TW201735676A - Devices and methods for providing 5G uplink request - Google Patents

Devices and methods for providing 5G uplink request Download PDF

Info

Publication number
TW201735676A
TW201735676A TW105141071A TW105141071A TW201735676A TW 201735676 A TW201735676 A TW 201735676A TW 105141071 A TW105141071 A TW 105141071A TW 105141071 A TW105141071 A TW 105141071A TW 201735676 A TW201735676 A TW 201735676A
Authority
TW
Taiwan
Prior art keywords
enb
uplink
lte
resource
bsr
Prior art date
Application number
TW105141071A
Other languages
Chinese (zh)
Other versions
TWI721065B (en
Inventor
熊崗
昌文婷
張羽書
華寧 牛
朱源
Original Assignee
英特爾智財公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾智財公司 filed Critical 英特爾智財公司
Publication of TW201735676A publication Critical patent/TW201735676A/en
Application granted granted Critical
Publication of TWI721065B publication Critical patent/TWI721065B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Abstract

Devices and methods of scheduling uplink data requests in 5G systems are generally described. A UE transmits a scheduling request (SR) or an 5G physical random access channel (xPRACH) to an eNB on a 5G or LTE link resource reserved for 5G scheduling requests or unreserved. The message is dependent on which of link is used for the transmission. Depending on whether a reserved resource and a reserved logical channel ID is used, the UE transmits the eNB with a BSR and perhaps a beam measurement report after sending an SR and in response to receiving an uplink grant for the same. The UE then transmits a 5G physical uplink shared channel in response to receiving on an optimal beam an 5G physical downlink control channel containing a 5G uplink grant for the data. When an xPRACH is transmitted, a reduced random access response is used.

Description

用於提供5G上行鏈路請求的裝置和方法 Apparatus and method for providing 5G uplink request

實施例屬於無線電存取網路。一些實施例關於提供資料於蜂巢式與無線區域網路(WLAN)網路,包括第三代合作夥伴計畫長期演進(3GPP LTE)網路以及LTE升級版(LTE-A)網路以及第四代(4G)網路和第五代(5G)網路。一些實施例關於在5G網路中的上行鏈路請求設計。 The embodiment belongs to a radio access network. Some embodiments provide information on cellular and wireless local area network (WLAN) networks, including 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) networks and LTE Upgraded (LTE-A) networks, and fourth Generation (4G) network and fifth generation (5G) network. Some embodiments relate to uplink request design in a 5G network.

隨著與多個網路裝置通訊之不同類型裝置的增加,3GPP LTE系統的用途已經增加。隨著諸如視訊串流之服務的出現,這已經增加使用者設備(UEs)的數目以及由這些使用者設備所使用的寬頻兩者,且已經使LTE網路日益緊張。為了增加容量,下一代的LTE網路可能可應用多輸入多輸出(MIMO)。MIMO系統使用多路徑的訊號傳播,以在相同或重疊頻率上、經由藉由相同演進型節點B(eNB)的多個訊號而與UE通訊,該等訊號將彼此干擾(如果其等在相同路徑上)。上行鏈路或下行鏈路資料的此種增加可專用於一種UE,以藉由射束的數目,增加那 UE的有效頻寬(單一使用者MIMO或SU-MIMO)或可使用用於各UE的不同射束而分佈遍及多個UE(多個使用者MIMO或MU-MIMO)。 The use of 3GPP LTE systems has increased with the proliferation of different types of devices communicating with multiple network devices. With the advent of services such as video streaming, this has increased both the number of user equipments (UEs) and the broadband used by these user devices, and has made the LTE network increasingly tight. To increase capacity, next-generation LTE networks may be capable of applying Multiple Input Multiple Output (MIMO). MIMO systems use multipath signal propagation to communicate with UEs over the same or overlapping frequencies via multiple signals from the same evolved Node B (eNB), which will interfere with each other (if they are on the same path on). This increase in uplink or downlink data can be dedicated to one UE to increase that by the number of beams. The effective bandwidth of the UE (single-user MIMO or SU-MIMO) may be distributed across multiple UEs (multiple user MIMO or MU-MIMO) using different beams for each UE.

不過,射束形成可使許多傳送與接收事宜複雜。例如,當UE意圖請求用於上行鏈路資料傳送的資源時,eNB無法知道用於排程請求接收之由UE所使用的射束。 為了解決此,可使用重複的排程請求傳送,以允許eNB施行用於穩定排程請求檢測的射束掃描。這可能令人不快地增加與排程請求傳送有關的系統管理負擔。 However, beam formation can complicate many transmission and reception issues. For example, when a UE intends to request a resource for uplink data transmission, the eNB cannot know the beam used by the UE for scheduling request reception. To address this, repeated schedule request transmissions may be used to allow the eNB to perform beam scanning for stable scheduling request detection. This can undesirably increase the system management burden associated with scheduling request delivery.

100‧‧‧網路 100‧‧‧Network

101‧‧‧無線電存取網路 101‧‧‧radio access network

102‧‧‧使用者設備 102‧‧‧User equipment

104‧‧‧演進型節點B 104‧‧‧Evolved Node B

104A‧‧‧巨型演進型節點 104A‧‧‧Giant Evolved Node

104B‧‧‧低功率演進型節點 104B‧‧‧Low Power Evolving Node

115‧‧‧S1界面 115‧‧‧S1 interface

120‧‧‧核心網路 120‧‧‧core network

122‧‧‧移動性管理實體 122‧‧‧Mobility management entity

124‧‧‧服務閘道器 124‧‧‧service gateway

126‧‧‧封包資料網路閘道器 126‧‧‧Package data network gateway

200‧‧‧使用者設備 200‧‧‧User equipment

202‧‧‧應用電路 202‧‧‧Application Circuit

204‧‧‧基頻電路 204‧‧‧Base frequency circuit

204a‧‧‧第二代基頻處理器 204a‧‧‧second generation baseband processor

204b‧‧‧第三代基頻處理器 204b‧‧‧ third generation baseband processor

204c‧‧‧第四代基頻處理器 204c‧‧‧ fourth generation baseband processor

204d‧‧‧其他基頻處理器 204d‧‧‧Other baseband processors

204e‧‧‧中央處理單元 204e‧‧‧Central Processing Unit

204f‧‧‧音訊數位訊號處理器 204f‧‧‧Audio digital signal processor

206‧‧‧射頻電路 206‧‧‧RF circuit

206a‧‧‧混合器電路 206a‧‧‧Mixer circuit

206b‧‧‧放大器電路 206b‧‧‧Amplifier Circuit

206c‧‧‧濾波器電路 206c‧‧‧Filter circuit

206d‧‧‧合成器電路 206d‧‧‧Synthesizer circuit

208‧‧‧前端模組電路 208‧‧‧ front-end module circuit

210‧‧‧天線 210‧‧‧Antenna

300‧‧‧通訊裝置 300‧‧‧Communication device

301‧‧‧天線 301‧‧‧Antenna

302‧‧‧實體層電路 302‧‧‧ physical layer circuit

304‧‧‧媒體存取控制層電路 304‧‧‧Media Access Control Layer Circuit

306‧‧‧處理電路 306‧‧‧Processing Circuit

308‧‧‧記憶體 308‧‧‧ memory

312‧‧‧收發器電路 312‧‧‧ transceiver circuit

314‧‧‧界面 314‧‧‧ interface

400‧‧‧資源柵格 400‧‧‧Resource grid

400‧‧‧通訊裝置 400‧‧‧Communication device

402‧‧‧硬體處理器 402‧‧‧ hardware processor

404‧‧‧主要記憶體 404‧‧‧ main memory

406‧‧‧靜態記憶體 406‧‧‧ Static memory

408‧‧‧內網連接 408‧‧‧Internet connection

410‧‧‧顯示單元 410‧‧‧Display unit

412‧‧‧文數輸入裝置 412‧‧‧Text input device

414‧‧‧使用者界面導航裝置 414‧‧‧User interface navigation device

416‧‧‧儲存裝置 416‧‧‧ storage device

418‧‧‧訊號產生裝置 418‧‧‧Signal generating device

420‧‧‧網路界面裝置 420‧‧‧Web interface device

421‧‧‧感測器 421‧‧‧ sensor

422‧‧‧通訊裝置可讀取媒體 422‧‧‧Communication device readable media

424‧‧‧指令 424‧‧‧ directive

426‧‧‧通訊網路 426‧‧‧Communication network

428‧‧‧輸出控制器 428‧‧‧Output controller

502‧‧‧使用者設備 502‧‧‧User equipment

504‧‧‧長期演進演進型節點B 504‧‧‧Long Term Evolution Evolved Node B

506‧‧‧第五代演進型節點B 506‧‧‧ fifth generation evolved Node B

512‧‧‧操作 512‧‧‧ operation

514‧‧‧操作 514‧‧‧ operations

516‧‧‧操作 516‧‧‧ operation

518‧‧‧操作 518‧‧‧ operation

602‧‧‧使用者設備 602‧‧‧User equipment

604‧‧‧長期演進演進型節點B 604‧‧‧Long Term Evolution Evolved Node B

606‧‧‧第五代演進型節點B 606‧‧‧ fifth generation evolved Node B

612‧‧‧操作 612‧‧‧ operation

614‧‧‧操作 614‧‧‧ operation

616‧‧‧操作 616‧‧‧ operation

618‧‧‧操作 618‧‧‧ operation

702‧‧‧使用者設備 702‧‧‧User equipment

704‧‧‧長期演進演進型節點B 704‧‧‧Long Term Evolution Evolved Node B

706‧‧‧第五代演進型節點B 706‧‧‧ fifth generation evolved Node B

712‧‧‧操作 712‧‧‧ operation

714‧‧‧操作 714‧‧‧ operation

716‧‧‧操作 716‧‧‧ operation

718‧‧‧操作 718‧‧‧ operation

802‧‧‧使用者設備 802‧‧‧User equipment

804‧‧‧長期演進演進型節點B 804‧‧‧Long Term Evolution Evolved Node B

806‧‧‧第五代演進型節點B 806‧‧‧ fifth generation evolved Node B

812‧‧‧操作 812‧‧‧ operation

814‧‧‧操作 814‧‧‧ operation

816‧‧‧操作 816‧‧‧ operation

818‧‧‧操作 818‧‧‧ operation

820‧‧‧5G實體上行鏈路共享通道 820‧‧‧5G physical uplink shared channel

902‧‧‧使用者設備 902‧‧‧User equipment

904‧‧‧第五代演進型節點B 904‧‧‧ fifth generation evolved Node B

912‧‧‧操作 912‧‧‧ operation

914‧‧‧操作 914‧‧‧ operation

916‧‧‧操作 916‧‧‧ operation

918‧‧‧操作 918‧‧‧ operation

920‧‧‧操作 920‧‧‧ operations

1002‧‧‧使用者設備 1002‧‧‧User equipment

1004‧‧‧第五代演進型節點B 1004‧‧‧ fifth generation evolved Node B

1012‧‧‧操作 1012‧‧‧ operation

1014‧‧‧操作 1014‧‧‧ operation

1016‧‧‧操作 1016‧‧‧ operation

在附圖中(不一定按比率繪製),相同的數字可描述在不同圖中的類似組件。具有不同字母加於末尾的相同數字可代表類似組件的不同例子。該等附圖一般以實例的方式而非以限制的方式來繪示在本文件中所討論的許多實施例。 In the figures (not necessarily drawn to scale), like numerals may be used to describe similar components in different figures. The same numbers with different letters added to the end may represent different examples of similar components. The drawings are generally described by way of example, and not in the

圖1係為根據一些實施例之無線網路的功能圖。 1 is a functional diagram of a wireless network in accordance with some embodiments.

圖2繪示根據一些實施例之通訊裝置的組件。 2 illustrates components of a communication device in accordance with some embodiments.

圖3繪示根據一些實施例之通訊裝置的方塊圖。 3 is a block diagram of a communication device in accordance with some embodiments.

圖4繪示根據一些實施例之通訊裝置的另一方塊圖。 4 is another block diagram of a communication device in accordance with some embodiments.

圖5繪示根據一些實施例之用於非獨立LTE系統的上行鏈路請求設計。 FIG. 5 illustrates an uplink request design for a non-independent LTE system in accordance with some embodiments.

圖6繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。 6 illustrates another uplink request design for a non-independent LTE system, in accordance with some embodiments.

圖7繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。 7 illustrates another uplink request design for a non-independent LTE system, in accordance with some embodiments.

圖8繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。 8 illustrates another uplink request design for a non-independent LTE system, in accordance with some embodiments.

圖9繪示根據一些實施例之用於獨立LTE系統的另一上行鏈路請求設計。 9 illustrates another uplink request design for an LTE-acne system, in accordance with some embodiments.

圖10繪示根據一些實施例之用於獨立LTE系統的另一上行鏈路請求設計。 FIG. 10 illustrates another uplink request design for an independent LTE system in accordance with some embodiments.

【發明內容及實施方式】 SUMMARY OF THE INVENTION AND EMBODIMENT

以下的實施方式與圖式充分地繪示具體實施例,以致使所屬技術領域中具有通常知識者來實行它們。其他實施例可合併結構的、邏輯的、電的過程與其他改變。一些實施例的部份與特徵可包括在其他實施例的那些部份與特徵中,或取代其他實施例的那些部份與特徵。在申請專利範圍中所陳述的實施例涵蓋那些申請專利範圍的全部可用等同物。 The following embodiments and figures are illustrative of the specific embodiments so that those of ordinary skill in the art will practice. Other embodiments may incorporate structural, logical, electrical processes, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. The embodiments set forth in the scope of the patent application cover all available equivalents of those claims.

圖1顯示根據一些實施例之具有網路之多種組件之長期演進(LTE)網路的一部份端對端網路架構的實例。如本文中所使用的,LTE網路意指LTE與LTE升級版(LTE-A)網路兩者以及欲研發之LTE網路的其他版本。網路100可包含經由S1界面115耦合在一起的無線電存取網路(RAN)(例如,如描述,E-UTRAN或演進通用陸上無線電存取網路)101以及核心網路120(例如,顯示為演進封 包核心(EPC))。為了方便簡潔,在該實例中,只有核心網路120的一部份以及RAN101顯示。 1 shows an example of a portion of an end-to-end network architecture for a Long Term Evolution (LTE) network with multiple components of a network, in accordance with some embodiments. As used herein, an LTE network refers to both LTE and LTE Upgraded (LTE-A) networks and other versions of the LTE network to be developed. Network 100 may include a Radio Access Network (RAN) (e.g., as described, E-UTRAN or Evolved Universal Land Radio Access Network) 101 and core network 120 (e.g., display) coupled together via S1 interface 115. For evolution Package Core (EPC)). For convenience and simplicity, in this example, only a portion of the core network 120 and the RAN 101 are displayed.

核心網路120可包括移動性管理實體(MME)122、服務閘道器(serving GW)124、以及封包資料網路閘道器(PDN GW)126。RAN101可包括演進型節點Bs(eNB)104(其可操作當作基地台),用於與使用者設備(UE)102通訊。eNB104可包括巨型eNB104a以及低功率(LP)eNB104b。eNB104與UEs102可應用本文中所說明的同步化技術。 The core network 120 may include a Mobility Management Entity (MME) 122, a Serving GW 124, and a Packet Data Network Gateway (PDN GW) 126. The RAN 101 may include an evolved Node Bs (eNB) 104 (which is operable as a base station) for communicating with User Equipment (UE) 102. The eNB 104 may include a jumbo eNB 104a and a low power (LP) eNB 104b. The eNB 104 and UEs 102 can apply the synchronization techniques described herein.

MME122在功能上類似舊版服務GPRS支援節點(SGSN)的控制面。MME122可管理在存取中的移動性態樣,諸如閘道器選擇與追蹤區域清單管理。服務GW124可端接朝RAN101的界面,且路由資料封包於RAN101與核心網路120之間。此外,服務GW124可以是用於eNB間交接的局部移動性定錨點,且亦可提供用於3GPP間移動性的定錨。其他責任可能包括合法攔截、收費、以及一些政策執行。服務GW124與MME122可在一個實體節點或分開的實體節點中實施。 The MME 122 is functionally similar to the control plane of the legacy Serving GPRS Support Node (SGSN). The MME 122 can manage mobility aspects in access, such as gateway selection and tracking area list management. The Serving GW 124 can terminate the interface towards the RAN 101 and the routing data is encapsulated between the RAN 101 and the core network 120. In addition, the Serving GW 124 may be a local mobility anchor for inter-eNB handover, and may also provide anchoring for inter-GPP mobility. Other responsibilities may include legal interception, fees, and some policy enforcement. Serving GW 124 and MME 122 may be implemented in one physical node or in separate physical nodes.

PDN GW126可端接朝向封包資料網路(PDN)的SGi界面。PDN GW126可路由資料封包於EPC120與外部PDN之間,且可施行政策執行與收費資料收集。PDN GW126亦可提供定錨點,以用於具有非LTE存取的移動性裝置。外部PDN可以是任何種類的IP網路,以及IP多媒體子系統(IMS)域。PDN GW126與服務GW124可在單一 實體節點或分開實體節點中實施。 The PDN GW 126 can terminate the SGi interface towards the Packet Data Network (PDN). The PDN GW 126 can route data between the EPC 120 and the external PDN, and can perform policy enforcement and charging data collection. The PDN GW 126 may also provide anchor points for mobility devices with non-LTE access. The external PDN can be any kind of IP network, as well as an IP Multimedia Subsystem (IMS) domain. PDN GW 126 and service GW 124 can be in a single Implemented in an entity node or in a separate entity node.

eNB104(巨型與微型)可端接空氣界面協定,且可以是用於UE102的第一接點。在一些實施例中,eNB104可實行用於RAN101的多種邏輯的功能,包括但不限於RNC(無線電網路控制器功能),諸如無線電載送管理、上行鏈路與下行鏈路動態無線電資源管理與資料封包排程、以及移動性管理。根據實施例,UEs102可經組態以根據OFDMA通訊技術、在多載波通訊頻道上、與eNB104通訊正交分頻多工(OFDM)通訊訊號。OFDM訊號可包含複數個正交次載波。 The eNB 104 (mega and mini) may terminate the air interface protocol and may be the first contact for the UE 102. In some embodiments, eNB 104 may implement various logic functions for RAN 101, including but not limited to RNC (Radio Network Controller Function), such as radio bearer management, uplink and downlink dynamic radio resource management and Data packet scheduling, and mobility management. According to an embodiment, the UEs 102 may be configured to communicate orthogonal frequency division multiplexing (OFDM) communication signals with the eNB 104 over a multi-carrier communication channel in accordance with OFDMA communication techniques. The OFDM signal can include a plurality of orthogonal subcarriers.

S1界面115可以是分開RAN101與EPC120的界面。它可分成兩部分:S1-U,其可運送交通資料於eNB104與服務GW124之間;以及S1-MME,其可以是eNB104與MME122之間的訊號發送界面。X2界面可以是數個eNB 104之間的界面。X2界面可包含兩部份:X2-C與X2-U。X2-C可以是數個eNB104之間的控制面界面,而X2-U可以是數個eNB 104之間的使用者面界面。 The S1 interface 115 may be an interface separating the RAN 101 from the EPC 120. It can be divided into two parts: S1-U, which can carry traffic information between the eNB 104 and the serving GW 124; and an S1-MME, which can be a signal transmission interface between the eNB 104 and the MME 122. The X2 interface can be an interface between several eNBs 104. The X2 interface can consist of two parts: X2-C and X2-U. X2-C may be a control plane interface between several eNBs 104, and X2-U may be a user plane interface between several eNBs 104.

以蜂巢式網路,LP單元104b一般可用來將覆蓋範圍延伸到室外信號不足的室內區域,或在使用密集的區域中增加網路容量。特別地,使用不同尺寸的單元、巨型單元、微型單元、微微單元、以及毫微微單元來放大無線通訊系統的覆蓋範圍,以提升系統性能,其係令人期待。不同尺寸的單元可在相同頻帶上操作,或可在不同頻帶上操作,各單元均在不同頻帶中操作,或僅僅不同尺寸的單元 在不同頻帶上操作。如在本文中所使用的,術語LP eNB意指用於實施較小單元(小於巨型單元)的任何相當適當的LP eNB,該較小單元諸如毫微微單元、微微單元、或微型單元。毫微微單元eNB一般可由行動網路操作員提供給其住家或企業客戶。毫微微單元一般而言可能是住家閘道器的尺寸或更小,且通常連接到寬頻線。毫微微單元可連接到行動操作員的行動網路,且提供一般在30至50尺之範圍中的額外覆蓋範圍。因此,LP eNB104b可能是毫微微eNB,因為它耦合經過PDN GW126。類似地,微微單元可能是一般涵蓋小區域的無線通訊系統,諸如建築物內(辦公室、購物中心、車站等等)或最近的飛機內。微微單元eNB通常可經由X2鏈路連接到另一eNB(諸如經由其基地台控制器(BSC)功能連接到巨型eNB)。因此,LP eNB可能以微微單元eNB實施,因為它可經由X2界面耦合到巨型eNB104a。微微單元eNB或其他LP eNB104b可合併巨型eNB LP eNB104a中的一些或全部功能。在一些情形中,這可稱為存取點基地台或企業毫微微單元。 With a cellular network, the LP unit 104b can generally be used to extend coverage to indoor areas where there is insufficient outdoor signal, or to increase network capacity in densely populated areas. In particular, it is desirable to use different sized cells, jumbo cells, microcells, picocells, and femtocells to amplify the coverage of a wireless communication system to improve system performance. Units of different sizes may operate on the same frequency band, or may operate on different frequency bands, each unit operating in a different frequency band, or only units of different sizes Operate on different frequency bands. As used herein, the term LP eNB means any fairly suitable LP eNB for implementing a smaller unit (less than a jumbo unit), such as a femto unit, a pico unit, or a micro unit. A femto unit eNB is typically provided by a mobile network operator to its home or business customer. A femtocell may generally be the size of a home gateway or smaller and is typically connected to a broadband line. The femtocell can be connected to the mobile operator's mobile network and provides additional coverage typically in the range of 30 to 50 feet. Thus, LP eNB 104b may be a femto eNB because it is coupled through PDN GW 126. Similarly, a picocell may be a wireless communication system that typically covers small areas, such as within a building (office, shopping center, station, etc.) or the nearest aircraft. A pico unit eNB can typically be connected to another eNB via an X2 link (such as via its base station controller (BSC) function to a jumbo eNB). Therefore, the LP eNB may be implemented with the pico unit eNB because it can be coupled to the jumbo eNB 104a via the X2 interface. The pico unit eNB or other LP eNB 104b may incorporate some or all of the functionality of the jumbo eNB LP eNB 104a. In some cases, this may be referred to as an access point base station or an enterprise femto unit.

