US10012666B2 - Sample distribution system and laboratory automation system - Google Patents

Sample distribution system and laboratory automation system Download PDF

Info

Publication number
US10012666B2
US10012666B2 US14/665,397 US201514665397A US10012666B2 US 10012666 B2 US10012666 B2 US 10012666B2 US 201514665397 A US201514665397 A US 201514665397A US 10012666 B2 US10012666 B2 US 10012666B2
Authority
US
United States
Prior art keywords
sample
distribution system
transport surface
sample container
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/665,397
Other versions
US20150276782A1 (en
Inventor
Christian Riether
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics Operations Inc
Original Assignee
Roche Diagnostics Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Operations Inc filed Critical Roche Diagnostics Operations Inc
Assigned to ROCHE PVT GMBH reassignment ROCHE PVT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RIETHER, CHRISTIAN
Assigned to ROCHE DIAGNOSTICS GMBH reassignment ROCHE DIAGNOSTICS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROCHE PVT GMBH
Assigned to ROCHE DIAGNOSTICS OPERATIONS, INC. reassignment ROCHE DIAGNOSTICS OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROCHE DIAGNOSTICS GMBH
Publication of US20150276782A1 publication Critical patent/US20150276782A1/en
Application granted granted Critical
Publication of US10012666B2 publication Critical patent/US10012666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1081Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00445Other cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0406Individual bottles or tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0477Magnetic

