TWI645870B - Microstructure for transdermal absorption and process for preparing the same - Google Patents

Microstructure for transdermal absorption and process for preparing the same Download PDF

Info

Publication number
TWI645870B
TWI645870B TW106121494A TW106121494A TWI645870B TW I645870 B TWI645870 B TW I645870B TW 106121494 A TW106121494 A TW 106121494A TW 106121494 A TW106121494 A TW 106121494A TW I645870 B TWI645870 B TW I645870B
Authority
TW
Taiwan
Prior art keywords
microstructure
aspect ratio
diameter
height
binder
Prior art date
Application number
TW106121494A
Other languages
Chinese (zh)
Other versions
TW201904624A (en
Inventor
金載洙
權純昌
朴相珍
Original Assignee
韓商安道德瑪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓商安道德瑪股份有限公司 filed Critical 韓商安道德瑪股份有限公司
Priority to TW106121494A priority Critical patent/TWI645870B/en
Application granted granted Critical
Publication of TWI645870B publication Critical patent/TWI645870B/en
Publication of TW201904624A publication Critical patent/TW201904624A/en

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本發明涉及包含生物相容性高分子或粘結劑的微結構體及其製造方法。本發明人按各個微結構體的形態對縱橫比進行優化,從而確保用於穿透皮膚的最佳的末梢(tip)角度及直徑範圍。尤其,本發明B類型及C類型的微結構體在附著于皮膚時使因皮膚彈性而引起的穿透抗性最小化,從而可提高結構體的穿透率(60%以上)及有效成分的皮膚內吸收率。並且,本發明的D類型的微結構體適用三重結構,因而使結構體的機械強度極大化,從而容易穿透皮膚。在本發明中,在適用六角形(Hexagonal)排列方式來排列多個微結構體的情況下,當附著于皮膚時具有可使全部微結構體受到均等壓力的優點。 The present invention relates to a microstructure comprising a biocompatible polymer or a binder and a method of producing the same. The inventors optimized the aspect ratio according to the morphology of each microstructure to ensure an optimal tip angle and diameter range for penetration through the skin. In particular, the B-type and C-type microstructures of the present invention minimize penetration resistance due to skin elasticity when attached to the skin, thereby improving the transmittance of the structure (60% or more) and the active ingredient. Absorption rate in the skin. Further, the D-type microstructure of the present invention is applied to a triple structure, thereby maximizing the mechanical strength of the structure and easily penetrating the skin. In the present invention, in the case where a plurality of microstructures are arranged in a Hexagonal arrangement, there is an advantage that all of the microstructures can be subjected to equal pressure when attached to the skin.

Description

經皮吸收用微結構體及其製造方法 Transdermal absorption microstructure and method of producing the same

本發明涉及經皮吸收用微結構體及其製造方法。更加詳細地,涉及包含生物相容性高分子或粘結劑的生物降解性微結構體及其製造方法。 The present invention relates to a microstructure for transdermal absorption and a method for producing the same. More specifically, it relates to a biodegradable microstructure comprising a biocompatible polymer or a binder and a method for producing the same.

藥物傳遞系統(Drug Delivery System,DDS)為通過控制藥物的吸收及釋放來向細胞、組織等靶部位傳遞藥物的一系列技術,除了通常的口服攝取之外,存在可局部適用藥物的經皮穿透型傳遞系統等,為了既有效又安全地對藥物等藥劑學物質進行給藥而進行了持續的研究。其中,在注射療法的情況下,存在如下問題,即,給藥方法繁瑣,並根據患者,有可能伴隨疼痛,除了暫時注入藥物的方法之外,在控制藥物的釋放速度方面存在局限性。為了改善這種注射療法的缺點,對大大小於注射器的針頭且疼痛小的微結構體(微針)進行了研究,在藥物傳遞、血液採集、生物感測器及皮膚美容等多種領域進行對其的研究。 Drug Delivery System (DDS) is a series of techniques for delivering drugs to target sites such as cells and tissues by controlling the absorption and release of drugs. In addition to the usual oral intake, there is percutaneous penetration of locally applicable drugs. A type of delivery system or the like has been continuously studied in order to effectively and safely administer a pharmaceutical substance such as a drug. Among them, in the case of injection therapy, there is a problem that the administration method is cumbersome, and depending on the patient, there is a possibility that pain is accompanied, and there is a limitation in controlling the release rate of the drug in addition to the method of temporarily injecting the drug. In order to improve the shortcomings of this injection therapy, microscopic structures (microneedles) which are much smaller than the needle of the syringe and have little pain have been studied, and are carried out in various fields such as drug delivery, blood collection, biosensors, and skin cosmetics. Its research.

以往的微針製造方法有美國專利第6334856號的“微針裝置及其製造和使用方法(MICRONEEDLE DEVICES AND METHODS OF MANUEACTURE AND USE THEREOF)”以及韓國授權專利第10-079 3615號的“生物降解性實心微針及其製造方法”。 Conventional microneedle manufacturing methods include "MICRONEEDLE DEVICES AND METHODS OF MANUEACTURE AND USE THEREOF" in US Pat. No. 6,334,856 and Korean Patent No. 10-079 "Biodegradable solid microneedle and its manufacturing method" No. 3615.

上述專利中以如下方式製造微針,即,在利用固化性聚合物製造的微型模具內注入生物降解性粘性物質並進行乾燥,之後從模具分離,由此製造出微針(模塑技術),或者在塗敷用於形成生物降解性實心微針的生物降解性粘性物質之後,利用以柱子(pillar)來圖案化的幀來繪製被塗敷的生物降解性粘性物質,並進行乾燥,之後通過對經過繪製的生物降解性粘性物質進行切割的步驟來製造出微針(繪製技術)。但是,通過這種以往的製造方法來製造出的生物降解性聚合物微結構體具有相對低的機械強度,從而當穿透皮膚時存在彎曲或被碾碎的問題。尤其,在將具有高彈性的高分子衍生物用作原料的情況下,當利用模塑技術或繪製技術製造微結構體時,存在無法均質地生成所需結構體形狀的局限性,並存在難以滿足穿透皮膚時所需的微結構體的機械強度的缺點。 In the above patent, a microneedle is produced by injecting a biodegradable viscous material into a micro-mold made of a curable polymer and drying it, followed by separation from a mold, thereby producing a microneedle (molding technique), Or after coating a biodegradable viscous substance for forming a biodegradable solid microneedle, the coated biodegradable viscous substance is drawn using a frame patterned with a pillar, dried, and then passed. A microneedle (drawing technique) is produced by the step of cutting the drawn biodegradable viscous material. However, the biodegradable polymer microstructures produced by such a conventional manufacturing method have relatively low mechanical strength, so that there is a problem of bending or being crushed when penetrating the skin. In particular, in the case where a polymer derivative having high elasticity is used as a raw material, when a microstructure is produced by a molding technique or a drawing technique, there is a limitation that it is impossible to uniformly form a desired structure shape, and it is difficult It meets the shortcomings of the mechanical strength of the microstructures required to penetrate the skin.

在本發明中所使用的透明質酸為生物降解性高分子,在由透明質酸製造的結構體的情況下,平均分子量越小,則越容易形成結構體,且粘性小,隨著分子量的增加,機械強度上升,且粘性上升。由於這種特性,通常將低分子透明質酸用作微結構體的原料,在利用低分子透明質酸的微結構體的情況下,當穿透皮膚時,容易發生被折斷或彎曲的問題。另一方面,羧甲基纖維素(Carboxymethyl cellulose,CMC)作為纖維素衍生物,其為在藥劑學上主要用作增稠劑(thickening agent)且具有多種分子量的生物降解性高分子。 The hyaluronic acid used in the present invention is a biodegradable polymer. In the case of a structure made of hyaluronic acid, the smaller the average molecular weight, the easier it is to form a structure, and the viscosity is small, and the molecular weight is small. Increase, mechanical strength rises, and viscosity increases. Due to such characteristics, low molecular weight hyaluronic acid is generally used as a raw material of the microstructure, and in the case of using a low molecular weight hyaluronic acid microstructure, when it penetrates the skin, it is liable to be broken or bent. On the other hand, Carboxymethyl cellulose (CMC) is a cellulose derivative which is a biodegradable polymer which is mainly used as a thickening agent in pharmacy and has various molecular weights.

另一方面,以往的微結構體由於末梢(tip)部分的角度過大,因而不適合穿透皮膚,即使在末梢的角度具有容易穿透皮膚的範圍的 情況下,因為具有直徑從末梢至底邊持續增加的結構,從而因皮膚自身的抗性而存在只穿透至整個結構體高度中的非常有限的比率的缺點。在具有低縱橫比(w:h,h/w)的結構體的情況下,難以穿透皮膚,在具有高縱橫比的結構體的情況下,雖然容易穿透皮膚,但因相對低的機械強度而在穿透皮膚時存在被折斷或彎曲的問題。並且,以往的微結構體具有在穿透皮膚時難以克服皮膚自身的彈性及復原力的結構,因而存在在結構體穿透皮膚之後也容易重新出針的缺點。 On the other hand, the conventional microstructures are not suitable for penetrating the skin because the angle of the tip portion is too large, even at the angle of the tip, which has a range that easily penetrates the skin. In this case, since there is a structure in which the diameter continuously increases from the tip to the bottom, there is a disadvantage that the skin itself is resistant to a very limited ratio which penetrates only to the entire height of the structure. In the case of a structure having a low aspect ratio (w:h,h/w), it is difficult to penetrate the skin, and in the case of a structure having a high aspect ratio, although it is easy to penetrate the skin, it is relatively low in machinery. Strength and the problem of being broken or bent when penetrating the skin. Further, the conventional microstructure has a structure in which it is difficult to overcome the elasticity and restoring force of the skin itself when penetrating the skin, and thus there is a drawback that it is easy to re-needle after the structure penetrates the skin.

