US20030111916A1 - Linear motor and method to manufacture said linear motor - Google Patents

Linear motor and method to manufacture said linear motor Download PDF

Info

Publication number
US20030111916A1
US20030111916A1 US10/321,329 US32132902A US2003111916A1 US 20030111916 A1 US20030111916 A1 US 20030111916A1 US 32132902 A US32132902 A US 32132902A US 2003111916 A1 US2003111916 A1 US 2003111916A1
Authority
US
United States
Prior art keywords
armature
linear motor
coils
bodies
compartments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/321,329
Other versions
US6847133B2 (en
Inventor
Gisulfo Baccini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AFCO CV
Original Assignee
Gisulfo Baccini
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gisulfo Baccini filed Critical Gisulfo Baccini
Publication of US20030111916A1 publication Critical patent/US20030111916A1/en
Application granted granted Critical
Publication of US6847133B2 publication Critical patent/US6847133B2/en
Assigned to AFCO C.V. reassignment AFCO C.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BACCINI, GISULFO
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the invention concerns a linear motor of the synchronous brushless type excited by permanent magnets.
  • the invention concerns a linear motor of the type comprising a mobile armature, slider or cursor, equipped with a plurality of compartments inside which respective electric coils are stably housed, and two fixed bars, one for each side of the armature, on which a plurality of permanent magnets are mounted and arranged, during use, facing said electric coils.
  • the invention also concerns the method to manufacture said linear motor.
  • the state of the art includes synchronous brushless linear electric motors of the general type as described above.
  • Such motors comprise a mobile part which normally consists of an armature or frame on which the housing compartments are made, normally equidistant, inside which electric coils associated with feed means are inserted and clamped.
  • a relative fixed bar normally made of ferromagnetic material, is present in a position facing at least one side of the armature; a plurality of permanent magnets are mounted on the fixed bar, arranged aligned and usually equidistant in the direction of movement of the armature which carries the electric coils.
  • the magnets have alternating polarities.
  • the motor can have the fixed part comprising the electric coils and the mobile part comprising the permanent magnets.
  • the coils are buried in an insulating material, for example resin, inside the respective housing compartment of the armature, and are cemented in the furnace by means of heat treatment which causes the resin to be activated (melted) and penetrate between the spirals of the coil.
  • the insulating material is necessary to eliminate phenomena of magnetic friction between adjacent coils which cause a deterioration to the performance of the motor.
  • the insulating material having set between the spirals of the coil, also acts as a mechanical support for the stable housing of the coils in the relative compartments of the armature, in order to ensure a precise positioning with respect to the fixed magnets.
  • the presence of insulating material functioning as a mechanical support for the coils determines a low capacity to dissipate the heat generated by the Joule effect, with consequent problems of overheating in the armature of the coils.
  • the purpose of the invention is to achieve a brushless linear motor of the synchronous type, with permanent magnets in an ironless configuration, which has improved characteristics of mechanical resistance to stresses, heat dissipation, structural stability of the spirals buried in the armature, smaller overall bulk, efficiency and speed of response.
  • the linear motor according to the invention comprises a structural armature made mainly of aluminium, or alloys thereof, in which the compartments are made to stably house a plurality of mating coils associated with electric feed means.
  • the structural armature is made mainly of ceramic material.
  • Using a structural armature made mainly of aluminium, or alloys thereof, or ceramic material, allows to guarantee great mechanical rigidity while keeping the overall weight limited, even in conditions of great stress, for example deriving from a prolonged use of the motor at high frequencies.
  • the structural armature made of aluminium or ceramic ensures a great capacity of heat dissipation, which prevents possible overheating deriving from a prolonged circulation of electric current in the spirals of the coils.
  • the structural armature made of aluminium or ceramic has, in cooperation with at least a segment of the perimeter surrounding said compartments housing the coils, interruptions which define electric discontinuities and are able to prevent the electric circuit from closing on the armature itself; these interruptions are also able to avoid that the currents induced on the armature flow freely along the armature itself and disturb the operation of the motor.
  • interruptions or discontinuities are made on a lateral segment of the armature which separates two adjacent housing compartments of relative coils. According to another embodiment, the interruptions or discontinuities are made in cooperation with an upper or lower segment of the relative housing compartment.
  • the aluminium or ceramic structural armature which defines the housing compartments of the coils comprises at least a module made in two bodies which can be coupled together after the electric coils have been inserted inside them.
  • the two bodies are able to define casting fissures inside which an insulating material is poured in the liquid or melted state, for example polymerizable resin or other material comparable therewith.
  • the insulating material penetrates in depth until it fills all the interstices between the spirals of the coils, and also the inner compartment of the coils.
  • the resin sets and stabilizes, by means of polymerization, forming a stable whole with the relative coils; this whole guarantees absolute mechanical stability, electric insulation, good capacity of heat dissipation and that there are no empty spaces where electricity cannot be not conducted.
  • the two bodies which form the armature are specular and each defines a respective half of the armature.
  • the two bodies are coupled together on a substantially vertical plane; in another embodiment, the two bodies are coupled on a substantially horizontal plane.
  • the motor on a plane transverse to the direction of advance of the mobile armature, the motor comprises two coils, or multiples of two, adjacent and substantially parallel, made by means of a single continuous winding.
  • the armature comprises at least a module, comparable from the electric point of view with a single coil, configured dimensionally so as to contain two pairs of coils, or multiples of two, arranged aligned in the direction of motion.
  • the module is suitable to contain three pairs of coils, or multiples of three, arranged aligned in the direction of motion.
