US20030206843A1 - Methods and compositions to sequester combustion-gas mercury in fly ash and concrete - Google Patents

Methods and compositions to sequester combustion-gas mercury in fly ash and concrete Download PDF

Info

Publication number
US20030206843A1
US20030206843A1 US10/430,721 US43072103A US2003206843A1 US 20030206843 A1 US20030206843 A1 US 20030206843A1 US 43072103 A US43072103 A US 43072103A US 2003206843 A1 US2003206843 A1 US 2003206843A1
Authority
US
United States
Prior art keywords
mercury
ozone
sorbent
carbon
carbonaceous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/430,721
Inventor
Sidney Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/430,721 priority Critical patent/US20030206843A1/en
Publication of US20030206843A1 publication Critical patent/US20030206843A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/013Conditioning by chemical additives, e.g. with SO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/901Activated carbon

Definitions

  • This invention relates to the injection of carbon sorbent materials into the combustion gas streams of coal-fired power plants to remove mercury and to the use in concretes of the mixture of fly ash and sorbents recovered from the combustion-gas particulate-collector.
  • activated carbons have demonstrated utility for sequestering mercury vapors in some applications. Moreover, when treated with other compounds, the mercury sequestration performance of activated carbons can be improved.
  • Manes and Grant U.S. Pat. No. 3,193,987 propose use of an activated carbon impregnated with an amalgamating metal, such as copper or silver.
  • Stock U.S. Pat. No. 1,984,164 teaches the advantages of loading activated carbon with halogens, particularly iodine, to remove mercury from various gases. In U.S. Pat. No.
  • problems may result from the vaporization of the impregnates if they are used at elevated temperatures, such as the case with corrosive iodine or sulfur oxides. And upon disposal of the sorbents, problems can occur with leaching of the cations involved, such as copper, or of any captured mercury put into a soluble form.
  • a fly ash sample in this case incorporating 1 or 2 wt % PAC, is placed in a small closed container with water, shaken, and then the liquid surface is observed for a stable foam. Drops of a standard AEA solution are sequentially added until a stable foam results, with the amount of AEA added representing the foam index. The lower the foam index, the less the fly ash interferes with the AEA.
  • a method for removing mercury and mercury-containing compounds from a combustion gas in an exhaust gas system has the steps of providing a mercury sorbent; injecting the mercury sorbent into a stream of the mercury-containing combustion gas for a sufficient time to allow at least an effective amount of the mercury and mercury-containing compounds in the combustion gas to adsorb onto the mercury sorbent and collecting and removing the mercury sorbent from the combustion gas stream.
  • the mercury sorbent is prepared by treating a carbonaceous substrate with an effective amount of an ozone-containing gas for a sufficient time to increase the ability of the carbonaceous substrate to adsorb mercury and mercury-containing compounds and to decrease the degree of interference of the substrate on air-entraining-admixtures used with the substrates as a component of a concrete composition.
  • the carbonaceous substrate comprises activated carbon.
  • the carbonaceous substrate is reduced to a particle size distribution fluidizable in the combustion gas stream prior to the injecting step.
  • the points of injecting and collecting and removing the mercury sorbent may be varied, depending upon the exact configuration of the exhaust gas system.
  • a method for manufacturing a mercury sorbent has the steps of: providing a carbonaceous substrate; providing an ozone-containing gas; and contacting the carbonaceous substrate with the ozone-containing gas for a sufficient time to increase the mercury adsorbing ability of the carbonaceous substrate and to decrease the degree of interference of the substrate on air-entraining-admixtures used with the substrates as a component of a concrete composition.
  • the carbonaceous substrate is activated carbon.
  • FIGS. 1 through 3 are schematic diagrams describing possible methods for utilizing the improved sorbent compositions to remove and isolate mercury species from hot combustion flue gases;
  • FIG. 4 is a plot of sorbent breakthrough curves indicating improvements in mercury capture and capacity with the sorbent materials of the invention
  • FIG. 5 is a graph indicating the degree to which the foam index of sorbents processed according to this invention are lowered with increasing contact with ozone;
  • FIG. 6 is a graph indicating the improved mercury capture levels, in a simulated coal-fired, duct-injection, ESP application, of sorbents processed according to this invention, compared to those not so processed;
  • FIG. 7 is a graph indicating the improved mercury utilization, in a simulated coal-fired, duct-injection, ESP application, of sorbents processed according to this invention, along with these sorbents' improved foam indexes.
  • a carbonaceous adsorbent such as powdered activated carbon (PAC)
  • PAC powdered activated carbon
  • the fourth requirement is that the adsorbent material be (4) injected into the flowing gas, intimately mix with it, and be separated from the gas in a particulate collector along with fly ash.
  • the fifth and final essential element of the invention is that at some time before it is mixed with the mercury-containing combustion gas, the carbon material must (5) be exposed to an ozone-containing treatment gas, producing a sorbent material that is both particularly reactive to gaseous mercury species and that has a decreased adsorption of air-entraining-admixtures (AEAs) if mixed with fly ash in a concrete composition.
  • AEAs air-entraining-admixtures
  • the mercury is removed with them.
  • the mercury sorbents are then disposed of with the fly ash.
  • the captured mercury appears to be very stable. The toxic mercury is thus sequestered from environmental interactions.
  • the ozone treatment of the mercury sorbent has the additional beneficial effect of decreasing the resulting foam index of the fly ash.
  • Lowering the sorbent's interference with AEAs can enable some fly ashes to be used in concretes, completely sequestering the power-plant mercury in a cementitious matrix.
  • Ozone is a gas at ambient temperature. Using a gas-phase carbon reactant considerably simplifies the production of the sorbent. Any common mixing method and equipment can be used to contact the ozone with the carbon-based substrates.
  • Manufacture of the improved mercury sorbent of this invention begins with a carbonaceous substrate material for the mercury sorbent.
  • carbonaceous materials include: activated carbon, activated charcoal, activated coke, char, and unburned or partially-burned carbon from a combustion process.
  • the important features of the sorbent substrate material are that it contain significant elemental carbon and that it has an adequate degree of porosity or surface area to provide mercury removal in the process.
  • the size of the carbonaceous particles during ozonation is not critical as long as their mass is uniformly exposed to and reacted with the ozone.
  • the material can be fine enough already so that it can be mixed with and carried by the mercury-containing flue-gas stream, or it can be large and granular, to be comminuted after ozonation, but prior to being injected into the mercury-containing gas stream.
  • a preferred carbonaceous substrate material is activated carbon. If the manufacturing process of this invention is integrated into the manufacture of the activated carbon material itself, the carbonaceous substrate could be, for example, the carbon material after it has undergone a steam activation procedure. Alternately, the activated carbon entering the treatment process can be an existing commercial product. Preferably the activated carbon is in a very fine state, which allows for a more uniform ozonation. An example would be a powdered activated carbon (PAC). Such a material would already have some gas-phase mercury adsorption capability which the treatment process of this invention will greatly amplify.
  • PAC powdered activated carbon
  • the carbonaceous substrate material is at ambient temperature, preferably it is heated to a temperature of above about 100° C. to drive off any physically-adsorbed moisture that can block the material's pores or interfere with the ozonation step.
  • a separate vessel may optionally be utilized for this preheating step or it can be integrated into the larger processing scheme. Higher temperatures will clean off other heteroatom complexes.
  • the key step in the sorbent manufacturing process is exposing the dried carbonaceous materials to the ozone-containing gas.
  • the gas contacts the solids, it quickly reacts with the materials, modifying the distribution of heteroatom surface-complexes on the carbon surface.
  • treatment with only a very small initial amount of ozone leads to a very large increase in mercury sequestration performance of carbonaceous materials. Modest amounts of additional ozone appear to have relatively little marginal effect on mercury performance. Higher degrees of ozone treatment actually decrease the mercury capabilities of such a sorbent, as structural carbon is oxidized to CO and CO 2 and the porous structure of the material breaks down.
  • any level of ozonation of the carbonaceous substrates appears to lower its foam index value and the deleterious effect it can have on AEAs in concretes.
  • the optimum level of ozone to combine with the carbonaceous material will vary with the particular situation. Obviously, mercury sorbents treated to higher ozone levels will take longer to produce and cost more. If the fly ash containing the carbonaceous sorbents is to be sold for use in concrete, then it can be advantageous to ozonate to a higher level, for example, using 300 grams of ozone per kilogram of powdered activated carbon. If the fly ash is not to be sold for concrete use, on the other hand, a more economic level of 10 g O 3 /kg PAC or even less might be preferred. If the surface area of a PAC is 200 m 2 /g, these ozonation levels would translate to 50 and 1 ⁇ mole of ozone per square meter of total carbon surface area, respectively.
  • the ozonation step can occur in any number of possible reactors.
  • the particular equipment used to contact the carbonaceous substrates with the ozone-containing gas can be, for example, a stationary mixer, a rotating drum, a structure with a vertically-moving bed, a fluidized-bed or bubbling-bed unit, a transport reactor, or any other contactor known in the art.
  • the contactor units of Hurt et al. U.S. Pat. No. 6,521,037, for example, would suit this purpose. So would applying the scheme of Altman U.S. Pat. No. 6,395,145.
  • the mercury sorbent manufacturing process is not limited by the type of process equipment used. Any equipment or method that quickly and evenly distributes the ozone-containing gas to intimately contact the carbonaceous particles will satisfy the requirements of the invention.
  • any ozone remaining in gas streams exiting the contactor can be transported to unsaturated carbon materials upstream in the process, eliminating the need to decompose ozone from the off-gas stream.
  • FIGS. 1 through 3 are schematic diagrams describing possible methods, among others, for utilizing the sorbents of the invention to remove and sequester mercury from hot combustion gases.
  • FIG. 1 applies the sorbents to a combustion gas stream where a particulate collector is utilized to collect the fly ash generated during combustion.
  • this device can be used to collect the injected mercury sorbents as well, concentrating the mercury species in a sequesterable stream.
  • the particulate collector may be a fabric filter or baghouse, an electrostatic precipitator (ESP), a cyclone, a venture scrubber, or any other device capable of removing the combustor fly ash or injected mercury sorbents from the gas stream.
  • ESP electrostatic precipitator
  • a cyclone cyclone
  • venture scrubber or any other device capable of removing the combustor fly ash or injected mercury sorbents from the gas stream.
  • coal or wastes or other fuels are combusted in a boiler 11 generating mercury-containing flue gas which is cooled by steam tubes and an economizer 21 .
  • the gas typically flows through ductwork 61 to an air preheater 22 , which drops
  • the mercury sorbent of this invention stored in a container such as a bin 71 , is fed to and through an injection line 72 to the ductwork 62 and injected through a multitude of lances to widely disperse in the hot combustion flue gas. Mixing with the flue gas, the sorbent adsorbs a fraction of its elemental mercury and oxidized mercury species. The sorbent then flows with flue gas to the particulate collector 31 . If the collector is a fabric filter, the mercury sorbent is deposited on the filter bags in a filter cake along with the fly ash and other gas-stream particulates. In a fabric filter the flue gas is forced through the filter cake and through the bag fabric.
  • the mercury sorbents of this invention will generally make up on the order of 1 or 2 wt % of the collected particulates in pulverized coal power-plant applications.
  • the particulate collector in FIG. 1 is an electrostatic precipitator (ESP) instead of a fabric filter, it becomes a more difficult situation for mercury removal because the flue gas is not forced through the sorbent in a filter cake layer of a collection bag. Because of the poorer mass transfer of mercury to sorbent within an ESP, in this case it is particularly important to inject at 72 as far ahead of any turning vanes, flow distributors, ductwork, and exposed surface-area in the ducts as possible. This not only provides more residence time for the sorbents to mix with and remove mercury from the flowing gas, but provides more mass transfer area for the sorbent to collect on, increasing overall mercury removal. In the ESP 31 , the sorbents are collected on plates with the fly ash and upon rapping of the plates are eventually discharged from the ESP 81 for disposal along with the rest of the particulates.
  • ESP electrostatic precipitator
  • the method for removing mercury from combustion gas streams of this invention is not limited to the particular arrangements described in the figures. These have been provided simply to illustrate common examples and many other variations are possible. For example, a wet scrubber for flue gas desulfurization could appear at 63 in FIG. 1. Similarly, a selective catalytic reduction (SCR) unit for NOx reduction or a flue gas conditioning system to improve particulate removal could be placed in the equipment arrangements. The utility of the disclosed mercury-removal method would be unaffected, however.
  • the mercury sorbents of this invention could be injected while mixed in with sorbents for other flue gas components, such as calcium or magnesium hydroxide or oxide for flue gas SO 3 , HCl, or SO 2 , rather than injected alone.
  • the mercury sorbents could be injected in a liquid slurry, which would quickly evaporate in the hot flue gas.
  • Other variations of the methods of applying this invention can be formulated by those familiar with art and they should be considered within the scope of this disclosure and the included claims.
  • FIG. 2 applies the sorbents in a “TOXECON®” arrangement.
  • the mercury sorbents 71 are injected after an ESP 32 into the almost particulate-free ductwork 67 before a small, high-velocity fabric filter 33 .
  • the fly ash 80 does not become mixed with the carbonaceous sorbents, allowing the fly ash to be sold directly for concrete use.
  • the filter cake of fabric filter 33 would predominantly be mercury sorbent, allowing a longer residence time, higher utilization levels, and the possibility of recovering and reinjecting the sorbent to lower costs.
  • the superior reactivity and capacities of the mercury sorbents of this invention make them prime candidates for use in such an arrangement.
  • FIG. 3 illustrates sorbent usage at plants that have spray dryers for acid rain control.
  • the mercury sorbent could be injected before the spray dryer 62 , into the spray dryer 41 , into the ductwork 68 , between the spray dryer and the particulate collector 31 , or mixed in with the scrubber slurry itself.
  • FIG. 4 presents the fixed-bed mercury breakthrough-curve of a common untreated commercial PAC and the breakthrough curves of three similar samples that had been treated with varying amounts of ozone gas.
  • Laboratory fixed-bed maximum-capacity tests like this roughly simulate the conditions of a sorbent in a filter cake on a bag in a fabric filter. While they do not simulate the kinetics and mass transfer of duct-injection into an ESP, they do provide measures of the maximum mercury capacity of the material and the slope of the breakthrough curve provides some idea of the kinetics.
  • a mercury challenge gas was sent through heated lines to each of the materials at 6.7 lpm that contained an average of about 13 ⁇ g/Nm 3 of elemental Hg from permeation tubes in an oil bath.
  • 1400 ppm SO 2 and 600 ppm NO from bottled gases and 4 wt % of water from a peristaltic pump were also spiked into the gas with the balance being 11.5% O 2 and the rest, N 2 .
  • Mercury levels both into and out from the materials were measured with a gas-phase elemental-mercury analyzer.
  • the ozone treatments of this invention increased the elemental mercury capacity of these PACs by from 300% to 1000%.
  • the fully-instrumented duct-injection test system included a propane burner unit to generate the hot flue gas; a humidification drum to add an appropriate degree of moisture to the gas; a mercury spiking subsystem with elemental-mercury permeation tubes; a flue gas spiking subsystem with mass flow controllers for SO 2 , NOx, and HCl; a small sorbent feeder and fluidizing injection subsystem to lessen sorbent pulsing; 10 meters of insulated, 10-cm-diameter ducting circling the ceiling; thermocouples; an electrostatic filter with an effective specific collection area of about 500 ft 2 /Kacf; a back-up fabric filter; a safety filter; an orifice plate to measure flow; and a variable-speed I.D.
