TWI721065B - Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium - Google Patents

Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium Download PDF

Info

Publication number
TWI721065B
TWI721065B TW105141071A TW105141071A TWI721065B TW I721065 B TWI721065 B TW I721065B TW 105141071 A TW105141071 A TW 105141071A TW 105141071 A TW105141071 A TW 105141071A TW I721065 B TWI721065 B TW I721065B
Authority
TW
Taiwan
Prior art keywords
uplink
base station
lte
resource
transmission
Prior art date
Application number
TW105141071A
Other languages
Chinese (zh)
Other versions
TW201735676A (en
Inventor
熊崗
昌文婷
張羽書
華寧 牛
朱源
Original Assignee
美商蘋果公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘋果公司 filed Critical 美商蘋果公司
Publication of TW201735676A publication Critical patent/TW201735676A/en
Application granted granted Critical
Publication of TWI721065B publication Critical patent/TWI721065B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Devices and methods of scheduling uplink data requests in 5G systems are generally described. A UE transmits a scheduling request (SR) or an 5G physical random access channel (xPRACH) to an eNB on a 5G or LTE link resource reserved for 5G scheduling requests or unreserved. The message is dependent on which of link is used for the transmission. Depending on whether a reserved resource and a reserved logical channel ID is used, the UE transmits the eNB with a BSR and perhaps a beam measurement report after sending an SR and in response to receiving an uplink grant for the same. The UE then transmits a 5G physical uplink shared channel in response to receiving on an optimal beam an 5G physical downlink control channel containing a 5G uplink grant for the data. When an xPRACH is transmitted, a reduced random access response is used.

Description

使用者設備之裝置、基地台之裝置和非暫時性電腦可讀取儲存媒體 Device of user equipment, device of base station and non-transitory computer readable storage medium

實施例屬於無線電存取網路。一些實施例關於提供資料於蜂巢式與無線區域網路(WLAN)網路,包括第三代合作夥伴計畫長期演進(3GPP LTE)網路以及LTE升級版(LTE-A)網路以及第四代(4G)網路和第五代(5G)網路。一些實施例關於在5G網路中的上行鏈路請求設計。 The embodiment belongs to a radio access network. Some embodiments relate to providing data in cellular and wireless local area network (WLAN) networks, including the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) network and LTE-A (LTE-A) network and the fourth Generation (4G) network and fifth generation (5G) network. Some embodiments relate to the design of uplink requests in 5G networks.

隨著與多個網路裝置通訊之不同類型裝置的增加,3GPP LTE系統的用途已經增加。隨著諸如視訊串流之服務的出現,這已經增加使用者設備(UEs)的數目以及由這些使用者設備所使用的寬頻兩者,且已經使LTE網路日益緊張。為了增加容量,下一代的LTE網路可能可應用多輸入多輸出(MIMO)。MIMO系統使用多路徑的訊號傳播,以在相同或重疊頻率上、經由藉由相同演進型節點B(eNB)的多個訊號而與UE通訊,該等訊號將彼此干擾(如果其等在相同路徑上)。上行鏈路或下行鏈路資料的此種 增加可專用於一種UE,以藉由射束的數目,增加那UE的有效頻寬(單一使用者MIMO或SU-MIMO)或可使用用於各UE的不同射束而分佈遍及多個UE(多個使用者MIMO或MU-MIMO)。 With the increase of different types of devices communicating with multiple network devices, the use of the 3GPP LTE system has increased. With the advent of services such as video streaming, this has increased both the number of user equipment (UEs) and the broadband used by these user equipment, and has made LTE networks increasingly strained. In order to increase capacity, the next generation of LTE networks may be able to apply multiple input multiple output (MIMO). MIMO systems use multi-path signal propagation to communicate with UEs on the same or overlapping frequencies via multiple signals from the same evolved Node B (eNB). These signals will interfere with each other (if they are on the same path) on). This type of uplink or downlink data The increase can be dedicated to one type of UE to increase the effective bandwidth of that UE by the number of beams (single user MIMO or SU-MIMO) or can be distributed across multiple UEs using different beams for each UE ( Multiple users MIMO or MU-MIMO).

不過,射束形成可使許多傳送與接收事宜複雜。例如,當UE意圖請求用於上行鏈路資料傳送的資源時,eNB無法知道用於排程請求接收之由UE所使用的射束。為了解決此,可使用重複的排程請求傳送,以允許eNB施行用於穩定排程請求檢測的射束掃描。這可能令人不快地增加與排程請求傳送有關的系統管理負擔。 However, beamforming can complicate many transmission and reception issues. For example, when the UE intends to request resources for uplink data transmission, the eNB cannot know the beam used by the UE for scheduling request reception. To solve this, repeated scheduling request transmission can be used to allow the eNB to perform beam scanning for stable scheduling request detection. This can unpleasantly increase the system administration burden associated with scheduling request delivery.

100:網路 100: Internet

101:無線電存取網路 101: Radio Access Network

102:使用者設備 102: user equipment

104:演進型節點B 104: Evolved Node B

104A:巨型演進型節點 104A: Giant Evolutionary Node

104B:低功率演進型節點 104B: Low-power evolved node

115:S1界面 115: S1 interface

120:核心網路 120: core network

122:移動性管理實體 122: Mobility Management Entity

124:服務閘道器 124: service gateway

126:封包資料網路閘道器 126: Packet Data Network Gateway

200:使用者設備 200: user equipment

202:應用電路 202: Application Circuit

204:基頻電路 204: Fundamental frequency circuit

204a:第二代基頻處理器 204a: Second-generation baseband processor

204b:第三代基頻處理器 204b: third-generation baseband processor

204c:第四代基頻處理器 204c: Fourth-generation baseband processor

204d:其他基頻處理器 204d: other baseband processors

204e:中央處理單元 204e: Central Processing Unit

204f:音訊數位訊號處理器 204f: Audio digital signal processor

206:射頻電路 206: RF circuit

206a:混合器電路 206a: Mixer circuit

206b:放大器電路 206b: Amplifier circuit

206c:濾波器電路 206c: filter circuit

206d:合成器電路 206d: synthesizer circuit

208:前端模組電路 208: Front-end module circuit

210:天線 210: Antenna

300:通訊裝置 300: Communication device

301:天線 301: Antenna

302:實體層電路 302: physical layer circuit

304:媒體存取控制層電路 304: media access control layer circuit

306:處理電路 306: Processing Circuit

308:記憶體 308: memory

312:收發器電路 312: Transceiver circuit

314:界面 314: Interface

400:資源柵格 400: Resource grid

400:通訊裝置 400: Communication device

402:硬體處理器 402: hardware processor

404:主要記憶體 404: main memory

406:靜態記憶體 406: static memory

408:內網連接 408: Intranet connection

410:顯示單元 410: display unit

412:文數輸入裝置 412: Text input device

414:使用者界面導航裝置 414: User Interface Navigation Device

416:儲存裝置 416: storage device

418:訊號產生裝置 418: Signal Generator

420:網路界面裝置 420: network interface device

421:感測器 421: Sensor

422:通訊裝置可讀取媒體 422: Communication device can read media

424:指令 424: instruction

426:通訊網路 426: Communication Network

428:輸出控制器 428: output controller

502:使用者設備 502: User Equipment

504:長期演進演進型節點B 504: Long Term Evolution Node B

506:第五代演進型節點B 506: Fifth Generation Evolved Node B

512:操作 512: Operation

514:操作 514: Operation

516:操作 516: operation

518:操作 518: operation

602:使用者設備 602: User Equipment

604:長期演進演進型節點B 604: Long Term Evolution Node B

606:第五代演進型節點B 606: Fifth Generation Evolved Node B

612:操作 612: Operation

614:操作 614: operation

616:操作 616: operation

618:操作 618: operation

702:使用者設備 702: User Equipment

704:長期演進演進型節點B 704: Long Term Evolution Node B

706:第五代演進型節點B 706: Fifth Generation Evolved Node B

712:操作 712: operation

714:操作 714: operation

716:操作 716: Operation

718:操作 718: operation

802:使用者設備 802: user equipment

804:長期演進演進型節點B 804: Long Term Evolution Evolution Node B

806:第五代演進型節點B 806: Fifth Generation Evolved Node B

812:操作 812: Operation

814:操作 814: operation

816:操作 816: operation

818:操作 818: operation

820:5G實體上行鏈路共享通道 820: 5G physical uplink shared channel

902:使用者設備 902: user equipment

904:第五代演進型節點B 904: Fifth Generation Evolved Node B

912:操作 912: operation

914:操作 914: operation

916:操作 916: Operation

918:操作 918: Operation

920:操作 920: Operation

1002:使用者設備 1002: user equipment

1004:第五代演進型節點B 1004: The fifth-generation evolved node B

1012:操作 1012: Operation

1014:操作 1014: Operation

1016:操作 1016: Operation

在附圖中(不一定按比率繪製),相同的數字可描述在不同圖中的類似組件。具有不同字母加於末尾的相同數字可代表類似組件的不同例子。該等附圖一般以實例的方式而非以限制的方式來繪示在本文件中所討論的許多實施例。 In the drawings (not necessarily drawn to ratio), the same numbers may describe similar components in different drawings. The same number with different letters added at the end can represent different examples of similar components. The drawings generally illustrate many of the embodiments discussed in this document by way of example rather than by way of limitation.

圖1係為根據一些實施例之無線網路的功能圖。 Figure 1 is a functional diagram of a wireless network according to some embodiments.

圖2繪示根據一些實施例之通訊裝置的組件。 Figure 2 illustrates the components of a communication device according to some embodiments.

圖3繪示根據一些實施例之通訊裝置的方塊圖。 FIG. 3 shows a block diagram of a communication device according to some embodiments.

圖4繪示根據一些實施例之通訊裝置的另一方塊圖。 FIG. 4 shows another block diagram of a communication device according to some embodiments.

圖5繪示根據一些實施例之用於非獨立LTE系統的上行鏈路請求設計。 Figure 5 illustrates an uplink request design for a non-standalone LTE system according to some embodiments.

圖6繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。 Figure 6 illustrates another uplink request design for a non-standalone LTE system according to some embodiments.

圖7繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。 FIG. 7 illustrates another uplink request design for a non-standalone LTE system according to some embodiments.

圖8繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。 FIG. 8 illustrates another uplink request design for a non-standalone LTE system according to some embodiments.

圖9繪示根據一些實施例之用於獨立LTE系統的另一上行鏈路請求設計。 Figure 9 illustrates another uplink request design for a standalone LTE system according to some embodiments.

圖10繪示根據一些實施例之用於獨立LTE系統的另一上行鏈路請求設計。 Figure 10 illustrates another uplink request design for a standalone LTE system according to some embodiments.

【發明內容及實施方式】[Content and Implementation of the Invention]

以下的實施方式與圖式充分地繪示具體實施例,以致使所屬技術領域中具有通常知識者來實行它們。其他實施例可合併結構的、邏輯的、電的過程與其他改變。一些實施例的部份與特徵可包括在其他實施例的那些部份與特徵中,或取代其他實施例的那些部份與特徵。在申請專利範圍中所陳述的實施例涵蓋那些申請專利範圍的全部可用等同物。 The following embodiments and drawings fully illustrate specific examples, so that persons with ordinary knowledge in the technical field can implement them. Other embodiments may incorporate structural, logical, electrical processes and other changes. Parts and features of some embodiments may be included in, or substituted for, those parts and features of other embodiments. The embodiments set forth in the scope of patent application cover all available equivalents of those patent scope.

圖1顯示根據一些實施例之具有網路之多種組件之長期演進(LTE)網路的一部份端對端網路架構的實例。如本文中所使用的,LTE網路意指LTE與LTE升級版(LTE-A)網路兩者以及欲研發之LTE網路的其他版本。網路100可包含經由S1界面115耦合在一起的無線電存取網路(RAN)(例如,如描述,E-UTRAN或演進通用陸上無線 電存取網路)101以及核心網路120(例如,顯示為演進封包核心(EPC))。為了方便簡潔,在該實例中,只有核心網路120的一部份以及RAN101顯示。 Figure 1 shows an example of a partial end-to-end network architecture of a Long Term Evolution (LTE) network with various components of the network according to some embodiments. As used herein, LTE network refers to both LTE and LTE-upgraded (LTE-A) networks and other versions of LTE networks to be developed. The network 100 may include a radio access network (RAN) coupled together via the S1 interface 115 (for example, as described, E-UTRAN or Evolved Universal Terrestrial Radio Electrical access network) 101 and core network 120 (for example, shown as Evolved Packet Core (EPC)). For convenience and simplicity, in this example, only a part of the core network 120 and the RAN101 are displayed.

核心網路120可包括移動性管理實體(MME)122、服務閘道器(serving GW)124、以及封包資料網路閘道器(PDN GW)126。RAN101可包括演進型節點Bs(eNB)104(其可操作當作基地台),用於與使用者設備(UE)102通訊。eNB104可包括巨型eNB104a以及低功率(LP)eNB104b。eNB104與UEs102可應用本文中所說明的同步化技術。 The core network 120 may include a mobility management entity (MME) 122, a serving gateway (serving GW) 124, and a packet data network gateway (PDN GW) 126. The RAN 101 may include evolved Node Bs (eNB) 104 (which can operate as a base station) for communicating with user equipment (UE) 102. The eNB 104 may include a giant eNB 104a and a low power (LP) eNB 104b. The eNB 104 and the UEs 102 can apply the synchronization technology described in this document.

MME122在功能上類似舊版服務GPRS支援節點(SGSN)的控制面。MME122可管理在存取中的移動性態樣,諸如閘道器選擇與追蹤區域清單管理。服務GW124可端接朝RAN101的界面,且路由資料封包於RAN101與核心網路120之間。此外,服務GW124可以是用於eNB間交接的局部移動性定錨點,且亦可提供用於3GPP間移動性的定錨。其他責任可能包括合法攔截、收費、以及一些政策執行。服務GW124與MME122可在一個實體節點或分開的實體節點中實施。 MME122 is similar in function to the control plane of the old service GPRS support node (SGSN). The MME 122 can manage the mobility status during access, such as gateway selection and tracking area list management. The Serving GW124 can terminate the interface towards the RAN101, and route data packets between the RAN101 and the core network 120. In addition, the Serving GW 124 may be a local mobility anchor point for inter-eNB handover, and may also provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful interception, charging, and some policy enforcement. Serving GW124 and MME122 can be implemented in one physical node or separate physical nodes.

PDN GW126可端接朝向封包資料網路(PDN)的SGi界面。PDN GW126可路由資料封包於EPC120與外部PDN之間,且可施行政策執行與收費資料收集。PDN GW126亦可提供定錨點,以用於具有非LTE存取的移動性裝置。外部PDN可以是任何種類的IP網路,以及IP多媒體子系統 (IMS)域。PDN GW126與服務GW124可在單一實體節點或分開實體節點中實施。 The PDN GW126 can terminate the SGi interface towards the Packet Data Network (PDN). The PDN GW126 can route data packets between the EPC120 and the external PDN, and can implement policy enforcement and charge data collection. The PDN GW126 can also provide anchor points for mobile devices with non-LTE access. The external PDN can be any kind of IP network and IP multimedia subsystem (IMS) domain. The PDN GW 126 and the serving GW 124 can be implemented in a single physical node or separate physical nodes.

eNB104(巨型與微型)可端接空氣界面協定,且可以是用於UE102的第一接點。在一些實施例中,eNB104可實行用於RAN101的多種邏輯的功能,包括但不限於RNC(無線電網路控制器功能),諸如無線電載送管理、上行鏈路與下行鏈路動態無線電資源管理與資料封包排程、以及移動性管理。根據實施例,UEs102可經組態以根據OFDMA通訊技術、在多載波通訊頻道上、與eNB104通訊正交分頻多工(OFDM)通訊訊號。OFDM訊號可包含複數個正交次載波。 The eNB 104 (mega and micro) can terminate the air interface protocol, and can be the first connection point for the UE 102. In some embodiments, the eNB104 can perform a variety of logical functions for the RAN101, including but not limited to RNC (Radio Network Controller Function), such as radio carrier management, uplink and downlink dynamic radio resource management, and Data packet scheduling and mobility management. According to an embodiment, the UEs 102 can be configured to communicate an Orthogonal Frequency Division Multiplexing (OFDM) communication signal with the eNB 104 on a multi-carrier communication channel according to OFDMA communication technology. The OFDM signal may include a plurality of orthogonal sub-carriers.

S1界面115可以是分開RAN101與EPC120的界面。它可分成兩部分:S1-U,其可運送交通資料於eNB104與服務GW124之間;以及S1-MME,其可以是eNB104與MME122之間的訊號發送界面。X2界面可以是數個eNB 104之間的界面。X2界面可包含兩部份:X2-C與X2-U。X2-C可以是數個eNB104之間的控制面界面,而X2-U可以是數個eNB 104之間的使用者面界面。 The S1 interface 115 may be an interface separating the RAN101 and the EPC120. It can be divided into two parts: S1-U, which can transport traffic data between the eNB104 and the serving GW124; and S1-MME, which can be the signal transmission interface between the eNB104 and the MME122. The X2 interface may be an interface between several eNBs 104. The X2 interface can include two parts: X2-C and X2-U. X2-C may be a control plane interface between several eNBs 104, and X2-U may be a user plane interface between several eNBs 104.

以蜂巢式網路,LP單元104b一般可用來將覆蓋範圍延伸到室外信號不足的室內區域,或在使用密集的區域中增加網路容量。特別地,使用不同尺寸的單元、巨型單元、微型單元、微微單元、以及毫微微單元來放大無線通訊系統的覆蓋範圍,以提升系統性能,其係令人期待。不同尺寸的單元可在相同頻帶上操作,或可在不同 頻帶上操作,各單元均在不同頻帶中操作,或僅僅不同尺寸的單元在不同頻帶上操作。如在本文中所使用的,術語LP eNB意指用於實施較小單元(小於巨型單元)的任何相當適當的LP eNB,該較小單元諸如毫微微單元、微微單元、或微型單元。毫微微單元eNB一般可由行動網路操作員提供給其住家或企業客戶。毫微微單元一般而言可能是住家閘道器的尺寸或更小,且通常連接到寬頻線。毫微微單元可連接到行動操作員的行動網路,且提供一般在30至50尺之範圍中的額外覆蓋範圍。因此,LP eNB104b可能是毫微微eNB,因為它耦合經過PDN GW126。類似地,微微單元可能是一般涵蓋小區域的無線通訊系統,諸如建築物內(辦公室、購物中心、車站等等)或最近的飛機內。微微單元eNB通常可經由X2鏈路連接到另一eNB(諸如經由其基地台控制器(BSC)功能連接到巨型eNB)。因此,LP eNB可能以微微單元eNB實施,因為它可經由X2界面耦合到巨型eNB104a。微微單元eNB或其他LP eNB104b可合併巨型eNB LP eNB104a中的一些或全部功能。在一些情形中,這可稱為存取點基地台或企業毫微微單元。 With a cellular network, the LP unit 104b can generally be used to extend the coverage to indoor areas where outdoor signals are insufficient, or to increase network capacity in densely used areas. In particular, the use of units of different sizes, mega-units, micro-units, pico units, and femto units to enlarge the coverage of a wireless communication system to improve system performance is expected. Units of different sizes can operate on the same frequency band, or can operate on different Operating on frequency bands, each unit operates in a different frequency band, or only units of different sizes operate on different frequency bands. As used herein, the term LP eNB means any fairly suitable LP eNB for implementing smaller cells (smaller than megacells), such as femtocells, picocells, or microcells. Femtocell eNBs are generally provided by mobile network operators to their home or corporate customers. The femto unit may generally be the size of a home gateway or smaller, and is usually connected to a broadband line. The femto unit can be connected to the mobile operator's mobile network and provide additional coverage generally in the range of 30 to 50 feet. Therefore, the LP eNB 104b may be a femto eNB because it is coupled through the PDN GW126. Similarly, a pico unit may be a wireless communication system that generally covers a small area, such as in a building (office, shopping mall, station, etc.) or in the nearest airplane. A pico cell eNB can generally be connected to another eNB via an X2 link (such as to a mega eNB via its base station controller (BSC) function). Therefore, the LP eNB may be implemented as a pico unit eNB because it can be coupled to the mega eNB 104a via the X2 interface. The pico cell eNB or other LP eNB 104b may incorporate some or all of the functions of the mega eNB LP eNB 104a. In some cases, this may be referred to as an access point base station or an enterprise femto unit.