為了解決上述問題,並製造出如下的微結構體,本發明開發了生物相容性高分子及將其用作主要材料的微結構體的製造方法,上述微結構體既使用低分子透明質酸及羧甲基纖維素,又具有適合於穿透皮膚的機械強度,在皮膚內容易溶解或鵬潤,因而適合於藥物傳遞或皮膚美容。 In order to solve the above problems and to produce a microstructure in which the present invention has developed a biocompatible polymer and a method for producing a microstructure using the same, the microstructure uses both low molecular hyaluronic acid. And carboxymethyl cellulose, which has mechanical strength suitable for penetrating the skin, is easily dissolved or spread in the skin, and is therefore suitable for drug delivery or skin beauty.

在整個本說明書中,參照了多個論文及專利文獻,並表示出對其的引用。作為參照,被引用的論文及專利文獻的公開內容作為整體來插入於本說明書中,從而使對本發明所屬技術領域的水準及本發明內容的說明更加明確。 Throughout this specification, reference has been made to a number of papers and patent documents, and references are cited. The disclosures of the cited papers and the patent documents are hereby incorporated by reference in their entirety in their entireties in the extent of the disclosure of the present disclosure.

本發明人為了解決上述多個現有技術的問題而進行了深人研究及努力。最終,本發明人利用由生物相容性高分子形成的水凝膠製造出微結構體,尤其製造出具有多種末梢角度及直徑範圍的微結構體,由此開發出容易穿透皮膚的微結構體。本發明人對由微結構體的底面的直徑w及高度h形成的縱橫比w:h進行優化,從而確保用於穿透皮膚的最佳的末 梢角度。並且,在微結構體中適用雙重或三重結構(本發明的B、C及D類型的微結構體)來使機械強度極大化,適用六角形圖案來排列微結構體,從而當附著于皮膚時,可使全部微結構體受到均等壓力,最終確認到可向生物體內穩定地傳遞搭載於微結構體的有效成分,由此完成了本發明。 The present inventors conducted intensive research and efforts to solve the problems of the above-described plurality of prior art. Finally, the inventors made use of a hydrogel formed of a biocompatible polymer to produce a microstructure, in particular, a microstructure having various tip angles and diameter ranges, thereby developing a microstructure that easily penetrates the skin. body. The present inventors optimized the aspect ratio w:h formed by the diameter w and the height h of the bottom surface of the microstructure to ensure the best end for penetrating the skin. Tip angle. Further, a double or triple structure (microstructures of the B, C, and D types of the present invention) is applied to the microstructure to maximize the mechanical strength, and a hexagonal pattern is applied to align the microstructure so as to adhere to the skin. The entire microstructure can be subjected to uniform pressure, and finally, it is confirmed that the active ingredient loaded on the microstructure can be stably transferred into the living body, thereby completing the present invention.

因此,本發明的目的在於,提供包含生物相容性高分子或粘結劑的微結構體(microstructure)。 Accordingly, it is an object of the present invention to provide a microstructure comprising a biocompatible polymer or a binder.

本發明的另一目的在於,提供包含生物相容性高分子或粘結劑的微結構體的製造方法。 Another object of the present invention is to provide a method for producing a microstructure comprising a biocompatible polymer or a binder.

通過以下的實施方式、申請專利範圍及附圖來更加明確理解本發明的其他目的及優點。 Other objects and advantages of the present invention will be more clearly understood from the following description of the appended claims.

根據本發明的一實施方式,本發明提供包含生物相容性高分子或粘結劑、且由底面的直徑w及高度h形成的縱橫比w:h為1:5至1:1.5、遠端末梢的角度α為10度至40度的微結構體。 According to an embodiment of the present invention, the present invention provides an aspect ratio w:h comprising a biocompatible polymer or binder and having a diameter w and a height h of the bottom surface of 1:5 to 1:1.5, distal end The angle α of the tip is a microstructure of 10 to 40 degrees.

本發明人為了解決上述現有技術的問題而進行了深入研究並努力,結果利用生物相容性高分子製造出微結構體,尤其製造出具有多種末梢角度及直徑範圍的微結構體,由此開發出容易穿透皮膚的微結構體。本發明人通過對由微結構體底面的直徑w及高度h形成的縱橫比w:h進行優化來確保了用於穿透皮膚的最佳的末梢角度。並且,在微結構體中適用雙重或三重結構(本發明的B、C及D類型的微結構體)來使機械強度極大化,並適用六角形圖案來排列微結構體,從而當附著于皮膚時,可使全部微結構體受到均等壓力,最終確認到可穩定地向生物體傳遞搭載於 微結構體的有效成分。 The inventors of the present invention have intensively studied and worked hard to solve the problems of the prior art described above, and as a result, microstructures have been produced using biocompatible polymers, and in particular, microstructures having various tip angles and diameter ranges have been produced, thereby developing A microstructure that easily penetrates the skin. The inventors have optimized the optimum tip angle for penetrating the skin by optimizing the aspect ratio w:h formed by the diameter w and the height h of the bottom surface of the microstructure. Further, a double or triple structure (microstructures of the B, C, and D types of the present invention) is applied to the microstructure to maximize the mechanical strength, and a hexagonal pattern is applied to align the microstructure so as to adhere to the skin. When all the microstructures are subjected to equal pressure, it is finally confirmed that the microorganisms can be stably transported to the living body. The active ingredient of the microstructure.

本說明書的術語“生物相容性高分子”為選自由透明質酸(Hyaluronic acid:HA)、羧甲基纖維素(Carboxymethyl cellulose:CMC)、海藻酸(alginic acid)、果膠、卡拉膠、硫酸軟骨素、硫酸葡聚糖、殼聚糖、聚賴氨酸(polylysine)、膠原蛋白、明膠、羧甲基殼聚糖(carboxy methyl chitin)、血纖維蛋白、瓊脂糖、支鏈澱粉聚乳酸、聚乙交酯(PGA)、聚乳酸-羥基乙酸共聚物(PLGA)、聚酸酐(polyanhydride)、聚原酸酯(polyorthoester)、聚醚酯(polyetherester)、聚己內酯(polycaprolactone)、聚酯醯胺(polyesteramide)、聚(丁酸)、聚(戊酸)、聚氨酯、聚丙烯酸酯、乙烯-乙酸乙烯酯聚合物、丙烯取代的纖維素乙酸酯、不可降解聚氨酯、聚苯乙烯、聚氯乙烯、聚氟乙烯、聚乙烯基咪唑、氯磺酸酯聚烯烴(chlorosulphonate polyolefins)、聚氧化乙烯、聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、聚甲基丙烯酸酯、羥丙基甲基纖維素(HPMC)、乙基纖維素(EC)、羥丙基纖維素(HPC)、環糊精及形成這些高分子的多個單體的共聚物及纖維素組成的組中的一種以上高分子。 The term "biocompatible polymer" in the present specification is selected from the group consisting of hyaluronic acid (HA), Carboxymethyl cellulose (CMC), alginic acid, pectin, carrageenan, Chondroitin sulfate, dextran sulfate, chitosan, polylysine, collagen, gelatin, carboxymethyl chitin, fibrin, agarose, amylopectin polylactic acid Polyglycolide (PGA), polylactic acid-glycolic acid copolymer (PLGA), polyanhydride, polyorthoester, polyetherester, polycaprolactone, poly Polyesteramide, poly(butyric acid), poly(valeric acid), polyurethane, polyacrylate, ethylene-vinyl acetate polymer, propylene-substituted cellulose acetate, non-degradable polyurethane, polystyrene, Polyvinyl chloride, polyvinyl fluoride, polyvinyl imidazole, chlorosulphonate polyolefins, polyethylene oxide, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polymethacrylate, hydroxy Propyl methylcellulose (HPMC) Ethyl cellulose (EC), hydroxypropyl cellulose (HPC), cyclodextrin, and cellulose formed a plurality of groups, and copolymers of these monomers consisting of a polymer of one or more polymers.

本說明書中的術語“粘結劑”為選自由矽、聚氨酯、透明質酸、物理粘合劑(壁虎)、聚丙烯酸、乙基纖維素、羥甲基纖維素、乙烯醋酸乙烯酯及聚異丁烯組成的組中的一種以上粘結劑。 The term "binder" as used in the present specification is selected from the group consisting of hydrazine, polyurethane, hyaluronic acid, physical binder (gecko), polyacrylic acid, ethyl cellulose, hydroxymethyl cellulose, ethylene vinyl acetate, and polyisobutylene. More than one binder in the group consisting.

本說明書中的術語“透明質酸”以除了透明質酸之外,還將透明質酸鹽(例如,透明質酸鈉、透明質酸鉀、透明質酸鎂及透明質酸鈣)及它們的混合物均包括在內的含義來使用。根據本發明的一實例,本發明的透明質酸的分子量為100-5000kDa。根據本發明的任意實例,本發明 的透明質酸的分子量為100-4500kDa、150-3500kDa、200-2500kDa、220-1500kDa、240-1000kDa或240-490kDa。 The term "hyaluronic acid" in the present specification also includes hyaluronate (for example, sodium hyaluronate, potassium hyaluronate, magnesium hyaluronate, and calcium hyaluronate) in addition to hyaluronic acid and their The mixture is included in the meaning to be used. According to an embodiment of the present invention, the hyaluronic acid of the present invention has a molecular weight of 100 to 5000 kDa. According to any of the examples of the invention, the invention The hyaluronic acid has a molecular weight of 100-4500 kDa, 150-3500 kDa, 200-2500 kDa, 220-1500 kDa, 240-1000 kDa or 240-490 kDa.

本說明書中所使用的“羧甲基纖維素”可使用公知的多種分子量的羧甲基纖維素。例如,在本發明中所使用的羧甲基纖維素的平均分子量為90000kDa、250000kDa或700000kDa。 As the "carboxymethylcellulose" used in the present specification, carboxymethylcellulose of a plurality of known molecular weights can be used. For example, the carboxymethylcellulose used in the present invention has an average molecular weight of 90,000 kDa, 250,000 kDa or 700,000 kDa.

本發明可提供多種微結構體,例如,可提供微針、微刃、微型刀、超細纖維、微端絲、微探針、微型閥(microbarb)、微陣列或微電極。根據本發明的一實例,本發明的微結構體為微針。 The present invention can provide a variety of microstructures, for example, microneedles, microblades, microknifes, microfibers, microwires, microprobes, microbarbs, microarrays, or microelectrodes. According to an embodiment of the invention, the microstructure of the invention is a microneedle.