在LTE網路上的通訊可分為數個10ms訊框,其中各個可含有10個1ms子訊框。該訊框的各子訊框依次可含有兩個0.5ms的槽。各子訊框可使用於從UE至eNB的上行鏈路(UL)通訊或者從eNB至UE的下行鏈路(DL)通訊。在一項實施例中,在特定的訊框中,eNB可分配比UL通訊更多數目的DL通訊。eNB可排程在多種頻帶上(f1與 f2)的傳送。分配資源於使用在一頻帶中的子訊框中,其可能不同於在另一頻帶中的那些。依據所使用的系統,子訊框的各槽可含有6至7個OFDM符碼。在一項實施例中,子訊框可含有12個子載波。下行鏈路資源柵格可使用於從eNB至UE的下行鏈路傳送,而上行鏈路資源柵格可使用於從UE至eNB或從UE至另一UE的上行鏈路傳送。資源柵格可能是時頻柵格,其係為在各槽中之下行鏈路中的實體資源。在資源柵格中的最小時頻單元可表示為資源元件(RE)。資源柵格的各行與各列可各別對應一個OFDM符碼與一個OFDM子載波。資源柵格可含有資源方塊(RBs),其說明實體通道之映射到資源元件與實體RBs(PRBs)。PRB可能是可分配到UE的最小單元資源。資源方塊在頻率上可能是180kHz寬,且在時間上是1槽長。在頻率上,資源方塊可能是12×15kHz子載波或24×7.5kHz子載波寬。就大部分的通道與訊號而言,依據系統頻寬,每一資源方塊可使用12子載波。在分頻雙工(FDD)模式中,上行鏈路與下行鏈路訊框兩者可能是10ms以及分開頻率(全雙工)或時間(半雙工)。在分時雙工(TDD)中,上行鏈路與下行鏈路子訊框可在相同頻率上傳送,且在時域中被多工化。在時域中之資源柵格400的持續時期對應一個子訊框或兩個資源方塊。各資源柵格可包含12(子載波)*14(符碼)=168資源元件。 The communication on the LTE network can be divided into several 10ms frames, each of which can contain 10 1ms subframes. Each sub-frame of the frame may have two 0.5ms slots in sequence. Each subframe can be used for uplink (UL) communication from the UE to the eNB or downlink (DL) communication from the eNB to the UE. In one embodiment, the eNB may allocate a greater number of DL communications than the UL communication in a particular frame. The eNB can schedule transmissions over multiple frequency bands (f 1 and f 2 ). Resources are allocated for use in subframes in a frequency band, which may be different from those in another frequency band. Depending on the system used, each slot of the subframe may contain 6 to 7 OFDM symbols. In one embodiment, the subframe may contain 12 subcarriers. The downlink resource grid may be used for downlink transmission from the eNB to the UE, while the uplink resource grid may be used for uplink transmission from the UE to the eNB or from the UE to another UE. The resource grid may be a time-frequency grid, which is an entity resource in the lower row in each slot. The smallest time-frequency unit in the resource grid can be represented as a resource element (RE). Each row and column of the resource grid may correspond to one OFDM symbol and one OFDM subcarrier, respectively. The resource grid may contain resource blocks (RBs) that describe the mapping of physical channels to resource elements and entity RBs (PRBs). The PRB may be the smallest unit resource that can be allocated to the UE. The resource block may be 180 kHz wide in frequency and 1 slot long in time. In frequency, the resource block may be a 12 x 15 kHz subcarrier or a 24 x 7.5 kHz subcarrier width. For most channels and signals, 12 subcarriers can be used per resource block depending on the system bandwidth. In Frequency Division Duplex (FDD) mode, both the uplink and downlink frames may be 10 ms and separate frequencies (full duplex) or time (half duplex). In Time Division Duplex (TDD), the uplink and downlink subframes can be transmitted on the same frequency and multiplexed in the time domain. The duration of the resource grid 400 in the time domain corresponds to one subframe or two resource blocks. Each resource grid may contain 12 (subcarriers) * 14 (symbols) = 168 resource elements.

各OFDM符碼可含有循環字首(CP),該循環字首可用來有效地刪除符碼間干擾(ISI)、以及快速富立葉轉換(FFT) 週期。CP的持續時期可由最高預測程度的延遲擴展所判定。雖然自先前OFDM符碼的失真可存在於CP內(具有充分持續時期的CP),先前OFDM符碼則不會進入FFT週期。一旦FFT週期訊號被接收與數位化,接受器則可忽略在CP中的訊號。 Each OFDM symbol may contain a cyclic prefix (CP) that can be used to effectively remove inter-symbol interference (ISI) and fast Fourier transform (FFT). cycle. The duration of the CP can be determined by the delay spread of the highest degree of prediction. Although distortion from previous OFDM symbols may exist within the CP (CP with sufficient duration), the previous OFDM code does not enter the FFT period. Once the FFT period signal is received and digitized, the receiver can ignore the signal in the CP.

可能有許多不同的實體下行鏈路通道,該等通道使用此等資源方塊傳遞,包括實體下行鏈路控制通道(PDCCH)與實體下行鏈路共享通道(PDSCH)。各下行鏈路子訊框可分割成PDCCH與PDSCH。PDCCH正常下可佔有各子訊框的最先兩個符碼,且除了別的以外還運送了有關輸送格式的資訊以及相關於PDSCH通道的資源分配以及相關於上行鏈路共享通道的H-ARQ資訊。PDSCH可運送使用者資料與更高層的訊號發送到UE且佔有子訊框的剩餘部份。一般而言,基於從UEs提供到eNB的通道品質資訊,可在eNB施行下行鏈路排程(分派控制與共享通道資源方塊到單元內的UEs),且隨後可將下行鏈路資源分派資訊發送到在使用於(分派到)UE之PDCCH上的各UE。PDCCH可含有以許多格式之其中一格式的下行鏈路控制資訊(DCI),該等格式指示UE如何發現且解碼來自資源柵格、在相同子訊框中之PDSCH上傳送的資料。DCI格式可提供細節,諸如資源方塊的數目、資源分配類型、調變方案、輸送方塊、冗餘版本、編碼率等等。各DCI格式可具有循環冗餘碼(CRC),且以識別PDSCH意圖所用之目標UE的無線電網路暫時識別符(RNTI)來攪拌。特定 UE之RNTI的使用可將DCI格式(以及因而對應的PDSCH)的解碼僅僅限制於意圖的UE。 There may be many different physical downlink channels that are passed using these resource blocks, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH). Each downlink subframe can be divided into a PDCCH and a PDSCH. The PDCCH can normally occupy the first two symbols of each subframe, and carries information about the transport format and resource allocation related to the PDSCH channel and H-ARQ related to the uplink shared channel, among other things. News. The PDSCH can transmit user data and higher layer signals to the UE and occupy the rest of the subframe. In general, based on channel quality information provided from the UEs to the eNB, downlink scheduling (dispatching control and sharing channel resource blocks to UEs within the cell) may be performed at the eNB, and then downlink resource assignment information may be transmitted. To each UE on the PDCCH used (assigned to) the UE. The PDCCH may contain Downlink Control Information (DCI) in one of a number of formats indicating how the UE discovers and decodes material transmitted from the resource grid on the PDSCH in the same subframe. The DCI format may provide details such as the number of resource blocks, the type of resource allocation, the modulation scheme, the transport block, the redundancy version, the coding rate, and the like. Each DCI format may have a Cyclic Redundancy Code (CRC) and be agitated with a Radio Network Temporary Identifier (RNTI) that identifies the target UE for which the PDSCH is intended. specific The use of the RNTI of the UE may limit the decoding of the DCI format (and thus the corresponding PDSCH) to only the intended UE.

除了PDCCH以外,可藉由eNB與UE使用增強型PDCCH(EPDCCH)。不像PDCCH,EPDCCH可配置在正常之下分配用於PDSCH的資源方塊中。不同UE可具有不同的EPDCCH組態,該等組態係經由無線電資源控制(RRC)訊號發送來組態。各UE可以數組的EPDCCH來組態,且該組態在該等組之間亦可能不同。各EPDCCH組可具有2、4、或8PRB對。在一些實施例中,在特定子訊框中,組態用於EPDCCHs的資源方塊可使用於PDSCH傳送,假如在子訊框內,資源方塊則不使用於EPDCCH傳送。 In addition to the PDCCH, an enhanced PDCCH (EPDCCH) can be used by the eNB and the UE. Unlike the PDCCH, the EPDCCH can be configured to allocate resources blocks for PDSCH under normal conditions. Different UEs may have different EPDCCH configurations that are configured via Radio Resource Control (RRC) signal transmission. Each UE may be configured with an EPDCCH of an array, and the configuration may also be different between the groups. Each EPDCCH group may have 2, 4, or 8 PRB pairs. In some embodiments, in a particular subframe, the resource blocks configured for EPDCCHs may be used for PDSCH transmission, and if within the subframe, the resource blocks are not used for EPDCCH transmission.

在本文中所說明的實施例可實施為使用任何經適當組態之硬體及/或軟體的系統。圖2繪示根據一些實施例之UE的組件。所示組件中的至少一些可使用於eNB或MME,例如,諸如在圖1中所示的UE102或eNB104。UE200與其他組件可經組態以使用如本文中所說明的同步化訊號。UE200可能是圖1所示之UEs102中的一個,且可能是靜態、非行動裝置或可能是行動裝置。在一些實施例中,UE200可包括應用電路202、基頻電路204、射頻(RF)電路206、前端模組(FEM)電路208、以及一或多條天線210,其係至少如所示地耦合在一起。基頻電路204、RF電路206、以及FEM電路208中的至少一些可形成收發器。在一些實施例中,其他網路元件,諸如eNB,可含 有在圖2所示之組件中的一些或全部。該等網路元件中的其他者,諸如MME,可含有界面(諸如S1界面),以在有關UE的有線連接上、與eNB通訊。 Embodiments described herein may be implemented as systems using any suitably configured hardware and/or software. 2 illustrates components of a UE in accordance with some embodiments. At least some of the illustrated components may be used for an eNB or MME, such as UE 102 or eNB 104 such as shown in FIG. The UE 200 and other components can be configured to use a synchronization signal as described herein. UE 200 may be one of the UEs 102 shown in Figure 1, and may be a static, non-mobile device or possibly a mobile device. In some embodiments, the UE 200 can include an application circuit 202, a baseband circuit 204, a radio frequency (RF) circuit 206, a front end module (FEM) circuit 208, and one or more antennas 210 coupled at least as shown. Together. At least some of the baseband circuit 204, the RF circuitry 206, and the FEM circuitry 208 may form a transceiver. In some embodiments, other network elements, such as an eNB, may include There are some or all of the components shown in Figure 2. Others of the network elements, such as the MME, may contain an interface (such as an S1 interface) to communicate with the eNB over a wired connection with the UE.

應用或處理電路202可包括一或多個應用處理器。例如,應用電路202可包括電路,諸如但不限於一或多個單核或多核處理器。處理器可包括通用處理器與專用處理器(例如,圖形處理器、應用處理器等等)的任何組合。處理器可耦合、及/或可包括記憶體/儲存器、及可經組態以執行在記憶體/儲存器中所儲存的指令,以致使許多應用及/或操作系統在系統上運行。 Application or processing circuitry 202 can include one or more application processors. For example, application circuit 202 can include circuitry such as, but not limited to, one or more single or multi-core processors. A processor can include any combination of a general purpose processor and a special purpose processor (eg, a graphics processor, an application processor, etc.). The processor can be coupled, and/or can include a memory/storage, and can be configured to execute instructions stored in the memory/storage to cause many applications and/or operating systems to run on the system.

基頻電路204可包括諸如但不限於一或多個單核或多核處理器的電路。基頻電路204可包括一或多個基頻處理器及/或控制邏輯,以處理從RF電路206之接收訊號路徑接收的基頻訊號,且產生用於RF電路206之傳送訊號路徑的基頻訊號。基頻處理電路204可與應用電路202界面接合,以用於產生且處理基頻訊號,且用於控制RF電路206之操作。例如,在一些實施例中,基頻電路204可包括第二代(2G)基頻處理器204a、第三代(3G)基頻處理器204b、第四代(4G)基頻處理器204c、及/或用於其它現有世代、研發中或未來將研發之世代(例如,第五代(5G)、5G等等)的其他基頻處理器204d。基頻電路204(例如,基頻處理器204a至204d中的一或多個)可處理致使經由RF電路206而與一或多個無線電網路通訊的多種無線電控制功能。無線電控制功能可包括但不限於訊號調變 /解調、編碼/解碼、射頻位移等等。在一些實施例中,基頻電路204的調變/解調電路可包括FFT、預編碼、及/或群集映射/解映射功能。在一些實施例中,基頻電路204的編碼/解碼電路可包括迴旋、去尾迴旋、渦輪、維特比(Viterbi)、及/或低密度奇偶檢查(LDPC)編碼器/解碼器功能。調變/解調及編碼器/解碼器功能的實施例不限於這些實例,且在其他實施例中可包括其他適當的功能。 The baseband circuit 204 can include circuitry such as, but not limited to, one or more single or multi-core processors. The baseband circuit 204 can include one or more baseband processors and/or control logic to process the baseband signals received from the receive signal path of the RF circuitry 206 and to generate a baseband for the transmit signal path of the RF circuitry 206. Signal. The baseband processing circuit 204 can interface with the application circuit 202 for generating and processing the baseband signal and for controlling the operation of the RF circuit 206. For example, in some embodiments, the baseband circuit 204 can include a second generation (2G) baseband processor 204a, a third generation (3G) baseband processor 204b, a fourth generation (4G) baseband processor 204c, And/or other baseband processors 204d for other generations, R&D, or future generations (eg, fifth generation (5G), 5G, etc.). The baseband circuitry 204 (e.g., one or more of the baseband processors 204a through 204d) can process a variety of radio control functions that cause communication with one or more radio networks via the RF circuitry 206. Radio control functions may include, but are not limited to, signal modulation /Demodulation, encoding/decoding, RF shifting, etc. In some embodiments, the modulation/demodulation circuitry of the baseband circuit 204 can include FFT, precoding, and/or cluster mapping/demapping functionality. In some embodiments, the encoding/decoding circuitry of the baseband circuit 204 may include cyclotron, tail-to-tail, turbo, Viterbi, and/or low density parity check (LDPC) encoder/decoder functions. Embodiments of the modulation/demodulation and encoder/decoder functions are not limited to these examples, and other suitable functions may be included in other embodiments.

在一些實施例中,基頻電路204可包括協定堆疊元件,諸如例如演進通用陸上無線電存取網路(EUTRAN)協定元件,例如包括實體(PHY)、媒體存取控制(MAC)、無線電鏈路控制(RLC)、封包資料收斂協定(PDCP)、及/或無線電資源控制(RRC)元件。基頻電路204的中央處理單元(CPU)204e可經組態,以運行協定堆疊的元件,以用於PHY、MAC、RLC、PDCP、及/或RRC層的訊號發送。在一些實施例中,基頻電路可包括一或多個音訊數位訊號處理器(DSP)204f。音訊DSP204f可包括用於壓縮/解壓縮以及回音消除的元件,且在其他實施例中可包括其他適當的處理元件。基頻電路的組件可適當地結合在單一晶片、單一晶片組中、或在一些實施例中配置於相同的電路板上。在一些實施例中,基頻電路204與應用電路202之構成組件中的一些或全部可諸如例如在系統單晶片(SOC)上一起實施。 In some embodiments, baseband circuitry 204 may include protocol stacking elements such as, for example, Evolved Universal Terrestrial Radio Access Network (EUTRAN) protocol components, including, for example, physical (PHY), medium access control (MAC), radio links. Control (RLC), Packet Data Convergence Protocol (PDCP), and/or Radio Resource Control (RRC) components. The central processing unit (CPU) 204e of the baseband circuit 204 can be configured to run the components of the protocol stack for signal transmission at the PHY, MAC, RLC, PDCP, and/or RRC layers. In some embodiments, the baseband circuit can include one or more audio digital signal processors (DSPs) 204f. The audio DSP 204f may include elements for compression/decompression and echo cancellation, and may include other suitable processing elements in other embodiments. The components of the baseband circuit can be suitably combined in a single wafer, in a single wafer set, or in some embodiments on the same circuit board. In some embodiments, some or all of the constituent components of the baseband circuit 204 and the application circuit 202 can be implemented together, such as, for example, on a system single chip (SOC).

在一些實施例中,基頻電路204可提供用於與一或多個無線電技術相容的通訊。例如,在一些實施例中,基頻 電路204可支援與演進通用陸上無線電存取網路(EUTRAN)及/或其他無線都市區域網路(WMAN)、無線區域網路(WLAN)、無線個人區域網路(WPAN)的通訊。基頻電路204經組態以支援超過一個無線協定之無線電通訊的實施例可稱為多模式基頻電路。在一些實施例中,該裝置可經組態以根據通訊標準或其他協定或標準來操作,包括電機電子工程師協會(IEEE)802.16無線技術(WiMax)、包括經調適(ad)之IEEE802.11的IEEE802.11無線技術(WiFi)(其在60GHz毫米的波譜中操作)、多種其他無線技術(諸如全球行動通訊系統(GSM)、增強型資料速率全球行動通訊系統演進(EDGE)、GSM EDGE無線電存取網路(GERAN)、通用行動通信系統(UMTS)、UMTS陸上無線電存取網路(UTRAN)、或已經研發或將要研發的其他2G、3G、4G、5G等等技術)。 In some embodiments, baseband circuitry 204 can provide communications for compatibility with one or more radio technologies. For example, in some embodiments, the fundamental frequency Circuitry 204 can support communication with Evolved Universal Terrestrial Radio Access Network (EUTRAN) and/or other Wireless Metropolitan Area Network (WMAN), Wireless Local Area Network (WLAN), and Wireless Personal Area Network (WPAN). Embodiments of the baseband circuit 204 configured to support radio communication over more than one wireless protocol may be referred to as a multi-mode baseband circuit. In some embodiments, the apparatus can be configured to operate in accordance with communication standards or other protocols or standards, including Institute of Electrical and Electronics Engineers (IEEE) 802.16 wireless technology (WiMax), including IEEE 802.11 adapted (ad) IEEE 802.11 wireless technology (WiFi) (which operates in the 60 GHz millimeter spectrum), a variety of other wireless technologies (such as Global System for Mobile Communications (GSM), Enhanced Data Rate Global System for Mobile Communications (EDGE), GSM EDGE Radio Network (GERAN), Universal Mobile Telecommunications System (UMTS), UMTS Terrestrial Radio Access Network (UTRAN), or other 2G, 3G, 4G, 5G, etc. technologies that have been developed or are about to be developed.

RF電路206可使用通過非固態媒體的調變電磁輻射而致能與無線網路的通訊。在許多實施例中,RF電路206可包括切換器、濾波器、放大器等等,以促進與無線網路的通訊。RF電路206可包括接收訊號路徑,該接收訊號路徑可包括降轉換從FEM電路208接收之RF訊號且提供基頻訊號到基頻電路204的電路。RF電路206亦可包括傳送訊號路徑,該傳送訊號路徑可包括升轉換由基頻電路204所提供之基頻訊號且提供RF輸出訊號到FEM電路208以用於傳送的電路。 The RF circuit 206 can enable communication with the wireless network using modulated electromagnetic radiation through a non-solid medium. In many embodiments, RF circuitry 206 can include switches, filters, amplifiers, etc. to facilitate communication with a wireless network. The RF circuit 206 can include a receive signal path that can include circuitry to down convert the RF signal received from the FEM circuit 208 and provide a baseband signal to the baseband circuit 204. The RF circuit 206 can also include a transmit signal path that can include a circuit that upconverts the baseband signal provided by the baseband circuit 204 and provides an RF output signal to the FEM circuit 208 for transmission.

在一些實施例中,RF電路206可包括接收訊號路徑 與傳送訊號路徑。RF電路206的接收訊號路徑可包括混合器電路206a、放大器電路206b、以及濾波器電路206c。RF電路206的傳送訊號路徑可包括濾波器電路206c與混合器電路206a。RF電路206亦可包括合成器電路206d,以用於合成由接收訊號路徑與傳送訊號路徑之混合器電路206a所使用的頻率。在一些實施例中,接收訊號路徑的混合器電路206a可經組態以基於由合成器電路206d所提供的合成頻率降轉換從FEM電路208接收的RF訊號。放大器電路206b可經組態以放大降轉換訊號,且濾波器電路206c可以是低通濾波器(LPF)或帶通濾波器(BPF),該濾波器經組態以從降轉換訊號移除不想要的訊號,以產生輸出基頻訊號。輸出基頻訊號可提供到基頻電路204,以用於進一步處理。在一些實施例中,輸出基頻訊號可以是零頻率基頻訊號,雖然這並非必要。在一些實施例中,接收訊號路徑的混合器電路206a可包含被動混合器,雖然該等實施例的範圍不限於此態樣。 In some embodiments, RF circuitry 206 can include a receive signal path And transmit the signal path. The receive signal path of the RF circuit 206 can include a mixer circuit 206a, an amplifier circuit 206b, and a filter circuit 206c. The transmit signal path of RF circuit 206 can include filter circuit 206c and mixer circuit 206a. The RF circuit 206 can also include a synthesizer circuit 206d for synthesizing the frequencies used by the mixer circuit 206a that receives the signal path and the transmitted signal path. In some embodiments, the mixer circuit 206a that receives the signal path can be configured to convert the RF signals received from the FEM circuit 208 based on the synthesized frequency drop provided by the synthesizer circuit 206d. The amplifier circuit 206b can be configured to amplify the down conversion signal, and the filter circuit 206c can be a low pass filter (LPF) or a band pass filter (BPF) configured to remove unwanted signals from the down conversion signal The desired signal to produce an output baseband signal. The output baseband signal can be provided to the baseband circuit 204 for further processing. In some embodiments, the output baseband signal can be a zero frequency baseband signal, although this is not required. In some embodiments, the mixer circuit 206a that receives the signal path can include a passive mixer, although the scope of the embodiments is not limited in this respect.