在LTE網路上的通訊可分為數個10ms訊框,其中各個可含有10個1ms子訊框。該訊框的各子訊框依次可含有兩個0.5ms的槽。各子訊框可使用於從UE至eNB的上行鏈路(UL)通訊或者從eNB至UE的下行鏈路(DL)通訊。在一項實施例中,在特定的訊框中,eNB可分配比UL通訊更 多數目的DL通訊。eNB可排程在多種頻帶上(f1與f2)的傳送。分配資源於使用在一頻帶中的子訊框中,其可能不同於在另一頻帶中的那些。依據所使用的系統,子訊框的各槽可含有6至7個OFDM符碼。在一項實施例中,子訊框可含有12個子載波。下行鏈路資源柵格可使用於從eNB至UE的下行鏈路傳送,而上行鏈路資源柵格可使用於從UE至eNB或從UE至另一UE的上行鏈路傳送。資源柵格可能是時頻柵格,其係為在各槽中之下行鏈路中的實體資源。在資源柵格中的最小時頻單元可表示為資源元件(RE)。資源柵格的各行與各列可各別對應一個OFDM符碼與一個OFDM子載波。資源柵格可含有資源方塊(RBs),其說明實體通道之映射到資源元件與實體RBs(PRBs)。PRB可能是可分配到UE的最小單元資源。資源方塊在頻率上可能是180kHz寬,且在時間上是1槽長。在頻率上,資源方塊可能是12×15kHz子載波或24×7.5kHz子載波寬。就大部分的通道與訊號而言,依據系統頻寬,每一資源方塊可使用12子載波。在分頻雙工(FDD)模式中,上行鏈路與下行鏈路訊框兩者可能是10ms以及分開頻率(全雙工)或時間(半雙工)。在分時雙工(TDD)中,上行鏈路與下行鏈路子訊框可在相同頻率上傳送,且在時域中被多工化。在時域中之資源柵格400的持續時期對應一個子訊框或兩個資源方塊。各資源柵格可包含12(子載波)*14(符碼)=168資源元件。 Communication on the LTE network can be divided into several 10ms frames, each of which can contain 10 1ms subframes. Each sub-frame of the frame may successively contain two 0.5ms slots. Each subframe can be used for uplink (UL) communication from UE to eNB or downlink (DL) communication from eNB to UE. In one embodiment, in a specific frame, the eNB can allocate more than the UL communication DL communication for most purposes. The eNB can schedule transmissions on multiple frequency bands (f1 and f2). Resources are allocated to subframes used in one frequency band, which may be different from those in another frequency band. Depending on the system used, each slot of the subframe can contain 6 to 7 OFDM symbols. In one embodiment, the sub-frame may contain 12 sub-carriers. The downlink resource grid can be used for downlink transmission from eNB to UE, and the uplink resource grid can be used for uplink transmission from UE to eNB or from UE to another UE. The resource grid may be a time-frequency grid, which is a physical resource in the downlink in each slot. The smallest time-frequency unit in the resource grid can be represented as a resource element (RE). Each row and each column of the resource grid can respectively correspond to an OFDM symbol and an OFDM subcarrier. The resource grid may contain resource blocks (RBs), which indicate the mapping of physical channels to resource elements and physical RBs (PRBs). PRB may be the smallest unit resource that can be allocated to the UE. The resource block may be 180kHz wide in frequency and 1 slot long in time. In terms of frequency, the resource block may be 12×15kHz sub-carriers or 24×7.5kHz sub-carriers wide. For most channels and signals, each resource block can use 12 subcarriers depending on the system bandwidth. In frequency division duplex (FDD) mode, both the uplink and downlink frames may be 10ms and separate frequency (full duplex) or time (half duplex). In Time Division Duplex (TDD), uplink and downlink subframes can be transmitted on the same frequency and are multiplexed in the time domain. The duration of the resource grid 400 in the time domain corresponds to one sub-frame or two resource blocks. Each resource grid may include 12 (subcarrier)*14 (symbol)=168 resource elements.

各OFDM符碼可含有循環字首(CP),該循環字首可用來有效地刪除符碼間干擾(ISI)、以及快速富立葉轉換(FFT)週期。CP的持續時期可由最高預測程度的延遲擴展所判定。雖然自先前OFDM符碼的失真可存在於CP內(具有充分持續時期的CP),先前OFDM符碼則不會進入FFT週期。一旦FFT週期訊號被接收與數位化,接受器則可忽略在CP中的訊號。 Each OFDM symbol can contain a cyclic prefix (CP), which can be used to effectively remove inter-symbol interference (ISI) and fast Fourier transform (FFT) cycles. The duration of CP can be determined by the delay spread of the highest predicted degree. Although the distortion from the previous OFDM symbol may exist in the CP (CP with sufficient duration), the previous OFDM symbol does not enter the FFT period. Once the FFT periodic signal is received and digitized, the receiver can ignore the signal in the CP.

可能有許多不同的實體下行鏈路通道,該等通道使用此等資源方塊傳遞,包括實體下行鏈路控制通道(PDCCH)與實體下行鏈路共享通道(PDSCH)。各下行鏈路子訊框可分割成PDCCH與PDSCH。PDCCH正常下可佔有各子訊框的最先兩個符碼,且除了別的以外還運送了有關輸送格式的資訊以及相關於PDSCH通道的資源分配以及相關於上行鏈路共享通道的H-ARQ資訊。PDSCH可運送使用者資料與更高層的訊號發送到UE且佔有子訊框的剩餘部份。一般而言,基於從UEs提供到eNB的通道品質資訊,可在eNB施行下行鏈路排程(分派控制與共享通道資源方塊到單元內的UEs),且隨後可將下行鏈路資源分派資訊發送到在使用於(分派到)UE之PDCCH上的各UE。PDCCH可含有以許多格式之其中一格式的下行鏈路控制資訊(DCI),該等格式指示UE如何發現且解碼來自資源柵格、在相同子訊框中之PDSCH上傳送的資料。DCI格式可提供細節,諸如資源方塊的數目、資源分配類型、調變方案、輸送方塊、冗餘版本、編碼率等等。各DCI 格式可具有循環冗餘碼(CRC),且以識別PDSCH意圖所用之目標UE的無線電網路暫時識別符(RNTI)來攪拌。特定UE之RNTI的使用可將DCI格式(以及因而對應的PDSCH)的解碼僅僅限制於意圖的UE。 There may be many different physical downlink channels, which are transmitted using these resource blocks, including the physical downlink control channel (PDCCH) and the physical downlink shared channel (PDSCH). Each downlink sub-frame can be divided into PDCCH and PDSCH. The PDCCH normally occupies the first two symbols of each sub-frame, and among other things, it also conveys information about the transmission format, resource allocation related to the PDSCH channel, and H-ARQ related to the uplink shared channel. News. The PDSCH can transport user data and higher-level signals to the UE and occupy the remaining part of the sub-frame. Generally speaking, based on the channel quality information provided from the UEs to the eNB, downlink scheduling (allocation control and sharing of channel resource blocks to UEs in the unit) can be implemented at the eNB, and then the downlink resource allocation information can be sent To each UE on the PDCCH used (assigned to) the UE. The PDCCH may contain downlink control information (DCI) in one of many formats, which instructs the UE how to discover and decode the data transmitted on the PDSCH in the same subframe from the resource grid. The DCI format can provide details such as the number of resource blocks, resource allocation type, modulation scheme, transmission block, redundancy version, coding rate, and so on. Each DCI The format may have a cyclic redundancy code (CRC) and be stirred with a radio network temporary identifier (RNTI) that identifies the target UE intended for use by the PDSCH. The use of RNTI for a specific UE can limit the decoding of the DCI format (and thus the corresponding PDSCH) to only the intended UE.

除了PDCCH以外,可藉由eNB與UE使用增強型PDCCH(EPDCCH)。不像PDCCH,EPDCCH可配置在正常之下分配用於PDSCH的資源方塊中。不同UE可具有不同的EPDCCH組態,該等組態係經由無線電資源控制(RRC)訊號發送來組態。各UE可以數組的EPDCCH來組態,且該組態在該等組之間亦可能不同。各EPDCCH組可具有2、4、或8PRB對。在一些實施例中,在特定子訊框中,組態用於EPDCCHs的資源方塊可使用於PDSCH傳送,假如在子訊框內,資源方塊則不使用於EPDCCH傳送。 In addition to PDCCH, enhanced PDCCH (EPDCCH) can be used by eNB and UE. Unlike PDCCH, EPDCCH can be configured in the resource block allocated for PDSCH under normal conditions. Different UEs can have different EPDCCH configurations, which are configured via radio resource control (RRC) signal transmission. Each UE can be configured with an array of EPDCCHs, and the configuration may also be different between the groups. Each EPDCCH group can have 2, 4, or 8 PRB pairs. In some embodiments, the resource blocks configured for EPDCCHs in a specific subframe can be used for PDSCH transmission. If in the subframe, the resource blocks are not used for EPDCCH transmission.

在本文中所說明的實施例可實施為使用任何經適當組態之硬體及/或軟體的系統。圖2繪示根據一些實施例之UE的組件。所示組件中的至少一些可使用於eNB或MME,例如,諸如在圖1中所示的UE102或eNB104。UE200與其他組件可經組態以使用如本文中所說明的同步化訊號。UE200可能是圖1所示之UEs102中的一個,且可能是靜態、非行動裝置或可能是行動裝置。在一些實施例中,UE200可包括應用電路202、基頻電路204、射頻(RF)電路206、前端模組(FEM)電路208、以及一或多條天線210,其係至少如所示地耦合在一起。基頻電路204、RF電路206、以及FEM電路208中的至少一些可形成收發器。在 一些實施例中,其他網路元件,諸如eNB,可含有在圖2所示之組件中的一些或全部。該等網路元件中的其他者,諸如MME,可含有界面(諸如S1界面),以在有關UE的有線連接上、與eNB通訊。 The embodiments described herein can be implemented as a system using any suitably configured hardware and/or software. Figure 2 illustrates the components of a UE according to some embodiments. At least some of the components shown may be used in an eNB or MME, for example, such as UE 102 or eNB 104 shown in FIG. 1. UE 200 and other components can be configured to use synchronization signals as described herein. The UE 200 may be one of the UEs 102 shown in FIG. 1, and may be a static, non-mobile device, or may be a mobile device. In some embodiments, the UE 200 may include an application circuit 202, a baseband circuit 204, a radio frequency (RF) circuit 206, a front-end module (FEM) circuit 208, and one or more antennas 210, which are coupled at least as shown Together. At least some of the baseband circuit 204, the RF circuit 206, and the FEM circuit 208 may form a transceiver. in In some embodiments, other network elements, such as eNB, may contain some or all of the components shown in FIG. 2. Others of these network elements, such as MME, may contain an interface (such as an S1 interface) to communicate with the eNB over the wired connection of the relevant UE.

應用或處理電路202可包括一或多個應用處理器。例如,應用電路202可包括電路,諸如但不限於一或多個單核或多核處理器。處理器可包括通用處理器與專用處理器(例如,圖形處理器、應用處理器等等)的任何組合。處理器可耦合、及/或可包括記憶體/儲存器、及可經組態以執行在記憶體/儲存器中所儲存的指令,以致使許多應用及/或操作系統在系統上運行。 The application or processing circuit 202 may include one or more application processors. For example, the application circuit 202 may include circuits such as, but not limited to, one or more single-core or multi-core processors. The processor may include any combination of general-purpose processors and special-purpose processors (eg, graphics processors, application processors, etc.). The processor may be coupled and/or may include memory/storage, and may be configured to execute instructions stored in the memory/storage to cause many applications and/or operating systems to run on the system.

基頻電路204可包括諸如但不限於一或多個單核或多核處理器的電路。基頻電路204可包括一或多個基頻處理器及/或控制邏輯,以處理從RF電路206之接收訊號路徑接收的基頻訊號,且產生用於RF電路206之傳送訊號路徑的基頻訊號。基頻處理電路204可與應用電路202界面接合,以用於產生且處理基頻訊號,且用於控制RF電路206之操作。例如,在一些實施例中,基頻電路204可包括第二代(2G)基頻處理器204a、第三代(3G)基頻處理器204b、第四代(4G)基頻處理器204c、及/或用於其它現有世代、研發中或未來將研發之世代(例如,第五代(5G)、5G等等)的其他基頻處理器204d。基頻電路204(例如,基頻處理器204a至204d中的一或多個)可處理致使經由RF電路206而與一或多個無線電網路通訊的多種無線電控 制功能。無線電控制功能可包括但不限於訊號調變/解調、編碼/解碼、射頻位移等等。在一些實施例中,基頻電路204的調變/解調電路可包括FFT、預編碼、及/或群集映射/解映射功能。在一些實施例中,基頻電路204的編碼/解碼電路可包括迴旋、去尾迴旋、渦輪、維特比(Viterbi)、及/或低密度奇偶檢查(LDPC)編碼器/解碼器功能。調變/解調及編碼器/解碼器功能的實施例不限於這些實例,且在其他實施例中可包括其他適當的功能。 The baseband circuit 204 may include circuits such as, but not limited to, one or more single-core or multi-core processors. The baseband circuit 204 may include one or more baseband processors and/or control logic to process the baseband signal received from the receive signal path of the RF circuit 206 and generate the baseband for the transmit signal path of the RF circuit 206 Signal. The baseband processing circuit 204 can interface with the application circuit 202 for generating and processing baseband signals, and for controlling the operation of the RF circuit 206. For example, in some embodiments, the baseband circuit 204 may include a second-generation (2G) baseband processor 204a, a third-generation (3G) baseband processor 204b, a fourth-generation (4G) baseband processor 204c, And/or other baseband processors 204d used in other current generations, under development, or future generations (for example, fifth generation (5G), 5G, etc.). The baseband circuit 204 (for example, one or more of the baseband processors 204a to 204d) can process a variety of radio controls that cause communication with one or more radio networks via the RF circuit 206. 制function. Radio control functions may include but are not limited to signal modulation/demodulation, encoding/decoding, radio frequency shifting, and so on. In some embodiments, the modulation/demodulation circuit of the baseband circuit 204 may include FFT, precoding, and/or cluster mapping/demapping functions. In some embodiments, the encoding/decoding circuit of the baseband circuit 204 may include convolution, tail-revolution, turbo, Viterbi, and/or low-density parity check (LDPC) encoder/decoder functions. The embodiments of modulation/demodulation and encoder/decoder functions are not limited to these examples, and other suitable functions may be included in other embodiments.

在一些實施例中,基頻電路204可包括協定堆疊元件,諸如例如演進通用陸上無線電存取網路(EUTRAN)協定元件,例如包括實體(PHY)、媒體存取控制(MAC)、無線電鏈路控制(RLC)、封包資料收斂協定(PDCP)、及/或無線電資源控制(RRC)元件。基頻電路204的中央處理單元(CPU)204e可經組態,以運行協定堆疊的元件,以用於PHY、MAC、RLC、PDCP、及/或RRC層的訊號發送。在一些實施例中,基頻電路可包括一或多個音訊數位訊號處理器(DSP)204f。音訊DSP204f可包括用於壓縮/解壓縮以及回音消除的元件,且在其他實施例中可包括其他適當的處理元件。基頻電路的組件可適當地結合在單一晶片、單一晶片組中、或在一些實施例中配置於相同的電路板上。在一些實施例中,基頻電路204與應用電路202之構成組件中的一些或全部可諸如例如在系統單晶片(SOC)上一起實施。 In some embodiments, the baseband circuit 204 may include protocol stack elements, such as, for example, Evolved Universal Terrestrial Radio Access Network (EUTRAN) protocol elements, including physical (PHY), medium access control (MAC), and radio link. Control (RLC), Packet Data Convergence Protocol (PDCP), and/or Radio Resource Control (RRC) components. The central processing unit (CPU) 204e of the baseband circuit 204 can be configured to run protocol stacking components for PHY, MAC, RLC, PDCP, and/or RRC layer signal transmission. In some embodiments, the baseband circuit may include one or more audio digital signal processors (DSP) 204f. The audio DSP 204f may include components for compression/decompression and echo cancellation, and may include other appropriate processing components in other embodiments. The components of the baseband circuit can be appropriately combined in a single chip, a single chip group, or in some embodiments, configured on the same circuit board. In some embodiments, some or all of the constituent components of the baseband circuit 204 and the application circuit 202 can be implemented together, such as, for example, on a system-on-chip (SOC).

在一些實施例中,基頻電路204可提供用於與一或多個無線電技術相容的通訊。例如,在一些實施例中,基頻電路204可支援與演進通用陸上無線電存取網路(EUTRAN)及/或其他無線都市區域網路(WMAN)、無線區域網路(WLAN)、無線個人區域網路(WPAN)的通訊。基頻電路204經組態以支援超過一個無線協定之無線電通訊的實施例可稱為多模式基頻電路。在一些實施例中,該裝置可經組態以根據通訊標準或其他協定或標準來操作,包括電機電子工程師協會(IEEE)802.16無線技術(WiMax)、包括經調適(ad)之IEEE802.11的IEEE802.11無線技術(WiFi)(其在60GHz毫米的波譜中操作)、多種其他無線技術(諸如全球行動通訊系統(GSM)、增強型資料速率全球行動通訊系統演進(EDGE)、GSM EDGE無線電存取網路(GERAN)、通用行動通信系統(UMTS)、UMTS陸上無線電存取網路(UTRAN)、或已經研發或將要研發的其他2G、3G、4G、5G等等技術)。 In some embodiments, the baseband circuit 204 may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuit 204 can support and evolve the Universal Terrestrial Radio Access Network (EUTRAN) and/or other wireless metropolitan area networks (WMAN), wireless local area networks (WLAN), and wireless personal area networks. Network (WPAN) communication. Embodiments in which the baseband circuit 204 is configured to support radio communications with more than one wireless protocol may be referred to as a multi-mode baseband circuit. In some embodiments, the device can be configured to operate in accordance with communication standards or other protocols or standards, including IEEE 802.16 wireless technology (WiMax), including adapted (ad) IEEE802.11 IEEE802.11 wireless technology (WiFi) (which operates in the 60GHz millimeter spectrum), a variety of other wireless technologies (such as Global System for Mobile Communications (GSM), Enhanced Data Rate Global System for Mobile Communications Evolution (EDGE), GSM EDGE radio storage Access network (GERAN), universal mobile communication system (UMTS), UMTS terrestrial radio access network (UTRAN), or other 2G, 3G, 4G, 5G, etc. technologies that have been developed or will be developed).

RF電路206可使用通過非固態媒體的調變電磁輻射而致能與無線網路的通訊。在許多實施例中,RF電路206可包括切換器、濾波器、放大器等等,以促進與無線網路的通訊。RF電路206可包括接收訊號路徑,該接收訊號路徑可包括降轉換從FEM電路208接收之RF訊號且提供基頻訊號到基頻電路204的電路。RF電路206亦可包括傳送訊號路徑,該傳送訊號路徑可包括升轉換由基頻電路 204所提供之基頻訊號且提供RF輸出訊號到FEM電路208以用於傳送的電路。 The RF circuit 206 can use modulated electromagnetic radiation through non-solid media to enable communication with the wireless network. In many embodiments, the RF circuit 206 may include switches, filters, amplifiers, etc. to facilitate communication with wireless networks. The RF circuit 206 may include a receiving signal path, and the receiving signal path may include a circuit that down-converts the RF signal received from the FEM circuit 208 and provides a baseband signal to the baseband circuit 204. The RF circuit 206 may also include a transmission signal path, which may include an up-conversion by the baseband circuit The baseband signal provided by 204 and the RF output signal are provided to the FEM circuit 208 for transmission.

在一些實施例中,RF電路206可包括接收訊號路徑與傳送訊號路徑。RF電路206的接收訊號路徑可包括混合器電路206a、放大器電路206b、以及濾波器電路206c。RF電路206的傳送訊號路徑可包括濾波器電路206c與混合器電路206a。RF電路206亦可包括合成器電路206d,以用於合成由接收訊號路徑與傳送訊號路徑之混合器電路206a所使用的頻率。在一些實施例中,接收訊號路徑的混合器電路206a可經組態以基於由合成器電路206d所提供的合成頻率降轉換從FEM電路208接收的RF訊號。放大器電路206b可經組態以放大降轉換訊號,且濾波器電路206c可以是低通濾波器(LPF)或帶通濾波器(BPF),該濾波器經組態以從降轉換訊號移除不想要的訊號,以產生輸出基頻訊號。輸出基頻訊號可提供到基頻電路204,以用於進一步處理。在一些實施例中,輸出基頻訊號可以是零頻率基頻訊號,雖然這並非必要。在一些實施例中,接收訊號路徑的混合器電路206a可包含被動混合器,雖然該等實施例的範圍不限於此態樣。 In some embodiments, the RF circuit 206 may include a receiving signal path and a transmitting signal path. The receiving signal path of the RF circuit 206 may include a mixer circuit 206a, an amplifier circuit 206b, and a filter circuit 206c. The transmission signal path of the RF circuit 206 may include a filter circuit 206c and a mixer circuit 206a. The RF circuit 206 may also include a synthesizer circuit 206d for synthesizing the frequency used by the mixer circuit 206a of the receiving signal path and the transmitting signal path. In some embodiments, the mixer circuit 206a of the receive signal path may be configured to down-convert the RF signal received from the FEM circuit 208 based on the synthesized frequency provided by the synthesizer circuit 206d. The amplifier circuit 206b can be configured to amplify the down-converted signal, and the filter circuit 206c can be a low-pass filter (LPF) or a band-pass filter (BPF) that is configured to remove unwanted signals from the down-converted signal. Necessary signal to generate the output baseband signal. The output baseband signal can be provided to the baseband circuit 204 for further processing. In some embodiments, the output baseband signal may be a zero-frequency baseband signal, although this is not necessary. In some embodiments, the mixer circuit 206a of the receiving signal path may include a passive mixer, although the scope of these embodiments is not limited to this aspect.

在一些實施例中,傳送訊號路徑的混合器電路206a可經組態以基於由合成器電路206d所提供的合成頻率升轉換輸入基頻訊號,以產生用於FEM電路208的RF輸出訊號。基頻訊號可由基頻電路204提供且可由濾波器電路 206c所濾波。濾波器電路206c可包括低通濾波器(LPF),雖然該等實施例的範圍不限於此態樣。 In some embodiments, the mixer circuit 206a of the transmission signal path can be configured to up-convert the input baseband signal based on the synthesized frequency provided by the synthesizer circuit 206d to generate the RF output signal for the FEM circuit 208. The baseband signal can be provided by the baseband circuit 204 and can be provided by the filter circuit Filtered by 206c. The filter circuit 206c may include a low-pass filter (LPF), although the scope of the embodiments is not limited to this aspect.