根據本發明的一實例,在本發明中,包含1-5%(w/v)的生物相容性高分子或粘結劑。根據本發明的特定實例,在本發明中,包含濃度為3%(w/v)的透明質酸或羧甲基纖維素。 According to an embodiment of the present invention, in the present invention, 1-5% (w/v) of a biocompatible polymer or binder is contained. According to a specific example of the present invention, in the present invention, hyaluronic acid or carboxymethylcellulose is contained in a concentration of 3% (w/v).

與以往的微結構體不同,本發明微結構體的最大特徵中的一種為適用雙重或三重結構,從而使機械強度極大化。為此,通過對由微結構體的底面的直徑w及高度h形成的縱橫比w:h、微結構體的遠端末梢角度α及末梢的直徑範圍t進行優化,由此製造出容易穿透皮膚的微結構體。 Unlike the conventional microstructures, one of the largest features of the microstructures of the present invention is a double or triple structure, thereby maximizing mechanical strength. For this reason, by optimizing the aspect ratio w:h formed by the diameter w and the height h of the bottom surface of the microstructure, the distal end angle α of the microstructure, and the diameter range t of the tip, it is easy to penetrate. The microstructure of the skin.

根據上述條件來製造的本發明的微結構體呈圖1A至圖1D的A類型至D類型的形狀。A類型的微結構體呈普通的圓錐形狀;B類型呈圓柱和圓錐的雙重結構;C類型呈變形的圓柱(圓錐台)和圓錐的雙重結構;D類型呈2個變形的圓柱(圓錐台)和圓錐的三重結構。 The microstructure of the present invention produced according to the above conditions is in the shape of Type A to D of Figs. 1A to 1D. The type A microstructure has a common conical shape; the type B has a double structure of a cylinder and a cone; the C type has a double structure of a deformed cylinder (conical table) and a cone; and the type D has two deformed cylinders (a truncated cone). And the triple structure of the cone.

根據本發明的一實例,在本發明中,由微結構體底面的直徑w及高度h形成的縱橫比w:h為1:5至1:1.5,遠端末梢的角度α 為10度至40度。根據本發明的再一實例,上述縱橫比為1:5至1:2(參照圖1A-1D)。 According to an embodiment of the present invention, in the present invention, the aspect ratio w:h formed by the diameter w and the height h of the bottom surface of the microstructure is 1:5 to 1:1.5, and the angle α of the distal end is 10 to 40 degree. According to still another example of the present invention, the aspect ratio is 1:5 to 1:2 (refer to Figs. 1A-1D).

在圖1A中,A類型為圓錐形狀的微結構體,可以由底面的直徑w、高度h及末梢的角度α來表示。根據本發明的一實例,A類型的縱橫比w:h為1:5至1:1.5。 In Fig. 1A, a microstructure having a conical A shape can be represented by the diameter w, the height h of the bottom surface, and the angle α of the tip. According to an example of the invention, the aspect ratio w:h of type A is from 1:5 to 1:1.5.

在圖1B中,B類型為由圓柱和圓錐的雙重結構形成的微結構體,可由圓錐底面的直徑w和高度h1、末梢的角度α及圓柱底面的直徑w及高度h2來表示。根據本發明的一實例,B類型的w1:h1的縱橫比為1:5至1:1.5,w:h2的縱橫比為1:5至1:1.0,w:h的縱橫比為1:5至1:2。根據本發明的特定實例,w:h2的縱橫比為1:1.4,h1:h2的比例為1.1:1。另一方面,在本發明的B類型的微結構體中,最佳的w:h縱橫比為1:3,最佳的結構體之間的間隔範圍為1/2h-2h。 In Fig. 1B, the type B is a microstructure formed by a double structure of a cylinder and a cone, and can be represented by the diameter w and height h 1 of the bottom surface of the cone, the angle α of the tip, and the diameter w and height h 2 of the bottom surface of the cylinder. According to an example of the present invention, the aspect ratio of type B of w1:h 1 is 1:5 to 1:1.5, the aspect ratio of w:h 2 is 1:5 to 1:1.0, and the aspect ratio of w:h is 1. : 5 to 1:2. According to a particular example of the invention, the aspect ratio of w:h 2 is 1:1.4 and the ratio of h 1 :h 2 is 1.1:1. On the other hand, in the B-type microstructure of the present invention, the optimum w:h aspect ratio is 1:3, and the optimum interval between the structures is 1/2 h-2h.

在圖1C中,C類型為由圓錐台和圓錐的雙重結構構成的微結構體,可由圓錐底面的直徑w1和高度h1、末梢的角度α及圓錐台底面的直徑w及高度h2表示。根據本發明的一實例,C類型的w1:h1的縱橫比為1:5至1:1.5,w:h2的縱橫比為1:5至1:1.0,w:h的縱橫比為1:5至1:2。根據本發明的特定實例,w:h2的縱橫比為1:1.25,h1:h2的比例為1.3:1。另一方面,在本發明C類型的微結構體中,最佳的w:h的縱橫比為1:3,最佳的結構體之間的間隔範圍為1/2h-2h。 In Fig. 1C, the C type is a microstructure composed of a double structure of a truncated cone and a cone, and can be represented by a diameter w 1 and a height h 1 of the conical bottom surface, an angle α of the tip end, and a diameter w and a height h 2 of the bottom surface of the truncated cone. . According to an embodiment of the present invention, the aspect ratio of the type C w 1 :h 1 is 1:5 to 1:1.5, and the aspect ratio of w:h 2 is 1:5 to 1:1.0, and the aspect ratio of w:h is 1:5 to 1:2. According to a particular example of the invention, the aspect ratio of w:h 2 is 1:1.25 and the ratio of h 1 :h 2 is 1.3:1. On the other hand, in the microstructure of the C type of the present invention, the optimum aspect ratio of w:h is 1:3, and the interval between the optimum structures is 1/2h-2h.

在圖1D中,D類型為由2個圓錐台和圓錐的三重結構構成的微結構體,可由圓錐底面的直徑w1、高度h1及末梢的角度α;上部圓錐台底面的直徑w2、高度h2;下部圓錐台底面的直徑w及高度h3來表示。 根據本發明的一實例,D類型的w1:h1的縱橫比為1:5至1:1.5,w:h2及w:h2的縱橫比為1:5至1:1.0,w:h的縱橫比為1:5至1:2。 In Fig. 1D, the D type is a microstructure composed of two truncated cones and a conical triple structure, and the diameter w 1 of the conical bottom surface, the height h 1 and the angle α of the tip; the diameter w 2 of the bottom surface of the upper truncated cone, The height h 2 is represented by the diameter w and the height h 3 of the bottom surface of the lower truncated cone. According to an embodiment of the present invention, the aspect ratio of the type D of w 1 :h 1 is 1:5 to 1:1.5, and the aspect ratio of w:h 2 and w:h 2 is 1:5 to 1:1.0, w: The aspect ratio of h is 1:5 to 1:2.

根據本發明的特定實例,w:h2的縱橫比為1:1.5,w:h3的縱橫比為1:1,h1:h2:h3的比例為1.5:1.5:1。另一方面,在本發明D類型的微結構體中,最佳的w:h縱橫比為1:3.5至1:4,最佳的結構體之間的間隔範圍為1/2h-2h。 According to a particular example of the invention, the aspect ratio of w:h 2 is 1:1.5, the aspect ratio of w:h 3 is 1:1, and the ratio of h 1 :h 2 :h 3 is 1.5:1.5:1. On the other hand, in the microstructure of the D type of the present invention, the optimum w:h aspect ratio is 1:3.5 to 1:4, and the optimum interval between the structures is 1/2h-2h.

本發明的微結構體的高度可製造成80μm至1500μm。根據本發明的特定實例,上述微結構體的高度為100μm至1300μm。 The microstructure of the present invention can be made to have a height of from 80 μm to 1500 μm. According to a specific example of the present invention, the above microstructure has a height of from 100 μm to 1300 μm.

根據本發明的一實例,遠端末梢的直徑t為2-20μm。上述直徑t表示利用顯微鏡或電子顯微鏡放大40倍至250倍來觀察的微結構體的遠端末梢剖面部分的直徑。 According to an embodiment of the invention, the distal end tip has a diameter t of 2-20 μm. The above diameter t represents the diameter of the distal end portion of the microstructure observed by magnifying 40 to 250 times with a microscope or an electron microscope.

根據本發明的一實例,本發明的微結構體具有80以上的機械強度(穿透率,%)。根據本發明的再一實例,上述機械強度為80-100。根據本發明的另一實例,上述機械強度為90-100。根據本發明還有一實例,上述機械強度為95-100。 According to an embodiment of the present invention, the microstructure of the present invention has a mechanical strength (penetration rate, %) of 80 or more. According to still another embodiment of the present invention, the mechanical strength is 80-100. According to another embodiment of the present invention, the above mechanical strength is 90-100. According to still another embodiment of the present invention, the mechanical strength is 95-100.

根據本發明的一實例,在本發明的微結構體中,呈現出具有雙重及三重結構的B-D類型的皮膚穿透率高於A類型的皮膚穿透率。 According to an example of the present invention, in the microstructure of the present invention, the skin penetration rate of the B-D type having a double and triple structure is higher than that of the type A.

根據本發明的一實例,本發明的微結構體除了生物相容性高分子及粘結劑之外,還包含有效成分。例如,上述有效成分為藥物、美容成分(美白、改善皺紋等化妝品成分)或其組合。由於本發明的微結構體包含有效成分,從而可有效地向皮膚內傳遞有效成分。 According to an embodiment of the present invention, the microstructure of the present invention contains an active ingredient in addition to the biocompatible polymer and the binder. For example, the above-mentioned effective ingredients are drugs, cosmetic ingredients (whitening, cosmetic ingredients such as wrinkles), or a combination thereof. Since the microstructure of the present invention contains an active ingredient, it is effective to deliver an active ingredient into the skin.