  • the module has a size, in the direction of movement, such as to cover an even number of magnets so that, during the movement of the mobile part of the motor, the sign of the magnet which is left is always equal to the sign of the new magnet which is covered by the armature which bears the coils. In this way, the induced currents which are generated between adjacent magnets and which circulate on the metal armature are mutually cancelled and therefore do not oppose, or in any case create interference with, the motion and/or the performance of the motor.
  • FIG. 1 is a plane view of a linear motor according to the invention
  • FIG. 2 is a part longitudinal section of the motor in FIG. 1;
  • FIG. 3 shows a variant of FIG. 2
  • FIG. 4 shows a detail of the coil-bearing armature of the linear motor of FIG. 1;
  • FIG. 5 shows a variant of FIG. 4
  • FIG. 6 is a prospective view of two, electrically connected coils as used in the linear motor shown in FIG. 1;
  • FIG. 7 is a front view of a coil used in the linear motor in FIG. 1;
  • FIG. 8 is a transverse section of the coil shown in FIG. 6.
  • a synchronous brushless linear motor according to the invention is indicated generally by the reference number 10 . It comprises a fixed part 11 which, in this case, comprises two opposite bars 22 , made of ferromagnetic material, on which a plurality of permanent magnets 12 are mounted, substantially equidistant and with reciprocally alternating polarity.
  • the motor 10 also comprises a mobile part 13 , arranged in the interspace between the two bars 22 , consisting of a frame or armature 14 made mainly of aluminium or its alloys, or of ceramic material.
  • the armature 14 is suitable to define a plurality of compartments 15 to house mating electric coils 16 .
  • the housing compartments 15 are substantially quadrangular in shape: the lateral segments are straight and the upper and lower segments are curved.
  • Using aluminium or its alloys or ceramic material as the material for the armature 14 ensures a lighter weight, greater mechanical rigidity, good capacity to dissipate heat and good electric conductivity.
  • the armature 14 is made of modules, each comprising three pairs of coils 16 arranged aligned along the direction of motion, each pair comprising two coils 16 arranged adjacent on a plane transverse to the direction of motion and parallel to each other.
  • the two coils 16 of each pair are made (FIG. 6) with a single conductor 17 wound continuously.
  • the first coil 16 a is formed by winding the conductor 17 , starting from a first end 17 a connected to a source of feed, developing from the outside towards the inside of the coil.
  • the second coil 16 b is formed by winding the conductor 17 developing from the inside to the outside, so that the second end 17 b connected to the source of feed is, like the first 17 a , also on the outer periphery of the relative coil.
  • the armature 14 is made, in this case, in two half-bodies substantially specular and divided (FIG. 4) on a vertical plane, respectively 18 a and 18 b , able to be coupled together so as to constitute a single body.
  • the two half-bodies 18 a and 18 b are divided on a horizontal plane.
  • the two half-bodies 18 a and 18 b are closed and made integral with each other; in this assembled position, in correspondence with part of the coupling perimeter, fissures 19 are formed through which an insulating and binding material in a liquid or melted state, for example resin 20 , is cast.
  • the armature 14 functions as a mold for casting the melted resin 20 , which penetrates into the interstices between the spirals of the relative coils 16 a , 16 b , filling all the empty spaces and the fissures between the spirals and the armature 14 and the inner compartment of the coils.
  • the resin 20 polymerizes and is chemically stabilized, it constitutes a single block with the relative coils 16 a , 16 b , forming a conductive whole which, with regard to the permanent magnets 12 , behaves substantially as a single spiral.
  • This single block without interstices and empty spaces, ensures a considerable mechanical rigidity which allows a prolonged use of the motor even at high frequencies, without the risk of failure or loosening. Moreover, absorption and the contact of the conductor 17 with contaminating material such as water, oil, dust or otherwise is limited to a minimum, or even totally eliminated.
  • apertures or interruptions of electric discontinuity are provided in a position surrounding the relative compartments 15 housing the coils 16 a , 16 b .
  • the apertures of electric discontinuity 21 are also completely filled with resin 20 .
  • the apertures of discontinuity 21 are made on the lateral segments of the housing compartments 15 whereas, in the variant shown in FIG. 3, the apertures 21 are made on the upper segment of the relative compartment 15 .
  • a channel 23 which allows the ends of the conductors of each of the coils 16 a , 16 b to emerge; the ends are joined by means of a connector 24 which is connected to a source of feed, not shown here.
  • the longitudinal size of the armature 14 is such as to cover during use an even number of permanent magnets 12 , in this case four; in this way, the polarity of the new magnet 12 facing the coils 16 a , 16 b during the movement of the mobile part 13 is equal to the polarity of the magnet 12 which remains uncovered after said part 13 has moved.
  • This geometric configuration is advantageous from the electric point of view, since it leads to an annulment of parasitic electric currents which close between magnet and magnet using the armature 14 as an electric circuit.
  • the armature 14 is made in such a manner that the distance “p” between two adjacent housing compartments 15 is equal to, or less than, the distance between two adjacent permanent magnets 12 . In this way, the metal part of the armature 14 between two adjacent coils 16 does not function as a further spiral, thus interfering with the correct functioning of the electric motor 10 .
  • the armature 14 carrying the coils 16 a , 16 b could be fixed while the bars 22 with the permanent magnets 12 could be mobile. It is also within the spirit of the invention that the armature 14 comprises several modules with other than three coils 16 aligned longitudinally, or that it comprises four, six or more coils transversely adjacent, so as not to have lateral thicker parts with respect to the coils.
  • the longitudinal development of the armature 14 covers two, six or more permanent magnets 12 , or the armature 14 comprises parts, for example external, not made completely of aluminium or ceramic.
  • the insulating and binding material used to stabilize and electrically insulate the coils 16 could be something other than resin, provided that it has substantially the same physical-chemical characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Linear motor and method to make the same. The motor comprises an armature equipped with compartments (15) inside which are housed electric coils (16), and two fixed bars (22) cooperating with respective sides of the armature, on each of which are mounted permanent magnets (12) arranged facing said electric coils (16). The armature (14) is made mainly of aluminium or of ceramic material. The armature (14) comprises interruptions (21) defining zones of electric discontinuity in cooperation the perimeter of the compartments (15) housing the coils (16).