在一些實施例中,接收訊號路徑的混合器電路206a與傳送訊號路徑的混合器電路206a可包括兩個或更多個混合器,且可經配置以各別用於正交降頻轉換及/或增頻轉換。在一些實施例中,接收訊號路徑的混合器電路206a與傳送訊號路徑的混合器電路206a可包括兩個或更多個混合器,且可經配置以用於影像抑制(例如,Hartley影像抑制)。在一些實施例中,接收訊號路徑的混合器電路206a與混合器電路206a可經配置以各別用於直接降頻轉換及/或直接增頻轉換。在一些實施例中,接收訊號路徑的混合器電路206a與傳送訊號路徑的混合器電路206a可經配置以用於超外差操作。 In some embodiments, the mixer circuit 206a of the receiving signal path and the mixer circuit 206a of the transmitting signal path may include two or more mixers, and may be configured to be used for quadrature down conversion and/ Or up-conversion. In some embodiments, the mixer circuit 206a of the receiving signal path and the mixer circuit 206a of the transmitting signal path may include two or more mixers, and may be configured for image suppression (for example, Hartley image suppression) . In some embodiments, the mixer circuit 206a and the mixer circuit 206a of the receive signal path can be configured for direct down conversion and/or direct up conversion, respectively. In some embodiments, the mixer circuit 206a of the receiving signal path and the mixer circuit 206a of the transmitting signal path may be configured for superheterodyne operation.

在一些實施例中,輸出基頻訊號與輸入基頻訊號可以是類比基頻訊號,雖然實施例的範圍不限於此態樣。在一些替代實施例中,輸出基頻訊號與輸入基頻訊號可以是數位基頻訊號。在這些替代實施例中,RF電路206可包括類比至數位轉換器(ADC)以及數位至類比轉換器(DAC)電路,且基頻電路204可包括用以與RF電路206通訊的數位基頻界面。 In some embodiments, the output baseband signal and the input baseband signal may be analog baseband signals, although the scope of the embodiments is not limited to this aspect. In some alternative embodiments, the output baseband signal and the input baseband signal may be digital baseband signals. In these alternative embodiments, the RF circuit 206 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuits, and the baseband circuit 204 may include a digital baseband interface for communicating with the RF circuit 206 .

在一些雙模式實施例中,分開的無線電IC電路可提供用於處理用於各頻譜的訊號,雖然該等實施例的範圍不限於此態樣。 In some dual-mode embodiments, separate radio IC circuits can be provided for processing signals for each spectrum, although the scope of these embodiments is not limited to this aspect.

在一些實施例中,合成器電路206d可以是分數式N合成器或分數式N/N+1合成器,雖然實施例的範圍不限於此態樣,其他類型的頻率合成器則可能適合。例如,合成器電路206d可能是三角積分合成器、倍頻器、或包含具有分頻器之相鎖迴路的合成器。 In some embodiments, the synthesizer circuit 206d may be a fractional N synthesizer or a fractional N/N+1 synthesizer. Although the scope of the embodiment is not limited to this aspect, other types of frequency synthesizers may be suitable. For example, the synthesizer circuit 206d may be a sigma delta synthesizer, a frequency multiplier, or a synthesizer including a phase lock loop with a frequency divider.

合成器電路206d可經組態以基於頻率輸入與除法器控制輸入、合成由RF電路206之混合器電路206a所使用的輸出頻率。在一些實施例中,合成器電路206d可以是分數式N/N+1合成器。 The synthesizer circuit 206d can be configured to synthesize the output frequency used by the mixer circuit 206a of the RF circuit 206 based on the frequency input and the divider control input. In some embodiments, the synthesizer circuit 206d may be a fractional N/N+1 synthesizer.

在一些實施例中,頻率輸入可由電壓控制振盪器(VCO)提供,雖然這並非必要。除法器控制輸入可藉由基頻電路204或應用處理器202依據希望的輸出頻率來提供。在一些實施例中,除法器控制輸入(例如,N)可基於應用處理器202指示的通道、從查找表來判定。 In some embodiments, the frequency input may be provided by a voltage controlled oscillator (VCO), although this is not necessary. The divider control input can be provided by the baseband circuit 204 or the application processor 202 according to the desired output frequency. In some embodiments, the divider control input (eg, N) may be determined from a lookup table based on the channel indicated by the application processor 202.

RF電路206的合成器電路206d可包括除法器、延遲鎖定迴路(DLL)、多工器、以及相位累加器。在一些實施例中,除法器可能是雙模除法器(DMD),且相位累加器可能是數位相位累加器(DPA)。在一些實施例中,DMD可經組態,以將輸入訊號除以N或N+1(例如,基於進位輸出),以提供分數除數。在一些實例實施例中,DLL可包括一組串接、可調、延遲元件、相位偵測器、供給泵、以及D型正反器。在這些實施例中,延遲元件可經組態以將VCO週期分解成Nd個相等封包的相位,其中Nd係為延 遲線中的延遲元件數目。以此方式,DLL提供負反饋,以協助確認經過延遲線的總延遲是一個VCO循環。 The synthesizer circuit 206d of the RF circuit 206 may include a divider, a delay locked loop (DLL), a multiplexer, and a phase accumulator. In some embodiments, the divider may be a dual modulus divider (DMD), and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD can be configured to divide the input signal by N or N+1 (eg, based on a carry output) to provide a fractional divisor. In some example embodiments, the DLL may include a set of series-connected, adjustable, delay elements, phase detectors, supply pumps, and D-type flip-flops. In these embodiments, the delay element can be configured to decompose the VCO period into the phases of Nd equal packets, where Nd is the delay The number of delay elements in the late line. In this way, the DLL provides negative feedback to help confirm that the total delay through the delay line is a VCO cycle.

在一些實施例中,合成器電路206d可經組態以產生載波頻率作為輸出頻率,而在其他實施例中,輸出頻率可以是載波頻率的倍數(例如,載波頻率的兩倍、載波頻率的四倍)並結合正交產生器與除法器電路來使用,以產生在載波頻率、相對於彼此具有多個不同相位的多個訊號。在一些實施例中,輸出頻率可以是LO頻率(fLO)。在一些實施例中,RF電路206可包括IQ/極性轉換器。 In some embodiments, the synthesizer circuit 206d may be configured to generate the carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (for example, twice the carrier frequency, four times the carrier frequency). Times) and used in combination with a quadrature generator and divider circuit to generate multiple signals with multiple different phases relative to each other at the carrier frequency. In some embodiments, the output frequency may be the LO frequency (fLO). In some embodiments, the RF circuit 206 may include an IQ/polarity converter.

FEM電路208可包括接收訊號路徑,該接收訊號路徑可包括經組態以在從一或多條天線210接收的RF訊號上操作、放大接收訊號、以及提供接收訊號的放大版本到RF電路206以用於進一步處理的電路。FEM電路208亦可包括傳送訊號路徑,該傳送訊號路徑可包括經組態以放大用於由RF電路206所提供傳送之訊號的電路,以用於藉由一或多條天線210中的一或多條來傳送。 The FEM circuit 208 may include a received signal path, which may include configured to operate on the RF signal received from one or more antennas 210, amplify the received signal, and provide an amplified version of the received signal to the RF circuit 206. Circuit for further processing. The FEM circuit 208 may also include a transmission signal path, which may include a circuit configured to amplify the signal for transmission provided by the RF circuit 206 for use by one or more of the antennas 210 Multiple to send.

在一些實施例中,FEM電路208可包括TX/RX切換器,以在傳送模式與接收模式操作之間切換。FEM電路可包括接收訊號路徑與傳送訊號路徑。FEM電路的接收訊號路徑可包括低雜訊放大器(LNA),以放大接收的RF訊號,且提供該放大的接收RF訊號作為輸出(例如,到RF電路206)。FEM電路208的傳送訊號路徑可包括用以放大輸入RF訊號(例如,由RF電路206所提供)的功率放大器 (PA)以及用以產生RF訊號以用於後續傳送(例如,藉由一或多條天線210中的一或多條)的一或多個濾波器。 In some embodiments, the FEM circuit 208 may include a TX/RX switch to switch between transmission mode and reception mode operation. The FEM circuit may include a receiving signal path and a transmitting signal path. The received signal path of the FEM circuit may include a low noise amplifier (LNA) to amplify the received RF signal and provide the amplified received RF signal as an output (for example, to the RF circuit 206). The transmission signal path of the FEM circuit 208 may include a power amplifier for amplifying the input RF signal (for example, provided by the RF circuit 206) (PA) and one or more filters used to generate RF signals for subsequent transmission (for example, by one or more of one or more antennas 210).

在一些實施例中,UE200可包括額外元件,諸如例如記憶體/儲存器、顯示器、照相機、感測器、及/或輸入/輸出(I/O)界面,如下文更詳細的說明。在一些實施例中,本文中所說明的UE200可以是可攜式無線通訊裝置的一部份,諸如個人數位助理(PDA)、具有無線通訊能力的膝上型或可攜式電腦、無線上網機、無線電話、智慧型手機、無線耳機、傳呼器、即時通訊裝置、數位照相機、存取點、電視、醫療裝置(例如,心跳速率監視器、血壓監視器等等)、或可無線接收及/或傳送資訊的其他裝置。在一些實施例中,UE200可包括經設計以致使使用者與系統互動的一或多個使用者界面及/或經設計以致使週邊組件與系統互動的週邊組件界面。例如,UE200可包括鍵盤、小鍵盤、觸控板、顯示器、感測器、非揮發性記憶體埠、通用串列匯流排(USB)埠、音訊插座、供電界面、一或多條天線、圖形處理器、應用處理器、揚聲器、麥克風、以及其他I/O組件中的一或多個。顯示器可以是包括觸控螢幕的液晶顯示器(LCD)或發光二極體(LED)螢幕。感測器可包括陀螺儀感測器、加速度計、接近感測器、周圍光感測器、以及定位單元。定位單元可與定位網路之組件通訊,例如全球定位系統(GPS)衛星。 In some embodiments, the UE 200 may include additional elements such as, for example, memory/storage, display, camera, sensor, and/or input/output (I/O) interface, as described in more detail below. In some embodiments, the UE 200 described herein may be a part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capabilities, and a wireless Internet machine , Wireless phones, smart phones, wireless headsets, pagers, instant messaging devices, digital cameras, access points, televisions, medical devices (for example, heart rate monitors, blood pressure monitors, etc.), or wireless reception and/ Or other devices that send information. In some embodiments, the UE 200 may include one or more user interfaces designed to cause the user to interact with the system and/or peripheral component interfaces designed to cause the peripheral components to interact with the system. For example, UE200 may include a keyboard, keypad, touchpad, display, sensor, non-volatile memory port, universal serial bus (USB) port, audio socket, power interface, one or more antennas, graphics One or more of processors, application processors, speakers, microphones, and other I/O components. The display may be a liquid crystal display (LCD) or a light emitting diode (LED) screen including a touch screen. The sensor may include a gyroscope sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit can communicate with components of the positioning network, such as global positioning system (GPS) satellites.

天線210可包含一或多條方向性或全向性天線,例如包括偶極天線、單極天線、貼片天線、環形天線、微帶 天線、或適合用於傳送RF訊號的其他類型天線。在一些多輸入多輸出(MIMO)實施例中,天線210可有效地分開,以利用可能產生的空間多樣性與不同通道特徵。 The antenna 210 may include one or more directional or omnidirectional antennas, such as dipole antennas, monopole antennas, patch antennas, loop antennas, and microstrip antennas. Antennas, or other types of antennas suitable for transmitting RF signals. In some multiple-input multiple-output (MIMO) embodiments, the antenna 210 can be effectively separated to take advantage of the possible spatial diversity and different channel characteristics.

雖然UE200繪示為具有許多分開的功能性元件,但是該等功能性元件中的一或多個可結合,且可藉由軟體組態元件的組合來實施,諸如包括數位訊號處理器(DSPs)的處理元件、及/或其他硬體元件。例如,一些元件可包含一或多個微處理器、DSPs、場可程式化閘陣列(FPGAs)、特殊應用積體電路(ASICs)、射頻積體電路(RFICs)以及用於施行至少本文中所說明功能之多種硬體與邏輯電路的組合。在一些實施例中,功能性元件意指在一或多個處理元件上操作的一或多個過程。 Although UE200 is shown as having many separate functional elements, one or more of these functional elements can be combined and implemented by a combination of software configuration elements, such as including digital signal processors (DSPs) Processing components, and/or other hardware components. For example, some components may include one or more microprocessors, DSPs, field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), radio frequency integrated circuits (RFICs), and are used to implement at least those described herein. Explain the combination of various hardware and logic circuits of functions. In some embodiments, a functional element means one or more processes operating on one or more processing elements.

實施例可以硬體、韌體、以及軟體中的一個或組合實施。實施例亦可實施作為儲存在電腦可讀取儲存裝置上的指令,其可藉由至少一處理器來讀取與執行,以施行本文中所說明的操作。電腦可讀取儲存裝置可包括任何非暫態機制,其用於儲存形式為可由機器(例如,電腦)讀取的資訊。例如,電腦可讀取儲存裝置可包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置、以及其他儲存裝置與媒體。一些實施例可包括一或多個處理器,且可組態具有儲存在電腦可讀取儲存裝置上的指令。 The embodiments can be implemented in one or a combination of hardware, firmware, and software. The embodiments can also be implemented as instructions stored on a computer-readable storage device, which can be read and executed by at least one processor to perform the operations described herein. The computer-readable storage device may include any non-transitory mechanism for storing information in a form that can be read by a machine (for example, a computer). For example, computer-readable storage devices may include read-only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, and other storage devices and media. Some embodiments may include one or more processors, and may be configured with instructions stored on a computer-readable storage device.

圖3係為根據一些實施例之通訊裝置的方塊圖。該裝置可以是UE或eNB,例如諸如在圖1中所示的UE102或 eNB104,其可經組態以追蹤在本文中所說明的UE。實體層電路302可施行多種編碼與解碼的功能,該等功能可包括用於接收訊號之傳送與解碼之基頻訊號的形成。通訊裝置300亦可包括用於控制存取到無線媒體的媒體存取控制層(MAC)電路304。通訊裝置300亦可包括處理電路306(諸如一或多個單核或多核處理器)以及配置以施行本文中所說明操作的記憶體308。實體層電路302、MAC電路304、以及處理電路306可處置多種無線電控制功能,該等功能致能與相容於一或多個無線電技術之一或多個無線電網路的通訊。無線電控制功能可包括訊號調變、編碼、解碼、射頻位移等等。例如,類似在圖2中所示的裝置,在一些實施例中,通訊可以WMAN、WLAN、及WPAN中的一或多個致能。在一些實施例中,通訊裝置300可經組態以根據3GPP標準或其他協定或標準操作,包括已經研發或將研發的WiMax、WiFi、WiGig、GSM、EDGE、GERAN、UMTS、UTRAN、或其他3G、4G、5G等等技術。通訊裝置300可包括用以致能與其他外部裝置無線通訊的收發器電路312、以及用以致能與其他外部裝置有線通訊的界面314。舉另一個實例,收發器電路312可施行多種傳送與接收功能,諸如在基頻範圍與射頻(RF)範圍之間的訊號轉換。 Figure 3 is a block diagram of a communication device according to some embodiments. The apparatus may be a UE or an eNB, such as the UE 102 shown in FIG. 1 or The eNB 104, which can be configured to track the UE described herein. The physical layer circuit 302 can perform a variety of encoding and decoding functions, and these functions can include the formation of baseband signals for transmission and decoding of received signals. The communication device 300 may also include a medium access control layer (MAC) circuit 304 for controlling access to the wireless medium. The communication device 300 may also include a processing circuit 306 (such as one or more single-core or multi-core processors) and a memory 308 configured to perform the operations described herein. The physical layer circuit 302, the MAC circuit 304, and the processing circuit 306 can handle a variety of radio control functions that enable communication with one or more radio networks compatible with one or more radio technologies. Radio control functions can include signal modulation, encoding, decoding, radio frequency displacement, and so on. For example, similar to the device shown in FIG. 2, in some embodiments, communication can be enabled by one or more of WMAN, WLAN, and WPAN. In some embodiments, the communication device 300 may be configured to operate in accordance with 3GPP standards or other agreements or standards, including WiMax, WiFi, WiGig, GSM, EDGE, GERAN, UMTS, UTRAN, or other 3Gs that have been developed or will be developed. , 4G, 5G and other technologies. The communication device 300 may include a transceiver circuit 312 for enabling wireless communication with other external devices, and an interface 314 for enabling wired communication with other external devices. As another example, the transceiver circuit 312 can perform various transmission and reception functions, such as signal conversion between the fundamental frequency range and the radio frequency (RF) range.

天線301可包含一或多條方向性或全向性天線,例如包括偶極天線、單極天線、貼片天線、環形天線、微帶天線、或適合用於傳送RF訊號的其他類型天線。在一些 多輸入多輸出(MIMO)實施例中,天線301可有效地分開,以利用可能產生的空間多樣性與不同通道特徵。 The antenna 301 may include one or more directional or omnidirectional antennas, such as dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas, or other types of antennas suitable for transmitting RF signals. In some In the multiple-input multiple-output (MIMO) embodiment, the antenna 301 can be effectively separated to take advantage of the possible spatial diversity and different channel characteristics.

雖然通訊裝置300繪示為具有許多分開的功能性元件,但是該等功能性元件中的一或多個可結合,且可藉由軟體組態元件的組合來實施(諸如包括數位訊號處理器(DSPs)的處理元件、及/或其他硬體元件),或該等功能性元件中的一或多個可在複數個不同裝置中實施。例如,一些元件可包含一或多個微處理器、DSPs、FPGAs、ASICs、RFICs、以及用於施行至少本文中所說明功能之多種硬體與邏輯電路的組合。在一些實施例中,功能性元件可意指在一或多個處理元件上操作的一或多個過程。實施例可以硬體、韌體、及軟體之一個或組合來實施。實施例亦可實施作為儲存在電腦可讀取儲存裝置上的指令,其可藉由至少一處理器來讀取與執行,以施行本文中所說明的操作。 Although the communication device 300 is shown as having many separate functional elements, one or more of these functional elements can be combined, and can be implemented by a combination of software configuration elements (such as including a digital signal processor ( DSPs) processing components and/or other hardware components), or one or more of these functional components can be implemented in a plurality of different devices. For example, some components may include one or more microprocessors, DSPs, FPGAs, ASICs, RFICs, and a combination of various hardware and logic circuits for performing at least the functions described herein. In some embodiments, a functional element may mean one or more processes operating on one or more processing elements. The embodiments can be implemented in one or a combination of hardware, firmware, and software. The embodiments can also be implemented as instructions stored on a computer-readable storage device, which can be read and executed by at least one processor to perform the operations described herein.

圖4繪示根據一些實施例之通訊裝置的另一方塊圖。在替代實施例中,通訊裝置400可操作當作獨立裝置,或可連接(例如,網路化)到其他通訊裝置。在網路化的部署中,在伺服器-客戶端網路環境中,通訊裝置400可以伺服器通訊裝置、客戶端通訊裝置、或兩者的身分來操作。在一實例中,在點對點(P2P)(或其他分佈式)的網路環境中,通訊裝置400可充當點通訊裝置。通訊裝置400可以是UE、eNB、PC、平板PC、STB、PDA、行動電話、智慧型手機、網際網路應用、網路路由器、切換器 或橋接器、或能夠執行指令(逐次或以其他方式)的任何通訊裝置(該等指令指定由那通訊裝置所進行的動作)。進一步,當只繪示單一通訊裝置時,術語「通訊裝置(communication device)」亦將被採用,以包括通訊裝置之任何集合,其各別地或結合地執行一組(或多組)指令,以施行本文中所討論方法的任一個或多個,諸如雲端計算、軟體即服務(SaaS)、其他電腦叢集組態。 FIG. 4 shows another block diagram of a communication device according to some embodiments. In alternative embodiments, the communication device 400 can operate as a standalone device, or can be connected (eg, networked) to other communication devices. In a networked deployment, in a server-client network environment, the communication device 400 can operate as a server communication device, a client communication device, or both. In one example, in a peer-to-peer (P2P) (or other distributed) network environment, the communication device 400 can act as a peer-to-peer communication device. The communication device 400 can be UE, eNB, PC, tablet PC, STB, PDA, mobile phone, smart phone, Internet application, network router, switcher Or a bridge, or any communication device capable of executing instructions (sequentially or otherwise) (the instructions specify the actions performed by that communication device). Furthermore, when only a single communication device is shown, the term "communication device" will also be used to include any set of communication devices that execute one group (or groups) of commands individually or in combination. To implement any one or more of the methods discussed in this article, such as cloud computing, software as a service (SaaS), and other computer cluster configurations.