Definitions

  • the present disclosure generally relates to a sample distribution system and to a laboratory automation system.
  • the present invention addresses the problem of providing a sample distribution system and a laboratory automation system which allow the flexible transport and flexible processing of samples, particularly in terms of dynamically variable waiting times until a possible treatment and/or processing of the samples in the stations.
  • a sample distribution system for distributing sample containers between pre-analytical, analytical and/or post-analytical stations of a laboratory automation system.
  • the sample distribution system can comprise a plurality of sample container carriers.
  • the sample container carriers can comprise at least one magnetic element and can receive a sample container.
  • the sample distribution system can further comprise a transport device.
  • the transport device can comprise a transport surface to carry the sample container carriers and a plurality of electromagnetic actuators arranged in a stationary manner under the transport surface.
  • the electromagnetic actuators can move a sample container carrier arranged on the transport surface over the transport surface by applying a magnetic force to the sample container carrier.
  • the transport device can also comprise a control device to activate the electromagnetic actuators such that a sample container carrier is moved over the transport surface along a predeterminable path of movement.
  • the sample distribution system can comprise ambient-condition influencing device to influence at least one ambient condition of a sub-region of the transport surface.
  • FIG. 1 illustrates a sample distribution system in a schematic plan view according to an embodiment of the present disclosure.
  • FIG. 2 illustrates the sample distribution system from FIG. 1 in a perspective view according to an embodiment of the present disclosure.
  • the present disclosure relates to a sample distribution system to transport sample containers between pre-analytical and/or analytical and/or post-analytical stations of a laboratory automation system.
  • a pre-analytical station can usually serve for the pre-processing of samples or sample containers.
  • An analytical station may be designed for example for using a sample or part of the sample and a reagent to generate a measurable signal, on the basis of which it can be determined whether the analyte is present, and if so in what concentration.
  • a post-analytical station can usually serves for the post-processing of samples or sample containers.
  • the pre-analytical, analytical and post-analytical stations may for example have at least one station chosen from the group of following stations: a cap-removing station for removing caps or closures on sample tubes, a cap-applying station for applying caps or closures to sample tubes, an aliquoting station for aliquoting samples, a centrifuging station for centrifuging samples, an archiving station for archiving samples, a pipetting station for pipetting, a sorting station for sorting samples or sample tubes, a sample-tube-type determining station for determining a type of sample tube and a sample-quality determining station for determining the quality of a sample.
  • the sample distribution system can comprise a number of sample container carriers, for example, identical sample container carriers, for example, several tens to several hundreds of sample container carriers.
  • the sample container carriers can be respectively designed for receiving and fixing a sample container, usually in the form of a sample tube.
  • the sample container carriers can respectively comprise at least one magnetically active element, for example in the form of one or more permanent magnets and/or ferromagnetic material.
  • the sample distribution system can further comprise a transport device.
  • the transport device can comprise an even, horizontally aligned transport surface, which can be designed for carrying the sample container carriers.
  • the transport device can further comprise a plurality of electromagnetic actuators, which can be for example distributed in rows and columns and can be arranged in a stationary manner under the transport surface.
  • the electromagnetic actuators can be designed for moving a respective sample container carrier that can be located on the transport surface two-dimensionally on the transport surface by exerting a magnetic force on the respective sample container carrier or its magnetically active element.
  • the electromagnetic actuators may be electromagnets.
  • the sample distribution system can further comprise a control device, which can be designed for activating the electromagnetic actuators in such a way that a sample container carrier can move on the transport surface along a freely predeterminable path of movement.
  • the control device may be for example a computer, a processor, a programmable logic controller (PLC) or some other system performing control tasks.
  • PLC programmable logic controller
  • the control device may also have a memory, stored in which can be program code that can determine the behavior of the control device.
  • the sample distribution system can further comprise an ambient-condition influencing device, which can be designed for influencing or changing, for example controlling or regulating, at least one ambient condition of at least one sub-region of the transport surface or over the at least one sub-region or of a defined volume over the at least one sub-region.
  • an ambient-condition influencing device which can be designed for influencing or changing, for example controlling or regulating, at least one ambient condition of at least one sub-region of the transport surface or over the at least one sub-region or of a defined volume over the at least one sub-region.
  • the sample distribution system can make it possible to keep samples under monitored ambient conditions during a specific time on or over the sub-region of the transport surface.
  • the ambient-condition influencing device may be designed for influencing, for example cooling, a temperature of an atmosphere of the sub-region. Consequently, a temperature that prevents, or at least slows down, undesired chemical reactions in the samples may be brought about over the sub-region of the transport surface.
  • the ambient-condition influencing device may be designed for locally influencing the at least one ambient condition of the sub-region of the transport surface. This may mean that the ambient conditions can only be influenced in a sharply delimited manner within or above the sub-region, whereas normal ambient conditions, or ambient conditions uninfluenced by the ambient-condition influencing device, prevail outside the sub-region. This can for example reduce energy consumption necessary for operating the ambient-condition influencing device.
  • the ambient-condition influencing device may have a number of thermocouples for influencing the temperature, which can be assigned to the sub-region of the transport surface. For example, such thermocouples may be arranged under the transport surface, on the transport surface, over the transport surface or to the side(s) of the sub-region. Such thermocouples may be, for example, Peltier elements. These can make it possible for the temperature to be influenced in an energy-saving manner without producing noise. For example, they can make cooling possible.
  • the ambient-condition influencing device may be designed for influencing a composition of an atmosphere of the sub-region. This may serve the purpose of achieving a particular gas composition of the atmosphere, by which harmful processes in the samples, for example chemical reactions, can be prevented, or at least slowed down.
  • a chemically inert gas such as nitrogen or a noble gas may for example be added or used.
  • the ambient-condition influencing device may have a housing, which can be arranged over the sub-region of the transport surface and can cover over the sub-region. In this way, an atmosphere to be influenced can be spatially delimited from an atmosphere located outside the sub-region. This can make possible resource- and energy-saving conditioning of the atmosphere with regard to the parameters to be influenced, such as, for example, the temperature or composition, without continuous mixing with a surrounding atmosphere taking place.
  • the housing may be designed in such a way that it can enclose an air space or an (air) volume over the sub-region on a number of sides (not necessarily on all sides). This can make possible particularly effective shielding of the atmosphere located within the housing.
  • An inner height of the housing over the transport surface may be larger than the height of a sample container carrier with a sample container received therein. This can make it possible for the sample container carriers with corresponding sample containers to be safely moved in, without the risk of them tipping over or being damaged.
  • the housing can form a tunnel over one or more rows and/or columns of electromagnetic actuators.
  • This can make possible simple, for example one-dimensional, control within the sub-region, sample container carriers being able to enter the tunnel at one point and leave the tunnel at another point. A required computing effort for the control can consequently be reduced.
  • the tunnel may also cover over a number of rows and/or columns of electromagnetic actuators.
  • the housing may have a number of transporting openings, wherein the sub-region transitions to the adjoining part of the transport surface at a respective transporting opening at the same vertical level, i.e. without a level transition.
  • This can make it possible for sample container carriers to enter and leave the housing easily. In this way, it can be possible to omit dedicated transferors, such as, for example, grippers that can introduce or transfer a sample container carrier into the housing.
  • the ambient-condition influencing device may have a cooling device, which can be designed for cooling air within the housing, for example to temperatures in a range between about 0° C. and about 10° C.
  • a cooling device may be provided within the housing and/or cooled air may be directed into the interior of the housing, to be precise, in particular, through an opening provided for this.
  • the ambient-condition influencing device may have an air-conditioning device, which can be designed for changing, in particular increasing, a concentration of at least one chemically inert gas, for example, nitrogen, within the housing.
  • the air-conditioning device may be designed for introducing the chemically inert gas into the interior of the housing.
  • a plurality of air inlets for laterally feeding in air can be assigned to a respective transporting opening of the housing.
  • the housing may have inside a plurality of air inlets for feeding in air, in particular for laterally feeding in air.
  • Laterally feeding in can be understood essentially as meaning horizontally feeding in.
  • the provision of air inlets at respective transporting openings can allow a certain shielding of the surrounding atmosphere from the atmosphere within the housing to be achieved. In this way, energy can be saved for example.
  • the lateral, that is to say for example horizontal, feeding in of air can achieve the effect that the air is not blown from above directly into a sample container, which is, for example, formed as a vertically upright tube. In this way, excessive mixing of the sample with the fed-in air or splashing of the typically liquid sample over a rim of the sample container can be prevented.
  • the sample distribution system may have a plurality of air outlets for sucking or evacuating air out from inside the housing. These air outlets may for example be connected to a suitable extractor fan. In this way, a defined air stream between the air inlets and the air outlets can be achieved, so that, for example, air fed in does not escape at the transporting opening of the housing, but can be extracted again by way of the air outlets.
  • a plurality of ambient-condition sensors can be assigned to the sub-region of the transport surface.
  • the ambient-condition sensors may be embodied as temperature sensors and/or sensors for determining an air composition.
  • the sample distribution system may comprise a temperature measuring device, which can measure temperatures of sample containers placed on the transport surface and/or of samples in the sample containers placed on the transport surface.
  • the temperature measuring device may e.g. be embodied as an infrared thermometer or as an infrared camera.
  • the temperature measuring device may e.g. part of an identification module used to identify sample containers and/or sample container carriers.
  • the temperature measuring device may be integrated into a handling device, e.g. in the form of a gripper used to handle sample containers and/or sample container carriers.
  • the temperatures of sample containers and/or of samples in the sample containers may be measures when the sample containers and/or the samples in the sample containers enter the subarea.
  • the duration the sample containers and/or samples in the sample containers stay in the subarea may be determined based on the measured entering temperature. A higher measured temperature may result in a longer duration and vice versa.
  • the control device of the sample distribution system may move such sample containers onto the sub-region of the transport surface, which can have measured temperatures exceeding a threshold temperature value, e.g. about 10° C., or about 15° C., or about 20° C.
  • a threshold temperature value e.g. about 10° C., or about 15° C., or about 20° C.
  • the control device of the sample distribution system may determine a residence time based on the measured temperature, wherein the control device can place sample containers in the sub-region of the transport surface during the residence time and remove the sample containers from the sub-region of the transport surface after the residence time has lapsed.
  • the sample container carriers may comprise a temperature sensor.
  • the temperature sensor can measure a temperature of the received sample container and/or measure a temperature of a sample in the received sample container.
  • the temperature sensor may e.g. measure a surface temperature of the received sample container at a specific position of the sample container, e.g. at the bottom of the sample container.
  • the temperature sensor may be in direct contact with the sample container.
  • the sample container carriers may respectively comprise data transmitter.
  • the data transmitter can wirelessly transmit the measured temperature e.g. to a control device of the transport device.
  • the data transmitter may e.g. be Bluetooth data transmitter, RFID (radio-frequency identification) data transmitter, near-field data transmitter and the like.
  • the transport device may comprise energy storage for providing the energy needed for data transmission.
  • the data transmitter (and the temperature sensor) may be incorporated as a passive RFID-Tag.
  • the laboratory automation system can comprise a plurality (for example, between about two and twenty) of pre-analytical and/or analytical and/or post-analytical stations, which can be designed for working on or processing sample containers and/or samples contained in the sample containers.
  • the working or processing may, for example, comprise reading a barcode, removing a cap on the tube, centrifuging the sample, aliquoting the sample, analyzing the sample, and the like.
  • the laboratory automation system can also comprise a distribution system for transporting the sample containers between the pre-analytical, analytical and post-analytical stations.
  • the control device of the sample distribution system may be designed for determining or calculating a waiting time that can be required, or arises on the basis of capacity utilization of the station, before a sample container and/or a sample in the sample container can be worked on by the station. If the waiting time is at least equal to (or larger than) a lower limit value in terms of time, the control device can move the corresponding sample container, for example in its sample container carrier, into the sub-region of the transport surface by suitable activation of the electromagnetic actuators.
  • the waiting time may be an expected, planned and/or theoretical waiting time.
  • the waiting time can be determined essentially by a waiting time of the corresponding sample container and/or the sample contained therein for working/processing in the pre-analytical, analytical and post-analytical station.
  • the waiting time may for example be calculated or determined by using specific formulae and/or tables. In the simplest case, the waiting time can be determined from the length of a queue in front of a station.
  • the lower limit value in terms of time may for example be a value in the time dimension that can represent the maximum time that a sample can spend on the transport surface without undesired influencing of the chemical composition of the sample beyond a tolerable extent having to be expected unless a specific ambient condition is provided, that is to say for example unless cooling and/or increased nitrogen concentration is/are provided. If it is likely that a sample will spend too long on the transport surface, it can be moved by the control device into the sub-region of the transport surface in which it can be possible for it to stay a longer time on account of the specific ambient conditions that prevail there.
  • the lower limit value in terms of time may be for example about five minutes.
  • the control device may be designed for moving the sample container carrier into the sub-region of the transport surface only whenever the waiting time is less than an upper limit value in terms of time. This may be for example a value of approximately, or exactly, 30 minutes. This can be a value that is frequently found in practice to be the time limit beyond which it is no longer possible for the corresponding sample to be stored without risking chemical changes to the sample, even if it is kept in typical ambient conditions of a sub-region.
  • the laboratory automation system may have a refrigerator, the control device being designed for moving a respective sample container, for example in its sample container carrier, into the refrigerator if the waiting time is at least equal to (or larger than) the upper limit value in terms of time.
  • the sample is therefore preferably not kept in the sub-region but in the refrigerator, in order to be able to last the long waiting time without problem.
  • FIG. 1 schematically shows parts of a sample distribution system 10 .
  • the sample distribution system 10 can have a transport surface 15 , which can provide a flat and even surface.
  • sample container carriers with sample containers respectively contained or received therein, which are not represented in FIG. 1 can be placed and moved.
  • a plurality of electromagnetic actuators in the form of coils 20 with respective cores 25 can be arranged in rows and columns. It can be possible by the electromagnetic actuators to move sample container carriers on the transport surface 15 .
  • Arranged on the transport surface 15 can be a multiplicity of position sensors 30 (see FIG. 2 ), with which the position of sample container carriers on the transport surface 15 can be determined.
  • the transport surface 15 depicted may also have a flat, two-dimensional covering.
  • a sub-region 40 Formed on the transport surface 15 is a sub-region 40 , which can extend over part of a single column of electromagnetic actuators 20 and the ambient conditions of which can be influenced in comparison with the ambient conditions outside the sub-region 40 . How this takes place is explained below with reference to FIG. 2 .
  • FIG. 2 shows the sample distribution system 10 from FIG. 1 in a perspective view and in further detail.
  • the sample distribution system 10 can be a component part of a laboratory automation system having a plurality of pre-analytical, analytical and post-analytical stations arranged alongside the transport surface 15 .
  • the sample distribution system 10 can serve for transporting the sample containers between these stations.
  • sample container carriers may be placed, wherein only a single sample container carrier 50 is depicted for reasons of simplicity.
  • the sample container carrier 50 can have a magnetic element in the form of a permanent magnet.
  • a sample container in the form of a (sample) tube 55 can be received or contained in the sample container carrier 50 .
  • a sample such as for example a blood plasma sample, may be contained in the tube 55 .
  • the sample distribution system 10 can further comprise ambient-condition influencing device 100 , which is described in more detail below. It is possible by the ambient-condition influencing device 100 to influence ambient conditions above the sub-region 40 on the transport surface 15 specifically in such a way that ambient conditions that allow samples to stay for longer without the risk of chemical changes to the samples prevail above the sub-region 40 .
  • the ambient-condition influencing device 100 can have a tunnel-forming housing 110 .
  • the housing 110 can completely enclose an air volume above the sub-region 40 , apart from two openings 115 at respective longitudinal ends. In this way, a delimitation of the air volume located within the housing 110 with respect to the surroundings can be achieved.
  • sample container carriers 50 and sample containers 55 located therein can be moved into the housing 110 and moved out again.
  • the sample container carriers 50 can also be kept or left in the housing 110 .
  • Five coils 20 of the corresponding column form respective discrete positions, wherein the coils 20 can fix the sample container carriers 55 , if necessary, and can move the sample container carriers 55 , if necessary.
  • the housing 110 can have a plurality of air inlet openings 117 . These can be arranged on respective side walls of the housing 110 and can be designed for blowing air into the interior space of the housing 110 laterally, that is to say in a horizontal direction. As a result, direct blowing into respective sample containers 55 can be avoided.
  • the arrangement alongside the openings 115 can have the effect of producing at the openings 115 a defined atmosphere, which can be set or influenced by the air that can flow out from the air inlets 117 .
  • the ambient-condition influencing device 100 can have a cooling device 120 and an air-conditioning device 130 .
  • the cooling device 120 and the air-conditioning device 130 can be connected to the housing 110 by a line 140 , so that correspondingly cooled and conditioned air can flow to the air inlets 117 .
  • the cooling device 120 can be designed for sucking in air from the surroundings and cooling it by approximately 5° C. to 10° C. This cooled air can be supplied to the air-conditioning device 130 .
  • the air-conditioning device 130 can be designed for admixing nitrogen with the flowing air, so that the nitrogen concentration can be increased. Consequently, air which has been cooled in comparison with the surrounding atmosphere and the nitrogen fraction of which is increased can enter the line 140 . A corresponding atmosphere can consequently also be established in the interior space of the housing 110 .
  • the ambient-condition influencing device 100 can have a suction fan 150 and a line 160 connected thereto, which can lead to two air outlets 165 on the bottom area of the housing 110 , the bottom area being formed by the sub-region 40 of the transport surface 15 .
  • the suction fan 150 can draw air via the line 160 and the two air outlets 165 out of the interior space of the housing 110 , so that altogether an air flow from the air inlets 117 to the air outlets 165 can be created. In this way, a defined atmosphere within the housing 110 can be achieved in an advantageous way, with minimal influencing by the surrounding atmosphere.
  • an ambient-condition sensor can be provided in the latter in the form of a temperature sensor 170 .
  • the cooling output of the cooling device 120 can be controlled or regulated, so that a desired temperature or temperature difference in relation to the outside temperature is maintained.
  • the sample distribution system 10 can further comprise a refrigerator 200 .
  • a temperature of the refrigerator can be lower than a temperature within the housing 110 . It is possible to bring sample container carriers 50 and/or sample containers 55 into the refrigerator 200 .
  • the sample distribution system 10 can further comprise a control device 300 .
  • the control device 300 can comprise a processor and a memory.
  • the memory can store program code that can cause the processor to behave in the way outlined below when it is executed.
  • the control device 300 can be capable of moving the sample container carriers 50 over the transport surface 15 along paths of movement that can be independent from one another by selective activation of the coils 20 .
  • the control device 300 can calculate for a respective sample container carrier 50 and a sample container 55 located therein (and a sample that is not represented but is comprises in the sample container 55 ) how long it is likely to be kept on the transport surface 15 . For this purpose, the control device 300 may calculate how long it will take until the corresponding sample can be processed by a station. If this staying time or waiting time is below about five minutes, the control device 300 can leave the corresponding sample container carrier 50 at its current position at any point on the transport surface 50 , but outside the sub-region 40 .
  • the control device 300 can transfer the corresponding sample container carrier 50 into the housing 110 , so that the sample can be exposed to a defined atmosphere that can be cooler and can be enriched with nitrogen. In this way, chemical reactions within the sample can be advantageously slowed down. If the expected staying time or waiting time is about 30 minutes or more, the control device 300 can transfer the sample container carrier 50 and/or the sample container 55 into the refrigerator 200 .
  • the embodiments of the sample distribution system 10 Concluding, considerably greater flexibility can be achieved by the embodiments of the sample distribution system 10 , since waiting times can be dynamically handled without impairments of the samples having to be expected.
  • the provision of the tunnel-forming housing 110 with its defined atmosphere can make it possible to avoid transferring samples into the refrigerator 200 . In this way, the refrigerator 200 can for example be dimensioned smaller.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A sample distribution system having a transport surface on which sample container carriers can be moved is presented. The sample distribution system has ambient-condition influencing device in order to influence ambient conditions over a sub-region of the transport surface in such a way that samples can be kept there for a certain time without impairment.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to EP 14162916.2 filed Mar. 31, 2014, which is hereby incorporated by reference.
BACKGROUND
The present disclosure generally relates to a sample distribution system and to a laboratory automation system.
The present invention addresses the problem of providing a sample distribution system and a laboratory automation system which allow the flexible transport and flexible processing of samples, particularly in terms of dynamically variable waiting times until a possible treatment and/or processing of the samples in the stations.
SUMMARY