在一些實施例中,傳送訊號路徑的混合器電路206a可經組態以基於由合成器電路206d所提供的合成頻率升轉換輸入基頻訊號,以產生用於FEM電路208的RF輸出訊號。基頻訊號可由基頻電路204提供且可由濾波器電路206c所濾波。濾波器電路206c可包括低通濾波器(LPF),雖然該等實施例的範圍不限於此態樣。 In some embodiments, the mixer circuit 206a that transmits the signal path can be configured to convert the input fundamental frequency signal based on the synthesized frequency provided by the synthesizer circuit 206d to generate an RF output signal for the FEM circuit 208. The baseband signal can be provided by the baseband circuit 204 and can be filtered by the filter circuit 206c. Filter circuit 206c may include a low pass filter (LPF), although the scope of such embodiments is not limited in this respect.

在一些實施例中,接收訊號路徑的混合器電路206a與傳送訊號路徑的混合器電路206a可包括兩個或更多個 混合器,且可經配置以各別用於正交降頻轉換及/或增頻轉換。在一些實施例中,接收訊號路徑的混合器電路206a與傳送訊號路徑的混合器電路206a可包括兩個或更多個混合器,且可經配置以用於影像抑制(例如,Hartley影像抑制)。在一些實施例中,接收訊號路徑的混合器電路206a與混合器電路206a可經配置以各別用於直接降頻轉換及/或直接增頻轉換。在一些實施例中,接收訊號路徑的混合器電路206a與傳送訊號路徑的混合器電路206a可經配置以用於超外差操作。 In some embodiments, the mixer circuit 206a that receives the signal path and the mixer circuit 206a that transmits the signal path may include two or more Mixers, and can be configured to be used for quadrature down conversion and/or upconversion, respectively. In some embodiments, the mixer circuit 206a that receives the signal path and the mixer circuit 206a that transmits the signal path can include two or more mixers and can be configured for image suppression (eg, Hartley image rejection) . In some embodiments, the mixer circuit 206a and the mixer circuit 206a that receive the signal path can be configured to be used for direct down conversion and/or direct up conversion, respectively. In some embodiments, the mixer circuit 206a that receives the signal path and the mixer circuit 206a that transmits the signal path can be configured for superheterodyne operation.

在一些實施例中,輸出基頻訊號與輸入基頻訊號可以是類比基頻訊號,雖然實施例的範圍不限於此態樣。在一些替代實施例中,輸出基頻訊號與輸入基頻訊號可以是數位基頻訊號。在這些替代實施例中,RF電路206可包括類比至數位轉換器(ADC)以及數位至類比轉換器(DAC)電路,且基頻電路204可包括用以與RF電路206通訊的數位基頻界面。 In some embodiments, the output baseband signal and the input baseband signal may be analog baseband signals, although the scope of the embodiments is not limited in this respect. In some alternative embodiments, the output baseband signal and the input baseband signal may be digital baseband signals. In these alternate embodiments, RF circuitry 206 may include analog to digital converters (ADCs) and digital to analog converter (DAC) circuitry, and baseband circuitry 204 may include a digital baseband interface for communicating with RF circuitry 206. .

在一些雙模式實施例中,分開的無線電IC電路可提供用於處理用於各頻譜的訊號,雖然該等實施例的範圍不限於此態樣。 In some dual mode embodiments, separate radio IC circuits may be provided for processing signals for each frequency spectrum, although the scope of such embodiments is not limited in this respect.

在一些實施例中,合成器電路206d可以是分數式N合成器或分數式N/N+1合成器,雖然實施例的範圍不限於此態樣,其他類型的頻率合成器則可能適合。例如,合成器電路206d可能是三角積分合成器、倍頻器、或包含具有分頻器之相鎖迴路的合成器。 In some embodiments, the synthesizer circuit 206d may be a fractional-N synthesizer or a fractional-N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect, other types of frequency synthesizers may be suitable. For example, synthesizer circuit 206d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer that includes a phase-locked loop with a frequency divider.

合成器電路206d可經組態以基於頻率輸入與除法器控制輸入、合成由RF電路206之混合器電路206a所使用的輸出頻率。在一些實施例中,合成器電路206d可以是分數式N/N+1合成器。 Synthesizer circuit 206d can be configured to synthesize the output frequency used by mixer circuit 206a of RF circuit 206 based on the frequency input and divider control input. In some embodiments, the synthesizer circuit 206d can be a fractional N/N+1 synthesizer.

在一些實施例中,頻率輸入可由電壓控制振盪器(VCO)提供,雖然這並非必要。除法器控制輸入可藉由基頻電路204或應用處理器202依據希望的輸出頻率來提供。在一些實施例中,除法器控制輸入(例如,N)可基於應用處理器202指示的通道、從查找表來判定。 In some embodiments, the frequency input can be provided by a voltage controlled oscillator (VCO), although this is not required. The divider control input can be provided by the baseband circuit 204 or the application processor 202 depending on the desired output frequency. In some embodiments, the divider control input (eg, N) can be determined from the lookup table based on the channel indicated by the application processor 202.

RF電路206的合成器電路206d可包括除法器、延遲鎖定迴路(DLL)、多工器、以及相位累加器。在一些實施例中,除法器可能是雙模除法器(DMD),且相位累加器可能是數位相位累加器(DPA)。在一些實施例中,DMD可經組態,以將輸入訊號除以N或N+1(例如,基於進位輸出),以提供分數除數。在一些實例實施例中,DLL可包括一組串接、可調、延遲元件、相位偵測器、供給泵、以及D型正反器。在這些實施例中,延遲元件可經組態以將VCO週期分解成Nd個相等封包的相位,其中Nd係為延遲線中的延遲元件數目。以此方式,DLL提供負反饋,以協助確認經過延遲線的總延遲是一個VCO循環。 The synthesizer circuit 206d of the RF circuit 206 can include a divider, a delay locked loop (DLL), a multiplexer, and a phase accumulator. In some embodiments, the divider may be a dual mode divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD can be configured to divide the input signal by N or N+1 (eg, based on a carry output) to provide a fractional divisor. In some example embodiments, the DLL may include a set of series, adjustable, delay elements, phase detectors, supply pumps, and D-type flip-flops. In these embodiments, the delay element can be configured to decompose the VCO period into phases of Nd equal packets, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to assist in confirming that the total delay through the delay line is a VCO cycle.

在一些實施例中,合成器電路206d可經組態以產生載波頻率作為輸出頻率,而在其他實施例中,輸出頻率可以是載波頻率的倍數(例如,載波頻率的兩倍、載波頻率的四倍)並結合正交產生器與除法器電路來使用,以產生 在載波頻率、相對於彼此具有多個不同相位的多個訊號。在一些實施例中,輸出頻率可以是LO頻率(fLO)。在一些實施例中,RF電路206可包括IQ/極性轉換器。 In some embodiments, synthesizer circuit 206d can be configured to generate a carrier frequency as an output frequency, while in other embodiments, the output frequency can be a multiple of a carrier frequency (eg, twice the carrier frequency, four of the carrier frequency) And used in conjunction with an orthogonal generator and divider circuit to generate a plurality of signals having a plurality of different phases relative to each other at a carrier frequency. In some embodiments, the output frequency can be the LO frequency (f LO ). In some embodiments, RF circuit 206 can include an IQ/polarity converter.

FEM電路208可包括接收訊號路徑,該接收訊號路徑可包括經組態以在從一或多條天線210接收的RF訊號上操作、放大接收訊號、以及提供接收訊號的放大版本到RF電路206以用於進一步處理的電路。FEM電路208亦可包括傳送訊號路徑,該傳送訊號路徑可包括經組態以放大用於由RF電路206所提供傳送之訊號的電路,以用於藉由一或多條天線210中的一或多條來傳送。 The FEM circuit 208 can include a receive signal path that can be configured to operate on an RF signal received from the one or more antennas 210, amplify the received signal, and provide an amplified version of the received signal to the RF circuit 206. Circuit for further processing. FEM circuit 208 can also include a transmit signal path that can include circuitry configured to amplify signals for transmission by RF circuitry 206 for use by one or more of one or more antennas 210 Multiple to send.

在一些實施例中,FEM電路208可包括TX/RX切換器,以在傳送模式與接收模式操作之間切換。FEM電路可包括接收訊號路徑與傳送訊號路徑。FEM電路的接收訊號路徑可包括低雜訊放大器(LNA),以放大接收的RF訊號,且提供該放大的接收RF訊號作為輸出(例如,到RF電路206)。FEM電路208的傳送訊號路徑可包括用以放大輸入RF訊號(例如,由RF電路206所提供)的功率放大器(PA)以及用以產生RF訊號以用於後續傳送(例如,藉由一或多條天線210中的一或多條)的一或多個濾波器。 In some embodiments, FEM circuit 208 can include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuit can include a receive signal path and a transmit signal path. The receive signal path of the FEM circuit can include a low noise amplifier (LNA) to amplify the received RF signal and provide the amplified received RF signal as an output (e.g., to RF circuit 206). The transmit signal path of the FEM circuit 208 can include a power amplifier (PA) for amplifying the input RF signal (eg, provided by the RF circuit 206) and for generating an RF signal for subsequent transmission (eg, by one or more One or more filters of one or more of the antennas 210.

在一些實施例中,UE200可包括額外元件,諸如例如記憶體/儲存器、顯示器、照相機、感測器、及/或輸入/輸出(I/O)界面,如下文更詳細的說明。在一些實施例中,本文中所說明的UE200可以是可攜式無線通訊裝置的一部 份,諸如個人數位助理(PDA)、具有無線通訊能力的膝上型或可攜式電腦、無線上網機、無線電話、智慧型手機、無線耳機、傳呼器、即時通訊裝置、數位照相機、存取點、電視、醫療裝置(例如,心跳速率監視器、血壓監視器等等)、或可無線接收及/或傳送資訊的其他裝置。在一些實施例中,UE200可包括經設計以致使使用者與系統互動的一或多個使用者界面及/或經設計以致使週邊組件與系統互動的週邊組件界面。例如,UE200可包括鍵盤、小鍵盤、觸控板、顯示器、感測器、非揮發性記憶體埠、通用串列匯流排(USB)埠、音訊插座、供電界面、一或多條天線、圖形處理器、應用處理器、揚聲器、麥克風、以及其他I/O組件中的一或多個。顯示器可以是包括觸控螢幕的液晶顯示器(LCD)或發光二極體(LED)螢幕。感測器可包括陀螺儀感測器、加速度計、接近感測器、周圍光感測器、以及定位單元。定位單元可與定位網路之組件通訊,例如全球定位系統(GPS)衛星。 In some embodiments, the UE 200 may include additional components such as, for example, a memory/storage, a display, a camera, a sensor, and/or an input/output (I/O) interface, as described in more detail below. In some embodiments, the UE 200 described herein may be part of a portable wireless communication device. Shares, such as personal digital assistants (PDAs), laptops or portable computers with wireless communication capabilities, wireless Internet access, wireless phones, smart phones, wireless headsets, pagers, instant messaging devices, digital cameras, access Point, television, medical device (eg, heart rate monitor, blood pressure monitor, etc.), or other device that can receive and/or transmit information wirelessly. In some embodiments, the UE 200 can include one or more user interfaces designed to cause a user to interact with the system and/or a peripheral component interface designed to cause peripheral components to interact with the system. For example, the UE 200 may include a keyboard, a keypad, a touchpad, a display, a sensor, a non-volatile memory cartridge, a universal serial bus (USB) port, an audio jack, a power supply interface, one or more antennas, and graphics. One or more of a processor, an application processor, a speaker, a microphone, and other I/O components. The display can be a liquid crystal display (LCD) or a light emitting diode (LED) screen including a touch screen. The sensor can include a gyro sensor, an accelerometer, a proximity sensor, a surrounding light sensor, and a positioning unit. The positioning unit can communicate with components of the positioning network, such as a Global Positioning System (GPS) satellite.

天線210可包含一或多條方向性或全向性天線,例如包括偶極天線、單極天線、貼片天線、環形天線、微帶天線、或適合用於傳送RF訊號的其他類型天線。在一些多輸入多輸出(MIMO)實施例中,天線210可有效地分開,以利用可能產生的空間多樣性與不同通道特徵。 Antenna 210 may include one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas, or other types of antennas suitable for transmitting RF signals. In some multiple input multiple output (MIMO) embodiments, the antennas 210 can be effectively separated to take advantage of the spatial diversity and different channel characteristics that may result.

雖然UE200繪示為具有許多分開的功能性元件,但是該等功能性元件中的一或多個可結合,且可藉由軟體組態元件的組合來實施,諸如包括數位訊號處理器(DSPs)的 處理元件、及/或其他硬體元件。例如,一些元件可包含一或多個微處理器、DSPs、場可程式化閘陣列(FPGAs)、特殊應用積體電路(ASICs)、射頻積體電路(RFICs)以及用於施行至少本文中所說明功能之多種硬體與邏輯電路的組合。在一些實施例中,功能性元件意指在一或多個處理元件上操作的一或多個過程。 Although the UE 200 is illustrated as having a plurality of separate functional elements, one or more of the functional elements may be combined and implemented by a combination of software configuration elements, such as digital signal processors (DSPs). of Processing components, and/or other hardware components. For example, some components may include one or more microprocessors, DSPs, field programmable gate arrays (FPGAs), special application integrated circuits (ASICs), radio frequency integrated circuits (RFICs), and for performing at least the text herein. Explain the combination of various hardware and logic circuits of the function. In some embodiments, a functional element means one or more processes that operate on one or more processing elements.

實施例可以硬體、韌體、以及軟體中的一個或組合實施。實施例亦可實施作為儲存在電腦可讀取儲存裝置上的指令,其可藉由至少一處理器來讀取與執行,以施行本文中所說明的操作。電腦可讀取儲存裝置可包括任何非暫態機制,其用於儲存形式為可由機器(例如,電腦)讀取的資訊。例如,電腦可讀取儲存裝置可包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置、以及其他儲存裝置與媒體。一些實施例可包括一或多個處理器,且可組態具有儲存在電腦可讀取儲存裝置上的指令。 Embodiments can be implemented in one or a combination of hardware, firmware, and software. Embodiments can also be implemented as instructions stored on a computer readable storage device that can be read and executed by at least one processor to perform the operations described herein. The computer readable storage device can include any non-transitory mechanism for storing information in a form readable by a machine (eg, a computer). For example, computer readable storage devices may include read only memory (ROM), random access memory (RAM), disk storage media, optical storage media, flash memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be configured with instructions stored on a computer readable storage device.

圖3係為根據一些實施例之通訊裝置的方塊圖。該裝置可以是UE或eNB,例如諸如在圖1中所示的UE102或eNB104,其可經組態以追蹤在本文中所說明的UE。實體層電路302可施行多種編碼與解碼的功能,該等功能可包括用於接收訊號之傳送與解碼之基頻訊號的形成。通訊裝置300亦可包括用於控制存取到無線媒體的媒體存取控制層(MAC)電路304。通訊裝置300亦可包括處理電路306(諸如一或多個單核或多核處理器)以及配置以施行 本文中所說明操作的記憶體308。實體層電路302、MAC電路304、以及處理電路306可處置多種無線電控制功能,該等功能致能與相容於一或多個無線電技術之一或多個無線電網路的通訊。無線電控制功能可包括訊號調變、編碼、解碼、射頻位移等等。例如,類似在圖2中所示的裝置,在一些實施例中,通訊可以WMAN、WLAN、及WPAN中的一或多個致能。在一些實施例中,通訊裝置300可經組態以根據3GPP標準或其他協定或標準操作,包括已經研發或將研發的WiMax、WiFi、WiGig、GSM、EDGE、GERAN、UMTS、UTRAN、或其他3G、4G、5G等等技術。通訊裝置300可包括用以致能與其他外部裝置無線通訊的收發器電路312、以及用以致能與其他外部裝置有線通訊的界面314。舉另一個實例,收發器電路312可施行多種傳送與接收功能,諸如在基頻範圍與射頻(RF)範圍之間的訊號轉換。 3 is a block diagram of a communication device in accordance with some embodiments. The apparatus may be a UE or an eNB, such as UE 102 or eNB 104, such as shown in FIG. 1, which may be configured to track the UEs described herein. The physical layer circuit 302 can perform a variety of encoding and decoding functions, which can include the formation of a baseband signal for receiving and decoding signals. The communication device 300 can also include a medium access control layer (MAC) circuit 304 for controlling access to the wireless medium. The communication device 300 can also include processing circuitry 306 (such as one or more single or multi-core processors) and configuration for implementation Memory 308 operates as described herein. The physical layer circuitry 302, the MAC circuitry 304, and the processing circuitry 306 can handle a variety of radio control functions that enable communication with one or more radio networks that are compatible with one or more radio technologies. Radio control functions can include signal modulation, encoding, decoding, RF shifting, and more. For example, similar to the apparatus shown in FIG. 2, in some embodiments, communication can be enabled by one or more of WMAN, WLAN, and WPAN. In some embodiments, communication device 300 can be configured to operate in accordance with 3GPP standards or other protocols or standards, including WiMax, WiFi, WiGig, GSM, EDGE, GERAN, UMTS, UTRAN, or other 3G that have been developed or will be developed. , 4G, 5G and other technologies. The communication device 300 can include a transceiver circuit 312 to enable wireless communication with other external devices, and an interface 314 to enable wired communication with other external devices. As another example, transceiver circuit 312 can perform a variety of transmit and receive functions, such as signal conversion between a fundamental frequency range and a radio frequency (RF) range.

天線301可包含一或多條方向性或全向性天線,例如包括偶極天線、單極天線、貼片天線、環形天線、微帶天線、或適合用於傳送RF訊號的其他類型天線。在一些多輸入多輸出(MIMO)實施例中,天線301可有效地分開,以利用可能產生的空間多樣性與不同通道特徵。 Antenna 301 may include one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas, or other types of antennas suitable for transmitting RF signals. In some multiple input multiple output (MIMO) embodiments, the antennas 301 can be effectively separated to take advantage of the spatial diversity and different channel characteristics that may result.

雖然通訊裝置300繪示為具有許多分開的功能性元件,但是該等功能性元件中的一或多個可結合,且可藉由軟體組態元件的組合來實施(諸如包括數位訊號處理器(DSPs)的處理元件、及/或其他硬體元件),或該等功能 性元件中的一或多個可在複數個不同裝置中實施。例如,一些元件可包含一或多個微處理器、DSPs、FPGAs、ASICs、RFICs、以及用於施行至少本文中所說明功能之多種硬體與邏輯電路的組合。在一些實施例中,功能性元件可意指在一或多個處理元件上操作的一或多個過程。實施例可以硬體、韌體、及軟體之一個或組合來實施。實施例亦可實施作為儲存在電腦可讀取儲存裝置上的指令,其可藉由至少一處理器來讀取與執行,以施行本文中所說明的操作。 Although the communication device 300 is illustrated as having a plurality of separate functional elements, one or more of the functional elements can be combined and implemented by a combination of software configuration elements (such as including a digital signal processor ( DSPs) processing elements, and/or other hardware components, or such functions One or more of the sexual elements can be implemented in a plurality of different devices. For example, some of the elements can include one or more microprocessors, DSPs, FPGAs, ASICs, RFICs, and combinations of various hardware and logic circuits for performing at least the functions described herein. In some embodiments, a functional element may mean one or more processes that operate on one or more processing elements. Embodiments can be implemented in one or a combination of hardware, firmware, and software. Embodiments can also be implemented as instructions stored on a computer readable storage device that can be read and executed by at least one processor to perform the operations described herein.

圖4繪示根據一些實施例之通訊裝置的另一方塊圖。在替代實施例中,通訊裝置400可操作當作獨立裝置,或可連接(例如,網路化)到其他通訊裝置。在網路化的部署中,在伺服器-客戶端網路環境中,通訊裝置400可以伺服器通訊裝置、客戶端通訊裝置、或兩者的身分來操作。在一實例中,在點對點(P2P)(或其他分佈式)的網路環境中,通訊裝置400可充當點通訊裝置。通訊裝置400可以是UE、eNB、PC、平板PC、STB、PDA、行動電話、智慧型手機、網際網路應用、網路路由器、切換器或橋接器、或能夠執行指令(逐次或以其他方式)的任何通訊裝置(該等指令指定由那通訊裝置所進行的動作)。進一步,當只繪示單一通訊裝置時,術語「通訊裝置(communication device)」亦將被採用,以包括通訊裝置之任何集合,其各別地或結合地執行一組(或多組)指令,以施行本文中所討論方法的任一個或多個,諸如雲端計 算、軟體即服務(SaaS)、其他電腦叢集組態。 4 is another block diagram of a communication device in accordance with some embodiments. In an alternate embodiment, communication device 400 can operate as a standalone device or can be connected (e.g., networked) to other communication devices. In a networked deployment, in a server-client network environment, the communication device 400 can operate as a server communication device, a client communication device, or both. In one example, in a peer-to-peer (P2P) (or other distributed) network environment, the communication device 400 can act as a point communication device. The communication device 400 can be a UE, an eNB, a PC, a tablet PC, an STB, a PDA, a mobile phone, a smart phone, an internet application, a network router, a switch or a bridge, or can execute instructions (sequentially or otherwise) Any communication device (the instructions specify the actions performed by that communication device). Further, when only a single communication device is shown, the term "communication device" will also be employed to include any collection of communication devices that perform a set (or sets) of instructions, individually or in combination, To perform any one or more of the methods discussed herein, such as a cloud meter Computing, Software as a Service (SaaS), other computer cluster configurations.