如本文中所說明的實例可包括邏輯或許多組件、模組、或機制,或可在其上操作。模組係為能夠施行指定操作且可以特定方式組態或配置的有形實體(例如,硬體)。在一實例中,以指定的方式,電路可配置(例如,內部地,或相關於譬如其它電路的外部實體)作為模組。在一實例中,一或多個電腦系統(例如,獨立的客戶端或伺服器電腦系統)或一或多個硬體處理器的全部或一部份可藉由韌體或軟體(例如,指令、應用部份、或應用)來組態作為操作以施行指定操作的一模組。在一實例中,軟體可存在於通訊裝置可讀取媒體上。在一實例中,軟體當由模組的基礎硬體執行時,導致硬體施行指定的操作。 Examples as described herein may include logic or many components, modules, or mechanisms, or may operate on them. A module is a tangible entity (for example, hardware) that can perform specified operations and can be configured or configured in a specific manner. In one example, in a specified manner, the circuit can be configured (for example, internally, or related to external entities such as other circuits) as a module. In one example, all or part of one or more computer systems (e.g., stand-alone client or server computer systems) or one or more hardware processors can be implemented by firmware or software (e.g., command , Application part, or application) to configure a module as an operation to perform a specified operation. In one example, the software may exist on a communication device readable medium. In one example, when the software is executed by the basic hardware of the module, it causes the hardware to perform a specified operation.

相應地,術語「模組(module)」被理解為涵蓋有形實體,其係為經實體架構、具體組態(例如,硬體化)、或暫時(例如,短暫地)組態(例如,程式化)而以指定方式操作或施行本文中所說明之任何操作的一部份或全部的實體。考慮模組經暫時組態的實例,該等模組的各個不需要在時間上的任何時刻實例化。例如,在模組包含使用 軟體來組態的通用硬體處理器之處,通用硬體處理器可在不同時間組態為各別的不同模組。軟體可相應地組態硬體處理器,例如,以在同一時間點構成特定的模組且在不同時間點構成不同的模組。 Correspondingly, the term "module" is understood to cover tangible entities, which are through physical structure, specific configuration (for example, hardware), or temporary (for example, temporary) configuration (for example, program It is an entity that operates or performs part or all of any operation described in this article in a specified manner. Consider the case where the modules are temporarily configured, and each of these modules does not need to be instantiated at any time in time. For example, in the module contains the use Where the general-purpose hardware processor is configured by software, the general-purpose hardware processor can be configured as different modules at different times. The software can configure the hardware processor accordingly, for example, to form a specific module at the same point in time and form different modules at different points in time.

通訊裝置(例如,電腦系統)400可包括硬體處理器402(例如,中央處理單元(CPU)、圖形處理單元(GPU)、硬體處理器核心、或其任何組合)、主要記憶體404、以及靜態記憶體406,其中一些或全部可經由內網連接(例如,匯流排)408彼此通訊。通訊裝置400可進一步包括顯示單元410、文數輸入裝置412(例如,鍵盤)、以及使用者界面(UI)導航裝置414(例如,滑鼠)。在一實例中,顯示單元410、輸入裝置412、以及UI導航裝置414可以是觸控螢幕顯示器。通訊裝置400可額外地包括儲存裝置(例如,驅動單元)416、訊號產生裝置418(例如,揚聲器)、網路界面裝置420、以及一或多個感測器421(諸如全球定位系統(GPS)感測器、羅盤、加速度計、或其他感測器)。通訊裝置400可包括輸出控制器428,諸如串聯(例如,通用串列匯流排(USB))、並聯、或其他有線或無線連接(例如,紅外線(IR)、近場通訊(NFC)等等),以通訊或控制一或多個週邊裝置(例如,印表機、讀卡機等等)。 The communication device (for example, a computer system) 400 may include a hardware processor 402 (for example, a central processing unit (CPU), a graphics processing unit (GPU), a hardware processor core, or any combination thereof), a main memory 404, And the static memory 406, some or all of which can communicate with each other via an intranet connection (for example, a bus) 408. The communication device 400 may further include a display unit 410, a text input device 412 (for example, a keyboard), and a user interface (UI) navigation device 414 (for example, a mouse). In an example, the display unit 410, the input device 412, and the UI navigation device 414 may be a touch screen display. The communication device 400 may additionally include a storage device (for example, a driving unit) 416, a signal generating device 418 (for example, a speaker), a network interface device 420, and one or more sensors 421 (such as a global positioning system (GPS)) Sensor, compass, accelerometer, or other sensor). The communication device 400 may include an output controller 428, such as serial (for example, universal serial bus (USB)), parallel, or other wired or wireless connections (for example, infrared (IR), near field communication (NFC), etc.) , To communicate or control one or more peripheral devices (for example, printers, card readers, etc.).

儲存裝置416可包括通訊裝置可讀取媒體422,在該媒體上儲存一或多組資料結構或指令424(例如,軟體),該等資料結構或指令係由本文中所說明之技術或功能中的任一者或多者所實施或利用。在由通訊裝置400執行的 期間內,指令424亦可完全或至少部份地存在於主要記憶體404內、靜態記憶體406內、或硬體處理器402內。在一實例中,硬體處理器402、主要記憶體404、靜態記憶體406、或儲存裝置416中的一個或任何組合可構成通訊裝置可讀取媒體。 The storage device 416 may include a communication device readable medium 422 on which one or more sets of data structures or commands 424 (for example, software) are stored. These data structures or commands are derived from the techniques or functions described in this document. Implemented or utilized by any one or more of them. When executed by the communication device 400 During this period, the instruction 424 may also exist completely or at least partially in the main memory 404, the static memory 406, or the hardware processor 402. In an example, one or any combination of the hardware processor 402, the main memory 404, the static memory 406, or the storage device 416 may constitute a communication device readable medium.

雖然通訊裝置可讀取媒體422繪示為單一媒體,但是術語「通訊裝置可讀取媒體(communication device readable medium)」可包括經組態以儲存一或多個指令424的單一媒體或多個媒體(例如,集中式或分佈式資料庫、及/或相關的快取與伺服器)。 Although the communication device readable medium 422 is shown as a single medium, the term "communication device readable medium" may include a single medium or multiple media configured to store one or more commands 424 (For example, centralized or distributed databases, and/or related caches and servers).

術語「通訊裝置可讀取媒體(communication device readable medium)」可包括能夠儲存、編碼、或運送指令以用於由通訊裝置400執行、且導致通訊裝置400施行本揭露技術之任一個或多個、或能夠儲存、編碼、或運送由此等指令所使用或與此等指令相關之資料結構的任何媒體。非限制性通訊裝置可讀取媒體實例可包括固態記憶體、以及光學與磁性媒體。通訊裝置可讀取媒體的具體實例可包括:非揮發性記憶體,諸如半導體記憶體裝置(例如,電性可程式化唯讀記憶體(EPROM)、電性可拭除可程式化唯讀記憶體(EEPROM))以及快閃記憶體裝置;磁碟,諸如內部硬碟與可移式磁碟;磁光碟;隨機存取記憶體(RAM);以及唯讀光碟記憶體(CD-ROM)與唯讀數位多用途光碟(DVD-ROM)磁碟。在一些實例中,通訊裝置可讀取媒體可包括非暫態通訊裝置可讀取媒體。 在一些實例中,通訊裝置可讀取媒體可包括並非暫態傳播訊號的通訊裝置可讀取媒體。 The term "communication device readable medium" may include instructions capable of storing, encoding, or transporting instructions for execution by the communication device 400 and causing the communication device 400 to implement any one or more of the disclosed technologies. Or any medium capable of storing, encoding, or transporting the data structure used by or related to these instructions. Non-limiting examples of readable media for communication devices may include solid-state memory, and optical and magnetic media. Specific examples of readable media for communication devices may include: non-volatile memory, such as semiconductor memory devices (for example, electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory) (EEPROM) and flash memory devices; magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; random access memory (RAM); and CD-ROM and Only read-bit multi-purpose compact disc (DVD-ROM) disks. In some examples, the communication device readable medium may include a non-transitory communication device readable medium. In some examples, the communication device readable medium may include a communication device readable medium that is not a transient propagating signal.

利用許多傳輸協定(例如,訊框中繼、網際網路協定(IP)、傳送控制協定(TCP)、用戶資料報協定(UDP)、超文件傳輸協定(HTTP)等等)的任一者,指令424可使用經由網路界面裝置420的傳送媒體而進一步在通訊網路426上傳送或接收。實例通訊網路可包括局部區域網路(LAN)、廣域網路(WAN)、封包資料網路(例如,網際網路)、行動電話網路(例如,蜂巢式網路)、傳統電話(POTS)網路、以及無線資料網路(例如,以Wi-Fi®著名的電機電子工程師協會(IEEE)802.11標準家族、以WiMax®著名的IEEE802.16標準家族)、IEEE802.15.4標準家族、長期演進(LTE)標準家族、通用行動通訊系統(UMTS)標準家族、點對點(P2P)網路、及其他。在一實例中,網路界面裝置420可包括一或多個實體插座(例如,乙太、同軸、或電話插座)或一或多條天線,以連接到通訊網路426。在一實例中,網路界面裝置420可包括複數條天線,以使用單輸入多輸出(SIMO)、MIMO、或多輸入單輸出(MISO)技術之至少一者來無線通訊。在一些實例中,網路界面裝置420可使用多使用者的MIMO技術來無線通訊。將採用術語「傳送媒體(transmission medium)」來包括任何無形媒體,該無形媒體能夠儲存、編碼、或運送由通訊裝置400所執行之指令,且包括用以促進此軟體之通訊的數位或類比通訊訊號或其他無形媒體。 Utilize any of many transmission protocols (for example, frame relay, Internet Protocol (IP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Hyper File Transfer Protocol (HTTP), etc.), The command 424 can be further transmitted or received on the communication network 426 using the transmission medium via the network interface device 420. Example communication networks may include local area networks (LAN), wide area networks (WAN), packet data networks (for example, the Internet), mobile phone networks (for example, cellular networks), and traditional telephone (POTS) networks And wireless data networks (for example, the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard family known as Wi-Fi®, the IEEE802.16 standard family known as WiMax®), IEEE802.15.4 standard family, long-term evolution (LTE ) Standard family, Universal Mobile Communication System (UMTS) standard family, Peer-to-Peer (P2P) network, and others. In one example, the network interface device 420 may include one or more physical sockets (for example, Ethernet, coaxial, or telephone sockets) or one or more antennas to connect to the communication network 426. In an example, the network interface device 420 may include a plurality of antennas for wireless communication using at least one of single-input multiple-output (SIMO), MIMO, or multiple-input single-output (MISO) technologies. In some examples, the network interface device 420 may use multi-user MIMO technology for wireless communication. The term "transmission medium" will be used to include any intangible media capable of storing, encoding, or transporting commands executed by the communication device 400, and including digital or analog communication used to facilitate the communication of this software Signal or other intangible media.

除了可由5G系統使用的多種類型的MIMO以外,5G系統亦可能可使用高頻帶(釐米波與毫米波)以用於在eNB與UE之間(或UE至UE)的通訊,因為這些波長能夠提供更寬的頻寬,以支援未來的整合通訊系統。由於結合MIMO,使用高頻帶因此可由於增加的頻寬可用性而縮減在多種網路上的應變量。為了使用高頻帶來實施通訊,形成增益的MIMO射束能夠補償由在這些更高頻帶之大氣衰減所導致的潛在嚴重路徑損耗,以及改善訊號雜訊比(SNR)且放大覆蓋範圍面積。藉由將特定的傳送射束對準目標UE,可將輻射的能量集中用於更高的能量效率,且抑制相互的UE干擾。 In addition to the various types of MIMO that can be used by 5G systems, 5G systems may also use high frequency bands (centimeter wave and millimeter wave) for communication between eNB and UE (or UE to UE) because these wavelengths can provide Broader bandwidth to support future integrated communication systems. Due to the combination of MIMO, the use of high frequency bands can reduce the amount of strain on multiple networks due to increased bandwidth availability. In order to use high-frequency bands for communication, the gain-forming MIMO beam can compensate for potentially severe path loss caused by atmospheric attenuation in these higher frequency bands, as well as improve the signal-to-noise ratio (SNR) and enlarge the coverage area. By aiming a specific transmission beam at the target UE, the radiated energy can be concentrated for higher energy efficiency, and mutual UE interference can be suppressed.

不過,在MIMO系統中,UE可選擇由eNB所傳送之複數條射束中的最佳射束以用於接收多種訊號,且使用由最佳射束指示的方向來傳送訊號到eNB。雖然使eNB知道哪一射束對於與UE通訊最佳將會令人希望,但是不幸地,此資訊可能對eNB是不可用的。也就是說,eNB可能不知道哪一射束正由UE所使用,且因此使用哪一方向以接收排程請求(SR)。eNB可因此掃描過全部射束的全部方向,導致UE重複傳送SR許多次(至少等於射束的數目)。當多個eNB(諸如LTE eNB與5G eNB)提供不同服務給UE時以及當UE具有相當高的遷移率時,這可被加劇,使得最佳的射束能夠相當快速地改變(例如,UE至少以每小時幾(比如說30)km移動)。為了避免這情形,可使用特定的SR或5G實體隨機存取通道(xPRACH)來啟動藉由UE的5G 資料傳送。具體地,在LTE鏈路中的SR可使用於在5G鏈路中的上行鏈路請求,以用於非獨立的部署,且xPRACH可使用於獨立部署,如相關於以下多項實施例來說明者。 However, in a MIMO system, the UE can select the best beam among the plurality of beams transmitted by the eNB for receiving various signals, and use the direction indicated by the best beam to transmit the signal to the eNB. Although it would be desirable for the eNB to know which beam is best for communicating with the UE, unfortunately, this information may not be available to the eNB. That is, the eNB may not know which beam is being used by the UE, and therefore which direction is used to receive the scheduling request (SR). The eNB can therefore scan all directions of all beams, causing the UE to repeatedly transmit SR many times (at least equal to the number of beams). This can be exacerbated when multiple eNBs (such as LTE eNB and 5G eNB) provide different services to the UE and when the UE has a relatively high mobility rate, so that the optimal beam can change relatively quickly (e.g., the UE at least Move in a few (for example, 30) km per hour). To avoid this situation, a specific SR or 5G physical random access channel (xPRACH) can be used to enable 5G via the UE Data transfer. Specifically, the SR in the LTE link can be used for the uplink request in the 5G link for non-independent deployment, and the xPRACH can be used in the independent deployment, as explained in the following multiple embodiments .

圖5繪示根據一些實施例之用於非獨立LTE系統的上行鏈路請求設計。如圖示,5G系統包括與LTE eNB504及5G eNB506通訊的UE502。UE502、LTE eNB504、及5G eNB506可顯示於圖1至圖4中。LTE eNB504及5G eNB506可經由X2界面連接,使得從UE502提供到LTE eNB504的資訊可如希望地前傳到5G eNB506。在一些實施例中,藉由使用LTE鏈路上的專用資源,傳送SR到LTE eNB504,UE502可啟動5G上行鏈路排程程序。SR可使用於用於5G鏈路之上行鏈路資源的請求。 Figure 5 illustrates an uplink request design for a non-standalone LTE system according to some embodiments. As shown in the figure, the 5G system includes UE502 communicating with LTE eNB504 and 5G eNB506. UE502, LTE eNB504, and 5G eNB506 can be shown in FIGS. 1 to 4. The LTE eNB 504 and the 5G eNB 506 can be connected via the X2 interface, so that the information provided from the UE 502 to the LTE eNB 504 can be forwarded to the 5G eNB 506 as desired. In some embodiments, by using dedicated resources on the LTE link to transmit the SR to the LTE eNB 504, the UE 502 can start the 5G uplink scheduling procedure. SR can be used to request uplink resources on 5G links.

與上文類似地,不同的實體上行鏈路通道可包括實體上行鏈路控制通道(PUCCH)或5G PUCCH(xPUCCH)(為了方便,下文僅稱為xPUCCH),其係由UE502使用來發送上行鏈路控制資訊(UCI)到LTE eNB504或5G eNB506,並且請求實體上行鏈路共享通道(PUSCH)或5G PUSCH(xPUSCH)(為了方便,下文僅稱為xPUSCH)提供上行鏈路資料到LTE eNB504或5G eNB506。xPUCCH可映射到由正交掩碼與兩個資源方塊所定義的UL控制通道資源(在時間上連續,在相鄰槽之間的邊界上潛在地跳躍)。xPUCCH可採用許多不同的格式,UCI則含有依據該格式的資訊。具體地,xPUCCH可含有SR,其係由UE使用來請求資源,以傳送使用PUCCH格式1的上行鏈路資料。 xPUCCH亦可含有確認回應/重傳請求(ACK/NACK)或通道品質指示(CQI)/通道狀態資訊(CSI)。CQI/CSI可將UE502所看見之現有下行鏈路通道情況的估計值指示到LTE eNB504或5G eNB506,以協助取決於通道的排程,且可包括MIMO相關反饋(例如,預編碼器矩陣指示,PMI)。 Similar to the above, different physical uplink channels may include physical uplink control channel (PUCCH) or 5G PUCCH (xPUCCH) (for convenience, hereinafter referred to as xPUCCH), which is used by UE502 to transmit uplink Channel control information (UCI) to LTE eNB504 or 5G eNB506, and request physical uplink shared channel (PUSCH) or 5G PUSCH (xPUSCH) (for convenience, hereinafter referred to as xPUSCH) to provide uplink data to LTE eNB504 or 5G eNB506. The xPUCCH can be mapped to the UL control channel resource defined by the orthogonal mask and two resource blocks (continuous in time, potentially jumping on the boundary between adjacent slots). xPUCCH can take many different formats, and UCI contains information based on that format. Specifically, xPUCCH may contain SR, which is used by the UE to request resources to transmit uplink data using PUCCH format 1. xPUCCH can also contain acknowledgement response/retransmission request (ACK/NACK) or channel quality indicator (CQI)/channel status information (CSI). CQI/CSI can indicate the estimated value of the existing downlink channel condition seen by UE502 to LTE eNB504 or 5G eNB506 to assist channel-dependent scheduling, and can include MIMO-related feedback (e.g., precoder matrix indication, PMI).

如圖5所示,在操作512,UE502可使用專用的SR資源來請求資源。專用的SR資源可經由先前與UE502的無線電資源控制(RRC)訊號發送而藉由LTE eNB504或5G eNB506組態。UE502可經組態具有只有一個SR資源(用於5G鏈路)或具有兩個SR資源(一個用於LTE鏈路中的上行鏈路請求,且另一個用於5G鏈路用的上行鏈路請求)。專用的資源可以是UE特定的,且可與資源分配索引有關。資源可具有專用時間、頻率、或代碼分配中的一或多個。 As shown in FIG. 5, in operation 512, the UE 502 may use dedicated SR resources to request resources. The dedicated SR resource can be configured by the LTE eNB504 or 5G eNB506 through the previous radio resource control (RRC) signal transmission with the UE502. UE502 can be configured with only one SR resource (for 5G link) or with two SR resources (one for uplink request in LTE link and the other for uplink for 5G link) request). The dedicated resources may be UE-specific and may be related to the resource allocation index. Resources may have one or more of dedicated time, frequency, or code allocation.

在成功偵測SR以後,在操作514,LTE eNB504可傳送根據DCI格式形成的PDCCH,該格式含有用於射束相關資訊的上行鏈路授予。具體地,LTE eNB504可分配上行鏈路資源,以用於藉由UE502來傳送LTE鏈路中的緩衝狀態報告(BSR)。雖然沒有顯示,但是在此點,LTE eNB504可在X2界面上,將UE502希望上行鏈路授予指示給5G eNB506,或可等待直到稍後通知5G eNB506。 After successfully detecting the SR, in operation 514, the LTE eNB 504 may transmit a PDCCH formed according to a DCI format that contains an uplink grant for beam related information. Specifically, the LTE eNB 504 can allocate uplink resources for the UE 502 to transmit a buffer status report (BSR) in the LTE link. Although not shown, at this point, the LTE eNB 504 may indicate to the 5G eNB 506 that the UE 502 wants uplink grant on the X2 interface, or may wait until the 5G eNB 506 is notified later.

如圖5所示,UE502可接收來自LTE eNB504的上行鏈路資源分配。在操作516,UE502可回應地傳送在所分配上行鏈路資源中之PUSCH上的BSR,其係在媒體存取控 制(MAC)協定資料單元(PDU)中運送。MAC PDU可用來通知eNB欲傳送之UE緩衝器中的資料數量。除了BSR以外,UE502可使用分配資源來報告5G射束測量。5G射束測量可允許5G eNB506使用5G鏈路中的適當射束來傳送訊號。5G射束測量可含有從射束參考信號(BRS)獲取之由UE502接收之來自5G eNB506的最佳射束的資訊,或由UE502進行的BRS接收功率(BRS-RP)測量。最佳射束可表示為獨特識別符,該識別符使射束與網路已知的傳送點產生關聯。UE506可持續監聽藉由5G eNB506的週期性射束傳送(參考訊號),以用於此測量。 As shown in FIG. 5, the UE 502 can receive the uplink resource allocation from the LTE eNB 504. In operation 516, the UE 502 may responsively transmit the BSR on the PUSCH in the allocated uplink resources, which is in the media access control system. It is transported in the MAC protocol data unit (PDU). The MAC PDU can be used to inform the eNB of the amount of data in the buffer of the UE to be transmitted. In addition to the BSR, the UE 502 can use allocated resources to report 5G beam measurements. The 5G beam measurement may allow the 5G eNB 506 to use the appropriate beam in the 5G link to transmit signals. The 5G beam measurement may include the information of the best beam from the 5G eNB 506 received by the UE 502 obtained from the beam reference signal (BRS), or the BRS received power (BRS-RP) measurement performed by the UE 502. The best beam can be expressed as a unique identifier that associates the beam with a known transmission point on the network. The UE 506 can continuously monitor the periodic beam transmission (reference signal) by the 5G eNB 506 for this measurement.