According to the present disclosure, a sample distribution system for distributing sample containers between pre-analytical, analytical and/or post-analytical stations of a laboratory automation system is presented. The sample distribution system can comprise a plurality of sample container carriers. The sample container carriers can comprise at least one magnetic element and can receive a sample container. The sample distribution system can further comprise a transport device. The transport device can comprise a transport surface to carry the sample container carriers and a plurality of electromagnetic actuators arranged in a stationary manner under the transport surface. The electromagnetic actuators can move a sample container carrier arranged on the transport surface over the transport surface by applying a magnetic force to the sample container carrier. The transport device can also comprise a control device to activate the electromagnetic actuators such that a sample container carrier is moved over the transport surface along a predeterminable path of movement. Finally, the sample distribution system can comprise ambient-condition influencing device to influence at least one ambient condition of a sub-region of the transport surface.
Accordingly, it is a feature of the embodiments of the present disclosure to provide a sample distribution system and a laboratory automation system which allow the flexible transport and flexible processing of samples with dynamically variable waiting times until a possible treatment and/or processing of the samples in the stations. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
FIG. 1 illustrates a sample distribution system in a schematic plan view according to an embodiment of the present disclosure.
FIG. 2 illustrates the sample distribution system from FIG. 1 in a perspective view according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.
The present disclosure relates to a sample distribution system to transport sample containers between pre-analytical and/or analytical and/or post-analytical stations of a laboratory automation system. A pre-analytical station can usually serve for the pre-processing of samples or sample containers. An analytical station may be designed for example for using a sample or part of the sample and a reagent to generate a measurable signal, on the basis of which it can be determined whether the analyte is present, and if so in what concentration.
A post-analytical station can usually serves for the post-processing of samples or sample containers. The pre-analytical, analytical and post-analytical stations may for example have at least one station chosen from the group of following stations: a cap-removing station for removing caps or closures on sample tubes, a cap-applying station for applying caps or closures to sample tubes, an aliquoting station for aliquoting samples, a centrifuging station for centrifuging samples, an archiving station for archiving samples, a pipetting station for pipetting, a sorting station for sorting samples or sample tubes, a sample-tube-type determining station for determining a type of sample tube and a sample-quality determining station for determining the quality of a sample.
The sample distribution system can comprise a number of sample container carriers, for example, identical sample container carriers, for example, several tens to several hundreds of sample container carriers. The sample container carriers can be respectively designed for receiving and fixing a sample container, usually in the form of a sample tube.
The sample container carriers can respectively comprise at least one magnetically active element, for example in the form of one or more permanent magnets and/or ferromagnetic material.
The sample distribution system can further comprise a transport device. The transport device can comprise an even, horizontally aligned transport surface, which can be designed for carrying the sample container carriers. The transport device can further comprise a plurality of electromagnetic actuators, which can be for example distributed in rows and columns and can be arranged in a stationary manner under the transport surface. The electromagnetic actuators can be designed for moving a respective sample container carrier that can be located on the transport surface two-dimensionally on the transport surface by exerting a magnetic force on the respective sample container carrier or its magnetically active element. The electromagnetic actuators may be electromagnets.
The sample distribution system can further comprise a control device, which can be designed for activating the electromagnetic actuators in such a way that a sample container carrier can move on the transport surface along a freely predeterminable path of movement. The control device may be for example a computer, a processor, a programmable logic controller (PLC) or some other system performing control tasks. For example, the control device may also have a memory, stored in which can be program code that can determine the behavior of the control device.
The sample distribution system can further comprise an ambient-condition influencing device, which can be designed for influencing or changing, for example controlling or regulating, at least one ambient condition of at least one sub-region of the transport surface or over the at least one sub-region or of a defined volume over the at least one sub-region.
The sample distribution system can make it possible to keep samples under monitored ambient conditions during a specific time on or over the sub-region of the transport surface. For example, the ambient-condition influencing device may be designed for influencing, for example cooling, a temperature of an atmosphere of the sub-region. Consequently, a temperature that prevents, or at least slows down, undesired chemical reactions in the samples may be brought about over the sub-region of the transport surface.
The ambient-condition influencing device may be designed for locally influencing the at least one ambient condition of the sub-region of the transport surface. This may mean that the ambient conditions can only be influenced in a sharply delimited manner within or above the sub-region, whereas normal ambient conditions, or ambient conditions uninfluenced by the ambient-condition influencing device, prevail outside the sub-region. This can for example reduce energy consumption necessary for operating the ambient-condition influencing device. The ambient-condition influencing device may have a number of thermocouples for influencing the temperature, which can be assigned to the sub-region of the transport surface. For example, such thermocouples may be arranged under the transport surface, on the transport surface, over the transport surface or to the side(s) of the sub-region. Such thermocouples may be, for example, Peltier elements. These can make it possible for the temperature to be influenced in an energy-saving manner without producing noise. For example, they can make cooling possible.
The ambient-condition influencing device may be designed for influencing a composition of an atmosphere of the sub-region. This may serve the purpose of achieving a particular gas composition of the atmosphere, by which harmful processes in the samples, for example chemical reactions, can be prevented, or at least slowed down. For this purpose, a chemically inert gas such as nitrogen or a noble gas may for example be added or used.
The ambient-condition influencing device may have a housing, which can be arranged over the sub-region of the transport surface and can cover over the sub-region. In this way, an atmosphere to be influenced can be spatially delimited from an atmosphere located outside the sub-region. This can make possible resource- and energy-saving conditioning of the atmosphere with regard to the parameters to be influenced, such as, for example, the temperature or composition, without continuous mixing with a surrounding atmosphere taking place.
The housing may be designed in such a way that it can enclose an air space or an (air) volume over the sub-region on a number of sides (not necessarily on all sides). This can make possible particularly effective shielding of the atmosphere located within the housing. An inner height of the housing over the transport surface may be larger than the height of a sample container carrier with a sample container received therein. This can make it possible for the sample container carriers with corresponding sample containers to be safely moved in, without the risk of them tipping over or being damaged.
According to an embodiment, together with the sub-region of the transport surface arranged thereunder, the housing can form a tunnel over one or more rows and/or columns of electromagnetic actuators. This can make possible simple, for example one-dimensional, control within the sub-region, sample container carriers being able to enter the tunnel at one point and leave the tunnel at another point. A required computing effort for the control can consequently be reduced. The tunnel may also cover over a number of rows and/or columns of electromagnetic actuators.
The housing may have a number of transporting openings, wherein the sub-region transitions to the adjoining part of the transport surface at a respective transporting opening at the same vertical level, i.e. without a level transition. This can make it possible for sample container carriers to enter and leave the housing easily. In this way, it can be possible to omit dedicated transferors, such as, for example, grippers that can introduce or transfer a sample container carrier into the housing.
The ambient-condition influencing device may have a cooling device, which can be designed for cooling air within the housing, for example to temperatures in a range between about 0° C. and about 10° C. For this purpose, a cooling device may be provided within the housing and/or cooled air may be directed into the interior of the housing, to be precise, in particular, through an opening provided for this.
The ambient-condition influencing device may have an air-conditioning device, which can be designed for changing, in particular increasing, a concentration of at least one chemically inert gas, for example, nitrogen, within the housing. In one embodiment, the air-conditioning device may be designed for introducing the chemically inert gas into the interior of the housing.
According to an embodiment, a plurality of air inlets for laterally feeding in air can be assigned to a respective transporting opening of the housing. Alternatively or in addition to this, the housing may have inside a plurality of air inlets for feeding in air, in particular for laterally feeding in air. Laterally feeding in can be understood essentially as meaning horizontally feeding in.
The provision of air inlets at respective transporting openings can allow a certain shielding of the surrounding atmosphere from the atmosphere within the housing to be achieved. In this way, energy can be saved for example. The lateral, that is to say for example horizontal, feeding in of air can achieve the effect that the air is not blown from above directly into a sample container, which is, for example, formed as a vertically upright tube. In this way, excessive mixing of the sample with the fed-in air or splashing of the typically liquid sample over a rim of the sample container can be prevented.
The sample distribution system may have a plurality of air outlets for sucking or evacuating air out from inside the housing. These air outlets may for example be connected to a suitable extractor fan. In this way, a defined air stream between the air inlets and the air outlets can be achieved, so that, for example, air fed in does not escape at the transporting opening of the housing, but can be extracted again by way of the air outlets.
According to an embodiment, a plurality of ambient-condition sensors can be assigned to the sub-region of the transport surface. In this way, ambient conditions can be monitored at relevant points. For example, the ambient-condition sensors may be embodied as temperature sensors and/or sensors for determining an air composition.
The sample distribution system may comprise a temperature measuring device, which can measure temperatures of sample containers placed on the transport surface and/or of samples in the sample containers placed on the transport surface. The temperature measuring device may e.g. be embodied as an infrared thermometer or as an infrared camera. The temperature measuring device may e.g. part of an identification module used to identify sample containers and/or sample container carriers. The temperature measuring device may be integrated into a handling device, e.g. in the form of a gripper used to handle sample containers and/or sample container carriers.
The temperatures of sample containers and/or of samples in the sample containers may be measures when the sample containers and/or the samples in the sample containers enter the subarea. The duration the sample containers and/or samples in the sample containers stay in the subarea may be determined based on the measured entering temperature. A higher measured temperature may result in a longer duration and vice versa.
The control device of the sample distribution system may move such sample containers onto the sub-region of the transport surface, which can have measured temperatures exceeding a threshold temperature value, e.g. about 10° C., or about 15° C., or about 20° C.
The control device of the sample distribution system may determine a residence time based on the measured temperature, wherein the control device can place sample containers in the sub-region of the transport surface during the residence time and remove the sample containers from the sub-region of the transport surface after the residence time has lapsed.
Alternatively or additionally, the sample container carriers may comprise a temperature sensor. The temperature sensor can measure a temperature of the received sample container and/or measure a temperature of a sample in the received sample container. The temperature sensor may e.g. measure a surface temperature of the received sample container at a specific position of the sample container, e.g. at the bottom of the sample container. The temperature sensor may be in direct contact with the sample container.
The sample container carriers may respectively comprise data transmitter. The data transmitter can wirelessly transmit the measured temperature e.g. to a control device of the transport device. The data transmitter may e.g. be Bluetooth data transmitter, RFID (radio-frequency identification) data transmitter, near-field data transmitter and the like. For that purpose the transport device may comprise energy storage for providing the energy needed for data transmission. Alternatively, the data transmitter (and the temperature sensor) may be incorporated as a passive RFID-Tag.
The laboratory automation system can comprise a plurality (for example, between about two and twenty) of pre-analytical and/or analytical and/or post-analytical stations, which can be designed for working on or processing sample containers and/or samples contained in the sample containers. The working or processing may, for example, comprise reading a barcode, removing a cap on the tube, centrifuging the sample, aliquoting the sample, analyzing the sample, and the like. The laboratory automation system can also comprise a distribution system for transporting the sample containers between the pre-analytical, analytical and post-analytical stations.
The control device of the sample distribution system may be designed for determining or calculating a waiting time that can be required, or arises on the basis of capacity utilization of the station, before a sample container and/or a sample in the sample container can be worked on by the station. If the waiting time is at least equal to (or larger than) a lower limit value in terms of time, the control device can move the corresponding sample container, for example in its sample container carrier, into the sub-region of the transport surface by suitable activation of the electromagnetic actuators.
The waiting time may be an expected, planned and/or theoretical waiting time. The waiting time can be determined essentially by a waiting time of the corresponding sample container and/or the sample contained therein for working/processing in the pre-analytical, analytical and post-analytical station. The waiting time may for example be calculated or determined by using specific formulae and/or tables. In the simplest case, the waiting time can be determined from the length of a queue in front of a station.
The lower limit value in terms of time may for example be a value in the time dimension that can represent the maximum time that a sample can spend on the transport surface without undesired influencing of the chemical composition of the sample beyond a tolerable extent having to be expected unless a specific ambient condition is provided, that is to say for example unless cooling and/or increased nitrogen concentration is/are provided. If it is likely that a sample will spend too long on the transport surface, it can be moved by the control device into the sub-region of the transport surface in which it can be possible for it to stay a longer time on account of the specific ambient conditions that prevail there. The lower limit value in terms of time may be for example about five minutes.
The control device may be designed for moving the sample container carrier into the sub-region of the transport surface only whenever the waiting time is less than an upper limit value in terms of time. This may be for example a value of approximately, or exactly, 30 minutes. This can be a value that is frequently found in practice to be the time limit beyond which it is no longer possible for the corresponding sample to be stored without risking chemical changes to the sample, even if it is kept in typical ambient conditions of a sub-region.
The laboratory automation system may have a refrigerator, the control device being designed for moving a respective sample container, for example in its sample container carrier, into the refrigerator if the waiting time is at least equal to (or larger than) the upper limit value in terms of time.
Yet again different ambient conditions than at or in the sub-region of the transport surface typically prevail in a refrigerator, for example a still lower temperature may prevail in the refrigerator, whereby chemical reactions can be prevented even better. If quick further processing of the sample is not to be expected, the sample is therefore preferably not kept in the sub-region but in the refrigerator, in order to be able to last the long waiting time without problem.
Referring initially to FIG. 1, FIG. 1 schematically shows parts of a sample distribution system 10. The sample distribution system 10 can have a transport surface 15, which can provide a flat and even surface. On the transport surface 15, sample container carriers with sample containers respectively contained or received therein, which are not represented in FIG. 1, can be placed and moved.
Underneath the transport surface 15, a plurality of electromagnetic actuators in the form of coils 20 with respective cores 25 can be arranged in rows and columns. It can be possible by the electromagnetic actuators to move sample container carriers on the transport surface 15. Arranged on the transport surface 15 can be a multiplicity of position sensors 30 (see FIG. 2), with which the position of sample container carriers on the transport surface 15 can be determined. To form the surface, the transport surface 15 depicted may also have a flat, two-dimensional covering.
Formed on the transport surface 15 is a sub-region 40, which can extend over part of a single column of electromagnetic actuators 20 and the ambient conditions of which can be influenced in comparison with the ambient conditions outside the sub-region 40. How this takes place is explained below with reference to FIG. 2.
FIG. 2 shows the sample distribution system 10 from FIG. 1 in a perspective view and in further detail. The sample distribution system 10 can be a component part of a laboratory automation system having a plurality of pre-analytical, analytical and post-analytical stations arranged alongside the transport surface 15. The sample distribution system 10 can serve for transporting the sample containers between these stations.
On the transport surface 15 sample container carriers may be placed, wherein only a single sample container carrier 50 is depicted for reasons of simplicity. The sample container carrier 50 can have a magnetic element in the form of a permanent magnet. A sample container in the form of a (sample) tube 55 can be received or contained in the sample container carrier 50. A sample, such as for example a blood plasma sample, may be contained in the tube 55.
The sample distribution system 10 can further comprise ambient-condition influencing device 100, which is described in more detail below. It is possible by the ambient-condition influencing device 100 to influence ambient conditions above the sub-region 40 on the transport surface 15 specifically in such a way that ambient conditions that allow samples to stay for longer without the risk of chemical changes to the samples prevail above the sub-region 40.
The ambient-condition influencing device 100 can have a tunnel-forming housing 110. The housing 110 can completely enclose an air volume above the sub-region 40, apart from two openings 115 at respective longitudinal ends. In this way, a delimitation of the air volume located within the housing 110 with respect to the surroundings can be achieved. Through the openings 115, sample container carriers 50 and sample containers 55 located therein can be moved into the housing 110 and moved out again. In particular, the sample container carriers 50 can also be kept or left in the housing 110. Five coils 20 of the corresponding column form respective discrete positions, wherein the coils 20 can fix the sample container carriers 55, if necessary, and can move the sample container carriers 55, if necessary.
Alongside the respective openings 115, the housing 110 can have a plurality of air inlet openings 117. These can be arranged on respective side walls of the housing 110 and can be designed for blowing air into the interior space of the housing 110 laterally, that is to say in a horizontal direction. As a result, direct blowing into respective sample containers 55 can be avoided. The arrangement alongside the openings 115 can have the effect of producing at the openings 115 a defined atmosphere, which can be set or influenced by the air that can flow out from the air inlets 117.
For supplying the air inlets 117 with correspondingly conditioned air or a correspondingly conditioned gas mixture, the ambient-condition influencing device 100 can have a cooling device 120 and an air-conditioning device 130. The cooling device 120 and the air-conditioning device 130 can be connected to the housing 110 by a line 140, so that correspondingly cooled and conditioned air can flow to the air inlets 117.
The cooling device 120 can be designed for sucking in air from the surroundings and cooling it by approximately 5° C. to 10° C. This cooled air can be supplied to the air-conditioning device 130. The air-conditioning device 130 can be designed for admixing nitrogen with the flowing air, so that the nitrogen concentration can be increased. Consequently, air which has been cooled in comparison with the surrounding atmosphere and the nitrogen fraction of which is increased can enter the line 140. A corresponding atmosphere can consequently also be established in the interior space of the housing 110.
For extracting air from the interior space of the housing 110, the ambient-condition influencing device 100 can have a suction fan 150 and a line 160 connected thereto, which can lead to two air outlets 165 on the bottom area of the housing 110, the bottom area being formed by the sub-region 40 of the transport surface 15. The suction fan 150 can draw air via the line 160 and the two air outlets 165 out of the interior space of the housing 110, so that altogether an air flow from the air inlets 117 to the air outlets 165 can be created. In this way, a defined atmosphere within the housing 110 can be achieved in an advantageous way, with minimal influencing by the surrounding atmosphere.
For monitoring the temperature within the housing 110, an ambient-condition sensor can be provided in the latter in the form of a temperature sensor 170. In this way, the cooling output of the cooling device 120 can be controlled or regulated, so that a desired temperature or temperature difference in relation to the outside temperature is maintained.
Arranged alongside the transport surface 15, the sample distribution system 10 can further comprise a refrigerator 200. A temperature of the refrigerator can be lower than a temperature within the housing 110. It is possible to bring sample container carriers 50 and/or sample containers 55 into the refrigerator 200. Known means that are not presented or discussed any further here, such as for example a gripper, may be used for this purpose.
The sample distribution system 10 can further comprise a control device 300. The control device 300 can comprise a processor and a memory. The memory can store program code that can cause the processor to behave in the way outlined below when it is executed.
The control device 300 can be capable of moving the sample container carriers 50 over the transport surface 15 along paths of movement that can be independent from one another by selective activation of the coils 20.
The control device 300 can calculate for a respective sample container carrier 50 and a sample container 55 located therein (and a sample that is not represented but is comprises in the sample container 55) how long it is likely to be kept on the transport surface 15. For this purpose, the control device 300 may calculate how long it will take until the corresponding sample can be processed by a station. If this staying time or waiting time is below about five minutes, the control device 300 can leave the corresponding sample container carrier 50 at its current position at any point on the transport surface 50, but outside the sub-region 40.
If the expected staying time or waiting time is at least about five minutes, but less than about 30 minutes, the control device 300 can transfer the corresponding sample container carrier 50 into the housing 110, so that the sample can be exposed to a defined atmosphere that can be cooler and can be enriched with nitrogen. In this way, chemical reactions within the sample can be advantageously slowed down. If the expected staying time or waiting time is about 30 minutes or more, the control device 300 can transfer the sample container carrier 50 and/or the sample container 55 into the refrigerator 200.
Concluding, considerably greater flexibility can be achieved by the embodiments of the sample distribution system 10, since waiting times can be dynamically handled without impairments of the samples having to be expected. The provision of the tunnel-forming housing 110 with its defined atmosphere can make it possible to avoid transferring samples into the refrigerator 200. In this way, the refrigerator 200 can for example be dimensioned smaller.
Furthermore, bringing the sample into the refrigerator 200 often needs complex handling tasks, since the refrigerator 200 can be completely isolated from its surroundings. It can consequently be possible to save expenditure on equipment and to save time that would otherwise have to be expended to bring the sample container carrier 50 or sample container 55 into the refrigerator 200 and fetch it out thereof again.
It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.
Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims (11)