如本文中所說明的實例可包括邏輯或許多組件、模組、或機制,或可在其上操作。模組係為能夠施行指定操作且可以特定方式組態或配置的有形實體(例如,硬體)。在一實例中,以指定的方式,電路可配置(例如,內部地,或相關於譬如其它電路的外部實體)作為模組。在一實例中,一或多個電腦系統(例如,獨立的客戶端或伺服器電腦系統)或一或多個硬體處理器的全部或一部份可藉由韌體或軟體(例如,指令、應用部份、或應用)來組態作為操作以施行指定操作的一模組。在一實例中,軟體可存在於通訊裝置可讀取媒體上。在一實例中,軟體當由模組的基礎硬體執行時,導致硬體施行指定的操作。 An example as described herein can include, or be operable on, logic or a number of components, modules, or mechanisms. A module is a tangible entity (eg, hardware) that can perform a specified operation and can be configured or configured in a specific manner. In one example, the circuitry is configurable (eg, internally, or related to external entities such as other circuits) as a module in a specified manner. In one example, one or more computer systems (eg, stand-alone client or server computer systems) or all or a portion of one or more hardware processors may be implemented by firmware or software (eg, instructions) , application part, or application) to configure a module as an operation to perform a specified operation. In an example, the software may be present on the communication device readable medium. In one example, the software, when executed by the base hardware of the module, causes the hardware to perform the specified operations.

相應地,術語「模組(module)」被理解為涵蓋有形實體,其係為經實體架構、具體組態(例如,硬體化)、或暫時(例如,短暫地)組態(例如,程式化)而以指定方式操作或施行本文中所說明之任何操作的一部份或全部的實體。考慮模組經暫時組態的實例,該等模組的各個不需要在時間上的任何時刻實例化。例如,在模組包含使用軟體來組態的通用硬體處理器之處,通用硬體處理器可在不同時間組態為各別的不同模組。軟體可相應地組態硬體處理器,例如,以在同一時間點構成特定的模組且在不同時間點構成不同的模組。 Accordingly, the term "module" is understood to encompass a tangible entity that is physically structured, specifically configured (eg, hardwareized), or temporarily (eg, transiently) configured (eg, a program) And operating or performing a part or all of the operations of any of the operations described herein in a specified manner. Considering instances of a module that are temporarily configured, each of the modules need not be instantiated at any point in time. For example, where a module contains a general purpose hardware processor configured using software, a general purpose hardware processor can be configured as a different module at different times. The software can configure the hardware processor accordingly, for example, to form a specific module at the same point in time and to form different modules at different points in time.

通訊裝置(例如,電腦系統)400可包括硬體處理器402(例如,中央處理單元(CPU)、圖形處理單元(GPU)、 硬體處理器核心、或其任何組合)、主要記憶體404、以及靜態記憶體406,其中一些或全部可經由內網連接(例如,匯流排)408彼此通訊。通訊裝置400可進一步包括顯示單元410、文數輸入裝置412(例如,鍵盤)、以及使用者界面(UI)導航裝置414(例如,滑鼠)。在一實例中,顯示單元410、輸入裝置412、以及UI導航裝置414可以是觸控螢幕顯示器。通訊裝置400可額外地包括儲存裝置(例如,驅動單元)416、訊號產生裝置418(例如,揚聲器)、網路界面裝置420、以及一或多個感測器421(諸如全球定位系統(GPS)感測器、羅盤、加速度計、或其他感測器)。通訊裝置400可包括輸出控制器428,諸如串聯(例如,通用串列匯流排(USB))、並聯、或其他有線或無線連接(例如,紅外線(IR)、近場通訊(NFC)等等),以通訊或控制一或多個週邊裝置(例如,印表機、讀卡機等等)。 A communication device (eg, computer system) 400 can include a hardware processor 402 (eg, a central processing unit (CPU), a graphics processing unit (GPU), The hardware processor cores, or any combination thereof, the primary memory 404, and the static memory 406, some or all of which may be in communication with one another via an intranet connection (eg, bus bar) 408. The communication device 400 can further include a display unit 410, a text input device 412 (eg, a keyboard), and a user interface (UI) navigation device 414 (eg, a mouse). In an example, display unit 410, input device 412, and UI navigation device 414 can be touch screen displays. The communication device 400 can additionally include a storage device (eg, a drive unit) 416, a signal generation device 418 (eg, a speaker), a network interface device 420, and one or more sensors 421 (such as a Global Positioning System (GPS)) Sensor, compass, accelerometer, or other sensor). The communication device 400 can include an output controller 428, such as in series (eg, a universal serial bus (USB)), in parallel, or other wired or wireless connection (eg, infrared (IR), near field communication (NFC), etc.) To communicate or control one or more peripheral devices (eg, printers, card readers, etc.).

儲存裝置416可包括通訊裝置可讀取媒體422,在該媒體上儲存一或多組資料結構或指令424(例如,軟體),該等資料結構或指令係由本文中所說明之技術或功能中的任一者或多者所實施或利用。在由通訊裝置400執行的期間內,指令424亦可完全或至少部份地存在於主要記憶體404內、靜態記憶體406內、或硬體處理器402內。在一實例中,硬體處理器402、主要記憶體404、靜態記憶體406、或儲存裝置416中的一個或任何組合可構成通訊裝置可讀取媒體。 The storage device 416 can include a communication device readable medium 422 on which one or more sets of data structures or instructions 424 (eg, software) are stored, the data structures or instructions being in the techniques or functions described herein Any or more of them are implemented or utilized. The instructions 424 may also be present entirely or at least partially within the primary memory 404, within the static memory 406, or within the hardware processor 402 during execution by the communication device 400. In one example, one or any combination of hardware processor 402, primary memory 404, static memory 406, or storage device 416 can constitute a communication device readable medium.

雖然通訊裝置可讀取媒體422繪示為單一媒體,但是術語「通訊裝置可讀取媒體(communication device readable medium)」可包括經組態以儲存一或多個指令424的單一媒體或多個媒體(例如,集中式或分佈式資料庫、及/或相關的快取與伺服器)。 Although the communication device readable medium 422 is depicted as a single medium, the term "communication device readable medium" can include a single medium or multiple media configured to store one or more instructions 424. (eg, centralized or distributed repositories, and/or related caches and servers).

術語「通訊裝置可讀取媒體(communication device readable medium)」可包括能夠儲存、編碼、或運送指令以用於由通訊裝置400執行、且導致通訊裝置400施行本揭露技術之任一個或多個、或能夠儲存、編碼、或運送由此等指令所使用或與此等指令相關之資料結構的任何媒體。非限制性通訊裝置可讀取媒體實例可包括固態記憶體、以及光學與磁性媒體。通訊裝置可讀取媒體的具體實例可包括:非揮發性記憶體,諸如半導體記憶體裝置(例如,電性可程式化唯讀記憶體(EPROM)、電性可拭除可程式化唯讀記憶體(EEPROM))以及快閃記憶體裝置;磁碟,諸如內部硬碟與可移式磁碟;磁光碟;隨機存取記憶體(RAM);以及唯讀光碟記憶體(CD-ROM)與唯讀數位多用途光碟(DVD-ROM)磁碟。在一些實例中,通訊裝置可讀取媒體可包括非暫態通訊裝置可讀取媒體。在一些實例中,通訊裝置可讀取媒體可包括並非暫態傳播訊號的通訊裝置可讀取媒體。 The term "communication device readable medium" can include any one or more of capable of storing, encoding, or shipping instructions for execution by communication device 400 and causing communication device 400 to perform the disclosed techniques. Or any medium capable of storing, encoding, or transporting the data structures used by or in connection with such instructions. Non-limiting communication device readable media examples can include solid state memory, as well as optical and magnetic media. Specific examples of the communication device readable medium may include: non-volatile memory such as a semiconductor memory device (eg, an electrically programmable read only memory (EPROM), an electrically erasable programmable read only memory) Body (EEPROM) and flash memory devices; disks, such as internal hard disks and removable disks; magneto-optical disks; random access memory (RAM); and CD-ROMs Read-only multi-purpose disc (DVD-ROM) disc. In some examples, the communication device readable medium can include a non-transitory communication device readable medium. In some examples, the communication device readable medium can include a communication device readable medium that is not a transient propagation signal.

利用許多傳輸協定(例如,訊框中繼、網際網路協定(IP)、傳送控制協定(TCP)、用戶資料報協定(UDP)、超文件傳輸協定(HTTP)等等)的任一者,指令424可使用經由 網路界面裝置420的傳送媒體而進一步在通訊網路426上傳送或接收。實例通訊網路可包括局部區域網路(LAN)、廣域網路(WAN)、封包資料網路(例如,網際網路)、行動電話網路(例如,蜂巢式網路)、傳統電話(POTS)網路、以及無線資料網路(例如,以Wi-Fi®著名的電機電子工程師協會(IEEE)802.11標準家族、以WiMax®著名的IEEE802.16標準家族)、IEEE802.15.4標準家族、長期演進(LTE)標準家族、通用行動通訊系統(UMTS)標準家族、點對點(P2P)網路、及其他。在一實例中,網路界面裝置420可包括一或多個實體插座(例如,乙太、同軸、或電話插座)或一或多條天線,以連接到通訊網路426。在一實例中,網路界面裝置420可包括複數條天線,以使用單輸入多輸出(SIMO)、MIMO、或多輸入單輸出(MISO)技術之至少一者來無線通訊。在一些實例中,網路界面裝置420可使用多使用者的MIMO技術來無線通訊。將採用術語「傳送媒體(transmission medium)」來包括任何無形媒體,該無形媒體能夠儲存、編碼、或運送由通訊裝置400所執行之指令,且包括用以促進此軟體之通訊的數位或類比通訊訊號或其他無形媒體。 Utilize any of a number of transport protocols (eg, Frame Relay, Internet Protocol (IP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Hyper-File Transfer Protocol (HTTP), etc.) Instructions 424 can be used via The transmission medium of network interface device 420 is further transmitted or received over communication network 426. The example communication network may include a local area network (LAN), a wide area network (WAN), a packet data network (eg, the Internet), a mobile phone network (eg, a cellular network), a traditional telephone (POTS) network. Roads, and wireless data networks (for example, the Wi-Fi® renowned Institute of Electrical and Electronics Engineers (IEEE) 802.11 family of standards, the IEEE 802.16 family of standards known as WiMax®), the IEEE 802.15.4 family of standards, and long-term evolution (LTE) Standard family, Universal Mobile Communications System (UMTS) family of standards, peer-to-peer (P2P) networks, and others. In one example, network interface device 420 can include one or more physical outlets (eg, Ethernet, coaxial, or telephone jacks) or one or more antennas to connect to communication network 426. In an example, network interface device 420 can include a plurality of antennas for wireless communication using at least one of single input multiple output (SIMO), MIMO, or multiple input single output (MISO) technology. In some examples, network interface device 420 can wirelessly communicate using multi-user MIMO technology. The term "transmission medium" will be used to include any intangible medium capable of storing, encoding, or transporting instructions executed by communication device 400, and including digital or analog communication for facilitating communication of the software. Signal or other intangible media.

除了可由5G系統使用的多種類型的MIMO以外,5G系統亦可能可使用高頻帶(釐米波與毫米波)以用於在eNB與UE之間(或UE至UE)的通訊,因為這些波長能夠提供更寬的頻寬,以支援未來的整合通訊系統。由於結合MIMO,使用高頻帶因此可由於增加的頻寬可用性而縮 減在多種網路上的應變量。為了使用高頻帶來實施通訊,形成增益的MIMO射束能夠補償由在這些更高頻帶之大氣衰減所導致的潛在嚴重路徑損耗,以及改善訊號雜訊比(SNR)且放大覆蓋範圍面積。藉由將特定的傳送射束對準目標UE,可將輻射的能量集中用於更高的能量效率,且抑制相互的UE干擾。 In addition to the many types of MIMO that can be used by 5G systems, it is also possible for 5G systems to use high frequency bands (cm and millimeter waves) for communication between the eNB and the UE (or UE to UE) because these wavelengths can provide Wider bandwidth to support future integrated communications systems. Due to the combination of MIMO, the use of high frequency bands can be reduced due to increased bandwidth availability Reduce the amount of variables on multiple networks. In order to implement communication using high frequency bands, the MIMO beam forming the gain can compensate for potentially severe path loss caused by atmospheric attenuation at these higher frequency bands, as well as improve signal to noise ratio (SNR) and amplify the coverage area. By aligning a particular transmitted beam to the target UE, the radiated energy can be concentrated for higher energy efficiency and mutual UE interference is suppressed.

不過,在MIMO系統中,UE可選擇由eNB所傳送之複數條射束中的最佳射束以用於接收多種訊號,且使用由最佳射束指示的方向來傳送訊號到eNB。雖然使eNB知道哪一射束對於與UE通訊最佳將會令人希望,但是不幸地,此資訊可能對eNB是不可用的。也就是說,eNB可能不知道哪一射束正由UE所使用,且因此使用哪一方向以接收排程請求(SR)。eNB可因此掃描過全部射束的全部方向,導致UE重複傳送SR許多次(至少等於射束的數目)。當多個eNB(諸如LTE eNB與5G eNB)提供不同服務給UE時以及當UE具有相當高的遷移率時,這可被加劇,使得最佳的射束能夠相當快速地改變(例如,UE至少以每小時幾(比如說30)km移動)。為了避免這情形,可使用特定的SR或5G實體隨機存取通道(xPRACH)來啟動藉由UE的5G資料傳送。具體地,在LTE鏈路中的SR可使用於在5G鏈路中的上行鏈路請求,以用於非獨立的部署,且xPRACH可使用於獨立部署,如相關於以下多項實施例來說明者。 However, in a MIMO system, the UE may select the best of the plurality of beams transmitted by the eNB for receiving the plurality of signals and transmit the signals to the eNB using the direction indicated by the best beam. While it would be desirable to have the eNB know which beam is best for communicating with the UE, unfortunately this information may not be available to the eNB. That is, the eNB may not know which beam is being used by the UE, and therefore which direction is used to receive the scheduling request (SR). The eNB may thus scan all directions of the entire beam, causing the UE to repeatedly transmit the SR many times (at least equal to the number of beams). This can be exacerbated when multiple eNBs (such as LTE eNBs and 5G eNBs) provide different services to the UE and when the UE has a relatively high mobility, so that the optimal beam can be changed quite quickly (eg, the UE is at least Move a few times per hour (say 30) km). To avoid this, a specific SR or 5G Entity Random Access Channel (xPRACH) can be used to initiate 5G data transfer by the UE. In particular, an SR in an LTE link may be used for uplink requests in a 5G link for non-independent deployment, and xPRACH may be used for independent deployment, as explained in relation to the following embodiments .

圖5繪示根據一些實施例之用於非獨立LTE系統的 上行鏈路請求設計。如圖示,5G系統包括與LTE eNB504及5G eNB506通訊的UE502。UE502、LTE eNB504、及5G eNB506可顯示於圖1至圖4中。LTE eNB504及5G eNB506可經由X2界面連接,使得從UE502提供到LTE eNB504的資訊可如希望地前傳到5G eNB506。在一些實施例中,藉由使用LTE鏈路上的專用資源,傳送SR到LTE eNB504,UE502可啟動5G上行鏈路排程程序。SR可使用於用於5G鏈路之上行鏈路資源的請求。 FIG. 5 illustrates a non-independent LTE system for use in a non-independent LTE system, in accordance with some embodiments. Uplink request design. As shown, the 5G system includes a UE 502 that communicates with the LTE eNB 504 and the 5G eNB 506. UE 502, LTE eNB 504, and 5G eNB 506 may be shown in Figures 1-4. The LTE eNB 504 and the 5G eNB 506 may be connected via an X2 interface such that information provided from the UE 502 to the LTE eNB 504 may be forwarded to the 5G eNB 506 as desired. In some embodiments, the SR is transmitted to the LTE eNB 504 by using dedicated resources on the LTE link, and the UE 502 can initiate a 5G uplink scheduling procedure. The SR can be used for requests for uplink resources for 5G links.

與上文類似地,不同的實體上行鏈路通道可包括實體上行鏈路控制通道(PUCCH)或5G PUCCH(xPUCCH)(為了方便,下文僅稱為xPUCCH),其係由UE502使用來發送上行鏈路控制資訊(UCI)到LTE eNB504或5G eNB506,並且請求實體上行鏈路共享通道(PUSCH)或5G PUSCH(xPUSCH)(為了方便,下文僅稱為xPUSCH)提供上行鏈路資料到LTE eNB504或5G eNB506。xPUCCH可映射到由正交掩碼與兩個資源方塊所定義的UL控制通道資源(在時間上連續,在相鄰槽之間的邊界上潛在地跳躍)。xPUCCH可採用許多不同的格式,UCI則含有依據該格式的資訊。具體地,xPUCCH可含有SR,其係由UE使用來請求資源,以傳送使用PUCCH格式1的上行鏈路資料。xPUCCH亦可含有確認回應/重傳請求(ACK/NACK)或通道品質指示(CQI)/通道狀態資訊(CSI)。CQI/CSI可將UE502所看見之現有下行鏈路通道情況的估計值指示到LTE eNB504或5G eNB506,以協助取決於通道的排程, 且可包括MIMO相關反饋(例如,預編碼器矩陣指示,PMI)。 Similar to the above, different physical uplink channels may include a Physical Uplink Control Channel (PUCCH) or a 5G PUCCH (xPUCCH) (hereinafter referred to simply as xPUCCH for convenience), which is used by the UE 502 to transmit uplinks. Route Control Information (UCI) to LTE eNB 504 or 5G eNB 506 and requesting Physical Uplink Shared Channel (PUSCH) or 5G PUSCH (xPUSCH) (hereinafter referred to simply as xPUSCH for convenience) to provide uplink data to LTE eNB 504 or 5G eNB 506. The xPUCCH can be mapped to UL control channel resources defined by orthogonal masks and two resource blocks (continuous in time, potentially hopping on the boundary between adjacent slots). xPUCCH can be used in many different formats, and UCI contains information based on that format. In particular, the xPUCCH may contain an SR that is used by the UE to request resources to transmit uplink data using PUCCH format 1. The xPUCCH may also contain an Acknowledgement/Retransmission Request (ACK/NACK) or Channel Quality Indicator (CQI)/Channel Status Information (CSI). The CQI/CSI may indicate an estimate of the existing downlink channel condition seen by the UE 502 to the LTE eNB 504 or the 5G eNB 506 to assist in channel dependent scheduling, And may include MIMO related feedback (eg, precoder matrix indication, PMI).

如圖5所示,在操作512,UE502可使用專用的SR資源來請求資源。專用的SR資源可經由先前與UE502的無線電資源控制(RRC)訊號發送而藉由LTE eNB504或5G eNB506組態。UE502可經組態具有只有一個SR資源(用於5G鏈路)或具有兩個SR資源(一個用於LTE鏈路中的上行鏈路請求,且另一個用於5G鏈路用的上行鏈路請求)。專用的資源可以是UE特定的,且可與資源分配索引有關。資源可具有專用時間、頻率、或代碼分配中的一或多個。 As shown in FIG. 5, at operation 512, the UE 502 can request resources using dedicated SR resources. The dedicated SR resources may be configured by the LTE eNB 504 or the 5G eNB 506 via a Radio Resource Control (RRC) signal transmission previously with the UE 502. UE 502 may be configured to have only one SR resource (for 5G links) or have two SR resources (one for uplink requests in LTE links and the other for uplinks for 5G links) request). The dedicated resources may be UE specific and may be related to the resource allocation index. A resource can have one or more of a dedicated time, frequency, or code assignment.

在成功偵測SR以後,在操作514,LTE eNB504可傳送根據DCI格式形成的PDCCH,該格式含有用於射束相關資訊的上行鏈路授予。具體地,LTE eNB504可分配上行鏈路資源,以用於藉由UE502來傳送LTE鏈路中的緩衝狀態報告(BSR)。雖然沒有顯示,但是在此點,LTE eNB504可在X2界面上,將UE502希望上行鏈路授予指示給5G eNB506,或可等待直到稍後通知5G eNB506。 After successfully detecting the SR, at operation 514, the LTE eNB 504 can transmit a PDCCH formed according to the DCI format, the format containing an uplink grant for beam related information. In particular, the LTE eNB 504 can allocate uplink resources for transmitting a Buffer Status Report (BSR) in the LTE link by the UE 502. Although not shown, at this point, the LTE eNB 504 may, on the X2 interface, grant the UE 502 an uplink grant indication to the 5G eNB 506, or may wait until the 5G eNB 506 is notified later.

如圖5所示,UE502可接收來自LTE eNB504的上行鏈路資源分配。在操作516,UE502可回應地傳送在所分配上行鏈路資源中之PUSCH上的BSR,其係在媒體存取控制(MAC)協定資料單元(PDU)中運送。MAC PDU可用來通知eNB欲傳送之UE緩衝器中的資料數量。除了BSR以外,UE502可使用分配資源來報告5G射束測量。5G射 束測量可允許5G eNB506使用5G鏈路中的適當射束來傳送訊號。5G射束測量可含有從射束參考信號(BRS)獲取之由UE502接收之來自5G eNB506的最佳射束的資訊,或由UE502進行的BRS接收功率(BRS-RP)測量。最佳射束可表示為獨特識別符,該識別符使射束與網路已知的傳送點產生關聯。UE506可持續監聽藉由5G eNB506的週期性射束傳送(參考訊號),以用於此測量。 As shown in FIG. 5, UE 502 can receive an uplink resource allocation from LTE eNB 504. At operation 516, the UE 502 can responsively transmit a BSR on the PUSCH in the allocated uplink resource, which is carried in a Medium Access Control (MAC) Protocol Data Unit (PDU). The MAC PDU can be used to inform the eNB of the amount of data in the UE buffer to be transmitted. In addition to the BSR, the UE 502 can use the allocated resources to report 5G beam measurements. 5G shot The beam measurement may allow the 5G eNB 506 to transmit signals using the appropriate beam in the 5G link. The 5G beam measurement may contain information obtained from the beam reference signal (BRS) of the best beam received by the UE 502 from the 5G eNB 506, or BRS received power (BRS-RP) measurements by the UE 502. The optimal beam can be represented as a unique identifier that associates the beam with a known transmission point on the network. The UE 506 can continuously monitor the periodic beam transmission (reference signal) by the 5G eNB 506 for this measurement.