當藉由LTE eNB 504使用LTE鏈路來接收BSR與5G射束測量報告時,LTE eNB 504可判定適當的位置,以及在一些實施例中可判定最佳射束。或者,LTE eNB 504可在X2界面上將5G射束測量報告的資訊提供到5G eNB506,以供5G eNB506判定適當分配及/或最佳射束。在操作518,5G eNB506可使用最佳射束,使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於在5G鏈路上傳送上行鏈路資料的上行鏈路授予。特別地,基於BSR資訊,如由UE502所指示,5G eNB506可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與調變和編碼方案(MCS)。 When the LTE eNB 504 uses the LTE link to receive the BSR and 5G beam measurement reports, the LTE eNB 504 can determine the appropriate location and, in some embodiments, the best beam. Alternatively, the LTE eNB 504 may provide the 5G beam measurement report information to the 5G eNB 506 on the X2 interface, so that the 5G eNB 506 can determine the appropriate allocation and/or the best beam. In operation 518, the 5G eNB 506 may use the best beam to transmit the xPDCCH using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data on the 5G link. In particular, based on the BSR information, as indicated by the UE 502, the 5G eNB 506 can allocate appropriate resources and modulation and coding schemes (MCS) included in the uplink grant for uplink data.

在接收上行鏈路授予之後,UE502可使用5G鏈路傳送上行鏈路資料於xPUSCH520上。因此,雖然最初傳送SR與BSR/5G射束報告於LTE鏈路上,但是UE502卻可接收分配且傳送資料於5G鏈路上兩者。 After receiving the uplink grant, the UE 502 can use the 5G link to transmit uplink data on the xPUSCH 520. Therefore, although the SR and BSR/5G beam reports are initially transmitted on the LTE link, the UE 502 can receive the allocation and transmit data on both of the 5G links.

圖6繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。如圖示,5G系統包括與LTE eNB 604和5G eNB 606通訊的UE602。UE602、LTE eNB 604、及5G eNB 606可顯示於圖1至圖4中,且可以類似於圖5中之相同實體的方式運作。在一些實施例中,藉由使用在LTE鏈路上的專用資源將SR傳送到LTE eNB 604,UE602可啟動5G上行鏈路排程程序。SR可使用於用於5G鏈路之上行鏈路資源的請求。不過,不像圖5的實施例,用於BSR的資源可使用5G鏈路來分配。在此情形中,5G eNB 606與UE602之間的射束對準可能已經存在。 Figure 6 illustrates another uplink request design for a non-standalone LTE system according to some embodiments. As shown in the figure, the 5G system includes UE 602 communicating with LTE eNB 604 and 5G eNB 606. UE 602, LTE eNB 604, and 5G eNB 606 may be shown in FIGS. 1 to 4, and may operate in a manner similar to the same entity in FIG. 5. In some embodiments, by using dedicated resources on the LTE link to transmit the SR to the LTE eNB 604, the UE 602 can initiate the 5G uplink scheduling procedure. SR can be used to request uplink resources on 5G links. However, unlike the embodiment of FIG. 5, resources for BSR can be allocated using 5G links. In this case, the beam alignment between the 5G eNB 606 and the UE 602 may already exist.

與上文類似,在操作612,UE602可使用專用的SR資源來請求資源。專用的SR資源可藉由LTE eNB 604或5G eNB 606經由與UE602的RRC訊號發送來組態。UE602可僅組態有一個SR資源(用於5G鏈路)或組態有兩個SR資源,一個用於在LTE鏈路中的上行鏈路請求,且另一個用於用於5G鏈路的上行鏈路請求。 Similar to the above, in operation 612, the UE 602 may use dedicated SR resources to request resources. The dedicated SR resources can be configured by the LTE eNB 604 or 5G eNB 606 via RRC signal transmission with the UE602. UE602 can be configured with only one SR resource (for 5G link) or two SR resources, one for uplink request in LTE link, and the other for 5G link Uplink request.

在成功檢測SR之後,LTE eNB 604可判定5G資源係令人希望的,且於X2界面上,提供此資訊到5G eNB 606。不過,不像在圖5所示的實施例,LTE eNB 504可以不要進行進一步的動作。在操作614,5G eNB 606可傳送根據DCI格式而形成的xPDCCH,該格式含有用於射束相關資訊的上行鏈路授予。5G eNB 606已經具有相關於用於與UE602通訊之最佳射束的資訊。例如,自當接收SR的時候起,5G eNB 606可使用在預定數量的時間(其可基於 UE602移動率)內判定或提供的射束資訊。5G eNB 606可分配上行鏈路資源,以用於藉由UE602傳送BSR於5G鏈路中。在一些實施例中,5G eNB 606可分配額外的上行鏈路資源,以用於藉由UE602傳送5G射束測量報告於5G鏈路中,以更新資訊。5G eNB 606可使用最佳射束來傳送此資訊到UE602。 After successfully detecting the SR, the LTE eNB 604 can determine that 5G resources are desirable, and provide this information to the 5G eNB 606 on the X2 interface. However, unlike the embodiment shown in FIG. 5, the LTE eNB 504 may not perform further actions. In operation 614, the 5G eNB 606 may transmit an xPDCCH formed according to a DCI format that contains an uplink grant for beam related information. The 5G eNB 606 already has information about the best beam for communication with the UE602. For example, the 5G eNB 606 can be used for a predetermined amount of time (which can be based on UE602 mobile rate) determined or provided beam information. The 5G eNB 606 can allocate uplink resources for the UE 602 to transmit the BSR in the 5G link. In some embodiments, the 5G eNB 606 may allocate additional uplink resources for the UE 602 to transmit the 5G beam measurement report in the 5G link to update the information. The 5G eNB 606 can use the best beam to transmit this information to the UE 602.

UE602可接收來自5G eNB 606的上行鏈路資源分配。在操作616,UE602可回應地,以5G鏈路上的分配上行鏈路資源,傳送BSR到5G eNB 606。在此情形中,因為5G eNB 606可知道用於與UE602通訊的最佳射束,所以UE602可避免傳送5G測量報告,且因此,較少資源可由5G eNB 606分配以及由UE602使用。 The UE 602 may receive the uplink resource allocation from the 5G eNB 606. In operation 616, the UE 602 can responsively transmit the BSR to the 5G eNB 606 with the allocated uplink resources on the 5G link. In this case, because the 5G eNB 606 can know the best beam for communicating with the UE 602, the UE 602 can avoid transmitting 5G measurement reports, and therefore, fewer resources can be allocated by the 5G eNB 606 and used by the UE 602.

當藉由5G eNB 606使用5G鏈路來接收BSR時,在操作618,5G eNB 606可使用最佳射束、使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。基於BSR資訊,適當資源與MCS可藉由5G eNB 606分配在由5G eNB 606傳送的上行鏈路授予中。 When the 5G link is used to receive the BSR by the 5G eNB 606, in operation 618, the 5G eNB 606 may use the optimal beam to transmit the xPDCCH using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data. Based on the BSR information, appropriate resources and MCS can be allocated by the 5G eNB 606 in the uplink grant transmitted by the 5G eNB 606.

在接收上行鏈路授予之後,UE602可使用5G鏈路傳送上行鏈路資料於xPUSCH620上。因此,雖然最初傳送SR於LTE鏈路上,但是UE602之後可與5G eNB 606通訊,以發送BSR、接收分配、以及傳送資料於5G鏈路上。 After receiving the uplink grant, the UE 602 can use the 5G link to transmit uplink data on the xPUSCH 620. Therefore, although the SR is initially transmitted on the LTE link, the UE 602 can then communicate with the 5G eNB 606 to send BSR, receive allocation, and transmit data on the 5G link.

圖7繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。5G系統包括與LTE eNB 704和5G eNB 706通訊的UE702。UE702、LTE eNB 704、以及5G eNB 706可顯示於圖1至圖4中,且施行與在圖5與圖6之類似裝置的至少一些相同功能。在一些實施例中,藉由傳送SR到LTE eNB 704,UE702可啟動5G上行鏈路排程程序。SR可使用於請求用於5G鏈路的上行鏈路資源。不過,不像在圖5或圖6中所示的實施例,在圖7所示之實施例中的SR可能不會使用專用於5G上行鏈路資料傳送請求的資源來傳送。 FIG. 7 illustrates another uplink request design for a non-standalone LTE system according to some embodiments. The 5G system includes UE 702 communicating with LTE eNB 704 and 5G eNB 706. UE702, LTE eNB 704, and 5G eNB 706 may be shown in FIGS. 1 to 4 and perform at least some of the same functions as the similar devices in FIGS. 5 and 6. In some embodiments, by transmitting the SR to the LTE eNB 704, the UE 702 can initiate the 5G uplink scheduling procedure. SR can be used to request uplink resources for the 5G link. However, unlike the embodiment shown in FIG. 5 or FIG. 6, the SR in the embodiment shown in FIG. 7 may not be transmitted using resources dedicated to 5G uplink data transmission requests.

也就是說,在操作712,UE702可使用非專用的SR資源,以請求用於使用5G鏈路之資料的上行鏈路傳送的資源。在此情形中,UE702可僅僅組態具有一個SR資源,其係用於LTE鏈路。儘管正使用非專用的SR資源,但是,在MAC層中的新邏輯通道ID(LCID)卻可定義用於UE702,以請求在5G鏈路中的上行鏈路資源。可使用LCID,以區別是否上行鏈路請求用於LTE鏈路或5G鏈路。UE702因此可使用LCID於LTE鏈路中的SR傳送,以指示正在請求5G資源。LCID可按3GPP技術規格36.321來定義。 That is, in operation 712, the UE 702 may use non-dedicated SR resources to request resources for uplink transmission of data using the 5G link. In this case, the UE 702 may only be configured with one SR resource, which is used for the LTE link. Although non-dedicated SR resources are being used, a new logical channel ID (LCID) in the MAC layer can be defined for the UE 702 to request uplink resources in the 5G link. The LCID can be used to distinguish whether the uplink request is for the LTE link or the 5G link. The UE 702 can therefore use the LCID for SR transmission in the LTE link to indicate that 5G resources are being requested. LCID can be defined according to 3GPP technical specification 36.321.

也就是說,MAC標頭可具有可變的尺寸(以八位元組為單位)且含有LCID、長度欄位、格式欄位、以及延伸欄位。長度欄位可指示對應MAC SDU或可變尺寸MAC控制元件的長度(以位元組為單位)。格式欄位可指示長度欄位的尺寸。延伸欄位可指示是否有進一步的欄位出現於MAC標頭中。LCID(5位元)可識別對應MAC SDU的邏輯 通道情形、或對應MAC控制元件的類型、或各別用於DL-SCH、UL-SCH、以及MCH的填充。 That is, the MAC header may have a variable size (in octets as a unit) and include an LCID, a length field, a format field, and an extension field. The length field can indicate the length (in bytes) of the corresponding MAC SDU or variable-size MAC control element. The format field can indicate the size of the length field. The extended field can indicate whether there are further fields appearing in the MAC header. LCID (5 bits) can identify the logic of the corresponding MAC SDU The channel situation, or the type of the corresponding MAC control element, or the filling of DL-SCH, UL-SCH, and MCH respectively.

在成功檢測SR以後,LTE eNB 704可萃取LCID且判定UE702正在請求5G資源。在操作714,LTE eNB 704可因此將含有用於射束相關資訊之上行鏈路授予的PDCCH傳送到5G eNB 706。LTE eNB 704可分配上行鏈路資源,以用於藉由UE702傳送射束相關資訊於LTE鏈路中。 After successfully detecting the SR, the LTE eNB 704 can extract the LCID and determine that the UE 702 is requesting 5G resources. In operation 714, the LTE eNB 704 may thus transmit to the 5G eNB 706 the PDCCH containing the uplink grant for beam related information. The LTE eNB 704 can allocate uplink resources for the UE 702 to transmit beam related information in the LTE link.

UE702可接收來自LTE eNB 704的上行鏈路資源分配,且相應地運作。特別地,在操作716,UE702可傳送BSR與5G射束測量於分配上行鏈路資源中的PUSCH上。如上述,5G射束測量可含有從BRS獲取之由UE702接收的最佳射束的資訊,或由UE702進行的BRS-RP測量。除了在操作712的SR以外(或替代在操作712的SR),BSR與5G射束報告可使用LCID。具體地,可定義對應的MAC控制元件,其可包括5G射束測量報告。此MAC控制元件可在操作716、在LTE RACH程序中傳送,或與BSR一起傳送,以用於在操作712、由SR所觸發的上行鏈路資料傳送。 The UE 702 can receive the uplink resource allocation from the LTE eNB 704 and act accordingly. In particular, in operation 716, the UE 702 may transmit BSR and 5G beam measurements on the PUSCH in the allocated uplink resources. As mentioned above, the 5G beam measurement may include the information of the best beam received by the UE702 obtained from the BRS, or the BRS-RP measurement performed by the UE702. In addition to the SR in operation 712 (or instead of the SR in operation 712), BSR and 5G beam reporting may use LCID. Specifically, a corresponding MAC control element may be defined, which may include a 5G beam measurement report. This MAC control element can be transmitted in operation 716, in the LTE RACH procedure, or transmitted together with the BSR for the uplink data transmission triggered by the SR in operation 712.

當經由LTE鏈路、藉由LTE eNB 704來接收5G射束測量報告時,與圖5類似地,LTE eNB 704可指示5G eNB 706欲將用於5G鏈路的資源請求分配給UE702,並可經由X2界面來提供BSR及/或5G射束報告任一者或兩者。5G eNB 706可後續地判定最佳射束,且在操作718使用最佳射束、使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。如同上述,基於BSR 資訊,5G eNB706可分配基於BSR而包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 When the 5G beam measurement report is received by the LTE eNB 704 via the LTE link, similar to FIG. 5, the LTE eNB 704 may indicate that the 5G eNB 706 wants to allocate the resource request for the 5G link to the UE 702, and may Either or both of BSR and/or 5G beam reports are provided via the X2 interface. The 5G eNB 706 may subsequently determine the best beam, and use the best beam in operation 718 to transmit the xPDCCH using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data. As above, based on BSR Information, the 5G eNB 706 can allocate appropriate resources and MCS based on the BSR and included in the uplink grant for the uplink data.

在接收上行鏈路授予之後,UE702可使用5G鏈路將上行鏈路資料傳送於xPUSCH720上。如同在圖5與圖6中,在圖7中,雖然最初傳送SR與BSR/5G射束報告於LTE鏈路上,但是UE702卻可接收分配且傳送資料於5G鏈路上兩者。 After receiving the uplink grant, the UE 702 can use the 5G link to transmit the uplink data on the xPUSCH 720. As in FIGS. 5 and 6, in FIG. 7, although the SR and BSR/5G beam reports are initially transmitted on the LTE link, the UE702 can receive the allocation and transmit data on both of the 5G links.

圖8繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。5G系統可包括與LTE eNB 804和5G eNB 806通訊的UE802。UE802、LTE eNB 804、及5G eNB 806可顯示於圖1至圖4中。如同在上述實施例中,藉由傳送用於5G鏈路之上行鏈路資源的SR到LTE eNB 804,UE802可啟動5G上行鏈路排程程序。在操作812,UE802可使用非專用的SR資源來請求資源。 FIG. 8 illustrates another uplink request design for a non-standalone LTE system according to some embodiments. The 5G system may include UE 802 communicating with LTE eNB 804 and 5G eNB 806. UE 802, LTE eNB 804, and 5G eNB 806 can be shown in FIGS. 1 to 4. As in the above embodiment, by transmitting the SR for uplink resources on the 5G link to the LTE eNB 804, the UE 802 can start the 5G uplink scheduling procedure. In operation 812, the UE 802 may use non-dedicated SR resources to request resources.

不像先前的實施例,不是傳送用於BSR以及或許5G射束測量報告的資源,在操作814,LTE eNB 804可回應地傳送用於免競爭RACH程序的PDCCH順序於5G鏈路上。具體地,LTE eNB 804可傳送具有指定前置簽名的xPRACH傳送,以指示免競爭的RACH程序。類似含有用於BSR之資源的PDCCH,PDCCH順序可傳送於LTE鏈路上。指示xPRACH傳送的前置索引可以是預定的前置索引(例如,定義用於xPRACH的單一前置索引)或可從指示xPRACH傳送的前置索引群中選出。前置索引群ID可經由先前的BRS-RP測量結果來得到。用以指示前置索引或前 置索引群ID與用於傳送xPRACH之順序有關的資訊,可在傳送SR之前、經由RRC訊號發送、藉由UE802得到。 Unlike the previous embodiment, instead of transmitting resources for BSR and perhaps 5G beam measurement reports, in operation 814, the LTE eNB 804 may responsively transmit the PDCCH sequence for the contention-free RACH procedure on the 5G link. Specifically, the LTE eNB 804 may transmit an xPRACH transmission with a designated pre-signature to indicate a contention-free RACH procedure. Similar to the PDCCH containing resources for BSR, the PDCCH sequence can be transmitted on the LTE link. The pre-index indicating xPRACH transmission may be a predetermined pre-index (for example, a single pre-index defined for xPRACH) or may be selected from a group of pre-indexes indicating xPRACH transmission. The pre-index group ID can be obtained from the previous BRS-RP measurement result. Used to indicate the pre-index or pre-index The information about the set index group ID and the sequence used to transmit xPRACH can be sent by the UE802 through the RRC signal before the SR is transmitted.

在一些實施例中,xPDCCH順序可經由5G鏈路、藉由5G eNB806傳送,而不是經由LTE鏈路、藉由LTE eNB804傳送,在傳送含有xPRACH順序的xPDCCH之前,用於5G鏈路之SR的資訊則在X2界面上、從LTE eNB804提供到5G eNB806。更者,在一些實施例中,假如在藉由RRC或其他高層訊號發送所組態的時間視窗內沒有接收到PDCCH(或xPDCCH)順序,UE802可判定SR已經到期或沒有由LTE eNB804接收,並傳送另一SR。到期的時期可取決於UE的類型(UE優先權)、欲由UE802傳送的資料(資料優先權)、例如藉由干擾所測量的網路負載、以及其他因素。 In some embodiments, the xPDCCH sequence can be transmitted via the 5G link by the 5G eNB806 instead of via the LTE link via the LTE eNB804. Before the xPDCCH containing the xPRACH sequence is transmitted, it is used for the SR of the 5G link. The information is provided on the X2 interface from LTE eNB804 to 5G eNB806. Furthermore, in some embodiments, if the PDCCH (or xPDCCH) sequence is not received within the time window configured by RRC or other high-level signaling, the UE 802 can determine that the SR has expired or is not received by the LTE eNB 804. And send another SR. The expiration period may depend on the type of UE (UE priority), the data to be transmitted by the UE 802 (data priority), such as the network load measured by interference, and other factors.

UE802可解碼xPDCCH順序,以用於啟動經由5G鏈路的免競爭RACH程序。在操作816,UE802可傳送xPRACH到5G eNB806。UE802可選擇可用RACH前置與自發送前置之時槽數目判定之隨機存取無線電網路暫時識別符(RA-RNTI)的其中一個。 The UE 802 can decode the xPDCCH sequence for initiating the contention-free RACH procedure via the 5G link. In operation 816, the UE 802 may transmit xPRACH to the 5G eNB 806. The UE 802 can select one of the random access radio network temporary identifier (RA-RNTI) that can be determined by the number of time slots for the RACH preamble and the self-transmission preamble.

當接收xPRACH時,5G eNB806可後續地基於xPRACH施行射束掃描,以判定最佳射束。5G eNB806可使用最佳射束,以在操作818,使用5G鏈路傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。如同上述,基於BSR資訊,5G eNB806可分配 包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 When receiving the xPRACH, the 5G eNB 806 may subsequently perform beam scanning based on the xPRACH to determine the best beam. The 5G eNB 806 may use the best beam to transmit xPDCCH using the 5G link in operation 818. The xPDCCH may contain an uplink grant for transmitting uplink data. As above, based on BSR information, 5G eNB806 can be allocated Include the appropriate resources and MCS in the uplink grant for the uplink data.

在接收上行鏈路授予之後,UE802可使用5G鏈路傳送上行鏈路資料於xPUSCH820上。在一些實施例中,UE802亦可傳送具有上行鏈路資料的BSR。 After receiving the uplink grant, the UE 802 can use the 5G link to transmit uplink data on the xPUSCH 820. In some embodiments, the UE 802 may also transmit a BSR with uplink data.

圖9繪示根據一些實施例之用於獨立LTE系統的上行鏈路請求設計。5G系統包括與5G eNB904通訊的UE902。UE902與5G eNB904可顯示於圖1至圖4中。一般而言,如上文的討論,就5G系統而言,可使用重複的xPRACH傳送,來確保藉由5G eNB使用射束掃描的穩定檢測。與上述非獨立實施例(其中,可應用SR,以指示經由5G鏈路提供上行鏈路資料的請求)類似,在獨立實施例中,xPRACH可由UE902利用,以得到上行鏈路同步化。 Figure 9 illustrates an uplink request design for a standalone LTE system according to some embodiments. The 5G system includes UE902 communicating with 5G eNB904. UE902 and 5G eNB904 can be shown in Figures 1 to 4. Generally speaking, as discussed above, for 5G systems, repeated xPRACH transmissions can be used to ensure stable detection using beam scanning by the 5G eNB. Similar to the aforementioned non-independent embodiment (where SR can be applied to indicate a request to provide uplink data via a 5G link), in a separate embodiment, the xPRACH can be utilized by the UE 902 to obtain uplink synchronization.