I claim:
1. A sample distribution system for distributing sample containers between pre-analytical, analytical and/or post-analytical stations of a laboratory automation system, wherein the sample distribution system comprises:
a plurality of sample container carriers, wherein the sample container carriers comprise at least one magnetic element and receive a sample container;
a transport device, wherein the transport device comprises:
a transport surface to carry the sample container carriers,
a plurality of electromagnetic actuators arranged in a stationary manner under the transport surface, wherein the electromagnetic actuators move a sample container carrier arranged on the transport surface, over the transport surface by applying a magnetic force to the sample container carrier, and
a control device configured to activate the electromagnetic actuators such that a sample container carrier is moved over the transport surface along a predeterminable path of movement, wherein the control device of the sample distribution system is configured to determine a waiting time until a respective sample container and/or a sample in the sample container can be processed by a station and wherein the control device is configured to activate the electromagnetic actuators to move a sample container onto a sub-region of the transport surface if the waiting time is at least equal to a lower limit value in terms of time; and
ambient-condition influencing device to influence at least one ambient condition of the sub-region of the transport surface.
2. The sample distribution system according to claim 1, wherein the ambient-condition influencing device is configured to influences a temperature of the sub-region.
3. The sample distribution system according to claim 1, wherein the ambient-condition influencing device is configured to influence a composition of an atmosphere of the sub-region.
4. The sample distribution system according to claim 1, wherein the ambient-condition influencing device comprises a housing arranged over the sub-region of the transport surface.
5. The sample distribution system according to claim 4, wherein the ambient-condition influencing device has an air-conditioning device to increase a concentration of at least one chemically inert gas inside the housing.
6. The sample distribution system according to claim 1, wherein a plurality of ambient-condition sensors are assigned to the sub-region of the transport surface.
7. A sample distribution system according to claim 1, the sample distribution system comprising:
a temperature measuring device to measure temperatures of sample containers and/or of samples contained in the sample containers.
8. The sample distribution system according to claim 7, wherein the control device of the sample distribution system is configured to activate the electromagnetic actuators to move a sample container onto the sub-region of the transport surface if the measured temperature exceeds a threshold value.
9. The sample distribution system according to claim 8, wherein the control device of the sample distribution system is configured to determines a residence time based on the measured temperature, wherein the control device is configured to places a sample container in the sub-region of the transport surface during the residence time.
10. The sample distribution system according to claim 1, further comprising,
a refrigerator, wherein the control device is configured to activate the electromagnetic actuators to move a sample container into the refrigerator if the waiting time is at least equal to an upper limit value in terms of time.
11. A laboratory automation system, the laboratory automation system comprising:
a plurality of pre-analytical, analytical and/or post-analytical stations to process sample containers and/or samples contained in the sample containers; and
a sample distribution system for distributing the sample containers between the pre-analytical, analytical and/or post-analytical stations according to claim 1.
US14/665,397 2014-03-31 2015-03-23 Sample distribution system and laboratory automation system Active US10012666B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14162916.2 2014-03-31
EP14162916.2A EP2927625A1 (en) 2014-03-31 2014-03-31 Sample distribution system and laboratory automation system
EP14162916 2014-03-31