  • the gas temperature at injection was about 175° C. and at the ESP was about 145° C. and the spiked flue gas concentrations were about 24 ⁇ g/Nm 3 Hg(0), 1400 ppm SO 2 , 600 ppm NOx, and 5 ppm HCl, typical values for coal-fired power plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method for removing mercury from a combustion gas in an exhaust gas system has the steps of providing a mercury sorbent; injecting the mercury sorbent into a stream of the mercury-containing combustion gas to enable mercury to adsorb onto the sorbent; and collecting and removing the sorbent from the combustion gas stream. The mercury sorbent is prepared by treating a carbonaceous substrate with an ozone-containing gas to increase the ability of the substrate to adsorb mercury. Concrete compositions with fly ash containing the mercury sorbents will have reduced interference with air-entraining-admixtures.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application claims the priority of U.S. Provisional Application No. 60/377,790, filed May 6, 2002, entitled “Methods to Remove Mercury from Combustion Gases,” which is hereby incorporated by reference as if fully recited herein.[0001]
  • STATEMENT REGARDING FEDERALLY SUPPORTED RESEARCH OR DEVELOPMENT
  • [0002] The United States Government may own certain rights to present invention pursuant to U.S. Environmental Protection Agency Contract No. 68-D-01-075 and National Science Foundation Award No. DMI-0232735, to Sorbent Technologies Corporation.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • This invention relates to the injection of carbon sorbent materials into the combustion gas streams of coal-fired power plants to remove mercury and to the use in concretes of the mixture of fly ash and sorbents recovered from the combustion-gas particulate-collector. [0004]
  • 2. Description of the Related Art [0005]
  • It is well known that mercury is both hazardous and poisonous. Consequently, there is frequently a need to remove it from, for example, the air streams around industrial processes, such as at chlor-alkali plants, or from the air in dental offices using amalgams, where people may be directly exposed to mercury vapor. Similarly, there is a need to sequester mercury from natural gas and hydrocarbon streams, where it corrodes processing equipment; from wastewater streams, where its discharge can contaminate ecosystems; and from the hot combustion-gas emissions of waste incinerators, where it is emitted to the environment to methylate and bio-concentrate up the food chain. Each of these gas or liquid streams has different characteristics that make some mercury removal methods effective and appropriate, but others, ineffective and inappropriate. Consequently, over the years, a multitude of approaches have had to be developed for effectively removing mercury species from various streams. These overall approaches include, among others: liquid scrubbing technologies, homogenous gas-phase technologies, metal amalgamation techniques, and processes utilizing various sorbent materials in different application schemes, with adsorbents optionally impregnated with various reaction aids. [0006]
  • A recent concern is the mercury emitted from coal-fired power plants. It has been estimated, for example, that about 100,000 pounds of mercury are being emitted into the atmosphere annually in the United States from coal-fired power plants. Capturing and isolating this mercury is a very difficult technical problem because the gas volumes to be processed are great, the concentrations of the mercury in the gases are low, and the gas temperatures are high. Also, many other complicating compounds are present in the flue gas and multiple mercury species have to be sequestered. Even though many mercury control techniques have already been developed, new means for effectively and economically controlling utility mercury emissions are still needed. After a thorough investigation of the prior art on mercury removal from power-plant gas streams, the U.S. Environmental Protection Agency (EPA) concluded in the Executive Summary to its 1998 Utility Hazardous Air Pollutants (HAPs) Report to Congress that: [0007]
  • “Regarding potential methods for reducing mercury emissions, the EPA has not identified any demonstrated add-on control technologies currently in use in the U.S. that effectively remove mercury from utility emissions.” [Page ES-18]. [0008]
  • In the past, activated carbons have demonstrated utility for sequestering mercury vapors in some applications. Moreover, when treated with other compounds, the mercury sequestration performance of activated carbons can be improved. Manes and Grant U.S. Pat. No. 3,193,987, for example, propose use of an activated carbon impregnated with an amalgamating metal, such as copper or silver. Stock U.S. Pat. No. 1,984,164 teaches the advantages of loading activated carbon with halogens, particularly iodine, to remove mercury from various gases. In U.S. Pat. No. 6,533,842 Maes et al., a cupric-chloride-impregnated carbon in combination with calcium hydroxide is shown to improve mercury reductions from a gas stream. Dreibelbis and Joyce U.S. Pat. No. 3,194,629 teach the use of activated carbon impregnated with either an iodine-potassium iodide mixture or sulfur dissolved in carbon disulfide. And in U.S. Pat. No. 3,876,393, Kasai et al. recommend impregnating activated carbon with sulfuric acid for mercury removal. [0009]
  • In most of the prior art teachings, a solution is used to transfer the various adsorption aids to the carbons, requiring additional processing steps to wet and dry the materials, which can be especially problematical if the sorbents are very fine powers. Commercial iodine-impregnated carbons, for example, are produced using a solution into which potassium iodide has been dissolved. Sometimes other post-processing is required to delump the sorbents or change the state of the added chemicals. And the contaminated solvents must be disposed of. Morrell and Tobiasson U.S. Pat. No. 2,511,288 provide a discussion of the various complications involved in activated carbon impregnation using solvents. [0010]
  • Consequently, the production of activated carbons from dissolved metals, halide salts, and sulfur compounds is laborious and difficult to perform on a large scale. So while sorbent made from solvent-dissolved species may perform well, they end up being very expensive. In the recent Utility HAPs Report to Congress, which included a detailed evaluation of control technologies available for power plant mercury control, the U.S. EPA reported that: [0011]
  • “Sulfur-, iodide-, chloride salt-, and Ca(OH)[0012] 2-impregnated activated carbons show promise for increasing the mercury removal efficiency, but further testing is needed. [However, t]he cost of these modified carbons can be as much as 20 times higher than that of unmodified AC.” [Page 13-42.]
  • These high costs, due to the chemical impregnates involved and the solution-based manufacture, make them uneconomic for duct-injection use at power plants with electrostatic precipitators (ESPs), because large volumes of sorbents are required and they are ultimately thrown away with the fly ash. [0013]
  • Moreover, problems may result from the vaporization of the impregnates if they are used at elevated temperatures, such as the case with corrosive iodine or sulfur oxides. And upon disposal of the sorbents, problems can occur with leaching of the cations involved, such as copper, or of any captured mercury put into a soluble form. [0014]
  • Recently, a number of inventive methods have been developed to apply mercury sorbent technologies to the large-scale gas streams of coal combustion for power generation. The U.S. patents of Moller et al. U.S. Pat. No. 4,889,698 and Chang, U.S. Pat. No. 5,505,766, for example, describe the injection of very finely powdered activated carbon (PAC) into hot combustion flue gases at various points along their journey through pollution-control equipment trains. However, to practice the art of Moller et al., an expensive spray dryer is required and to practice Chang, the construction of second large particulate collector is required. [0015]
  • A handful of full-scale power-plant sorbent-injection trials have recently taken place at coal-fired units with just an electrostatic precipitator (ESP) for pollution control. About 65% of U.S. coal-fired utility boilers have this configuration, without fabric filters or flue gas desulfurization systems that offer easier and less-expensive options for mercury control. The ESP-only configuration requires in-flight mercury removal, with some amount of sorbent time on the ESP plates parallel to the gas flow. Mercury removal at plants with only an ESP is a most difficult mercury-sequestration situation and an application especially targeted by the current invention. [0016]
  • Contamination of the fly ash by the mercury sorbent further complicates the problem of mercury control at coal-fired power plants. Almost 20% of U.S. power-plant fly ash is beneficially used as a cement substitute in concrete. Power plants that can sell their fly ash not only receive income for their waste product, but save even more in avoided landfill costs. This great industrial recycling success story, however, is now threatened by PAC injection for mercury control. [0017]
  • PAC duct-injection trials at We Energy/Wisconsin Electric's Pleasant Prairie power plant in Wisconsin were the first large-scale mercury sorbent tests at a representative, ESP-equipped U.S. power plant. The Pleasant Prairie plant burns a subbituminous coal and, at the time, sold all of its fly ash as a cement replacement in concretes. Mercury-removal performance in the trials was modest, with over 40% removal when a Norit Darco FGD® PAC was injected at 1 lb/MMacf, but leveling off at about 70% removal when the injection rate was greater than 10 lb/MMacf. However, it was also discovered that the suitability of their fly ash in concretes became severely compromised with PAC injection. [0018]
  • Even at the lowest injection levels tested, when the PAC became incorporated in the plant's fly ash in the ESP, the fly ash failed the required specification tests for concrete use. The problem is that the PAC that was designed to be such an efficient adsorbent material for mercury is, by its nature, also an excellent adsorbent for the organic air-entraining-admixtures (AEAs) added to concretes to produce and stabilize fine air bubbles in the matrix, which provides workability, strength, and freeze/thaw capabilities. The economic implications of this PAC interference with AEAs could be huge. At Pleasant Prairie, for example, the loss in fly ash revenues and added land-disposal costs would be a few times greater than the total mercury-control costs. [0019]
  • A common measure of the degree to which a fly ash interferes with AEAs is known as its “Foam Index.” A fly ash sample, in this case incorporating 1 or 2 wt % PAC, is placed in a small closed container with water, shaken, and then the liquid surface is observed for a stable foam. Drops of a standard AEA solution are sequentially added until a stable foam results, with the amount of AEA added representing the foam index. The lower the foam index, the less the fly ash interferes with the AEA. [0020]
  • Fly ash usually already contains some unburned carbon particles from incomplete fuel combustion. These, too, interfere with AEAs. Because over two-thirds of concrete in the U.S. is air-entrained, a number of methods have been developed to decrease the foam indexes of carbon-containing fly ashes. Tsukada et al. U.S. Pat. No. 5,286,292, for example, found that treating carbon-containing fly ashes with gaseous halogens, particularly chlorine or fluorine, significantly lowers their foam indexes, enabling it to be used in concrete. Hurt et al. U.S. Pat. No. 6,136,089 duplicated this approach using ozone gas. If power plants are to add highly-adsorbent PACs to their flue gas streams for mercury control, methods are needed to reduce the sorbent impact on AEA in concrete. [0021]
  • 3. Objects of the Invention [0022]
  • Accordingly, it is an object of the present invention to provide a sorbent material that may be injected into a hot mercury-containing flue gas, so that a significant portion of the mercury is sequestered onto the sorbent and removed from the flue gas with its fly ash. [0023]
  • In addition, it is an object of the present invention to provide a sorbent material that has a reduced interference with air-entraining-admixtures when a fly ash incorporating the saturated sorbents is used in concretes, sequestering the power-plant mercury from the environment. [0024]
  • Moreover, it is an object of the present invention to provide methods for inexpensively manufacturing and applying these improved mercury sorbent materials. [0025]
  • SUMMARY OF THE INVENTION
  • These and other objects of the invention are achieved by a method for removing mercury and mercury-containing compounds from a combustion gas in an exhaust gas system. The method has the steps of providing a mercury sorbent; injecting the mercury sorbent into a stream of the mercury-containing combustion gas for a sufficient time to allow at least an effective amount of the mercury and mercury-containing compounds in the combustion gas to adsorb onto the mercury sorbent and collecting and removing the mercury sorbent from the combustion gas stream. The mercury sorbent is prepared by treating a carbonaceous substrate with an effective amount of an ozone-containing gas for a sufficient time to increase the ability of the carbonaceous substrate to adsorb mercury and mercury-containing compounds and to decrease the degree of interference of the substrate on air-entraining-admixtures used with the substrates as a component of a concrete composition. [0026]
  • In some aspects of the invention, the carbonaceous substrate comprises activated carbon. The carbonaceous substrate is reduced to a particle size distribution fluidizable in the combustion gas stream prior to the injecting step. The points of injecting and collecting and removing the mercury sorbent may be varied, depending upon the exact configuration of the exhaust gas system. [0027]
  • In other aspects of the invention, a method for manufacturing a mercury sorbent is provided. The manufacturing method has the steps of: providing a carbonaceous substrate; providing an ozone-containing gas; and contacting the carbonaceous substrate with the ozone-containing gas for a sufficient time to increase the mercury adsorbing ability of the carbonaceous substrate and to decrease the degree of interference of the substrate on air-entraining-admixtures used with the substrates as a component of a concrete composition. In some aspects of this manufacture, the carbonaceous substrate is activated carbon.[0028]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be best understood when reference is made to the accompanying drawings, wherein identical objects are identified by identical reference numerals and wherein: [0029]
  • FIGS. 1 through 3 are schematic diagrams describing possible methods for utilizing the improved sorbent compositions to remove and isolate mercury species from hot combustion flue gases; [0030]
  • FIG. 4 is a plot of sorbent breakthrough curves indicating improvements in mercury capture and capacity with the sorbent materials of the invention; [0031]
  • FIG. 5 is a graph indicating the degree to which the foam index of sorbents processed according to this invention are lowered with increasing contact with ozone; [0032]
  • FIG. 6 is a graph indicating the improved mercury capture levels, in a simulated coal-fired, duct-injection, ESP application, of sorbents processed according to this invention, compared to those not so processed; and [0033]
  • FIG. 7 is a graph indicating the improved mercury utilization, in a simulated coal-fired, duct-injection, ESP application, of sorbents processed according to this invention, along with these sorbents' improved foam indexes.[0034]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • There are five essential elements to the mercury sequestration claims of the present invention. The first three are that (1) a carbonaceous adsorbent, such as powdered activated carbon (PAC), is used (2) to capture and concentrate vaporous mercury species from (3) a hot, flowing gas stream of combustion products. The fourth requirement is that the adsorbent material be (4) injected into the flowing gas, intimately mix with it, and be separated from the gas in a particulate collector along with fly ash. The fifth and final essential element of the invention is that at some time before it is mixed with the mercury-containing combustion gas, the carbon material must (5) be exposed to an ozone-containing treatment gas, producing a sorbent material that is both particularly reactive to gaseous mercury species and that has a decreased adsorption of air-entraining-admixtures (AEAs) if mixed with fly ash in a concrete composition. [0035]
  • I have discovered that the simple act of exposing a carbonaceous material, preferably powdered activated carbon (PAC), to gaseous ozone, O[0036] 3(g), significantly increases the material's ability to adsorb vaporous mercury species when injected into high-temperature coal-fired flue-gas compositions. Reaction of the carbon with ozone produces an inexpensive sorbent material that can be simply injected into the ductwork of a power plant ahead of an existing particulate collector, without the need for large volumes of sorbent, retrofitted flue-gas cooling, or extended sorption time on an additional fabric filter. When the carbon particles are removed from the flue gas along with the fly ash by an electrostatic precipitator (ESP) or fabric filter, for example, the mercury is removed with them. The mercury sorbents are then disposed of with the fly ash. The captured mercury appears to be very stable. The toxic mercury is thus sequestered from environmental interactions.