與上述實施例中的一些類似,藉由傳送用於5G鏈路之上行鏈路資源的xPRACH到5G eNB904,UE902可啟動5G上行鏈路免競爭排程程序。如圖示,在操作912,UE902可使用專用的xPRACH資源,以請求上行鏈路資料資源。有關xPRACH的資訊可經由RRC或其他更高層的訊號發送來傳送到UE902。因為在5G單元中的使用者數目可能受到限制,所以分配一或多個專用的xPRACH資源用於一資源請求可避免引進專用的SR通道用於5G系統。UE902可選擇數個可用xPRACH前置中的一個以及從發送前置之時槽數目判定的隨機存取無線電網路暫時識別符(RA-RNTI)。 Similar to some of the above embodiments, by transmitting the xPRACH for uplink resources on the 5G link to the 5G eNB 904, the UE 902 can start the 5G uplink contention-free scheduling procedure. As shown, in operation 912, the UE 902 may use dedicated xPRACH resources to request uplink data resources. Information about xPRACH can be transmitted to UE 902 via RRC or other higher-level signaling. Because the number of users in a 5G unit may be limited, allocating one or more dedicated xPRACH resources for a resource request can avoid introducing dedicated SR channels for 5G systems. The UE 902 can select one of several available xPRACH preambles and a random access radio network temporary identifier (RA-RNTI) determined from the number of time slots when the preamble is sent.

可使用分時多工(TDM)、分頻多工(FDM)、或分碼多工(CDM)中的一或多個,將用於SR與用於隨機存取的xPRACH資源多工化。用於SR之xPRACH資源的組態可經由從定錨LTE單元或5G單元的RRC訊號發送來組態。在一項實施例中,用於隨機存取之xPRACH的頻率資源與序列組可一對一地映射到BRS的頻率資源與序列組。可將額外的資源分派到用於SR的xPRACH,例如第n+1個子訊框,其中n係為用於隨機存取之xPRACH的子訊框索引。在另一實施例中,專用的xPRACH前置簽名可以用於SR之UE特定的方式(例如,RRC訊號發送)來分配。 One or more of time division multiplexing (TDM), frequency division multiplexing (FDM), or code division multiplexing (CDM) can be used to multiplex xPRACH resources for SR and for random access. The configuration of the xPRACH resource for SR can be configured via RRC signal transmission from the anchored LTE unit or 5G unit. In one embodiment, the frequency resource and sequence group of xPRACH used for random access can be mapped to the frequency resource and sequence group of BRS one-to-one. Additional resources can be allocated to xPRACH for SR, such as the n+1th subframe, where n is the subframe index of xPRACH for random access. In another embodiment, the dedicated xPRACH pre-signature can be used for SR UE-specific allocation (for example, RRC signaling).

5G eNB904可檢測xPRACH。回應地,在操作914,5G eNB904可經由5G鏈路傳送具有上行鏈路授予的xPDCCH。xPDCCH可含有用於BSR與可能地5G射束報告的資源。不過,不像習知的RACH程序,回應於xPRACH,xPDCCH可含有縮減的隨機存取回應(RAR)。一般而言,可將全RAR定址成RA-RNTI,且除了上行鏈路授予資源以外還可含有暫時細胞無線電網路暫時識別符(C-RNTI)以及時序前進值,以補償UE902與5G eNB904之間的往返延遲。在一些實施例中,替代全RAR資訊,諸如時序前進與C-RNTI,可能在諸如經由RRC_CONNECTED訊息來傳送xPRACH之前已經知道。因此,5G eNB904可避免傳送此資訊,以節省管理負擔並簡化程序。更者,因為C-RNTI可由UE902知道,所以在xPDCCH中運送的縮減 RAR訊息可使用在循環冗餘檢查(CRC)中的C-RNTI來攪拌。 The 5G eNB904 can detect xPRACH. In response, in operation 914, the 5G eNB 904 may transmit the xPDCCH with the uplink grant via the 5G link. xPDCCH may contain resources for BSR and possibly 5G beam reporting. However, unlike the conventional RACH procedure, which responds to xPRACH, xPDCCH can contain a reduced random access response (RAR). Generally speaking, the full RAR can be addressed as RA-RNTI, and in addition to the uplink grant resources, it can also contain a temporary cellular radio network temporary identifier (C-RNTI) and timing advance value to compensate for the difference between UE902 and 5G eNB904 The round-trip delay between. In some embodiments, alternative full RAR information, such as timing advance and C-RNTI, may be known before xPRACH is transmitted, such as via RRC_CONNECTED message. Therefore, the 5G eNB 904 can avoid transmitting this information to save management burden and simplify the procedure. Furthermore, because the C-RNTI can be known by the UE902, the reduction carried in the xPDCCH RAR messages can be stirred using C-RNTI in cyclic redundancy check (CRC).

當在操作914接收xPDCCH時,UE902可解碼xPDCCH並且判定資源分配。在操作916,UE902可後續地使用5G鏈路傳送BSR及/或5G射束測量報告到5G eNB904。 When receiving the xPDCCH in operation 914, the UE 902 may decode the xPDCCH and determine resource allocation. In operation 916, the UE 902 may subsequently transmit the BSR and/or 5G beam measurement report to the 5G eNB 904 using the 5G link.

當接收xPRACH時,5G eNB904可後續地基於xPRACH來施行射束掃描,以判定用於與UE902通訊的最佳射束。在操作918,5G eNB904可使用最佳射束,以使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。如同上述,基於BSR資訊,5G eNB904可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 When receiving the xPRACH, the 5G eNB 904 may subsequently perform beam scanning based on the xPRACH to determine the best beam for communication with the UE 902. In operation 918, the 5G eNB 904 may use the optimal beam to transmit the xPDCCH using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data. As mentioned above, based on the BSR information, the 5G eNB 904 can allocate appropriate resources and MCS included in the uplink grant for uplink data.

在接收上行鏈路授予之後,在操作920,UE902可傳送上行鏈路資料於xPUSCH上。上行鏈路資料可使用5G鏈路傳送到5G eNB904。 After receiving the uplink grant, in operation 920, the UE 902 may transmit uplink data on the xPUSCH. The uplink data can be transmitted to the 5G eNB904 using the 5G link.

圖10繪示根據一些實施例之用於獨立LTE系統的另一上行鏈路請求設計。5G系統可包括與5G eNB1004通訊的UE1002。UE1002與5G eNB1004可顯示於圖1至圖4中。在此實施例中,介紹具有快速上行鏈路存取的免競爭的xPRACH程序。 Figure 10 illustrates another uplink request design for a standalone LTE system according to some embodiments. The 5G system may include UE1002 communicating with 5G eNB1004. UE1002 and 5G eNB1004 can be shown in Figures 1 to 4. In this embodiment, a contention-free xPRACH procedure with fast uplink access is introduced.

藉由在操作1012,將用於5G鏈路之上行鏈路資源的xPRACH傳送到5G eNB1004,UE1002可啟動5G上行鏈路免競爭排程程序。xPRACH可與BSR一起傳送(以及或許5G射束測量報告)。UE1002可使用專用的xPRACH資源, 來請求上行鏈路資料資源。有關xPRACH的資訊可經由RRC或其他更高層的訊號發送來傳送到UE1002。 By transmitting the xPRACH for uplink resources on the 5G link to the 5G eNB 1004 in operation 1012, the UE 1002 can start the 5G uplink contention-free scheduling procedure. xPRACH can be transmitted with BSR (and perhaps 5G beam measurement report). UE1002 can use dedicated xPRACH resources, To request uplink data resources. Information about xPRACH can be transmitted to UE 1002 via RRC or other higher-level signaling.

5G eNB1004可檢測xPRACH並基於xPRACH施行射束掃描,以判定用於與UE1002通訊的最佳射束。在操作1014,5G eNB1004可經由5G鏈路傳送具有上行鏈路授予的xPDCCH以用於上行資料之傳送。xPDCCH可含有縮減的RAR資訊,如在圖9中。xPDCCH可含有上行鏈路授予。如上述,基於BSR資訊,5G eNB1004可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 The 5G eNB1004 can detect the xPRACH and perform beam scanning based on the xPRACH to determine the best beam for communication with the UE1002. In operation 1014, the 5G eNB 1004 may transmit the xPDCCH with the uplink grant via the 5G link for transmission of uplink data. The xPDCCH may contain reduced RAR information, as in FIG. 9. The xPDCCH may contain an uplink grant. As mentioned above, based on the BSR information, the 5G eNB 1004 can allocate appropriate resources and MCS included in the uplink grant for uplink data.

在接收上行鏈路授予之後,在操作1016,UE1002可傳送上行鏈路資料於xPUSCH上。上行鏈路資料可使用5G鏈路傳送到5G eNB1004。因為相較於圖9,在UE1002與5G eNB1004之間的訊息數目縮減,所以上行鏈路存取延遲亦可實質地縮減。 After receiving the uplink grant, in operation 1016, the UE 1002 may transmit uplink data on the xPUSCH. The uplink data can be transmitted to the 5G eNB1004 using the 5G link. Since the number of messages between the UE 1002 and the 5G eNB 1004 is reduced compared to FIG. 9, the uplink access delay can also be substantially reduced.

實例1係為包含處理電路之使用者設備(UE)的裝置,該處理電路配置以:產生指示上行鏈路資料欲傳送到一第五代(5G)演進型節點B(eNB)的一訊息,該訊息依據該訊息將傳送到一長期演進(LTE)eNB與5G eNB的哪一個;在傳送該訊息之後,將在一選擇射束上之含有從該5G eNB接收之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料到該5G eNB的資源;以及為了傳送到使用該等資源的該5G eNB,產生包含該資料的一5G實體上行鏈路共享通道(xPUSCH)。 Example 1 is a user equipment (UE) device including a processing circuit configured to generate a message indicating that uplink data is to be transmitted to a fifth generation (5G) evolved node B (eNB), The message depends on which of a Long Term Evolution (LTE) eNB and 5G eNB the message will be transmitted to; after the message is transmitted, a selected beam will contain a 5G uplink grant received from the 5G eNB A 5G physical downlink control channel (xPDCCH) decodes, the 5G uplink grant includes resources allocated for transmitting the uplink data to the 5G eNB; and for transmitting to the 5G eNB using the resources, generates A 5G physical uplink shared channel (xPUSCH) containing the information.

在實例2中,實例1的主題可選地包括該訊息包含一排程請求,該排程請求則傳送到該LTE eNB。 In Example 2, the subject of Example 1 optionally includes that the message includes a scheduling request, and the scheduling request is sent to the LTE eNB.

在實例3中,實例2的主題可選地包括該處理電路進一步配置以:產生該排程請求以用於經由一專用的資源來傳送。 In Example 3, the subject matter of Example 2 optionally includes that the processing circuit is further configured to generate the scheduling request for transmission via a dedicated resource.

在實例4中,實例3的主題可選地包括該處理電路進一步配置以:回應於該排程請求之傳送,解碼來自該eNB的一上行鏈路授予,以依據從該LTE eNB與該5G eNB哪一個接收到該上行鏈路授予,將一緩衝器狀態報告(BSR)與一5G射束測量報告的至少一個傳送到該eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個。 In Example 4, the subject matter of Example 3 optionally includes that the processing circuit is further configured to: in response to the transmission of the scheduling request, decode an uplink grant from the eNB, based on the transmission from the LTE eNB and the 5G eNB Which one receives the uplink grant, transmits at least one of a buffer status report (BSR) and a 5G beam measurement report to the eNB, and the 5G beam measurement includes acquisition from a beam reference signal (BRS) An identity of the selected beam and at least one of a BRS received power (BRS-RP) measurement of one of the selected beams.

在實例5中,實例4的主題可選地包括該處理電路進一步配置以:回應從該LTE eNB之該上行鏈路授予之接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告的傳送產生該PDCCH之接收。 In Example 5, the subject matter of Example 4 optionally includes the processing circuit being further configured to: respond to the reception of the uplink grant from the LTE eNB, generate the BSR and the 5G beam measurement report, and respond to the BSR and The transmission of the 5G beam measurement report generates the reception of the PDCCH.

在實例6中,實例4至實例5之任一項或多項的主題可選地包括該處理電路進一步配置以:回應於從該5G eNB之該上行鏈路授予之接收,產生該BSR,回應於該BSR之傳送與該5G射束測量報告之傳送,產生該xPDCCH之接收的至少一個。 In Example 6, the subject matter of any one or more of Examples 4 to 5 optionally includes that the processing circuit is further configured to: in response to receiving the uplink grant from the 5G eNB, generate the BSR, and respond to The transmission of the BSR and the transmission of the 5G beam measurement report generate at least one of the reception of the xPDCCH.

在實例7中,實例2至實例6之任一項或多項的主題可選地包括該處理電路進一步配置以:產生用於一非專用 資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE eNB的一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送到該LTE eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個。 In Example 7, the subject matter of any one or more of Examples 2 to 6 optionally includes the processing circuit being further configured to: generate a non-dedicated The scheduling request of the resource; and in response to the transmission of the scheduling request, decode an uplink grant from the LTE eNB to transmit a buffer status report (BSR) and a 5G beam measurement report to the LTE eNB, the 5G beam measurement includes at least one of an identity of the selected beam obtained from a beam reference signal (BRS) and a BRS received power (BRS-RP) measurement of one of the selected beams.

在實例8中,實例7之該主題可選地包括該處理電路進一步配置以:回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,該報告使用一邏輯通道識別(LCID)用於資源分配請求到該5G eNB之傳送,該LCID用以提供用於該LTE eNB與該5G eNB的一上行鏈路請求之間的差異化,回應於該BSR與該5G射束測量報告之傳送產生該PDCCH的接收。 In Example 8, the subject of Example 7 optionally includes the processing circuit being further configured to: in response to the reception of the uplink grant, generate the BSR and the 5G beam measurement report, the report using a logical channel identification ( LCID) is used for the transmission of resource allocation requests to the 5G eNB, the LCID is used to provide differentiation between an uplink request for the LTE eNB and the 5G eNB, in response to the BSR and the 5G beam measurement The transmission of the report results in the reception of the PDCCH.

在實例9中,實例2至實例8之任一項或多項的主題可選地包括該處理電路進一步配置以:產生用於一非專用資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE eNB的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及回應於該PDCCH的接收,產生具有用於傳送到該5G eNB之一指定前置簽名的一5G實體隨機存取通道(xPRACH),回應於該xPRACH之傳送,產生該xPDCCH之接收。 In Example 9, the subject matter of any one or more of Examples 2 to 8 optionally includes the processing circuit being further configured to: generate the scheduling request for a non-dedicated resource; and respond to the scheduling request Transmit and decode a PDCCH from the LTE eNB, the PDCCH including a request for the UE to perform a contention-free random access channel program with the 5G eNB; and in response to the reception of the PDCCH, generate a request for transmission A 5G physical random access channel (xPRACH) designated by a pre-signature of the 5G eNB, in response to the transmission of the xPRACH, generates the reception of the xPDCCH.

在實例10中,實例9之該主題可選地包括該指定前置簽名包含在一前置索引組內的一前置索引,該前置索引 組身分係經由該選擇射束之一射束參考訊號接收功率(BRS-RP)測量而得到。 In Example 10, the subject of Example 9 optionally includes a pre-index whose designated pre-signature is included in a pre-index group, and the pre-index The group identity is obtained by measuring the beam reference signal received power (BRS-RP) of one of the selected beams.

在實例11中,實例9至實例10之任一項或多項的主題可選地包括該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 11, the subject matter of any one or more of Examples 9 to 10 optionally includes that the xPDCCH includes a reduced random access response (RAR) free from a timing advance and a temporary cellular radio network temporary identifier ( C-RNTI) and stirred by the C-RNTI in a cyclic redundancy check (CRC).

在實例12中,實例1至實例11之任一項或多項的主題可選地包括該訊息包含用於經由一專用資源傳送的一5G實體隨機存取通道(xPRACH)。 In Example 12, the subject matter of any one or more of Examples 1 to 11 optionally includes that the message includes a 5G physical random access channel (xPRACH) for transmission via a dedicated resource.

在實例13中,實例12之該主題可選地包括該處理電路進一步配置以:回應於該xPRACH與來自該5G eNB之傳送,解碼一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送到該5G eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選MIMO射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告之傳送,產生該xPDCCH的接收。 In Example 13, the subject matter of Example 12 optionally includes the processing circuit being further configured to: in response to the xPRACH and the transmission from the 5G eNB, decode an uplink grant to send a buffer status report (BSR) A 5G beam measurement report is transmitted to the 5G eNB, and the 5G beam measurement includes an identity of the selected MIMO beam obtained from a beam reference signal (BRS) and a BRS received power of one of the selected beams (BRS-RP) at least one of the measurements; and in response to the reception of the uplink grant, generate the BSR and the 5G beam measurement report, and in response to the transmission of the BSR and the 5G beam measurement report, generate the xPDCCH receive.

在實例14中,實例12至實例13之任一項或多項的主題可選地包括該訊息包含用於經由一專用資源傳送、回應於該訊息傳送之該xPDCCH之接收的一xPRACH與一緩衝器狀態報告(BSR)。 In Example 14, the subject matter of any one or more of Examples 12 to 13 optionally includes that the message includes an xPRACH and a buffer for transmission via a dedicated resource in response to the reception of the xPDCCH transmitted by the message Status report (BSR).

在實例15中,實例1至實例14之任一項或多項的主題可選地包括該處理電路包含基頻電路,該基頻電路配置以從經由無線電資源控制(RRC)訊號發送的該LTE eNB、用於從該LTE eNB傳送一上行鏈路請求的一上行鏈路專用LTE資源、以及用於傳送一上行鏈路請求到該5G eNB的一上行鏈路專用5G資源,判定用於在該上行鏈路專用LTE資源以及該上行鏈路專用5G資源中之一個上傳送的該訊息。 In Example 15, the subject matter of any one or more of Examples 1 to 14 optionally includes that the processing circuit includes a baseband circuit configured to receive data from the LTE eNB transmitted via a radio resource control (RRC) signal. , An uplink dedicated LTE resource used to transmit an uplink request from the LTE eNB, and an uplink dedicated 5G resource used to transmit an uplink request to the 5G eNB, determined to be used in the uplink The message is transmitted on one of the link dedicated LTE resource and the uplink dedicated 5G resource.

在實例16中,實例1至實例15之任一項或多項的主題可選地包括、進一步包含:一天線,其經組態以提供該UE與該eNB之間的通訊。 In Example 16, the subject matter of any one or more of Examples 1 to 15 optionally includes, and further includes: an antenna configured to provide communication between the UE and the eNB.

實例17係為一種包含處理電路之演進型節點B(eNB)的裝置,該處理電路配置以:為了經由無線電資源控制(RRC)訊號發送之傳送,產生用於傳送一上行鏈路請求到一長期演進(LTE)eNB的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的一個;以及將在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送之一訊息的其中一個解碼,該訊息指示欲傳送該上行鏈路資料到該5G eNB,該訊息包含一排程請求(SR)與一5G實體隨機存取通道(xPRACH)之一個,該訊息依據要將該訊息傳送到該LTE eNB與該5G eNB的哪一個。 Example 17 is an evolved Node B (eNB) device including a processing circuit configured to: in order to transmit via radio resource control (RRC) signaling, generate an uplink request for transmitting an uplink request to a long-term One of an uplink dedicated LTE resource of an evolved (LTE) eNB and an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G eNB; and One of the decoding of a message sent on one of the dedicated LTE resource and the uplink dedicated 5G resource, the message indicating that the uplink data is to be sent to the 5G eNB, and the message includes a scheduling request (SR) and a One of the 5G physical random access channels (xPRACH), the message depends on which of the LTE eNB and the 5G eNB the message is to be transmitted to.

在實例18中,實例17的主題可選地包括該eNB包含該LTE eNB,以及該處理電路進一步配置以:回應於經由 該上行鏈路專用LTE資源的該該排程請求之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告中的至少一個,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告。 In Example 18, the subject matter of Example 17 optionally includes that the eNB includes the LTE eNB, and the processing circuit is further configured to: respond to Receipt of the scheduling request for the uplink dedicated LTE resource generates an uplink grant to transmit at least one of a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement Including at least one of acquiring an identity of a selected beam from a beam reference signal (BRS) and a BRS received power (BRS-RP) measurement of one of the selected beams; and the transmission granted on the uplink Afterwards, the BSR and the 5G beam measurement report are decoded.

在實例19中,實例17至實例18之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於該上行鏈路專用LTE資源之使用以傳送該排程請求,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告的至少一個,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;在該上行鏈路授予之傳送之後,解碼該BSR;以及產生含有用於在該所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH),該5G上行鏈路授予包含分配用於該上行鏈路資料之傳送的資源。 In Example 19, the subject matter of any one or more of Examples 17 to 18 optionally includes that the eNB includes the 5G eNB, and the processing circuit is further configured to: transmit in response to the use of the uplink dedicated LTE resource The scheduling request generates an uplink grant to transmit at least one of a buffer status report (BSR) and a 5G beam measurement report. The 5G beam measurement includes information obtained from a beam reference signal (BRS) At least one of an identity of a selected beam and a BRS received power (BRS-RP) measurement of one of the selected beams; after the uplink grant transmission, decode the BSR; and generate A 5G physical downlink control channel (xPDCCH) for transmitting a 5G uplink grant on the selected beam, the 5G uplink grant including the resources allocated for the transmission of the uplink data.