當藉由LTE eNB 504使用LTE鏈路來接收BSR與5G射束測量報告時,LTE eNB 504可判定適當的位置,以及在一些實施例中可判定最佳射束。或者,LTE eNB 504可在X2界面上將5G射束測量報告的資訊提供到5G eNB506,以供5G eNB506判定適當分配及/或最佳射束。在操作518,5G eNB506可使用最佳射束,使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於在5G鏈路上傳送上行鏈路資料的上行鏈路授予。特別地,基於BSR資訊,如由UE502所指示,5G eNB506可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與調變和編碼方案(MCS)。 When the BSR and 5G beam measurement reports are received by the LTE eNB 504 using the LTE link, the LTE eNB 504 can determine the appropriate location and, in some embodiments, can determine the best beam. Alternatively, the LTE eNB 504 can provide 5G beam measurement report information to the 5G eNB 506 on the X2 interface for the 5G eNB 506 to determine the appropriate allocation and/or optimal beam. At operation 518, the 5G eNB 506 can transmit the xPDCCH using the best beam using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data over a 5G link. In particular, based on the BSR information, as indicated by the UE 502, the 5G eNB 506 can allocate appropriate resources and modulation and coding schemes (MCS) included in the uplink grant for uplink data.

在接收上行鏈路授予之後,UE502可使用5G鏈路傳送上行鏈路資料於xPUSCH520上。因此,雖然最初傳送SR與BSR/5G射束報告於LTE鏈路上,但是UE502卻可接收分配且傳送資料於5G鏈路上兩者。 After receiving the uplink grant, the UE 502 can transmit the uplink data on the xPUSCH 520 using the 5G link. Thus, although the initial transmit SR and BSR/5G beams are reported on the LTE link, the UE 502 can receive the assignment and transmit the data on both 5G links.

圖6繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。如圖示,5G系統包括與LTE eNB 604和5G eNB 606通訊的UE602。UE602、LTE eNB 604、及5G eNB 606可顯示於圖1至圖4中,且可以類似於圖5中之相同實體的方式運作。在一些實施例中,藉由使用在LTE鏈路上的專用資源將SR傳送到LTE eNB 604,UE602可啟動5G上行鏈路排程程序。SR可使用於用於5G鏈路之上行鏈路資源的請求。不過,不像圖5的實施例,用於BSR的資源可使用5G鏈路來分配。在此情形中,5G eNB 606與UE602之間的射束對準可能已經存在。 6 illustrates another uplink request design for a non-independent LTE system, in accordance with some embodiments. As shown, the 5G system includes LTE The eNB 604 communicates with the UE 602 of the 5G eNB 606. UE 602, LTE eNB 604, and 5G eNB 606 may be shown in Figures 1 through 4 and may operate in a manner similar to the same entity in Figure 5. In some embodiments, the UE 602 can initiate a 5G uplink scheduling procedure by transmitting the SR to the LTE eNB 604 using dedicated resources on the LTE link. The SR can be used for requests for uplink resources for 5G links. However, unlike the embodiment of Figure 5, resources for the BSR can be allocated using 5G links. In this case, beam alignment between 5G eNB 606 and UE 602 may already be present.

與上文類似,在操作612,UE602可使用專用的SR資源來請求資源。專用的SR資源可藉由LTE eNB 604或5G eNB 606經由與UE602的RRC訊號發送來組態。UE602可僅組態有一個SR資源(用於5G鏈路)或組態有兩個SR資源,一個用於在LTE鏈路中的上行鏈路請求,且另一個用於用於5G鏈路的上行鏈路請求。 Similar to the above, at operation 612, the UE 602 can request resources using dedicated SR resources. The dedicated SR resources may be configured by the LTE eNB 604 or the 5G eNB 606 via RRC signal transmission with the UE 602. UE 602 may be configured with only one SR resource (for 5G links) or configured with two SR resources, one for uplink requests in the LTE link and the other for 5G links. Uplink request.

在成功檢測SR之後,LTE eNB 604可判定5G資源係令人希望的,且於X2界面上,提供此資訊到5G eNB 606。不過,不像在圖5所示的實施例,LTE eNB 504可以不要進行進一步的動作。在操作614,5G eNB 606可傳送根據DCI格式而形成的xPDCCH,該格式含有用於射束相關資訊的上行鏈路授予。5G eNB 606已經具有相關於用於與UE602通訊之最佳射束的資訊。例如,自當接收SR的時候起,5G eNB 606可使用在預定數量的時間(其可基於UE602移動率)內判定或提供的射束資訊。5G eNB 606可分配上行鏈路資源,以用於藉由UE602傳送BSR於5G鏈路中。在一些實施例中,5G eNB 606可分配額外的上行鏈路資源,以用於藉由UE602傳送5G射束測量報告於5G鏈路中,以更新資訊。5G eNB 606可使用最佳射束來傳送此資訊到UE602。 After successfully detecting the SR, the LTE eNB 604 can determine that the 5G resource is desirable and provide this information to the 5G eNB 606 on the X2 interface. However, unlike the embodiment shown in FIG. 5, the LTE eNB 504 may not perform further actions. At operation 614, the 5G eNB 606 can transmit an xPDCCH formed according to the DCI format, the format containing an uplink grant for beam related information. The 5G eNB 606 already has information related to the best beam for communicating with the UE 602. For example, from the time the SR is received, the 5G eNB 606 can use beam information that is determined or provided within a predetermined amount of time (which may be based on the UE 602 mobility rate). 5G The eNB 606 can allocate uplink resources for transmitting the BSR in the 5G link by the UE 602. In some embodiments, the 5G eNB 606 can allocate additional uplink resources for transmitting 5G beam measurement reports in the 5G link by the UE 602 to update the information. The 5G eNB 606 can use the best beam to transmit this information to the UE 602.

UE602可接收來自5G eNB 606的上行鏈路資源分配。在操作616,UE602可回應地,以5G鏈路上的分配上行鏈路資源,傳送BSR到5G eNB 606。在此情形中,因為5G eNB 606可知道用於與UE602通訊的最佳射束,所以UE602可避免傳送5G測量報告,且因此,較少資源可由5G eNB 606分配以及由UE602使用。 UE 602 can receive an uplink resource allocation from 5G eNB 606. At operation 616, the UE 602 responsively transmits the BSR to the 5G eNB 606 with the allocated uplink resources on the 5G link. In this case, because the 5G eNB 606 can know the best beam for communicating with the UE 602, the UE 602 can avoid transmitting 5G measurement reports, and thus, fewer resources can be allocated by the 5G eNB 606 and used by the UE 602.

當藉由5G eNB 606使用5G鏈路來接收BSR時,在操作618,5G eNB 606可使用最佳射束、使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。基於BSR資訊,適當資源與MCS可藉由5G eNB 606分配在由5G eNB 606傳送的上行鏈路授予中。 When the BSR is received by the 5G eNB 606 using the 5G link, at operation 618, the 5G eNB 606 can transmit the xPDCCH using the best beam using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data. Based on the BSR information, the appropriate resources and MCS may be allocated by the 5G eNB 606 in the uplink grant transmitted by the 5G eNB 606.

在接收上行鏈路授予之後,UE602可使用5G鏈路傳送上行鏈路資料於xPUSCH620上。因此,雖然最初傳送SR於LTE鏈路上,但是UE602之後可與5G eNB 606通訊,以發送BSR、接收分配、以及傳送資料於5G鏈路上。 After receiving the uplink grant, the UE 602 can transmit the uplink data on the xPUSCH 620 using the 5G link. Thus, although the SR is initially transmitted on the LTE link, the UE 602 can then communicate with the 5G eNB 606 to transmit the BSR, receive the allocation, and transmit the data on the 5G link.

圖7繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。5G系統包括與LTE eNB 704和 5G eNB 706通訊的UE702。UE702、LTE eNB 704、以及5G eNB 706可顯示於圖1至圖4中,且施行與在圖5與圖6之類似裝置的至少一些相同功能。在一些實施例中,藉由傳送SR到LTE eNB 704,UE702可啟動5G上行鏈路排程程序。SR可使用於請求用於5G鏈路的上行鏈路資源。不過,不像在圖5或圖6中所示的實施例,在圖7所示之實施例中的SR可能不會使用專用於5G上行鏈路資料傳送請求的資源來傳送。 7 illustrates another uplink request design for a non-independent LTE system, in accordance with some embodiments. The 5G system includes an LTE eNB 704 and The UE 702 communicated by the 5G eNB 706. UE 702, LTE eNB 704, and 5G eNB 706 may be shown in Figures 1 through 4 and perform at least some of the same functions as the similar devices of Figures 5 and 6. In some embodiments, by transmitting the SR to the LTE eNB 704, the UE 702 can initiate a 5G uplink scheduling procedure. The SR can be used to request uplink resources for the 5G link. However, unlike the embodiment shown in FIG. 5 or FIG. 6, the SR in the embodiment shown in FIG. 7 may not be transmitted using resources dedicated to the 5G uplink data transfer request.

也就是說,在操作712,UE702可使用非專用的SR資源,以請求用於使用5G鏈路之資料的上行鏈路傳送的資源。在此情形中,UE702可僅僅組態具有一個SR資源,其係用於LTE鏈路。儘管正使用非專用的SR資源,但是,在MAC層中的新邏輯通道ID(LCID)卻可定義用於UE702,以請求在5G鏈路中的上行鏈路資源。可使用LCID,以區別是否上行鏈路請求用於LTE鏈路或5G鏈路。UE702因此可使用LCID於LTE鏈路中的SR傳送,以指示正在請求5G資源。LCID可按3GPP技術規格36.321來定義。 That is, at operation 712, the UE 702 may use non-dedicated SR resources to request resources for uplink transmissions using the 5G link's data. In this case, the UE 702 may only have one SR resource configured for the LTE link. Although a non-dedicated SR resource is being used, a new logical channel ID (LCID) in the MAC layer may be defined for the UE 702 to request uplink resources in the 5G link. The LCID can be used to distinguish whether an uplink request is for an LTE link or a 5G link. The UE 702 can therefore use the SRID of the LCID in the LTE link to indicate that 5G resources are being requested. The LCID can be defined in accordance with 3GPP Technical Specification 36.321.

也就是說,MAC標頭可具有可變的尺寸(以八位元組為單位)且含有LCID、長度欄位、格式欄位、以及延伸欄位。長度欄位可指示對應MAC SDU或可變尺寸MAC控制元件的長度(以位元組為單位)。格式欄位可指示長度欄位的尺寸。延伸欄位可指示是否有進一步的欄位出現於MAC標頭中。LCID(5位元)可識別對應MAC SDU 的邏輯通道情形、或對應MAC控制元件的類型、或各別用於DL-SCH、UL-SCH、以及MCH的填充。 That is, the MAC header can have a variable size (in octets) and contains the LCID, length field, format field, and extended field. The length field may indicate the length (in bytes) of the corresponding MAC SDU or variable size MAC Control Element. The format field indicates the size of the length field. The extended field indicates if any further fields appear in the MAC header. LCID (5-bit) identifies the corresponding MAC SDU The logical channel case, or the type of corresponding MAC control element, or the padding for DL-SCH, UL-SCH, and MCH, respectively.

在成功檢測SR以後,LTE eNB 704可萃取LCID且判定UE702正在請求5G資源。在操作714,LTE eNB 704可因此將含有用於射束相關資訊之上行鏈路授予的PDCCH傳送到5G eNB 706。LTE eNB 704可分配上行鏈路資源,以用於藉由UE702傳送射束相關資訊於LTE鏈路中。 After successfully detecting the SR, the LTE eNB 704 may extract the LCID and determine that the UE 702 is requesting 5G resources. At operation 714, the LTE eNB 704 may thus transmit a PDCCH containing an uplink grant for beam related information to the 5G eNB 706. The LTE eNB 704 can allocate uplink resources for transmitting beam related information in the LTE link by the UE 702.

UE702可接收來自LTE eNB 704的上行鏈路資源分配,且相應地運作。特別地,在操作716,UE702可傳送BSR與5G射束測量於分配上行鏈路資源中的PUSCH上。如上述,5G射束測量可含有從BRS獲取之由UE702接收的最佳射束的資訊,或由UE702進行的BRS-RP測量。除了在操作712的SR以外(或替代在操作712的SR),BSR與5G射束報告可使用LCID。具體地,可定義對應的MAC控制元件,其可包括5G射束測量報告。此MAC控制元件可在操作716、在LTE RACH程序中傳送,或與BSR一起傳送,以用於在操作712、由SR所觸發的上行鏈路資料傳送。 The UE 702 can receive an uplink resource allocation from the LTE eNB 704 and operate accordingly. In particular, at operation 716, the UE 702 can transmit BSR and 5G beam measurements on the PUSCH in the allocated uplink resource. As described above, the 5G beam measurement may contain information of the best beam received by the UE 702 obtained from the BRS, or BRS-RP measurements by the UE 702. In addition to the SR at operation 712 (or instead of the SR at operation 712), the BSR and 5G beam reports may use the LCID. In particular, a corresponding MAC control element can be defined, which can include a 5G beam measurement report. This MAC Control Element may be transmitted in operation 716, in an LTE RACH procedure, or transmitted with the BSR for uplink data transmission triggered by the SR at operation 712.

當經由LTE鏈路、藉由LTE eNB 704來接收5G射束測量報告時,與圖5類似地,LTE eNB 704可指示5G eNB 706欲將用於5G鏈路的資源請求分配給UE702,並可經由X2界面來提供BSR及/或5G射束報告任一者或兩者。5G eNB 706可後續地判定最佳射束,且在操作718 使用最佳射束、使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。如同上述,基於BSR資訊,5G eNB706可分配基於BSR而包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 When receiving a 5G beam measurement report via the LTE eNB via the LTE eNB, similar to FIG. 5, the LTE eNB 704 can instruct the 5G eNB 706 to allocate a resource request for the 5G link to the UE 702, and Either or both of the BSR and/or 5G beam reports are provided via the X2 interface. The 5G eNB 706 can subsequently determine the best beam, and at operation 718 The xPDCCH is transmitted using the best beam using a 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data. As described above, based on the BSR information, the 5G eNB 706 can allocate appropriate resources and MCS included in the uplink grant for uplink data based on the BSR.

在接收上行鏈路授予之後,UE702可使用5G鏈路將上行鏈路資料傳送於xPUSCH720上。如同在圖5與圖6中,在圖7中,雖然最初傳送SR與BSR/5G射束報告於LTE鏈路上,但是UE702卻可接收分配且傳送資料於5G鏈路上兩者。 After receiving the uplink grant, the UE 702 can transmit the uplink data on the xPUSCH 720 using the 5G link. As in Figures 5 and 6, in Figure 7, although the SR and BSR/5G beams are initially transmitted on the LTE link, the UE 702 can receive the allocation and transmit the data on both 5G links.

圖8繪示根據一些實施例之用於非獨立LTE系統的另一上行鏈路請求設計。5G系統可包括與LTE eNB 804和5G eNB 806通訊的UE802。UE802、LTE eNB 804、及5G eNB 806可顯示於圖1至圖4中。如同在上述實施例中,藉由傳送用於5G鏈路之上行鏈路資源的SR到LTE eNB 804,UE802可啟動5G上行鏈路排程程序。在操作812,UE802可使用非專用的SR資源來請求資源。 8 illustrates another uplink request design for a non-independent LTE system, in accordance with some embodiments. The 5G system may include a UE 802 that communicates with the LTE eNB 804 and the 5G eNB 806. UE 802, LTE eNB 804, and 5G eNB 806 may be shown in Figures 1-4. As in the above embodiment, the UE 802 can initiate a 5G uplink scheduling procedure by transmitting an SR to the LTE eNB 804 for the uplink resources of the 5G link. At operation 812, the UE 802 can request resources using non-dedicated SR resources.

不像先前的實施例,不是傳送用於BSR以及或許5G射束測量報告的資源,在操作814,LTE eNB 804可回應地傳送用於免競爭RACH程序的PDCCH順序於5G鏈路上。具體地,LTE eNB 804可傳送具有指定前置簽名的xPRACH傳送,以指示免競爭的RACH程序。類似含有用於BSR之資源的PDCCH,PDCCH順序可傳送於LTE鏈路上。指示xPRACH傳送的前置索引可以是預定的前置索 引(例如,定義用於xPRACH的單一前置索引)或可從指示xPRACH傳送的前置索引群中選出。前置索引群ID可經由先前的BRS-RP測量結果來得到。用以指示前置索引或前置索引群ID與用於傳送xPRACH之順序有關的資訊,可在傳送SR之前、經由RRC訊號發送、藉由UE802得到。 Unlike the previous embodiment, instead of transmitting resources for the BSR and perhaps the 5G beam measurement report, at operation 814, the LTE eNB 804 can responsively transmit the PDCCH sequence for the contention free RACH procedure on the 5G link. In particular, LTE eNB 804 may transmit an xPRACH transmission with a designated preamble to indicate a contention free RACH procedure. Similar to the PDCCH containing the resources for the BSR, the PDCCH order can be transmitted on the LTE link. The preamble index indicating the xPRACH transmission may be a predetermined preamble The reference (eg, defining a single preamble for xPRACH) may be selected from a pre-indexed group that indicates xPRACH transmission. The pre-indexed group ID can be obtained via previous BRS-RP measurements. The information indicating the pre-index or pre-index group ID and the order for transmitting the xPRACH may be obtained by the UE 802 before being transmitted by the RRC signal before transmitting the SR.

在一些實施例中,xPDCCH順序可經由5G鏈路、藉由5G eNB806傳送,而不是經由LTE鏈路、藉由LTE eNB804傳送,在傳送含有xPRACH順序的xPDCCH之前,用於5G鏈路之SR的資訊則在X2界面上、從LTE eNB804提供到5G eNB806。更者,在一些實施例中,假如在藉由RRC或其他高層訊號發送所組態的時間視窗內沒有接收到PDCCH(或xPDCCH)順序,UE802可判定SR已經到期或沒有由LTE eNB804接收,並傳送另一SR。到期的時期可取決於UE的類型(UE優先權)、欲由UE802傳送的資料(資料優先權)、例如藉由干擾所測量的網路負載、以及其他因素。 In some embodiments, the xPDCCH sequence may be transmitted over the 5G link via the 5G eNB 806, rather than via the LTE link, via the LTE eNB 804, for the SR of the 5G link before transmitting the xPDCCH containing the xPRACH sequence The information is provided from the LTE eNB 804 to the 5G eNB 806 on the X2 interface. Moreover, in some embodiments, if the PDCCH (or xPDCCH) sequence is not received within the configured time window by RRC or other higher layer signaling, the UE 802 may determine that the SR has expired or is not received by the LTE eNB 804. And send another SR. The period of expiration may depend on the type of UE (UE priority), the material to be transmitted by the UE 802 (data priority), the network load measured by interference, for example, and other factors.

UE802可解碼xPDCCH順序,以用於啟動經由5G鏈路的免競爭RACH程序。在操作816,UE802可傳送xPRACH到5G eNB806。UE802可選擇可用RACH前置與自發送前置之時槽數目判定之隨機存取無線電網路暫時識別符(RA-RNTI)的其中一個。 The UE 802 can decode the xPDCCH order for initiating a contention free RACH procedure via the 5G link. At operation 816, the UE 802 can transmit an xPRACH to the 5G eNB 806. The UE 802 may select one of a random access radio network temporary identifier (RA-RNTI) that may be determined by the number of slots of the RACH preamble and the preamble.

當接收xPRACH時,5G eNB806可後續地基於xPRACH施行射束掃描,以判定最佳射束。5G eNB806可 使用最佳射束,以在操作818,使用5G鏈路傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。如同上述,基於BSR資訊,5G eNB806可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 When receiving the xPRACH, the 5G eNB 806 can then perform a beam scan based on the xPRACH to determine the best beam. 5G eNB806 can The best beam is used to transmit the xPDCCH using the 5G link at operation 818. The xPDCCH may contain an uplink grant for transmitting uplink data. As described above, based on the BSR information, the 5G eNB 806 can allocate the appropriate resources and MCS included in the uplink grant for the uplink data.

在接收上行鏈路授予之後,UE802可使用5G鏈路傳送上行鏈路資料於xPUSCH820上。在一些實施例中,UE802亦可傳送具有上行鏈路資料的BSR。 After receiving the uplink grant, the UE 802 can transmit the uplink data on the xPUSCH 820 using the 5G link. In some embodiments, the UE 802 can also transmit a BSR with uplink data.

圖9繪示根據一些實施例之用於獨立LTE系統的上行鏈路請求設計。5G系統包括與5G eNB904通訊的UE902。UE902與5G eNB904可顯示於圖1至圖4中。一般而言,如上文的討論,就5G系統而言,可使用重複的xPRACH傳送,來確保藉由5G eNB使用射束掃描的穩定檢測。與上述非獨立實施例(其中,可應用SR,以指示經由5G鏈路提供上行鏈路資料的請求)類似,在獨立實施例中,xPRACH可由UE902利用,以得到上行鏈路同步化。 9 illustrates an uplink request design for an LTE-acne system, in accordance with some embodiments. The 5G system includes a UE 902 that communicates with the 5G eNB 904. UE 902 and 5G eNB 904 may be shown in Figures 1 through 4. In general, as discussed above, for 5G systems, repeated xPRACH transmissions can be used to ensure stable detection using beam scanning by 5G eNBs. Similar to the non-independent embodiment described above (where SR can be applied to indicate a request to provide uplink data via a 5G link), in a separate embodiment, the xPRACH can be utilized by the UE 902 for uplink synchronization.