  • If the fly ash from an application of the process is to be used as a cement substitute in concretes, the ozone treatment of the mercury sorbent has the additional beneficial effect of decreasing the resulting foam index of the fly ash. Lowering the sorbent's interference with AEAs can enable some fly ashes to be used in concretes, completely sequestering the power-plant mercury in a cementitious matrix. [0037]
  • Production of the new mercury sorbent materials is simple. The carbon material and the ozone gas need simply be contacted with each other, a process herein referred to as “ozonation.” Ozone is a gas at ambient temperature. Using a gas-phase carbon reactant considerably simplifies the production of the sorbent. Any common mixing method and equipment can be used to contact the ozone with the carbon-based substrates. [0038]
  • Manufacture of the improved mercury sorbent of this invention begins with a carbonaceous substrate material for the mercury sorbent. Many different materials can perform this role. By way of example, but not intending to be limiting, possible carbonaceous materials include: activated carbon, activated charcoal, activated coke, char, and unburned or partially-burned carbon from a combustion process. The important features of the sorbent substrate material are that it contain significant elemental carbon and that it has an adequate degree of porosity or surface area to provide mercury removal in the process. The size of the carbonaceous particles during ozonation is not critical as long as their mass is uniformly exposed to and reacted with the ozone. The material can be fine enough already so that it can be mixed with and carried by the mercury-containing flue-gas stream, or it can be large and granular, to be comminuted after ozonation, but prior to being injected into the mercury-containing gas stream. [0039]
  • A preferred carbonaceous substrate material is activated carbon. If the manufacturing process of this invention is integrated into the manufacture of the activated carbon material itself, the carbonaceous substrate could be, for example, the carbon material after it has undergone a steam activation procedure. Alternately, the activated carbon entering the treatment process can be an existing commercial product. Preferably the activated carbon is in a very fine state, which allows for a more uniform ozonation. An example would be a powdered activated carbon (PAC). Such a material would already have some gas-phase mercury adsorption capability which the treatment process of this invention will greatly amplify. [0040]
  • If the carbonaceous substrate material is at ambient temperature, preferably it is heated to a temperature of above about 100° C. to drive off any physically-adsorbed moisture that can block the material's pores or interfere with the ozonation step. A separate vessel may optionally be utilized for this preheating step or it can be integrated into the larger processing scheme. Higher temperatures will clean off other heteroatom complexes. [0041]
  • The key step in the sorbent manufacturing process is exposing the dried carbonaceous materials to the ozone-containing gas. When the gas contacts the solids, it quickly reacts with the materials, modifying the distribution of heteroatom surface-complexes on the carbon surface. Surprisingly, treatment with only a very small initial amount of ozone leads to a very large increase in mercury sequestration performance of carbonaceous materials. Modest amounts of additional ozone appear to have relatively little marginal effect on mercury performance. Higher degrees of ozone treatment actually decrease the mercury capabilities of such a sorbent, as structural carbon is oxidized to CO and CO[0042] 2 and the porous structure of the material breaks down.
  • In contrast, any level of ozonation of the carbonaceous substrates appears to lower its foam index value and the deleterious effect it can have on AEAs in concretes. The greater the contact with ozone, the lower the foam index of the material and the less it interferes with AEAs. [0043]
  • So the optimum level of ozone to combine with the carbonaceous material will vary with the particular situation. Obviously, mercury sorbents treated to higher ozone levels will take longer to produce and cost more. If the fly ash containing the carbonaceous sorbents is to be sold for use in concrete, then it can be advantageous to ozonate to a higher level, for example, using 300 grams of ozone per kilogram of powdered activated carbon. If the fly ash is not to be sold for concrete use, on the other hand, a more economic level of 10 g O[0044] 3/kg PAC or even less might be preferred. If the surface area of a PAC is 200 m2/g, these ozonation levels would translate to 50 and 1 μmole of ozone per square meter of total carbon surface area, respectively.
  • Note that the ozonation step can occur in any number of possible reactors. The particular equipment used to contact the carbonaceous substrates with the ozone-containing gas can be, for example, a stationary mixer, a rotating drum, a structure with a vertically-moving bed, a fluidized-bed or bubbling-bed unit, a transport reactor, or any other contactor known in the art. The contactor units of Hurt et al. U.S. Pat. No. 6,521,037, for example, would suit this purpose. So would applying the scheme of Altman U.S. Pat. No. 6,395,145. However, the mercury sorbent manufacturing process is not limited by the type of process equipment used. Any equipment or method that quickly and evenly distributes the ozone-containing gas to intimately contact the carbonaceous particles will satisfy the requirements of the invention. [0045]
  • In one preferred embodiment of the process, any ozone remaining in gas streams exiting the contactor can be transported to unsaturated carbon materials upstream in the process, eliminating the need to decompose ozone from the off-gas stream. [0046]
  • Reference will now be made in detail to the preferred embodiments of the invention which are illustrated in the accompanying figures. [0047]
  • FIGS. 1 through 3 are schematic diagrams describing possible methods, among others, for utilizing the sorbents of the invention to remove and sequester mercury from hot combustion gases. [0048]
  • FIG. 1 applies the sorbents to a combustion gas stream where a particulate collector is utilized to collect the fly ash generated during combustion. In this invention, this device can be used to collect the injected mercury sorbents as well, concentrating the mercury species in a sequesterable stream. The particulate collector may be a fabric filter or baghouse, an electrostatic precipitator (ESP), a cyclone, a venture scrubber, or any other device capable of removing the combustor fly ash or injected mercury sorbents from the gas stream. In the application described in FIG. 1, coal or wastes or other fuels are combusted in a [0049] boiler 11 generating mercury-containing flue gas which is cooled by steam tubes and an economizer 21. The gas typically flows through ductwork 61 to an air preheater 22, which drops the gas temperature from about 300-to-400° C. down to about 150-to-200° C. in the ductwork 62 exiting the air preheater.
  • In such an arrangement, the mercury sorbent of this invention, stored in a container such as a [0050] bin 71, is fed to and through an injection line 72 to the ductwork 62 and injected through a multitude of lances to widely disperse in the hot combustion flue gas. Mixing with the flue gas, the sorbent adsorbs a fraction of its elemental mercury and oxidized mercury species. The sorbent then flows with flue gas to the particulate collector 31. If the collector is a fabric filter, the mercury sorbent is deposited on the filter bags in a filter cake along with the fly ash and other gas-stream particulates. In a fabric filter the flue gas is forced through the filter cake and through the bag fabric. This causes intimate contact between the sorbents and the remaining mercury in the flue gas and will result in a high degree of mercury capture with a high degree of utilization of the sorbents. Cleansed of its mercury content and particulates, the flue gas exits the particulate collector to ductwork 63, the smokestack 51, and then to the atmosphere. Upon cleaning of the fabric filter bags or the ESP collection plates, the mercury sorbents fall into hoppers and are eventually emptied 81 from the particulate collector and are disposed of along with the collected fly ash and unburned carbon. The mercury sorbents of this invention will generally make up on the order of 1 or 2 wt % of the collected particulates in pulverized coal power-plant applications.
  • If the particulate collector in FIG. 1 is an electrostatic precipitator (ESP) instead of a fabric filter, it becomes a more difficult situation for mercury removal because the flue gas is not forced through the sorbent in a filter cake layer of a collection bag. Because of the poorer mass transfer of mercury to sorbent within an ESP, in this case it is particularly important to inject at [0051] 72 as far ahead of any turning vanes, flow distributors, ductwork, and exposed surface-area in the ducts as possible. This not only provides more residence time for the sorbents to mix with and remove mercury from the flowing gas, but provides more mass transfer area for the sorbent to collect on, increasing overall mercury removal. In the ESP 31, the sorbents are collected on plates with the fly ash and upon rapping of the plates are eventually discharged from the ESP 81 for disposal along with the rest of the particulates.
  • The method for removing mercury from combustion gas streams of this invention is not limited to the particular arrangements described in the figures. These have been provided simply to illustrate common examples and many other variations are possible. For example, a wet scrubber for flue gas desulfurization could appear at [0052] 63 in FIG. 1. Similarly, a selective catalytic reduction (SCR) unit for NOx reduction or a flue gas conditioning system to improve particulate removal could be placed in the equipment arrangements. The utility of the disclosed mercury-removal method would be unaffected, however.
  • Similarly, the mercury sorbents of this invention could be injected while mixed in with sorbents for other flue gas components, such as calcium or magnesium hydroxide or oxide for flue gas SO[0053] 3, HCl, or SO2, rather than injected alone. Alternately, the mercury sorbents could be injected in a liquid slurry, which would quickly evaporate in the hot flue gas. Other variations of the methods of applying this invention can be formulated by those familiar with art and they should be considered within the scope of this disclosure and the included claims.
  • Two such arrangements bear particular mention. FIG. 2 applies the sorbents in a “TOXECON®” arrangement. Here the [0054] mercury sorbents 71 are injected after an ESP 32 into the almost particulate-free ductwork 67 before a small, high-velocity fabric filter 33. In this manner the fly ash 80 does not become mixed with the carbonaceous sorbents, allowing the fly ash to be sold directly for concrete use. Moreover, the filter cake of fabric filter 33 would predominantly be mercury sorbent, allowing a longer residence time, higher utilization levels, and the possibility of recovering and reinjecting the sorbent to lower costs. The superior reactivity and capacities of the mercury sorbents of this invention make them prime candidates for use in such an arrangement.
  • FIG. 3 illustrates sorbent usage at plants that have spray dryers for acid rain control. The mercury sorbent could be injected before the [0055] spray dryer 62, into the spray dryer 41, into the ductwork 68, between the spray dryer and the particulate collector 31, or mixed in with the scrubber slurry itself.
  • Other possible alternatives within the scope of the invention would be to ozonate carbonaceous “thief” particles withdrawn from the [0056] combustor 11 before their complete combustion and to inject them at lower temperatures downstream. Alternately, unburned carbon and unsaturated mercury sorbents could be physically separated from fly ash, ozonated, and injected back into the gas stream.
  • Now the present invention will be further described in detail by way of examples. [0057]
  • EXAMPLE 1
  • The ozone-gas treatment of this invention was found to markedly increase the mercury sequestration performance of carbonaceous materials. FIG. 4 presents the fixed-bed mercury breakthrough-curve of a common untreated commercial PAC and the breakthrough curves of three similar samples that had been treated with varying amounts of ozone gas. Laboratory fixed-bed maximum-capacity tests like this roughly simulate the conditions of a sorbent in a filter cake on a bag in a fabric filter. While they do not simulate the kinetics and mass transfer of duct-injection into an ESP, they do provide measures of the maximum mercury capacity of the material and the slope of the breakthrough curve provides some idea of the kinetics. [0058]
  • The standard laboratory fixed-bed testing procedure that was used in this example is similar to that of other researchers and generates a traditional breakthrough curve. In the standard procedure used in these experiments, thin fixed-beds of Norit's Darco FGD® PAC of about 5-mg were vacuum-applied to filters and placed in a filter-holder in a laboratory oven at 175° C., the temperature commonly available before particulate collection devices at combustor facilities. The treated samples had been earlier exposed to gaseous ozone by passing air containing about 0.4% ozone through the materials at about 10 g O[0059] 3/min/kg of PAC.
  • In the examples of FIG. 4 a mercury challenge gas was sent through heated lines to each of the materials at 6.7 lpm that contained an average of about 13 λg/Nm[0060] 3 of elemental Hg from permeation tubes in an oil bath. To simulate a coal-combustion gas stream, 1400 ppm SO2 and 600 ppm NO from bottled gases and 4 wt % of water from a peristaltic pump were also spiked into the gas with the balance being 11.5% O2 and the rest, N2. Mercury levels both into and out from the materials were measured with a gas-phase elemental-mercury analyzer.
  • As described in the figures, the ozone treatments of this invention increased the elemental mercury capacity of these PACs by from 300% to 1000%. A relatively small amount of ozone, from 15 minutes of treatment, produced a large gain in mercury capacity. Longer ozone treatments, like to 90 minutes, however, degraded the material's performance. [0061]
  • EXAMPLE 2
  • In the next example, a series of FGD PAC samples were prepared by treating them according to the procedures of Example 1 with significantly different amounts of total ozone gas. Foam index tests using the common AEA Darex II® were then performed multiple times from each sample and the values were averaged. The results are plotted logarithmically in FIG. 5. Clearly, increasing the amount of ozone contacting the PAC decreases its foam index and allows bubbles to stabilize with less AEA. [0062]
  • EXAMPLE 3
  • In the next example, a large series of actual duct-injection runs were performed with a simulated coal-fired flue-gas stream on a 50-acfm pilot-scale test system. The mercury mass transfer to fluidized sorbent and adsorption kinetics in this system are similar to that in a full-scale utility application. The fully-instrumented duct-injection test system included a propane burner unit to generate the hot flue gas; a humidification drum to add an appropriate degree of moisture to the gas; a mercury spiking subsystem with elemental-mercury permeation tubes; a flue gas spiking subsystem with mass flow controllers for SO[0063] 2, NOx, and HCl; a small sorbent feeder and fluidizing injection subsystem to lessen sorbent pulsing; 10 meters of insulated, 10-cm-diameter ducting circling the ceiling; thermocouples; an electrostatic filter with an effective specific collection area of about 500 ft2/Kacf; a back-up fabric filter; a safety filter; an orifice plate to measure flow; and a variable-speed I.D. fan. The gas temperature at injection was about 175° C. and at the ESP was about 145° C. and the spiked flue gas concentrations were about 24 μg/Nm3 Hg(0), 1400 ppm SO2, 600 ppm NOx, and 5 ppm HCl, typical values for coal-fired power plants.
  • Both an untreated PAC, Norit Darco FGD®, and ozonated samples were injected at various rates into the hot gas with a ductwork residence time of about 3.5 seconds before the small ESP. The ozonated PACs were treated with about 10 g of O[0064] 3 per minute per kg of PAC. Mercury measurements before and during injection were taken using a SnCl2 oxidized-mercury conversion system and a cold-vapor atomic adsorption analyzer outfitted for continuous, gas-phase use.
  • The results of the various duct-injection runs appear in FIG. 6. At every ozonation level and every injection level tested, the ozonated samples removed more mercury from the flue gas than did the untreated samples. There was not much difference in the performance between the various ozonated samples, with the sample treated for one minute removing about the same amount of mercury from the hot flowing gas as the sample ozonated for twenty minutes. In general, however, the ozonated samples performed about twice as well at sequestering mercury as the untreated samples. To achieve 40% mercury removal, for example, required about 8 lb of untreated PAC per million actual cubic feet of gas flow, but required only about 4 lb of ozonated PAC. [0065]
  • EXAMPLE 4
  • The foam index values of the PAC samples from Example 3 with Darex II®, a commonly-used air-entraining-admixture, were measured. These are plotted in FIG. 7 against the ozonation level of the sample. Also plotted are the resulting mercury utilization levels of the sorbents, measured in terms of micrograms of captured mercury per gram of PAC. Again, a surprisingly-large increase in mercury performance occurred with just a small exposure of the carbonaceous substrate to ozone, with essentially no gain thereafter. However, the foam index of the materials continued to beneficially drop upon increasing exposure. [0066]