Description

    FIELD OF THE INVENTION
  • The invention concerns a linear motor of the synchronous brushless type excited by permanent magnets. [0001]
  • To be more exact, the invention concerns a linear motor of the type comprising a mobile armature, slider or cursor, equipped with a plurality of compartments inside which respective electric coils are stably housed, and two fixed bars, one for each side of the armature, on which a plurality of permanent magnets are mounted and arranged, during use, facing said electric coils. [0002]
  • The invention also concerns the method to manufacture said linear motor. [0003]
  • BACKGROUND OF THE INVENTION
  • The state of the art, as disclosed for example in GB-A-2.352.954, includes synchronous brushless linear electric motors of the general type as described above. Such motors comprise a mobile part which normally consists of an armature or frame on which the housing compartments are made, normally equidistant, inside which electric coils associated with feed means are inserted and clamped. [0004]
  • A relative fixed bar, normally made of ferromagnetic material, is present in a position facing at least one side of the armature; a plurality of permanent magnets are mounted on the fixed bar, arranged aligned and usually equidistant in the direction of movement of the armature which carries the electric coils. The magnets have alternating polarities. [0005]
  • In other constructional embodiments, the motor can have the fixed part comprising the electric coils and the mobile part comprising the permanent magnets. [0006]
  • The armature where the coils are housed and the ferromagnetic bar on which the magnets are mounted are separated from each other by an air interspace. [0007]
  • The working principle of linear motors of this type exploits the force of repulsion which is created by sequentially inverting the direction of circulation of the electric current circulating in a coil every time the coil moves from a position facing a magnet with a certain polarity, for example, positive, to a position facing a magnet with a negative polarity. [0008]
  • In conventional motors (see for example U.S. Pat. No. 6,140,734), the coils are buried in an insulating material, for example resin, inside the respective housing compartment of the armature, and are cemented in the furnace by means of heat treatment which causes the resin to be activated (melted) and penetrate between the spirals of the coil. The insulating material is necessary to eliminate phenomena of magnetic friction between adjacent coils which cause a deterioration to the performance of the motor. [0009]
  • The insulating material, having set between the spirals of the coil, also acts as a mechanical support for the stable housing of the coils in the relative compartments of the armature, in order to ensure a precise positioning with respect to the fixed magnets. [0010]
  • However, it has been found that using a hot cementing process on insulating material causes a lack of mechanical rigidity due to the interstices between the spirals which are not completely filled, particularly in the inner compartment of the coils. When the motor is used at high frequency conditions, in the long term mechanical stresses are created on the coil which lead to a loosening of the spirals which are thus exposed to the environment, with negative repercussions on the functioning and efficiency of the motor. [0011]
  • The presence of interstices between the spirals causes a deterioration in the interaction conditions of the magnetic fields produced respectively by the current circulating in the coils, and by the permanent magnets, with a reduction in the value of the force of repulsion which drives the motor. [0012]
  • Moreover, the presence of insulating material functioning as a mechanical support for the coils determines a low capacity to dissipate the heat generated by the Joule effect, with consequent problems of overheating in the armature of the coils. [0013]
  • The present Applicant has devised and embodied this invention to solve the shortcomings of the state of the art, and to obtain further advantages. [0014]
  • SUMMARY OF THE INVENTION
  • The invention is set forth and characterized essentially in the respective main claims, while the dependent claims describe other innovative characteristics of the invention. [0015]
  • The purpose of the invention is to achieve a brushless linear motor of the synchronous type, with permanent magnets in an ironless configuration, which has improved characteristics of mechanical resistance to stresses, heat dissipation, structural stability of the spirals buried in the armature, smaller overall bulk, efficiency and speed of response. [0016]
  • In accordance with this purpose, according to a first characteristic, the linear motor according to the invention comprises a structural armature made mainly of aluminium, or alloys thereof, in which the compartments are made to stably house a plurality of mating coils associated with electric feed means. [0017]
  • According to another characteristic, the structural armature is made mainly of ceramic material. [0018]
  • Using a structural armature made mainly of aluminium, or alloys thereof, or ceramic material, allows to guarantee great mechanical rigidity while keeping the overall weight limited, even in conditions of great stress, for example deriving from a prolonged use of the motor at high frequencies. [0019]
  • Moreover, the structural armature made of aluminium or ceramic ensures a great capacity of heat dissipation, which prevents possible overheating deriving from a prolonged circulation of electric current in the spirals of the coils. [0020]
  • According to another characteristic of the invention, the structural armature made of aluminium or ceramic has, in cooperation with at least a segment of the perimeter surrounding said compartments housing the coils, interruptions which define electric discontinuities and are able to prevent the electric circuit from closing on the armature itself; these interruptions are also able to avoid that the currents induced on the armature flow freely along the armature itself and disturb the operation of the motor. [0021]
