagtaatg 360 tag 363 39 128 PRT Streptococcus pneumoniae 39 Met Lys Gln Phe Gln Leu Arg Arg Arg Lys Gln Met Glu Leu Val Leu 1 5 10 15 Pro Asn Asn Tyr Val Val Ile Asp Glu Glu Glu Met Met Tyr Leu Asp 20 25 30 Gly Gly Ala Tyr Leu Ser Lys Arg Ala Cys Gln Gly Ile Cys Val Ala 35 40 45 Leu Ala Met Ser Pro Gly Ile Phe Ile Ala Leu Ala Gly Ala Ala Val 50 55 60 Leu Thr Lys Lys Leu Ile Asn Tyr Ile Lys Val Gly Gly Leu Gly Gly 65 70 75 80 Trp Leu Ile Gly Ala Ala Ala Gly Val Leu Ala Thr Ala Ala Gly Lys 85 90 95 Ile Ala Tyr Cys Ile Gly Tyr Gly Ala Leu Asn Arg Gly Cys Asp Ile 100 105 110 Ser Gly Asn Pro Tyr Pro Trp Asp Gly Phe Ile Ser Ala Thr Val Arg 115 120 125 40 354 DNA Streptococcus pneumoniae 40 atggaacttg tattaccaaa taattatgtt gtgattgatg aagaagaaat gatgtatctt 60 gatgggggag cttatttaag caagcgtgct tgtcaaggaa tttgcgtagc tttagctatg 120 agtccaggaa tttttatagc attagctgga gctgcagttt taaccaaaaa actaataaac 180 tatattaagg ttggaggtct tggaggctgg cttattggtg cagcagcagg tgtattggct 240 acagcagcag gaaaaatagc ttactgtatt ggatatggtg ctcttaatag aggttgtgat 300 attagcggga acccttatcc ttgggatgga ttcatatctg cgacagtaag atga 354 41 123 PRT Streptococcus pneumoniae 41 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Val Ile Asp Glu Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Gly Ala Ile Tyr Ile Pro Arg Trp Ala Ile 20 25 30 Thr Gly Ala Ile Thr Gly Ala Ala Tyr Ala Ala Leu Ala Ala Ala Gly 35 40 45 Gly Gly Gly Leu Gln Leu Val Leu Ala Ser Tyr Gly Leu Arg Ser Ala 50 55 60 Leu Val Ala Gly Ile Val Lys Gly Leu Gly Val Leu Gly Ile His Ile 65 70 75 80 Gly Asn Ala Phe Ala Asn Thr Val Ile Arg Ser Ile Ala Ser Ala Gly 85 90 95 Ile Gly Ala Gly Ala Asp Trp Ile Phe Thr Asn Ile Ile Asp Gly Trp 100 105 110 Asp Gly Arg Arg Asp Asn Gln Leu Arg Ile Gly 115 120 42 372 DNA Streptococcus pneumoniae 42 atggaacttg tattaccaaa taattatgtt gtgattgatg aagaagagat gatgtacctt 60 gatggggggg ctatatatat acccaggtgg gcaattacag gagccattac tggtgcagca 120 tatgcagcat tagcagcagc aggaggtgga ggccttcaac tagttcttgc atcttatgga 180 ttacgctccg cactggtagc tgggattgtt aaaggtttag gagtattagg aattcatatt 240 ggaaatgctt ttgcaaatac tgttattaga agtattgcat ctgctggaat tggtgctgga 300 gctgattgga tttttaccaa tattattgat ggctgggatg ggcgacgtga taatcaattg 360 agaataggtt aa 372 43 126 PRT Streptococcus pneumoniae 43 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Asp Leu Glu Gln Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Gly Gly Val Gly Arg Asn Trp Trp Asn Ser 20 25 30 Arg Gly Ser Phe Ala Thr Val Leu Asp Val Gly Leu Ala Ile Tyr Ser 35 40 45 Gly Gly Ala Thr Ile Tyr Ser Ala Tyr Ala Ile Lys Lys Ala Ile Ser 50 55 60 Ala Asn Arg Gly Ala Ile Thr Arg Thr Leu Arg Ser Leu Ile Ile Lys 65 70 75 80 His Val Gly Ser Ala Ala Gly His Leu Val Asn Thr Ala Leu Asn Val 85 90 95 Ala Leu Thr Val Thr Gly Phe Ser Leu Gly Gly Ala Ile Ala Tyr Gly 100 105 110 Ala Asp Trp Ala Asp Gly Ser Leu Asp Gly Tyr Ile Phe Ala 115 120 125 44 381 DNA Streptococcus pneumoniae 44 atggaactcg tattaccaaa taattatgtt gatcttgagc aagaagagat gatgtatctt 60 gatgggggtg gtgttggtcg taactggtgg aatagtagag gtagttttgc aacagttctg 120 gatgtaggtt tggccatcta tagtggtggt gcaacaattt attctgctta tgcgataaaa 180 aaagctatct cagctaatag aggggctatt acgagaacat tacgtagttt aataattaaa 240 catgtaggta gtgcagctgg ccatttagtc aatactgcac taaacgttgc actaactgtt 300 actggatttt cactaggtgg agcaatcgca tatggggctg attgggctga cggtagctta 360 gatggttata tttttgctta a 381 45 23 PRT Streptococcus pneumoniae misc_feature (11)..(11) X is Val, Ala or Asp 45 Met Glu Leu Val Leu Pro Asn Asn Tyr Val Xaa Xaa Xaa Xaa Glu Glu 1 5 10 15 Met Met Tyr Leu Asp Gly Xaa 20 46 40 DNA Artificial sequence Primer 46 cgagatctga tatctcacaa acagataacg gcgtaaatag 40 47 43 DNA Artificial sequence Primer 47 gaagatcttc cccgggatca caaacagata acggcgtaaa tag 43 48 42 DNA Artificial sequence Primer 48 cgagatctga tatccatcac aaacagataa cggcgtaaat ag 42 49 32 DNA Artificial sequence Primer 49 cgggatcctt atggacctga atcagcgttg tc 32 50 23 DNA Artificial sequence Primer 50 ggatgctttg tttcaggtgt atc 23 51 82 DNA Artificial sequence Primer 51 catgatatcg gtacctcaag ctcatatcat tgtccggcaa tggtgtgggc tttttttgtt 60 ttagcggata acaatttcac ac 82 52 81 DNA Artificial sequence Primer 52 gcggatcccc cgggcttaat taatgtttaa acactagtcg aagatctcgc gaattctcct 60 gtgtgaaatt gttatccgct a 81 53 24 DNA Artificial sequence Primer 53 cgccagggtt ttcccagtca cgac 24 54 20 DNA Artificial sequence Primer 54 tcaggggggc ggagcctatg 20 55 22 DNA Artificial sequence Primer 55 tcgtatgttg tgtggaattg tg 22 56 26 DNA Artificial sequence Primer 56 tccggctcgt atgttgtgtg gaattg 26 57 35 DNA Artificial sequence Primer 57 ggcggatcca taaacgaaga aataagcaag gaagc 35 58 30 DNA Artificial sequence Primer 58 ggcaagcttt tagatttctc tggtcatatc 30 59 30 DNA Artificial sequence Primer 59 ggcggatcca aacaatttca actaaggagg 30 60 31 DNA Artificial sequence Primer 60 ggcaagcttt catcttactg tcgcagatat g 31

Claims (21)

1. A Streptococcus pneumoniae protein or polypeptide having a sequence selected from those shown in Table 1.
2. A protein or polypeptide as claimed in claim 1 provided in substantially pure form.
3. A protein or polypeptide which is substantially identical to that defined in claim 1.
4. A homologue or derivative of a protein or polypeptide as defined in claim 1.
5. An antigenic and/or immunogenic fragment of a protein or polypeptide as defined in Tables 1 and 3.
6. A Streptococcus pneumoniae protein which has the N terminal sequence
MELVLPNNYVV(D,A)I(L)D(E)E(O)EEMMYLDGG(E) where the bracketed residues represent alternatives to the preceding amino acid, or a fragment or homologue or derivative thereof.
7. A nucleic acid molecule comprising or consisting of a sequence which is: (i) any of the DNA sequences set out in Tables 1 to 3 or their RNA equivalents; (ii) a sequence which is complementary to any of the sequences of (i); (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii); (iv) a sequence which is substantially identical with any of those of (i), (ii) and (iii); (v) a sequence which codes for a homologue, derivative or fragment of a protein as defined in Table 1.
8. A method for eliciting an anti-Streptococcal immune response comprising administering an immunogenic and/or antigenic composition, said composition comprising a protein or polypeptide having a sequence selected from those shown in Tables 1 to 3, or homologues, derivatives and/or fragments thereof.
9. An immunogenic and/or antigenic composition comprising one or more proteins or polypeptides selected from those whose sequences are shown in Tables 1 to 3, or homologues or derivatives thereof, and/or fragments of any of these.
10. The method of in claim 8 wherein said composition is administered as a vaccine.
11. A vaccine as claimed in claim 10 which comprises one or more additional components selected from excipients, diluents, adjuvants or the like.
12. A vaccine composition comprising one or more nucleic acid sequences as defined in Tables 1 to 3.
13. A method for the detection/diagnosis of S. pneumoniae which comprises the step of bringing into contact a sample to be tested with at least one protein or polypeptide as defined in Tables 1 to 3, or homologue, derivative or fragment thereof.
14. An antibody capable of binding to a protein or polypeptide as defined in Tables 1 to 3, or for a homologue, derivative or fragment thereof.
15. An antibody as defined in claim 14 which is a monoclonal antibody.
16. A method for the detection/diagnosis of S. pneumoniae which comprises the step of bringing into contact a sample to be tested and at least one antibody as defined in claim 14.
17. A method for the detection/diagnosis of S. pneumoniae which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid sequence as defined in claim 7.
18. A method of determining whether a protein or polypeptide as defined in Tables 1 to 3 represents a potential anti-microbial target which comprises inactivating said protein or polypeptide and determining whether S. pneumoniae is still viable.
19. A method of treatment or prophylaxis of a S. pneumoniae infection comprising administering a composition which antagonizes, inhibits, or interferes with the function or expression of a protein or polypeptide as defined in Tables 1 to 3.
20. The method of claim 8 further comprising detecting said anti-Streptococcal immune response.
21. The method of claim 19, wherein said composition comprises a shuttle vector.
US10/476,460 2001-03-30 2002-03-28 Proteins Abandoned US20040265933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/180,896 US8101187B2 (en) 2001-03-30 2008-07-28 Secreted Streptococcus pneumoniae proteins

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0108079.5A GB0108079D0 (en) 2001-03-30 2001-03-30 Protein
GB0108079.5 2001-03-30
PCT/GB2002/001480 WO2002079241A2 (en) 2001-03-30 2002-03-28 Secreted streptococcus pneumoniae proteins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/180,896 Continuation US8101187B2 (en) 2001-03-30 2008-07-28 Secreted Streptococcus pneumoniae proteins

Publications (1)

Publication Number Publication Date
US20040265933A1 true US20040265933A1 (en) 2004-12-30

Family

ID=9911963

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/476,460 Abandoned US20040265933A1 (en) 2001-03-30 2002-03-28 Proteins
US12/180,896 Expired - Fee Related US8101187B2 (en) 2001-03-30 2008-07-28 Secreted Streptococcus pneumoniae proteins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/180,896 Expired - Fee Related US8101187B2 (en) 2001-03-30 2008-07-28 Secreted Streptococcus pneumoniae proteins

Country Status (7)

Country Link
US (2) US20040265933A1 (en)
EP (2) EP1959015A3 (en)
CN (2) CN102286083A (en)
AU (1) AU2002242873A1 (en)
CA (1) CA2446804A1 (en)
GB (1) GB0108079D0 (en)
WO (1) WO2002079241A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015256A1 (en) * 1997-07-02 2007-01-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20090074808A1 (en) * 2001-03-30 2009-03-19 Microbial Technics Limited Secreted Streptococcus Pneumoniae Proteins
US8182842B1 (en) 2010-11-10 2012-05-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Physico-chemical-managed killing of penicillin-resistant static and growing gram-positive and gram-negative vegetative bacteria

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083855A2 (en) 2001-04-16 2002-10-24 Wyeth Holdings Corporation Novel streptococcus pneumoniae open reading frames encoding polypeptide antigens and uses thereof
PL3406635T3 (en) * 2007-03-23 2022-08-22 Wyeth Llc Shortened purification process for the production of capsular streptococcus pneumoniae polysaccharides
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
US8466167B2 (en) 2008-03-03 2013-06-18 Irm Llc Compounds and compositions as TLR activity modulators
CA2765112A1 (en) 2009-06-10 2010-12-16 Novartis Ag Benzonaphthyridine-containing vaccines
JO3257B1 (en) 2009-09-02 2018-09-16 Novartis Ag Compounds and compositions as tlr activity modulators
ES2443952T3 (en) 2009-09-02 2014-02-21 Novartis Ag Immunogenic compositions that include modulators of TLR activity
WO2011057148A1 (en) 2009-11-05 2011-05-12 Irm Llc Compounds and compositions as tlr-7 activity modulators
US9408907B2 (en) 2009-12-15 2016-08-09 Glaxosmithkline Biologicals Sa Homogenous suspension of immunopotentiating compounds and uses thereof
EP2549990A1 (en) 2010-03-23 2013-01-30 Irm Llc Compounds (cystein based lipopeptides) and compositions as tlr2 agonists used for treating infections, inflammations, respiratory diseases etc.
EP2822586A1 (en) 2012-03-07 2015-01-14 Novartis AG Adjuvanted formulations of streptococcus pneumoniae antigens
CN105188747A (en) 2013-02-01 2015-12-23 葛兰素史密斯克莱生物公司 Intradermal delivery of immunological compositions comprising TOLL-like receptor agonists
CN103834667B (en) * 2013-12-31 2016-08-17 李越希 The streptococcus pneumoniae PspA protein extracellular genetic fragment of chemosynthesis and expression, application
US11458151B2 (en) 2018-02-12 2022-10-04 Inimmune Corporation Toll-like receptor ligands
CA3198924A1 (en) 2020-11-04 2022-05-12 Eligo Bioscience Phage-derived particles for in situ delivery of dna payload into c. acnes population

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858375A (en) * 1994-09-15 1999-01-12 Medeva Europe Limited Pharmaceutical compositions containing D2 O
US20030022181A1 (en) * 1999-03-26 2003-01-30 Cripps Alan William Streptococcus pneumoniae antigens
US20030077293A1 (en) * 2000-06-20 2003-04-24 Josee Hamel Streptococcus antigens
US20030091577A1 (en) * 1998-07-27 2003-05-15 Gilbert Christophe Francois Guy Streptococcus pneumoniae proteins and nucleic acid molecules
US20030134407A1 (en) * 1998-07-27 2003-07-17 Le Page Richard William Falla Nucleic acids and proteins from Streptococcus pneumoniae
US20030232976A1 (en) * 2001-12-20 2003-12-18 Josee Hamel Streptococcus antigens
US6699703B1 (en) * 1997-07-02 2004-03-02 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20040129165A1 (en) * 2001-04-24 2004-07-08 Cesaroni Anthony Joseph Lead-free projectiles
US20050158334A1 (en) * 2001-07-26 2005-07-21 Mario Contorni Vaccines comprising aluminium adjuvants and histidine
US7081530B1 (en) * 1997-07-02 2006-07-25 sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7098182B2 (en) * 1998-07-27 2006-08-29 Microbial Technics Limited Nucleic acids and proteins from group B streptococcus
US7128918B1 (en) * 1998-12-23 2006-10-31 Id Biomedical Corporation Streptococcus antigens

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248329B1 (en) * 1998-06-01 2001-06-19 Ramaswamy Chandrashekar Parasitic helminth cuticlin nucleic acid molecules and uses thereof
EP1801218A3 (en) * 1998-07-27 2007-10-10 Sanofi Pasteur Limited Nucleic acids and proteins from streptococcus pneumoniae
CN1318103A (en) * 1998-07-27 2001-10-17 微生物技术有限公司 Nucleic acids and proteins from streptococcus pneumoniae
EP1624064A3 (en) * 1998-07-27 2006-05-10 Microbial Technics Limited Nucleic acids and proteins from streptococcus pneumoniae
EP1100920A2 (en) 1998-07-27 2001-05-23 Microbial Technics Limited Nucleic acids and proteins from group b streptococcus
GB9921125D0 (en) * 1999-09-07 1999-11-10 Microbial Technics Limited Proteins
GB0108079D0 (en) * 2001-03-30 2001-05-23 Microbial Technics Ltd Protein
WO2002083855A2 (en) * 2001-04-16 2002-10-24 Wyeth Holdings Corporation Novel streptococcus pneumoniae open reading frames encoding polypeptide antigens and uses thereof
EP1703887A4 (en) * 2003-12-31 2009-10-21 Univ Rochester Polypeptides and immunogenic conjugates capable of inducing antibodies against pathogens, and uses thereof
WO2009033742A2 (en) * 2007-09-14 2009-03-19 Katholieke Universiteit Leuven Streptococcus pneumoniae vaccines
WO2009094730A1 (en) * 2008-02-01 2009-08-06 Newcastle Innovation Limited Vaccine compositions

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858375A (en) * 1994-09-15 1999-01-12 Medeva Europe Limited Pharmaceutical compositions containing D2 O
US7122368B1 (en) * 1997-07-02 2006-10-17 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070009902A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd. Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7115731B1 (en) * 1997-07-02 2006-10-03 sanofi pasteur limited/ sanofi pasteur limiteé Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070243207A1 (en) * 1997-07-02 2007-10-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070015256A1 (en) * 1997-07-02 2007-01-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US6699703B1 (en) * 1997-07-02 2004-03-02 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070015255A1 (en) * 1997-07-02 2007-01-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US6800744B1 (en) * 1997-07-02 2004-10-05 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20050136404A1 (en) * 1997-07-02 2005-06-23 Doucette-Stamm Lynn A. Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20070009906A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20070009903A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7151171B1 (en) * 1997-07-02 2006-12-19 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7074914B1 (en) * 1997-07-02 2006-07-11 sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7081530B1 (en) * 1997-07-02 2006-07-25 sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070009901A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7098023B1 (en) * 1997-07-02 2006-08-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070009900A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070009904A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20070009905A1 (en) * 1997-07-02 2007-01-11 Aventis Pasteur Ltd. Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US7129339B1 (en) * 1997-07-02 2006-10-31 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7129340B1 (en) * 1997-07-02 2006-10-31 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US7135560B1 (en) * 1997-07-02 2006-11-14 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7153952B1 (en) * 1997-07-02 2006-12-26 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20030134407A1 (en) * 1998-07-27 2003-07-17 Le Page Richard William Falla Nucleic acids and proteins from Streptococcus pneumoniae
US20060263378A1 (en) * 1998-07-27 2006-11-23 Microbial Technics Limited Nucleic acids and proteins from Streptococcus pneumoniae
US20030091577A1 (en) * 1998-07-27 2003-05-15 Gilbert Christophe Francois Guy Streptococcus pneumoniae proteins and nucleic acid molecules
US7098182B2 (en) * 1998-07-27 2006-08-29 Microbial Technics Limited Nucleic acids and proteins from group B streptococcus
US6936252B2 (en) * 1998-07-27 2005-08-30 Microbial Technics Limited Streptococcus pneumoniae proteins and nucleic acid molecules
US7128918B1 (en) * 1998-12-23 2006-10-31 Id Biomedical Corporation Streptococcus antigens
US20030022181A1 (en) * 1999-03-26 2003-01-30 Cripps Alan William Streptococcus pneumoniae antigens
US20030077293A1 (en) * 2000-06-20 2003-04-24 Josee Hamel Streptococcus antigens
US7074415B2 (en) * 2000-06-20 2006-07-11 Id Biomedical Corporation Streptococcus antigens
US20040129165A1 (en) * 2001-04-24 2004-07-08 Cesaroni Anthony Joseph Lead-free projectiles
US20050158334A1 (en) * 2001-07-26 2005-07-21 Mario Contorni Vaccines comprising aluminium adjuvants and histidine
US20030232976A1 (en) * 2001-12-20 2003-12-18 Josee Hamel Streptococcus antigens
US7262024B2 (en) * 2001-12-20 2007-08-28 Id Biomedical Corporation Streptococcus antigens

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015256A1 (en) * 1997-07-02 2007-01-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021601A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021373A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021374A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021369A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20070021371A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021368A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021370A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070021372A1 (en) * 1997-07-02 2007-01-25 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070037766A1 (en) * 1997-07-02 2007-02-15 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070059802A1 (en) * 1997-07-02 2007-03-15 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070083038A1 (en) * 1997-07-02 2007-04-12 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070082005A1 (en) * 1997-07-02 2007-04-12 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070088150A1 (en) * 1997-07-02 2007-04-19 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070092946A1 (en) * 1997-07-02 2007-04-26 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20070093647A1 (en) * 1997-07-02 2007-04-26 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20070093648A1 (en) * 1997-07-02 2007-04-26 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070099861A1 (en) * 1997-07-02 2007-05-03 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070117965A1 (en) * 1997-07-02 2007-05-24 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070207976A1 (en) * 1997-07-02 2007-09-06 Lynn Doucette-Stamm Nucleic acids and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070243207A1 (en) * 1997-07-02 2007-10-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20070243585A1 (en) * 1997-07-02 2007-10-18 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20080009035A1 (en) * 1997-07-02 2008-01-10 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20080020442A1 (en) * 1997-07-02 2008-01-24 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20080064083A1 (en) * 1997-07-02 2008-03-13 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20080113429A1 (en) * 1997-07-02 2008-05-15 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20080118971A1 (en) * 1997-07-02 2008-05-22 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US7381815B2 (en) 1997-07-02 2008-06-03 Sanofi Parker Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7381816B2 (en) 1997-07-02 2008-06-03 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7381814B1 (en) 1997-07-02 2008-06-03 Sanofi Pasteur Limted Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7385047B1 (en) 1997-07-02 2008-06-10 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7388090B2 (en) 1997-07-02 2008-06-17 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7390493B2 (en) 1997-07-02 2008-06-24 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7396532B2 (en) 1997-07-02 2008-07-08 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20080177026A1 (en) * 1997-07-02 2008-07-24 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7404958B2 (en) 1997-07-02 2008-07-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7405291B2 (en) 1997-07-02 2008-07-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20080194004A1 (en) * 1997-07-02 2008-08-14 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20080194505A1 (en) * 1997-07-02 2008-08-14 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20090074806A1 (en) * 1997-07-02 2009-03-19 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US20090215149A1 (en) * 1997-07-02 2009-08-27 Lynn Doucette-Stamm Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7582731B2 (en) 1997-07-02 2009-09-01 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7582449B2 (en) 1997-07-02 2009-09-01 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7626000B2 (en) 1997-07-02 2009-12-01 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7790412B2 (en) 1997-07-02 2010-09-07 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7834166B2 (en) 1997-07-02 2010-11-16 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7867501B2 (en) 1997-07-02 2011-01-11 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7875439B2 (en) 1997-07-02 2011-01-25 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7875437B2 (en) 1997-07-02 2011-01-25 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US7875438B2 (en) 1997-07-02 2011-01-25 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7893238B2 (en) 1997-07-02 2011-02-22 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7893230B2 (en) 1997-07-02 2011-02-22 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8003775B2 (en) 1997-07-02 2011-08-23 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8288519B2 (en) 1997-07-02 2012-10-16 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8293884B2 (en) 1997-07-02 2012-10-23 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8293249B2 (en) 1997-07-02 2012-10-23 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8298788B2 (en) 1997-07-02 2012-10-30 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8609107B2 (en) 1997-07-02 2013-12-17 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US20090074808A1 (en) * 2001-03-30 2009-03-19 Microbial Technics Limited Secreted Streptococcus Pneumoniae Proteins
US8101187B2 (en) * 2001-03-30 2012-01-24 Sanofi Pasteur Limited Secreted Streptococcus pneumoniae proteins
US8182842B1 (en) 2010-11-10 2012-05-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Physico-chemical-managed killing of penicillin-resistant static and growing gram-positive and gram-negative vegetative bacteria

Also Published As

Publication number Publication date
US8101187B2 (en) 2012-01-24
CN1513058A (en) 2004-07-14
EP1959015A3 (en) 2008-12-03
EP1959015A2 (en) 2008-08-20
US20090074808A1 (en) 2009-03-19
CN102286083A (en) 2011-12-21
AU2002242873A1 (en) 2002-10-15
CA2446804A1 (en) 2002-10-10
GB0108079D0 (en) 2001-05-23
EP1377605A2 (en) 2004-01-07
WO2002079241A2 (en) 2002-10-10
WO2002079241A3 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
US8101187B2 (en) Secreted Streptococcus pneumoniae proteins
Hammerschmidt et al. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component
EP1141306B1 (en) Streptococcus antigens
WO2000006738A2 (en) NUCLEIC ACIDS AND PROTEINS FROM $i(STREPTOCOCCUS PNEUMONIAE)
US7648708B2 (en) Streptococcus pneumoniae proteins and nucleic acid molecules
EP2053126A1 (en) Streptococcus pneumoniae proteins and nucleic acid molecules
US20060078565A1 (en) Nucleic acids and proteins from Group B Streptococcus
US20090274717A1 (en) Genes and proteins, and their use
US20060177465A1 (en) Streptococcus antigens
EP1100920A2 (en) Nucleic acids and proteins from group b streptococcus
US8632784B2 (en) Nucleic acids and proteins from Streptococcus pneumoniae
Kolberg et al. Monoclonal antibodies that recognize a common pneumococcal protein with similarities to streptococcal group A surface glyceraldehyde-3-phosphate dehydrogenase
EP1790729A2 (en) Streptococcus pneumoniae proteins and nucleic acid molecules
EP1801218A2 (en) Nucleic acids and proteins from streptococcus pneumoniae
EP1624064A2 (en) Nucleic acids and proteins from streptococcus pneumoniae
AU2005209689B2 (en) Novel streptococcus antigens
EP1950302B1 (en) Streptococcus antigens
NZ543923A (en) Pho3-18 for a theraputic use, particulary in bacterial infection.

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROBIAL TECHNICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE PAGE, RICHARD WILLIAM FALLA;BADCOCK, DANIEL;SIZER, PHILIP JAMES HOLDEN;AND OTHERS;REEL/FRAME:015084/0965;SIGNING DATES FROM 20040623 TO 20040818

Owner name: PROVALIS UK LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE PAGE, RICHARD WILLIAM FALLA;BADCOCK, DANIEL;SIZER, PHILIP JAMES HOLDEN;AND OTHERS;REEL/FRAME:015084/0965;SIGNING DATES FROM 20040623 TO 20040818

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SANOFI PASTEUR LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROVALIS DIAGNOSTICS LIMITED/CORTECS (OM) PTY LIMITED/PROVALIS UK LIMITED/MICROBIAL TECHNICS LIMITED;REEL/FRAME:024705/0021

Effective date: 20060717