Claims (22)

What is claimed is:
1. A method for removing mercury and mercury-containing compounds from a combustion gas in an exhaust gas system, comprising the steps of:
providing a mercury sorbent that has been prepared by treating a carbonaceous substrate with an effective amount of an ozone-containing gas for a time sufficient to increase the ability of the carbonaceous substrate to adsorb mercury and to reduce the degree of possible interference of the sorbent with air-entraining-admixtures used with the substrates as a component of a concrete composition;
injecting the mercury sorbent into a stream of the mercury-containing combustion gas for a sufficient time to allow an effective amount of the mercury and mercury-containing compounds in the combustion gas to adsorb onto the mercury sorbent; and
collecting and removing the mercury sorbent from the combustion gas stream.
2. The method of claim 1 wherein:
the carbonaceous substrate comprises activated carbon.
3. The method of claim 1, wherein:
the carbonaceous substrate or mercury sorbent is reduced to a particle size distribution fluidizable in the combustion gas stream.
4. The method of claim 2, wherein:
the carbonaceous substrate or mercury sorbent is reduced to a particle size distribution fluidizable in the combustion gas stream.
5. A process for manufacturing a mercury sorbent, comprising:
providing a carbonaceous substrate;
providing a ozone-containing gas; and
contacting the carbonaceous substrate with the ozone-containing gas for a time sufficient to increase the mercury adsorbing ability of the carbonaceous substrate and to reduce the degree of interference of the substrate with air-entraining-admixtures used with the sorbent as a component of a concrete composition.
6. The process of claim 5, wherein:
the carbonaceous substrate is activated carbon.
7. The process of claim 5, further comprising the step of:
reducing the particle size distribution of the carbonaceous substrate or mercury sorbent to a distribution that is fluidizable in the ductwork of a combustion gas stream.
8. The process of claim 6, further comprising the step of:
reducing the particle size distribution of the carbonaceous substrate or mercury sorbent to a distribution that is fluidizable in the ductwork of a combustion gas stream.
9. A mercury sorbent prepared according the process of claim 5.
10. A mercury sorbent prepared according the process of claim 8.
11. A process in which ozone is used to pacify the surface of a carbon source material extrinsic to ash comprising applying ozone to said carbon source material extrinsic to ash to produce a product which reduces the undesirable affect on air entrainment when said carbon source material is incorporated into concrete.
12. The process of claim 11 wherein the amount of ozone added to the carbon is 10-300 g-ozone/kg-carbon.
13. The process of claim 11 wherein the amount of ozone added to the carbon is 1-50 μmoles-ozone/m2-total-carbon-surface area.
14. The process of claim 11 in which the carbon source material is treated separately with ozone and then added to the ash stream.
15. A process comprising oxidizing activated carbon-based sorbents which are used to capture metal vapors, said oxidizing reducing the undesirable affect on air entrainment when said activated carbon-based sorbents are to be incorporated into ash and the ash subsequently used in concrete.
16. The process of claim 15 where the metal vapor is either oxidized or elemental mercury.
17. The process of claim 15 in which the oxidant is ozone.
18. The process of claim 15 in which the activated carbon is treated prior to its use as a mercury sorbent, so that the final ash is not degraded in its concrete performance.
19. A process of surface oxidation used to pacify the surface of a carbon containing source material extrinsic to carbon containing ash comprising the step of surface oxidation of said carbon containing source material to prepare a material useful for incorporation into concrete.
20. The process of claim 19 wherein the surface oxidation is performed with ozone.
21. The process of claim 19 wherein the oxidation is performed with a member selected from the group of air, oxygen, nitric acid, chromic acid, persulfate, permanganate, and hydrogen peroxide.
22. A concrete composition comprising concrete and an ozone treated carbon source material extrinsic to ash wherein the undesirable affect on air entrainment is reduced.
US10/430,721 2002-05-06 2003-05-06 Methods and compositions to sequester combustion-gas mercury in fly ash and concrete Abandoned US20030206843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/430,721 US20030206843A1 (en) 2002-05-06 2003-05-06 Methods and compositions to sequester combustion-gas mercury in fly ash and concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37779002P 2002-05-06 2002-05-06
US10/430,721 US20030206843A1 (en) 2002-05-06 2003-05-06 Methods and compositions to sequester combustion-gas mercury in fly ash and concrete

Publications (1)

Publication Number Publication Date
US20030206843A1 true US20030206843A1 (en) 2003-11-06

Family

ID=29401568

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/430,577 Expired - Lifetime US6953494B2 (en) 2002-05-06 2003-05-06 Sorbents and methods for the removal of mercury from combustion gases
US10/430,721 Abandoned US20030206843A1 (en) 2002-05-06 2003-05-06 Methods and compositions to sequester combustion-gas mercury in fly ash and concrete

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/430,577 Expired - Lifetime US6953494B2 (en) 2002-05-06 2003-05-06 Sorbents and methods for the removal of mercury from combustion gases

Country Status (10)