  • In a first embodiment the interruptions or discontinuities are made on a lateral segment of the armature which separates two adjacent housing compartments of relative coils. According to another embodiment, the interruptions or discontinuities are made in cooperation with an upper or lower segment of the relative housing compartment. [0022]
  • According to a preferential embodiment of the invention, the aluminium or ceramic structural armature which defines the housing compartments of the coils comprises at least a module made in two bodies which can be coupled together after the electric coils have been inserted inside them. [0023]
  • In an advantageous embodiment, once coupled, the two bodies are able to define casting fissures inside which an insulating material is poured in the liquid or melted state, for example polymerizable resin or other material comparable therewith. [0024]
  • During the casting, the insulating material penetrates in depth until it fills all the interstices between the spirals of the coils, and also the inner compartment of the coils. The resin sets and stabilizes, by means of polymerization, forming a stable whole with the relative coils; this whole guarantees absolute mechanical stability, electric insulation, good capacity of heat dissipation and that there are no empty spaces where electricity cannot be not conducted. [0025]
  • In another advantageous embodiment, the two bodies which form the armature are specular and each defines a respective half of the armature. In a first embodiment, the two bodies are coupled together on a substantially vertical plane; in another embodiment, the two bodies are coupled on a substantially horizontal plane. [0026]
  • According to one embodiment of the invention, on a plane transverse to the direction of advance of the mobile armature, the motor comprises two coils, or multiples of two, adjacent and substantially parallel, made by means of a single continuous winding. [0027]
  • Using a single winding to form two adjacent coils, the two ends of the conductor, connected to the source of feed to form the electric circuit, always emerge from the outer periphery, respectively of one and the other coil, remaining contained inside the lateral bulk of the coil itself. With this configuration there are no lateral thicker parts formed due to the end of the conductor emerging from the armature, which thicker parts can compromise an efficient filling of the empty spaces by the insulating material and hence create problems of correct electric conduction, heat dissipation and mechanical stability. [0028]
  • In a preferential embodiment, the armature comprises at least a module, comparable from the electric point of view with a single coil, configured dimensionally so as to contain two pairs of coils, or multiples of two, arranged aligned in the direction of motion. [0029]
  • According to a variant, the module is suitable to contain three pairs of coils, or multiples of three, arranged aligned in the direction of motion. [0030]
  • The module has a size, in the direction of movement, such as to cover an even number of magnets so that, during the movement of the mobile part of the motor, the sign of the magnet which is left is always equal to the sign of the new magnet which is covered by the armature which bears the coils. In this way, the induced currents which are generated between adjacent magnets and which circulate on the metal armature are mutually cancelled and therefore do not oppose, or in any case create interference with, the motion and/or the performance of the motor.[0031]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other characteristics of the invention will be apparent from the following description of some preferential forms of embodiment, given as a non-restrictive example, with reference to the attached drawings wherein: [0032]
  • FIG. 1 is a plane view of a linear motor according to the invention; [0033]
  • FIG. 2 is a part longitudinal section of the motor in FIG. 1; [0034]
  • FIG. 3 shows a variant of FIG. 2; [0035]
  • FIG. 4 shows a detail of the coil-bearing armature of the linear motor of FIG. 1; [0036]
  • FIG. 5 shows a variant of FIG. 4; [0037]
  • FIG. 6 is a prospective view of two, electrically connected coils as used in the linear motor shown in FIG. 1; [0038]
  • FIG. 7 is a front view of a coil used in the linear motor in FIG. 1; [0039]
  • FIG. 8 is a transverse section of the coil shown in FIG. 6.[0040]
  • DETAILED DESCRIPTION OF SOME PREFERENTIAL EMBODIMENTS
  • With reference to the attached figures, a synchronous brushless linear motor according to the invention is indicated generally by the [0041] reference number 10. It comprises a fixed part 11 which, in this case, comprises two opposite bars 22, made of ferromagnetic material, on which a plurality of permanent magnets 12 are mounted, substantially equidistant and with reciprocally alternating polarity.
  • The [0042] motor 10 also comprises a mobile part 13, arranged in the interspace between the two bars 22, consisting of a frame or armature 14 made mainly of aluminium or its alloys, or of ceramic material.
  • The [0043] armature 14 is suitable to define a plurality of compartments 15 to house mating electric coils 16. In this case, the housing compartments 15 are substantially quadrangular in shape: the lateral segments are straight and the upper and lower segments are curved.
  • Using aluminium or its alloys or ceramic material as the material for the [0044] armature 14 ensures a lighter weight, greater mechanical rigidity, good capacity to dissipate heat and good electric conductivity.