與上述實施例中的一些類似,藉由傳送用於5G鏈路之上行鏈路資源的xPRACH到5G eNB904,UE902可啟動5G上行鏈路免競爭排程程序。如圖示,在操作912,UE902可使用專用的xPRACH資源,以請求上行鏈路資料資源。有關xPRACH的資訊可經由RRC或其他更高層的訊號發送來傳送到UE902。因為在5G單元中的使用者數目可能受到限制,所以分配一或多個專用的xPRACH資源 用於一資源請求可避免引進專用的SR通道用於5G系統。UE902可選擇數個可用xPRACH前置中的一個以及從發送前置之時槽數目判定的隨機存取無線電網路暫時識別符(RA-RNTI)。 Similar to some of the above embodiments, UE 902 may initiate a 5G uplink contention-free scheduling procedure by transmitting xPRACH to 5G eNB 904 for uplink resources of the 5G link. As illustrated, at operation 912, the UE 902 can use a dedicated xPRACH resource to request an uplink data resource. Information about xPRACH may be transmitted to the UE 902 via RRC or other higher layer signaling. Since the number of users in the 5G unit may be limited, one or more dedicated xPRACH resources are allocated. Used for a resource request to avoid the introduction of dedicated SR channels for 5G systems. The UE 902 may select one of a number of available xPRACH preambles and a Random Access Radio Network Temporary Identifier (RA-RNTI) determined from the number of pre-transmitted time slots.

可使用分時多工(TDM)、分頻多工(FDM)、或分碼多工(CDM)中的一或多個,將用於SR與用於隨機存取的xPRACH資源多工化。用於SR之xPRACH資源的組態可經由從定錨LTE單元或5G單元的RRC訊號發送來組態。在一項實施例中,用於隨機存取之xPRACH的頻率資源與序列組可一對一地映射到BRS的頻率資源與序列組。可將額外的資源分派到用於SR的xPRACH,例如第n+1個子訊框,其中n係為用於隨機存取之xPRACH的子訊框索引。在另一實施例中,專用的xPRACH前置簽名可以用於SR之UE特定的方式(例如,RRC訊號發送)來分配。 One or more of Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), or Code Division Multiplexing (CDM) may be used to multiplex the SR with xPRACH resources for random access. The configuration of the xPRACH resource for the SR can be configured via RRC signal transmission from a fixed anchor LTE unit or 5G unit. In one embodiment, the frequency resources and sequence groups of the xPRACH for random access may be mapped one-to-one to the frequency resources and sequence groups of the BRS. Additional resources may be allocated to the xPRACH for the SR, such as the n+1th subframe, where n is the subframe index for the xPRACH for random access. In another embodiment, the dedicated xPRACH preamble signature may be allocated for UE-specific manner of the SR (eg, RRC signal transmission).

5G eNB904可檢測xPRACH。回應地,在操作914,5G eNB904可經由5G鏈路傳送具有上行鏈路授予的xPDCCH。xPDCCH可含有用於BSR與可能地5G射束報告的資源。不過,不像習知的RACH程序,回應於xPRACH,xPDCCH可含有縮減的隨機存取回應(RAR)。一般而言,可將全RAR定址成RA-RNTI,且除了上行鏈路授予資源以外還可含有暫時細胞無線電網路暫時識別符(C-RNTI)以及時序前進值,以補償UE902與5G eNB904之間的往返延遲。在一些實施例中,替代全RAR資訊, 諸如時序前進與C-RNTI,可能在諸如經由RRC_CONNECTED訊息來傳送xPRACH之前已經知道。因此,5G eNB904可避免傳送此資訊,以節省管理負擔並簡化程序。更者,因為C-RNTI可由UE902知道,所以在xPDCCH中運送的縮減RAR訊息可使用在循環冗餘檢查(CRC)中的C-RNTI來攪拌。 The 5G eNB 904 can detect the xPRACH. In response, at operation 914, the 5G eNB 904 can transmit the xPDCCH with the uplink grant via the 5G link. The xPDCCH may contain resources for BSR and possibly 5G beam reporting. However, unlike the conventional RACH procedure, in response to xPRACH, the xPDCCH may contain a reduced random access response (RAR). In general, the full RAR may be addressed to the RA-RNTI and may include a Temporary Cellular Radio Network Temporary Identifier (C-RNTI) and a timing advance value in addition to the uplink granting resources to compensate for the UE 902 and the 5G eNB 904. Round trip delay between. In some embodiments, instead of full RAR information, Such as timing advance and C-RNTI may already be known before transmitting xPRACH, such as via an RRC_CONNECTED message. Therefore, the 5G eNB 904 can avoid transmitting this information to save management burden and simplify the procedure. Furthermore, because the C-RNTI can be known by the UE 902, the reduced RAR message carried in the xPDCCH can be agitated using the C-RNTI in the Cyclic Redundancy Check (CRC).

當在操作914接收xPDCCH時,UE902可解碼xPDCCH並且判定資源分配。在操作916,UE902可後續地使用5G鏈路傳送BSR及/或5G射束測量報告到5G eNB904。 When receiving the xPDCCH at operation 914, the UE 902 may decode the xPDCCH and determine resource allocation. At operation 916, the UE 902 may subsequently transmit the BSR and/or 5G beam measurement report to the 5G eNB 904 using the 5G link.

當接收xPRACH時,5G eNB904可後續地基於xPRACH來施行射束掃描,以判定用於與UE902通訊的最佳射束。在操作918,5G eNB904可使用最佳射束,以使用5G鏈路來傳送xPDCCH。xPDCCH可含有用於傳送上行鏈路資料的上行鏈路授予。如同上述,基於BSR資訊,5G eNB904可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 Upon receiving the xPRACH, the 5G eNB 904 may subsequently perform a beam scan based on the xPRACH to determine an optimal beam for communicating with the UE 902. At operation 918, the 5G eNB 904 can use the best beam to transmit the xPDCCH using the 5G link. The xPDCCH may contain an uplink grant for transmitting uplink data. As described above, based on the BSR information, the 5G eNB 904 can allocate the appropriate resources and MCS included in the uplink grant for the uplink data.

在接收上行鏈路授予之後,在操作920,UE902可傳送上行鏈路資料於xPUSCH上。上行鏈路資料可使用5G鏈路傳送到5G eNB904。 After receiving the uplink grant, at operation 920, the UE 902 can transmit uplink data on the xPUSCH. The uplink data can be transmitted to the 5G eNB 904 using a 5G link.

圖10繪示根據一些實施例之用於獨立LTE系統的另一上行鏈路請求設計。5G系統可包括與5G eNB1004通訊的UE1002。UE1002與5G eNB1004可顯示於圖1至圖4中。在此實施例中,介紹具有快速上行鏈路存取的免競爭 的xPRACH程序。 FIG. 10 illustrates another uplink request design for an independent LTE system in accordance with some embodiments. The 5G system may include a UE 1002 in communication with the 5G eNB 1004. UE 1002 and 5G eNB 1004 can be displayed in Figures 1 through 4. In this embodiment, the competition-free with fast uplink access is introduced. The xPRACH program.

藉由在操作1012,將用於5G鏈路之上行鏈路資源的xPRACH傳送到5G eNB1004,UE1002可啟動5G上行鏈路免競爭排程程序。xPRACH可與BSR一起傳送(以及或許5G射束測量報告)。UE1002可使用專用的xPRACH資源,來請求上行鏈路資料資源。有關xPRACH的資訊可經由RRC或其他更高層的訊號發送來傳送到UE1002。 By transmitting an xPRACH for the uplink resource of the 5G link to the 5G eNB 1004 at operation 1012, the UE 1002 can initiate a 5G uplink contention-free scheduling procedure. The xPRACH can be transmitted with the BSR (and perhaps the 5G beam measurement report). UE 1002 may use dedicated xPRACH resources to request uplink data resources. Information about xPRACH can be transmitted to the UE 1002 via RRC or other higher layer signaling.

5G eNB1004可檢測xPRACH並基於xPRACH施行射束掃描,以判定用於與UE1002通訊的最佳射束。在操作1014,5G eNB1004可經由5G鏈路傳送具有上行鏈路授予的xPDCCH以用於上行資料之傳送。xPDCCH可含有縮減的RAR資訊,如在圖9中。xPDCCH可含有上行鏈路授予。如上述,基於BSR資訊,5G eNB1004可分配包括在用於上行鏈路資料之上行鏈路授予中的適當資源與MCS。 The 5G eNB 1004 can detect the xPRACH and perform a beam scan based on the xPRACH to determine the best beam for communication with the UE 1002. At operation 1014, the 5G eNB 1004 may transmit an xPDCCH with an uplink grant for transmission of uplink data via a 5G link. The xPDCCH may contain reduced RAR information, as in Figure 9. The xPDCCH may contain an uplink grant. As described above, based on the BSR information, the 5G eNB 1004 can allocate the appropriate resources and MCS included in the uplink grant for the uplink data.

在接收上行鏈路授予之後,在操作1016,UE1002可傳送上行鏈路資料於xPUSCH上。上行鏈路資料可使用5G鏈路傳送到5G eNB1004。因為相較於圖9,在UE1002與5G eNB1004之間的訊息數目縮減,所以上行鏈路存取延遲亦可實質地縮減。 After receiving the uplink grant, at operation 1016, the UE 1002 can transmit uplink data on the xPUSCH. The uplink data can be transmitted to the 5G eNB 1004 using a 5G link. Because the number of messages between the UE 1002 and the 5G eNB 1004 is reduced compared to FIG. 9, the uplink access delay can also be substantially reduced.

實例1係為包含處理電路之使用者設備(UE)的裝置,該處理電路配置以:產生指示上行鏈路資料欲傳送到一第五代(5G)演進型節點B(eNB)的一訊息,該訊息依據該訊息將傳送到一長期演進(LTE)eNB與5G eNB的哪一個; 在傳送該訊息之後,將在一選擇射束上之含有從該5G eNB接收之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料到該5G eNB的資源;以及為了傳送到使用該等資源的該5G eNB,產生包含該資料的一5G實體上行鏈路共享通道(xPUSCH)。 Example 1 is a device comprising a user equipment (UE) of a processing circuit, the processing circuit configured to: generate a message indicating that uplink data is to be transmitted to a fifth generation (5G) evolved Node B (eNB), The message is transmitted to which of the Long Term Evolution (LTE) eNB and the 5G eNB according to the message; After transmitting the message, a 5G physical downlink control channel (xPDCCH) containing a 5G uplink grant received from the 5G eNB is decoded on a selected beam, the 5G uplink grant including allocation And transmitting a 5G physical uplink shared channel (xPUSCH) including the data to the 5G eNB using the resources; and transmitting the data to the 5G eNB using the resources.

在實例2中,實例1的主題可選地包括該訊息包含一排程請求,該排程請求則傳送到該LTE eNB。 In Example 2, the subject matter of Example 1 optionally includes the message including a scheduling request, the scheduling request being transmitted to the LTE eNB.

在實例3中,實例2的主題可選地包括該處理電路進一步配置以:產生該排程請求以用於經由一專用的資源來傳送。 In Example 3, the subject matter of Example 2 optionally includes the processing circuit being further configured to generate the scheduling request for transmission via a dedicated resource.

在實例4中,實例3的主題可選地包括該處理電路進一步配置以:回應於該排程請求之傳送,解碼來自該eNB的一上行鏈路授予,以依據從該LTE eNB與該5G eNB哪一個接收到該上行鏈路授予,將一緩衝器狀態報告(BSR)與一5G射束測量報告的至少一個傳送到該eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個。 In Example 4, the subject matter of Example 3 optionally includes the processing circuit further configured to: decode an uplink grant from the eNB in response to the transmission of the scheduling request, in accordance with the LTE eNB from the 5G eNB Which one receives the uplink grant, transmitting at least one of a buffer status report (BSR) and a 5G beam measurement report to the eNB, the 5G beam measurement comprising obtaining from a beam reference signal (BRS) One of the selected beams and at least one of the BRS received power (BRS-RP) measurements of the selected beam.

在實例5中,實例4的主題可選地包括該處理電路進一步配置以:回應從該LTE eNB之該上行鏈路授予之接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告的傳送產生該PDCCH之接收。 In Example 5, the subject matter of Example 4 optionally includes the processing circuit further configured to: responsive to receipt of the uplink grant from the LTE eNB, generate the BSR and the 5G beam measurement report, in response to the BSR and The transmission of the 5G beam measurement report produces the reception of the PDCCH.

在實例6中,實例4至實例5之任一項或多項的主題 可選地包括該處理電路進一步配置以:回應於從該5G eNB之該上行鏈路授予之接收,產生該BSR,回應於該BSR之傳送與該5G射束測量報告之傳送,產生該xPDCCH之接收的至少一個。 In Example 6, the subject matter of any one or more of Examples 4 to 5 Optionally, the processing circuit is further configured to: generate the BSR in response to the receiving of the uplink grant from the 5G eNB, and generate the xPDCCH in response to the transmission of the BSR and the transmission of the 5G beam measurement report Receive at least one.

在實例7中,實例2至實例6之任一項或多項的主題可選地包括該處理電路進一步配置以:產生用於一非專用資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE eNB的一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送到該LTE eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個。 In Example 7, the subject matter of any one or more of Examples 2 through 6 optionally includes the processing circuit further configured to: generate the scheduling request for a non-dedicated resource; and respond to the scheduling request Transmitting, decoding an uplink grant from the LTE eNB to transmit a Buffer Status Report (BSR) and a 5G beam measurement report to the LTE eNB, the 5G beam measurement comprising a beam reference signal ( BRS) acquires at least one of the identity of the selected beam and one of the selected beams of BRS received power (BRS-RP).

在實例8中,實例7之該主題可選地包括該處理電路進一步配置以:回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,該報告使用一邏輯通道識別(LCID)用於資源分配請求到該5G eNB之傳送,該LCID用以提供用於該LTE eNB與該5G eNB的一上行鏈路請求之間的差異化,回應於該BSR與該5G射束測量報告之傳送產生該PDCCH的接收。 In Example 8, the subject matter of Example 7 optionally includes the processing circuit further configured to: in response to the receiving of the uplink grant, generating the BSR and the 5G beam measurement report, the report identifying using a logical channel ( LCID) for transmission of a resource allocation request to the 5G eNB, the LCID being used to provide differentiation between an uplink request for the LTE eNB and the 5G eNB, in response to the BSR and the 5G beam measurement The transmission of the report produces the reception of the PDCCH.

在實例9中,實例2至實例8之任一項或多項的主題可選地包括該處理電路進一步配置以:產生用於一非專用資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE eNB的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的 一請求;以及回應於該PDCCH的接收,產生具有用於傳送到該5G eNB之一指定前置簽名的一5G實體隨機存取通道(xPRACH),回應於該xPRACH之傳送,產生該xPDCCH之接收。 In Example 9, the subject matter of any one or more of Examples 2 through 8 optionally includes the processing circuit further configured to: generate the scheduling request for a non-dedicated resource; and respond to the scheduling request Transmitting and decoding a PDCCH from the LTE eNB, the PDCCH including, for causing the UE to perform a contention-free random access channel procedure of the 5G eNB And in response to receiving the PDCCH, generating a 5G entity random access channel (xPRACH) having a designated preamble for transmission to one of the 5G eNBs, in response to the transmission of the xPRACH, generating the xPDCCH reception .

在實例10中,實例9之該主題可選地包括該指定前置簽名包含在一前置索引組內的一前置索引,該前置索引組身分係經由該選擇射束之一射束參考訊號接收功率(BRS-RP)測量而得到。 In Example 10, the subject matter of Example 9 optionally includes the preamble index including a preamble index within a preamble index group, the preamble index group identity being beam referenced via the selected beam Received by signal received power (BRS-RP).

在實例11中,實例9至實例10之任一項或多項的主題可選地包括該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 11, the subject matter of any one or more of Examples 9 through 10 optionally includes the xPDCCH including a reduced random access response (RAR) exempt from a timing advance and a temporary cellular radio network temporary identifier ( C-RNTI) and agitated by the C-RNTI in a Cyclic Redundancy Check (CRC).

在實例12中,實例1至實例11之任一項或多項的主題可選地包括該訊息包含用於經由一專用資源傳送的一5G實體隨機存取通道(xPRACH)。 In Example 12, the subject matter of any one or more of Examples 1 through 11 optionally includes the message including a 5G Entity Random Access Channel (xPRACH) for transmission via a dedicated resource.

在實例13中,實例12之該主題可選地包括該處理電路進一步配置以:回應於該xPRACH與來自該5G eNB之傳送,解碼一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送到該5G eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選MIMO射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,回應於該 BSR與該5G射束測量報告之傳送,產生該xPDCCH的接收。 In Example 13, the subject matter of Example 12 optionally includes the processing circuit further configured to: decode an uplink grant to report a buffer status (BSR) in response to the xPRACH and the transmission from the 5G eNB And transmitting to the 5G eNB with a 5G beam measurement, the 5G beam measurement comprising an identity of the selected MIMO beam acquired from a beam reference signal (BRS) and a BRS received power of the selected beam At least one of (BRS-RP) measurements; and in response to receipt of the uplink grant, generating the BSR and the 5G beam measurement report in response to the The transmission of the BSR and the 5G beam measurement report generates the reception of the xPDCCH.

在實例14中,實例12至實例13之任一項或多項的主題可選地包括該訊息包含用於經由一專用資源傳送、回應於該訊息傳送之該xPDCCH之接收的一xPRACH與一緩衝器狀態報告(BSR)。 In Example 14, the subject matter of any one or more of Examples 12 to 13 optionally includes the message including an xPRACH and a buffer for transmitting via the dedicated resource in response to receipt of the xPDCCH transmitted by the message. Status Report (BSR).

在實例15中,實例1至實例14之任一項或多項的主題可選地包括該處理電路包含基頻電路,該基頻電路配置以從經由無線電資源控制(RRC)訊號發送的該LTE eNB、用於從該LTE eNB傳送一上行鏈路請求的一上行鏈路專用LTE資源、以及用於傳送一上行鏈路請求到該5G eNB的一上行鏈路專用5G資源,判定用於在該上行鏈路專用LTE資源以及該上行鏈路專用5G資源中之一個上傳送的該訊息。 In Example 15, the subject matter of any one or more of Examples 1 to 14 optionally includes the processing circuit including a baseband circuit configured to transmit from the LTE eNB via a Radio Resource Control (RRC) signal And an uplink dedicated LTE resource for transmitting an uplink request from the LTE eNB, and an uplink dedicated 5G resource for transmitting an uplink request to the 5G eNB, and determining to be used for the uplink The message transmitted on one of the link dedicated LTE resources and the uplink dedicated 5G resource.

在實例16中,實例1至實例15之任一項或多項的主題可選地包括、進一步包含:一天線,其經組態以提供該UE與該eNB之間的通訊。 In Example 16, the subject matter of any one or more of Examples 1 to 15 optionally includes, further comprising: an antenna configured to provide communication between the UE and the eNB.

實例17係為一種包含處理電路之演進型節點B(eNB)的裝置,該處理電路配置以:為了經由無線電資源控制(RRC)訊號發送之傳送,產生用於傳送一上行鏈路請求到一長期演進(LTE)eNB的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的一個;以及將在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送之一訊息的其 中一個解碼,該訊息指示欲傳送該上行鏈路資料到該5G eNB,該訊息包含一排程請求(SR)與一5G實體隨機存取通道(xPRACH)之一個,該訊息依據要將該訊息傳送到該LTE eNB與該5G eNB的哪一個。 Example 17 is an apparatus comprising an evolved Node B (eNB) of a processing circuit configured to generate an uplink request for transmission to a long term for transmission via Radio Resource Control (RRC) signaling. An uplink dedicated LTE resource of an evolved (LTE) eNB and one of an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G eNB; and to be on the uplink Dedicated LTE resources and one of the uplink dedicated 5G resources are transmitted on one of the messages One of the decodings, the message indicating that the uplink data is to be transmitted to the 5G eNB, the message comprising a scheduling request (SR) and a 5G physical random access channel (xPRACH), the message is based on the message Which one of the LTE eNB and the 5G eNB is transmitted.

在實例18中,實例17的主題可選地包括該eNB包含該LTE eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用LTE資源的該該排程請求之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告中的至少一個,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告。 In Example 18, the subject matter of Example 17 optionally includes the eNB including the LTE eNB, and the processing circuit is further configured to: generate an uplink in response to receipt of the scheduling request via the uplink dedicated LTE resource Link granting to transmit at least one of a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising one of the selected beams acquired from a beam reference signal (BRS) And at least one of a BRS Receive Power (BRS-RP) measurement of the identity and the selected beam; and decoding the BSR and the 5G beam measurement report after the transmission of the uplink grant.

在實例19中,實例17至實例18之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於該上行鏈路專用LTE資源之使用以傳送該排程請求,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告的至少一個,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;在該上行鏈路授予之傳送之後,解碼該BSR;以及產生含有用於在該所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH),該5G上行鏈路授予包含分配用於該上行鏈路 資料之傳送的資源。 In Example 19, the subject matter of any one or more of Examples 17 to 18 optionally includes the eNB including the 5G eNB, and the processing circuit is further configured to: responsive to use of the uplink dedicated LTE resource to transmit The scheduling request generates an uplink grant to transmit at least one of a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising obtaining from a beam reference signal (BRS) An identity of a selected beam and at least one of a BRS received power (BRS-RP) measurement of the selected beam; after the transmission of the uplink grant, decoding the BSR; and generating a content for use in the Transmitting a 5G physical downlink control channel (xPDCCH) granted by one of the 5G uplinks on the selected beam, the 5G uplink grant including allocation for the uplink Resources for the transmission of data.

在實例20中,實例17至實例19之任一項或多項的主題可選地包括該eNB包含該LTE eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用LTE資源的該排程請求之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告,該BSR與該5G射束測量報告包含一邏輯通道識別(LCID)用於將一資源分配請求之傳送,該LCID用以提供用於該LTE eNB與該5G eNB的一上行鏈路請求之間的差異化。 In Example 20, the subject matter of any one or more of Examples 17 to 19 optionally includes the eNB including the LTE eNB, and the processing circuit is further configured to: respond to the row via the uplink dedicated LTE resource Received by the request, an uplink grant is generated to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising one selected from a beam reference signal (BRS) acquisition ???a body of the beam and at least one of a BRS received power (BRS-RP) measurement of the selected beam; and after the transmission of the uplink grant, decoding the BSR and the 5G beam measurement report, the BSR And the 5G beam measurement report includes a logical channel identification (LCID) for transmitting a resource allocation request, the LCID being used to provide differentiation between an uplink request of the LTE eNB and the 5G eNB .