在實例20中,實例17至實例19之任一項或多項的主題可選地包括該eNB包含該LTE eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用LTE資源的該排程請求之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包 含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告,該BSR與該5G射束測量報告包含一邏輯通道識別(LCID)用於將一資源分配請求之傳送,該LCID用以提供用於該LTE eNB與該5G eNB的一上行鏈路請求之間的差異化。 In Example 20, the subject matter of any one or more of Examples 17 to 19 optionally includes that the eNB includes the LTE eNB, and the processing circuit is further configured to: respond to the queue via the uplink dedicated LTE resource Receipt of the request, generate an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement packet Including at least one of acquiring an identity of a selected beam from a beam reference signal (BRS) and a BRS received power (BRS-RP) measurement of one of the selected beams; and the transmission granted on the uplink Then, decode the BSR and the 5G beam measurement report. The BSR and the 5G beam measurement report include a logical channel identification (LCID) for transmitting a resource allocation request, and the LCID is used for the LTE eNB Differentiation from an uplink request of the 5G eNB.

在實例21中,實例17至實例20之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:在包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求的PDCCH之傳送以及回應於經由來自該LTE eNB之一非專用資源的該排程請求之接收之後,解碼具有一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌;以及產生一5G實體下行鏈路控制通道(xPDCCH),其含有用於在一所選射束上傳送的一5G上行鏈路授予。 In Example 21, the subject matter of any one or more of Examples 17 to 20 optionally includes that the eNB includes the 5G eNB, and the processing circuit is further configured to: After transmission of a requested PDCCH of a contention-free random access channel program and in response to the reception of the scheduling request via a non-dedicated resource from the LTE eNB, decode a 5G entity random memory with a designated pre-signature Take the channel (xPRACH), the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) free from a timing advance and is determined by a cyclic redundancy check (CRC) And generate a 5G physical downlink control channel (xPDCCH) containing a 5G uplink grant for transmission on a selected beam.

在實例22中,實例17至實例21之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於經由該專用5G資源的一5G實體隨機存取通道(xPRACH)之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G 射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分以及該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告;以及產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)。 In Example 22, the subject matter of any one or more of Examples 17 to 21 may optionally include that the eNB includes the 5G eNB, and the processing circuit is further configured to: respond to the random storage of a 5G entity via the dedicated 5G resource. Get the reception of the channel (xPRACH), generate an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G The beam measurement includes at least one of an identity of the selected beam obtained from a beam reference signal (BRS) and a BRS received power (BRS-RP) measurement of one of the selected beams; grants in the uplink After the transmission, decode the BSR and the 5G beam measurement report; and generate a 5G physical downlink control channel (xPDCCH) containing a 5G uplink grant for transmission on a selected beam.

在實例23中,實例17至實例22之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用5G資源的一5G實體隨機存取通道(xPRACH)和一緩衝器狀態報告(BSR)之接收,產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)。 In Example 23, the subject matter of any one or more of Examples 17 to 22 optionally includes that the eNB includes the 5G eNB, and the processing circuit is further configured to: respond to a 5G via the uplink dedicated 5G resource The reception of a physical random access channel (xPRACH) and a buffer status report (BSR) generates a 5G physical downlink control channel (xPDCCH) containing a 5G uplink grant for transmission on a selected beam ).

在實例24中,其係一種儲存由使用者設備(UE)之一或多個處理器所執行之指令的電腦可讀取儲存媒體,該一或多個處理器組態該UE以:得到用於傳送一上行鏈路請求到一長期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的至少一個;產生一排程請求(SR)與一5G實體隨機存取通道(xPRACH)中的一個,該5G實體隨機存取通道指示欲將該上行鏈路資料傳送到該5G eNB,在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個,並且依據該LTE鏈路與該5G鏈路中的哪一個上傳送該SR與該xPRACH之該一個來選擇;以及在傳送 該訊息之後,將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料的資源。 In Example 24, it is a computer-readable storage medium that stores instructions executed by one or more processors of a user equipment (UE), and the one or more processors configure the UE to: For transmitting an uplink request to an uplink dedicated LTE resource of a Long Term Evolution (LTE) Evolved Node B (eNB) and for transmitting an uplink request to a 5G eNB, an uplink dedicated fifth Generation (5G) resources; generate one of a scheduling request (SR) and a 5G physical random access channel (xPRACH), the 5G physical random access channel indicates that the uplink data is to be sent to The 5G eNB transmits the SR and the xPRACH on one of the uplink dedicated LTE resource and the uplink dedicated 5G resource, and depends on which one of the LTE link and the 5G link is used Transmit the one of the SR and the xPRACH to select; and in the transmission After the message, decode a 5G physical downlink control channel (xPDCCH) on a selected beam from the 5G eNB that includes a 5G uplink grant including an allocation for transmission The resource of the uplink data.

在實例25中,實例24的主題可選地包括該一或多個處理器進一步組態該UE以進行以下之一個:產生用於該LTE eNB的該SR,且回應於該排程請求之傳送,解碼一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分和該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,該報告使用一邏輯通道識別(LCID)用於該5G鏈路的一資源分配請求之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及解碼從該LTE eNB接收的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及經由該5G鏈路產生具有一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 25, the subject matter of Example 24 optionally includes the one or more processors further configuring the UE to perform one of the following: generating the SR for the LTE eNB, and responding to the transmission of the scheduling request , Decode an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement includes a beam reference signal (BRS) obtained from the selected beam Identity and at least one of the BRS received power (BRS-RP) measurement of one of the selected beams; in response to the uplink grant reception, generate the BSR and the 5G beam measurement report, the report uses a logical channel identification (LCID) is used for the transmission of a resource allocation request for the 5G link, the LCID is used for providing differentiation between an uplink request for the LTE link and the 5G link; and decoding from the LTE A PDCCH received by the eNB, the PDCCH including a request for the UE to perform a contention-free random access channel program with the 5G eNB; and generate a 5G entity random with a designated pre-signature via the 5G link Access channel (xPRACH), the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) free from a timing advance and is checked by a cyclic redundancy check (CRC) In the C-RNTI.

實例26係為一種排程使用者設備(UE)資料傳送的方法,該方法包含:得到用於傳送一上行鏈路請求到一長 期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的至少一個;產生一排程請求(SR)與一5G實體隨機存取通道(xPRACH)中的一個,以指示欲將該上行鏈路資料傳送到該5G eNB,在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個,並且依據該LTE鏈路與該5G鏈路中的哪一個傳送該SR與該xPRACH之該一個來選擇;在傳送該訊息之後,將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料的資源。 Example 26 is a method for scheduling user equipment (UE) data transmission. The method includes: obtaining an uplink request for transmitting an uplink request to a long At least one of an uplink dedicated LTE resource of an evolved Node B (eNB) for evolution (LTE) and an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G eNB ; Generate one of a scheduling request (SR) and a 5G physical random access channel (xPRACH) to indicate that the uplink data is to be transmitted to the 5G eNB, in the uplink dedicated LTE resource and the uplink The one of the SR and the xPRACH is transmitted on one of the link dedicated 5G resources, and the selection depends on which of the LTE link and the 5G link transmits the SR and the xPRACH; in transmitting the message Then, decode a 5G physical downlink control channel (xPDCCH) from the 5G eNB on a selected beam that includes a 5G uplink grant including an allocation for transmitting the uplink Link data resources.

在實例27中,實例26的主題可選地進一步包含以下一個:產生用於該LTE eNB的該SR,且回應於該排程請求之傳送,解碼一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,該報告使用一邏輯通道識別(LCID)用於資源分配請求給該5G鏈路之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及解碼從該LTE eNB接收的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存 取通道程序的一請求;以及產生具有經由該5G鏈路之一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 27, the subject matter of Example 26 optionally further includes one of the following: generating the SR for the LTE eNB, and in response to the transmission of the scheduling request, decoding an uplink grant to change a buffer status A report (BSR) and a 5G beam measurement report are transmitted. The 5G beam measurement includes an identity of the selected beam obtained from a beam reference signal (BRS) and a BRS received power of one of the selected beams ( BRS-RP) at least one of the measurements; in response to the reception of the uplink grant, generate the BSR and the 5G beam measurement report, the report uses a logical channel identification (LCID) for resource allocation request to the 5G link The LCID is used to provide differentiation between an uplink request for the LTE link and the 5G link; and to decode a PDCCH received from the LTE eNB, and the PDCCH includes a method for enabling the UE Perform random storage with one of the 5G eNBs without contention Fetch a request of the channel program; and generate a 5G physical random access channel (xPRACH) with a designated pre-signature via one of the 5G links, the xPDCCH including a reduced random access response (RAR) free from a timing advance ) And the temporary cellular radio network temporary identifier (C-RNTI) and are stirred by the C-RNTI in a cyclic redundancy check (CRC).

實例28係為一種使用者設備(UE),其包含:用於得到用於傳送一上行鏈路請求到一長期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源、以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源之至少一個的構件;用於產生一排程請求(SR)與一5G實體隨機存取通道(xPRACH)中的一個、以指示欲將該上行鏈路資料傳送到該5G eNB、在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個、並且依據該LTE鏈路與該5G鏈路中的哪一個傳送該SR與該xPRACH之該一個來選擇的構件;以及用於在傳送該訊息之後將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼的構件,該5G上行鏈路授予包含分配用於該上行鏈路資料之傳送的資源。 Example 28 is a user equipment (UE), which includes: obtaining an uplink dedicated LTE resource for transmitting an uplink request to a Long Term Evolution (LTE) Evolved Node B (eNB), and A component used to transmit an uplink request to at least one of a 5G eNB's uplink dedicated fifth generation (5G) resource; used to generate a scheduling request (SR) and a 5G physical random access channel ( xPRACH) to indicate that the uplink data is to be transmitted to the 5G eNB, and the one of the SR and the xPRACH is transmitted on one of the uplink dedicated LTE resource and the uplink dedicated 5G resource , And a member selected according to which of the LTE link and the 5G link transmits the SR and the xPRACH; and for transmitting the message on a selected beam from the 5G The eNB includes a 5G physical downlink control channel (xPDCCH) decoding component of a 5G uplink grant that includes resources allocated for the transmission of the uplink data.

在實例29中,實例28的主題可選地進一步包含以下一個:用於產生用於該LTE eNB的該SR且回應於該排程請求之傳送的構件,解碼一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一 身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;用於回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告之構件,該報告使用一邏輯通道識別(LCID)用於資源分配請求到該5G鏈路之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及用於解碼從該LTE eNB接收的一PDCCH之構件,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及產生具有經由該5G鏈路之一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 29, the subject matter of Example 28 may optionally further include the following: a means for generating the SR for the LTE eNB and responding to the transmission of the scheduling request, decoding an uplink grant to transmit a Buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement including a beam reference signal (BRS) of the selected beam Identity and at least one of the BRS received power (BRS-RP) measurement of one of the selected beams; a component for generating the BSR and the 5G beam measurement report in response to the reception of the uplink grant, the report uses A logical channel identification (LCID) is used for the transmission of resource allocation requests to the 5G link, and the LCID is used to provide differentiation between an uplink request for the LTE link and the 5G link; and The means for decoding a PDCCH received from the LTE eNB, the PDCCH including a request for the UE to perform a contention-free random access channel program with the 5G eNB; and generating a request with a designation via the 5G link A pre-signed 5G physical random access channel (xPRACH), the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) that is free from a timing advance and is determined by the The C-RNTI in a cyclic redundancy check (CRC) is agitated.

雖然已經參考具體實例實施例來說明一實施例,但是在不脫離本揭露的更廣泛的精神與範圍之下,顯然可對這些實施例進行多種修改與改變。相應地,該說明書與圖式被視為說明性意義而非限制性意義。形成其一部份的附圖,透過繪示而非限制,顯示可實行主題的具體實施例。所繪式的實施例經充分詳細地說明,致使所屬技術領域中具有通常知識者能實行本文中所揭示的教示。可自其利用與取得其他實施例,使得可進行結構的與邏輯的替換與改變,而不脫離本揭露的範圍。因此,本實施方式並非以限制意義產生,且多項實施例的範圍 僅藉由附加申請專利範圍連同此等申請專利範圍所賦予之等同物的全部範圍來定義。 Although an embodiment has been described with reference to specific example embodiments, it is obvious that various modifications and changes can be made to these embodiments without departing from the broader spirit and scope of the present disclosure. Correspondingly, the description and drawings are regarded as illustrative rather than restrictive. The drawings forming part of it show specific embodiments of the subject matter that can be implemented by way of illustration and not limitation. The illustrated embodiments have been explained in sufficient detail so that those with ordinary knowledge in the relevant technical field can implement the teachings disclosed in this article. Other embodiments can be used and obtained from it, so that structural and logical replacements and changes can be made without departing from the scope of the present disclosure. Therefore, this embodiment is not produced in a limiting sense, and the scope of multiple embodiments It is only defined by the scope of the additional patent application together with the full scope of equivalents conferred by the scope of the patent application.

該主題的此等實施例在本文中可各別地、及/或共同地稱為術語「實施例(embodiment)」,其係僅僅為了方便且不打算志願地將本申請案的範圍限制於任何單一的發明或發明概念(如果實際上有超過一個被揭示的話)。因此,雖然在本文中已經繪示且說明具體實施例,但是應該理解,用以得到相同目的而計算的任何配置可為了所示的具體實施例而取代。此揭露打算涵蓋多項實施例的任何與全部調適或變化。上文實施例與在本文中沒有具體說明之其他實施例的組合,其係將為所屬技術領域中具有通常知識者在回顧上文說明時所明瞭。 Such embodiments of the subject matter may be individually and/or collectively referred to herein as the term "embodiment", which is merely for convenience and is not intended to voluntarily limit the scope of the application to any A single invention or invention concept (if more than one is actually revealed). Therefore, although specific embodiments have been illustrated and described herein, it should be understood that any configuration calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or changes of the various embodiments. The combination of the above embodiments and other embodiments that are not specifically described herein will be understood by those with ordinary knowledge in the relevant technical field when reviewing the above description.

在本文件中,如在專利文件中常見,術語「一(a或an)」用來包括一個或超過一個,其獨立於「至少一(at least one)」或「一或多個(one or more)」的任何其他情形或用法。在本文件中,術語「或(or)」用來意指非排他性的或,使得「A或B(A or B)」包括「A但非B(A but not B)」、「B但非A(B but not A)」、以及「A與B(A and B)」,除非另外有指示。在本文件中,術語「包括(including)」以及「其中(in which)」使用當作各自術語「包含(comprising)」以及「其中(wherein)」的白話英文等同物。同樣地,在以下的申請專利範圍中,術語「包括(including)」及「包含(comprising)」是開放式的,亦即是,包括除了在申請專利範圍中之此一術語之後所陳列的那些以外的元件的 系統、UE、物品、組成物、表示式、或過程,仍被認為是在本申請專利範圍的範圍內。更者,在接下來的申請專利範圍中,術語「第一(first)」、「第二(second)」、及「第三(third)」等等僅僅用作標記,其係並且不打算對它們的目標強加數字要件。 In this document, as is common in patent documents, the term "a or an" is used to include one or more than one, which is independent of "at least one" or "one or more". more)" in any other circumstances or usage. In this document, the term "or (or)" is used to mean a non-exclusive OR, such that "A or B (A or B)" includes "A but not B (A but not B)", "B but not A (B but not A)", and "A and B(A and B)", unless otherwise instructed. In this document, the terms "including" and "in which" are used as the vernacular English equivalents of the respective terms "comprising" and "wherein". Similarly, in the scope of the following patent applications, the terms "including" and "comprising" are open-ended, that is, include those except those listed after this term in the scope of the patent application. Other components The system, UE, item, composition, expression, or process are still considered to be within the scope of the patent of this application. Moreover, in the following patent applications, the terms "first", "second", and "third" are only used as marks, and they are not intended to Their goals impose digital elements.

本揭露摘要之提供遵守37 C.F.R.§1.72(b),其需要將允許讀者快速確定本技術揭露之本質的摘要。提交時應理解,其將不用於解釋或限制申請專利範圍的範圍或含義。此外,在先前的實施方式中,可看見,為了簡化本揭露,將多種特徵一起組合在單一個實施例中。本揭露之方法不被詮釋為反映所申請的實施例需要比在各申請專利範圍中明確記載者更多特徵的意圖。反而,如以下申請專利範圍所反映的,本發明的主題少於單一揭示實施例的全部特徵。因此,以下申請專利範圍藉此合併於實施方式內,每一申請專利範圍則要求其本身為一分開的實施例。 The abstract of this disclosure is provided in compliance with 37 C.F.R.§1.72(b), which requires an abstract that will allow readers to quickly determine the nature of this technical disclosure. It should be understood at the time of submission that it will not be used to interpret or limit the scope or meaning of the patent application. In addition, in the previous embodiments, it can be seen that in order to simplify the disclosure, multiple features are combined together in a single embodiment. The method disclosed in the present disclosure is not interpreted as reflecting the intention that the applied embodiments need more features than those clearly recorded in the scope of each patent application. On the contrary, as reflected in the scope of the following patent applications, the subject matter of the present invention is less than all the features of a single disclosed embodiment. Therefore, the scope of the following patent applications is hereby incorporated into the embodiments, and each scope of patent applications requires itself to be a separate embodiment.

100:網路 100: Internet

101:無線電存取網路 101: Radio Access Network

102:使用者設備 102: user equipment

104A:巨型演進型節點 104A: Giant Evolutionary Node

104B:低功率演進型節點 104B: Low-power evolved node

115:S1界面 115: S1 interface

120:核心網路 120: core network

122:移動性管理實體 122: Mobility Management Entity

124:服務閘道器 124: service gateway

126:封包資料網路閘道器 126: Packet Data Network Gateway

Claims (21)