根據本發明的一實例,本發明的微結構體還可包含金屬、 高分子聚合物或粘結劑。 According to an embodiment of the present invention, the microstructure of the present invention may further comprise a metal, High molecular polymer or binder.

根據本發明的另一實施方式,本發明微結構體的製造方法,上述微結構體的製造方法包括:步驟(a),向微型模具供給生物相容性高分子或粘結劑;步驟(b),向微型模具的孔內注入上述生物相容性高分子或粘結劑;步驟(c),對上述生物相容性高分子或粘結劑進行乾燥;以及步驟(d),對上述微型模具和經過乾燥的生物相容性高分子或粘結劑進行分離來形成微結構體。 According to another embodiment of the present invention, in the method for producing a microstructure according to the present invention, the method for producing the microstructure includes the step (a) of supplying a biocompatible polymer or a binder to the micro mold; and the step (b) Inserting the above biocompatible polymer or binder into the pores of the micro mold; step (c), drying the biocompatible polymer or binder; and step (d), for the above micro The mold is separated from the dried biocompatible polymer or binder to form a microstructure.

按各個步驟對本發明的微結構體的製造方法詳細說明如下: The manufacturing method of the microstructure of the present invention will be described in detail as follows in each step:

步驟(a):向微型模具供給生物相容性高分子或粘結劑 Step (a): supplying a biocompatible polymer or binder to the micro mold

根據本發明,首先向微型模具供給生物相容性高分子或粘結劑。 According to the present invention, a biocompatible polymer or binder is first supplied to a micro mold.

作為本發明的微型模具,可利用通過本技術領域的任意微型模具的製造技術來製造的微型模具。例如,可利用微電子機械系統(MEMS,Micro-Electro Mechanical System)製造技術、光刻(photolithography,Biodegradable polymer microneedles:Fabrication,mechanics and transder mal drug delivery,Journal of Controlled Release 104,51-66,2005)製造技術及軟光刻(soft lithography)製造技術等來製造本發明的微型模具,但並不局限於此。其中,在利用軟光刻(soft lithography)製造技術的情況下,可製造聚二甲基矽氧烷(PDMS,polydimethylsiloxane)或聚(甲基丙烯酸甲酯)(PMMA,Poly(methyl methacrylate))等彈性體模具,並將其利用於微結構體的製造。製造聚二甲基矽氧烷模具的技術作為一種塑膠加工技 術,可通過鑄造(casting)、注射(injection)、熱壓印(hot-embossing)等多種方法來獲得所需的模塑結構。例如,若在矽片、玻璃等基板上塗敷感光物質,並利用光罩進行圖案化,則最終製成主(master)模。若將上述主模作為鑄型來鑄造聚二甲基矽氧烷並進行燒結,則可完成起到印模作用的聚二甲基矽氧烷模具。 As the micro mold of the present invention, a micro mold manufactured by any micro mold manufacturing technique in the art can be utilized. For example, MEMS (Micro-Electro Mechanical System) manufacturing technology, lithography (photolithography, Biodegradable polymer microneedles: Fabrication, mechanisms and transder mal drug delivery, Journal of Controlled Release 104, 51-66, 2005) Manufacturing techniques, soft lithography manufacturing techniques, and the like are used to manufacture the micro-mold of the present invention, but are not limited thereto. Among them, in the case of using soft lithography manufacturing technology, polydimethylsiloxane (PDMS) or poly(methyl methacrylate) (PMMA, Poly(methyl methacrylate)), etc. can be produced. Elastomeric molds are used in the manufacture of microstructures. Technology for manufacturing polydimethyl siloxane molds as a plastic processing technology The desired molding structure can be obtained by various methods such as casting, injection, and hot-embossing. For example, when a photosensitive material is applied onto a substrate such as a ruthenium or glass, and patterned by a photomask, a master mold is finally produced. When the above-mentioned main mold is cast as a mold to cast polydimethyl siloxane and sintered, a polydimethyl siloxane mold which functions as a stamp can be completed.

根據本發明的一實例,上述透明質酸的分子量為240-490kDa,根據本發明的特定實例,透明質酸的平均分子量為360kDa。 According to an embodiment of the present invention, the hyaluronic acid has a molecular weight of 240 to 490 kDa, and according to a specific example of the present invention, the hyaluronic acid has an average molecular weight of 360 kDa.

根據本發明,在步驟(a)中,相對於微結構體的總組成成分,可包含1-30%(w/v)的生物相容性高分子的固體成分含量(solid content)。 According to the present invention, in the step (a), the solid content of the biocompatible polymer may be contained in an amount of 1 to 30% (w/v) with respect to the total composition of the microstructure.

根據本發明的一實例,在步驟(a)中,相對於微結構體的總組成成分,生物相容性高分子的濃度為1-5%(w/v),根據本發明的特定實例,能夠以3%(w/v)的濃度來包含生物相容性高分子。 According to an embodiment of the present invention, in step (a), the concentration of the biocompatible macromolecule is 1-5% (w/v) relative to the total composition of the microstructure, according to a specific example of the present invention, The biocompatible polymer can be contained in a concentration of 3% (w/v).

步驟(b):向微型模具的孔內注入上述生物相容性高分子或粘結劑 Step (b): injecting the above biocompatible polymer or binder into the pores of the micro mold

接著,向微型模具的孔內注入上述生物相容性高分子或粘結劑。 Next, the biocompatible polymer or binder is injected into the pores of the micro mold.

根據本發明的一實例,在向微型模具供給生物相容性高分子之後,在本發明中,(i)向上述微型模具施加800-1000g的離心力來進行注入步驟,或者(ii)在500-860mmHg的壓力下進行注入步驟。 According to an embodiment of the present invention, after supplying the biocompatible polymer to the micro mold, in the present invention, (i) applying a centrifugal force of 800 to 1000 g to the micro mold to perform an implantation step, or (ii) at 500- The implantation step was carried out under a pressure of 860 mmHg.

例如,在通過向微型模具施加800-1000g的離心力來進行注入的情況下,可在800-1000g的離心力下實施10-20分鐘的離心分離,或 在900g的離心力下實施15分鐘的離心分離。並且,在真空壓力下實施注入的情況下,可在500-860mmHg的壓力下注入5-20分鐘,或者在600-760mmHg的壓力下注入10-30分鐘。 For example, in the case of performing injection by applying a centrifugal force of 800 to 1000 g to the micro mold, centrifugation for 10-20 minutes may be performed under a centrifugal force of 800 to 1000 g, or Centrifugation was carried out for 15 minutes under a centrifugal force of 900 g. Further, in the case where the injection is performed under vacuum pressure, it may be injected at a pressure of 500 to 860 mmHg for 5 to 20 minutes, or at a pressure of 600 to 760 mmHg for 10 to 30 minutes.

根據本發明的特定實例,上述生物相容性高分子為選自由透明質酸、羧甲基纖維素、海藻酸、果膠、卡拉膠、硫酸軟骨素、硫酸葡聚糖、殼聚糖、聚賴氨酸、膠原蛋白、明膠、羧甲基殼聚糖、血纖維蛋白、瓊脂糖、支鏈澱粉聚乳酸、聚乙交酯、聚乳酸-羥基乙酸共聚物、聚酸酐、聚原酸酯、聚醚酯、聚己內酯、聚酯醯胺、聚(丁酸)、聚(戊酸)、聚氨酯、聚丙烯酸酯、乙烯-乙酸乙烯酯聚合物、丙烯取代的纖維素乙酸酯、不可降解聚氨酯、聚苯乙烯、聚氯乙烯、聚氟乙烯、聚乙烯基咪唑、氯磺酸酯聚烯烴、聚氧化乙烯、聚乙烯吡咯烷酮、聚乙二醇、聚甲基丙烯酸酯、羥丙基甲基纖維素、乙基纖維素、羥丙基纖維素、環糊精及形成這些高分子的多個單體的共聚物及纖維素組成的組中的一種以上高分子。根據本發明的特定實例,上述粘結劑包含選自由矽、聚氨酯、透明質酸、物理粘合劑(壁虎)、聚丙烯酸、乙基纖維素、羥甲基纖維素、乙烯醋酸乙烯酯及聚異丁烯組成的組中的一種以上物質。 According to a specific example of the present invention, the above biocompatible polymer is selected from the group consisting of hyaluronic acid, carboxymethyl cellulose, alginic acid, pectin, carrageenan, chondroitin sulfate, dextran sulfate, chitosan, poly Lysine, collagen, gelatin, carboxymethyl chitosan, fibrin, agarose, amylopectin polylactic acid, polyglycolide, polylactic acid-glycolic acid copolymer, polyanhydride, polyorthoester, Polyether ester, polycaprolactone, polyester decylamine, poly(butyric acid), poly(valeric acid), polyurethane, polyacrylate, ethylene-vinyl acetate polymer, propylene substituted cellulose acetate, not Degradation of polyurethane, polystyrene, polyvinyl chloride, polyvinyl fluoride, polyvinyl imidazole, chlorosulfonate polyolefin, polyethylene oxide, polyvinylpyrrolidone, polyethylene glycol, polymethacrylate, hydroxypropyl One or more polymers selected from the group consisting of cellulose, ethyl cellulose, hydroxypropyl cellulose, cyclodextrin, and a copolymer of a plurality of monomers forming these polymers and a cellulose composition. According to a specific example of the present invention, the above binder comprises a material selected from the group consisting of ruthenium, polyurethane, hyaluronic acid, physical binder (gecko), polyacrylic acid, ethyl cellulose, hydroxymethyl cellulose, ethylene vinyl acetate, and poly More than one substance in the group consisting of isobutylene.

步驟(c):對上述生物相容性高分子或粘結劑進行乾燥 Step (c): drying the above biocompatible polymer or binder

在實施步驟(b)之後,對上述生物相容性高分子或粘結劑進行乾燥。 After the step (b) is carried out, the above biocompatible polymer or binder is dried.