Publications (2)

Publication Number Publication Date
US20150276782A1 US20150276782A1 (en) 2015-10-01
US10012666B2 true US10012666B2 (en) 2018-07-03

Family

ID=50478205

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/665,397 Active US10012666B2 (en) 2014-03-31 2015-03-23 Sample distribution system and laboratory automation system

Country Status (3)

Country Link
US (1) US10012666B2 (en)
EP (2) EP2927625A1 (en)
JP (1) JP5993477B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989726B2 (en) 2016-06-09 2021-04-27 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method of operating a laboratory sample distribution system
US11112421B2 (en) 2016-08-04 2021-09-07 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system
US11971420B2 (en) 2018-03-07 2024-04-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US12000850B2 (en) 2020-06-19 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028769A1 (en) 2010-05-07 2011-11-10 Pvt Probenverteiltechnik Gmbh System for transporting containers between different stations and container carriers
EP2589966A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP2589967A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP2589968A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system, laboratory system and method of operating
DE102014202843B3 (en) 2014-02-17 2014-11-06 Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
DE102014202838B3 (en) 2014-02-17 2014-11-06 Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
EP2927163B1 (en) 2014-03-31 2018-02-28 Roche Diagnostics GmbH Vertical conveyor, sample distribution system and laboratory automation system
EP2927168A1 (en) 2014-03-31 2015-10-07 Roche Diagniostics GmbH Transport device, sample distribution system and laboratory automation system
EP2927167B1 (en) 2014-03-31 2018-04-18 F. Hoffmann-La Roche AG Dispatch device, sample distribution system and laboratory automation system
EP2927695B1 (en) 2014-03-31 2018-08-22 Roche Diagniostics GmbH Sample distribution system and laboratory automation system
EP2957914B1 (en) 2014-06-17 2018-01-03 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP2977766A1 (en) 2014-07-24 2016-01-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP2995580A1 (en) 2014-09-09 2016-03-16 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP2995960B1 (en) 2014-09-09 2020-07-15 Roche Diagniostics GmbH Laboratory sample distribution system and method for calibrating magnetic sensors
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
EP2995958A1 (en) 2014-09-15 2016-03-16 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3006943B1 (en) 2014-10-07 2020-04-22 Roche Diagniostics GmbH Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3016116A1 (en) 2014-11-03 2016-05-04 Roche Diagniostics GmbH Printed circuit board arrangement, coil for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3070479B1 (en) 2015-03-16 2019-07-03 Roche Diagniostics GmbH Transport carrier, laboratory cargo distribution system and laboratory automation system
EP3073270B1 (en) 2015-03-23 2019-05-29 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP3096145B1 (en) 2015-05-22 2019-09-04 Roche Diagniostics GmbH Method of operating a laboratory automation system and laboratory automation system
EP3095739A1 (en) 2015-05-22 2016-11-23 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3096146A1 (en) 2015-05-22 2016-11-23 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3112874A1 (en) 2015-07-02 2017-01-04 Roche Diagnostics GmbH Storage module, method of operating a laboratory automation system and laboratory automation system
EP3121603A1 (en) 2015-07-22 2017-01-25 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3139175B1 (en) 2015-09-01 2021-12-15 Roche Diagnostics GmbH Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
EP3153867B1 (en) 2015-10-06 2018-11-14 Roche Diagniostics GmbH Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
EP3153866A1 (en) 2015-10-06 2017-04-12 Roche Diagnostics GmbH Method of determining a handover position and laboratory automation system
EP3156352B1 (en) 2015-10-13 2019-02-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP3156353B1 (en) 2015-10-14 2019-04-03 Roche Diagniostics GmbH Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
EP3211429A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device having a tiled driving surface
EP3211428A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device unit for a laboratory sample distribution system
EP3211430A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device with base plate modules
WO2017207657A1 (en) 2016-06-03 2017-12-07 Roche Diagnostics Gmbh Laboratory sample distribution system and laboratory automation system
EP3260867A1 (en) 2016-06-21 2017-12-27 Roche Diagnostics GmbH Method of setting a handover position and laboratory automation system
EP3330717B1 (en) 2016-12-01 2022-04-06 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3343232B1 (en) 2016-12-29 2021-09-15 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3355064A1 (en) * 2017-01-25 2018-08-01 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3355065B1 (en) * 2017-01-31 2021-08-18 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3357842B1 (en) 2017-02-03 2022-03-23 Roche Diagnostics GmbH Laboratory automation system
EP3410123B1 (en) * 2017-06-02 2023-09-20 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3428653B1 (en) 2017-07-13 2021-09-15 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3456415B1 (en) 2017-09-13 2021-10-20 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3457144B1 (en) 2017-09-13 2021-10-20 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3540443B1 (en) * 2018-03-16 2023-08-30 Roche Diagnostics GmbH Laboratory system, laboratory sample distribution system and laboratory automation system
EP3843104A1 (en) * 2019-12-23 2021-06-30 F. Hoffmann-La Roche AG Workload instrument masking
EP4001923B1 (en) * 2020-11-23 2024-06-05 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP4074635A1 (en) 2021-04-13 2022-10-19 Roche Diagnostics GmbH Method for operating a laboratory automation system, laboratory automation system, and laboratory in-vitro diagnostic system
CN113934967B (en) * 2021-10-18 2022-09-09 英飞智信(苏州)科技有限公司 Intelligent storage sample-checking feedback supervision system for coal samples