Country Link
US (2) US6953494B2 (en)
EP (1) EP1509629B1 (en)
JP (1) JP4723240B2 (en)
KR (1) KR100991761B1 (en)
CN (1) CN100340683C (en)
AT (1) ATE437246T1 (en)
AU (2) AU2003232092A1 (en)
CA (1) CA2522258C (en)
DE (1) DE60328489D1 (en)
WO (2) WO2003093518A1 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066461A1 (en) * 2001-08-22 2003-04-10 Xu Chen Ozone treatment of fly ash
US20050039598A1 (en) * 2003-06-03 2005-02-24 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion
US7048779B1 (en) * 2003-11-24 2006-05-23 Pittsburgh Mineral And Environmental Technology, Inc. Method of removing mercury from exhaust gases of coal fired power plants and associated apparatus
US20070092418A1 (en) * 2005-10-17 2007-04-26 Chemical Products Corporation Sorbents for Removal of Mercury from Flue Gas
US20070122327A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Pollutant emission control sorbents and methods of manufacture
US20070119300A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Methods of manufacturing bentonite pollution control sorbents
US20070122619A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Pollutant emission control sorbents and methods of manufacture
US20070292328A1 (en) * 2006-06-19 2007-12-20 Yang Xiaolin D Mercury Sorbents and Methods of Manufacture and Use
US20080142356A1 (en) * 2006-10-17 2008-06-19 Whellock John G Plasma treatment of fly ash from coal combustion to improve its marketability
GB2448030A (en) * 2007-03-27 2008-10-01 Gen Electric Pollution reduction system
US20080292512A1 (en) * 2003-06-03 2008-11-27 Kang Shin G Method for producing and using a carbonaceous sorbent for mercury removal
US20090081092A1 (en) * 2007-09-24 2009-03-26 Xiaolin David Yang Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US20090136401A1 (en) * 2007-09-24 2009-05-28 Basf Catalysts Llc Pollutant Emission Control Sorbents and Methods of Manufacture and Use
GB2457781A (en) * 2008-02-26 2009-09-02 Gen Electric Method and system for reducing mercury emissions in flue gas
US20090235848A1 (en) * 2008-03-24 2009-09-24 Boris Nikolaevich Eiteneer Method and apparatus for removing mercury and particulates from combustion exhaust gas
US20090314185A1 (en) * 2006-10-17 2009-12-24 Matrix Llc Treatment of fly ash
US20100018395A1 (en) * 2008-07-23 2010-01-28 Srivats Srinivasachar Method for Capturing Mercury from Flue Gas
US20100025302A1 (en) * 2006-12-15 2010-02-04 Jgc Corporation Mercury-removal adsorbent ,method of producing mercury-removal adsorbent, and method of removing mercury by adsorption
US7731780B1 (en) 2003-04-03 2010-06-08 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
US7753992B2 (en) 2006-06-19 2010-07-13 Basf Corporation Methods of manufacturing mercury sorbents and removing mercury from a gas stream
US20100202946A1 (en) * 2007-09-24 2010-08-12 Basf Catalysts Llc Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US20100212550A1 (en) * 2006-11-22 2010-08-26 Sorbent Technologies Corporation Compositions and methods to sequester flue gas mercury in concrete
US20100223926A1 (en) * 2007-05-14 2010-09-09 Babcock-Hitachi K.K. Dust Coal Boiler, Dust Coal Combustion Method, Dust Coal Fuel Thermal Power Generation System, and Waste Gas Purification System for Dust Coal Boiler
US20100239479A1 (en) * 2007-08-29 2010-09-23 Corning Incorporated Process For Removing Toxic Metals From A Fluid Stream
US20100247394A1 (en) * 2007-12-05 2010-09-30 Alstom Technology Ltd Process for promoting mercury retention in wet flue gas desulfurization systems
US20100258006A1 (en) * 2007-12-21 2010-10-14 Lindau Leif A V Method of Reducing an Amount of Mercury in a Flue Gas
US20100300336A1 (en) * 2007-04-20 2010-12-02 Thulen Paul C Reduction of mercury from a coal fired boiler
US7854789B1 (en) 2008-03-31 2010-12-21 Ash Grove Cement Company System and process for controlling pollutant emissions in a cement production facility
US20110041690A1 (en) * 2009-08-18 2011-02-24 Flsmidth A/S Method and apparatus for removing volatile contaminants from industrial plants
US20110197791A1 (en) * 2007-11-23 2011-08-18 Albemarle Corporation Compositions and methods to sequester flue gas mercury in concrete
US8080088B1 (en) 2007-03-05 2011-12-20 Srivats Srinivasachar Flue gas mercury control
US8124036B1 (en) 2005-10-27 2012-02-28 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
EP2429685A1 (en) * 2009-04-23 2012-03-21 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US8372362B2 (en) 2010-02-04 2013-02-12 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8383071B2 (en) 2010-03-10 2013-02-26 Ada Environmental Solutions, Llc Process for dilute phase injection of dry alkaline materials
WO2013056722A1 (en) * 2011-10-19 2013-04-25 Babcock Noell Gmbh Method and device for separating flue dust and pollutants in a housing for an electrostatic precipitator
WO2013063490A1 (en) * 2011-10-28 2013-05-02 Ada Carbon Solutions, Llc Multi-functional composition of matter for removal of mercury from a flue gas
WO2013082157A1 (en) * 2011-11-28 2013-06-06 Ada Carbon Solutions, Llc Multi-functional composition for rapid removal of mercury from a flue gas
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8524179B2 (en) 2010-10-25 2013-09-03 ADA-ES, Inc. Hot-side method and system
US8784757B2 (en) 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US8828341B1 (en) 2013-07-18 2014-09-09 Alstom Technology Ltd Sulfite control to reduce mercury re-emission
US8876958B2 (en) 2011-12-15 2014-11-04 Clariant Corporation Composition and process for mercury removal
US8883099B2 (en) 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US8951487B2 (en) 2010-10-25 2015-02-10 ADA-ES, Inc. Hot-side method and system
US8974756B2 (en) 2012-07-25 2015-03-10 ADA-ES, Inc. Process to enhance mixing of dry sorbents and flue gas for air pollution control
US9017452B2 (en) 2011-11-14 2015-04-28 ADA-ES, Inc. System and method for dense phase sorbent injection
US9120055B2 (en) 2014-01-27 2015-09-01 Alstom Technology Ltd Mercury re-emission control
US9248060B2 (en) 2012-09-28 2016-02-02 Unicharm Corporation Absorbent article
US9321032B1 (en) 2008-06-10 2016-04-26 Calgon Carbon Corporation Inherently concrete-compatible carbon sorbents for mercury removal from flue gas
US9381492B2 (en) 2011-12-15 2016-07-05 Clariant Corporation Composition and process for mercury removal
CN108671749A (en) * 2018-05-28 2018-10-19 上海电力学院 Flue gas cloth-sack-type dust removal demercuration integrated apparatus
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US10343114B2 (en) 2004-08-30 2019-07-09 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10350545B2 (en) 2014-11-25 2019-07-16 ADA-ES, Inc. Low pressure drop static mixing system
US20190264117A1 (en) * 2018-02-28 2019-08-29 The Babcock & Wilcox Company Sorbent utilization improvement by selective ash recirculation from a particulate collector
US10465137B2 (en) 2011-05-13 2019-11-05 Ada Es, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US10471412B2 (en) 2013-03-06 2019-11-12 Midwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same
US10589225B2 (en) 2004-08-30 2020-03-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10722865B2 (en) 2011-10-28 2020-07-28 Ada Carbon Solutions, Llc Multi-functional composition of matter for removal of mercury from high temperature flue gas streams
US10767130B2 (en) 2012-08-10 2020-09-08 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
CN112135695A (en) * 2018-05-04 2020-12-25 雅宝公司 Process for reducing the environmental effectiveness of environmental pollutants
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system
US11511364B2 (en) * 2018-06-26 2022-11-29 Panasonic Intelletual Property Management Co., Ltd. Flux collection method and flux collection apparatus
US11857942B2 (en) 2012-06-11 2024-01-02 Calgon Carbon Corporation Sorbents for removal of mercury