根據本發明的一實例,上述步驟(c)在(i)常溫下實施36-60小時,或者在(ii)40-60℃的溫度下實施5-16小時,或者在(iii)60-80℃的溫度下實施2-4小時。根據本發明的另一實例,上述步驟(c)可 在(i)20-30℃的溫度下實施42-54小時,或者在(ii)45-55℃的溫度下實施5-7小時,或者在(iii)65-75℃的溫度下實施2-4小時。根據本發明的特定實例,上述步驟(c)可在(i)25℃的溫度下實施48小時,或者在(ii)50℃的溫度下實施6小時,或者在(iii)70℃的溫度下實施3小時。這種乾燥過程提高微結構體的機械強度。 According to an embodiment of the present invention, the above step (c) is carried out at (i) normal temperature for 36-60 hours, or at (ii) 40-60 ° C for 5-16 hours, or at (iii) 60-80. It is carried out at a temperature of ° C for 2-4 hours. According to another example of the present invention, the above step (c) may Performing at (i) 20-30 ° C for 42-54 hours, or (ii) 45-55 ° C for 5-7 hours, or (iii) 65-75 ° C for 2 - 4 hours. According to a specific example of the present invention, the above step (c) may be carried out at (i) a temperature of 25 ° C for 48 hours, or at (ii) a temperature of 50 ° C for 6 hours, or at a temperature of (iii) 70 ° C. Implemented for 3 hours. This drying process increases the mechanical strength of the microstructure.

步驟(d):對微型模具和被交聯的透明質酸水凝膠進行分離 Step (d): Separation of the micro mold and the crosslinked hyaluronic acid hydrogel

在實施步驟(c)之後,對本發明的微型模具和經過乾燥的生物相容性高分子或粘結劑進行分離來形成微結構體。 After carrying out step (c), the micro-mold of the present invention and the dried biocompatible polymer or binder are separated to form a microstructure.

本發明的微結構體的製造方法可使多個微結構體排列成四角形或六角形。適用六角形排列方式來製造的多個微結構體在附著于皮膚時可使全部微結構體受到均等壓力。 The method for producing a microstructure according to the present invention allows a plurality of microstructures to be arranged in a quadrangular shape or a hexagonal shape. A plurality of microstructures manufactured by a hexagonal arrangement can be subjected to equal pressure when attached to the skin.

根據本發明的一實例,上述多個微結構體能夠以250-1500μm的間隔p來排列。在此情況下,可在每cm2的面積約排列25-1300個結構體(參照表1)。 According to an embodiment of the present invention, the plurality of microstructures can be arranged at intervals p of 250 to 1500 μm. In this case, about 25 to 1300 structures can be arranged per cm 2 (refer to Table 1).

本發明的微結構體的製造方法共同針對上述微結構體,因而為了避免本說明書變得過於複雜,將省略在與上述微結構體的關係中相同的內容。 Since the method for producing a microstructure according to the present invention is directed to the above-described microstructure, the same contents as those in the above-described microstructure are omitted in order to avoid the complexity of the present specification.

根據本發明的另一實施方式,本發明提供具有如下特徵的微結構體,即,上述微結構體呈圖1A至圖1D的A至D類型形狀中的一種形狀。A至D類型形狀的微結構體的特徵如上所述,為了避免本說明書變得過於複雜,將省略對其的記載。 According to another embodiment of the present invention, the present invention provides a microstructure having the feature that one of the types A to D of FIGS. 1A to 1D is in the shape of the above-described microstructure. The features of the microstructures of the A to D type shape are as described above, and in order to avoid the description becoming too complicated, the description thereof will be omitted.

將本發明的特徵及優點概括如下: The features and advantages of the present invention are summarized as follows:

(a)本發明提供包含生物相容性高分子或粘結劑的微結構體及其製造方法。 (a) The present invention provides a microstructure comprising a biocompatible polymer or a binder and a method for producing the same.

(b)本發明人按微結構體的形態對縱橫比進行優化,從而確保用於穿透皮膚的最佳的末梢角度及直徑範圍。 (b) The inventors optimized the aspect ratio according to the morphology of the microstructure to ensure an optimum tip angle and diameter range for penetrating the skin.

(c)尤其,本發明B類型及C類型的微結構體在附著于皮膚時使因皮膚彈性而引起的穿透抗性最小化,從而可提高結構體的穿透率(60%以上)及有效成分的皮膚內吸收率。並且,本發明的D類型的微結構體適用三重結構,因而使結構體的機械強度極大化,從而容易穿透皮膚。 (c) In particular, the B-type and C-type microstructures of the present invention minimize penetration resistance due to skin elasticity when attached to the skin, thereby improving the penetration rate of the structure (60% or more) and Intradermal absorption rate of active ingredients. Further, the D-type microstructure of the present invention is applied to a triple structure, thereby maximizing the mechanical strength of the structure and easily penetrating the skin.

(d)在本發明中,在適用六角形排列方式來排列多個微結構體的情況下,當附著于皮膚時具有可使全部微結構體受到均等壓力的優點。 (d) In the present invention, in the case where a plurality of microstructures are arranged in a hexagonal arrangement, there is an advantage that all of the microstructures can be subjected to an equal pressure when attached to the skin.

圖1A至圖1F示出通過本發明的微結構體的製造方法來製造的微結構體。其中,底面的直徑w,高度h,遠端末梢的角度α,遠端末梢的直徑t,微結構體之間的間隔p,結構體柱子的角度範圍(β1為85-90度;β2-β4為90-180度)。 1A to 1F show a microstructure manufactured by the method for producing a microstructure of the present invention. Wherein, the diameter w of the bottom surface, the height h, the angle α of the distal tip, the diameter t of the distal tip, the interval p between the microstructures, the angular range of the column of the structure (β1 is 85-90 degrees; β2-β4 It is 90-180 degrees).

圖2A至圖2D示出使用於本發明的微結構體的製造方法的微型模具的電子顯微鏡(SEM)照片。其中,2A:A類型,2B:B類型,2C:C類型,2D: D類型。 2A to 2D show electron microscope (SEM) photographs of a micro mold used in the method of producing a microstructure of the present invention. Among them, 2A: A type, 2B: B type, 2C: C type, 2D: Type D.

圖3A至圖3D示出作為通過本發明的微結構體的製造方法來製造的各個微結構體的A至D類型的顯微鏡照片(Sunny SZMN,40-70倍)。其中,3A:A類型,3B:B類型,3C:C類型,3D:D類型。 3A to 3D show micrographs (Sunny SZMN, 40-70 times) of the A to D types of the respective microstructures manufactured by the method of manufacturing the microstructure of the present invention. Among them, 3A: A type, 3B: B type, 3C: C type, 3D: D type.

圖4A至圖4D示出作為通過本發明的微結構體的製造方法來製造的各個微結構體的A至D類型的顯微鏡(SEM,JEOL JSM-7500F)照片。圖4D的箭頭表示測定w1、w2及w的位置。其中,4A:A類型,4B:B類型,4C:C類型,4D:D類型。 4A to 4D show photographs of microscopes (SEM, JEOL JSM-7500F) of the A to D type as individual microstructures manufactured by the method of manufacturing the microstructure of the present invention. The arrows in Fig. 4D indicate the positions at which w 1 , w 2 and w are measured. Among them, 4A: A type, 4B: B type, 4C: C type, 4D: D type.

圖5A至圖5E示出通過本發明的微結構體的製造方法來製造的A類型至D類型微結構體(5A-5D)及金字塔形狀比較組(5E)的機械強度的實驗結果。 5A to 5E show experimental results of mechanical strength of the A type to D type microstructures (5A-5D) and the pyramid shape comparison group (5E) manufactured by the method of manufacturing the microstructure of the present invention.

圖6A至圖6D示出通過本發明的微結構體的製造方法來製造的微結構體的皮膚穿透率(深度)的實驗結果(穿透皮膚後變形的微結構體的電子顯微鏡照片)。其中,6A:A類型,6B:B類型,6C:C類型,6D:D類型。 6A to 6D show experimental results of skin penetration (depth) of a microstructure produced by the method for producing a microstructure of the present invention (electron micrograph of a microstructure after deformation through the skin). Among them, 6A: A type, 6B: B type, 6C: C type, 6D: D type.

以下,通過實施例更加詳細地說明本發明。這些實施例僅僅用於更加具體地說明本發明,根據本發明的主旨,本發明的範圍並不局限於這些實施例,這對於本發明所屬技術領域的普通技術人員而言是顯而易見的。 Hereinafter, the present invention will be described in more detail by way of examples. The embodiments are only intended to more specifically illustrate the invention, and the scope of the invention is not limited by the scope of the invention, which is obvious to those skilled in the art.

實施例 Example

實施例1:微結構體的製造 Example 1: Fabrication of Microstructures

1.A類型微結構體的製造過程 1. Manufacturing process of type A microstructure

在利用光刻製造技術在矽片製造主陰模或主陽模(positiv e or negative master mold),之後利用固化性矽(聚二甲基矽氧烷(polydimethylsilozane))由上述主模最終製造出陰模(negative mold)。 In the use of lithography manufacturing technology in the manufacture of the main negative mold or main positive mold (positiv e or negative master mold), and then a negative mold is finally produced from the above main mold by using a curable hydrazine (polydimethylsiloxanes).

作為生物相容性高分子,利用透明質酸(hyaluronic acid)。通過將平均分子量為360kDa(分子量範圍為240-490kDa)的透明質酸(Bloomage Freda Biotechnology Co.,Ltd,中國)以3%(w/v)濃度完全溶解于純化水中後使用。 As a biocompatible polymer, hyaluronic acid is used. It was used by completely dissolving hyaluronic acid (Bloomage Freda Biotechnology Co., Ltd.) having an average molecular weight of 360 kDa (molecular weight range of 240-490 kDa) in purified water at a concentration of 3% (w/v).

在向聚二甲基矽氧烷微型模具供給上述透明質酸之後,在常溫(25℃)下注入並乾燥48小時,在50℃的溫度下注入並乾燥6小時或在70℃的溫度下注入並乾燥3小時(未實施離心分離和真空過程),之後除去模具,由此製造出透明質酸微結構體。 After supplying the above hyaluronic acid to the polydimethylsiloxane micro mold, it is injected and dried at normal temperature (25 ° C) for 48 hours, and injected at a temperature of 50 ° C for 6 hours or at a temperature of 70 ° C. It was dried for 3 hours (without performing centrifugation and vacuum process), and then the mold was removed, thereby producing a hyaluronic acid microstructure.