Citations (232)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2653485A (en) 1950-07-20 1953-09-29 Ramsey Chain Company Inc Silent chain
US3273727A (en) 1966-09-20 Load handling apparatus
US3653485A (en) 1971-03-05 1972-04-04 Transportation Technology An air bearing conveyor
US3901656A (en) 1972-08-24 1975-08-26 American Monitor Corp Apparatus and method for preparing and presenting serum chemistries for analyzation
US4150666A (en) 1977-06-27 1979-04-24 Sherwood Medical Industries Inc. Tube holder for blood collection tubes of different sizes
SU685591A1 (en) 1977-08-01 1979-09-15 Украинский Государственный Институт По Проектированию Металлургических Заводов Tube mail despatch carrier
JPS56147209A (en) 1980-04-16 1981-11-16 Hitachi Kiden Kogyo Ltd Automatic steering method for unattended carrying vehicle
US4395164A (en) 1977-05-20 1983-07-26 Krupp Polysius Ag Pneumatic tube installation for posting samples of material
US4544068A (en) 1983-08-16 1985-10-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laboratory glassware rack for seismic safety
JPS60223481A (en) 1984-04-18 1985-11-07 Nippon Telegr & Teleph Corp <Ntt> Magnetically levitating guide device
JPS6169604A (en) 1984-09-10 1986-04-10 Mitsubishi Chem Ind Ltd Transfer apparatus
GB2165515A (en) 1984-10-12 1986-04-16 Mitsubishi Chem Ind Conveyor
JPS6181323A (en) 1984-09-27 1986-04-24 Mitsubishi Chem Ind Ltd Moving device for aligned bodies
JPS6194925A (en) 1984-10-12 1986-05-13 Mitsubishi Chem Ind Ltd Conveying apparatus
JPS61174031A (en) 1985-01-29 1986-08-05 Youichi Oohira Conveying device aimed at divergence, using linear induction motor type x-y actuator
JPS61217434A (en) 1985-03-20 1986-09-27 Mitsubishi Chem Ind Ltd Conveying device
JPS62100161A (en) 1985-10-23 1987-05-09 Shin Etsu Chem Co Ltd Flat motor
JPS6331918A (en) 1986-07-16 1988-02-10 フエコ・エンジニア−ド・システムズ・インコ−ポレ−テツド Rotatable and retractable vessel holder and conveyor thereof
JPS6348169A (en) 1986-08-14 1988-02-29 Fuji Elelctrochem Co Ltd Piezoelectric actuator
JPS6382433U (en) 1986-11-15 1988-05-30
US4771237A (en) 1986-02-19 1988-09-13 Panametrics Method and apparatus for calibrating a displacement probe using a polynomial equation to generate a displacement look-up table
JPS63290101A (en) 1987-05-22 1988-11-28 Toshiba Corp Linear motor type conveyor system
JPH01148966A (en) 1987-12-04 1989-06-12 Hitachi Kiden Kogyo Ltd Sample conveying system
JPH01266860A (en) 1988-04-19 1989-10-24 Yukitaka Furukawa Test tube holding tool permitting cooling of the test tube
JPH0287903A (en) 1988-09-21 1990-03-28 Daifuku Co Ltd Carrying facility utilizing linear motor
DE3909786A1 (en) 1989-03-24 1990-09-27 Schlafhorst & Co W Apparatus for transporting cops and tubes between planes changing in the course of transport
JPH03112393A (en) 1989-09-21 1991-05-13 Kao Corp Carrier
JPH0338704Y2 (en) 1986-04-30 1991-08-15
JPH03192013A (en) 1989-12-21 1991-08-21 Toshiba Corp Indication device
JPH04127063A (en) 1990-09-19 1992-04-28 Hitachi Ltd Apparatus for distributing specimen for clinical examination
US5120506A (en) 1988-12-16 1992-06-09 Fuji Photo Film Co., Ltd. Chemical analyzer
JPH0569350A (en) 1991-09-11 1993-03-23 Toshiba Corp Maintenance device for track traveling type robot equipment
JPH05142232A (en) 1991-11-20 1993-06-08 Hitachi Ltd Specimen allocating system for clinical
JPH05180847A (en) 1991-12-31 1993-07-23 Hiranuma Sangyo Kk Automatic cycler for analyzer
JPH0626808A (en) 1992-07-09 1994-02-04 Ebara Corp Sensor target
US5295570A (en) 1989-06-10 1994-03-22 W. Schlafhorst Ag & Co. Magnetic guiding assembly for yarn packages transported on a textile machine
US5309049A (en) 1991-08-05 1994-05-03 Mitsubishi Jukogyo Kabushiki Kaisha Alternating current magnetic levitation transport system
JPH06148198A (en) 1992-11-05 1994-05-27 Hitachi Ltd Contamination preventing device for analyzing equipment
JPH06156730A (en) 1992-11-13 1994-06-03 Ebara Corp Conveying device
EP0601213A1 (en) 1992-10-29 1994-06-15 Hamilton Bonaduz AG Transportdevice for goods
JPH06211306A (en) 1993-01-19 1994-08-02 Ebara Corp Substrate storage device
JPH07228345A (en) 1994-02-14 1995-08-29 Ebara Corp Tunnel conveyer
JPH07236838A (en) 1994-02-28 1995-09-12 Teruaki Ito Method for centrifugal separation treatment of specimen and apparatus therefor
JPH07301637A (en) 1994-04-29 1995-11-14 Syst Sutatsuku:Kk Testee conveyor device
US5523131A (en) 1994-11-01 1996-06-04 Innovative Premiums Inc. Self-propelled table novelty device
US5530345A (en) 1992-09-30 1996-06-25 Sgs-Thomson Microelectronics S.R.L. An integrated hall•effect apparatus for detecting the position of a magnetic element
WO1996036437A1 (en) 1995-05-15 1996-11-21 Smithkline Beecham Corporation Vial holder
JPH0917848A (en) 1995-06-30 1997-01-17 Nikon Corp Magnetic levitation type stage
EP0775650A1 (en) 1995-11-24 1997-05-28 André Dr. von Froreich Conveyor system, especially for material carriers to be used in medical laboratories
US5636548A (en) 1994-05-16 1997-06-10 Tesoro Alaska Petroleum Company Analog hall-effect liquid level detector and method
US5641054A (en) 1992-07-07 1997-06-24 Ebara Corporation Magnetic levitation conveyor apparatus
US5651941A (en) 1992-06-29 1997-07-29 Dade International Inc. Sample tube carrier
US5720377A (en) 1995-07-14 1998-02-24 Chiron Diagnostics Corporation Magnetic conveyor system
US5735387A (en) 1995-07-14 1998-04-07 Chiron Diagnostics Corporation Specimen rack handling system
US5788929A (en) 1996-03-12 1998-08-04 Nesti; Edmund D. Sample temperature protection rack
EP0896936A1 (en) 1997-08-11 1999-02-17 Murata Kikai Kabushiki Kaisha Carrier transport device
JPH1183865A (en) 1997-09-11 1999-03-26 Hitachi Ltd Specimen carrier system
EP0916406A2 (en) 1997-11-13 1999-05-19 Bayer Corporation Puck for a sample tube
JPH11264828A (en) 1998-03-19 1999-09-28 Hitachi Ltd Sample conveyance system
JPH11304812A (en) 1998-04-20 1999-11-05 Hitachi Ltd Specimen processing system
JPH11326336A (en) 1998-05-19 1999-11-26 Aloka Co Ltd Label reading apparatus
JP2000105246A (en) 1998-09-29 2000-04-11 Hitachi Ltd Automatic analyzer
JP2000105243A (en) 1998-09-29 2000-04-11 Hitachi Ltd Rack conveying device
US6062398A (en) 1999-07-21 2000-05-16 Thalmayr; Hermann Insert for holding test tubes in a conveyor capsule of a pneumatic tube conveyor system
US6141602A (en) 1997-09-25 2000-10-31 Hitachi, Ltd. Specimen processing system
US6151535A (en) 1998-05-04 2000-11-21 Olympus Diagnostica Gmbh Laboratory primary sample distributor with archiving mode
US6184596B1 (en) 1995-06-30 2001-02-06 Nikon Corporation Stage construction incorporating magnetically levitated movable stage
US6191507B1 (en) 1997-05-02 2001-02-20 Ats Automation Tooling Systems Inc. Modular conveyor system having multiple moving elements under independent control
US6206176B1 (en) 1998-05-20 2001-03-27 Applied Komatsu Technology, Inc. Substrate transfer shuttle having a magnetic drive
JP2001124786A (en) 1999-10-29 2001-05-11 Hitachi Eng Co Ltd Specimen sorting device
US6255614B1 (en) 1999-05-14 2001-07-03 Sysmex Corporation Specimen-container transfer apparatus
US6260360B1 (en) 1997-11-24 2001-07-17 Isosafe Limited Container
EP1122194A1 (en) 2000-02-01 2001-08-08 Johnson & Johnson Vision Care, Inc. Apparatus and method for automated warehousing
US6279728B1 (en) 1998-07-20 2001-08-28 Norbert G Jung Electro-magnetic conveyor
JP2001240245A (en) 2000-03-01 2001-09-04 Auto Cs Engineering Co Ltd Conveying system and conveying device by compressed air
US6293750B1 (en) 1998-07-14 2001-09-25 Bayer Corporation Robotics for transporting containers and objects within an automated analytical instrument and service tool for servicing robotics
US20020009391A1 (en) 1999-05-03 2002-01-24 Ljl Biosystems, Inc. Integrated sample-processing system
US6429016B1 (en) 1999-10-01 2002-08-06 Isis Pharmaceuticals, Inc. System and method for sample positioning in a robotic system
US6444171B1 (en) 1998-07-31 2002-09-03 Hitachi, Ltd. Sample processing system
US20030089581A1 (en) 2001-11-14 2003-05-15 Thompson David R. Bi-directional magnetic sample rack conveying system
US20030092185A1 (en) 2001-03-16 2003-05-15 Humayun Qureshi Method and system for automated immunochemistry analysis
US20040050836A1 (en) 2000-09-29 2004-03-18 Nesbitt Geoffrey John Assembly of an integrated vessel transporter and at least one reaction vessel and integrated vessel transporter for transporting a chemical substance
US20040084531A1 (en) 2002-11-01 2004-05-06 Teruaki Itoh Bar code generating apparatus
JP2005001055A (en) 2003-06-11 2005-01-06 Fanuc Ltd Robot device
US20050061622A1 (en) 2001-10-29 2005-03-24 Martin Kevin Joseph Conveying apparatus
EP1524525A1 (en) 2003-10-14 2005-04-20 Ortho-Clinical Diagnostics, Inc. Moving evaporation control cover
US20050109580A1 (en) 2003-11-26 2005-05-26 Cynthia Thompson Conveyor belt cleaning apparatus
US20050194333A1 (en) 2004-03-05 2005-09-08 Beckman Coulter, Inc. Specimen-container rack for automated clinical instrument
US20050196320A1 (en) 2004-03-05 2005-09-08 Beckman Coulter, Inc. Specimen-transport module for a multi-instrument clinical workcell
JP2005249740A (en) 2004-03-08 2005-09-15 Olympus Corp Sample rack conveyer, and sample rack conveying method
US20050226770A1 (en) 2002-09-26 2005-10-13 Biopath Automation, L.L.C. Apparatus and methods for automated handling and embedding of tissue samples
US20050242963A1 (en) 2004-03-19 2005-11-03 Applera Corporation Sample carrier device incorporating radio frequency identification, and method
US20050247790A1 (en) 2004-04-26 2005-11-10 Ids Co., Ltd. Reading apparatus for bar code on a test tube
US20050260101A1 (en) 2000-10-10 2005-11-24 Matthias Nauck Closure element and closure system
US20050271555A1 (en) 2004-04-07 2005-12-08 Ids Co., Ltd. Self-running sample holder and system having self-running sample holders
US20060000296A1 (en) 2004-07-02 2006-01-05 Salter Jason P Synchronization of sample and data collection
US20060047303A1 (en) 2004-07-28 2006-03-02 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US7028831B2 (en) 2004-03-05 2006-04-18 Beckman Coulter, Inc. Magnetic specimen-transport system for automated clinical instrument
JP2006106008A (en) 2005-12-20 2006-04-20 Jsk Kk Capacitance type detector
US7078082B2 (en) 2004-01-15 2006-07-18 Sonoco Development, Inc. Dual-functioning mechanism for startup during winding of web material and for splicing during unwinding
US20060219524A1 (en) 2005-04-05 2006-10-05 Kelly Carol L Mountable cleaning apparatus for commercial conveyors
US7122158B2 (en) 2002-02-28 2006-10-17 Teruaki Itoh Test tube holder
WO2007024540A1 (en) 2005-08-25 2007-03-01 Coldtrack, Llc Hierarchical sample coding and storage system
US20070116611A1 (en) 2005-11-14 2007-05-24 Demarco Nicholas Fraction collection system
US20070210090A1 (en) 2004-01-08 2007-09-13 Bernhard Sixt Transport Container For Keeping Frozen Material Chilled
US20070248496A1 (en) 2006-04-25 2007-10-25 Ecocap's S.R.L. Resealer of test tubes for clinical analyses fed from ready-to-use containers of sealing tape
US20070276558A1 (en) 2004-03-27 2007-11-29 Kyeong-Keun Kim Navigation system for position self control robot and floor materials for providing absolute coordinates used thereof
JP2007309675A (en) 2006-05-16 2007-11-29 Olympus Corp Sample rack supply-and-recovery system
JP2007314262A (en) 2006-05-23 2007-12-06 Daifuku Co Ltd Article processing equipment
JP2007322289A (en) 2006-06-01 2007-12-13 Olympus Corp Conveyer
US20080012511A1 (en) 2004-07-15 2008-01-17 Nikon Corporation Planar Motor Device, Stage Device, Exposure Device and Device Manufacturing Method
US7326565B2 (en) 2002-11-19 2008-02-05 Sanyo Electric Co., Ltd. Storage apparatus
US20080029368A1 (en) 2004-12-20 2008-02-07 Kyushu Institute Of Technology Non-Contact Conveying Device Using Superconducting Magnetic Levitation
US20080056328A1 (en) * 2005-08-19 2008-03-06 F.O.B. Instruments, Ltd. Apparatus and Method for Determining the Amount of Time until a Desired Temperature is Reached
CN201045617Y (en) 2006-04-21 2008-04-09 北京赛科希德科技发展有限公司 Test cup continuous conveyer for full-automatic cruor measurement
US20080131961A1 (en) * 2003-06-04 2008-06-05 Genial Genetic Solutions Limited Biological Apparatus
US7425305B2 (en) 2002-11-29 2008-09-16 Teruaki Itoh Specimen dispensing system
US7428957B2 (en) 2003-08-26 2008-09-30 Ssi Schaefer Peen Gmbh Order picking station and order picking method
WO2008133708A1 (en) 2007-05-01 2008-11-06 Siemens Healthcare Diagnostics Inc. Programmable random access sample handler for use within an automated laboratory system
US20080286162A1 (en) 2007-05-16 2008-11-20 Onizawa Kuniaki Sample handling system
WO2009002358A1 (en) 2007-06-26 2008-12-31 Siemens Healthcare Diagnostics Inc. Mobile sample storage and retrieval unit for a laboratory automated sample handling worksystem
US20090004732A1 (en) 2007-06-06 2009-01-01 Labarre Paul Donald Chemical Temperature Control
US20090022625A1 (en) * 2007-07-19 2009-01-22 Samsung Electronics Co., Ltd. Biochemical analyzer and method of controlling internal temperature of the biochemical analyzer
JP2009036643A (en) 2007-08-01 2009-02-19 Astec Corp:Kk Control device of test tube input pattern into rack
US20090081771A1 (en) 2003-06-06 2009-03-26 Micronics, Inc. System and method for heating, cooling and heat cycling on microfluidic device
JP2009062188A (en) 2007-09-10 2009-03-26 Tsubakimoto Chain Co Sorting device using linear guide motor type x-y actuator
US20090128139A1 (en) 2007-11-20 2009-05-21 Drenth Joseph B Magnet position locator
US20090142844A1 (en) 2005-07-08 2009-06-04 Horiba Abx Sas Automatic Method of Preparing Samples of Total Blood For Analysis, and an Automatic Device For Implementing the Method
JP2009145188A (en) 2007-12-13 2009-07-02 Horiba Ltd Test tube holder and sample suction apparatus
US20090180931A1 (en) 2007-09-17 2009-07-16 Sequenom, Inc. Integrated robotic sample transfer device
US7578383B2 (en) 2006-08-31 2009-08-25 Ids Co., Ltd. Specimen transport system
US7597187B2 (en) 2007-03-26 2009-10-06 Kba-Metronic Ag Conveyor system
EP2119643A1 (en) 2008-05-16 2009-11-18 TGW Mechanics GmbH Method and storage system for consolidating of shipping units
JP2009300402A (en) 2008-06-17 2009-12-24 Olympus Corp Analyzer and analytical method
US20090322486A1 (en) 2007-03-15 2009-12-31 Joint Analytical Systems Gmbh RFID Storage Systems
US20100000250A1 (en) 2006-07-13 2010-01-07 Bernhard Sixt Transport container for maintaining the temperature of frozen goods
EP2148117A1 (en) 2007-06-19 2010-01-27 Kitz Corporation Shaft sealing device, and valve structure using the device
WO2010042722A1 (en) 2008-10-10 2010-04-15 Quest Diagnostics Investments Incorporated System and method for sorting specimen
US20100152895A1 (en) 2008-12-05 2010-06-17 Zhengshan Dai Shock freezer and system for preparing samples for analysis using the same
US20100175943A1 (en) 2007-06-02 2010-07-15 Bergmann Lars B Storage or Conveying System
US20100186618A1 (en) 2009-01-23 2010-07-29 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
WO2010087303A1 (en) 2009-01-27 2010-08-05 株式会社日立ハイテクノロジーズ Automated analyzer and automatic analysis method
US20100255529A1 (en) 2007-12-07 2010-10-07 Francesco Cocola Device and method for microbiological analysis of biological samples
JP2010243310A (en) 2009-04-06 2010-10-28 Jeol Ltd Automatic analyzer
WO2010129715A1 (en) 2009-05-05 2010-11-11 Cypress Semiconductor Corporation Spill-over detection method and system
US20100300831A1 (en) 2007-11-30 2010-12-02 Gianandrea Pedrazzini System for automatically identifying, conveying and addressing biological material specimens
US20100312379A1 (en) 2007-11-30 2010-12-09 Gianandrea Pedrazzini Automatic apparatus for loading and unloading biological material test tubes in a pneumatic mail system
US7858033B2 (en) 2006-09-20 2010-12-28 Ids Co., Ltd. Specimen preprocessing/transport apparatus
US7875254B2 (en) 2006-07-10 2011-01-25 Exxonmobil Chemical Patents Inc. Internal loop reactor and Oxo process using same
US20110050213A1 (en) 2008-01-16 2011-03-03 Kabushiki Kaisha Bridgestone Belt monitoring system
US7939484B1 (en) 2009-10-27 2011-05-10 Clariant International, Ltd. Method for reducing the adhesion forces between hard surfaces and subsequently occurring soil
US20110124038A1 (en) 2009-05-15 2011-05-26 Biomerieux, Inc. Automated transfer mechanism for microbial detection apparatus
EP2327646A1 (en) 2009-11-26 2011-06-01 GLP systems GmbH Switch in a branch of a transport path for laboratory samples in an analytical laboratory
CN102109530A (en) 2009-12-28 2011-06-29 希森美康株式会社 Sample processing apparatus and sample rack transporting method
US20110172128A1 (en) 2008-09-12 2011-07-14 Anthony Davies Multi-well device
US20110186406A1 (en) 2010-01-29 2011-08-04 Ecolab Usa Inc. Clean conveyor sensing system
WO2011138448A1 (en) 2010-05-07 2011-11-10 Pvt Probenverteiltechnik Gmbh System for transporting containers between different stations, and the container carrier
US20110287447A1 (en) 2009-05-12 2011-11-24 Life Technologies Corporation Apparatus for and method of automated processing of biological samples
US20120037696A1 (en) 2010-08-13 2012-02-16 Lear Sirous Lavi Transfer, Link, Bind, Specimen Tube Barcode Information To RFID Specimen Transport Puck In A Continuous Moving Binding Process Method
EP2447701A2 (en) 2010-10-28 2012-05-02 Sysmex Corporation Sample processing system and method of processing sample
US20120129673A1 (en) 2009-07-28 2012-05-24 Hitachi High-Technologies Corporation Centrifugal separator
US20120178170A1 (en) 2009-07-16 2012-07-12 Peter Van Praet Sample container intelligent rack and loading method
DE102012000665A1 (en) 2011-02-07 2012-08-09 Sew-Eurodrive Gmbh & Co. Kg sorter
US8240460B1 (en) 2010-02-18 2012-08-14 Michael James Bleau Apparatus for cleaning a conveyor belt
US20120211645A1 (en) 2011-02-23 2012-08-23 JLT & Associates, Inc. Conveyor sterilization
EP2500871A1 (en) 2011-03-18 2012-09-19 The Raymond Corporation Integration of an autonomous industrial vehicle into an asset management system
EP2502675A1 (en) 2011-03-25 2012-09-26 Symbion Medical Systems Sàrl Container holder and container carrier
US20120275885A1 (en) 2011-04-29 2012-11-01 Frederic Furrer Method for operating an automated sample workcell
US20120282683A1 (en) 2010-01-21 2012-11-08 Kazunori Mototsu Sample analysis device
WO2012158541A1 (en) 2011-05-13 2012-11-22 Beckman Coulter, Inc. System and method including laboratory product transport element
US20120295358A1 (en) 2010-01-21 2012-11-22 Siemens Healthcare Diagnostics Inc. Magnetic Conveyor Systems, Apparatus and Methods Including Moveable Magnet
WO2012158520A1 (en) 2011-05-13 2012-11-22 Beckman Coulter, Inc. Laboratory product transport element and path arrangement
US20120310401A1 (en) 2011-06-03 2012-12-06 Rushabh Instruments, Inc. Rotary tissue processor with configurable stations
WO2012170636A1 (en) 2011-06-07 2012-12-13 Magnemotion, Inc. Versatile control of a linear synchronous motor propulsion system
US20130126302A1 (en) 2011-11-07 2013-05-23 Beckman Coulter, Inc. Magnetic damping for specimen transport system
US20130153677A1 (en) 2010-09-07 2013-06-20 University Of Limerick Liquid droplet dispenser
DE102011090044A1 (en) 2011-12-28 2013-07-04 Siemens Healthcare Diagnostics Products Gmbh Transport system and method of operation
US20130180824A1 (en) 2009-03-03 2013-07-18 Ats Automation Tooling Systems Inc. Multi-mode and multi-pitch conveyor system
US8502422B2 (en) 2007-04-16 2013-08-06 Crisplant A/S Sorting system with linear synchronous motor drive
JP2013172009A (en) 2012-02-21 2013-09-02 Hitachi Ltd Flow soldering device and solder liquid surface adjustment method
JP2013190400A (en) 2012-03-15 2013-09-26 Hitachi High-Technologies Corp Autoanalyzer
US20130263622A1 (en) 2012-03-12 2013-10-10 The World Egg Bank Cryogenic sample holder
WO2013152089A1 (en) 2012-04-04 2013-10-10 Siemens Healthcare Diagnostics Inc. Method for processing priority samples that preserves a fifo processing queue
WO2013169778A1 (en) 2012-05-11 2013-11-14 Siemens Healthcare Diagnostics Inc. Method and system for transporting sample tubes
WO2013177163A1 (en) 2012-05-24 2013-11-28 Siemens Healthcare Diagnostics Inc. Non-contact optical encoding scheme for intelligent automation puck
US20130322992A1 (en) 2011-02-16 2013-12-05 Gianandrea Pedrazzini Interfacing apparatus between a pneumatic mail system and a feeding system of biological product containers to a laboratory automation system
WO2014059134A1 (en) 2012-10-11 2014-04-17 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
WO2014071214A1 (en) 2012-11-01 2014-05-08 Siemens Healthcare Diagnostics Inc. Multiple carrier and sleeve tray
US20140170023A1 (en) 2011-09-05 2014-06-19 Hitachi High-Technologies Corporation Automatic analyzer
US8796186B2 (en) 2005-04-06 2014-08-05 Affymetrix, Inc. System and method for processing large number of biological microarrays
US20140234065A1 (en) 2011-11-04 2014-08-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US20140234949A1 (en) 2011-09-25 2014-08-21 Theranos, Inc. Systems and methods for fluid and component handling
US20140231217A1 (en) 2011-11-04 2014-08-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US20150014125A1 (en) 2012-02-15 2015-01-15 Glp Systems Gmbh Conveyor system for material samples, especially medical samples
EP2887071A1 (en) 2013-12-19 2015-06-24 F. Hoffmann-La Roche AG Storage and supply of vessel holders
US20150233956A1 (en) 2014-02-17 2015-08-20 Roche Diagnostics Operations, Inc. Transport device, sample distribution system, and laboratory automation system
US20150233957A1 (en) 2014-02-17 2015-08-20 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US20150241457A1 (en) 2012-08-20 2015-08-27 Siemens Healthcare Diagnostics Inc. Methods and apparatus for ascertaining specimen and/or sample container characteristics while in transit
US20150276775A1 (en) 2012-10-11 2015-10-01 Siemens Healthcare Diagnostics Inc. Modular workcells for lab automation
US20150276781A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US20150276776A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Dispatching device, sample distribution system and laboratory automation system
US20150276778A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Vertical conveying device, laboratory sample distribution system and laboratory automation system
US20150273468A1 (en) 2014-03-28 2015-10-01 Brooks Automation, Inc. Sample storage and retrieval system
US20150276777A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US9211543B2 (en) 2011-12-28 2015-12-15 Hitachi High-Technologies Corporation Holder for transferring test tube
US20150360876A1 (en) 2014-06-17 2015-12-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160003859A1 (en) 2013-11-07 2016-01-07 Tecan Trading Ag Microplate reader with incubation device
US9239335B2 (en) 2011-11-04 2016-01-19 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US20160025756A1 (en) 2013-03-08 2016-01-28 Siemens Healthcare Diagnostics Inc. Tube characterization station
US20160054341A1 (en) 2014-08-21 2016-02-25 Roche Diagnostics Operations, Inc. Sample container carrier for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20160069715A1 (en) 2014-09-09 2016-03-10 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for calibrating magnetic sensors
US20160077120A1 (en) 2014-09-12 2016-03-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160097786A1 (en) 2014-10-07 2016-04-07 Roche Diagnostics Operations, Inc. Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20160229565A1 (en) 2015-02-11 2016-08-11 Roche Diagnostics Operations, Inc. Method and device for handling test tubes in a laboratory automation system
US20160274137A1 (en) 2015-03-16 2016-09-22 Roche Diagnostics Operations, Inc. Transport carrier, laboratory cargo distribution system, and laboratory automation system
US20160282378A1 (en) 2015-03-23 2016-09-29 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160341751A1 (en) 2015-05-22 2016-11-24 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system
US20160341750A1 (en) 2015-05-22 2016-11-24 Roche Diagnostics Operations, Inc. Method of operating a laboratory automation system and a laboratory automation system
US20170059599A1 (en) 2015-09-01 2017-03-02 Roche Diagnostics Operations., Inc. Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
US20170096307A1 (en) 2015-10-06 2017-04-06 Roche Diagnostics Operations, Inc. Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US20170101277A1 (en) 2015-10-13 2017-04-13 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170108522A1 (en) 2015-10-14 2017-04-20 Roche Diagnostics Operations, Inc. Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
US20170131310A1 (en) 2014-07-23 2017-05-11 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US20170131307A1 (en) 2014-07-23 2017-05-11 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170131309A1 (en) 2014-07-24 2017-05-11 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170160299A1 (en) 2014-11-03 2017-06-08 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170168079A1 (en) 2014-09-09 2017-06-15 Roche Diagnostics Operations, Inc. Set of sample container carriers for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20170174448A1 (en) 2014-09-09 2017-06-22 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170184622A1 (en) 2014-09-15 2017-06-29 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20170248624A1 (en) 2016-02-25 2017-08-31 Roche Diagnostics Operations, Inc. Sample container carrier
US20170248623A1 (en) 2016-02-25 2017-08-31 Roche Diagnostics Operations, Inc. Sample container carrier
US20170363608A1 (en) 2016-06-21 2017-12-21 Roche Diagnostics Operations, Inc. Method of setting a handover position and laboratory automation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA984712A (en) * 1971-09-09 1976-03-02 Larry G. Durkos Apparatus and method for preparing and presenting serum chemistries for analyzation
JP2004166554A (en) * 2002-11-19 2004-06-17 Sanyo Electric Co Ltd Incubator