  • In this case, the [0045] armature 14 is made of modules, each comprising three pairs of coils 16 arranged aligned along the direction of motion, each pair comprising two coils 16 arranged adjacent on a plane transverse to the direction of motion and parallel to each other.
  • The two [0046] coils 16 of each pair are made (FIG. 6) with a single conductor 17 wound continuously. The first coil 16 a is formed by winding the conductor 17, starting from a first end 17 a connected to a source of feed, developing from the outside towards the inside of the coil. The second coil 16 b is formed by winding the conductor 17 developing from the inside to the outside, so that the second end 17 b connected to the source of feed is, like the first 17 a, also on the outer periphery of the relative coil.
  • Thanks to this configuration, with a double [0047] adjacent coil 16 a and 16 b, the two ends 17 a and 17 b which emerge from the armature 14 remain contained within the lateral bulk of the relative coil, respectively 16 a and 16 b; therefore no thicker parts are created on the sides which might cause empty spaces and interstices which would compromise the electric conduction and weaken the mechanical rigidity of the whole. Moreover, the value of the air gap is optimized.
  • The [0048] armature 14 is made, in this case, in two half-bodies substantially specular and divided (FIG. 4) on a vertical plane, respectively 18 a and 18 b, able to be coupled together so as to constitute a single body. According to the variant shown in FIG. 5, the two half- bodies 18 a and 18 b are divided on a horizontal plane.
  • After the [0049] coils 16 a, 16 b have been inserted and assembled into the respective housing compartments 15, the two half- bodies 18 a and 18 b are closed and made integral with each other; in this assembled position, in correspondence with part of the coupling perimeter, fissures 19 are formed through which an insulating and binding material in a liquid or melted state, for example resin 20, is cast.
  • According to the invention, therefore, the [0050] armature 14 functions as a mold for casting the melted resin 20, which penetrates into the interstices between the spirals of the relative coils 16 a, 16 b, filling all the empty spaces and the fissures between the spirals and the armature 14 and the inner compartment of the coils.
  • When the [0051] resin 20 polymerizes and is chemically stabilized, it constitutes a single block with the relative coils 16 a, 16 b, forming a conductive whole which, with regard to the permanent magnets 12, behaves substantially as a single spiral.
  • This single block, without interstices and empty spaces, ensures a considerable mechanical rigidity which allows a prolonged use of the motor even at high frequencies, without the risk of failure or loosening. Moreover, absorption and the contact of the [0052] conductor 17 with contaminating material such as water, oil, dust or otherwise is limited to a minimum, or even totally eliminated.
  • To prevent the electric current from closing entirely on the [0053] aluminium armature 14, apertures or interruptions of electric discontinuity are provided in a position surrounding the relative compartments 15 housing the coils 16 a, 16 b. When the resin is applied, the apertures of electric discontinuity 21 are also completely filled with resin 20.
  • In the embodiment shown in FIG. 2, the apertures of [0054] discontinuity 21 are made on the lateral segments of the housing compartments 15 whereas, in the variant shown in FIG. 3, the apertures 21 are made on the upper segment of the relative compartment 15. In cooperation with the lower part of the armature 14 there is a channel 23 which allows the ends of the conductors of each of the coils 16 a, 16 b to emerge; the ends are joined by means of a connector 24 which is connected to a source of feed, not shown here.
  • In one embodiment of the invention, the longitudinal size of the [0055] armature 14 is such as to cover during use an even number of permanent magnets 12, in this case four; in this way, the polarity of the new magnet 12 facing the coils 16 a, 16 b during the movement of the mobile part 13 is equal to the polarity of the magnet 12 which remains uncovered after said part 13 has moved.
  • This geometric configuration is advantageous from the electric point of view, since it leads to an annulment of parasitic electric currents which close between magnet and magnet using the [0056] armature 14 as an electric circuit.
  • In a further form of embodiment, the [0057] armature 14 is made in such a manner that the distance “p” between two adjacent housing compartments 15 is equal to, or less than, the distance between two adjacent permanent magnets 12. In this way, the metal part of the armature 14 between two adjacent coils 16 does not function as a further spiral, thus interfering with the correct functioning of the electric motor 10.
  • It is clear however that modifications and/or additions can be made to the [0058] linear motor 10 and its method of manufacture as described heretofore without departing from the field and scope of the present invention.
  • For example, the [0059] armature 14 carrying the coils 16 a, 16 b could be fixed while the bars 22 with the permanent magnets 12 could be mobile. It is also within the spirit of the invention that the armature 14 comprises several modules with other than three coils 16 aligned longitudinally, or that it comprises four, six or more coils transversely adjacent, so as not to have lateral thicker parts with respect to the coils.
  • It also comes within the field of the invention that the longitudinal development of the [0060] armature 14 covers two, six or more permanent magnets 12, or the armature 14 comprises parts, for example external, not made completely of aluminium or ceramic.
  • The insulating and binding material used to stabilize and electrically insulate the [0061] coils 16 could be something other than resin, provided that it has substantially the same physical-chemical characteristics.