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892274B2 (en) * 2001-10-23 2007-03-14 シャープ株式会社 Cartridge adapter and stationary optical disk device
US6818043B1 (en) * 2003-01-23 2004-11-16 Electric Power Research Institute, Inc. Vapor-phase contaminant removal by injection of fine sorbent slurries
US8449288B2 (en) * 2003-03-19 2013-05-28 Nalco Mobotec, Inc. Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
EP1624963B1 (en) * 2003-04-23 2019-11-27 Midwest Energy Emissions Corporation Method of removal of mercury and other pollutant species from flue gas streams generated during the burning of fossil fuels
US9321002B2 (en) 2003-06-03 2016-04-26 Alstom Technology Ltd Removal of mercury emissions
US6848374B2 (en) * 2003-06-03 2005-02-01 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion
US20050026008A1 (en) * 2003-06-05 2005-02-03 Solar Reactor Technologies Inc. Method for processing stack gas emissions
US7670569B2 (en) * 2003-06-13 2010-03-02 Mobotec Usa, Inc. Combustion furnace humidification devices, systems & methods
US7141091B2 (en) * 2003-12-17 2006-11-28 Electric Power Research Institute, Inc. Method and apparatus for removing particulate and vapor phase contaminants from a gas stream
US7537743B2 (en) * 2004-02-14 2009-05-26 Mobotec Usa, Inc. Method for in-furnace regulation of SO3 in catalytic NOx reducing systems
US8251694B2 (en) * 2004-02-14 2012-08-28 Nalco Mobotec, Inc. Method for in-furnace reduction flue gas acidity
US20070180990A1 (en) * 2004-03-22 2007-08-09 William Downs Dynamic halogenation of sorbents for the removal of mercury from flue gases
AU2005225454A1 (en) * 2004-03-22 2005-10-06 The Babcock & Wilcox Company Bromine addition for the improved removal of mercury from flue gas
US7479263B2 (en) * 2004-04-09 2009-01-20 The Regents Of The University Of California Method for scavenging mercury
RU2418040C2 (en) 2004-06-28 2011-05-10 НОКС II ИНТЕРНЭШНЛ, эЛТиДи. Method of reducing amount of pollutants released into atmosphere when burning sulphur-containing carbon-bearing fuel (versions)
US20060204429A1 (en) * 2005-03-14 2006-09-14 Bool Lawrence E Iii Production of activated char using hot gas
US20060205592A1 (en) 2005-03-14 2006-09-14 Chien-Chung Chao Catalytic adsorbents for mercury removal from flue gas and methods of manufacture therefor
EP1866057B1 (en) 2005-03-17 2021-09-15 Nox II International, Ltd. Reducing mercury emissions from the burning of coal
CA3148289C (en) 2005-03-17 2024-01-23 Nox Ii, Ltd. Reducing mercury emissions from the burning of coal
US8071500B1 (en) * 2005-07-14 2011-12-06 The United States Of America As Represented By The United States Department Of Energy Thief carbon catalyst for oxidation of mercury in effluent stream
US7615101B2 (en) * 2005-09-07 2009-11-10 Energy & Environmental Research Foundation High energy dissociation for mercury control systems
US7410356B2 (en) 2005-11-17 2008-08-12 Mobotec Usa, Inc. Circulating fluidized bed boiler having improved reactant utilization
US8150776B2 (en) * 2006-01-18 2012-04-03 Nox Ii, Ltd. Methods of operating a coal burning facility
US7473303B1 (en) 2006-03-27 2009-01-06 Mobotec Usa, Inc. System and method for improved mercury control
US8057576B1 (en) 2008-06-10 2011-11-15 Calgon Carbon Corporation Enhanced adsorbents and methods for mercury removal
US20070234902A1 (en) * 2006-03-29 2007-10-11 Fair David L Method for mercury removal from flue gas streams
US20070254807A1 (en) * 2006-05-01 2007-11-01 Ada Environmental Solutions, Llc Process for the manufacture of carbonaceous mercury sorbent from coal
US20070265161A1 (en) * 2006-05-11 2007-11-15 Gadkaree Kishor P Activated carbon honeycomb catalyst beds and methods for the manufacture of same
CN101489647B (en) * 2006-06-19 2013-07-31 美国莫博特克公司 Method and apparatus for enhanced mercury removal
US8232221B2 (en) 2006-07-14 2012-07-31 Governors Of The University Of Alberta Zeolite supported metallic nanodots
US20080020930A1 (en) * 2006-07-21 2008-01-24 Coyne Linda S Bulk Spiked Sorbent Tubes
US9328003B2 (en) 2006-09-07 2016-05-03 Nalco Company Method of heavy metal removal from water streams
US8029600B2 (en) * 2006-11-03 2011-10-04 Electric Power Research Institute, Inc. Sorbent filter for the removal of vapor phase contaminants
US20090320678A1 (en) * 2006-11-03 2009-12-31 Electric Power Research Institute, Inc. Sorbent Filter for the Removal of Vapor Phase Contaminants
US7708803B2 (en) * 2006-11-03 2010-05-04 Electric Power Research Institute, Inc. Method and apparatus for the enhanced removal of aerosols from a gas stream
US7722843B1 (en) * 2006-11-24 2010-05-25 Srivats Srinivasachar System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems
US7767007B2 (en) * 2006-12-08 2010-08-03 Praxair Technology, Inc. Mercury adsorbents compatible as cement additives
US20100050868A1 (en) * 2006-12-11 2010-03-04 Governors Of The University Of Alberta Mercury absorption using chabazite supported metallic nanodots
US20080207443A1 (en) * 2007-02-28 2008-08-28 Kishor Purushottam Gadkaree Sorbent comprising activated carbon, process for making same and use thereof
JP5094468B2 (en) * 2007-03-01 2012-12-12 日本エンバイロケミカルズ株式会社 Method for removing mercury vapor from gas
EP2150971B1 (en) 2007-05-11 2018-11-28 Umicore AG & Co. KG Method and apparatus for making uniform and ultrasmall nanoparticles
US8741243B2 (en) 2007-05-14 2014-06-03 Corning Incorporated Sorbent bodies comprising activated carbon, processes for making them, and their use
US7998898B2 (en) * 2007-10-26 2011-08-16 Corning Incorporated Sorbent comprising activated carbon, process for making same and use thereof
US7678178B2 (en) * 2007-05-23 2010-03-16 The United States Of America As Represented By The Secretary Of The Army Method and system for treating metal-containing fluid emissions
CA2691084A1 (en) * 2007-06-19 2008-12-24 Progress Materials, Inc. Mercury removal systems using beneficiated fly ash particles and methods thereof
US8312822B2 (en) * 2007-07-02 2012-11-20 Energy & Environmental Research Center Foundation Mercury control using moderate-temperature dissociation of halogen compounds
US7833500B1 (en) * 2007-08-31 2010-11-16 Western Kentucky University Abatement of mercury in flue gas
EP2033702B1 (en) * 2007-09-04 2011-01-19 Evonik Energy Services GmbH Method for removing mercury from exhaust combustion gases
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US7507287B1 (en) * 2007-11-09 2009-03-24 United States Gypsum Company Activated carbon as mercury release control agent in gypsum calcination
CA2625152A1 (en) 2007-11-15 2009-05-15 The Governors Of The University Of Alberta Zeolite supported metallic nanodots
US8609050B2 (en) 2007-12-07 2013-12-17 Nalco Company Corrosion control in and selenium removal from flue gas wet scrubber systems
US8617493B2 (en) 2007-12-07 2013-12-31 Nalco Company Corrosion control in and selenium removal from flue gas wet scrubber systems
US8753599B2 (en) 2007-12-07 2014-06-17 Nalco Company Corrosion control in and selenium removal from flue gas wet scrubber systems
US8632742B2 (en) 2007-12-07 2014-01-21 Nalco Company Methods of controlling mercury emission
US8642057B2 (en) 2008-01-18 2014-02-04 Biolargo Life Technologies, Inc. Antimicrobial and antiodor solutions and delivery systems
CN102065977A (en) * 2008-04-15 2011-05-18 阿尔比马尔公司 Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases
US8069824B2 (en) * 2008-06-19 2011-12-06 Nalco Mobotec, Inc. Circulating fluidized bed boiler and method of operation
US20100047145A1 (en) * 2008-08-21 2010-02-25 Corning Incorporated Systems And Methods For Removing Contaminants From Fluid Streams
RU2515451C2 (en) * 2008-09-24 2014-05-10 Альбемарл Корпорейшн Bromine chloride-based compositions based, intended for removal of mercury from products of fuel combustion
CA2658469C (en) 2008-10-03 2012-08-14 Rajender P. Gupta Bromination process
US8309052B2 (en) * 2009-07-02 2012-11-13 Pneumatic Processing Technologies, L.L.C. Carbon heat-treatment process
US9109801B2 (en) * 2009-07-02 2015-08-18 Pneumatic Processing Technologies, Llc Coal heat-treatment process and system
UA109399C2 (en) * 2009-04-01 2015-08-25 THERMALLY ACTIVATED COAL RESISTANT TO SELF-IGNITION
DE102009017025B3 (en) * 2009-04-14 2010-09-16 EVZA Energie- und Verwertungszentrale GmbH, Anhalt Method for removal of mercury from flue gas of e.g. waste incinerator, involves evaluating measuring signals such that monitoring of steep rising edge/deviation of mercury content is recognized by specific criteria
US20100263577A1 (en) * 2009-04-21 2010-10-21 Industrial Accessories Company Pollution abatement process for fossil fuel-fired boilers
US8110029B2 (en) * 2009-05-08 2012-02-07 Alstom Technology Ltd Integrated mercury control system
CA2761319A1 (en) * 2009-05-08 2010-11-11 Thomas K. Gale Systems and methods for reducing mercury emission
EP2430058A4 (en) * 2009-05-12 2013-03-06 Chemnano Materials Ltd Sulfur functionalized polymers for separation of metals from gas and liquid and methods for preparation thereof
US20110053100A1 (en) * 2009-08-28 2011-03-03 Sinha Rabindra K Composition and Method for Reducing Mercury Emitted into the Atmosphere
PL2482970T3 (en) 2009-09-28 2019-01-31 Calgon Carbon Corporation Sorbent formulation for removal of mercury from flue gas
JP5093205B2 (en) * 2009-09-30 2012-12-12 株式会社日立製作所 Carbon dioxide recovery type power generation system
DE102009057432A1 (en) * 2009-12-09 2011-06-16 Rheinbraun Brennstoff Gmbh Process for the separation of mercury from flue gases of high-temperature plants
CA2787635A1 (en) 2010-02-22 2011-08-25 Central Michigan University Crosslinked polymer-carbon sorbent for removal of heavy metals, toxic materials and carbon dioxide
US9555368B2 (en) 2010-03-11 2017-01-31 Ramsay Chang Chemically-enhanced sorbent activation process and method of using same
US8999278B2 (en) * 2010-03-11 2015-04-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
US8927637B2 (en) 2010-04-06 2015-01-06 Nalco Company Metal scavenging polymers and uses thereof
US8747789B2 (en) 2010-04-06 2014-06-10 Nalco Company Metal scavenging polymers
CN102892481A (en) 2010-05-04 2013-01-23 阿尔比马尔公司 Reduction of mercury emissions from cement plants
EP2566601A1 (en) 2010-05-04 2013-03-13 Albemarle Corporation Reduction of mercury emissions from cement plants
WO2012009521A2 (en) * 2010-07-14 2012-01-19 Ppg Industries Ohio, Inc. Filtration media and applications thereof
AU2011279481A1 (en) * 2010-07-16 2013-01-17 Albemarle Corporation Reduction of particulates in gas streams
US8721777B2 (en) * 2010-08-26 2014-05-13 Ppg Industries Ohio, Inc. Filtration media and applications thereof
KR20130111527A (en) 2010-08-30 2013-10-10 알베마를 코포레이션 Improved sorbents for removing mercury from emissions produced during fuel combustion
AU2011296402B2 (en) 2010-08-30 2015-01-22 Albemarle Corporation Improved brominated sorbents for removing mercury from emissions produced during fuel combustion
US8398744B2 (en) * 2010-09-21 2013-03-19 General Electric Company Method and apparatus for air pollution control
US8882884B2 (en) * 2010-09-29 2014-11-11 Southern Company Systems and methods for optimizing a PAC ratio
AR083301A1 (en) * 2010-10-06 2013-02-13 Albemarle Corp USE OF ORGANIC HALOGEN COMPOSITIONS TO REDUCE MERCURY EMISSIONS DURING CARBON COMBUSTION
JP2013544185A (en) * 2010-11-22 2013-12-12 アルベマール・コーポレーシヨン Brominated inorganic adsorbents for reducing mercury emissions
KR20140009252A (en) 2010-12-17 2014-01-22 알베마를 코포레이션 Reduction of mercury emissions from cement plants
CA3005876C (en) * 2011-02-01 2020-08-04 Shaw Environmental & Infrastructure, Inc. Emission control system
US8147587B2 (en) * 2011-04-15 2012-04-03 Bha Group, Inc. Enhanced mercury capture from coal-fired power plants in the filtration baghouse using flue gas temperature as process control knob
AR087120A1 (en) 2011-07-13 2014-02-12 Albemarle Corp PROCESS USING INORGANIC SALTS CONTAINING BROMIDE TO REDUCE EMISSIONS FROM COMBUSTION GAS CURRENT MERCURY
US8821823B2 (en) * 2011-09-29 2014-09-02 Babcock & Wilcox Power Generation Group, Inc. Dry sorbent injection during non-steady state conditions in dry scrubber
CN102500183B (en) * 2011-11-03 2014-04-16 中国华能集团清洁能源技术研究院有限公司 Flue gas purification system capable of simultaneously realizing high-efficiency dust removal and mercury removal
CN102527177B (en) * 2011-12-23 2013-07-03 福建龙净环保股份有限公司 Dust collection and mercury removal integrated electric-bag composite dust collector
US9802154B2 (en) 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation
US20140314651A1 (en) 2013-02-27 2014-10-23 Fuel Tech, Inc. Process and Apparatus for Improving the Operation of Wet Scrubbers
US8992868B2 (en) 2012-05-01 2015-03-31 Fuel Tech, Inc. Dry processes, apparatus compositions and systems for reducing mercury, sulfur oxides and HCl
US9011805B2 (en) 2012-04-23 2015-04-21 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
CA2879319A1 (en) * 2012-07-20 2014-01-23 Novinda Corp. Enhanced fly ash collection
CA2883357C (en) 2012-08-30 2021-04-20 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
SG11201501705PA (en) 2012-09-07 2015-04-29 Chevron Usa Inc Process, method, and system for removing heavy metals from fluids
CN102921260A (en) * 2012-11-09 2013-02-13 大连山元机械制造有限公司 Device and method for removing mercury in waste gas
US9308518B2 (en) * 2013-02-14 2016-04-12 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US9393518B2 (en) 2013-02-27 2016-07-19 Fuel Tech, Inc. Processes, apparatus, compositions and systems for reducing emissions of HCI and/or sulfur oxides
WO2014138254A1 (en) * 2013-03-06 2014-09-12 SDCmaterials, Inc. Particle-based systems for removal of pollutants from gases and liquids
AR095224A1 (en) * 2013-03-15 2015-09-30 Albemarle Corp INJECTION OF SORBENTS IN WET TREATMENTS OF DRUG FEEDING FOR THE CONTROL OF EMISSION OF MERCURY
TWI619550B (en) * 2013-03-15 2018-04-01 亞比馬利股份有限公司 Flue gas sorbents, methods for their manufacture, and their use in removal of mercury from gaseous streams
US9399597B2 (en) 2013-04-01 2016-07-26 Fuel Tech, Inc. Ash compositions recovered from coal combustion gases having reduced emissions of HCI and/or mercury
US9718025B2 (en) 2013-04-01 2017-08-01 Fuel Tech, Inc. Reducing hydrochloric acid in cement kilns
EP2986915A1 (en) 2013-04-16 2016-02-24 Clear Carbon Innovations LLC Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US10307710B2 (en) 2013-04-16 2019-06-04 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US10695717B2 (en) 2013-04-16 2020-06-30 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US9308493B2 (en) 2013-08-16 2016-04-12 ADA-ES, Inc. Method to reduce mercury, acid gas, and particulate emissions
US9889451B2 (en) 2013-08-16 2018-02-13 ADA-ES, Inc. Method to reduce mercury, acid gas, and particulate emissions
CA2926133A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
US10307706B2 (en) 2014-04-25 2019-06-04 Ada Carbon Solutions, Llc Sorbent compositions for use in a wet scrubber unit
CN105311925B (en) * 2014-06-11 2018-01-05 华北电力大学 Control the extensive Adsorbent modification coupling spraying system of flue gas heavy metal pollutant emission
WO2015194835A1 (en) * 2014-06-16 2015-12-23 연세대학교 산학협력단 Activated carbon for mercury adsorption and analysis using mercury solution
CN106574773B (en) * 2014-07-25 2019-11-01 化学和金属技术有限责任公司 The capture and collection device that discharge pollutants and its application method
US10888836B2 (en) 2014-07-25 2021-01-12 Chemical and Metal Technologies LLC Extraction of target materials using CZTS sorbent
CN104353325A (en) * 2014-11-12 2015-02-18 上海锅炉厂有限公司 Device and method for removing mercury from boiler flue gas of power station
CN104475018A (en) * 2014-11-17 2015-04-01 贵州大学 Bromine-loaded carbon adsorbent and preparation method and application thereof
CN105983297B (en) * 2015-02-09 2019-06-18 华北电力大学 A kind of coal fired power plant flying dust adsorbent integration is modified and sprays demercuration system
CN104707442B (en) * 2015-03-10 2017-02-01 中国环境科学研究院 Method and device for removing metallic mercury in fire coal flue gas
CN105327680A (en) * 2015-11-19 2016-02-17 中国科学院山西煤炭化学研究所 Preparation method of modified activated carbon adsorbent for flue gas demercuration and application of modified activated carbon adsorbent
CN106040210B (en) * 2016-06-30 2019-04-12 华中科技大学 A kind of demercuration method and device activated online based on active carbon
TW201826596A (en) 2016-12-28 2018-07-16 美商亞比馬利股份有限公司 Halogenated lithium ion-based energy storage device and related method
JP7470488B2 (en) * 2017-05-26 2024-04-18 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニー Fluidized bed apparatus and method for controlling emissions
CN108554382B (en) * 2018-03-14 2020-09-25 河南正清环境科技有限公司 Halogenated modified activated carbon material and preparation method thereof
JP6439207B1 (en) * 2018-06-29 2018-12-19 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas mercury removal system
CN114401786A (en) * 2019-09-16 2022-04-26 雅宝公司 Process for reducing the environmental effectiveness of environmental pollutants
EP4031300A1 (en) 2019-09-16 2022-07-27 Albemarle Corporation Processes for reducing environmental availability of environmental pollutants
CN111569834A (en) * 2020-06-01 2020-08-25 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) Mercury removing adsorbent for crude chloroethylene gas
AU2022318626A1 (en) 2021-07-30 2024-02-29 Albemarle Corporation Processes for suppressing emission of mercury vapor
CN114177879B (en) * 2021-12-15 2023-11-21 中国科学院大学 Preparation method of nano selenium plasma modified ceramic nano mercury adsorption material
WO2024091546A1 (en) 2022-10-26 2024-05-02 Albemarle Corporation Processes for reducing environmental availability of environmental pollutants
CN116272864A (en) * 2023-02-24 2023-06-23 苏州西热节能环保技术有限公司 Adsorbent for removing mercury and sulfur trioxide in flue gas and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984164A (en) * 1931-06-30 1934-12-11 Degea Ag Process and apparatus for purifying air vitiated with mercury vapors
US2511288A (en) * 1942-05-01 1950-06-13 Us Sec War Preparation of a protective adsorbent carbon
US3194629A (en) * 1962-02-23 1965-07-13 Pittsburgh Activated Carbon Co Method of removing mercury vapor from gases
US3193987A (en) * 1962-02-23 1965-07-13 Pittsburgh Activated Carbon Co Mercury vapor removal
US3876393A (en) * 1972-12-04 1975-04-08 Showa Denko Kk Method and article for removing mercury from gases contaminated therewith
US4889698A (en) * 1986-07-16 1989-12-26 A/S Niro Atomizer Process for removal or mercury vapor and/or vapor of noxious organic compounds and/or nitrogen oxides from flue gas from an incinerator plant
US5286292A (en) * 1991-07-05 1994-02-15 Onoda Cement Co., Ltd. Method of treating fly ash and fly ash cement
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
US6027551A (en) * 1998-10-07 2000-02-22 Board Of Control For Michigan Technological University Control of mercury emissions using unburned carbon from combustion by-products
US6136089A (en) * 1998-08-31 2000-10-24 Brown University Research Foundation Apparatus and method for deactivating carbon in fly ash
US6533842B1 (en) * 2000-02-24 2003-03-18 Merck & Co., Inc. Adsorption powder for removing mercury from high temperature, high moisture gas streams