Patent Citations (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273727A (en) 1966-09-20 Load handling apparatus
US2653485A (en) 1950-07-20 1953-09-29 Ramsey Chain Company Inc Silent chain
US3653485A (en) 1971-03-05 1972-04-04 Transportation Technology An air bearing conveyor
US3901656A (en) 1972-08-24 1975-08-26 American Monitor Corp Apparatus and method for preparing and presenting serum chemistries for analyzation
US4395164A (en) 1977-05-20 1983-07-26 Krupp Polysius Ag Pneumatic tube installation for posting samples of material
US4150666A (en) 1977-06-27 1979-04-24 Sherwood Medical Industries Inc. Tube holder for blood collection tubes of different sizes
SU685591A1 (en) 1977-08-01 1979-09-15 Украинский Государственный Институт По Проектированию Металлургических Заводов Tube mail despatch carrier
JPS56147209A (en) 1980-04-16 1981-11-16 Hitachi Kiden Kogyo Ltd Automatic steering method for unattended carrying vehicle
US4544068A (en) 1983-08-16 1985-10-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laboratory glassware rack for seismic safety
JPS60223481A (en) 1984-04-18 1985-11-07 Nippon Telegr & Teleph Corp <Ntt> Magnetically levitating guide device
JPS6169604A (en) 1984-09-10 1986-04-10 Mitsubishi Chem Ind Ltd Transfer apparatus
JPS6181323A (en) 1984-09-27 1986-04-24 Mitsubishi Chem Ind Ltd Moving device for aligned bodies
GB2165515A (en) 1984-10-12 1986-04-16 Mitsubishi Chem Ind Conveyor
JPS6194925A (en) 1984-10-12 1986-05-13 Mitsubishi Chem Ind Ltd Conveying apparatus
JPS61174031A (en) 1985-01-29 1986-08-05 Youichi Oohira Conveying device aimed at divergence, using linear induction motor type x-y actuator
JPS61217434A (en) 1985-03-20 1986-09-27 Mitsubishi Chem Ind Ltd Conveying device
JPS62100161A (en) 1985-10-23 1987-05-09 Shin Etsu Chem Co Ltd Flat motor
US4771237A (en) 1986-02-19 1988-09-13 Panametrics Method and apparatus for calibrating a displacement probe using a polynomial equation to generate a displacement look-up table
JPH0338704Y2 (en) 1986-04-30 1991-08-15
JPS6331918A (en) 1986-07-16 1988-02-10 フエコ・エンジニア−ド・システムズ・インコ−ポレ−テツド Rotatable and retractable vessel holder and conveyor thereof
JPS6348169A (en) 1986-08-14 1988-02-29 Fuji Elelctrochem Co Ltd Piezoelectric actuator
JPS6382433U (en) 1986-11-15 1988-05-30
JPS63290101A (en) 1987-05-22 1988-11-28 Toshiba Corp Linear motor type conveyor system
JPH01148966A (en) 1987-12-04 1989-06-12 Hitachi Kiden Kogyo Ltd Sample conveying system
JPH01266860A (en) 1988-04-19 1989-10-24 Yukitaka Furukawa Test tube holding tool permitting cooling of the test tube
JPH0287903A (en) 1988-09-21 1990-03-28 Daifuku Co Ltd Carrying facility utilizing linear motor
US5120506A (en) 1988-12-16 1992-06-09 Fuji Photo Film Co., Ltd. Chemical analyzer
DE3909786A1 (en) 1989-03-24 1990-09-27 Schlafhorst & Co W Apparatus for transporting cops and tubes between planes changing in the course of transport
US5295570A (en) 1989-06-10 1994-03-22 W. Schlafhorst Ag & Co. Magnetic guiding assembly for yarn packages transported on a textile machine
JPH03112393A (en) 1989-09-21 1991-05-13 Kao Corp Carrier
JPH03192013A (en) 1989-12-21 1991-08-21 Toshiba Corp Indication device
JPH04127063A (en) 1990-09-19 1992-04-28 Hitachi Ltd Apparatus for distributing specimen for clinical examination
US5309049A (en) 1991-08-05 1994-05-03 Mitsubishi Jukogyo Kabushiki Kaisha Alternating current magnetic levitation transport system
JPH0569350A (en) 1991-09-11 1993-03-23 Toshiba Corp Maintenance device for track traveling type robot equipment
JPH05142232A (en) 1991-11-20 1993-06-08 Hitachi Ltd Specimen allocating system for clinical
JPH05180847A (en) 1991-12-31 1993-07-23 Hiranuma Sangyo Kk Automatic cycler for analyzer
US5651941A (en) 1992-06-29 1997-07-29 Dade International Inc. Sample tube carrier
US5641054A (en) 1992-07-07 1997-06-24 Ebara Corporation Magnetic levitation conveyor apparatus
JPH0626808A (en) 1992-07-09 1994-02-04 Ebara Corp Sensor target
US5530345A (en) 1992-09-30 1996-06-25 Sgs-Thomson Microelectronics S.R.L. An integrated hall•effect apparatus for detecting the position of a magnetic element
EP0601213A1 (en) 1992-10-29 1994-06-15 Hamilton Bonaduz AG Transportdevice for goods
JPH06148198A (en) 1992-11-05 1994-05-27 Hitachi Ltd Contamination preventing device for analyzing equipment
JPH06156730A (en) 1992-11-13 1994-06-03 Ebara Corp Conveying device
JPH06211306A (en) 1993-01-19 1994-08-02 Ebara Corp Substrate storage device
JPH07228345A (en) 1994-02-14 1995-08-29 Ebara Corp Tunnel conveyer
JPH07236838A (en) 1994-02-28 1995-09-12 Teruaki Ito Method for centrifugal separation treatment of specimen and apparatus therefor
JPH07301637A (en) 1994-04-29 1995-11-14 Syst Sutatsuku:Kk Testee conveyor device
US5636548A (en) 1994-05-16 1997-06-10 Tesoro Alaska Petroleum Company Analog hall-effect liquid level detector and method
US5523131A (en) 1994-11-01 1996-06-04 Innovative Premiums Inc. Self-propelled table novelty device
WO1996036437A1 (en) 1995-05-15 1996-11-21 Smithkline Beecham Corporation Vial holder
JPH0917848A (en) 1995-06-30 1997-01-17 Nikon Corp Magnetic levitation type stage
US6184596B1 (en) 1995-06-30 2001-02-06 Nikon Corporation Stage construction incorporating magnetically levitated movable stage
US5720377A (en) 1995-07-14 1998-02-24 Chiron Diagnostics Corporation Magnetic conveyor system
US5735387A (en) 1995-07-14 1998-04-07 Chiron Diagnostics Corporation Specimen rack handling system
EP0775650A1 (en) 1995-11-24 1997-05-28 André Dr. von Froreich Conveyor system, especially for material carriers to be used in medical laboratories
US5788929A (en) 1996-03-12 1998-08-04 Nesti; Edmund D. Sample temperature protection rack
US6191507B1 (en) 1997-05-02 2001-02-20 Ats Automation Tooling Systems Inc. Modular conveyor system having multiple moving elements under independent control
EP0896936A1 (en) 1997-08-11 1999-02-17 Murata Kikai Kabushiki Kaisha Carrier transport device
US6045319A (en) 1997-08-11 2000-04-04 Murata Kikai Kabushiki Kaisha Carrier transport device
JPH1183865A (en) 1997-09-11 1999-03-26 Hitachi Ltd Specimen carrier system
US6141602A (en) 1997-09-25 2000-10-31 Hitachi, Ltd. Specimen processing system
EP0916406A2 (en) 1997-11-13 1999-05-19 Bayer Corporation Puck for a sample tube
US6260360B1 (en) 1997-11-24 2001-07-17 Isosafe Limited Container
JPH11264828A (en) 1998-03-19 1999-09-28 Hitachi Ltd Sample conveyance system
JPH11304812A (en) 1998-04-20 1999-11-05 Hitachi Ltd Specimen processing system
US6151535A (en) 1998-05-04 2000-11-21 Olympus Diagnostica Gmbh Laboratory primary sample distributor with archiving mode
JPH11326336A (en) 1998-05-19 1999-11-26 Aloka Co Ltd Label reading apparatus
US6206176B1 (en) 1998-05-20 2001-03-27 Applied Komatsu Technology, Inc. Substrate transfer shuttle having a magnetic drive
US6293750B1 (en) 1998-07-14 2001-09-25 Bayer Corporation Robotics for transporting containers and objects within an automated analytical instrument and service tool for servicing robotics
US6279728B1 (en) 1998-07-20 2001-08-28 Norbert G Jung Electro-magnetic conveyor
US6444171B1 (en) 1998-07-31 2002-09-03 Hitachi, Ltd. Sample processing system
JP2000105243A (en) 1998-09-29 2000-04-11 Hitachi Ltd Rack conveying device
JP2000105246A (en) 1998-09-29 2000-04-11 Hitachi Ltd Automatic analyzer
US20020009391A1 (en) 1999-05-03 2002-01-24 Ljl Biosystems, Inc. Integrated sample-processing system
US6255614B1 (en) 1999-05-14 2001-07-03 Sysmex Corporation Specimen-container transfer apparatus
US6062398A (en) 1999-07-21 2000-05-16 Thalmayr; Hermann Insert for holding test tubes in a conveyor capsule of a pneumatic tube conveyor system
US6429016B1 (en) 1999-10-01 2002-08-06 Isis Pharmaceuticals, Inc. System and method for sample positioning in a robotic system
JP2001124786A (en) 1999-10-29 2001-05-11 Hitachi Eng Co Ltd Specimen sorting device
EP1122194A1 (en) 2000-02-01 2001-08-08 Johnson & Johnson Vision Care, Inc. Apparatus and method for automated warehousing
JP2001240245A (en) 2000-03-01 2001-09-04 Auto Cs Engineering Co Ltd Conveying system and conveying device by compressed air
US20040050836A1 (en) 2000-09-29 2004-03-18 Nesbitt Geoffrey John Assembly of an integrated vessel transporter and at least one reaction vessel and integrated vessel transporter for transporting a chemical substance
US20050260101A1 (en) 2000-10-10 2005-11-24 Matthias Nauck Closure element and closure system
US20030092185A1 (en) 2001-03-16 2003-05-15 Humayun Qureshi Method and system for automated immunochemistry analysis
US20050061622A1 (en) 2001-10-29 2005-03-24 Martin Kevin Joseph Conveying apparatus
US7278532B2 (en) 2001-10-29 2007-10-09 Martin Gessner Pty Ltd Conveying apparatus
US6571934B1 (en) 2001-11-14 2003-06-03 Dade Behring Inc. Bi-directional magnetic sample rack conveying system
US20030089581A1 (en) 2001-11-14 2003-05-15 Thompson David R. Bi-directional magnetic sample rack conveying system
WO2003042048A2 (en) 2001-11-14 2003-05-22 Dade Behring Inc. Bi-directional magnetic sample rack conveying system
US7122158B2 (en) 2002-02-28 2006-10-17 Teruaki Itoh Test tube holder
US20050226770A1 (en) 2002-09-26 2005-10-13 Biopath Automation, L.L.C. Apparatus and methods for automated handling and embedding of tissue samples
US20040084531A1 (en) 2002-11-01 2004-05-06 Teruaki Itoh Bar code generating apparatus
US7326565B2 (en) 2002-11-19 2008-02-05 Sanyo Electric Co., Ltd. Storage apparatus
US7425305B2 (en) 2002-11-29 2008-09-16 Teruaki Itoh Specimen dispensing system
US20080131961A1 (en) * 2003-06-04 2008-06-05 Genial Genetic Solutions Limited Biological Apparatus
US20090081771A1 (en) 2003-06-06 2009-03-26 Micronics, Inc. System and method for heating, cooling and heat cycling on microfluidic device
JP2005001055A (en) 2003-06-11 2005-01-06 Fanuc Ltd Robot device
US7428957B2 (en) 2003-08-26 2008-09-30 Ssi Schaefer Peen Gmbh Order picking station and order picking method
EP1524525A1 (en) 2003-10-14 2005-04-20 Ortho-Clinical Diagnostics, Inc. Moving evaporation control cover
US20050109580A1 (en) 2003-11-26 2005-05-26 Cynthia Thompson Conveyor belt cleaning apparatus
US20070210090A1 (en) 2004-01-08 2007-09-13 Bernhard Sixt Transport Container For Keeping Frozen Material Chilled
US7078082B2 (en) 2004-01-15 2006-07-18 Sonoco Development, Inc. Dual-functioning mechanism for startup during winding of web material and for splicing during unwinding
US7028831B2 (en) 2004-03-05 2006-04-18 Beckman Coulter, Inc. Magnetic specimen-transport system for automated clinical instrument
US20050194333A1 (en) 2004-03-05 2005-09-08 Beckman Coulter, Inc. Specimen-container rack for automated clinical instrument
US20050196320A1 (en) 2004-03-05 2005-09-08 Beckman Coulter, Inc. Specimen-transport module for a multi-instrument clinical workcell
US7850914B2 (en) 2004-03-05 2010-12-14 Beckman Coulter, Inc. Specimen-transport module for a multi-instrument clinical workcell
JP2005249740A (en) 2004-03-08 2005-09-15 Olympus Corp Sample rack conveyer, and sample rack conveying method
US20050242963A1 (en) 2004-03-19 2005-11-03 Applera Corporation Sample carrier device incorporating radio frequency identification, and method
US20070276558A1 (en) 2004-03-27 2007-11-29 Kyeong-Keun Kim Navigation system for position self control robot and floor materials for providing absolute coordinates used thereof
US20050271555A1 (en) 2004-04-07 2005-12-08 Ids Co., Ltd. Self-running sample holder and system having self-running sample holders
US20050247790A1 (en) 2004-04-26 2005-11-10 Ids Co., Ltd. Reading apparatus for bar code on a test tube
US20060000296A1 (en) 2004-07-02 2006-01-05 Salter Jason P Synchronization of sample and data collection
US20080012511A1 (en) 2004-07-15 2008-01-17 Nikon Corporation Planar Motor Device, Stage Device, Exposure Device and Device Manufacturing Method
US20060047303A1 (en) 2004-07-28 2006-03-02 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US20080029368A1 (en) 2004-12-20 2008-02-07 Kyushu Institute Of Technology Non-Contact Conveying Device Using Superconducting Magnetic Levitation
US20060219524A1 (en) 2005-04-05 2006-10-05 Kelly Carol L Mountable cleaning apparatus for commercial conveyors
US8796186B2 (en) 2005-04-06 2014-08-05 Affymetrix, Inc. System and method for processing large number of biological microarrays
US20090142844A1 (en) 2005-07-08 2009-06-04 Horiba Abx Sas Automatic Method of Preparing Samples of Total Blood For Analysis, and an Automatic Device For Implementing the Method
US20080056328A1 (en) * 2005-08-19 2008-03-06 F.O.B. Instruments, Ltd. Apparatus and Method for Determining the Amount of Time until a Desired Temperature is Reached
WO2007024540A1 (en) 2005-08-25 2007-03-01 Coldtrack, Llc Hierarchical sample coding and storage system
US20070116611A1 (en) 2005-11-14 2007-05-24 Demarco Nicholas Fraction collection system
JP2006106008A (en) 2005-12-20 2006-04-20 Jsk Kk Capacitance type detector
CN201045617Y (en) 2006-04-21 2008-04-09 北京赛科希德科技发展有限公司 Test cup continuous conveyer for full-automatic cruor measurement
US20070248496A1 (en) 2006-04-25 2007-10-25 Ecocap's S.R.L. Resealer of test tubes for clinical analyses fed from ready-to-use containers of sealing tape
JP2007309675A (en) 2006-05-16 2007-11-29 Olympus Corp Sample rack supply-and-recovery system
JP2007314262A (en) 2006-05-23 2007-12-06 Daifuku Co Ltd Article processing equipment
JP2007322289A (en) 2006-06-01 2007-12-13 Olympus Corp Conveyer
US7875254B2 (en) 2006-07-10 2011-01-25 Exxonmobil Chemical Patents Inc. Internal loop reactor and Oxo process using same
US20100000250A1 (en) 2006-07-13 2010-01-07 Bernhard Sixt Transport container for maintaining the temperature of frozen goods
US7578383B2 (en) 2006-08-31 2009-08-25 Ids Co., Ltd. Specimen transport system
US7858033B2 (en) 2006-09-20 2010-12-28 Ids Co., Ltd. Specimen preprocessing/transport apparatus
US20090322486A1 (en) 2007-03-15 2009-12-31 Joint Analytical Systems Gmbh RFID Storage Systems
US7597187B2 (en) 2007-03-26 2009-10-06 Kba-Metronic Ag Conveyor system
US8502422B2 (en) 2007-04-16 2013-08-06 Crisplant A/S Sorting system with linear synchronous motor drive
WO2008133708A1 (en) 2007-05-01 2008-11-06 Siemens Healthcare Diagnostics Inc. Programmable random access sample handler for use within an automated laboratory system
US20080286162A1 (en) 2007-05-16 2008-11-20 Onizawa Kuniaki Sample handling system
US20100175943A1 (en) 2007-06-02 2010-07-15 Bergmann Lars B Storage or Conveying System
US8281888B2 (en) 2007-06-02 2012-10-09 Bergmann Lars B Storage or conveying system
US20090004732A1 (en) 2007-06-06 2009-01-01 Labarre Paul Donald Chemical Temperature Control
EP2148117A1 (en) 2007-06-19 2010-01-27 Kitz Corporation Shaft sealing device, and valve structure using the device
WO2009002358A1 (en) 2007-06-26 2008-12-31 Siemens Healthcare Diagnostics Inc. Mobile sample storage and retrieval unit for a laboratory automated sample handling worksystem
US20090022625A1 (en) * 2007-07-19 2009-01-22 Samsung Electronics Co., Ltd. Biochemical analyzer and method of controlling internal temperature of the biochemical analyzer
JP2009036643A (en) 2007-08-01 2009-02-19 Astec Corp:Kk Control device of test tube input pattern into rack
JP2009062188A (en) 2007-09-10 2009-03-26 Tsubakimoto Chain Co Sorting device using linear guide motor type x-y actuator
US20090180931A1 (en) 2007-09-17 2009-07-16 Sequenom, Inc. Integrated robotic sample transfer device
US20090128139A1 (en) 2007-11-20 2009-05-21 Drenth Joseph B Magnet position locator
US20100300831A1 (en) 2007-11-30 2010-12-02 Gianandrea Pedrazzini System for automatically identifying, conveying and addressing biological material specimens
US20100312379A1 (en) 2007-11-30 2010-12-09 Gianandrea Pedrazzini Automatic apparatus for loading and unloading biological material test tubes in a pneumatic mail system
US20100255529A1 (en) 2007-12-07 2010-10-07 Francesco Cocola Device and method for microbiological analysis of biological samples
JP2009145188A (en) 2007-12-13 2009-07-02 Horiba Ltd Test tube holder and sample suction apparatus
US20110050213A1 (en) 2008-01-16 2011-03-03 Kabushiki Kaisha Bridgestone Belt monitoring system
EP2119643A1 (en) 2008-05-16 2009-11-18 TGW Mechanics GmbH Method and storage system for consolidating of shipping units
JP2009300402A (en) 2008-06-17 2009-12-24 Olympus Corp Analyzer and analytical method
US20110172128A1 (en) 2008-09-12 2011-07-14 Anthony Davies Multi-well device
WO2010042722A1 (en) 2008-10-10 2010-04-15 Quest Diagnostics Investments Incorporated System and method for sorting specimen
US20100152895A1 (en) 2008-12-05 2010-06-17 Zhengshan Dai Shock freezer and system for preparing samples for analysis using the same
US20100186618A1 (en) 2009-01-23 2010-07-29 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
WO2010087303A1 (en) 2009-01-27 2010-08-05 株式会社日立ハイテクノロジーズ Automated analyzer and automatic analysis method
US20130180824A1 (en) 2009-03-03 2013-07-18 Ats Automation Tooling Systems Inc. Multi-mode and multi-pitch conveyor system
JP2010243310A (en) 2009-04-06 2010-10-28 Jeol Ltd Automatic analyzer
WO2010129715A1 (en) 2009-05-05 2010-11-11 Cypress Semiconductor Corporation Spill-over detection method and system
US20110287447A1 (en) 2009-05-12 2011-11-24 Life Technologies Corporation Apparatus for and method of automated processing of biological samples
US20110124038A1 (en) 2009-05-15 2011-05-26 Biomerieux, Inc. Automated transfer mechanism for microbial detection apparatus
US20120178170A1 (en) 2009-07-16 2012-07-12 Peter Van Praet Sample container intelligent rack and loading method
US20120129673A1 (en) 2009-07-28 2012-05-24 Hitachi High-Technologies Corporation Centrifugal separator
US7939484B1 (en) 2009-10-27 2011-05-10 Clariant International, Ltd. Method for reducing the adhesion forces between hard surfaces and subsequently occurring soil
EP2327646A1 (en) 2009-11-26 2011-06-01 GLP systems GmbH Switch in a branch of a transport path for laboratory samples in an analytical laboratory
CN102109530A (en) 2009-12-28 2011-06-29 希森美康株式会社 Sample processing apparatus and sample rack transporting method
US20120282683A1 (en) 2010-01-21 2012-11-08 Kazunori Mototsu Sample analysis device
US20120295358A1 (en) 2010-01-21 2012-11-22 Siemens Healthcare Diagnostics Inc. Magnetic Conveyor Systems, Apparatus and Methods Including Moveable Magnet
US20110186406A1 (en) 2010-01-29 2011-08-04 Ecolab Usa Inc. Clean conveyor sensing system
US8240460B1 (en) 2010-02-18 2012-08-14 Michael James Bleau Apparatus for cleaning a conveyor belt
US20130034410A1 (en) 2010-05-07 2013-02-07 Roche Pvt Gmbh System for transporting containers between different stations and a container carrier
WO2011138448A1 (en) 2010-05-07 2011-11-10 Pvt Probenverteiltechnik Gmbh System for transporting containers between different stations, and the container carrier
US20120037696A1 (en) 2010-08-13 2012-02-16 Lear Sirous Lavi Transfer, Link, Bind, Specimen Tube Barcode Information To RFID Specimen Transport Puck In A Continuous Moving Binding Process Method
US20130153677A1 (en) 2010-09-07 2013-06-20 University Of Limerick Liquid droplet dispenser
EP2447701A2 (en) 2010-10-28 2012-05-02 Sysmex Corporation Sample processing system and method of processing sample
DE102012000665A1 (en) 2011-02-07 2012-08-09 Sew-Eurodrive Gmbh & Co. Kg sorter
US20130322992A1 (en) 2011-02-16 2013-12-05 Gianandrea Pedrazzini Interfacing apparatus between a pneumatic mail system and a feeding system of biological product containers to a laboratory automation system
US20120211645A1 (en) 2011-02-23 2012-08-23 JLT & Associates, Inc. Conveyor sterilization
EP2500871A1 (en) 2011-03-18 2012-09-19 The Raymond Corporation Integration of an autonomous industrial vehicle into an asset management system
EP2502675A1 (en) 2011-03-25 2012-09-26 Symbion Medical Systems Sàrl Container holder and container carrier
US20120275885A1 (en) 2011-04-29 2012-11-01 Frederic Furrer Method for operating an automated sample workcell
WO2012158541A1 (en) 2011-05-13 2012-11-22 Beckman Coulter, Inc. System and method including laboratory product transport element
WO2012158520A1 (en) 2011-05-13 2012-11-22 Beckman Coulter, Inc. Laboratory product transport element and path arrangement
US20120310401A1 (en) 2011-06-03 2012-12-06 Rushabh Instruments, Inc. Rotary tissue processor with configurable stations
WO2012170636A1 (en) 2011-06-07 2012-12-13 Magnemotion, Inc. Versatile control of a linear synchronous motor propulsion system
US20140170023A1 (en) 2011-09-05 2014-06-19 Hitachi High-Technologies Corporation Automatic analyzer
US20140234949A1 (en) 2011-09-25 2014-08-21 Theranos, Inc. Systems and methods for fluid and component handling
US9239335B2 (en) 2011-11-04 2016-01-19 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US20170138971A1 (en) 2011-11-04 2017-05-18 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US20160054344A1 (en) 2011-11-04 2016-02-25 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US20170097372A1 (en) 2011-11-04 2017-04-06 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US20150360878A1 (en) 2011-11-04 2015-12-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US20140234065A1 (en) 2011-11-04 2014-08-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US20140231217A1 (en) 2011-11-04 2014-08-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US20130126302A1 (en) 2011-11-07 2013-05-23 Beckman Coulter, Inc. Magnetic damping for specimen transport system
US9211543B2 (en) 2011-12-28 2015-12-15 Hitachi High-Technologies Corporation Holder for transferring test tube
DE102011090044A1 (en) 2011-12-28 2013-07-04 Siemens Healthcare Diagnostics Products Gmbh Transport system and method of operation
US20150014125A1 (en) 2012-02-15 2015-01-15 Glp Systems Gmbh Conveyor system for material samples, especially medical samples
JP2013172009A (en) 2012-02-21 2013-09-02 Hitachi Ltd Flow soldering device and solder liquid surface adjustment method
US20130263622A1 (en) 2012-03-12 2013-10-10 The World Egg Bank Cryogenic sample holder
JP2013190400A (en) 2012-03-15 2013-09-26 Hitachi High-Technologies Corp Autoanalyzer
WO2013152089A1 (en) 2012-04-04 2013-10-10 Siemens Healthcare Diagnostics Inc. Method for processing priority samples that preserves a fifo processing queue
WO2013169778A1 (en) 2012-05-11 2013-11-14 Siemens Healthcare Diagnostics Inc. Method and system for transporting sample tubes
WO2013177163A1 (en) 2012-05-24 2013-11-28 Siemens Healthcare Diagnostics Inc. Non-contact optical encoding scheme for intelligent automation puck
US20150241457A1 (en) 2012-08-20 2015-08-27 Siemens Healthcare Diagnostics Inc. Methods and apparatus for ascertaining specimen and/or sample container characteristics while in transit
US20150276775A1 (en) 2012-10-11 2015-10-01 Siemens Healthcare Diagnostics Inc. Modular workcells for lab automation
US20150273691A1 (en) 2012-10-11 2015-10-01 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
WO2014059134A1 (en) 2012-10-11 2014-04-17 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
WO2014071214A1 (en) 2012-11-01 2014-05-08 Siemens Healthcare Diagnostics Inc. Multiple carrier and sleeve tray
US20160025756A1 (en) 2013-03-08 2016-01-28 Siemens Healthcare Diagnostics Inc. Tube characterization station
US20160003859A1 (en) 2013-11-07 2016-01-07 Tecan Trading Ag Microplate reader with incubation device
EP2887071A1 (en) 2013-12-19 2015-06-24 F. Hoffmann-La Roche AG Storage and supply of vessel holders
US20150233956A1 (en) 2014-02-17 2015-08-20 Roche Diagnostics Operations, Inc. Transport device, sample distribution system, and laboratory automation system
US20150233957A1 (en) 2014-02-17 2015-08-20 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US20150273468A1 (en) 2014-03-28 2015-10-01 Brooks Automation, Inc. Sample storage and retrieval system
US20150276777A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US20150276778A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Vertical conveying device, laboratory sample distribution system and laboratory automation system
US20150276776A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Dispatching device, sample distribution system and laboratory automation system
US20150276781A1 (en) 2014-03-31 2015-10-01 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US20150360876A1 (en) 2014-06-17 2015-12-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170131310A1 (en) 2014-07-23 2017-05-11 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US20170131307A1 (en) 2014-07-23 2017-05-11 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170131309A1 (en) 2014-07-24 2017-05-11 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160054341A1 (en) 2014-08-21 2016-02-25 Roche Diagnostics Operations, Inc. Sample container carrier for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20160069715A1 (en) 2014-09-09 2016-03-10 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for calibrating magnetic sensors
US20170168079A1 (en) 2014-09-09 2017-06-15 Roche Diagnostics Operations, Inc. Set of sample container carriers for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20170174448A1 (en) 2014-09-09 2017-06-22 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160077120A1 (en) 2014-09-12 2016-03-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170184622A1 (en) 2014-09-15 2017-06-29 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20160097786A1 (en) 2014-10-07 2016-04-07 Roche Diagnostics Operations, Inc. Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US20170160299A1 (en) 2014-11-03 2017-06-08 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160229565A1 (en) 2015-02-11 2016-08-11 Roche Diagnostics Operations, Inc. Method and device for handling test tubes in a laboratory automation system
US20160274137A1 (en) 2015-03-16 2016-09-22 Roche Diagnostics Operations, Inc. Transport carrier, laboratory cargo distribution system, and laboratory automation system
US20160282378A1 (en) 2015-03-23 2016-09-29 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20160341751A1 (en) 2015-05-22 2016-11-24 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system
US20160341750A1 (en) 2015-05-22 2016-11-24 Roche Diagnostics Operations, Inc. Method of operating a laboratory automation system and a laboratory automation system
US20170059599A1 (en) 2015-09-01 2017-03-02 Roche Diagnostics Operations., Inc. Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
US20170096307A1 (en) 2015-10-06 2017-04-06 Roche Diagnostics Operations, Inc. Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US20170101277A1 (en) 2015-10-13 2017-04-13 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US20170108522A1 (en) 2015-10-14 2017-04-20 Roche Diagnostics Operations, Inc. Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
US20170248624A1 (en) 2016-02-25 2017-08-31 Roche Diagnostics Operations, Inc. Sample container carrier
US20170248623A1 (en) 2016-02-25 2017-08-31 Roche Diagnostics Operations, Inc. Sample container carrier
US20170363608A1 (en) 2016-06-21 2017-12-21 Roche Diagnostics Operations, Inc. Method of setting a handover position and laboratory automation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989726B2 (en) 2016-06-09 2021-04-27 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method of operating a laboratory sample distribution system
US11112421B2 (en) 2016-08-04 2021-09-07 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11971420B2 (en) 2018-03-07 2024-04-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US12000850B2 (en) 2020-06-19 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US12000851B2 (en) 2020-07-15 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for operating the same
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system