2.B類型微結構體的製造過程 2. Manufacturing process of type B microstructure

在利用光刻製造技術在矽片製造主陰模或主陽模之後,利用固化性矽(聚二甲基矽氧烷)由上述主模最終製造出陰模。 After the main negative mold or the main male mold is manufactured by the lithography manufacturing technique using the lithography manufacturing technique, the negative mold is finally produced from the above main mold by using the curable cerium (polydimethyl siloxane).

作為生物相容性高分子,利用透明質酸。通過將平均分子量為360kDa(分子量範圍為240-490kDa)的透明質酸以3%(w/v)濃度完全溶解于純化水中後使用。 As a biocompatible polymer, hyaluronic acid is used. It is used by completely dissolving hyaluronic acid having an average molecular weight of 360 kDa (molecular weight range of 240-490 kDa) in purified water at a concentration of 3% (w/v).

在向聚二甲基矽氧烷微型模具供給上述透明質酸之後,在900g下利用離心分離(centrifuge)向形成於微型模具的孔內注入15分鐘。在常溫(25℃)下注入並乾燥48小時,在50℃的溫度下注入並乾燥6小時或在70℃的溫度下注入並乾燥3小時,之後除去模具,由此製造出透明質酸微結構體。 After the hyaluronic acid was supplied to the polydimethyl siloxane micro-mold, it was injected into a hole formed in the micro-mold at 900 g for 15 minutes by centrifugation. It was injected and dried at normal temperature (25 ° C) for 48 hours, injected and dried at a temperature of 50 ° C for 6 hours or at a temperature of 70 ° C for 3 hours, after which the mold was removed, thereby producing a hyaluronic acid microstructure. body.

3. C類型微結構體的製造過程 3. Manufacturing process of C type microstructure

在利用光刻製造技術在矽片製造主陰模或主陽模之後,利用固化性矽(聚二甲基矽氧烷)由上述主模最終製造出陰模。 After the main negative mold or the main male mold is manufactured by the lithography manufacturing technique using the lithography manufacturing technique, the negative mold is finally produced from the above main mold by using the curable cerium (polydimethyl siloxane).

作為生物相容性高分子,利用透明質酸。通過將平均分子量為360kDa(分子量範圍為240-490kDa)的透明質酸以3%(w/v)濃度完全溶解于純化水中後使用。 As a biocompatible polymer, hyaluronic acid is used. It is used by completely dissolving hyaluronic acid having an average molecular weight of 360 kDa (molecular weight range of 240-490 kDa) in purified water at a concentration of 3% (w/v).

在向聚二甲基矽氧烷微型模具供給上述透明質酸之後,在真空(600-760mmHg)環境下向形成於微型模具的孔內注入10-30分鐘。在常溫(25℃)下注入並乾燥48小時,在50℃的溫度下注入並乾燥6小時或在70℃的溫度下注入並乾燥3小時,之後除去模具,由此製造出透明質酸微結構體。 After supplying the above hyaluronic acid to the polydimethyl siloxane micro-mold, it was poured into a hole formed in the micro-mold in a vacuum (600-760 mmHg) for 10 to 30 minutes. It was injected and dried at normal temperature (25 ° C) for 48 hours, injected and dried at a temperature of 50 ° C for 6 hours or at a temperature of 70 ° C for 3 hours, after which the mold was removed, thereby producing a hyaluronic acid microstructure. body.

4. D類型微結構體的製造過程 4. Manufacturing process of D type microstructure

在利用光刻製造技術在矽片製造主陽模(positive master mold),之後利用固化性矽(聚二甲基矽氧烷)從上述主陽模中製造出陰模。 A positive master mold is fabricated on a crepe sheet by a photolithographic manufacturing technique, and then a negative mold is fabricated from the above-described main male mold by using a curable cerium (polydimethyl siloxane).

作為生物相容性高分子,利用羧甲基纖維素。通過將羧甲基纖維素以3%(w/v)濃度完全溶解于純化水中後使用。 As the biocompatible polymer, carboxymethyl cellulose is used. It was used by completely dissolving carboxymethylcellulose in purified water at a concentration of 3% (w/v).

在向聚二甲基矽氧烷微型模具供給上述透明質酸之後,在真空(600-760mmHg)環境下向形成於微型模具的孔內注入10-30分鐘。在常溫(25℃)下注入並乾燥48小時,在50℃的溫度下注入並乾燥6小時或在70℃的溫度下注入並乾燥3小時,之後通過除去模具來製造出羧甲基纖維素微結構體。 After supplying the above hyaluronic acid to the polydimethyl siloxane micro-mold, it was poured into a hole formed in the micro-mold in a vacuum (600-760 mmHg) for 10 to 30 minutes. It was injected and dried at normal temperature (25 ° C) for 48 hours, injected and dried at a temperature of 50 ° C for 6 hours or at a temperature of 70 ° C for 3 hours, after which the carboxymethyl cellulose micro was produced by removing the mold. Structure.

5.微結構體的規格範圍(圖1A至圖1F) 5. Specification range of microstructures (Figure 1A to Figure 1F)

表1 Table 1

微結構體柱子的角度範圍:β1,85度-90度/β2~β4,超過90度(90度-180度) The angular range of the microstructure column: β1, 85 degrees - 90 degrees / β2 ~ β4, more than 90 degrees (90 degrees - 180 degrees)

實施例2.微結構體的機械強度實驗 Example 2. Mechanical strength test of microstructure

利用豬的皮膚來實施通過本發明製造的微結構體的機械強度實驗,當以規定力量使微結構體穿透豬皮膚時,確認發生在皮膚表皮的孔的數量,並進行了比較(圖5A至圖5E)。 The mechanical strength test of the microstructure produced by the present invention was carried out using the skin of the pig, and when the microstructure was penetrated into the pig skin with a prescribed force, the number of pores occurring in the skin epidermis was confirmed and compared (Fig. 5A) To Figure 5E).

各個類型的微結構體的樣本以0.7cm×0.7cm(100個以上的結構體)的規格切割後使用,並向豬的皮膚施加3-5kg的垂直力且施加10秒鐘來穿透皮膚。在穿透皮膚後去除微結構體,並在穿透的皮膚表面塗敷20ml的台盼藍(trypane blue,Sigma)之後進行10分鐘的染色,之後利用棉棒和生理鹽水(PBS)來進行擦除。通過對在表皮層中被染色的孔的數量進行測定,從而觀察到可成功穿透皮膚的微結構體的機械強度。 A sample of each type of microstructure was cut after being cut to a specification of 0.7 cm × 0.7 cm (100 or more structures), and a vertical force of 3-5 kg was applied to the skin of the pig and applied for 10 seconds to penetrate the skin. The microstructure was removed after penetrating the skin, and 20 ml of trypane blue (Sigma) was applied to the surface of the penetrating skin for 10 minutes, followed by wiping with a cotton swab and saline (PBS). except. The mechanical strength of the microstructure which can successfully penetrate the skin was observed by measuring the number of pores dyed in the epidermal layer.

以同樣的方法進行實驗來對金字塔形態的微結構體的機械強度進行了比較。 Experiments were conducted in the same manner to compare the mechanical strength of pyramid-shaped microstructures.

本發明的各個微結構體的機械強度實驗結果如下表。 The mechanical strength test results of the respective microstructures of the present invention are shown in the following table.

在上述實驗中所使用的微結構體的具體規格如下表。 The specific specifications of the microstructures used in the above experiments are shown in the following table.

實施例3.微結構體的皮膚穿透率(深度)實驗 Example 3. Skin penetration rate (depth) experiment of microstructure

以如下方式進行通過本發明製造的微結構體的皮膚穿透率實驗,即,在使結構體以規定力量穿透豬的皮膚之後,確認穿透前後的結構體的變形程度,並進行了比較(圖6A至圖6D)。 The skin penetration rate experiment of the microstructure produced by the present invention was carried out in such a manner that after the structure was penetrated into the skin of the pig with a predetermined force, the degree of deformation of the structure before and after the penetration was confirmed and compared. (Fig. 6A to Fig. 6D).

各個類型的微結構體的樣本以0.7cm×0.7cm的規格切割後使用,並向豬皮膚施加3-5kg的垂直力且施加10秒-30分鐘來穿透皮膚。利用光學顯微鏡(Optical Microscope)觀察了插入部位,利用電子顯微鏡(SEM)進行觀察,從而確認到插入於皮膚前後的微結構體的變形程度,並測定出可穿透的深度。 Samples of each type of microstructure were cut after being cut to a size of 0.7 cm x 0.7 cm, and a vertical force of 3-5 kg was applied to the pig skin and applied for 10 seconds to 30 minutes to penetrate the skin. The insertion site was observed with an optical microscope (Optical Microscope), and observed by an electron microscope (SEM) to confirm the degree of deformation of the microstructure before and after insertion into the skin, and the penetration depth was measured.

本發明的不同微結構體的皮膚穿透率的實驗結果如下表。 The experimental results of the skin penetration rate of the different microstructures of the present invention are shown in the following table.

以上,對本發明的特定部分進行了詳細描述,本發明所屬技術領域的普通技術人員明確知曉,這種具體描述僅僅屬於優選實例,而本發明的範圍並不局限於此。因此,本發明的實際範圍應通過所附的專利申請範圍及其等同技術方案來定義。 The specific portions of the present invention have been described in detail above, and it is obvious to those skilled in the art that this detailed description is only a preferred example, and the scope of the present invention is not limited thereto. Therefore, the actual scope of the invention should be defined by the scope of the appended claims and their equivalents.