一種使用者設備(UE)的裝置,其包含處理電路,該處理電路配置以:產生指示上行鏈路資料將傳送到一長期演進(LTE)基地台之一排程請求,該排程請求取決於該排程請求將傳送到該LTE基地台與一第五代(5G)基地台的哪一個;回應於該排程請求之傳送,將從該LTE基地台接收之一上行鏈路授予解碼,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告至該LTE基地台,其中該5G射束測量報告包含從一射束參考信號(BRS)獲取之一所選射束之一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一者;回應於該上行鏈路授予之接收,產生包含用於傳送至該5G基地台之一邏輯通道識別(LCID)之該BSR與該5G射束測量報告,其中該LCID提供用於該LTE基地台之一上行鏈路請求與用於該5G基地台之一上行鏈路請求之間的差異化;以及回應於該BSR與該5G射束測量報告之傳送,解碼從該5G基地台接收之一實體下行鏈路控制通道(PDCCH)。 A user equipment (UE) device, which includes a processing circuit configured to generate a scheduling request indicating that uplink data will be transmitted to a long-term evolution (LTE) base station, the scheduling request depends on Which of the LTE base station and a fifth-generation (5G) base station the scheduling request will be transmitted to; in response to the transmission of the scheduling request, an uplink grant decoding will be received from the LTE base station to Send a buffer status report (BSR) and a 5G beam measurement report to the LTE base station, where the 5G beam measurement report includes acquiring a selected beam identity from a beam reference signal (BRS) and At least one of the BRS received power (BRS-RP) measurements of one of the selected beams; in response to the uplink granted reception, generate a logical channel identification (LCID) for transmission to the 5G base station The BSR and the 5G beam measurement report, wherein the LCID provides differentiation between an uplink request for the LTE base station and an uplink request for the 5G base station; and responding to the BSR In conjunction with the transmission of the 5G beam measurement report, decoding receives a physical downlink control channel (PDCCH) from the 5G base station. 如申請專利範圍第1項之裝置,其中:一訊息包含該排程請求,及其中傳送該訊息到該5G基地台。 Such as the device of the first item in the scope of patent application, in which: a message includes the scheduling request, and the message is sent to the 5G base station. 如申請專利範圍第1項之裝置,其中該處理電路 進一步配置以:產生用於經由一專用的資源來傳送之該排程請求。 Such as the device of the first item in the scope of patent application, where the processing circuit It is further configured to generate the scheduling request for transmission via a dedicated resource. 如申請專利範圍第1項之裝置,其中該處理電路進一步配置以:回應從該LTE基地台之該上行鏈路授予之接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告的傳送,產生該PDCCH之接收。 For example, the device of claim 1, wherein the processing circuit is further configured to: respond to the reception of the uplink grant from the LTE base station, generate the BSR and the 5G beam measurement report, and respond to the BSR and the 5G beam measurement report. The transmission of the 5G beam measurement report generates the reception of the PDCCH. 如申請專利範圍第1項之裝置,其中該處理電路進一步配置以:回應於從該5G基地台之該上行鏈路授予之接收,產生該BSR,回應於該BSR之傳送與該5G射束測量報告之傳送,產生至少一個5G實體下行鏈路控制通道(xPDCCH)之接收。 For example, the device of claim 1, wherein the processing circuit is further configured to generate the BSR in response to the reception of the uplink grant from the 5G base station, and respond to the transmission of the BSR and the 5G beam measurement The transmission of the report generates the reception of at least one 5G entity downlink control channel (xPDCCH). 如申請專利範圍第2項之裝置,其中該處理電路進一步配置以:產生用於一非專用資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE基地台的一PDCCH,該PDCCH包含用於使UE進行具有該5G基地台之一免競爭隨機存取通道程序的一請求;以及回應於該PDCCH的接收,產生具有用於傳送到該5G基地台之一指定前置簽名的一5G實體隨機存取通道(xPRACH),回應於該xPRACH之傳送,產生一xPDCCH之接收。 For example, the device of claim 2, wherein the processing circuit is further configured to: generate the scheduling request for a non-dedicated resource; and in response to the transmission of the scheduling request, decode a PDCCH from the LTE base station The PDCCH includes a request for the UE to perform a contention-free random access channel procedure with one of the 5G base stations; and in response to the reception of the PDCCH, it generates a request with a designated preamble for transmission to the 5G base station. A signed 5G physical random access channel (xPRACH), in response to the xPRACH transmission, generates an xPDCCH reception. 如申請專利範圍第6項之裝置,其中該指定前置 簽名包含在一前置索引組內的一前置索引,一前置索引組身分係經由該所選射束之該BRS-RP測量而獲得。 For the device of item 6 in the scope of patent application, the designation is preceded by The signature includes a pre-index in a pre-index group, and a pre-index group identity is obtained through the BRS-RP measurement of the selected beam. 如申請專利範圍第6項之裝置,其中該xPDCCH包含一縮減隨機存取回應(RAR),該縮減RAR沒有一時序提前及暫時細胞無線電網路暫時識別符(C-RNTI),且該縮減RAR由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 For example, the device in the scope of patent application, in which the xPDCCH includes a reduced random access response (RAR), the reduced RAR does not have a timing advance and the temporary cellular radio network temporary identifier (C-RNTI), and the reduced RAR Stirred by the C-RNTI in a cyclic redundancy check (CRC). 如申請專利範圍第2項之裝置,其中:該訊息包含用於經由一專用資源傳送的一xPRACH。 Such as the device of the second item of the patent application, where: the message includes an xPRACH for transmission via a dedicated resource. 如申請專利範圍第9項之裝置,其中該處理電路進一步配置以:回應於該xPRACH與來自該5G基地台之傳送,解碼一上行鏈路授予,以將該BSR與該5G射束測量報告傳送到該5G基地台,一5G射束測量包含從一BRS獲取之一所選多輸入多輸出(MIMO)射束的一身分與該所選射束之一BRS-RP測量的至少一者;以及回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告之傳送,產生一xPDCCH的接收。 For example, the device of claim 9, wherein the processing circuit is further configured to: in response to the xPRACH and the transmission from the 5G base station, decode an uplink grant to transmit the BSR and the 5G beam measurement report To the 5G base station, a 5G beam measurement includes acquiring at least one of an identity of a selected multiple-input multiple-output (MIMO) beam from a BRS and a BRS-RP measurement of one of the selected beams; and In response to the reception of the uplink grant, the BSR and the 5G beam measurement report are generated, and in response to the transmission of the BSR and the 5G beam measurement report, a xPDCCH reception is generated. 如申請專利範圍第9項之裝置,其中:該訊息包含用於經由一專用資源傳送之該xPRACH與該BSR、回應於該訊息傳送之一xPDCCH之接收。 For example, the device of claim 9, wherein: the message includes the xPRACH and the BSR for transmission via a dedicated resource, and the reception of an xPDCCH in response to the message transmission. 如申請專利範圍第2項之裝置,其中:該處理電路包含基頻電路,該基頻電路配置以從經 由無線電資源控制(RRC)訊號發送的該LTE基地台、用於從該LTE基地台之一上行鏈路請求之傳送的一上行鏈路專用LTE資源、以及用於一上行鏈路請求到該5G基地台之傳送的一上行鏈路專用5G資源,判定用於在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一者上傳送的該訊息。 For example, the device of item 2 of the scope of patent application, wherein: the processing circuit includes a base frequency circuit, and the base frequency circuit is configured to The LTE base station sent by a radio resource control (RRC) signal, an uplink dedicated LTE resource for transmission from an uplink request of the LTE base station, and an uplink request to the 5G An uplink dedicated 5G resource transmitted by the base station is determined to be used for transmitting the message on one of the uplink dedicated LTE resource and the uplink dedicated 5G resource. 如申請專利範圍第1項之裝置,其進一步包含:一天線,其經組態以提供該UE與一基地台之間的通訊。 For example, the device of the first item in the scope of the patent application further includes: an antenna configured to provide communication between the UE and a base station. 一種基地台的裝置,其包含處理電路,該處理電路配置以:為了經由無線電資源控制(RRC)訊號發送之傳送,產生用於將一上行鏈路請求傳送到一長期演進(LTE)基地台的一上行鏈路專用LTE資源及用於將一上行鏈路請求傳送到一5G基地台的一上行鏈路專用第五代(5G)資源的一者;將在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一者上傳送之一訊息的一者解碼,該訊息指示將傳送上行鏈路資料到該5G基地台,該訊息包含一排程請求(SR)與一5G實體隨機存取通道(xPRACH)之一者,該訊息取決於該訊息已傳送到該LTE基地台與該5G基地台的哪一個;回應於經由該上行鏈路專用LTE資源的該排程請求 之接收,產生一上行鏈路授予以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,其中該5G射束測量報告包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一者;以及在該上行鏈路授予之傳送之後,解碼包含一邏輯通道識別(LCID)之該BSR與該5G射束測量報告,其中該LCID提供用於該LTE基地台之一上行鏈路請求與用於該5G基地台之一上行鏈路請求之間的差異化。 A device for a base station, which includes a processing circuit configured to generate an uplink request for transmitting an uplink request to a long-term evolution (LTE) base station in order to transmit via a radio resource control (RRC) signal One of an uplink dedicated LTE resource and an uplink dedicated fifth-generation (5G) resource for transmitting an uplink request to a 5G base station; the uplink dedicated LTE resource will be combined with the uplink dedicated fifth-generation (5G) resource A decoding of a message sent on one of the uplink dedicated 5G resources, the message indicating that the uplink data will be sent to the 5G base station, the message includes a scheduling request (SR) and a 5G entity random storage One of the channels (xPRACH), the message depends on which of the LTE base station and the 5G base station the message has been transmitted to; in response to the scheduling request via the uplink dedicated LTE resource To receive, generate an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, where the 5G beam measurement report includes a selected beam obtained from a beam reference signal (BRS) At least one of an identity of the beam and a BRS received power (BRS-RP) measurement of one of the selected beams; and after the uplink granted transmission, decode the BSR and the logical channel identification (LCID) The 5G beam measurement report, wherein the LCID provides a differentiation between an uplink request for the LTE base station and an uplink request for the 5G base station. 如申請專利範圍第14項之裝置,其中:該基地台包含該LTE基地台,以及該處理電路進一步配置以:回應於經由該上行鏈路專用LTE資源的該排程請求之接收,產生一上行鏈路授予以傳送該BSR與該5G射束測量報告中的至少一者。 For example, the device of claim 14, wherein: the base station includes the LTE base station, and the processing circuit is further configured to: in response to receiving the scheduling request via the uplink dedicated LTE resource, generate an uplink The link is granted to transmit at least one of the BSR and the 5G beam measurement report. 如申請專利範圍第14項之裝置,其中:該基地台包含該5G基地台,以及該處理電路進一步配置以:回應於該上行鏈路專用LTE資源之使用以傳送該排程請求,產生一上行鏈路授予以傳送該BSR與該5G射束測量報告的至少一者;以及產生含有用於在該所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH),該5G上行鏈路授予包含分配用於該上行鏈路資料之傳送的資源。 For example, the device of claim 14, wherein: the base station includes the 5G base station, and the processing circuit is further configured to transmit the scheduling request in response to the use of the uplink dedicated LTE resource, and generate an uplink Link grant to transmit at least one of the BSR and the 5G beam measurement report; and generate a 5G physical downlink control channel (xPDCCH) containing a 5G uplink grant for transmitting on the selected beam ), the 5G uplink grant includes resources allocated for the transmission of the uplink data. 如申請專利範圍第14項之裝置,其中:該基地台包含該5G基地台,以及該處理電路進一步配置以:在包含用於使該UE進行具有該5G基地台之一免競爭隨機存取通道程序的一請求的一PDCCH之傳送之後以及回應於經由來自該LTE基地台之一非專用資源的該排程請求之接收,解碼具有一指定前置簽名的一xPRACH,該xPDCCH包含一縮減隨機存取回應(RAR),該縮減RAR沒有一時序提前及暫時細胞無線電網路暫時識別符(C-RNTI),且該縮減RAR由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌;以及產生一xPDCCH,其含有用於在一所選射束上傳送的一5G上行鏈路授予。 For example, the device of item 14 of the scope of patent application, wherein: the base station includes the 5G base station, and the processing circuit is further configured to: include a random access channel for enabling the UE to perform a competition-free random access with the 5G base station After the transmission of a requested PDCCH of the procedure and in response to the reception of the scheduling request via a non-dedicated resource from the LTE base station, decode an xPRACH with a designated pre-signature, the xPDCCH including a reduced random memory Get response (RAR), the reduced RAR does not have a timing advance and temporary cellular radio network temporary identifier (C-RNTI), and the reduced RAR is stirred by the C-RNTI in a cyclic redundancy check (CRC) ; And generating an xPDCCH containing a 5G uplink grant for transmission on a selected beam. 如申請專利範圍第14項之裝置,其中:該基地台包含該5G基地台,以及該處理電路進一步配置以:回應於經由該專用5G資源的一xPRACH之接收,產生一上行鏈路授予以傳送該緩衝器狀態報告(BSR)與該5G射束測量報告;以及產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一xPDCCH。 For example, the device of claim 14, wherein: the base station includes the 5G base station, and the processing circuit is further configured to: in response to receiving an xPRACH via the dedicated 5G resource, generate an uplink grant to transmit The buffer status report (BSR) and the 5G beam measurement report; and generating an xPDCCH containing a 5G uplink grant for transmission on a selected beam. 如申請專利範圍第14項之裝置,其中:該基地台包含該5G基地台,以及該處理電路進一步配置以: 回應於經由該上行鏈路專用5G資源的一xPRACH和該BSR之接收,產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一xPDCCH。 For example, the device of item 14 of the scope of patent application, wherein: the base station includes the 5G base station, and the processing circuit is further configured to: In response to the reception of an xPRACH via the uplink dedicated 5G resource and the BSR, an xPDCCH containing a 5G uplink grant for transmission on a selected beam is generated. 一種非暫時性電腦可讀取儲存媒體,其儲存由一使用者設備(UE)之一或多個處理器可執行之程式指令,致使該UE以:得到用於傳送一上行鏈路請求到一長期演進(LTE)基地台的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G基地台的一上行鏈路專用第五代(5G)資源的至少一者;產生一排程請求(SR)與一5G實體隨機存取通道(xPRACH)的一者,該5G實體隨機存取通道指示將上行鏈路資料傳送到該5G基地台,在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一者上傳送該SR與該xPRACH的該者,並且依據一LTE鏈路與一5G鏈路的哪一個上傳送該SR與該xPRACH之該者來選擇;回應於該SR之傳送,解碼從該LTE基地台接收之一上行鏈路授予以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告至該LTE基地台,其中該5G射束測量報告包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一者;回應於該上行鏈路授予之接收,產生包含用於傳送至該5G基地台之一邏輯通道識別(LCID)之該BSR與該5G 射束測量報告,其中該LCID提供用於該LTE基地台之一上行鏈路請求與用於該5G基地台之一上行鏈路請求之間的差異化;以及在傳送一訊息之後,將包含在一所選射束上來自該5G基地台之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送上行鏈路資料的資源。 A non-transitory computer-readable storage medium that stores program instructions executable by one or more processors of a user equipment (UE), causing the UE to: get used to transmit an uplink request to a At least one of an uplink dedicated LTE resource for a long-term evolution (LTE) base station and an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G base station; generate a row One of a remote request (SR) and a 5G physical random access channel (xPRACH), the 5G physical random access channel instructs to transmit uplink data to the 5G base station, where the uplink dedicated LTE resource and the One of the uplink dedicated 5G resources transmits the SR and the xPRACH, and is selected according to which of an LTE link and a 5G link is transmitted the SR and the xPRACH; in response to the SR transmission, decoding an uplink grant received from the LTE base station to transmit a buffer status report (BSR) and a 5G beam measurement report to the LTE base station, wherein the 5G beam measurement report includes a The beam reference signal (BRS) acquires at least one of an identity of a selected beam and a BRS received power (BRS-RP) measurement of one of the selected beams; in response to the reception of the uplink grant, generate Contains the BSR and the 5G for a logical channel identification (LCID) transmitted to the 5G base station Beam measurement report, where the LCID provides differentiation between an uplink request for the LTE base station and an uplink request for the 5G base station; and after transmitting a message, it will be included in A 5G physical downlink control channel (xPDCCH) decoded on a selected beam from a 5G uplink grant of the 5G base station, the 5G uplink grant including resources allocated for transmitting uplink data. 如申請專利範圍第20項之非暫時性電腦可讀取儲存媒體,其中該程式指令進一步可執行致使該UE以:解碼從該LTE基地台接收的一PDCCH,該PDCCH包含用於使該UE進行具有該5G基地台之一免競爭隨機存取通道程序的一請求,以及經由該5G鏈路產生具有一指定前置簽名的一xPRACH,該xPDCCH包含一縮減隨機存取回應(RAR),該縮減RAR沒有一時序提前及暫時細胞無線電網路暫時識別符(C-RNTI),且該縮減RAR由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 For example, the non-transitory computer-readable storage medium of item 20 of the scope of patent application, wherein the program instructions are further executable to cause the UE to: decode a PDCCH received from the LTE base station, the PDCCH includes a method for enabling the UE There is a request for a contention-free random access channel program of the 5G base station, and an xPRACH with a designated pre-signature is generated via the 5G link, the xPDCCH includes a reduced random access response (RAR), and the reduced The RAR does not have a timing advance and temporary cellular radio network temporary identifier (C-RNTI), and the reduced RAR is stirred by the C-RNTI in a cyclic redundancy check (CRC).
TW105141071A 2016-01-19 2016-12-12 Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium TWI721065B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662280574P 2016-01-19 2016-01-19
US62/280,574 2016-01-19
PCT/US2016/023952 WO2017127126A1 (en) 2016-01-19 2016-03-24 Devices and methods for providing 5g uplink request
WOPCT/US16/23952 2016-03-24

Publications (2)

Publication Number Publication Date
TW201735676A TW201735676A (en) 2017-10-01
TWI721065B true TWI721065B (en) 2021-03-11

Family

ID=59362569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141071A TWI721065B (en) 2016-01-19 2016-12-12 Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium

Country Status (4)

Country Link
CN (1) CN108476513B (en)
HK (1) HK1258283A1 (en)
TW (1) TWI721065B (en)
WO (1) WO2017127126A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200003798A (en) * 2017-05-05 2020-01-10 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and apparatus within a wireless network
US10750476B2 (en) 2017-07-11 2020-08-18 Qualcomm Incorporated Synchronization signal transmission for mobility
JP2019033420A (en) * 2017-08-09 2019-02-28 シャープ株式会社 Terminal device, communication method, and integrated circuit
CN111096034A (en) * 2017-08-11 2020-05-01 Oppo广东移动通信有限公司 Resource allocation method, device, system and computer readable storage medium
US10887828B2 (en) 2017-08-24 2021-01-05 Qualcomm Incorporated Techniques and apparatuses for mobile network searching in multiple radio access technologies
WO2019047152A1 (en) 2017-09-08 2019-03-14 Qualcomm Incorporated Techniques and apparatuses for improving new radio coverage
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
US10736025B2 (en) 2017-11-30 2020-08-04 Corning Optical Communications LLC Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity
US11006413B2 (en) 2017-12-06 2021-05-11 Google Llc Narrow-band communication
US10779303B2 (en) 2017-12-12 2020-09-15 Google Llc Inter-radio access technology carrier aggregation
US10608721B2 (en) 2017-12-14 2020-03-31 Google Llc Opportunistic beamforming
EP3676972B1 (en) 2017-12-15 2022-02-09 Google LLC Satellite-based narrow-band communication
US10868654B2 (en) 2017-12-15 2020-12-15 Google Llc Customizing transmission of a system information message
US11246143B2 (en) 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
US10375671B2 (en) 2017-12-22 2019-08-06 Google Llc Paging with enhanced beamforming
CN110225599B (en) * 2018-03-02 2021-02-12 电信科学技术研究院有限公司 Method and device for determining scheduling request configuration
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
US10993154B2 (en) * 2018-04-02 2021-04-27 T-Mobile Usa, Inc. Optimizing new radio standalone and dual connectivity access
US10939442B2 (en) 2018-04-06 2021-03-02 Mediatek Inc. Beam selection and resource allocation for beam-formed random access procedure
WO2019194622A1 (en) * 2018-04-06 2019-10-10 엘지전자 주식회사 Method for setting timing advance of relay node in next-generation communication system and apparatus therefor
US11013041B2 (en) 2018-07-03 2021-05-18 Google Llc 5G NR enhanced physical downlink control channel
WO2020019217A1 (en) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 Transmission configuration method and device
US11838883B2 (en) 2018-07-25 2023-12-05 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and device
CN113068274B (en) * 2018-08-01 2023-10-31 Oppo广东移动通信有限公司 Random access method and equipment
CN110859011A (en) * 2018-08-25 2020-03-03 华为技术有限公司 Communication method and related equipment
US11233548B2 (en) 2018-09-10 2022-01-25 Google Llc Fast beam tracking
CN109068332B (en) * 2018-09-26 2022-10-25 中国联合网络通信集团有限公司 Data transmission method and device
CN111083747A (en) * 2018-10-19 2020-04-28 华为技术有限公司 Communication method and device
CN110225556B (en) * 2019-01-23 2021-09-03 华为技术有限公司 Resource reservation method and related equipment
WO2020160784A1 (en) * 2019-02-08 2020-08-13 Nokia Technologies Oy Random access in wireless communication networks
WO2020235826A1 (en) 2019-05-17 2020-11-26 Samsung Electronics Co., Ltd. Electronic device for supporting dual connectivity and method for operating thereof
CN112135304A (en) * 2019-06-25 2020-12-25 中兴通讯股份有限公司 Beam management method and device based on non-independent networking NSA system
US11083005B2 (en) 2019-07-11 2021-08-03 Rohde & Schwarz Gmbh & Co. Kg Method for reporting scheduling decisions by a communication tester
CN112689333A (en) * 2020-12-29 2021-04-20 北京金迈捷科技有限公司 Wireless test and emission control information transmission system based on 5G

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2661138A1 (en) * 2012-05-04 2013-11-06 Panasonic Corporation Threshold-based and power-efficient scheduling request procedure
US20140177607A1 (en) * 2012-12-26 2014-06-26 Samsung Electronics Co., Ltd Method and apparatus for random access in communication system with large number of antennas
WO2015147717A1 (en) * 2014-03-25 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) System and method for beam-based physical random-access

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US8670394B2 (en) * 2007-08-14 2014-03-11 Qualcomm Incorporated Uplink requests
US8780816B2 (en) * 2008-08-12 2014-07-15 Qualcomm Incorporated Handling uplink grant in random access response
CN102612149B (en) * 2011-01-25 2014-12-03 华为技术有限公司 Wireless resource distribution method for relay cell, base station and system
US20130083739A1 (en) * 2011-10-04 2013-04-04 Sharp Laboratories Of America, Inc. Devices for random access response scheduling
IN2014CN04550A (en) * 2011-11-25 2015-09-18 Nec Corp
US9407337B2 (en) * 2013-04-15 2016-08-02 Broadcom Corporation Antenna systems and methods for massive MIMO communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2661138A1 (en) * 2012-05-04 2013-11-06 Panasonic Corporation Threshold-based and power-efficient scheduling request procedure
US20140177607A1 (en) * 2012-12-26 2014-06-26 Samsung Electronics Co., Ltd Method and apparatus for random access in communication system with large number of antennas
WO2015147717A1 (en) * 2014-03-25 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) System and method for beam-based physical random-access

Also Published As

Publication number Publication date
WO2017127126A1 (en) 2017-07-27
CN108476513B (en) 2022-01-07
HK1258283A1 (en) 2019-11-08
CN108476513A (en) 2018-08-31
TW201735676A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
TWI721065B (en) Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium
US11245480B2 (en) Devices and methods for robust measurement and data receiving
US11063646B2 (en) Device and method for synchronous beam switching
US11013063B2 (en) User equipment (UE), evolved node-b (eNB) and methods for dynamic hybrid automatic repeat request (HARQ)
US11737171B2 (en) 5G FDD low latency transmission subframe structure system and method of use
US11122580B2 (en) Evolved node-b (ENB), user equipment (UE) and methods for flexible duplex communication
EP3369223B1 (en) Latency reduction for wireless data transmission
US11088749B2 (en) Device and method of using BRRS configuration
US10855407B2 (en) Extended physical broadcast channel design for 5G standalone system
US11082950B2 (en) User equipment (UE) and method of sidelink data communication in fifth generation (5G) new radio (NR) things networks
WO2017062050A1 (en) Dynamically beamformed control channel for beamformed cells
US10749635B2 (en) Random-access and scheduling-request in new radio-things sidelink
WO2017111983A1 (en) Devices and methods for initial access in massive mimo system
WO2017146751A1 (en) Physical uplink control channel formats for 5g
CN114448592A (en) Self-contained TDD frame structure and DL-UL configuration in 5G systems