在實例21中,實例17至實例20之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:在包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求的PDCCH之傳送以及回應於經由來自該LTE eNB之一非專用資源的該排程請求之接收之後,解碼具有一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌;以及產生一5G實體下行鏈路控制通道(xPDCCH),其含有用於在一所選射束上傳送的一5G上 行鏈路授予。 In Example 21, the subject matter of any one or more of the example 17 to the embodiment 20 optionally includes the eNB including the 5G eNB, and the processing circuit is further configured to: include for enabling the UE to have the 5G eNB Decoding a requested PDCCH of a contention-free random access channel procedure and decoding a 5G entity having a specified pre-signature after receiving the request via the scheduling request from one of the LTE eNBs Taking a channel (xPRACH), the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) exempt from a timing advance and is in a cyclic redundancy check (CRC) Stirring of the C-RNTI; and generating a 5G physical downlink control channel (xPDCCH) containing a 5G for transmission on a selected beam Line link grant.

在實例22中,實例17至實例21之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於經由該專用5G資源的一5G實體隨機存取通道(xPRACH)之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分以及該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告;以及產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)。 In Example 22, the subject matter of any one or more of Examples 17 to 21 optionally includes the eNB including the 5G eNB, and the processing circuit is further configured to: responsive to a 5G entity stored via the dedicated 5G resource Receiving a channel (xPRACH), generating an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising obtaining from a beam reference signal (BRS) At least one of the selected beam and one of the selected beams of BRS received power (BRS-RP) measurements; after the transmission of the uplink grant, decoding the BSR and the 5G beam measurement report; And generating a 5G physical downlink control channel (xPDCCH) containing one 5G uplink grant for transmission on a selected beam.

在實例23中,實例17至實例22之任一項或多項的主題可選地包括該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用5G資源的一5G實體隨機存取通道(xPRACH)和一緩衝器狀態報告(BSR)之接收,產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)。 In Example 23, the subject matter of any one or more of Examples 17 to 22 optionally includes the eNB including the 5G eNB, and the processing circuit is further configured to: respond to a 5G via the uplink dedicated 5G resource Receive of a physical random access channel (xPRACH) and a buffer status report (BSR), generating a 5G physical downlink control channel (xPDCCH) for transmitting a 5G uplink grant for transmission on a selected beam ).

在實例24中,其係一種儲存由使用者設備(UE)之一或多個處理器所執行之指令的電腦可讀取儲存媒體,該一或多個處理器組態該UE以:得到用於傳送一上行鏈路請求到一長期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的至少一個;產生一排 程請求(SR)與一5G實體隨機存取通道(xPRACH)中的一個,該5G實體隨機存取通道指示欲將該上行鏈路資料傳送到該5G eNB,在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個,並且依據該LTE鏈路與該5G鏈路中的哪一個上傳送該SR與該xPRACH之該一個來選擇;以及在傳送該訊息之後,將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料的資源。 In Example 24, it is a computer readable storage medium storing instructions executed by one or more processors of a User Equipment (UE), the one or more processors configuring the UE to: An uplink dedicated LTE resource for transmitting an uplink request to a Long Term Evolution (LTE) evolved Node B (eNB) and an uplink dedicated fifth for transmitting an uplink request to a 5G eNB At least one of the generation (5G) resources; generating a row a request (SR) and a 5G entity random access channel (xPRACH) indicating that the uplink data is to be transmitted to the 5G eNB in the uplink dedicated LTE resource and The one of the SR and the xPRACH is transmitted on one of the uplink dedicated 5G resources, and is selected according to which one of the LTE link and the 5G link transmits the SR and the xPRACH; After transmitting the message, a 5G physical downlink control channel (xPDCCH) including a 5G uplink grant from the 5G eNB is decoded on a selected beam, the 5G uplink grant includes allocation The resource for transmitting the uplink data.

在實例25中,實例24的主題可選地包括該一或多個處理器進一步組態該UE以進行以下之一個:產生用於該LTE eNB的該SR,且回應於該排程請求之傳送,解碼一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分和該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,該報告使用一邏輯通道識別(LCID)用於該5G鏈路的一資源分配請求之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及解碼從該LTE eNB接收的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及經由該5G鏈路產生具有一指定前置簽名 的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 25, the subject matter of Example 24 optionally includes the one or more processors further configuring the UE to: generate the SR for the LTE eNB and transmit in response to the scheduling request Decoding an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising one of the selected beams acquired from a beam reference signal (BRS) And at least one of a BRS Receive Power (BRS-RP) measurement of the identity and the selected beam; generating the BSR and the 5G beam measurement report in response to the receiving of the uplink grant, the report identifying using a logical channel (LCID) for transmission of a resource allocation request for the 5G link, the LCID being used to provide differentiation between an uplink request for the LTE link and the 5G link; and decoding from the LTE a PDCCH received by the eNB, the PDCCH includes a request for causing the UE to perform a contention-free random access channel procedure of the 5G eNB; and generating a designated pre-signature via the 5G link a 5G entity random access channel (xPRACH), the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) exempt from a timing advance and is redundant in a loop The C-RNTI in the remaining check (CRC) is stirred.

實例26係為一種排程使用者設備(UE)資料傳送的方法,該方法包含:得到用於傳送一上行鏈路請求到一長期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的至少一個;產生一排程請求(SR)與一5G實體隨機存取通道(xPRACH)中的一個,以指示欲將該上行鏈路資料傳送到該5G eNB,在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個,並且依據該LTE鏈路與該5G鏈路中的哪一個傳送該SR與該xPRACH之該一個來選擇;在傳送該訊息之後,將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料的資源。 Example 26 is a method for scheduling user equipment (UE) data transmission, the method comprising: obtaining an uplink for transmitting an uplink request to a Long Term Evolution (LTE) evolved Node B (eNB) Dedicated LTE resources and at least one of an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G eNB; generating a scheduling request (SR) and a 5G entity random access channel One of (xPRACH) to indicate that the uplink data is to be transmitted to the 5G eNB, and the SR and the xPRACH are transmitted on the uplink dedicated LTE resource and the uplink dedicated 5G resource And selecting according to which one of the LTE link and the 5G link transmits the SR and the xPRACH; after transmitting the message, on a selected beam, from the 5G eNB, including A 5G physical downlink control channel (xPDCCH) grant granted by a 5G uplink grant containing resources allocated for transmitting the uplink data.

在實例27中,實例26的主題可選地進一步包含以下一個:產生用於該LTE eNB的該SR,且回應於該排程請求之傳送,解碼一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一 個;回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,該報告使用一邏輯通道識別(LCID)用於資源分配請求給該5G鏈路之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及解碼從該LTE eNB接收的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及產生具有經由該5G鏈路之一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 27, the subject matter of Example 26 optionally further comprises: generating the SR for the LTE eNB, and in response to the transmission of the scheduling request, decoding an uplink grant to place a buffer status The report (BSR) is transmitted with a 5G beam measurement report comprising an identity of the selected beam obtained from a beam reference signal (BRS) and a BRS received power of the selected beam ( BRS-RP) at least one of the measurements Responding to the reception granted by the uplink, generating the BSR and the 5G beam measurement report, the report uses a logical channel identification (LCID) for resource allocation request for transmission to the 5G link, the LCID is used for Providing a difference between an uplink request for the LTE link and the 5G link; and decoding a PDCCH received from the LTE eNB, the PDCCH including for causing the UE to perform with one of the 5G eNBs a request for a contention-free random access channel procedure; and generating a 5G entity random access channel (xPRACH) having a pre-signature designated via one of the 5G links, the xPDCCH including a reduced random access exempt from a timing advance The response (RAR) and the Temporary Cellular Radio Network Temporary Identifier (C-RNTI) are taken and stirred by the C-RNTI in a Cyclic Redundancy Check (CRC).

實例28係為一種使用者設備(UE),其包含:用於得到用於傳送一上行鏈路請求到一長期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源、以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源之至少一個的構件;用於產生一排程請求(SR)與一5G實體隨機存取通道(xPRACH)中的一個、以指示欲將該上行鏈路資料傳送到該5G eNB、在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個、並且依據該LTE鏈路與該5G鏈路中的哪一個傳送該SR與該xPRACH之該一個來選擇的構件;以及用於在傳送該訊息之後將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼的構件,該5G上行鏈路授予包 含分配用於該上行鏈路資料之傳送的資源。 Example 28 is a User Equipment (UE), comprising: an uplink dedicated LTE resource for obtaining an uplink request to a Long Term Evolution (LTE) evolved Node B (eNB), and Means for transmitting an uplink request to at least one of an uplink dedicated fifth generation (5G) resource of a 5G eNB; for generating a scheduling request (SR) and a 5G entity random access channel ( One of xPRACH) to indicate that the uplink data is to be transmitted to the 5G eNB, transmitting the SR and the one of the xPRACH on one of the uplink dedicated LTE resource and the uplink dedicated 5G resource And selecting, according to the LTE link and the 5G link, the component selected by the one of the SR and the xPRACH; and for transmitting the message on a selected beam from the 5G An eNB, a component including a 5G physical downlink control channel (xPDCCH) decoding granted by a 5G uplink, the 5G uplink granting packet Contains resources allocated for transmission of the uplink data.

在實例29中,實例28的主題可選地進一步包含以下一個:用於產生用於該LTE eNB的該SR且回應於該排程請求之傳送的構件,解碼一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;用於回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告之構件,該報告使用一邏輯通道識別(LCID)用於資源分配請求到該5G鏈路之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及用於解碼從該LTE eNB接收的一PDCCH之構件,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及產生具有經由該5G鏈路之一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 In Example 29, the subject matter of Example 28 optionally further includes one of: means for generating the SR for the LTE eNB and responding to the transmission of the scheduling request, decoding an uplink grant to transmit a a Buffer Status Report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising an identity of the selected beam acquired from a beam reference signal (BRS) and a BRS reception of the selected beam At least one of a power (BRS-RP) measurement; responsive to receipt of the uplink grant, generating a component of the BSR and the 5G beam measurement report, the report using a logical channel identification (LCID) for resource allocation Requesting a transmission to the 5G link, the LCID being used to provide differentiation between an uplink request for the LTE link and the 5G link; and for decoding a PDCCH received from the LTE eNB a component, the PDCCH includes a request for causing the UE to perform a contention-free random access channel procedure of the 5G eNB; and generating a 5G physical random access channel having a pre-signature designated via one of the 5G links (xPRACH), the xPDCCH includes exemption from a timing advance A Reduced Random Access Response (RAR) and Temporary Cellular Radio Network Temporary Identifier (C-RNTI) are agitated by the C-RNTI in a Cyclic Redundancy Check (CRC).

雖然已經參考具體實例實施例來說明一實施例,但是在不脫離本揭露的更廣泛的精神與範圍之下,顯然可對這些實施例進行多種修改與改變。相應地,該說明書與圖式被視為說明性意義而非限制性意義。形成其一部份的附圖,透過繪示而非限制,顯示可實行主題的具體實施例。 所繪式的實施例經充分詳細地說明,致使所屬技術領域中具有通常知識者能實行本文中所揭示的教示。可自其利用與取得其他實施例,使得可進行結構的與邏輯的替換與改變,而不脫離本揭露的範圍。因此,本實施方式並非以限制意義產生,且多項實施例的範圍僅藉由附加申請專利範圍連同此等申請專利範圍所賦予之等同物的全部範圍來定義。 While the embodiment has been described with reference to the specific embodiments thereof, various modifications and changes may be made to these embodiments without departing from the scope of the invention. Accordingly, the specification and drawings are to be regarded as illustrative The accompanying drawings, which are incorporated in FIG. The illustrated embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived, such that structural and logical substitutions and changes can be made without departing from the scope of the disclosure. Therefore, the present embodiments are not intended to be limited to the scope of the invention, and the scope of the various embodiments are defined by the scope of the appended claims.

該主題的此等實施例在本文中可各別地、及/或共同地稱為術語「實施例(embodiment)」,其係僅僅為了方便且不打算志願地將本申請案的範圍限制於任何單一的發明或發明概念(如果實際上有超過一個被揭示的話)。因此,雖然在本文中已經繪示且說明具體實施例,但是應該理解,用以得到相同目的而計算的任何配置可為了所示的具體實施例而取代。此揭露打算涵蓋多項實施例的任何與全部調適或變化。上文實施例與在本文中沒有具體說明之其他實施例的組合,其係將為所屬技術領域中具有通常知識者在回顧上文說明時所明瞭。 These embodiments of the subject matter may be referred to herein individually and/or collectively as the term "embodiment", which is for convenience only and is not intended to limit the scope of the present application to any A single invention or inventive concept (if more than one is actually revealed). Accordingly, while specific embodiments have been shown and described herein, it is understood that any configuration that is calculated for the same purpose may be substituted for the particular embodiments shown. This disclosure is intended to cover any and all adaptations or variations of the various embodiments. Combinations of the above-described embodiments with other embodiments not specifically described herein will be apparent to those of ordinary skill in the art.

在本文件中,如在專利文件中常見,術語「一(a或an)」用來包括一個或超過一個,其獨立於「至少一(at least one)」或「一或多個(one or more)」的任何其他情形或用法。在本文件中,術語「或(or)」用來意指非排他性的或,使得「A或B(A or B)」包括「A但非B(A but not B)」、「B但非A(B but not A)」、以及「A與B(A and B)」,除非另外有指示。在本文件中,術語「包括 (including)」以及「其中(in which)」使用當作各自術語「包含(comprising)」以及「其中(wherein)」的白話英文等同物。同樣地,在以下的申請專利範圍中,術語「包括(including)」及「包含(comprising)」是開放式的,亦即是,包括除了在申請專利範圍中之此一術語之後所陳列的那些以外的元件的系統、UE、物品、組成物、表示式、或過程,仍被認為是在本申請專利範圍的範圍內。更者,在接下來的申請專利範圍中,術語「第一(first)」、「第二(second)」、及「第三(third)」等等僅僅用作標記,其係並且不打算對它們的目標強加數字要件。 In this document, as commonly seen in patent documents, the term "a" or "an" is used to include one or more than one, which is independent of "at least one" or "one or more" (one or Any other situation or usage. In this document, the term "or" is used to mean a non-exclusive or such that "A or B" includes "A but not B", "B but not A" (B but not A)", and "A and B (A and B)" unless otherwise instructed. In this document, the term "includes (including) and "in which" use the verbal English equivalents of the respective terms "comprising" and "wherein". Similarly, in the scope of the following claims, the terms "including" and "comprising" are open-ended, that is, include those exhibited in addition to the term in the scope of the claims. Systems, UEs, articles, compositions, expressions, or processes of components other than the elements are still considered to be within the scope of the present patent. Moreover, in the scope of the following patent application, the terms "first", "second", "third" and the like are used merely as a mark, and are not intended to be Their goals impose digital elements.

本揭露摘要之提供遵守37 C.F.R.§1.72(b),其需要將允許讀者快速確定本技術揭露之本質的摘要。提交時應理解,其將不用於解釋或限制申請專利範圍的範圍或含義。此外,在先前的實施方式中,可看見,為了簡化本揭露,將多種特徵一起組合在單一個實施例中。本揭露之方法不被詮釋為反映所申請的實施例需要比在各申請專利範圍中明確記載者更多特徵的意圖。反而,如以下申請專利範圍所反映的,本發明的主題少於單一揭示實施例的全部特徵。因此,以下申請專利範圍藉此合併於實施方式內,每一申請專利範圍則要求其本身為一分開的實施例。 The Abstract of the Disclosure is provided to comply with 37 C.F.R. § 1.72(b), which requires an abstract that will allow the reader to quickly determine the nature of the disclosure. It should be understood at the time of filing that it will not be used to interpret or limit the scope or meaning of the scope of the patent application. Moreover, in the previous embodiments, it can be seen that various features are combined together in a single embodiment in order to simplify the disclosure. The method of the present disclosure is not to be interpreted as reflecting that the claimed embodiments require more features than those specifically recited in the scope of the claims. Instead, the subject matter of the present invention is less than all features of a single disclosed embodiment, as reflected in the following claims. Accordingly, the scope of the following claims is hereby incorporated by reference in its entirety in its entirety in its entirety herein

100‧‧‧網路 100‧‧‧Network

101‧‧‧無線電存取網路 101‧‧‧radio access network

102‧‧‧使用者設備 102‧‧‧User equipment

104A‧‧‧巨型演進型節點 104A‧‧‧Giant Evolved Node

104B‧‧‧低功率演進型節點 104B‧‧‧Low Power Evolving Node

115‧‧‧S1界面 115‧‧‧S1 interface

120‧‧‧核心網路 120‧‧‧core network

122‧‧‧移動性管理實體 122‧‧‧Mobility management entity

124‧‧‧服務閘道器 124‧‧‧service gateway

126‧‧‧封包資料網路閘道器 126‧‧‧Package data network gateway

Claims (25)