Claims (17)

一種微結構體(microstructure),其中,包含生物相容性高分子或粘結劑,由底面的直徑(w)及高度(h)形成的縱橫比(w:h)為1:5至1:1.5,遠端末梢(distal tip)的角度(α)為10度至40度,其中微結構體之間的間隔範圍為1/2h至2h,以及其中該微結構體具有結構(i)、(ii)或(iii):(i)具有從微結構體的末梢至底部以圓錐及圓柱之順序連接的雙重結構之微結構體,其中圓錐底面的直徑(w)及高度(h1)之間的縱橫比(w:h1)為1:5至1:1.5,圓柱底面的直徑(w)及高度(h2)之間的縱橫比(w:h2)為1:5至1:1;(ii)具有從微結構體的末梢至底部以圓錐及圓錐台之順序連接的雙重結構之微結構體,其中圓錐底面的直徑(w1)及高度(h1)之間的縱橫比(w1:h1)為1:5至1:1.5,圓錐台底面的直徑(w)及高度(h2)之間的縱橫比(w:h2)為1:5至1:1;以及(iii)具有從微結構體的末梢至底部以圓錐、上部圓錐台及下部圓錐台之順序連接的三重結構之微結構體,其中圓錐底面的直徑(w1)及高度(h1)之間的縱橫比(w1:h1)為1:5至1:1.5,上部圓錐台底面的直徑(w2)及高度(h2)之間的縱橫比(w2:h2)為1:5至1:1,以及下部圓錐台底面的直徑(w)及高度(h)之間的縱橫比(w:h)為1:5至1:2。 A microstructure comprising a biocompatible polymer or a binder having an aspect ratio (w:h) formed by a diameter (w) and a height (h) of the bottom surface of 1:5 to 1: 1.5, the angle (α) of the distal tip is 10 to 40 degrees, wherein the interval between the microstructures is 1/2 h to 2 h, and wherein the microstructure has the structure (i), Ii) or (iii): (i) a microstructure having a double structure connected in the order of a cone and a cylinder from the tip to the bottom of the microstructure, wherein the diameter (w) and height (h 1 ) of the bottom surface of the cone are between The aspect ratio (w:h 1 ) is 1:5 to 1:1.5, and the aspect ratio (w:h 2 ) between the diameter (w) and the height (h 2 ) of the bottom surface of the cylinder is 1:5 to 1:1. (ii) a microstructure having a dual structure connected in the order of a cone and a truncated cone from the tip to the bottom of the microstructure, wherein the aspect ratio between the diameter (w 1 ) and the height (h 1 ) of the conical bottom surface ( w 1 :h 1 ) is 1:5 to 1:1.5, and the aspect ratio (w:h 2 ) between the diameter (w) and the height (h 2 ) of the bottom surface of the truncated cone is 1:5 to 1:1; (iii) having a cone from the tip to the bottom of the microstructure, the upper circle a triple-structured microstructure in which the frustum and the lower truncated cone are sequentially connected, wherein the aspect ratio (w 1 :h 1 ) between the diameter (w 1 ) and the height (h 1 ) of the conical bottom surface is 1:5 to 1 : 1.5, the aspect ratio (w 2 : h 2 ) between the diameter (w 2 ) and the height (h 2 ) of the bottom surface of the upper truncated cone is 1:5 to 1:1, and the diameter of the bottom surface of the lower truncated cone (w) The aspect ratio (w:h) between the heights (h) is 1:5 to 1:2. 如請求項1之微結構體,其中,上述生物相容性高分子為選自由透明質 酸(Hyaluronic acid:HA)、羧甲基纖維素(Carboxymethyl cellulose:CMC)、海藻酸(alginic acid)、果膠、卡拉膠、硫酸軟骨素、硫酸葡聚糖、殼聚糖、聚賴氨酸(polylysine)、膠原蛋白、明膠、羧甲基殼聚糖(carboxymethyl chitin)、血纖維蛋白、瓊脂糖、支鏈澱粉聚乳酸、聚乙交酯(PGA)、聚乳酸-羥基乙酸共聚物(PLGA)、聚酸酐(polyanhy dride)、聚原酸酯(polyorthoester)、聚醚酯(polyetherester)、聚己內酯(polycaprolactone)、聚酯醯胺(polyesteramide)、聚(丁酸)、聚(戊酸)、聚氨酯、聚丙烯酸酯、乙烯-乙酸乙烯酯聚合物、丙烯取代的纖維素乙酸酯、不可降解聚氨酯、聚苯乙烯、聚氯乙烯、聚氟乙烯、聚乙烯基咪唑、氯磺酸酯聚烯烴(chlorosulphonate polyolefins)、聚氧化乙烯、聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、聚甲基丙烯酸酯、羥丙基甲基纖維素(HPMC)、乙基纖維素(EC)、羥丙基纖維素(HPC)、環糊精及形成這些高分子的多個單體的共聚物及纖維素組成的組中的一種以上高分子。 The microstructure according to claim 1, wherein the biocompatible polymer is selected from the group consisting of hyaluronic acid Acid (Hyaluronic acid: HA), Carboxymethyl cellulose (CMC), alginic acid, pectin, carrageenan, chondroitin sulfate, dextran sulfate, chitosan, polylysine (polylysine), collagen, gelatin, carboxymethyl chitin, fibrin, agarose, amylopectin polylactic acid, polyglycolide (PGA), polylactic acid-glycolic acid copolymer (PLGA) ), polyanhydide, polyorthoester, polyetherester, polycaprolactone, polyesteramide, poly(butyric acid), poly(valeric acid) ), polyurethane, polyacrylate, ethylene-vinyl acetate polymer, propylene substituted cellulose acetate, non-degradable polyurethane, polystyrene, polyvinyl chloride, polyvinyl fluoride, polyvinyl imidazole, chlorosulfonate Chlorosulfonate polyolefins, polyethylene oxide, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polymethacrylate, hydroxypropyl methylcellulose (HPMC), ethylcellulose (EC) , hydroxypropyl cellulose (HPC), cyclodextrin and form this One or more copolymers and cellulose polymer group of the plurality of monomers in the polymer composition. 如請求項1之微結構體,其中,上述粘結劑為選自由矽、聚氨酯、透明質酸、物理粘合劑(壁虎)、聚丙烯酸、乙基纖維素、羥甲基纖維素、乙烯醋酸乙烯酯及聚異丁烯組成的組中的一種以上物質。 The microstructure according to claim 1, wherein the binder is selected from the group consisting of ruthenium, polyurethane, hyaluronic acid, physical binder (gecko), polyacrylic acid, ethyl cellulose, hydroxymethyl cellulose, and ethylene acetate. More than one substance in the group consisting of vinyl ester and polyisobutylene. 如請求項1之微結構體,其中,上述微結構體的縱橫比為1:5至1:2。 The microstructure of claim 1, wherein the microstructure has an aspect ratio of 1:5 to 1:2. 如請求項1之微結構體,其中,上述微結構體的高度為80μm至1500μm。 The microstructure of claim 1, wherein the microstructure has a height of from 80 μm to 1500 μm. 如請求項1之微結構體,其中,上述遠端末梢的直徑(t)為2-20μm。 The microstructure according to claim 1, wherein the distal end has a diameter (t) of 2 to 20 μm. 如請求項1之微結構體,其中,多個微結構體以排列成六角形的方式形成。 The microstructure according to claim 1, wherein the plurality of microstructures are formed in a hexagonal shape. 如請求項1之微結構體,其中,上述微結構體還包含金屬、高分子聚合物或粘結劑。 The microstructure of claim 1, wherein the microstructure further comprises a metal, a high molecular polymer or a binder. 如請求項1之微結構體,其中,上述微結構體除生物相容性高分子及粘結劑之外,還包含有效成分。 The microstructure according to claim 1, wherein the microstructure comprises an active ingredient in addition to the biocompatible polymer and the binder. 一種微結構體的製造方法,其中,包括:步驟(a),向微型模具供給生物相容性高分子或粘結劑;步驟(b),(i)藉由向微型模具施加800-1000g的離心力,或者(ii)在500-860mmHg的壓力下向微型模具的孔內注入上述生物相容性高分子或粘結劑;步驟(c),對上述生物相容性高分子或粘結劑進行乾燥;以及步驟(d),對上述微型模具和經過乾燥的生物相容性高分子或粘結劑進行分離來形成微結構體:其中由微結構體底面的直徑(w)及高度(h)形成的縱橫比(w:h)為1:5至1:1.5,遠端末梢的角度為10度至40度,其中微結構體之間的間隔範圍為1/2h至2h,以及其中該微結構體具有結構(i)、(ii)或(iii):(i)具有從微結構體的末梢至底部以圓錐及圓柱之順序連接的雙重結構之微結構體,其中圓錐底面的直徑(w)及高度(h1)之間的縱橫比(w:h1)為1:5至1:1.5,圓柱底面的直徑(w)及高度(h2)之間 的縱橫比(w:h2)為1:5至1:1;(ii)具有從微結構體的末梢至底部以圓錐及圓錐台之順序連接的雙重結構之微結構體,其中圓錐底面的直徑(w1)及高度(h1)之間的縱橫比(w1:h1)為1:5至1:1.5,圓錐台底面的直徑(w)及高度(h2)之間的縱橫比(w:h2)為1:5至1:1;以及(iii)具有從微結構體的末梢至底部以圓錐、上部圓錐台及下部圓錐台之順序連接的三重結構之微結構體,其中圓錐底面的直徑(w1)及高度(h1)之間的縱橫比(w1:h1)為1:5至1:1.5,上部圓錐台底面的直徑(w2)及高度(h2)之間的縱橫比(w2:h2)為1:5至1:1,以及下部圓錐台底面的直徑(w)及高度(h)之間的縱橫比(w:h)為1:5至1:2。 A method for producing a microstructure, comprising: step (a), supplying a biocompatible polymer or a binder to a micro mold; and step (b), (i) applying 800-1000 g to the micro mold Centrifugal force, or (ii) injecting the above biocompatible polymer or binder into the pores of the micro mold under a pressure of 500-860 mmHg; and (c), performing the above biocompatible polymer or binder Drying; and step (d), separating the micro mold and the dried biocompatible polymer or binder to form a microstructure in which the diameter (w) and height (h) of the bottom surface of the microstructure are The aspect ratio (w:h) is 1:5 to 1:1.5, and the distal end angle is 10 to 40 degrees, wherein the interval between the microstructures is 1/2h to 2h, and wherein the micro The structure has a structure (i), (ii) or (iii): (i) a microstructure having a double structure connected in the order of a cone and a cylinder from the tip to the bottom of the microstructure, wherein the diameter of the bottom surface of the cone (w) ) and the height (aspect ratio between 1 H) ratio (w: h 1) is 1: 5 to 1: 1.5, the diameter of the cylindrical bottom surface (w) and height (h 2) of Aspect ratio (w: h 2) is 1: 5 to 1: 1; (II) having a microstructure double structure of the order of a cone and the truncated cone of the connection from the tip microstructure body to the bottom, wherein the conical bottom surface aspect ratio between the diameter (W 1) and height (H 1) ratio (w 1: h 1) is 1: 5 to 1: 1.5, the aspect ratio between the diameter of the bottom surface of the truncated cone (w) and height (h 2) a ratio (w:h 2 ) of 1:5 to 1:1; and (iii) a triple-structured microstructure having a cone, an upper truncated cone, and a lower truncated cone connected from the tip to the bottom of the microstructure, wherein the aspect ratio between the diameter of the conical bottom surface (W 1) and height (h 1) than (w 1: h 1) is 1: 5 to 1: 1.5, the diameter of the bottom surface of the upper truncated cone (w 2) and the height (h 2 ) The aspect ratio (w 2 :h 2 ) is 1:5 to 1:1, and the aspect ratio (w:h) between the diameter (w) and the height (h) of the bottom surface of the lower truncated cone is 1 : 5 to 1:2. 如請求項10之微結構體的製造方法,其中,上述步驟(c)在(i)常溫下實施36-60小時,或者在(ii)40-60℃的溫度下實施5-16小時,或者在(iii)60-80℃的溫度下實施2-4小時。 The method for producing a microstructure according to claim 10, wherein the step (c) is carried out at (i) at room temperature for 36 to 60 hours, or at (ii) 40 to 60 ° C for 5 to 16 hours, or It is carried out at (iii) a temperature of 60-80 ° C for 2-4 hours. 如請求項10之微結構體的製造方法,其中,上述生物相容性高分子為選自由透明質酸、羧甲基纖維素、海藻酸、果膠、卡拉膠、硫酸軟骨素、硫酸葡聚糖、殼聚糖、聚賴氨酸、膠原蛋白、明膠、羧甲基殼聚糖、血纖維蛋白、瓊脂糖、支鏈澱粉聚乳酸、聚乙交酯、聚乳酸-羥基乙酸共聚物、聚酸酐、聚原酸酯、聚醚酯、聚己內酯、聚酯醯胺、聚(丁酸)、聚(戊酸)、聚氨酯、聚丙烯酸酯、乙烯-乙酸乙烯酯聚合物、丙烯取代的纖維素乙酸酯、不可降解聚氨酯、聚苯乙烯、聚氯乙烯、聚氟乙烯、 聚乙烯基咪唑、氯磺酸酯聚烯烴、聚氧化乙烯、聚乙烯吡咯烷酮、聚乙二醇、聚甲基丙烯酸酯、羥丙基甲基纖維素、乙基纖維素、羥丙基纖維素、環糊精及形成這些高分子的多個單體的共聚物及纖維素組成的組中的一種以上高分子。 The method for producing a microstructure according to claim 10, wherein the biocompatible polymer is selected from the group consisting of hyaluronic acid, carboxymethyl cellulose, alginic acid, pectin, carrageenan, chondroitin sulfate, and sulfuric acid. Sugar, chitosan, polylysine, collagen, gelatin, carboxymethyl chitosan, fibrin, agarose, amylopectin polylactic acid, polyglycolide, polylactic acid-glycolic acid copolymer, poly Anhydride, polyorthoester, polyether ester, polycaprolactone, polyester decylamine, poly(butyric acid), poly(valeric acid), polyurethane, polyacrylate, ethylene-vinyl acetate polymer, propylene substituted Cellulose acetate, non-degradable polyurethane, polystyrene, polyvinyl chloride, polyvinyl fluoride, Polyvinylimidazole, chlorosulfonate polyolefin, polyethylene oxide, polyvinylpyrrolidone, polyethylene glycol, polymethacrylate, hydroxypropyl methylcellulose, ethyl cellulose, hydroxypropyl cellulose, One or more polymers of a cyclodextrin and a copolymer of a plurality of monomers forming these polymers and a group consisting of cellulose. 如請求項12之微結構體的製造方法,其中,上述透明質酸的分子量為240-490kDa。 The method for producing a microstructure according to claim 12, wherein the hyaluronic acid has a molecular weight of 240 to 490 kDa. 如請求項10之微結構體的製造方法,其中,在上述步驟(a)中,相對於微結構體的總組成成分,生物相容性高分子的固體成分含量(solid content)為1-30%(w/v)。 The method for producing a microstructure according to claim 10, wherein, in the above step (a), the solid content of the biocompatible polymer is 1 to 30 with respect to the total composition of the microstructure. %(w/v). 如請求項10之微結構體的製造方法,其中,上述粘結劑為選自由矽、聚氨酯、透明質酸、物理粘合劑(壁虎)、聚丙烯酸、乙基纖維素、羥甲基纖維素、乙烯醋酸乙烯酯及聚異丁烯組成的組中的一種以上物質。 The method for producing a microstructure according to claim 10, wherein the binder is selected from the group consisting of ruthenium, polyurethane, hyaluronic acid, physical binder (gecko), polyacrylic acid, ethyl cellulose, and hydroxymethyl cellulose. And one or more substances selected from the group consisting of ethylene vinyl acetate and polyisobutylene. 如請求項10之微結構體的製造方法,其中,在上述微結構體的製造方法中,多個微結構體以排列成六角形的方式形成。 The method for producing a microstructure according to claim 10, wherein in the method for producing the microstructure, the plurality of microstructures are formed in a hexagonal shape. 如請求項16之微結構體的製造方法,其中,上述多個微結構體以250-1500μm的間隔(p)排列。 The method of producing a microstructure according to claim 16, wherein the plurality of microstructures are arranged at intervals (p) of 250 to 1500 μm.
TW106121494A 2017-06-27 2017-06-27 Microstructure for transdermal absorption and process for preparing the same TWI645870B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106121494A TWI645870B (en) 2017-06-27 2017-06-27 Microstructure for transdermal absorption and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106121494A TWI645870B (en) 2017-06-27 2017-06-27 Microstructure for transdermal absorption and process for preparing the same