Claims (19)

1. Linear motor comprising an armature equipped with a plurality of compartments (15) inside which are stably housed respective electric coils (16), characterised in that it comprises two fixed bars (22) cooperating with respective sides of said armature, on each of which are mounted a plurality of permanent magnets (12) arranged, during use, facing said electric coils (16), in that said armature (14) is made mainly of aluminium or its alloys, or of ceramic material, and in that said armature (14) comprises interruptions (21) defining zones of electric discontinuity at least in cooperation with the perimeter of said compartments (15) housing the coils (16).
2. Linear motor as in claim 1, characterised in that said interruptions (21) are made on at least a lateral segment of a relative housing compartment (15).
3. Linear motor as in claim 1, characterised in that said interruptions (21) are made on at least an upper or lower segment of a relative housing compartment (15).
4. Linear motor as in any claim hereinbefore, characterised in that said armature (14) is made in at least two half-bodies (18 a, 18 b) which can be coupled together.
5. Linear motor as in claim 4, characterised in that said half-bodies (18 a, 18 b) can be coupled on a substantially vertical plane.
6. Linear motor as in claim 4, characterised in that said half-bodies (18 a, 18 b) can be coupled on a substantially horizontal plane.
7. Linear motor as in claim 4, characterised in that said half-bodies (18 a, 18 b) are substantially specular and each defines a half of said armature (14).
8. Linear motor as in claim 4, characterised in that said half-bodies (18 a, 18 b), once coupled, are able to define casting fissures (19) into which an insulating material in liquid or melted state is cast.
9. Linear motor as in claim 8, characterised in that said insulating material is a polymerizable resin.
10. Linear motor as in any claim hereinbefore, characterised in that said armature (14) is able to contain two coils (16 a, 16 b), or multiples of two, adjacent on a plane transverse to the direction of movement
11. Linear motor as in claim 10, characterised in that the coils (16 a, 16 b) are obtained by substantially continuous winding of a conductor (17).
12. Linear motor as in claim 11, characterised in that said conductor (17) has respective ends (17 a, 17 b) for inlet/output of the current, each of said ends (17 a, 17 b) emerging from the outer periphery of a relative coil (16 a, 16 b) and being contained within the lateral bulk of said coils (16 a, 16 b).
13. Linear motor as in any claim hereinbefore, characterised in that said armature (14) comprises at least a module able to define a plurality of compartments (15) to house respective coils (16) aligned in the direction of movement, the longitudinal development of said module being such as to cover an even number of permanent magnets (12).
14. Linear motor as in claim 13, characterised in that said module comprises a number of coils (16) equal to two or multiples of two.
15. Linear motor as in claim 13, characterised in that said module comprises a number of coils (16) equal to three or multiples of three.
16. Linear motor as in any claim hereinbefore, characterized in that the distance “p” between two adjacent housing compartments (15) is equal to or less than the distance between two adjacent permanent magnets (12).
17. Method to manufacture an electric motor of the type comprising an armature equipped with a plurality of compartments (15) inside which are stably housed respective electric coils (16) and two fixed bars (22) cooperating with respective sides of said armature, on each of which are mounted a plurality of permanent magnets (12) arranged, during use, facing said electric coils (16), the method comprising achieving said armature (14) using at least two half-bodies (18 a, 18 b), made of aluminium or its alloys or of ceramic material and able to be coupled together, said bodies (18 a, 18 b) being able to define, once assembled, a plurality of compartments (15) housing respective coils (16), an insulating and binding material (20) such as a polymerizable resin being then cast in its liquid or melted state into fissures (19) defined between said two coupled half-bodies (18 a, 18 b) which thus function as a mold for the casting and polymerization of said insulating and binding material (20).
18. Method as in claim 17, characterised in that said polymerization is performed cold.
19. Method as in claim 17, characterised in that said polymerization is performed hot.
US10/321,329 2001-12-14 2002-12-16 Linear motor and method to manufacture said linear motor Expired - Fee Related US6847133B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITUD2001A000209 2001-12-14
IT2001UD000209A ITUD20010209A1 (en) 2001-12-14 2001-12-14 LINEAR MOTOR AND MANUFACTURING PROCEDURE OF SUCH LINEAR MOTOR

Publications (2)

Publication Number Publication Date
US20030111916A1 true US20030111916A1 (en) 2003-06-19
US6847133B2 US6847133B2 (en) 2005-01-25

Family

ID=11460669

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/321,329 Expired - Fee Related US6847133B2 (en) 2001-12-14 2002-12-16 Linear motor and method to manufacture said linear motor

Country Status (4)