一種包含處理電路之使用者設備(UE)的裝置,該處理電路配置以:產生指示上行鏈路資料將傳送到一第五代(5G)演進型節點B(eNB)的一訊息,該訊息依據該訊息將傳送到一長期演進(LTE)eNB與5G eNB的哪一個;在傳送該訊息之後,將在一選擇射束上之含有從該5G eNB接收之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料到該5G eNB的資源;以及為了傳送到使用該等資源的該5G eNB,產生包含該資料的一5G實體上行鏈路共享通道(xPUSCH)。 A device comprising a processing device user equipment (UE), the processing circuit configured to: generate a message indicating that uplink data is to be transmitted to a fifth generation (5G) evolved Node B (eNB), the message being based on Which of the Long Term Evolution (LTE) eNBs and the 5G eNBs the message will be transmitted to; after transmitting the message, a 5G entity containing a 5G uplink grant received from the 5G eNB on a selected beam will be transmitted a downlink control channel (xPDCCH) decoding, the 5G uplink granting a resource allocated for transmitting the uplink data to the 5G eNB; and generating the data for transmission to the 5G eNB using the resource A 5G entity uplink shared channel (xPUSCH). 如申請專利範圍第1項之裝置,其中:該訊息包含一排程請求,該排程請求傳送到該LTE eNB。 The device of claim 1, wherein: the message includes a scheduling request, and the scheduling request is transmitted to the LTE eNB. 如申請專利範圍第2項之裝置,其中該處理電路進一步配置以:產生該排程請求用於經由一專用的資源來傳送。 The apparatus of claim 2, wherein the processing circuit is further configured to: generate the scheduling request for transmission via a dedicated resource. 如申請專利範圍第3項之裝置,其中該處理電路進一步配置以:回應於該排程請求之傳送,解碼來自該eNB的一上行鏈路授予,以依據從該LTE eNB與該5G eNB哪一個接收到該上行鏈路授予,將一緩衝器狀態報告(BSR)與一5G射束測量報告的至少一個傳送到該eNB,該5G射束測 量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個。 The apparatus of claim 3, wherein the processing circuit is further configured to: decode an uplink grant from the eNB in response to the transmission of the scheduling request, depending on which one of the LTE eNB and the 5G eNB Receiving the uplink grant, transmitting at least one of a buffer status report (BSR) and a 5G beam measurement report to the eNB, the 5G beam measurement The quantity includes at least one of an identity of the selected beam acquired from a beam reference signal (BRS) and a BRS received power (BRS-RP) measurement of the selected beam. 如申請專利範圍第4項之裝置,其中該處理電路進一步配置以:回應從該LTE eNB之該上行鏈路授予之接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告的傳送,產生該PDCCH之接收。 The apparatus of claim 4, wherein the processing circuit is further configured to: in response to receiving the uplink grant from the LTE eNB, generate the BSR and the 5G beam measurement report, in response to the BSR and the 5G The transmission of the beam measurement report produces the reception of the PDCCH. 如申請專利範圍第4項之裝置,其中該處理電路進一步配置以:回應於從該5G eNB之該上行鏈路授予之接收,產生該BSR,回應於該BSR之傳送與該5G射束測量報告之傳送,產生該xPDCCH之接收的至少一個。 The apparatus of claim 4, wherein the processing circuit is further configured to: in response to receiving the uplink grant from the 5G eNB, generating the BSR, in response to the transmitting of the BSR and the 5G beam measurement report The transmitting, generating at least one of the reception of the xPDCCH. 如申請專利範圍第2項之裝置,其中該處理電路進一步配置以:產生用於一非專用資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE eNB的一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送到該LTE eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個。 The apparatus of claim 2, wherein the processing circuit is further configured to: generate the scheduling request for a non-dedicated resource; and decode an uplink from the LTE eNB in response to the transmission of the scheduling request Granting to transmit a buffer status report (BSR) and a 5G beam measurement report to the LTE eNB, the 5G beam measurement comprising one of the selected beams acquired from a beam reference signal (BRS) The identity is at least one of a BRS Receive Power (BRS-RP) measurement of one of the selected beams. 如申請專利範圍第7項之裝置,其中該處理電路進一步配置以: 回應於該上行鏈路授予的接收,使用一邏輯通道識別(LCID)產生該BSR與該5G射束測量報告,用於資源分配請求到該5G eNB之傳送,該LCID用以提供用於該LTE eNB與該5G eNB的一上行鏈路請求之間的差異化,回應於該BSR與該5G射束測量報告之傳送產生該PDCCH的接收。 The apparatus of claim 7, wherein the processing circuit is further configured to: Responding to the receiving of the uplink grant, using a logical channel identification (LCID) to generate the BSR and the 5G beam measurement report for resource allocation request to the 5G eNB for providing the LTE for the LTE A differentiation between an eNB and an uplink request of the 5G eNB, in response to the BSR and the transmission of the 5G beam measurement report, the reception of the PDCCH is generated. 如申請專利範圍第2項之裝置,其中該處理電路進一步配置以:產生用於一非專用資源的該排程請求;以及回應於該排程請求之傳送,解碼來自該LTE eNB的一PDCCH,該PDCCH包含用於使UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求;以及回應於該PDCCH的接收,產生具有用於傳送到該5G eNB之一指定前置簽名的一5G實體隨機存取通道(xPRACH),回應於該xPRACH之傳送,產生該xPDCCH之接收。 The apparatus of claim 2, wherein the processing circuit is further configured to: generate the scheduling request for a non-dedicated resource; and decode a PDCCH from the LTE eNB in response to the transmission of the scheduling request, The PDCCH includes a request for causing the UE to perform a contention-free random access channel procedure of the 5G eNB; and in response to receiving the PDCCH, generating a one with a designated pre-signature for transmission to one of the 5G eNBs A 5G entity random access channel (xPRACH), in response to the transmission of the xPRACH, generates a reception of the xPDCCH. 如申請專利範圍第9項之裝置,其中該指定前置簽名包含在一前置索引組內的一前置索引,該前置索引組身分係經由該選擇射束之一射束參考訊號接收功率(BRS-RP)測量而得到。 The device of claim 9, wherein the designated pre-signature comprises a pre-index in a pre-index group, the pre-index group receiving power via a beam reference signal of the selected beam (BRS-RP) obtained by measurement. 如申請專利範圍第9項之裝置,其中該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 The apparatus of claim 9, wherein the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) exempt from a timing advance and is redundant in a loop The C-RNTI in the (CRC) is stirred. 如申請專利範圍第1項之裝置,其中:該訊息包含用於經由一專用資源傳送的一5G實體隨機存取通道(xPRACH)。 The device of claim 1, wherein the message comprises a 5G entity random access channel (xPRACH) for transmission via a dedicated resource. 如申請專利範圍第12項之裝置,其中該處理電路進一步配置以:回應於該xPRACH與來自該5G eNB之傳送,解碼一上行鏈路授予,以將一緩衝器狀態報告(BSR)與一5G射束測量報告傳送到該5G eNB,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選MIMO射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及回應於該上行鏈路授予的接收,產生該BSR與該5G射束測量報告,回應於該BSR與該5G射束測量報告之傳送,產生該xPDCCH的接收。 The apparatus of claim 12, wherein the processing circuit is further configured to: decode an uplink grant in response to the xPRACH and the transmission from the 5G eNB to send a buffer status report (BSR) with a 5G A beam measurement report is transmitted to the 5G eNB, the 5G beam measurement comprising an identity of the selected MIMO beam acquired from a beam reference signal (BRS) and a BRS received power of the selected beam (BRS- RP) at least one of the measurements; and in response to the receiving of the uplink grant, generating the BSR and the 5G beam measurement report, in response to the transmission of the BSR and the 5G beam measurement report, generating the reception of the xPDCCH. 如申請專利範圍第12項之裝置,其中:該訊息包含一xPRACH與一緩衝器狀態報告(BSR)用於經由一專用資源傳送、回應於該訊息傳送,接收該xPDCCH。 The device of claim 12, wherein the message comprises an xPRACH and a buffer status report (BSR) for transmitting, responding to the message transmission via a dedicated resource, and receiving the xPDCCH. 如申請專利範圍第1項之裝置,其中:該處理電路包含基頻電路,該基頻電路配置以從經由無線電資源控制(RRC)訊號發送的該LTE eNB、用於從該LTE eNB傳送一上行鏈路請求的一上行鏈路專用LTE資源、以及用於傳送一上行鏈路請求到該5G eNB的一上行鏈路專用5G資源,判定用於在該上行鏈路專用LTE資源 以及該上行鏈路專用5G資源中之一個上傳送的該訊息。 The device of claim 1, wherein the processing circuit comprises a baseband circuit configured to transmit an uplink from the LTE eNB via the radio resource control (RRC) signal An uplink dedicated LTE resource of the link request, and an uplink dedicated 5G resource for transmitting an uplink request to the 5G eNB, and determining for use in the uplink dedicated LTE resource And the message transmitted on one of the uplink dedicated 5G resources. 如申請專利範圍第1項之裝置,其進一步包含:一天線,其經組態以提供該UE與該eNB之間的通訊。 The apparatus of claim 1, further comprising: an antenna configured to provide communication between the UE and the eNB. 一種包含處理電路之演進型節點B(eNB)的裝置,該處理電路配置以:為了經由無線電資源控制(RRC)訊號發送之傳送,產生用於傳送一上行鏈路請求到一長期演進(LTE)eNB的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的一個;以及將在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送之一訊息的其中一個解碼,該訊息指示將傳送該上行鏈路資料到該5G eNB,該訊息包含一排程請求(SR)與一5G實體隨機存取通道(xPRACH)之一個,該訊息依據該訊息已傳送到該LTE eNB與該5G eNB的哪一個。 An apparatus comprising an evolved Node B (eNB) for processing a circuit, the processing circuit configured to generate an uplink request for transmission to a Long Term Evolution (LTE) for transmission via Radio Resource Control (RRC) signal transmission An uplink dedicated LTE resource of the eNB and one of an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G eNB; and a dedicated LTE resource to be used in the uplink Decoding one of the messages transmitted on one of the uplink dedicated 5G resources, the message indicating that the uplink data will be transmitted to the 5G eNB, the message including a scheduling request (SR) and a 5G entity random storage Taking one of the channels (xPRACH), the message is transmitted to which of the LTE eNB and the 5G eNB according to the message. 如申請專利範圍第17項之裝置,其中:該eNB包含該LTE eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用LTE資源的該排程請求之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告中的至少一個,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的 一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告。 The apparatus of claim 17 wherein: the eNB comprises the LTE eNB, and the processing circuit is further configured to: generate an uplink in response to receipt of the scheduling request via the uplink dedicated LTE resource Granting to transmit at least one of a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising acquiring a selected beam from a beam reference signal (BRS) An identity and at least one of a BRS received power (BRS-RP) measurement of the selected beam; and after the transmitting of the uplink grant, decoding the BSR and the 5G beam measurement report. 如申請專利範圍第17項之裝置,其中:該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於該上行鏈路專用LTE資源之使用以傳送該排程請求,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告的至少一個,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;在該上行鏈路授予之傳送之後,解碼該BSR;以及產生含有用於在該所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH),該5G上行鏈路授予包含分配用於該上行鏈路資料之傳送的資源。 The apparatus of claim 17 wherein: the eNB comprises the 5G eNB, and the processing circuit is further configured to: generate an uplink in response to use of the uplink dedicated LTE resource to transmit the scheduling request Granting to transmit at least one of a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising obtaining an identity of one of the selected beams from a beam reference signal (BRS) At least one of BRS Receive Power (BRS-RP) measurements of the selected beam; decoding the BSR after transmission of the uplink grant; and generating a 5G uplink for transmitting on the selected beam A 5G entity downlink control channel (xPDCCH) granted by the link granting resources including allocations for transmission of the uplink data. 如申請專利範圍第17項之裝置,其中:該eNB包含該LTE eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用LTE資源的該排程請求之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之一所選射束的一身分與該所 選射束之一BRS接收功率(BRS-RP)測量的至少一個;以及在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告,該BSR與該5G射束測量報告包含一邏輯通道識別(LCID)用於一資源分配請求之傳送,該LCID用以提供用於該LTE eNB與該5G eNB的一上行鏈路請求之間的差異化。 The apparatus of claim 17 wherein: the eNB comprises the LTE eNB, and the processing circuit is further configured to: generate an uplink in response to receipt of the scheduling request via the uplink dedicated LTE resource Granting to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising obtaining an identity of one of the selected beams from a beam reference signal (BRS) Selecting at least one of BRS Receive Power (BRS-RP) measurements; and decoding the BSR and the 5G beam measurement report after the uplink grant transmission, the BSR and the 5G beam measurement report including A logical channel identification (LCID) is used for transmission of a resource allocation request, the LCID being used to provide differentiation between an uplink request of the LTE eNB and the 5G eNB. 如申請專利範圍第17項之裝置,其中:該eNB包含該5G eNB,以及該處理電路進一步配置以:在包含用於使該UE進行具有該5G eNB之一免競爭隨機存取通道程序的一請求的PDCCH之傳送以及回應於經由來自該LTE eNB之一非專用資源的該排程請求之接收之後,解碼具有一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌;以及產生一5G實體下行鏈路控制通道(xPDCCH),其含有用於在一所選射束上傳送的一5G上行鏈路授予。 The apparatus of claim 17, wherein: the eNB comprises the 5G eNB, and the processing circuit is further configured to: include, in the apparatus for causing the UE to perform a contention-free random access channel procedure of the 5G eNB Transmitting a requested PDCCH and decoding a 5G entity random access channel (xPRACH) having a designated preamble, in response to receipt of the scheduling request via a non-dedicated resource from the LTE eNB, the xPDCCH includes a reduced random access response (RAR) and a temporary cellular radio network temporary identifier (C-RNTI) in a timing advance and agitated by the C-RNTI in a cyclic redundancy check (CRC); A 5G Physical Downlink Control Channel (xPDCCH) containing a 5G uplink grant for transmission on a selected beam. 如申請專利範圍第17項之裝置,其中:該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於經由該專用5G資源的一5G實體隨機存取通 道(xPRACH)之接收,產生一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)與一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分以及該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;在該上行鏈路授予之傳送之後,解碼該BSR與該5G射束測量報告;以及產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)。 The device of claim 17, wherein: the eNB includes the 5G eNB, and the processing circuit is further configured to: respond to a 5G entity random access via the dedicated 5G resource The reception of the channel (xPRACH) generates an uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement including the acquisition from a beam reference signal (BRS) ???a body of the selected beam and at least one of a BRS received power (BRS-RP) measurement of the selected beam; decoding the BSR and the 5G beam measurement report after the transmission of the uplink grant; A 5G Physical Downlink Control Channel (xPDCCH) is generated that contains a 5G uplink grant for transmission on a selected beam. 如申請專利範圍第17項之裝置,其中:該eNB包含該5G eNB,以及該處理電路進一步配置以:回應於經由該上行鏈路專用5G資源的一5G實體隨機存取通道(xPRACH)和一緩衝器狀態報告(BSR)之接收,產生含有用於在一所選射束上傳送之一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)。 The device of claim 17 wherein: the eNB comprises the 5G eNB, and the processing circuit is further configured to: respond to a 5G entity random access channel (xPRACH) and a via the uplink dedicated 5G resource The receipt of a Buffer Status Report (BSR) generates a 5G Physical Downlink Control Channel (xPDCCH) containing one 5G uplink grant for transmission on a selected beam. 一種儲存由使用者設備(UE)之一或多個處理器所執行之指令的電腦可讀取儲存媒體,該一或多個處理器組態該UE以:得到用於傳送一上行鏈路請求到一長期演進(LTE)演進型節點B(eNB)的一上行鏈路專用LTE資源以及用於傳送一上行鏈路請求到一5G eNB的一上行鏈路專用第五代(5G)資源中的至少一個;產生一排程請求(SR)與一5G實體隨機存取通道 (xPRACH)中的一個,該5G實體隨機存取通道指示將該上行鏈路資料傳送到該5G eNB,在該上行鏈路專用LTE資源與該上行鏈路專用5G資源之一個上傳送該SR與該xPRACH中的該一個,並且依據該LTE鏈路與該5G鏈路中的哪一個上傳送該SR與該xPRACH之該一個來選擇;以及在傳送該訊息之後,將在一所選射束上、來自該5G eNB、包含一5G上行鏈路授予的一5G實體下行鏈路控制通道(xPDCCH)解碼,該5G上行鏈路授予包含分配用於傳送該上行鏈路資料的資源。 A computer readable storage medium storing instructions executed by one or more processors of a User Equipment (UE), the one or more processors configuring the UE to: obtain an uplink request for transmission An uplink dedicated LTE resource to a Long Term Evolution (LTE) evolved Node B (eNB) and an uplink dedicated fifth generation (5G) resource for transmitting an uplink request to a 5G eNB At least one; generating a scheduling request (SR) and a 5G entity random access channel One of (xPRACH), the 5G entity random access channel instructing to transmit the uplink data to the 5G eNB, transmitting the SR and the uplink dedicated LTE resource and the uplink dedicated 5G resource The one of the xPRACHs, and selecting which one of the LTE link and the 5G link to transmit the SR and the xPRACH; and after transmitting the message, on a selected beam From the 5G eNB, a 5G Physical Downlink Control Channel (xPDCCH) decoding including a 5G uplink grant, the 5G uplink grant containing resources allocated for transmitting the uplink data. 如申請專利範圍第24項之媒體,其中該一或多個處理器進一步組態該UE以進行以下之一個:產生用於該LTE eNB的該SR,且回應於該排程請求之傳送,解碼一上行鏈路授予,以傳送一緩衝器狀態報告(BSR)和一5G射束測量報告,該5G射束測量包含從一射束參考信號(BRS)獲取之該所選射束的一身分和該所選射束之一BRS接收功率(BRS-RP)測量的至少一個;回應於該上行鏈路授予的接收,使用一邏輯通道識別(LCID)產生該BSR與該5G射束測量報告,用於該5G鏈路的一資源分配請求之傳送,該LCID用以提供用於該LTE鏈路與該5G鏈路的一上行鏈路請求之間的差異化;以及解碼從該LTE eNB接收的一PDCCH,該PDCCH包含用於使該UE進行具有該5G eNB之一免競爭隨機存取 通道程序的一請求;以及經由該5G鏈路產生具有一指定前置簽名的一5G實體隨機存取通道(xPRACH),該xPDCCH包含免於一時序提前的一縮減隨機存取回應(RAR)以及暫時細胞無線電網路暫時識別符(C-RNTI)且由在一循環冗餘檢查(CRC)中的該C-RNTI所攪拌。 The medium of claim 24, wherein the one or more processors further configure the UE to perform one of: generating the SR for the LTE eNB and responding to the transmission of the scheduling request, decoding An uplink grant to transmit a buffer status report (BSR) and a 5G beam measurement report, the 5G beam measurement comprising an identity of the selected beam acquired from a beam reference signal (BRS) At least one of a BRS received power (BRS-RP) measurement of the selected beam; in response to the receiving of the uplink grant, generating the BSR and the 5G beam measurement report using a logical channel identification (LCID), Transmitting a resource allocation request for the 5G link, the LCID is used to provide differentiation between an uplink request for the LTE link and the 5G link; and decoding a received from the LTE eNB PDCCH, the PDCCH includes, for enabling the UE to perform contention-free random access with one of the 5G eNBs a request for a channel procedure; and generating, by the 5G link, a 5G entity random access channel (xPRACH) having a specified preamble, the xPDCCH including a reduced random access response (RAR) exempt from a timing advance and The Temporary Cellular Radio Network Temporary Identifier (C-RNTI) is agitated by the C-RNTI in a Cyclic Redundancy Check (CRC).
TW105141071A 2016-01-19 2016-12-12 Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium TWI721065B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662280574P 2016-01-19 2016-01-19
US62/280,574 2016-01-19
PCT/US2016/023952 WO2017127126A1 (en) 2016-01-19 2016-03-24 Devices and methods for providing 5g uplink request
WOPCT/US16/23952 2016-03-24

Publications (2)

Publication Number Publication Date
TW201735676A true TW201735676A (en) 2017-10-01
TWI721065B TWI721065B (en) 2021-03-11

Family

ID=59362569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141071A TWI721065B (en) 2016-01-19 2016-12-12 Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium

Country Status (4)

Country Link
CN (1) CN108476513B (en)
HK (1) HK1258283A1 (en)
TW (1) TWI721065B (en)
WO (1) WO2017127126A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3066191C (en) * 2017-05-05 2022-08-09 Telefonaktiebolaget Lm Ericsson (Publ) A method and device in a radio network
US10750476B2 (en) 2017-07-11 2020-08-18 Qualcomm Incorporated Synchronization signal transmission for mobility
JP2019033420A (en) * 2017-08-09 2019-02-28 シャープ株式会社 Terminal device, communication method, and integrated circuit
US11277828B2 (en) 2017-08-11 2022-03-15 Guangdong Oppo Mobile Method, device and system for resource allocation, and computer-readable storage medium
US10887828B2 (en) 2017-08-24 2021-01-05 Qualcomm Incorporated Techniques and apparatuses for mobile network searching in multiple radio access technologies
WO2019047152A1 (en) * 2017-09-08 2019-03-14 Qualcomm Incorporated Techniques and apparatuses for improving new radio coverage
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
US10736025B2 (en) 2017-11-30 2020-08-04 Corning Optical Communications LLC Fifth generation (5G) non-standalone (NSA) radio access system employing virtual fourth generation (4G) master connection to enable dual system data connectivity
US11006413B2 (en) 2017-12-06 2021-05-11 Google Llc Narrow-band communication
US10779303B2 (en) 2017-12-12 2020-09-15 Google Llc Inter-radio access technology carrier aggregation
US10608721B2 (en) 2017-12-14 2020-03-31 Google Llc Opportunistic beamforming
US11246143B2 (en) 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
US10868654B2 (en) 2017-12-15 2020-12-15 Google Llc Customizing transmission of a system information message
CN111480305B (en) 2017-12-15 2022-04-19 谷歌有限责任公司 Satellite-based narrowband communications
US10375671B2 (en) 2017-12-22 2019-08-06 Google Llc Paging with enhanced beamforming
CN110225599B (en) * 2018-03-02 2021-02-12 电信科学技术研究院有限公司 Method and device for determining scheduling request configuration
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
US10993154B2 (en) * 2018-04-02 2021-04-27 T-Mobile Usa, Inc. Optimizing new radio standalone and dual connectivity access
US20210029736A1 (en) * 2018-04-06 2021-01-28 Lg Electronics Inc. Method for setting timing advance of relay node in next-generation communication system and apparatus therefor
US10939442B2 (en) 2018-04-06 2021-03-02 Mediatek Inc. Beam selection and resource allocation for beam-formed random access procedure
US11013041B2 (en) 2018-07-03 2021-05-18 Google Llc 5G NR enhanced physical downlink control channel
CN109076364B (en) * 2018-07-25 2022-02-01 北京小米移动软件有限公司 Transmission configuration method and device
EP3829212B1 (en) * 2018-07-25 2024-03-27 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and device
EP3817500B1 (en) * 2018-08-01 2023-08-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and device, and computer storage medium
CN110859011A (en) * 2018-08-25 2020-03-03 华为技术有限公司 Communication method and related equipment
CN112640327B (en) 2018-09-10 2024-04-09 谷歌有限责任公司 Method, base station and user equipment for realizing fast beam tracking
CN109068332B (en) * 2018-09-26 2022-10-25 中国联合网络通信集团有限公司 Data transmission method and device
CN111083747A (en) * 2018-10-19 2020-04-28 华为技术有限公司 Communication method and device
CN113852997A (en) * 2019-01-23 2021-12-28 华为技术有限公司 Resource reservation method and related equipment
WO2020160784A1 (en) * 2019-02-08 2020-08-13 Nokia Technologies Oy Random access in wireless communication networks
WO2020235826A1 (en) 2019-05-17 2020-11-26 Samsung Electronics Co., Ltd. Electronic device for supporting dual connectivity and method for operating thereof
CN112135304A (en) * 2019-06-25 2020-12-25 中兴通讯股份有限公司 Beam management method and device based on non-independent networking NSA system
US11083005B2 (en) 2019-07-11 2021-08-03 Rohde & Schwarz Gmbh & Co. Kg Method for reporting scheduling decisions by a communication tester
CN112689333A (en) * 2020-12-29 2021-04-20 北京金迈捷科技有限公司 Wireless test and emission control information transmission system based on 5G

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US8670394B2 (en) * 2007-08-14 2014-03-11 Qualcomm Incorporated Uplink requests
US8780816B2 (en) * 2008-08-12 2014-07-15 Qualcomm Incorporated Handling uplink grant in random access response
CN102612149B (en) * 2011-01-25 2014-12-03 华为技术有限公司 Wireless resource distribution method for relay cell, base station and system
US20130083739A1 (en) * 2011-10-04 2013-04-04 Sharp Laboratories Of America, Inc. Devices for random access response scheduling
US9894532B2 (en) * 2011-11-25 2018-02-13 Nec Corporation Apparatus and method of providing machine type communication
EP2661138A1 (en) * 2012-05-04 2013-11-06 Panasonic Corporation Threshold-based and power-efficient scheduling request procedure
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
US9106280B2 (en) * 2013-04-15 2015-08-11 Broadcom Corporation Pilot design for massive MIMO communication
PL3462798T3 (en) * 2014-03-25 2022-04-04 Telefonaktiebolaget Lm Ericsson (Publ) System and method for beam-based physical random-access

Also Published As

Publication number Publication date
CN108476513B (en) 2022-01-07
WO2017127126A1 (en) 2017-07-27
TWI721065B (en) 2021-03-11
CN108476513A (en) 2018-08-31
HK1258283A1 (en) 2019-11-08

Similar Documents

Publication Publication Date Title
US11245480B2 (en) Devices and methods for robust measurement and data receiving
TWI721065B (en) Apparatus of user equipment, apparatus of base station and non-transitory computer-readable storage medium
US11063646B2 (en) Device and method for synchronous beam switching
US11831479B2 (en) Device and method of configurable synchronization signal and channel design
US11937302B2 (en) Devices and methods for ELAA multi-carrier LBT
US11291079B2 (en) 5G FDD low latency transmission subframe structure system and method of use
US11122580B2 (en) Evolved node-b (ENB), user equipment (UE) and methods for flexible duplex communication
US10560174B2 (en) Latency reduction for wireless data transmission
US11088749B2 (en) Device and method of using BRRS configuration
US10855407B2 (en) Extended physical broadcast channel design for 5G standalone system
CN116405079A (en) Apparatus and method for uplink control signaling in multiple transmission reception point operation for new radio and demodulation reference signal design
WO2017111987A1 (en) Lte assisted prach transmission in 5g systems
US11122643B2 (en) LWIP enhancements for reliable DRB switching
US11082950B2 (en) User equipment (UE) and method of sidelink data communication in fifth generation (5G) new radio (NR) things networks
US10749635B2 (en) Random-access and scheduling-request in new radio-things sidelink
WO2017146751A1 (en) Physical uplink control channel formats for 5g