Publications (2)

Publication Number Publication Date
TWI645870B true TWI645870B (en) 2019-01-01
TW201904624A TW201904624A (en) 2019-02-01

Family

ID=65803531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106121494A TWI645870B (en) 2017-06-27 2017-06-27 Microstructure for transdermal absorption and process for preparing the same

Country Status (1)

Country Link
TW (1) TWI645870B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727751A (en) * 2019-04-02 2021-11-30 宝龄富锦生技股份有限公司 Microneedle device and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261632A1 (en) * 2004-05-18 2005-11-24 Bai Xu High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
CN104027324A (en) * 2013-03-06 2014-09-10 中国科学院理化技术研究所 Soluble microneedle vaccine patch and preparation method thereof
US20150305739A1 (en) * 2012-06-15 2015-10-29 University Of Washington Through Its Center For Commercialization Microstructure-based wound closure devices
CN105073178A (en) * 2012-12-21 2015-11-18 考里安国际公司 Microarray for delivery of therapeutic agent and methods of use
CN105263561A (en) * 2013-05-06 2016-01-20 延世大学校产学协力团 Method for manufacturing microstructure using centrifugal force and microstructure manufactured by same
KR101694317B1 (en) * 2016-05-24 2017-01-10 하태석 Manufacturing method of micro needle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261632A1 (en) * 2004-05-18 2005-11-24 Bai Xu High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
US20150305739A1 (en) * 2012-06-15 2015-10-29 University Of Washington Through Its Center For Commercialization Microstructure-based wound closure devices
CN105073178A (en) * 2012-12-21 2015-11-18 考里安国际公司 Microarray for delivery of therapeutic agent and methods of use
CN104027324A (en) * 2013-03-06 2014-09-10 中国科学院理化技术研究所 Soluble microneedle vaccine patch and preparation method thereof
CN105263561A (en) * 2013-05-06 2016-01-20 延世大学校产学协力团 Method for manufacturing microstructure using centrifugal force and microstructure manufactured by same
KR101694317B1 (en) * 2016-05-24 2017-01-10 하태석 Manufacturing method of micro needle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727751A (en) * 2019-04-02 2021-11-30 宝龄富锦生技股份有限公司 Microneedle device and method for producing the same
CN113727751B (en) * 2019-04-02 2024-03-15 宝龄富锦生技股份有限公司 Microneedle device and method for manufacturing the same

Also Published As

Publication number Publication date
TW201904624A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
JP6995915B2 (en) Microstructure-containing sheet
CN107207784B (en) Microstructure using crosslinked hyaluronic acid hydrogel and method for producing same
KR101136738B1 (en) Process for Preparing Solid Microstructures by Blowing and Solid Microstructures Prepared by the Same
TWI675666B (en) Hyaluronic acid microstructure having excellent dissolving properties
JP5863824B2 (en) Manufacturing method of microstructure
JP2019048107A (en) Micro-array for delivering therapeutic agent and use method
CN116617551A (en) Microneedle device
US10231879B2 (en) Manufacturing method of microstructure
CN105263561A (en) Method for manufacturing microstructure using centrifugal force and microstructure manufactured by same
KR101488397B1 (en) Process for Preparing Microstructures by Negative Pressure and Microstructures Prepared by the Same
JP7398606B2 (en) Hybrid methods of forming microstructure array molds, methods of making microstructure arrays, and methods of use
KR101613008B1 (en) Microbullet for drug delivery
TWI645870B (en) Microstructure for transdermal absorption and process for preparing the same
KR20110116110A (en) Process for preparing solid microstructures by blowing
KR102199708B1 (en) Biodegradable nano needle array and preparing method thereof
CN116942592A (en) Water-soluble biomolecular glass microneedle and preparation method thereof