Also Published As

Publication number Publication date
EP2927626A1 (en) 2015-10-07
US20150276782A1 (en) 2015-10-01
EP2927625A1 (en) 2015-10-07
JP2015197439A (en) 2015-11-09
JP5993477B2 (en) 2016-09-14
EP2927626B1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
US10012666B2 (en) Sample distribution system and laboratory automation system
JP6743204B2 (en) Storage and supply of container holders
JP5993478B2 (en) Vertical transport device, laboratory sample distribution system, and laboratory automation system
US10175259B2 (en) Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
JP2018128449A (en) Laboratory
US11226348B2 (en) Storage module, method of operating a laboratory automation system and laboratory automation system
US9772342B2 (en) Dispatching device, sample distribution system and laboratory automation system
JP6814590B2 (en) Laboratory sample distribution system and laboratory automation system
EP3191224B1 (en) Set of sample container carriers for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
JP6096821B2 (en) Transportation devices, sample distribution systems, and laboratory automation systems
US10261103B2 (en) Laboratory sample distribution system and laboratory automation system
US9902572B2 (en) Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US10145857B2 (en) Tube tray vision system
US11933805B2 (en) Pipettor system
JP7203139B2 (en) Analysis method
US11187713B2 (en) Laboratory module for storing and feeding to further processing of samples
EP3382397A1 (en) Laboratory sample distribution system and laboratory automation system
JP5848559B2 (en) Automatic analyzer
WO2023162969A1 (en) Inspection system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCHE PVT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RIETHER, CHRISTIAN;REEL/FRAME:035755/0554

Effective date: 20140625

Owner name: ROCHE DIAGNOSTICS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE PVT GMBH;REEL/FRAME:035755/0608

Effective date: 20140828

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS GMBH;REEL/FRAME:035805/0594

Effective date: 20141008

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4