Country Link
US (1) US6847133B2 (en)
EP (1) EP1320180B1 (en)
JP (1) JP4512874B2 (en)
IT (1) ITUD20010209A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280539A1 (en) * 2014-03-31 2015-10-01 Tecnotion B.V. Primary part for a linear motor, a linear motor comprising the same, and method for manufacturing such primary part
US20160233754A1 (en) * 2015-02-08 2016-08-11 Hyperloop Technologies, Inc. Continuous winding for electric motors
EP3422537A1 (en) * 2017-06-30 2019-01-02 Etel S.A. Coil assembly and housing module set for a coil assembly of an electric motor
US10533289B2 (en) 2016-03-28 2020-01-14 Hyperloop Technologies, Inc. Metamaterial null flux magnet bearing system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507329A1 (en) * 2003-08-14 2005-02-16 Inventio Ag Electric motor, lift with a car moved with an electric motor and lift with a car and an electric motor for actuating a guide member relatively to the car
US7557470B2 (en) * 2005-01-18 2009-07-07 Massachusetts Institute Of Technology 6-axis electromagnetically-actuated meso-scale nanopositioner
JP2008136266A (en) * 2006-11-27 2008-06-12 Mitsubishi Electric Corp Armature for linear motor, and the linear motor
KR101421314B1 (en) * 2007-04-24 2014-07-18 가부시키가이샤 야스카와덴키 Linear motor armature and linear motor
US20120216691A1 (en) 2009-09-03 2012-08-30 Applied Materials, Inc. Blade for silk-screen printing on a print support
DE102020119589A1 (en) 2020-07-24 2022-01-27 Intrasys Gmbh Innovative Transportsysteme Winding arrangement for a linear motor with pairs of coils arranged in parallel and made from a continuous electrical conductor
DE102021109072A1 (en) 2021-04-12 2022-10-13 SmarAct Holding GmbH Direct drive for positioning and moving
KR102350608B1 (en) * 2021-05-26 2022-01-12 주식회사 대곤코퍼레이션 Coreless Linear Motor System for Offsets Parasitic Forces

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972214A (en) * 1975-06-02 1976-08-03 Bleckmann & Co. Machine for manufacturing wire coils
US4329308A (en) * 1976-01-30 1982-05-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Method of making an abradable stator joint for an axial turbomachine
US4749921A (en) * 1986-07-21 1988-06-07 Anwar Chitayat Linear motor with non-magnetic armature
USRE34674E (en) * 1988-02-04 1994-07-26 Trilogy Systems, Inc. Linear motor
US5808381A (en) * 1994-08-09 1998-09-15 Hitachi Metals, Ltd. Linear motor
US6084319A (en) * 1996-10-16 2000-07-04 Canon Kabushiki Kaisha Linear motor, and stage device and exposure apparatus provided with the same
US6140734A (en) * 1998-04-03 2000-10-31 Nikon Corporation Of Japan Armature with regular windings and having a high conductor density
US6144118A (en) * 1998-09-18 2000-11-07 General Scanning, Inc. High-speed precision positioning apparatus
US6274961B1 (en) * 1998-07-02 2001-08-14 Abb Research Ltd. Elastic insulating material element for wedging a winding, in particular the stator winding, of an electric machine
US6313552B1 (en) * 1998-11-23 2001-11-06 Linear Drives Limited Coaxial linear motor for extended travel
US6313550B1 (en) * 2000-02-02 2001-11-06 Nikon Corporation Coil mounting and cooling system for an electric motor
US6407471B1 (en) * 1998-05-12 2002-06-18 Kabushiki Kaisha Yaskawa Denki Linear motor
US6452292B1 (en) * 2000-06-26 2002-09-17 Nikon Corporation Planar motor with linear coil arrays

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286765A (en) * 1988-05-13 1989-11-17 Japan Steel Works Ltd:The Linear motor
JP3216865B2 (en) * 1994-08-09 2001-10-09 日立金属株式会社 Linear motor
JPH08322232A (en) * 1995-05-23 1996-12-03 Tsudakoma Corp Linear motor
JP3056414B2 (en) * 1996-03-21 2000-06-26 東京特殊電線株式会社 Linear motor coil
GB2352094B (en) * 1996-04-12 2001-02-21 Anorad Corp A linear motor with improved cooling
DE19729974A1 (en) * 1997-07-12 1999-01-14 Elektrische Automatisierungs U Winding carrying assembly for flat low-weight linear motor
JPH11122904A (en) * 1997-10-14 1999-04-30 Hitachi Metals Ltd Linear motor and manufacture of coil supporting member thereof
JP3666218B2 (en) * 1997-12-03 2005-06-29 富士電機システムズ株式会社 Linear motor with air-core coil
JPH11196561A (en) * 1997-12-26 1999-07-21 Tokyo Aircraft Instr Co Ltd Linear motor with adjustable braking characteristics
JPH11341784A (en) * 1998-05-20 1999-12-10 Yaskawa Electric Corp Linear motor
JP3719016B2 (en) * 1998-05-29 2005-11-24 日本精工株式会社 Linear motor
JP2000262024A (en) * 1999-03-05 2000-09-22 Fuji Koki Corp Manufacture of electromagnetic actuator, the electromagnetic actuator and motor-operated valve provided with the electromagnetic actuator
JP3550678B2 (en) * 1999-05-18 2004-08-04 株式会社安川電機 Linear motor
JP2001037201A (en) * 1999-07-21 2001-02-09 Nikon Corp Motor device, stage equipment and exposure device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972214A (en) * 1975-06-02 1976-08-03 Bleckmann & Co. Machine for manufacturing wire coils
US4329308A (en) * 1976-01-30 1982-05-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Method of making an abradable stator joint for an axial turbomachine
US4749921A (en) * 1986-07-21 1988-06-07 Anwar Chitayat Linear motor with non-magnetic armature
USRE34674E (en) * 1988-02-04 1994-07-26 Trilogy Systems, Inc. Linear motor
US5808381A (en) * 1994-08-09 1998-09-15 Hitachi Metals, Ltd. Linear motor
US6084319A (en) * 1996-10-16 2000-07-04 Canon Kabushiki Kaisha Linear motor, and stage device and exposure apparatus provided with the same
US6140734A (en) * 1998-04-03 2000-10-31 Nikon Corporation Of Japan Armature with regular windings and having a high conductor density
US6407471B1 (en) * 1998-05-12 2002-06-18 Kabushiki Kaisha Yaskawa Denki Linear motor
US6274961B1 (en) * 1998-07-02 2001-08-14 Abb Research Ltd. Elastic insulating material element for wedging a winding, in particular the stator winding, of an electric machine
US6144118A (en) * 1998-09-18 2000-11-07 General Scanning, Inc. High-speed precision positioning apparatus
US6313552B1 (en) * 1998-11-23 2001-11-06 Linear Drives Limited Coaxial linear motor for extended travel
US6313550B1 (en) * 2000-02-02 2001-11-06 Nikon Corporation Coil mounting and cooling system for an electric motor
US6452292B1 (en) * 2000-06-26 2002-09-17 Nikon Corporation Planar motor with linear coil arrays

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280539A1 (en) * 2014-03-31 2015-10-01 Tecnotion B.V. Primary part for a linear motor, a linear motor comprising the same, and method for manufacturing such primary part
US10199913B2 (en) * 2014-03-31 2019-02-05 Tecnotion B.V. Primary part for a linear motor, a linear motor comprising the same, and method for manufacturing such primary part
US20160233754A1 (en) * 2015-02-08 2016-08-11 Hyperloop Technologies, Inc. Continuous winding for electric motors
US10958147B2 (en) * 2015-02-08 2021-03-23 Hyperloop Technologies, Inc. Continuous winding for electric motors
US10533289B2 (en) 2016-03-28 2020-01-14 Hyperloop Technologies, Inc. Metamaterial null flux magnet bearing system
US11391002B2 (en) 2016-03-28 2022-07-19 Hyperloop Technologies, Inc. Metamaterial null flux magnetic bearing system
EP3422537A1 (en) * 2017-06-30 2019-01-02 Etel S.A. Coil assembly and housing module set for a coil assembly of an electric motor

Also Published As

Publication number Publication date
EP1320180B1 (en) 2012-08-29
JP2003230265A (en) 2003-08-15
ITUD20010209A1 (en) 2003-06-16
JP4512874B2 (en) 2010-07-28
EP1320180A1 (en) 2003-06-18
US6847133B2 (en) 2005-01-25

Similar Documents

Publication Publication Date Title
US6847133B2 (en) Linear motor and method to manufacture said linear motor
KR100785192B1 (en) Coreless linear motor
EP0103980B1 (en) Permanent magnet dc motor with magnets recessed into motor frame
EP1883151B1 (en) Permanent magnet excited transverse flux linear motor with normal force compensation structure
US6828699B2 (en) Linear motor and method to manufacture said linear motor
US8853894B2 (en) Cylindrical linear motor having low cogging forces
RU99123365A (en) SINGLE-SIDED ELECTRIC MACHINE WITH TRANSVERSE FLOW IN MULTIPHASE PERFORMANCE
EP2784920A2 (en) Linear motor
US5959415A (en) Linear motor with improved coil design and heat removal
EP1672773A2 (en) Linear motor
US4454909A (en) Mold stator for electromagnetic stirring
KR20070070337A (en) Permanent magnet excited transverse flux motor
JPH10323012A (en) Linear motor
CN220798036U (en) Voice coil motor capable of reducing eddy current loss
CN219041559U (en) Permanent magnet linear motor
KR100931848B1 (en) Stator of permanent magnet excitation lateral flux motor with E type mover iron core
SU1162008A1 (en) Contactless synchronous electric machine
Onuki et al. Improvement of short primary member linear induction motor performance by partial adoption of the wound secondary
JP6522119B2 (en) Linear motor
SU1644301A1 (en) Direct current machine
SU1188833A1 (en) Linear d.c.motor
JPS609357A (en) Linear motor
SU1458931A1 (en) Dynamoelectric machine
KR100332061B1 (en) Armature of Linear Motor
KR20010109919A (en) A moving-coil type linear direct current motor

Legal Events

Date Code Title Description
CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: AFCO C.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BACCINI, GISULFO;REEL/FRAME:020741/0666

Effective date: 20080131

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170125