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1788466A (en) 1923-05-09 1931-01-13 Gen Norit Company Ltd Process of treating active carbons for increasing their adsorbing efficiency
US3357020A (en) * 1966-04-04 1967-12-05 Jr William M Slifter Method and apparatus for locating and visually indicating the position of a vehicle
JPS477687B1 (en) * 1967-01-13 1972-03-04
JPS54478B1 (en) * 1969-04-09 1979-01-11
US3662523A (en) 1970-12-15 1972-05-16 American Optical Corp Adsorbents for removal of mercury vapor from air or gas
NL7202959A (en) 1972-03-06 1972-05-25
JPS4953592A (en) 1972-09-29 1974-05-24
JPS5533375B2 (en) 1972-09-29 1980-08-30
JPS4953593A (en) 1972-09-29 1974-05-24
JPS4953591A (en) 1972-09-29 1974-05-24
US3961020A (en) 1972-10-09 1976-06-01 Hitachi, Ltd. Process for removing sulfur oxides and nitrogen oxides from flue gases using halogen-impregnated actuated carbon with simultaneous injection of ammonia
JPS4966592A (en) 1972-11-01 1974-06-27
US3956458A (en) 1973-11-16 1976-05-11 Paul Brent Anderson Method and apparatus for air purification
JPS5729209B2 (en) * 1974-06-12 1982-06-21
JPS515586A (en) 1974-07-01 1976-01-17 Norfin Fukugokeeburukozo oyobi sonoseizohoho
JPS535984B2 (en) 1974-09-04 1978-03-03
DE2507672C3 (en) 1975-02-22 1980-10-09 Laboratorium Fuer Adsorptionstechnik Gmbh, 6000 Frankfurt Process for impregnating activated carbon
US4040802A (en) 1975-04-22 1977-08-09 Deitz Victor R Activation of water soluble amines by halogens for trapping methyl radioactive iodine from air streams
NL7710632A (en) 1977-09-29 1979-04-02 Akzo Nv PROCESS FOR THE REMOVAL OF MERCURY FROM GASES CONTAINING MERCURY VAPOR.
JPS5799334A (en) 1980-12-05 1982-06-21 Takeda Chem Ind Ltd Activated carbon for deodorization and removal of offensive odor component
US4394354A (en) * 1981-09-28 1983-07-19 Calgon Carbon Corporation Silver removal with halogen impregnated activated carbon
JPS5976537A (en) 1982-10-25 1984-05-01 Takeda Chem Ind Ltd Adsorbent for mercury vapor
JPS5910343A (en) 1982-07-08 1984-01-19 Takeda Chem Ind Ltd Adsorbent for mercury vapor
JPS59160534A (en) 1983-03-03 1984-09-11 Takeda Chem Ind Ltd Adsorbent for mercury vapor and treatment of mercury vapor-containing gas
AU559284B2 (en) 1982-07-08 1987-03-05 Takeda Chemical Industries Ltd. Adsorption of mercury vapour
JPS6071040A (en) 1983-09-27 1985-04-22 Takeda Chem Ind Ltd Noxious gas adsorbent
US4708853A (en) 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4917862A (en) * 1988-04-15 1990-04-17 Allan Kraw Filter and method for removing mercury, bacteria, pathogens and other vapors from gas
DE3842526A1 (en) 1988-12-17 1990-06-21 Bergwerksverband Gmbh METHOD FOR PRODUCING A CATALYST FOR REMOVING NITROGEN OXIDS FROM EXHAUST GASES
US5202301A (en) 1989-11-22 1993-04-13 Calgon Carbon Corporation Product/process/application for removal of mercury from liquid hydrocarbon
EP0454885A1 (en) 1990-05-02 1991-11-06 Ftu Gmbh Process for purification of gases and exhaust gases from pollutants
DE4018786A1 (en) * 1990-06-12 1991-12-19 Krupp Polysius Ag METHOD FOR PURIFYING THE EXHAUST GASES FROM PLANTS FOR PRODUCING CEMENT CLINKER
EP0526077A1 (en) 1991-07-22 1993-02-03 Takeda Chemical Industries, Ltd. Activated carbon honeycombs and applications thereof
US5435980A (en) 1991-11-04 1995-07-25 Niro A/S Method of improving the Hg-removing capability of a flue gas cleaning process
TW316850B (en) 1992-02-28 1997-10-01 Takeda Pharm Industry Co Ltd
US5320817A (en) * 1992-08-28 1994-06-14 Novapure Corporation Process for sorption of hazardous waste products from exhaust gas streams
US5372619A (en) * 1992-10-14 1994-12-13 Ucar Carbon Technology Corporation Method for storing methane using a halogenating agent treated activated carbon
DE4415719A1 (en) * 1994-05-04 1995-11-09 Metallgesellschaft Ag Efficient purificn of waste gas with max utilisation of absorbent
CN1048954C (en) * 1995-03-30 2000-02-02 日本酸素株式会社 Porous carbonaceous material, process for producing same
JP3537581B2 (en) 1996-03-04 2004-06-14 クラレケミカル株式会社 Mercury adsorbent
JPH10109016A (en) 1996-10-04 1998-04-28 Babcock Hitachi Kk Treatment of heavy metal-containing waste gas and device therefor
US5827352A (en) * 1997-04-16 1998-10-27 Electric Power Research Institute, Inc. Method for removing mercury from a gas stream and apparatus for same
US6514907B2 (en) * 1997-07-25 2003-02-04 Takeda Chemical Industries, Ltd. Bromine-impregnated activated carbon and process for preparing the same
JP3830247B2 (en) * 1997-10-29 2006-10-04 日本エンバイロケミカルズ株式会社 Bromine impregnated activated carbon and method for producing the same
WO1999008777A1 (en) * 1997-08-19 1999-02-25 Electric Power Research Institute, Inc. Apparatus and method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents
CA2276114C (en) * 1998-06-22 2004-08-31 Mitsubishi Heavy Industries, Ltd. Method for processing polluted fluid containing pollutants
US6395145B1 (en) * 2000-08-31 2002-05-28 Electric Power Research Institute, Inc. Fly ash treatment by in situ ozone generation
US6375909B1 (en) * 2000-09-14 2002-04-23 Infilco Degremont Inc. Method for the removal of mercury and nitrogen oxides from combustion flue gas
US20020114749A1 (en) * 2000-12-22 2002-08-22 Cole Jerald Alan Process for removing mercury vapor from flue gas
US6521037B1 (en) * 2001-08-22 2003-02-18 Brown University Research Foundation Ozone treatment of fly ash
US6521021B1 (en) 2002-01-09 2003-02-18 The United States Of America As Represented By The United States Department Of Energy Thief process for the removal of mercury from flue gas
US6808692B2 (en) * 2002-02-14 2004-10-26 Oehr Klaus H Enhanced mercury control in coal-fired power plants
DE10233173B4 (en) * 2002-07-22 2006-03-23 Bayer Industry Services Gmbh & Co. Ohg Method for separating mercury from flue gases

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984164A (en) * 1931-06-30 1934-12-11 Degea Ag Process and apparatus for purifying air vitiated with mercury vapors
US2511288A (en) * 1942-05-01 1950-06-13 Us Sec War Preparation of a protective adsorbent carbon
US3194629A (en) * 1962-02-23 1965-07-13 Pittsburgh Activated Carbon Co Method of removing mercury vapor from gases
US3193987A (en) * 1962-02-23 1965-07-13 Pittsburgh Activated Carbon Co Mercury vapor removal
US3876393A (en) * 1972-12-04 1975-04-08 Showa Denko Kk Method and article for removing mercury from gases contaminated therewith
US4889698A (en) * 1986-07-16 1989-12-26 A/S Niro Atomizer Process for removal or mercury vapor and/or vapor of noxious organic compounds and/or nitrogen oxides from flue gas from an incinerator plant
US4889698B1 (en) * 1986-07-16 2000-02-01 Niro Atomizer As Process for removal or mercury vapor and/ or vapor of noxious organic compounds and/ or nitrogen oxides from flue gas from an incinerator plant
US5286292A (en) * 1991-07-05 1994-02-15 Onoda Cement Co., Ltd. Method of treating fly ash and fly ash cement
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
US6136089A (en) * 1998-08-31 2000-10-24 Brown University Research Foundation Apparatus and method for deactivating carbon in fly ash
US6027551A (en) * 1998-10-07 2000-02-22 Board Of Control For Michigan Technological University Control of mercury emissions using unburned carbon from combustion by-products
US6533842B1 (en) * 2000-02-24 2003-03-18 Merck & Co., Inc. Adsorption powder for removing mercury from high temperature, high moisture gas streams

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066461A1 (en) * 2001-08-22 2003-04-10 Xu Chen Ozone treatment of fly ash
US6890507B2 (en) * 2001-08-22 2005-05-10 Brown University Research Foundation Ozone treatment of fly ash
US8034163B1 (en) 2003-04-03 2011-10-11 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
US7731780B1 (en) 2003-04-03 2010-06-08 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
US11806665B2 (en) 2003-04-23 2023-11-07 Midwwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US20090056538A1 (en) * 2003-06-03 2009-03-05 Srivats Srinivasachar Control of mercury emissions from solid fuel combustion
US20050039598A1 (en) * 2003-06-03 2005-02-24 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion
US8069797B2 (en) 2003-06-03 2011-12-06 Alstom Technology Ltd. Control of mercury emissions from solid fuel combustion
US7780765B2 (en) 2003-06-03 2010-08-24 Alstom Technologies Ltd Control of mercury emissions from solid fuel combustion
US20080292512A1 (en) * 2003-06-03 2008-11-27 Kang Shin G Method for producing and using a carbonaceous sorbent for mercury removal
US7048779B1 (en) * 2003-11-24 2006-05-23 Pittsburgh Mineral And Environmental Technology, Inc. Method of removing mercury from exhaust gases of coal fired power plants and associated apparatus
US10933370B2 (en) 2004-08-30 2021-03-02 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10343114B2 (en) 2004-08-30 2019-07-09 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US8652235B2 (en) 2004-08-30 2014-02-18 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US10589225B2 (en) 2004-08-30 2020-03-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10596517B2 (en) 2004-08-30 2020-03-24 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US9468886B2 (en) 2004-08-30 2016-10-18 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US10926218B2 (en) 2004-08-30 2021-02-23 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10668430B2 (en) 2004-08-30 2020-06-02 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
EP1645323A1 (en) * 2004-10-08 2006-04-12 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion
US20070092418A1 (en) * 2005-10-17 2007-04-26 Chemical Products Corporation Sorbents for Removal of Mercury from Flue Gas
US8293196B1 (en) 2005-10-27 2012-10-23 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
US8124036B1 (en) 2005-10-27 2012-02-28 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
US20070122619A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Pollutant emission control sorbents and methods of manufacture
US7704920B2 (en) 2005-11-30 2010-04-27 Basf Catalysts Llc Pollutant emission control sorbents and methods of manufacture
US20090320680A1 (en) * 2005-11-30 2009-12-31 Basf Catalysts Llc Methods of Manufacturing Bentonite Polution Control Sorbents
US7578869B2 (en) 2005-11-30 2009-08-25 Basf Catalysts Llc Methods of manufacturing bentonite pollution control sorbents
US7575629B2 (en) 2005-11-30 2009-08-18 Basf Catalysts Llc Pollutant emission control sorbents and methods of manufacture
US20070119300A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Methods of manufacturing bentonite pollution control sorbents
US20070122327A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Pollutant emission control sorbents and methods of manufacture
US7753992B2 (en) 2006-06-19 2010-07-13 Basf Corporation Methods of manufacturing mercury sorbents and removing mercury from a gas stream
US8480791B2 (en) 2006-06-19 2013-07-09 Basf Corporation Methods of manufacturing mercury sorbents and removing mercury from a gas stream
US20070292328A1 (en) * 2006-06-19 2007-12-20 Yang Xiaolin D Mercury Sorbents and Methods of Manufacture and Use
US7985324B2 (en) 2006-10-17 2011-07-26 Matrix Llc Plasma treatment of fly ash from coal combustion to improve its marketability
US20080142356A1 (en) * 2006-10-17 2008-06-19 Whellock John G Plasma treatment of fly ash from coal combustion to improve its marketability
US20090314185A1 (en) * 2006-10-17 2009-12-24 Matrix Llc Treatment of fly ash
EP2826540A2 (en) 2006-11-22 2015-01-21 Albemarle Corporation Activated carbon based composition to sequester flue gas mercury in concrete
US20100212550A1 (en) * 2006-11-22 2010-08-26 Sorbent Technologies Corporation Compositions and methods to sequester flue gas mercury in concrete
US8420033B2 (en) * 2006-11-22 2013-04-16 Albemarle Corporation Compositions and methods to sequester flue gas mercury in concrete
US8598072B2 (en) 2006-12-15 2013-12-03 Jgc Corporation Mercury-removal adsorbent, method of producing mercury-removal adsorbent, and method of removing mercury by adsorption
US20100025302A1 (en) * 2006-12-15 2010-02-04 Jgc Corporation Mercury-removal adsorbent ,method of producing mercury-removal adsorbent, and method of removing mercury by adsorption
US8080088B1 (en) 2007-03-05 2011-12-20 Srivats Srinivasachar Flue gas mercury control
GB2448030A (en) * 2007-03-27 2008-10-01 Gen Electric Pollution reduction system
US20100300336A1 (en) * 2007-04-20 2010-12-02 Thulen Paul C Reduction of mercury from a coal fired boiler
US20100223926A1 (en) * 2007-05-14 2010-09-09 Babcock-Hitachi K.K. Dust Coal Boiler, Dust Coal Combustion Method, Dust Coal Fuel Thermal Power Generation System, and Waste Gas Purification System for Dust Coal Boiler
US8961170B2 (en) 2007-05-14 2015-02-24 Babcock-Hitachi K.K. Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler
US20100239479A1 (en) * 2007-08-29 2010-09-23 Corning Incorporated Process For Removing Toxic Metals From A Fluid Stream
US8728974B2 (en) 2007-09-24 2014-05-20 Basf Corporation Pollutant emission control sorbents and methods of manufacture and use
US8906823B2 (en) 2007-09-24 2014-12-09 Basf Corporation Pollutant emission control sorbents and methods of manufacture and use
US9067192B2 (en) 2007-09-24 2015-06-30 Basf Corporation Pollutant emission control sorbents and methods of manufacture and use
US8685351B2 (en) 2007-09-24 2014-04-01 Basf Corporation Pollutant emission control sorbents and methods of manufacture and use
US20090081092A1 (en) * 2007-09-24 2009-03-26 Xiaolin David Yang Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US20090136401A1 (en) * 2007-09-24 2009-05-28 Basf Catalysts Llc Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US20100202946A1 (en) * 2007-09-24 2010-08-12 Basf Catalysts Llc Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US20110197791A1 (en) * 2007-11-23 2011-08-18 Albemarle Corporation Compositions and methods to sequester flue gas mercury in concrete
US8404038B2 (en) * 2007-11-23 2013-03-26 Albemrle Corporation Compositions and methods to sequester flue gas mercury in concrete
US20100247394A1 (en) * 2007-12-05 2010-09-30 Alstom Technology Ltd Process for promoting mercury retention in wet flue gas desulfurization systems
US20100258006A1 (en) * 2007-12-21 2010-10-14 Lindau Leif A V Method of Reducing an Amount of Mercury in a Flue Gas
US8277545B2 (en) 2007-12-21 2012-10-02 Alstom Technology Ltd Method of reducing an amount of mercury in a flue gas
GB2457781A (en) * 2008-02-26 2009-09-02 Gen Electric Method and system for reducing mercury emissions in flue gas
GB2457781B (en) * 2008-02-26 2013-01-02 Gen Electric Method and system for reducing mercury emissions in flue gas
GB2458564B (en) * 2008-03-24 2012-06-06 Gen Electric Method and apparatus for removing mercury and particulates from combustion exhaust gas
US7837962B2 (en) 2008-03-24 2010-11-23 General Electric Company Method and apparatus for removing mercury and particulates from combustion exhaust gas
US20090235848A1 (en) * 2008-03-24 2009-09-24 Boris Nikolaevich Eiteneer Method and apparatus for removing mercury and particulates from combustion exhaust gas
GB2458564A (en) * 2008-03-24 2009-09-30 Gen Electric Removing mercury and particulates from combustion flue gas
US7854789B1 (en) 2008-03-31 2010-12-21 Ash Grove Cement Company System and process for controlling pollutant emissions in a cement production facility
US9321032B1 (en) 2008-06-10 2016-04-26 Calgon Carbon Corporation Inherently concrete-compatible carbon sorbents for mercury removal from flue gas
US20100018395A1 (en) * 2008-07-23 2010-01-28 Srivats Srinivasachar Method for Capturing Mercury from Flue Gas
US8277542B2 (en) * 2008-07-23 2012-10-02 Srivats Srinivasachar Method for capturing mercury from flue gas
WO2010123756A2 (en) * 2009-04-21 2010-10-28 Matrix Llc Treatment of fly ash
WO2010123756A3 (en) * 2009-04-21 2011-01-06 Matrix Llc Treatment of fly ash
EP2429685A4 (en) * 2009-04-23 2013-01-09 Energy & Environ Res Ct Found Sorbents for the oxidation and removal of mercury
EP2429685A1 (en) * 2009-04-23 2012-03-21 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20110041690A1 (en) * 2009-08-18 2011-02-24 Flsmidth A/S Method and apparatus for removing volatile contaminants from industrial plants
US8187364B2 (en) * 2009-08-18 2012-05-29 Flsmidth A/S Method and apparatus for removing volatile contaminants from industrial plants
US9221013B2 (en) 2010-02-04 2015-12-29 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8372362B2 (en) 2010-02-04 2013-02-12 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US10427096B2 (en) 2010-02-04 2019-10-01 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US11213787B2 (en) 2010-02-04 2022-01-04 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US10843130B2 (en) 2010-02-04 2020-11-24 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US9884286B2 (en) 2010-02-04 2018-02-06 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US9352275B2 (en) 2010-02-04 2016-05-31 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8784757B2 (en) 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US8383071B2 (en) 2010-03-10 2013-02-26 Ada Environmental Solutions, Llc Process for dilute phase injection of dry alkaline materials
US9149759B2 (en) 2010-03-10 2015-10-06 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US10730015B2 (en) 2010-10-25 2020-08-04 ADA-ES, Inc. Hot-side method and system
US8524179B2 (en) 2010-10-25 2013-09-03 ADA-ES, Inc. Hot-side method and system
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system
US9657942B2 (en) 2010-10-25 2017-05-23 ADA-ES, Inc. Hot-side method and system
US8951487B2 (en) 2010-10-25 2015-02-10 ADA-ES, Inc. Hot-side method and system
US10124293B2 (en) 2010-10-25 2018-11-13 ADA-ES, Inc. Hot-side method and system
WO2012134754A1 (en) 2011-03-25 2012-10-04 Albemarle Corporation Compositions and methods to sequester flue gas mercury in concrete
US10731095B2 (en) 2011-05-13 2020-08-04 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US10465137B2 (en) 2011-05-13 2019-11-05 Ada Es, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US11118127B2 (en) 2011-05-13 2021-09-14 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
WO2013056722A1 (en) * 2011-10-19 2013-04-25 Babcock Noell Gmbh Method and device for separating flue dust and pollutants in a housing for an electrostatic precipitator
US11400434B2 (en) 2011-10-28 2022-08-02 Ada Carbon Solutions, Llc Multi-functional composition of matter for removal of mercury from high temperature flue gas streams
US9539538B2 (en) 2011-10-28 2017-01-10 Ada Carbon Solutions, Llc Multi-functional composition of matter for rapid removal of mercury from a flue gas
US10722865B2 (en) 2011-10-28 2020-07-28 Ada Carbon Solutions, Llc Multi-functional composition of matter for removal of mercury from high temperature flue gas streams
US10730011B2 (en) 2011-10-28 2020-08-04 Ada Carbon Solutions, Llc Multi-functional composition of matter for rapid removal of mercury from a flue gas
WO2013063490A1 (en) * 2011-10-28 2013-05-02 Ada Carbon Solutions, Llc Multi-functional composition of matter for removal of mercury from a flue gas
US9017452B2 (en) 2011-11-14 2015-04-28 ADA-ES, Inc. System and method for dense phase sorbent injection
WO2013082157A1 (en) * 2011-11-28 2013-06-06 Ada Carbon Solutions, Llc Multi-functional composition for rapid removal of mercury from a flue gas
US8876958B2 (en) 2011-12-15 2014-11-04 Clariant Corporation Composition and process for mercury removal
US9381492B2 (en) 2011-12-15 2016-07-05 Clariant Corporation Composition and process for mercury removal
US10758863B2 (en) 2012-04-11 2020-09-01 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US11065578B2 (en) 2012-04-11 2021-07-20 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US8883099B2 (en) 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US10159931B2 (en) 2012-04-11 2018-12-25 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US9409123B2 (en) 2012-04-11 2016-08-09 ASA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US9889405B2 (en) 2012-04-11 2018-02-13 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US11857942B2 (en) 2012-06-11 2024-01-02 Calgon Carbon Corporation Sorbents for removal of mercury
US8974756B2 (en) 2012-07-25 2015-03-10 ADA-ES, Inc. Process to enhance mixing of dry sorbents and flue gas for air pollution control
US11384304B2 (en) 2012-08-10 2022-07-12 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US10767130B2 (en) 2012-08-10 2020-09-08 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US9248060B2 (en) 2012-09-28 2016-02-02 Unicharm Corporation Absorbent article
US11059028B2 (en) 2013-03-06 2021-07-13 Midwwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same
US10471412B2 (en) 2013-03-06 2019-11-12 Midwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
US8828341B1 (en) 2013-07-18 2014-09-09 Alstom Technology Ltd Sulfite control to reduce mercury re-emission
US9120055B2 (en) 2014-01-27 2015-09-01 Alstom Technology Ltd Mercury re-emission control
US11369921B2 (en) 2014-11-25 2022-06-28 ADA-ES, Inc. Low pressure drop static mixing system
US10350545B2 (en) 2014-11-25 2019-07-16 ADA-ES, Inc. Low pressure drop static mixing system
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US11124718B2 (en) * 2018-02-28 2021-09-21 The Babcock & Wilcox Company Sorbent utilization improvement by selective ash recirculation from a particulate collector
US20190264117A1 (en) * 2018-02-28 2019-08-29 The Babcock & Wilcox Company Sorbent utilization improvement by selective ash recirculation from a particulate collector
CN112135695A (en) * 2018-05-04 2020-12-25 雅宝公司 Process for reducing the environmental effectiveness of environmental pollutants
CN108671749A (en) * 2018-05-28 2018-10-19 上海电力学院 Flue gas cloth-sack-type dust removal demercuration integrated apparatus
US11511364B2 (en) * 2018-06-26 2022-11-29 Panasonic Intelletual Property Management Co., Ltd. Flux collection method and flux collection apparatus

Also Published As

Publication number Publication date
EP1509629A4 (en) 2005-09-14
AU2003232091B2 (en) 2009-08-13
CA2522258C (en) 2011-08-23
CN1665947A (en) 2005-09-07
JP2005524769A (en) 2005-08-18
WO2003092861A1 (en) 2003-11-13
AU2003232092A1 (en) 2003-11-17
US20040003716A1 (en) 2004-01-08
EP1509629B1 (en) 2009-07-22
CN100340683C (en) 2007-10-03
KR20050058996A (en) 2005-06-17
CA2522258A1 (en) 2003-11-13
JP4723240B2 (en) 2011-07-13
ATE437246T1 (en) 2009-08-15
KR100991761B1 (en) 2010-11-03
US6953494B2 (en) 2005-10-11
WO2003093518A1 (en) 2003-11-13
DE60328489D1 (en) 2009-09-03
AU2003232091A1 (en) 2003-11-17
EP1509629A1 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
US20030206843A1 (en) Methods and compositions to sequester combustion-gas mercury in fly ash and concrete
US10926218B2 (en) Sorbents for the oxidation and removal of mercury
US5575982A (en) Process of purifying exhaust gases produced by combustion of waste materials
Wirling Reduction in Mercury Emissions with Avtivated Lignite HOK®

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION