TWI626839B - High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations - Google Patents

High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations Download PDF

Info

Publication number
TWI626839B
TWI626839B TW104122567A TW104122567A TWI626839B TW I626839 B TWI626839 B TW I626839B TW 104122567 A TW104122567 A TW 104122567A TW 104122567 A TW104122567 A TW 104122567A TW I626839 B TWI626839 B TW I626839B
Authority
TW
Taiwan
Prior art keywords
resource allocation
frequency division
orthogonal frequency
mhz
allocation unit
Prior art date
Application number
TW104122567A
Other languages
Chinese (zh)
Other versions
TW201608863A (en
Inventor
夏爾納茲 阿吉佶
湯瑪斯J 肯尼
艾爾戴德 佩瑞希亞
Original Assignee
英特爾Ip公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/447,254 external-priority patent/US20150139118A1/en
Priority claimed from US14/573,912 external-priority patent/US9680603B2/en
Priority claimed from PCT/US2015/035313 external-priority patent/WO2015195460A1/en
Application filed by 英特爾Ip公司 filed Critical 英特爾Ip公司
Publication of TW201608863A publication Critical patent/TW201608863A/en
Application granted granted Critical
Publication of TWI626839B publication Critical patent/TWI626839B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

此處一般說明用於一無線網路中之高效能(HE)通訊的一高效能(HE)通訊站和方法之實施例。該HE通訊站可以依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞4倍(4x)較長延時正交分頻多工(OFDM)符號。該等頻道資源可以包括一個或多個資源分配單元,各資源分配單元具有一預定數目之資料子載波。該站台也可以依據複數個子載波分配之一者而組配該等資源分配單元以供用於複數個交錯器組態之一者。該站台可以藉由一512-點快速傅立葉轉換(FFT),其用於在包括一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊,以及藉由一1024-點快速傅立葉轉換,其用於在包括二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊,因而處理該等較長延時正交分頻多工符號。 Embodiments of a high performance (HE) communication station and method for high performance (HE) communication in a wireless network are generally described herein. The HE station can transmit 4x (4x) longer delay orthogonal frequency division multiplexing (OFDM) symbols on the channel resources according to an orthogonal frequency division multiplexing access (OFDMA) technique. The channel resources may include one or more resource allocation units, each resource allocation unit having a predetermined number of data subcarriers. The station may also group the resource allocation units for one of a plurality of interleaver configurations in accordance with one of a plurality of subcarrier allocations. The station can be used by a 512-point Fast Fourier Transform (FFT) for communication over a 40 MHz channel bandwidth including a 40 MHz resource allocation unit, and by a 1024-point fast Fourier transform. The communication over an 80 MHz channel bandwidth comprising either of the two 40 MHz resource allocation units or an 80 MHz resource allocation unit, thus processing the longer delay orthogonal frequency division multiplex symbols.

Description

用於在40MHZ與80MHZ之頻寬分配內來傳遞較長延時正交分頻多工 (OFDM)符號之高效能(HE)通訊站及方法 Used to transmit longer delay orthogonal frequency division multiplexing in the bandwidth allocation of 40MHZ and 80MHZ (OFDM) symbol high performance (HE) communication station and method 發明領域 Field of invention

實施例係關於無線網路。一些實施例係關於包含依據IEEE 802.11家族標準之網路操作的無線局域性區域網路(WLAN)以及Wi-Fi網路。一些實施例係關於高效能WLAN研究群組(HEW SG)(稱為DensiFi)以及參考IEEE 802.11ax SG。一些實施例係關於包含HE Wi-Fi通訊之高效能(HE)無線通訊以及高效能WLAN(HEW)通訊。 Embodiments relate to wireless networks. Some embodiments are directed to a wireless local area network (WLAN) and a Wi-Fi network that operate over a network in accordance with the IEEE 802.11 family of standards. Some embodiments relate to the High Efficiency WLAN Research Group (HEW SG) (referred to as DensiFi) and to the IEEE 802.11ax SG. Some embodiments relate to high performance (HE) wireless communication including HE Wi-Fi communication and high performance WLAN (HEW) communication.

發明背景 Background of the invention

無線通訊朝向不停地增加資料率(例如,自IEEE 802.11a/g至IEEE 802.11n至IEEE 802.11ac)演進。在高密度配置情況中,整體的系統效能可能比較高的資料率更重要。例如,在高密度熱點和行動電話卸載情節中,競爭於無線媒體之許多裝置可能具有低度至中度的資料率需求(相對於IEEE 802.11ac之非常高資料率)。使用於包含非常 高傳輸量(VHT)通訊之習見和傳統之IEEE 802.11通訊之框架結構可能是較不適用於此等高密度配置情況。最近形成而稱為IEEE 802.11ax之用於高效能WLAN的任務族群正處理這些高密度配置情節。 Wireless communication is continually increasing the data rate (eg, from IEEE 802.11a/g to IEEE 802.11n to IEEE 802.11ac). In high-density configurations, the overall system performance may be more important than the higher data rate. For example, in high-density hotspots and mobile phone offload scenarios, many devices competing for wireless media may have low to moderate data rate requirements (relatively high data rates relative to IEEE 802.11ac). Used to contain very The high-transmission (VHT) communication and the traditional IEEE 802.11 communication framework may not be suitable for such high-density configurations. The task population for high-performance WLANs, recently formed and known as IEEE 802.11ax, is processing these high-density configuration scenarios.

對於HEW之一問題是界定能夠再使用至少一些IEEE 802.11ac硬體之一有效的通訊結構,例如,音調分配和區塊交錯器電路。對於HEW之另一個問題是界定一有效的通訊結構,其是適用於較長OFDM符號延時的使用,尤其是具有如標準(1x)符號延時之四倍(4x)長或更長的一延時之OFDM符號。對於HEW之另一個問題是界定一有效的通訊結構,其是適當地供使用於用以透過較寬之頻寬(例如,40MHz和80MHz頻寬)而傳遞較長OFDM符號延時。 One problem with HEW is to define communication structures that can be reused with at least some of the IEEE 802.11ac hardware, such as tone allocation and block interleaver circuits. Another problem with HEW is to define an efficient communication structure that is suitable for use with longer OFDM symbol delays, especially with a delay of four times (4x) longer or longer than the standard (1x) symbol delay. OFDM symbol. Another problem with HEW is to define an efficient communication structure that is suitably used to pass longer OFDM symbol delays over a wider bandwidth (e.g., 40 MHz and 80 MHz bandwidth).

因此,一般需要有用以改進無線網路中之全面系統效能的裝置和方法,尤其是對於高密度配置情況。同時一般也需要有適用於HEW通訊之裝置和方法。同時一般也需要有適用於HEW通訊的裝置和方法,其可以依據一有效通訊結構以及能夠再使用之至少一些習見硬體而通訊。同時一般也需要有適用於可以依據用以使用一較長延時之OFDM符號的一有效通訊結構之HEW通訊的裝置和方法,該有效通訊結構是適當地供使用於用以透過較寬之頻寬(例如,40MHz和80MHz頻寬)而傳遞較長OFDM符號延時。 Therefore, there is a general need for apparatus and methods that are useful for improving overall system performance in wireless networks, especially for high density configurations. At the same time, there is also a general need for devices and methods suitable for HEW communication. At the same time, there is generally a need for an apparatus and method suitable for HEW communication that can communicate in accordance with an effective communication structure and at least some of the hardware that can be reused. At the same time, there is generally also a need for an apparatus and method suitable for HEW communication that can be used in accordance with an effective communication structure for using a longer delay OFDM symbol, which is suitably used to transmit a wider bandwidth. (for example, 40 MHz and 80 MHz bandwidth) while passing a longer OFDM symbol delay.

依據本發明之一實施例,係特地提出一種高效能(HE) 通訊站(STA),其包含實體層和媒體接取控制層電路來用以:依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等頻道資源包含一或多個資源分配單元,各資源分配單元包含一預定數目之資料子載波;依據複數個子載波分配之一者而組配該等資源分配單元以用於該等較長延時正交分頻多工符號之通訊;並且藉由下列之至少一者而處理該等較長延時正交分頻多工符號:一512點快速傅立葉轉換(FFT),其用於在包含一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊;以及一1024點快速傅立葉轉換,其用於在包含二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊。 According to an embodiment of the present invention, a high performance (HE) is specifically proposed. a communication station (STA) comprising a physical layer and a media access control layer circuit for transmitting a longer delay orthogonal frequency division multiplexing on a channel resource according to an orthogonal frequency division multiplexing access (OFDMA) technique (OFDM) symbols, the channel resources include one or more resource allocation units, each resource allocation unit includes a predetermined number of data subcarriers; and the resource allocation units are configured for use according to one of a plurality of subcarrier allocations for Communication of the longer delay orthogonal frequency division multiplex symbols; and processing the longer delay orthogonal frequency division multiplex symbols by at least one of: a 512 point fast Fourier transform (FFT), which is used Communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit; and a 1024-point fast Fourier transform for one of the two 40 MHz resource allocation units or an 80 MHz resource allocation unit Communication over the bandwidth of the 80MHz channel.

100‧‧‧HEW網路 100‧‧‧HEW Network

102‧‧‧主站台 102‧‧‧Main station

104‧‧‧HEW裝置 104‧‧‧HEW device

106‧‧‧傳統站台 106‧‧‧Traditional platform

200‧‧‧實體層電路 200‧‧‧ physical layer circuit

208‧‧‧編碼器 208‧‧‧Encoder

214‧‧‧交錯器 214‧‧‧Interlacer

216‧‧‧分佈映射器 216‧‧‧Distribution Mapper

218‧‧‧FFT處理電路 218‧‧‧FFT processing circuit

300‧‧‧HEW裝置 300‧‧‧HEW device

301‧‧‧天線 301‧‧‧Antenna

302‧‧‧實體層電路 302‧‧‧ physical layer circuit

304‧‧‧媒體接取控制層電路 304‧‧‧Media access control layer circuit

306‧‧‧處理電路 306‧‧‧Processing Circuit

308‧‧‧記憶體 308‧‧‧ memory

400~408‧‧‧傳遞較長延時OFDM符號步驟 400~408‧‧‧Steps for transmitting longer delay OFDM symbols

圖1例示依據一些實施例之一HEW網路;圖2是依據一些實施例之一HEW通訊站之一部份的實體層方塊圖;圖3例示依據一些實施例之一HEW裝置;以及圖4是依據一些實施例使用資源分配單元而用以傳遞之一些步驟。 1 illustrates a HEW network in accordance with some embodiments; FIG. 2 is a block diagram of a physical layer of a portion of a HEW communication station in accordance with some embodiments; FIG. 3 illustrates a HEW device in accordance with some embodiments; Some steps are used to pass the resource allocation unit in accordance with some embodiments.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

下面的說明和圖形充分地例示特定實施例以致能那些熟習本技術者可實施它們。其他實施例可以包含結構、邏輯、電氣、處理程序、以及其他變化。一些實施例 之部份和特點可以包含於其他實施例中對應者,或為其所替代。申請專利範圍中所提及之實施例包含那些申請專利範圍之所有可能等效者。 The following description and the drawings are illustrative of specific embodiments in which the invention can be practiced by those skilled in the art. Other embodiments may incorporate structural, logical, electrical, processing, and other changes. Some embodiments Portions and features may be included in, or substituted for, the counterparts in other embodiments. The examples mentioned in the scope of the patent application include all possible equivalents of those claims.

圖1例示依據一些實施例之一HEW網路。HEW網路100可以包含一主站台(STA)102、複數個HEW站台104(HEW裝置)、以及複數個傳統站台106(傳統裝置)。該主站台102係可以配置以依據一個或多個IEEE 802.11標準而與該等HEW站台104和該等傳統站台106通訊。依據一些HEW實施例,該主站台102可以被配置以競爭一無線媒體(例如,在一競爭週期期間)以在一HEW控制週期接收該媒體的專屬控制(亦即,一發送機會(TXOP))。該主站台102可以,例如,在HEW控制週期之開始發送一主同步或控制傳輸,以表明哪些HEW站台104被排程以供用於在該HEW控制週期的期間之通訊。在該HEW控制週期的期間,該等排程的HEW站台104可以依據一非競爭為基礎之多重接取技術而與主站台102通訊。這是不同於習見的Wi-Fi通訊,於其中裝置依據一競爭為基礎之通訊技術,而非一非競爭為基礎之多重接取技術而通訊。在該HEW控制週期的期間,該主站台102可以與HEW站台104通訊(例如,使用一個或多個HEW訊框)。在該HEW控制週期的期間,傳統站台106可以避開傳遞。於一些實施例中,該主同步傳輸可以稱為一控制和排程傳輸。 FIG. 1 illustrates a HEW network in accordance with some embodiments. The HEW network 100 can include a primary station (STA) 102, a plurality of HEW stations 104 (HEW devices), and a plurality of legacy stations 106 (legacy devices). The primary station 102 can be configured to communicate with the HEW stations 104 and the legacy stations 106 in accordance with one or more IEEE 802.11 standards. According to some HEW embodiments, the primary station 102 can be configured to compete for a wireless medium (e.g., during a contention period) to receive dedicated control of the medium during a HEW control period (i.e., a transmission opportunity (TXOP) ). The primary station 102 can, for example, transmit a primary synchronization or control transmission at the beginning of the HEW control period to indicate which HEW stations 104 are scheduled for communication during the HEW control period. During the HEW control period, the scheduled HEW stations 104 can communicate with the primary station 102 in accordance with a non-competitive based multi-access technology. This is different from Wi-Fi communication, in which the device communicates based on a competition-based communication technology rather than a non-competitive multi-access technology. During the HEW control period, the primary station 102 can communicate with the HEW station 104 (e.g., using one or more HEW frames). The legacy station 106 can avoid delivery during this HEW control cycle. In some embodiments, the primary synchronous transmission may be referred to as a control and scheduled transmission.

於一些實施例中,使用於該HEW控制週期的期間之多重接取技術可以是一排程正交分頻多工接取 (OFDMA)技術,雖然這不是必要的。於一些實施例中,該多重接取技術可以是一分時多重接取(TDMA)技術,或一分頻多重接取(FDMA)技術,其可以與OFDMA組合。於一些實施例中,該多重接取技術可以包含一多使用者(MU)多輸入多輸出(MIMO)(MU-MIMO)技術的一空間分割多重接取(SDMA)技術,其可以與OFDMA組合。使用於該HEW控制週期的期間之這些多重接取技術係可以組配以供用於上行鏈路或下行鏈路資料通訊。OFDMA同時地致能不同使用者的多工化以供改進效能。 In some embodiments, the multiple access technology used during the HEW control period may be a one-way orthogonal frequency division multiplexing access (OFDMA) technology, although this is not necessary. In some embodiments, the multiple access technique may be a Time Division Multiple Access (TDMA) technique, or a Frequency Division Multiple Access (FDMA) technique, which may be combined with OFDMA. In some embodiments, the multiple access technique may include a spatial division multiple access (SDMA) technique of multiple user (MU) multiple input multiple output (MIMO) (MU-MIMO) technology, which may be combined with OFDMA . These multiple access techniques used during the HEW control period can be configured for uplink or downlink data communication. OFDMA simultaneously enables multiplexing of different users for improved performance.

主站台102也可以依據傳統之IEEE 802.11通訊技術而與傳統站台106通訊(在控制週期之外)。於一些實施例中,該主站台102也可以是可組配以依據傳統之IEEE 802.11通訊技術而在控制週期之外與HEW站台104通訊,雖然這不是必要的。 The primary station 102 can also communicate with the legacy station 106 (outside the control cycle) in accordance with conventional IEEE 802.11 communication techniques. In some embodiments, the primary station 102 may also be configurable to communicate with the HEW station 104 outside of the control period in accordance with conventional IEEE 802.11 communication techniques, although this is not required.

於一些實施例中,在控制週期的期間之HEW通訊可以是可組配以具有20MHz、40MHz、或80MHz連續頻寬之一者的頻寬或一80+80MHz(160MHz)非連續頻寬。於一些實施例中,一320MHz頻道頻寬係可以被使用。於一些實施例中,小於20MHz之子頻道頻寬也可以被使用。在這些實施例中,一HEW通訊之各頻道或子頻道係可以組配以供發送數個空間串流。在該控制週期的期間之HEW通訊可以是上行鏈路或下行鏈路通訊。 In some embodiments, the HEW communication during the control period may be a bandwidth that can be combined to have one of 20 MHz, 40 MHz, or 80 MHz continuous bandwidth or an 80+80 MHz (160 MHz) discontinuous bandwidth. In some embodiments, a 320 MHz channel bandwidth can be used. In some embodiments, subchannel bandwidths less than 20 MHz may also be used. In these embodiments, each channel or sub-channel of a HEW communication can be configured to transmit a plurality of spatial streams. The HEW communication during the control period may be uplink or downlink communication.

此處所揭示之一些實施例提供對於一HEW網路中之子載波(例如,音調)分配的系統和方法。於一些實施 例中,該主站台102或HEW站台104可以分配音調以提供一最小的OFDMA頻寬單元(亦即,一資源分配單元)。於一些實施例中,該主站台102或HEW站台104係可以組配以在包括一個或多個資源分配單元之頻道資源上傳遞較長延時正交分頻多工(OFDM)符號。各資源分配單元可以具有一預定頻寬,並且該等資源分配單元係可以對於複數個交錯器組態之一者依據複數個子載波分配之一者而組配。於一些實施例中,最佳子載波分配和交錯器大小組合被提供以用於使用較長延時OFDM符號之通訊的OFDMA資源分配單元之使用。這些實施例將於下面更詳細地討論。此處所揭示之一些實施例是可應用至使用較長延時OFDM符號(例如,具有一4x符號延時或較長)之通訊,雖然實施例之範疇是不受限定於這論點中。此處所揭示之一些實施例是可應用至使用較大的快速傅立葉轉換(FFT)尺度之通訊,雖然實施例之範疇是不受限定於這論點中。 Some embodiments disclosed herein provide systems and methods for subcarrier (e.g., tone) allocation in a HEW network. For some implementations In an example, the primary station 102 or the HEW station 104 can assign tones to provide a minimum OFDMA bandwidth unit (i.e., a resource allocation unit). In some embodiments, the primary station 102 or HEW station 104 can be configured to communicate longer delay orthogonal frequency division multiplexing (OFDM) symbols on channel resources including one or more resource allocation units. Each resource allocation unit can have a predetermined bandwidth, and the resource allocation units can be grouped for one of a plurality of interleaver configurations based on one of a plurality of subcarrier allocations. In some embodiments, the best subcarrier allocation and interleaver size combination is provided for use by an OFDMA resource allocation unit for communication of longer delay OFDM symbols. These embodiments are discussed in more detail below. Some embodiments disclosed herein are applicable to communications using longer delay OFDM symbols (e.g., having a 4x symbol delay or longer), although the scope of the embodiments is not limited in this respect. Some embodiments disclosed herein are applicable to communication using larger Fast Fourier Transform (FFT) scales, although the scope of the embodiments is not limited in this respect.

依據實施例,一HEW站台(例如,主站台102或一HEW站台104)係可以組配以依據一OFDMA技術而於頻道資源上傳遞較長延時OFDM符號。該頻道資源可以包括一個或多個資源分配單元,並且各資源分配單元可以具有一預定數目之資料子載波。該等較長延時OFDM符號可以具有4x的一標準OFDM符號延時之符號延時(亦即,符號時間(例如,Tsymbol))。該等資源分配單元係可以對於複數個交錯器組態之一者依據複數個子載波分配之一者而組配。這些實施例將於下面更詳細地討論。此處所揭示之一些實 施例可以是可應用至IEEE 802.11ax以及操作一較長OFDM符號延時(例如,標準符號延時之四倍(4x))HEW網路,雖然實施例之範疇是不受限定於這論點中。 In accordance with an embodiment, an HEW station (e.g., primary station 102 or a HEW station 104) can be configured to communicate longer delay OFDM symbols on channel resources in accordance with an OFDMA technique. The channel resource may include one or more resource allocation units, and each resource allocation unit may have a predetermined number of data subcarriers. The longer delay OFDM symbols may have a symbol delay of a standard OFDM symbol delay of 4x (ie, symbol time (eg, T symbol )). The resource allocation units can be configured for one of a plurality of interleaver configurations based on one of a plurality of subcarrier assignments. These embodiments are discussed in more detail below. Some embodiments disclosed herein may be applicable to IEEE 802.11ax and operate a longer OFDM symbol delay (eg, four times the standard symbol delay (4x)) HEW network, although the scope of the embodiments is not limited In this argument.

如在下面更詳細地討論,一HEW主站台102和一HEW站台104可以包括實體層(PHY)和媒體接取控制(MAC)層電路。於一些實施例中,該PHY電路可以包含具有一個OFDM符號之深度的一區塊交錯器。該區塊交錯器可以是可組配以依據該等複數個交錯器組態之任何一者而交錯編碼資料之一區塊。該等交錯器組態可以包括數個行和數個列。這些實施例將於下面更詳細地討論。 As discussed in more detail below, a HEW primary station 102 and a HEW station 104 may include physical layer (PHY) and media access control (MAC) layer circuits. In some embodiments, the PHY circuit can include a block interleaver having a depth of one OFDM symbol. The block interleaver can be a block that can be configured to interleave encoded data in accordance with any of the plurality of interleaver configurations. The interleaver configurations can include several rows and columns. These embodiments are discussed in more detail below.

圖2是依據一些實施例的一HEW通訊站之一部份的實體層方塊圖。PHY層電路200可以是適用於作為一HEW通訊站台(例如,主站台102(圖1)及/或HEW通訊站104(圖1))之實體層的一部份。如於圖2中所例示地,該PHY層電路200可以包含,一個或多個編碼器208、一個或多個區塊交錯器214、一個或多個分佈映射器216以及FFT處理電路218。該等編碼器208之各者係可以組配以在藉由交錯器214交錯之前先編碼輸入資料。分佈映射器216之各者係可以組配以在交錯之後將交錯資料映射至一分佈(例如,一正交振幅調變(QAM)分佈)。各交錯器214係可以組配以依據複數個交錯器組態之任何一者而交錯編碼資料之一區塊。於一些實施例中,該等編碼器208可以是二進制迴旋碼(BCC)編碼器,雖然實施例之範疇是不受限定於這論點中。於一些實施例中,該等編碼器208可以是低密度 同位檢查(LDPC)編碼器。一FFT可以藉由FFT處理電路218而進行於由分佈映射器所提供之分佈映射符號上,以產生用以藉由一個或多個天線而發送之時域信號。在進行BCC編碼之實施例中,交錯處理被進行,而在進行LDPC編碼之實施例中,交錯處理不被進行。 2 is a block diagram of a physical layer of a portion of a HEW communication station in accordance with some embodiments. PHY layer circuit 200 may be part of a physical layer suitable for use as a HEW communication station (e.g., primary station 102 (FIG. 1) and/or HEW communication station 104 (FIG. 1). As illustrated in FIG. 2, the PHY layer circuit 200 can include one or more encoders 208, one or more block interleavers 214, one or more distribution mappers 216, and FFT processing circuits 218. Each of the encoders 208 can be configured to encode the input data prior to interleaving by the interleaver 214. Each of the distribution mappers 216 can be configured to map the interleaved data to a distribution (e.g., a quadrature amplitude modulation (QAM) distribution) after interleaving. Each interleaver 214 can be configured to interleave one block of coded data in accordance with any of a plurality of interleaver configurations. In some embodiments, the encoders 208 may be binary convolutional code (BCC) encoders, although the scope of the embodiments is not limited in this respect. In some embodiments, the encoders 208 can be low density Parity check (LDPC) encoder. An FFT can be performed by the FFT processing circuit 218 on the distribution map symbols provided by the distribution mapper to generate a time domain signal for transmission by one or more antennas. In the embodiment in which BCC encoding is performed, the interleave processing is performed, and in the embodiment in which LDPC encoding is performed, the interleave processing is not performed.

依據實施例,編碼器208和映射器216對於特定子載波分配(亦即,音調分配)依據複數個預定調變和編碼方案(MCS)組合之一者而操作。對於該子載波分配之該等複數個預定MCS組合可以是受限定為每個OFDM符號之一整數的編碼位元(Ncbps)以及每個OFDM符號之一整數的資料位元(Ndbps)。在這些實施例中,每個OFDM符號的編碼位元之數目是一整數且每個OFDM符號之資料位元數目是一整數。假定Ncbps和Ndbps兩者皆是整數,則可以使用之該等預定MCS組合和子載波分配可以包含BPSK、QPSK、16-QAM、64-QAM和256-QAM之調變階數以及1/2、3/4、2/3和5/6的編碼率。一非整數Ndbps可能導致一非整數之填充位元或超出OFDM符號數目之編碼位元數目,其可能使得一OFDM符號僅包括填充位元。一整數Ndbps可以保證所有資料長度使用IEEE 802.11n“OFDM符號數目”,IEEE 802.11 2012規格中之(方程式(20~32))以不具有額外填充而作用。因此,此處所揭示之一些實施例可以受限於某些MCS組合和子載波分配。在這些實施例中,交錯器硬體結構組態是在允許傳統的IEEE 802.11硬體區塊再使用於HFW之一IEEE 802.11交錯器界限之內。 In accordance with an embodiment, encoder 208 and mapper 216 operate for a particular subcarrier allocation (i.e., tone allocation) in accordance with one of a plurality of predetermined modulation and coding scheme (MCS) combinations. The plurality of predetermined MCS combinations for the subcarrier allocation may be coded bits (Ncbps) defined as one integer per OFDM symbol and an integer number of data bits (Ndbps) for each OFDM symbol. In these embodiments, the number of coded bits per OFDM symbol is an integer and the number of data bits per OFDM symbol is an integer. Assuming that both Ncbps and Ndbps are integers, the predetermined MCS combinations and subcarrier allocations that can be used may include the modulation order of BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM, and 1/2, 3 Coding rates of /4, 2/3 and 5/6. A non-integer Ndbps may result in a non-integer padding bit or a number of coding bits exceeding the number of OFDM symbols, which may cause an OFDM symbol to include only padding bits. An integer Ndbps can guarantee that all data lengths use IEEE 802.11n "number of OFDM symbols", and IEEE 802.11 2012 specifications (equations (20~32)) act without additional padding. Accordingly, some of the embodiments disclosed herein may be limited to certain MCS combinations and subcarrier allocations. In these embodiments, the interleaver hardware configuration is within the limits of one IEEE 802.11 interleaver that allows legacy IEEE 802.11 hardware blocks to be reused in HFW.

在這些實施例之一些中,在交錯之前,HEW通訊站102/104可以先組配以依據一編碼率而編碼輸入資料並且隨著交錯之後又可以組配以基於一調變位準而分佈映射交錯位元至QAM分佈點。該編碼率和調變位準可以是依據用於特定子載波分配的預定MCS組合之一者。這些實施例將於下面更詳細地說明。 In some of these embodiments, prior to interleaving, the HEW communication stations 102/104 may be first configured to encode input data in accordance with a coding rate and may be combined to form a distribution map based on a modulation level as it is interleaved. Interleaved bits to QAM distribution points. The coding rate and modulation level may be one of a predetermined MCS combination for a particular subcarrier allocation. These embodiments are described in more detail below.

於一些實施例中,各資源分配單元可以是可組配以供用於在一個和四個空間串流之間的通訊,雖然實施例之範疇是不受限定於這論點中。在這些實施例中,一SDMA或MIMO技術可以使用於控制週期的期間以傳遞該等空間串流。於一些實施例中,各資源分配單元可以是可組配以供用於高至八個或更多個空間串流之通訊。 In some embodiments, each resource allocation unit may be configurable for communication between one and four spatial streams, although the scope of the embodiments is not limited in this respect. In these embodiments, an SDMA or MIMO technique can be used during the control cycle to pass the spatial streams. In some embodiments, each resource allocation unit can be a communication that can be configured for use in up to eight or more spatial streams.

此處所揭示之一些實施例提供數個資料子載波、數個導頻子載波、以及區塊交錯器之大小以供用於二進制迴旋碼編碼之情況。於一些實施例中,對於說明於美國暫定專利申請第61/976,951號案中之用於IEEE 802.11ax之OFDMA波形的結構,可以是適當地供使用,雖然這不是必要的。此處所揭示之一些實施例說明對於OFDMA波形之資源分配單元以及說明子載波分配。於一些實施例中,該子載波分配係可以組配以再使用一些IEEE 802.11ac硬體以產生新OFDMA結構。 Some embodiments disclosed herein provide for the size of several data subcarriers, several pilot subcarriers, and block interleaver for use in binary whirling code encoding. In some embodiments, the structure of the OFDMA waveform for IEEE 802.11ax, which is described in the U.S. Provisional Patent Application Serial No. 61/976,951, may be suitably used, although this is not essential. Some embodiments disclosed herein illustrate resource allocation units for OFDMA waveforms and illustrating subcarrier allocation. In some embodiments, the subcarrier allocation can be combined to reuse some IEEE 802.11ac hardware to produce a new OFDMA structure.

依據一些實施例,一HEW通訊站(例如,主站台102或HEW站台104)係可以組配以依據一OFDMA技術而於頻道資源上傳遞較長延時OFDM符號。該等頻道資源可以 包括一個或多個資源分配單元,並且各資源分配單元可以包括一預定數目之資料子載波。於一些實施例中,該HEW通訊站可以依據用於複數個子載波分配之一者的複數個交錯器組態之一者而組配該等資源分配單元以用於該等較長延時OFDM符號之通訊。在這些實施例中,該等較長延時OFDM符號可以具有一符號延時,該符號延時是為一標準OFDM符號延時之四倍(4x)長,並且該站台可以是可組配以藉由下列不同點之快速傅立葉轉換的至少一者而進行:藉由一512點快速傅立葉轉換(FFT)而處理該等較長延時OFDM符號,以用於在包括一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊,以及藉由一1024點快速傅立葉轉換(FFT)而處理該等較長延時OFDM符號,以用於在一80MHz頻道頻寬之上的通訊。該80MHz頻道頻寬可以包括二個40MHz資源分配單元或一個80MHz資源分配單元之任一者。這些實施例將於下面更詳細地討論。FFT處理電路218係可以組配以進行512點快速傅立葉轉換(FFT)和1024點快速傅立葉轉換(FFT),等等。 In accordance with some embodiments, a HEW communication station (e.g., primary station 102 or HEW station 104) can be configured to communicate longer delay OFDM symbols on channel resources in accordance with an OFDMA technique. These channel resources can One or more resource allocation units are included, and each resource allocation unit can include a predetermined number of data subcarriers. In some embodiments, the HEW communication station can assemble the resource allocation units for the longer delay OFDM symbols depending on one of a plurality of interleaver configurations for one of the plurality of subcarrier allocations communication. In these embodiments, the longer delay OFDM symbols may have a symbol delay that is four times (4x) longer than a standard OFDM symbol delay, and the station may be configurable to be different by Performing at least one of the fast Fourier transforms of the points: processing the longer delay OFDM symbols by a 512-point fast Fourier transform (FFT) for use in a 40 MHz channel bandwidth including a 40 MHz resource allocation unit The upper communication, and the longer delay OFDM symbols are processed by a 1024-point fast Fourier transform (FFT) for communication over an 80 MHz channel bandwidth. The 80 MHz channel bandwidth may include either of two 40 MHz resource allocation units or one 80 MHz resource allocation unit. These embodiments are discussed in more detail below. The FFT processing circuit 218 can be configured to perform 512-point fast Fourier transform (FFT) and 1024-point fast Fourier transform (FFT), and the like.

於一些實施例中,當作為一主站台102而操作時,通訊站可以是可組配以使用512點快速傅立葉轉換(FFT)針對一單一使用者站台(例如,一HEW站台104)而處理該等較長延時OFDM符號以用於在一40MHz資源分配單元之內的通訊,使用1024點快速傅立葉轉換(FFT)針對一單一使用者站台而處理該等較長延時OFDM符號以用於在一80MHz資源分配單元之內的通訊,以及使用512點快速 傅立葉轉換(FFT)針對二個使用者站台而處理該等較長延時正交分頻多工符號,以用於在一80MHz資源分配單元之內的通訊。在這些實施例中,一使用者站台可以使用基本服務集合(BSS)中之一80MHz頻寬而操作,並且可以使用一1024點FFT而處理4x符號。使用者站台也可以使用該基本服務集合(BSS)中之一40MHz頻寬而操作,並且可以使用一512點FFT而處理4x符號。雖然此處所述之實施例係關於一4x符號延時,在一些替換的實施例中,一512點FFT係可以使用以處理在一80MHz資源分配單元內之具有一2x符號延時的符號,並且一1024點FFT係可以使用以處理在一40MHz資源分配單元內之具有一8x符號延時的符號。 In some embodiments, when operating as a primary station 102, the communication station can be configured to process for a single user station (eg, a HEW station 104) using 512-point Fast Fourier Transform (FFT). The longer delay OFDM symbols are processed for communication within a 40 MHz resource allocation unit using a 1024-point Fast Fourier Transform (FFT) for a single user station to process the longer delay OFDM symbols for use in a Communication within the 80MHz resource allocation unit, and using 512 points fast Fourier transform (FFT) processes the longer delay orthogonal frequency division multiplex symbols for two user stations for communication within an 80 MHz resource allocation unit. In these embodiments, a user station can operate using one of the 80MHz bandwidths in the Basic Service Set (BSS) and can process 4x symbols using a 1024-point FFT. The user station can also operate using one of the 40MHz bandwidths in the Basic Service Set (BSS) and can process 4x symbols using a 512 point FFT. Although the embodiments described herein relate to a 4x symbol delay, in some alternative embodiments, a 512 point FFT can be used to process symbols having a 2x symbol delay within an 80 MHz resource allocation unit, and A 1024 point FFT can be used to process symbols having an 8x symbol delay within a 40 MHz resource allocation unit.

於一些實施例中,用以藉由不具有用於256正交振幅調變(QAM)之5/6的碼率互斥之1024點快速傅立葉轉換(FFT)而處理較長延時OFDM符號,用於80MHz資源分配單元之該等預定數目之資料子載波可以包括用於具有26行之一交錯器組態之936資料子載波、用於具有15或20行之一交錯器組態之960資料子載波、用於具有24或41行之一交錯器組態之984資料子載波、以及用於具有22、30或33行之一交錯器組態之990資料子載波,雖然實施例之範疇是不受限定於這論點中。這些實施例以及其他實施例將於下面更詳細地說明並且例示於下面之列表III中。 In some embodiments, to process longer delayed OFDM symbols by using a 1024-point fast Fourier transform (FFT) that does not have a 5/6 code rate mutual exclusion for 256 Quadrature Amplitude Modulation (QAM), The predetermined number of data subcarriers at the 80 MHz resource allocation unit may include 936 data subcarriers for one of the 26 rows of interleaver configurations, and 960 data bits for one or 15 rows of interleaver configurations. Carrier, 984 data subcarrier for interleaver configuration with 24 or 41 rows, and 990 data subcarrier for interleaver configuration with 22, 30 or 33 rows, although the scope of the embodiment is not Limited by this argument. These and other embodiments are described in greater detail below and illustrated in List III below.

於一些實施例中用以藉由不具有用於256正交振幅調變(QAM)之5/6碼率互斥之512點快速傅立葉轉換(FFT)而處理該等較長延時OFDM符號,用於40MHz資源分配單 元的預定數目之資料子載波可以包括下列之一者:用於具有26行之一交錯器組態之468資料子載波、用於具有18或27行之一交錯器組態之486資料子載波。在這些實施例中,用以藉由具有用於256正交振幅調變(QAM)之5/6的碼率互斥之512點快速傅立葉轉換(FFT)而處理該等較長延時OFDM符號,用於40MHz資源分配單元的預定數目之資料子載波可以包括具有14或35行之一交錯器組態之490資料子載波。這些實施例以及其他實施例將於下面更詳細地說明並且例示於下面之VI列表中。 For use in some embodiments to process the longer delay OFDM symbols by 512-point fast Fourier transform (FFT) without 5/6 code rate mutual exclusion for 256 Quadrature Amplitude Modulation (QAM), At 40MHz resource allocation The predetermined number of data subcarriers of the element may include one of: 468 data subcarriers for an interleaver configuration with 26 rows, 486 data subcarriers for an interleaver configuration with 18 or 27 rows . In these embodiments, the longer delayed OFDM symbols are processed by a 512 point fast Fourier transform (FFT) with a 5/6 code rate mutual exclusion for 256 Quadrature Amplitude Modulation (QAM), The predetermined number of data subcarriers for the 40 MHz resource allocation unit may include 490 data subcarriers having one of the 14 or 35 row interleaver configurations. These and other embodiments are described in greater detail below and illustrated in the VI list below.

於一些實施例中,一HEW主站台102可以是可組配以使用512點快速傅立葉轉換而處理來自一或二個使用者站台在一40MHz資源分配單元內所接收之較長延時OFDM符號,並且使用一256點快速傅立葉轉換而處理來自一個使用者站台在一20MHz資源分配單元內所接收的較長延時OFDM符號。在一些的這些實施例中,用於藉由不具有一碼率互斥之256點快速傅立葉轉換而處理該等較長延時OFDM符號,用於20MHz資源分配單元的預定數目之資料子載波可以包括下列中之一者:用於具有26行之一交錯器組態之234資料子載波、用於具有19行之一交錯器組態之228資料子載波、以及用於具有20行之一交錯器組態之240資料子載波。這些實施例以及其他實施例將於下面更詳細地說明並且例示於下面VIII之列表中。 In some embodiments, a HEW primary station 102 can be configured to process longer delay OFDM symbols received from one or two user stations in a 40 MHz resource allocation unit using 512-point fast Fourier transform. And processing a longer delayed OFDM symbol received from a user station in a 20 MHz resource allocation unit using a 256-point fast Fourier transform. In some of these embodiments, the longer delayed OFDM symbols are processed by 256-point fast Fourier transform without a code rate mutual exclusion, and the predetermined number of data subcarriers for the 20 MHz resource allocation unit may include One of the following: 234 data subcarriers for one of the 26 rows of interleaver configurations, 228 data subcarriers for one of the 19 rows of interleaver configurations, and for one of the 20 rows of interleaver Configured 240 data subcarriers. These and other embodiments are described in greater detail below and illustrated in the following list of VIII.

於一些實施例中,一HEW主站台102也可以是可組配以使用256點快速傅立葉轉換(FFT)而處理來自二個 使用者站台在一20MHz資源分配單元內所接收之較長延時OFDM符號。對於不具有用於256正交振幅調變(QAM)之5/6碼率互斥而處理來自二個使用者站台之該等較長延時OFDM符號,用於20MHz資源分配單元的預定數目之資料子載波可以包括下列之一者:用於具有6或17行之一交錯器組態之102資料子載波、以及用於具有18行之一交錯器組態之108資料子載波。這些實施例以及其他實施例將於下面更詳細地說明並且例示於下面之列表X中。對於具有用於256正交振幅調變之5/6的碼率互斥而處理來自二個使用者站台之較長延時OFDM符號,用於20MHz資源分配單元的預定數目之資料子載波可以是是用於具有13行之一交錯器組態之104資料子載波。這些實施例以及其他實施例將於下面更詳細地說明並且例示於下面之列表IX中。 In some embodiments, a HEW master station 102 can also be assembled to process from two using 256-point Fast Fourier Transform (FFT). The longer delay OFDM symbol received by the user station within a 20 MHz resource allocation unit. Processing a predetermined number of data for a 20 MHz resource allocation unit for the longer delay OFDM symbols from two user stations without 5/6 code rate mutual exclusion for 256 Quadrature Amplitude Modulation (QAM) The subcarriers may include one of: 102 data subcarriers having an interleaver configuration of 6 or 17 rows, and 108 data subcarriers having an interleaver configuration of 18 rows. These and other embodiments are described in greater detail below and illustrated in List X below. For a longer delay OFDM symbol from two user stations with a code rate mutual exclusion of 5/6 for 256 quadrature amplitude modulation, the predetermined number of data subcarriers for the 20 MHz resource allocation unit may be For 104 data subcarriers with one of 13 lines of interleaver configuration. These and other embodiments are described in greater detail below and illustrated in List IX below.

於一些實施例中,交錯器214(圖2)可以是具有一OFDM符號之深度的一區塊交錯器並且可以是可組配以交錯一編碼資料區塊。該等交錯器組態可以包括一數目之行和一數目之列,其中該等列之數目係基於每個串流之每個子載波的編碼位元數目。於一些實施例中,編碼器208可以依據複數個碼率之一者而在交錯之前先行編碼輸入資料。分佈映射器216可以在交錯至一QAM分佈之後映射所編碼之資料。於一些實施例中,編碼器208和映射器216可以依據用於子載波分配的複數個預定調變以及編碼方案(MCS)組合之一者而操作。用於子載波分配之複數個預定MCS組合可以是受限為每個OFDM符號(Ncbps)之一整數的 編碼位元以及每個OFDM符號(Ndbps)之一整數的資料位元。 In some embodiments, interleaver 214 (FIG. 2) may be a block interleaver having a depth of one OFDM symbol and may be configurable to interleave an encoded data block. The interleaver configurations can include a number of rows and a number of columns, wherein the number of columns is based on the number of coded bits per subcarrier of each stream. In some embodiments, encoder 208 can encode the input data prior to interleaving based on one of a plurality of code rates. The distribution mapper 216 can map the encoded material after interleaving to a QAM distribution. In some embodiments, encoder 208 and mapper 216 can operate in accordance with one of a plurality of predetermined modulation and coding scheme (MCS) combinations for subcarrier allocation. The plurality of predetermined MCS combinations for subcarrier allocation may be limited to one integer per OFDM symbol (Ncbps) A data bit that encodes a bit and an integer of one of each OFDM symbol (Ndbps).

於一些實施例中,較長延時OFDM符號係可以選擇而供用於較大延遲擴展環境,並且標準延時OFDM符號係選擇而供用於傳統通訊或較小延遲擴展環境。該等標準延時OFDM符號係可以使用於傳統通訊(例如,IEEE 802.11a/n/ac/g)並且該符號延時是不依據於頻道之延遲擴展。於一些實施例中,該等標準延時OFDM符號可以具有一符號延時,該符號延時之範圍是自包含一400奈秒(ns)短防護區間之3.6微秒(μs)至包含一800奈秒防護區間之4微秒。於一些實施例中,該等較長延時OFDM符號具有一符號延時,其是4倍(4x)之標準延時OFDM符號的延時。在這些實施例中,例如,當一個4x較長符號延時被使用於一40或80MHz資源分配單元中時,子載波間隔可以藉由四倍之因數被降低(例如,312.5KHz的四分之一)。在這些實施例中,分配具有更多防護子載波之一子載波係可以使用於較接近之子載波間隔。於一些實施例中,主站台102係可以組配以在頻道頻寬之內使用許多資源分配單元而同時地傳遞。 In some embodiments, longer delay OFDM symbols may be selected for use in larger delay spread environments, and standard delayed OFDM symbols are selected for use in legacy communications or smaller delay extended environments. The standard delayed OFDM symbols can be used for legacy communications (eg, IEEE 802.11a/n/ac/g) and the symbol delay is not based on the delay spread of the channel. In some embodiments, the standard delayed OFDM symbols may have a symbol delay ranging from 3.6 microseconds (μs) including a short period of 400 nanoseconds (ns) to including 800 nanoseconds of protection. 4 microseconds of the interval. In some embodiments, the longer delay OFDM symbols have a symbol delay that is a delay of 4 times (4x) standard delayed OFDM symbols. In these embodiments, for example, when a 4x longer symbol delay is used in a 40 or 80 MHz resource allocation unit, the subcarrier spacing can be reduced by a factor of four (eg, a quarter of 312.5 kHz) ). In these embodiments, assigning one of the more subcarriers with more guard subcarriers can be used for the closer subcarrier spacing. In some embodiments, the primary station 102 can be configured to communicate simultaneously using a plurality of resource allocation units within the channel bandwidth.

在這些實施例中,用於操作於IEEE 802.11ax之80MHz和40MHz頻寬中的1024點快速傅立葉轉換(FFT)和512點快速傅立葉轉換(FFT)之一詳細設計(例如,資料子載波數目和導頻子載波數目以及用於提供區塊交錯器之大小的BCC編碼之情況)被提供。該1024點快速傅立葉轉換 (FFT)以及該512點FFT係可以具有一4x符號延時被使用並且特別是室外和室內環境中之考量。在室外環境中,一個四倍的較長符號延時可以致能一更有效的循環字首(CP)之使用以克服較長延遲擴展。在室內環境中,較長符號延時可以允許對於時脈時序精確度之一更鬆弛的需求。 In these embodiments, one of 1024-point Fast Fourier Transform (FFT) and 512-point Fast Fourier Transform (FFT) for operation in the 80 MHz and 40 MHz bandwidth of IEEE 802.11ax is detailed (eg, number of data subcarriers and The number of pilot subcarriers and the case of BCC coding for providing the size of the block interleaver are provided). The 1024-point fast Fourier transform (FFT) and the 512 point FFT system can have a 4x symbol delay to be used and especially in outdoor and indoor environments. In an outdoor environment, a four times longer symbol delay can enable the use of a more efficient cyclic prefix (CP) to overcome longer delay spreads. In indoor environments, longer symbol delays may allow for a more slack demand for one of the timing timing accuracy.

為了依據頻道模式、MCS以及其他參數而判定用於資料/導頻音調計算和交錯大小之較佳組態,系統模擬被進行。因為此處所揭示之實施例界定音調計算,在一範圍之內的一詳盡搜尋,以達到一些合理的音調/導頻計算和子載波分配。 In order to determine a preferred configuration for data/pilot tone calculation and interleave size based on channel mode, MCS, and other parameters, system simulation is performed. Because the embodiments disclosed herein define pitch calculations, a detailed search within a range to achieve some reasonable pitch/pilot calculations and subcarrier allocation.

對於IEEE 802.11ax SIG之貢獻已提出用於資料/導頻音調分配之數目的一些組態,但是這些提議都不是基於在一範圍之內的詳盡搜尋以達到合理的子載波分配,其同時也界定用於BCC編碼之區塊交錯器的大小。如上面之討論,藉由引介在目標於高密度配置情節中之HEW的新使用情況,包含經由將藉由一HEW主站台102或HEW接取點(AP)所排程之較大頻寬的較佳控制,改進目前Wi-Fi系統並且因而有助於符合任務小組的目標。 Some configurations for the number of data/pilot tone assignments have been proposed for the contribution of the IEEE 802.11ax SIG, but these proposals are not based on an exhaustive search within a range to achieve reasonable subcarrier allocation, which is also defined The size of the block interleaver used for BCC encoding. As discussed above, by introducing a new usage of HEWs targeted in a high-density configuration scenario, including a larger bandwidth scheduled via a HEW master station 102 or HEW access point (AP) Better control, improving the current Wi-Fi system and thus helping to meet the goals of the task force.

對於族群之各者的一些可能分配(資料、導頻、以及區塊交錯器之大小)將列出在下面並且可能是更有益之一些子載波分派被辨識。在一OFDMA系統中,使用於最小頻寬單元中的子載波總數可以是一系統設計參數。自該總數子載波計算,該OFDMA系統具有被指定至資料(供使用於資料)之子載波、導頻(一般被使用於時間/頻率和頻 道追蹤)、防護(供使用以形成一頻譜遮障)以及在直流和直流周圍之子載波(以簡化直接轉換接收器設計)。例如,在20MHz之IEEE 802.11ac中,固定子載波間隔是312.5kHz並且因此子載波之總數是64。這些64個子載波中,52個子載波被指定以供用於資料,1個子載波用於直流(假定為虛值),4個子載波用於導頻以及其餘之7個子載波是使用於防護(假定為虛值)。 Some of the possible assignments (data, pilot, and block interleaver sizes) for each of the ethnic groups will be identified below and may be more beneficial for some subcarrier assignments to be identified. In an OFDMA system, the total number of subcarriers used in the minimum bandwidth unit can be a system design parameter. From the total number of subcarrier calculations, the OFDMA system has subcarriers, pilots that are assigned to the data (for use in the data) (usually used for time/frequency and frequency) Tracking), protection (for use to form a spectral mask), and subcarriers around DC and DC (to simplify direct conversion receiver design). For example, in IEEE 802.11ac at 20 MHz, the fixed subcarrier spacing is 312.5 kHz and thus the total number of subcarriers is 64. Of these 64 subcarriers, 52 subcarriers are designated for data, 1 subcarrier is used for direct current (assumed to be a virtual value), 4 subcarriers are used for pilots, and the remaining 7 subcarriers are used for protection (assumed to be virtual) value).

此處所揭示之實施例基於先前系統中使用之調變型式集合而提供子載波分配(例如,BPSK、QPSK、16-QAM、64-QAM以及256-QAM)。採用於先前系統中的碼率包含下面的集合r={1/2、3/4、2/3和5/6}。這集合之所有的碼率是不必定得使用於所有的調變型式,但是這包含經由整個調變集合所使用的所有目前碼率。為判定有效的子載波分配,相同調變和編碼分派係可以如先前系統(例如,IEEE 802.11a/.11n/.11ac)中被使用。 Embodiments disclosed herein provide subcarrier allocation (e.g., BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM) based on a set of modulation patterns used in prior systems. The code rate used in the previous system contains the following sets r = {1/2, 3/4, 2/3, and 5/6}. All of the code rates of this set are not necessarily used for all modulation patterns, but this includes all current code rates used throughout the modulation set. To determine the effective subcarrier allocation, the same modulation and coding assignments can be used as in previous systems (eg, IEEE 802.11a/.11n/.11ac).

於一些實施例中,來自先前IEEE 802.11 OFDM系統之現有的頻道交錯器係可以被使用。頻道交錯器,例如,可以使用於IEEE Std.802.11ac-2013之22.3.10.8部份中所界定之頻道交錯器,“IEEE資訊技術標準-系統之間通訊和資訊交換-局域性和都會區域網路-部份11:無線LAN媒體接取控制(MAC)和實體層(PHY)規格,修正版4:用於在6GHz以下頻帶中的操作之非常高傳輸量的增強”,雖然實施例之範疇是不受限定於這論點中。交錯器參數被列出於列表22-17中,IEEE規格之“交錯器中之列和行數目”。列 表被包含於此處作為列表I,對於1至4空間串流之情況。 In some embodiments, existing channel interleaver from previous IEEE 802.11 OFDM systems can be used. A channel interleaver, for example, may be used in a channel interleaver as defined in section 22.3.10.8 of IEEE Std. 802.11ac-2013, "IEEE Information Technology Standards - Communication and Information Exchange between Systems - Locality and Metropolitan Areas Network - Part 11: Wireless LAN Media Access Control (MAC) and Physical Layer (PHY) Specifications, Revision 4: Enhancements for very high throughput for operation in bands below 6 GHz", although embodiments The category is not limited to this argument. The interleaver parameters are listed in Listing 22-17, "Number of Columns and Rows in Interleaver" of the IEEE specification. Column The table is included here as Listing I, for the case of 1 to 4 spatial streams.

於IEEE 802.11n中,藉由再使用修改的交錯器演算法至寫入和讀取資料所界定的矩陣大小而引進40MHz。接著於IEEE 802.11ac中,藉由80MHz之引進,相同交錯器演算法被採用。這些參數界定儲存於交錯器中之編碼符號的數目。此處所揭示之實施例也可以再使用具有新的數值以界定用於OFDMA分配之NCOL和NROW之現有的交錯器演算法。因為當多於一個空間串流存在時,NROT操作界定該等數值之一轉動,當NROT不界定交錯器大小時,這項目可被忽略並且因此將不影響子載波選擇。 In IEEE 802.11n, 40 MHz was introduced by reusing a modified interleaver algorithm to the matrix size defined by writing and reading data. Then in IEEE 802.11ac, the same interleaver algorithm was adopted with the introduction of 80 MHz. These parameters define the number of coded symbols stored in the interleaver. Embodiments disclosed herein may also reuse existing interleaver algorithms with new values to define NCOL and NROW for OFDMA allocation. Because when more than one spatial stream is present, the NROT operation defines one of the values to rotate, and when NROT does not define the interleaver size, this item can be ignored and thus will not affect the subcarrier selection.

如於上面列表中所見,NROW是一常數乘以每個串流之每個子載波的編碼位元數目。因此,交錯器實際大小是MCS之一函數。此處所揭示之一些實施例界定使用於計算NROW中之常數(y)。此處所揭示之實施例依據在一範圍之內的詳盡搜尋界定子載波分配以在上面列出之目標限制之下達到完全合理的子載波分配。此處所揭示之一些實施例可能無法對於交錯器參數提供一確切的定義,但是 可提供對於使用上面限制之許多交錯器結構的解決方案。此處所揭示之實施例提供使用上面限制之一組子載波分配而供使用於OFDMA 80MHz和40MHz頻寬單元之較長符號延時並且可以允許於80MHz中之高至18個使用者(或於40MHz中之高至9個使用者)的多路傳輸。 As seen in the above list, NROW is a constant multiplied by the number of coded bits per subcarrier of each stream. Therefore, the actual size of the interleaver is a function of the MCS. Some embodiments disclosed herein define a constant (y) used in calculating NROW. Embodiments disclosed herein define subcarrier allocations based on an exhaustive search within a range to achieve a fully reasonable subcarrier allocation under the target limits listed above. Some embodiments disclosed herein may not provide an exact definition of interleaver parameters, but A solution to the many interleaver configurations that use the above limitations can be provided. The embodiments disclosed herein provide for longer symbol delays for OFDMA 80 MHz and 40 MHz bandwidth units using one of the above set of subcarrier allocations and can be allowed up to 18 users in 80 MHz (or in 40 MHz) Multi-channel transmission up to 9 users).

如上所述地,於20MHz IEEE 802.11ac中,固定子載波間隔是312.5kHz並且因此子載波總數是64。這些64個子載波中,52個子載波被指定以供用於資料,1個子載波用於直流(假定為虛值),4個子載波用於導頻以及其餘之7個子載波是使用於防護(假定為虛值)。依據對於4x符號延時的一些實施例,FFT大小可以是20MHz之256、40MHz之512、以及80MHz之1024。啟始地,一演算法係可以使用以對於資料子載波的二個使用者之各者而搜尋自208至244子載波之任何地方,其接著將允許對於2個使用者有52至12個虛值子載波分別地於40MHz頻寬中被指定。該演算法接著可以對於資料子載波的二個使用者之各者而搜尋自416至504子載波之任何地方,其接著將允許對於2個使用者有96至8個虛值子載波分別地於80MHz頻寬中被指定。為了判定一組態是否為可能,一組方程式係可以被使用。最後,該演算法可以對於資料子載波之一個使用者而搜尋自896至1012子載波的任何地方,其接著將允許128至12個虛值子載波分別地被指定於80MHz頻寬中。為清楚起見,一組變量將界定於下面:N SD 資料子載波之數目 As described above, in the 20 MHz IEEE 802.11ac, the fixed subcarrier spacing is 312.5 kHz and thus the total number of subcarriers is 64. Of these 64 subcarriers, 52 subcarriers are designated for data, 1 subcarrier is used for direct current (assumed to be a virtual value), 4 subcarriers are used for pilots, and the remaining 7 subcarriers are used for protection (assumed to be virtual) value). Depending on some embodiments for 4x symbol delay, the FFT size may be 256 for 20 MHz, 512 for 40 MHz, and 1024 for 80 MHz. Initially, an algorithm can be used to search anywhere from 208 to 244 subcarriers for each of the two users of the data subcarrier, which will then allow 52 to 12 virtual for 2 users. The value subcarriers are specified in the 40 MHz bandwidth, respectively. The algorithm can then search for any of the 416 to 504 subcarriers for each of the two users of the data subcarrier, which will then allow 96 to 8 virtual subcarriers for 2 users to be separately It is specified in the 80MHz bandwidth. To determine if a configuration is possible, a set of equations can be used. Finally, the algorithm can search anywhere from 896 to 1012 subcarriers for a user of the data subcarrier, which will then allow 128 to 12 virtual subcarriers to be individually assigned in the 80 MHz bandwidth. For the sake of clarity, a set of variables will be defined below: N Number of SD data subcarriers

N CBPS 每個符號的編碼位元之數目 N CBPS number of coded bits per symbol

N BPSCS 每個單一載波的編碼位元之數目 Number of coded bits per N carrier of N BPSCS

N DBPS 每個符號的資料位元之數目 N DBPS number of data bits per symbol

N ROW 交錯器之列大小,等於y*N BPSCS N ROW interleaver column size equal to y * N BPSCS

r 碼率 r code rate

M 調變階數(1=BPSK、2=QPSK、4=16-QAM、6=64-QAM、8=256-QAM、以及10=1024-QAM) M modulation order (1=BPSK, 2=QPSK, 4=16-QAM, 6=64-QAM, 8=256-QAM, and 10=1024-QAM)

藉由那些的定義,用以判定一組態是否有效的步驟和方程式之集合是列出如下: With those definitions, the set of steps and equations used to determine whether a configuration is valid is listed below:

1.選擇用以測試的資料子載波之數目(N SD ) 1. Select the number of data subcarriers to test ( N SD )

2.計算N CBPS =N SD *M 2. Calculate N CBPS = N SD * M

3.計算N BPSCS =N CBPS *N SD 3. Calculate N BPSCS = N CBPS * N SD

4.計算N ROW =y*N BPSCS ;(其中y是指定的交錯器參數) 4. Calculate N ROW = y * N BPSCS ; (where y is the specified interleaver parameter)

5.計算INT DIM =N ROW *N COL 5. Calculate INT DIM = N ROW * N COL

6.計算 6. Calculation

7.計算 7. Calculation

8.計算 8. Calculation

9.測試是否((M1=0)&(M1=0))為真,則為有效,否則為否。 9. Test if ((M 1 =0) & (M 1 =0)) is true, then it is valid, otherwise it is no.

因此,如果M 1 & M 2=0,則使用這碼率和調變之組態是可允許的,否則是不被允許的。 Therefore, if M 1 & M 2 =0, then the configuration using this code rate and modulation is permissible, otherwise it is not allowed.

一短程式係可以組配以找出可能的組合。在首次運行時,假定所有調變可以如IEEE 802.11ac中對於40MHz和80MHz被支援。這包含具有碼率3/4和5/6之64和 256-QAM(引介於IEEE 802.11ac中)。對於這假設,允許1024點FFT之分配可以包含: A short program can be combined to find possible combinations. On the first run, it is assumed that all modulations can be supported for 40MHz and 80MHz as in IEEE 802.11ac. This includes 64 and 256-QAM with code rates of 3/4 and 5/6 (incorporated in IEEE 802.11ac). For this assumption, allowing an allocation of 1024-point FFTs can include:

搜尋結果展示對於在80MHz之內將留下額外子載波之數目的資料音調有許多的可能性。該等額外音調係可以使用於導頻音調、在DC的虛值、作為防護頻帶的虛值子載波、以及甚至將被塞在使用者之間的虛值子載波。自上面之列表,一較佳選擇在下面列表中被列出。 The search results show that there are many possibilities for data tones that will leave the number of extra subcarriers within 80 MHz. These additional tones can be used for pilot tones, imaginary values at DC, virtual subcarriers as guard bands, and even virtual subcarriers that will be stuffed between users. From the above list, a preferred option is listed in the list below.

列表IIIa(在下面)列出一些另外的分配大小,其中包含具有碼率5/6之256-QAM以及除了已先前列出於列表III中的那些分配大小之外者。 Listing IIIa (below) lists some additional allocation sizes, including 256-QAM with a code rate of 5/6 and those other than those previously listed in Listing III.

對於80MHz中之二個使用者(藉由一1024點FFT)或40MHz中之一個使用者(藉由一512點FFT)的一相似搜尋可以被進行以提供下面可允許的分配: A similar search for two users in 80 MHz (by a 1024-point FFT) or one of 40 MHz (by a 512-point FFT) can be performed to provide the following allowable assignments:

搜尋可以被重複,但是不需要具有256QAM之碼率5/6的支援(亦即,使用於IEEE 802.11ac中之20MHz的相同互斥)。因此除那些列出於列表IV中外,對於512點FFT之可能分配可以包含: The search can be repeated, but does not require support with a code rate of 256QAM of 5/6 (i.e., the same mutual exclusion of 20 MHz used in IEEE 802.11ac). So in addition to those listed in Listing IV, the possible assignments for a 512-point FFT can include:

搜尋結果展示有許多對於該數目資料音調之可能性,其將在80MHz及/或40MHz之內留下額外子載波。這些額外音調係可以使用於導頻音調、在DC之虛值、作為防護頻帶之虛值子載波、以及甚至將被塞在使用者之間的虛值子載波。自上面列表,一較佳選擇在下面被列出。 The search results show a number of possibilities for this number of data tones, which will leave extra subcarriers within 80 MHz and / or 40 MHz. These extra tones can be used for pilot tones, virtual values at DC, virtual subcarriers as guard bands, and even virtual subcarriers that will be stuffed between users. From the above list, a preferred option is listed below.

對於40MHz中之二個使用者(藉由一512點FFT)或20MHz中之一個使用者(藉由一256點FFT)的搜尋可以被重複並且所允許之分配可以包含: A search for two users in 40 MHz (by a 512-point FFT) or one of 20 MHz (by a 256-point FFT) can be repeated and the allowed allocations can include:

自上面列表,一較佳選擇於下面被列出。 From the above list, a preferred choice is listed below.

對於需要具有256QAM之碼率5/6的支援之具有(列表IX之一/三行)以及不具有(列表IX之最後三行)之20MHz(256點FFT)中的二個使用者之搜尋可以被重複,其中後者是使用於802.11ac中之20MHz的相同互斥。因此用於512點FFT之選擇可以包含: For those users who need support with a code rate of 256QAM of 5/6 (one of the list IX/three rows) and two of the 20MHz (256-point FFT) that do not have the last three rows of the list IX, Repeated, the latter being the same mutual exclusion used in 20MHz in 802.11ac. So the choice for a 512-point FFT can include:

自上面之列表,一較佳選擇係展示於下面之表格中。 From the above list, a preferred selection is shown in the table below.

於低密度同位檢查(LDPC)編碼之情況中,可能不需有交錯器區塊大小上之一需求,但是上面之分配係可以被使用,因為它們是符合BCC編碼被使用的分配大小。這些解決方案係提供用於IEEE 802.11ax之OFDMA模式的80MHz中之1024點FFT、40MHz中之512點FFT、以及20MHz中之256點FFT。 In the case of low density parity check (LDPC) coding, there may be no need for one of the interleaver block sizes, but the above allocations can be used because they are the allocation sizes that are used in accordance with BCC coding. These solutions provide a 1024-point FFT in 80 MHz for the IEEE 802.11ax OFDMA mode, a 512-point FFT in 40 MHz, and a 256-point FFT in 20 MHz.

圖3例示依據一些實施例之一HEW裝置。HEW裝置300可以是一HEW遵循裝置,其可以被配置以與一個或多個其他HEW裝置通訊,例如,HEW站台及/或一主站台,以及與傳統裝置通訊。HEW裝置300可以是適用於操作如主站台(HEW主站台102(圖1))或一HEW站台104(圖1)。此外,依據實施例,HEW裝置300可以包含,實體層(PHY)電路302和媒體接取控制層電路(MAC)304。PHY 302 和MAC 304可以是HEW遵循層並且也可以遵循於一個或多個傳統之IEEE 802.11標準。PHY 302可以被配置以發送HEW訊框。HEW裝置300也可以包含被組配以進行此處所述之各種操作的其他處理電路306和記憶體308。 FIG. 3 illustrates a HEW device in accordance with some embodiments. The HEW device 300 can be a HEW-compliant device that can be configured to communicate with one or more other HEW devices, such as an HEW station and/or a primary station, and to communicate with legacy devices. The HEW device 300 may be suitable for operation such as a primary station (HEW primary station 102 (FIG. 1)) or a HEW station 104 (FIG. 1). Moreover, in accordance with an embodiment, HEW device 300 can include a physical layer (PHY) circuit 302 and a media access control layer circuit (MAC) 304. PHY 302 And MAC 304 may be an HEW compliant layer and may also follow one or more conventional IEEE 802.11 standards. PHY 302 can be configured to transmit an HEW frame. HEW device 300 may also include other processing circuitry 306 and memory 308 that are configured to perform the various operations described herein.

依據一些實施例,MAC 304可以被配置以在一競爭週期期間競爭一無線媒體以接收用於HEW控制週期之媒體的控制以及組配一HEW訊框。PHY 302可以被配置以如上面討論地發送該HEW訊框。該PHY 302也可以被配置以接收來自HEW站台之一HEW訊框。MAC 304也可以被配置以經過該PHY 302而進行發送和接收操作。該PHY 302可以包含用以調變/解調變、上行轉換及/或下行轉換、過濾、放大、等等之電路。在一些實施例中,處理電路306可以包含一個或多個處理器。在一些實施例中,二個或更多個天線可以耦合至實體層電路,其係配置以供傳送和接收包含HEW訊框之發送的信號。記憶體308可以儲存用以組配處理電路306之資訊以進行用以組配和發送HEW訊框之操作以及進行此處所述之各種操作。 In accordance with some embodiments, the MAC 304 can be configured to compete for a wireless medium during a contention period to receive control of media for the HEW control period and to assemble an HEW frame. PHY 302 can be configured to transmit the HEW frame as discussed above. The PHY 302 can also be configured to receive an HEW frame from one of the HEW stations. The MAC 304 can also be configured to perform transmission and reception operations through the PHY 302. The PHY 302 can include circuitry for modulation/demodulation, uplink and/or downlink conversion, filtering, amplification, and the like. In some embodiments, processing circuit 306 can include one or more processors. In some embodiments, two or more antennas can be coupled to the physical layer circuitry configured to transmit and receive signals including the transmission of the HEW frame. The memory 308 can store information used to assemble the processing circuitry 306 for operations to assemble and transmit HEW frames and perform various operations as described herein.

在一些實施例中,HEW裝置300係可以組配以經由一多載波通訊頻道而使用OFDM通訊信號以通訊。在一些實施例中,HEW裝置300係可以組配以依據特定通訊標準而接收信號,例如,電機和電子工程師協會(IEEE)標準,如包含IEEE 802.11-2012、IEEE 802.11n-2009、IEEE 802.11ac-2013及/或IEEE 802.11ax標準及/或包含所提出的HEW標準之用於WLAN的建議規格,雖然本發明範疇是不 受限定於這論點中,因它們也可依據其他技術和標準而適當地發送及/或接收通訊。在一些其他實施例中,HEW裝置300係可以組配以接收信號,該信號是使用一個或多個其他調變技術,例如,擴展頻譜調變(例如,直接序列分碼多重接取(DS-CDMA)及/或跳頻分碼多重接取(FH-CDMA)),分時多工(TDM)調變、及/或分頻多工(FDM)調變)而發送,雖然實施例之範疇是不受限定於這論點中。 In some embodiments, HEW device 300 can be configured to communicate using OFDM communication signals via a multi-carrier communication channel. In some embodiments, the HEW device 300 can be configured to receive signals in accordance with a particular communication standard, such as the Institute of Electrical and Electronics Engineers (IEEE) standards, including IEEE 802.11-2012, IEEE 802.11n-2009, IEEE 802.11ac. -2013 and/or IEEE 802.11ax standards and/or recommended specifications for WLANs including the proposed HEW standard, although the scope of the invention is not They are limited to this argument because they can also properly transmit and/or receive communications in accordance with other technologies and standards. In some other embodiments, the HEW device 300 can be configured to receive signals using one or more other modulation techniques, such as spread spectrum modulation (eg, direct sequence code multiple access (DS-) CDMA) and/or frequency hopping code multiple access (FH-CDMA), time division multiplexing (TDM) modulation, and/or frequency division multiplexing (FDM) modulation, although the scope of the embodiment It is not limited to this argument.

在一些實施例中,HEW裝置300可以是一輕便型無線通訊裝置之部件,例如,一個人數位助理(PDA)、具有無線通訊能力之一膝上型電腦或輕便型電腦、一網路平板電腦、一無線電話或智慧型手機、一無線耳機、一攜帶型傳呼器、一即時通裝置、一數位攝影機、一接取點、一電視、一醫療裝置(例如,一心率監視器、一血壓監視器、等等)、或可以無線地接收及/或發送資訊之其他裝置。在一些實施例中,HEW裝置300可以包含一個或多個的下列構件,如一鍵盤、一顯示器、一非依電性記憶體埠、複數個天線、一圖形處理器、一應用處理器、擴音機、以及其他移動式裝置元件。顯示器可以是包含一觸控銀幕之一LCD屏幕。 In some embodiments, the HEW device 300 can be a component of a portable wireless communication device, such as a PDA, a laptop or portable computer with wireless communication capabilities, a network tablet, a wireless telephone or smart phone, a wireless headset, a portable pager, an instant messaging device, a digital camera, an access point, a television, a medical device (eg, a heart rate monitor, a blood pressure monitor) , or the like, or other device that can receive and/or transmit information wirelessly. In some embodiments, the HEW device 300 can include one or more of the following components, such as a keyboard, a display, a non-electric memory, a plurality of antennas, a graphics processor, an application processor, a microphone, And other mobile device components. The display can be an LCD screen containing one of the touch screens.

HEW裝置300之天線301可以包括一個或多個方向性或全向性天線,例如,其包含雙極天線、單極天線、貼片天線、迴路天線、微條天線或適用於RF信號之發送的其他型式天線。在一些多輸入多輸出(MIMO)實施例中, 天線301可以有效地分離以採用可以產生於天線之各者以及一發送站台的天線之間的空間差異性和不同頻道特性之優點。 The antenna 301 of the HEW device 300 may include one or more directional or omnidirectional antennas, for example, including dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas, or for transmission of RF signals. Other types of antennas. In some multiple input multiple output (MIMO) embodiments, The antenna 301 can be effectively separated to take advantage of the spatial variability and different channel characteristics that can be produced between the antennas and the antennas of a transmitting station.

雖然HEW裝置300是例示如具有許多個別功能之元件,一個或多個功能元件係可以組合且可以藉由軟體組態元件(例如,包含數位信號處理器(DSP)之處理元件)、及/或其他硬體元件之組合而實行。例如,一些元件可以包括一個或多個微處理器、DSP、場可程控閘陣列(FPGA)、特定應用積體電路(ASIC)、射頻積體電路(RFIC)以及用以進行至少此處所述之功能的各種硬體和邏輯電路之組合。在一些實施例中,HEW裝置300之功能元件可以是涉及操作於一個或多個處理元件上之一個或多個處理程序。 Although the HEW device 300 is illustrative of elements having many individual functions, one or more of the functional elements can be combined and can be configured by a software (eg, a processing element including a digital signal processor (DSP)), and/or It is implemented by a combination of other hardware components. For example, some components may include one or more microprocessors, DSPs, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), radio frequency integrated circuits (RFICs), and used to perform at least the methods described herein. A combination of various hardware and logic circuits that function. In some embodiments, the functional elements of HEW device 300 may be one or more processing procedures involved in operating on one or more processing elements.

實施例可以硬體、韌體以及軟體之一者或其之一組合而實行。實施例也可以作為儲存於一電腦可讀取儲存裝置上之指令而實行,該等指令可以藉由至少一處理器而讀取以及執行,以進行此處所述之操作。一電腦可讀取儲存裝置可以包含任何非暫態機構,其是用以儲存藉由一機器(例如,一電腦)而可讀取之一形式的資訊。例如,一電腦可讀取儲存裝置可以包含唯讀記憶體(ROM)、隨機接取記憶體(RAM)、磁碟片儲存媒體、光學儲存媒體、快閃記憶體裝置、以及其他儲存裝置和媒體。一些實施例可以包含一個或多個處理器並且係可以藉由儲存於一電腦可讀取儲存裝置上之指令而組配。 Embodiments may be practiced in one or a combination of hardware, firmware, and software. Embodiments may also be implemented as instructions stored on a computer readable storage device, which may be read and executed by at least one processor for performing the operations described herein. A computer readable storage device can include any non-transitory mechanism for storing information in one form that can be read by a machine (eg, a computer). For example, a computer readable storage device can include read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, and other storage devices and media. . Some embodiments may include one or more processors and may be assembled by instructions stored on a computer readable storage device.

圖4是依據一些實施例用以使用資源分配單元而傳遞較長延時OFDM符號之步驟。步驟400可以藉由一HEW裝置而進行,例如,HEW站台104(圖1)或一HEW主站台102(圖1)。 4 is a step of transmitting a longer delay OFDM symbol using a resource allocation unit in accordance with some embodiments. Step 400 can be performed by a HEW device, such as HEW station 104 (FIG. 1) or a HEW master station 102 (FIG. 1).

操作402包括依據對於較長延時OFDM符號之一資源分配單元的一子載波分配而判定之複數個交錯器組態之一者而組配一區塊交錯器以交錯被編碼輸入資料的區塊。 Operation 402 includes assembling a block interleaver to interleave blocks of encoded input data in accordance with one of a plurality of interleaver configurations determined for a subcarrier allocation of one of the longer delay OFDM symbols.

操作404包含藉由一512點快速傅立葉轉換而處理較長延時OFDM符號以用於在包含一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊。 Operation 404 includes processing the longer delay OFDM symbols by a 512 point fast Fourier transform for communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit.

操作406包含藉由一1024點快速傅立葉轉換而處理較長延時OFDM符號以用於在包括二個40MHz資源分配單元之任一者或一個80MHz資源分配單元的一80MHz頻道頻寬之上的通訊。該HEW裝置係可以組配以依據資源分配單元大小而進行操作404或操作406之任一者。 Operation 406 includes processing the longer delay OFDM symbols by a 1024-point fast Fourier transform for communication over an 80 MHz channel bandwidth comprising either of the two 40 MHz resource allocation units or an 80 MHz resource allocation unit. The HEW device can be configured to perform either operation 404 or operation 406 depending on the size of the resource allocation unit.

操作408包括依據以非競爭為基礎之通訊技術在包含一或多個資源分配單元之頻道資源上而傳遞較長延時OFDM符號(以時域OFDMA波形之形式)。在一些實施例中,該等較長延時OFDM符號可以依據MU-MIMO技術以在一控制週期的期間(例如,一TXOP)而傳遞。 Operation 408 includes transmitting a longer delay OFDM symbol (in the form of a time domain OFDMA waveform) on a channel resource comprising one or more resource allocation units in accordance with a non-contention based communication technique. In some embodiments, the longer delay OFDM symbols may be delivered in accordance with MU-MIMO techniques during a control period (eg, a TXOP).

在一範例中,一高效能(HE)通訊站(STA)包括實體層和媒體接取控制層電路,而用以:依據一正交分頻多工接取(OFDMA)技術於頻道資源上而傳遞較長延時正交分 頻多工(OFDM)符號,該頻道資源包括一個或多個資源分配單元,各資源分配單元包括一預定數目之資料子載波;依據複數個子載波分配之一者而組配資源分配單元以供用於較長延時OFDM符號之通訊;藉由下列之至少一者而處理較長延時OFDM符號:一512點FFT,用於經由包括一40MHz資源分配單元之一40MHz頻道頻寬之通訊;以及一1024點快速傅立葉轉換(FFT),用於經由包括二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之通訊。 In an example, a high performance (HE) communication station (STA) includes a physical layer and a media access control layer circuit for: according to an orthogonal frequency division multiplexing access (OFDMA) technology on channel resources. Passing a longer delay orthogonal An OFDM symbol, the channel resource including one or more resource allocation units, each resource allocation unit including a predetermined number of data subcarriers; and a resource allocation unit configured for use according to one of a plurality of subcarrier allocations Long delay OFDM symbol communication; processing longer delay OFDM symbols by at least one of: a 512 point FFT for communication via a 40 MHz channel bandwidth including a 40 MHz resource allocation unit; and a 1024 point Fast Fourier Transform (FFT) for communication over an 80 MHz channel bandwidth including either of two 40 MHz resource allocation units or one 80 MHz resource allocation unit.

在另一範例中,對於二進制迴旋碼(BCC)編碼,資源分配單元係進一步地依據用於子載波分配的複數個交錯器組態之一者而而組配以供用於較長延時OFDM符號之通訊,較長延時OFDM符號具有一符號延時,該符號延時是為一標準OFDM符號延時之四倍(4x)長,並且當作為一主站台102而操作時,該通訊站係組配以進行:使用512點FFT針對一單一使用者站台處理較長延時OFDM符號,以用於在一40MHz資源分配單元之內的通訊;使用1024點FFT針對一單一使用者站台處理較長延時OFDM符號,以用於在一80MHz資源分配單元之內的通訊;以及使用512點FFT針對二個使用者站台處理較長延時OFDM符號,以用於在一80MHz資源分配單元之內的通訊。 In another example, for binary convolutional code (BCC) encoding, the resource allocation unit is further configured for use with longer delay OFDM symbols depending on one of a plurality of interleaver configurations for subcarrier allocation. For communication, the longer delay OFDM symbol has a symbol delay that is four times (4x) longer than a standard OFDM symbol delay, and when operating as a primary station 102, the communication station is configured to perform : processing a longer delay OFDM symbol for a single user station using a 512 point FFT for communication within a 40 MHz resource allocation unit; processing a longer delay OFDM symbol for a single user station using a 1024 point FFT to For communication within an 80 MHz resource allocation unit; and processing the longer delay OFDM symbols for two user stations using a 512 point FFT for communication within an 80 MHz resource allocation unit.

在另一範例中,對於藉由不具有用於256正交振幅調變(QAM)之5/6的碼率互斥之1024點FFT而處理較長延時OFDM符號,用於二進制迴旋碼編碼之80MHz資源分配 單元的預定數目之資料子載波是下列之一者:用於具有26行之一交錯器組態的936資料子載波,用於具有15或20行之一交錯器組態的960資料子載波,用於具有24或41行之一交錯器組態的984資料子載波,以及用於具有22、30或33行之一交錯器組態的990資料子載波,並且用於低密度同位檢查(LDPC)編碼的80MHz資源分配單元的預定數目之資料子載波是936資料子載波、960資料子載波、984資料子載波、和990資料子載波之一者。 In another example, a longer delay OFDM symbol is processed for a 1024-point FFT that does not have a 5/6 code rate mutual exclusion for 256 Quadrature Amplitude Modulation (QAM) for binary whirling code encoding. 80MHz resource allocation The predetermined number of data subcarriers of the unit is one of: for a 936 data subcarrier having an interleaver configuration of 26 rows, for a 960 data subcarrier having an interleaver configuration of 15 or 20 rows, For 984 data subcarriers with one of the 24 or 41 line interleaver configurations, and for 990 data subcarriers with one of the 22, 30 or 33 line interleaver configurations, and for low density parity check (LDPC) The predetermined number of data subcarriers of the encoded 80 MHz resource allocation unit are one of 936 data subcarriers, 960 data subcarriers, 984 data subcarriers, and 990 data subcarriers.

在另一範例中,對於藉由不具有用於256正交振幅調變(QAM)之5/6碼率互斥之512點快速傅立葉轉換(FFT)而處理較長延時OFDM符號,用於二進制迴旋碼編碼之40MHz資源分配單元的預定數目之資料子載波是下列之一者:用於具有26行之一交錯器組態的468資料子載波,以及用於具有18或27行之一交錯器組態的486資料子載波。對於藉由具有用於256-QAM之5/6的碼率互斥的512點快速傅立葉轉換(FFT)而處理較長延時OFDM符號,用於二進制迴旋碼編碼之40MHz資源分配單元的預定數目之資料子載波是用於具有14或35行之一交錯器組態之490資料子載波,並且用於低密度同位檢查編碼之40MHz資源分配單元的預定數目之資料子載波是468、486和490資料子載波之一者。 In another example, longer delayed OFDM symbols are processed for binary by 512-point fast Fourier transform (FFT) without 5/6 code rate mutual exclusion for 256 Quadrature Amplitude Modulation (QAM) The predetermined number of data subcarriers of the 40 MHz resource allocation unit of the whirling code is one of: for 468 data subcarriers having one of the 26 rows of interleaver configurations, and for one of the 18 or 27 rows of interleaver Configured 486 data subcarriers. Processing a longer delay OFDM symbol by a 512-point fast Fourier transform (FFT) with a 5/6 code rate mutual exclusion for 256-QAM, a predetermined number of 40 MHz resource allocation units for binary whirling code encoding The data subcarrier is for 490 data subcarriers with one of the 14 or 35 row interleaver configurations, and the predetermined number of data subcarriers for the low density parity check coded 40 MHz resource allocation unit are 468, 486, and 490 data. One of the subcarriers.

在另一範例中,站台是進一步地可組配以進行:使用512點快速傅立葉轉換而處理來自一或二個使用者站台在一40MHz資源分配單元內所接收之較長延時 OFDM符號;以及使用256點快速傅立葉轉換而處理來自一使用者站台在一20MHz資源分配單元內所接收之較長延時OFDM符號。 In another example, the station is further configurable to: process a longer delay received from one or two user stations in a 40 MHz resource allocation unit using 512-point fast Fourier transform OFDM symbols; and processing of longer delay OFDM symbols received from a user station in a 20 MHz resource allocation unit using 256-point fast Fourier transform.

在另一範例中,對於藉由不具有一碼率互斥之256點快速傅立葉轉換(FFT)而處理較長延時OFDM符號,用於二進制迴旋碼(BCC)編碼之20MHz資源分配單元的預定數目之資料子載波是下列之一者:用於具有26行之一交錯器組態之234資料子載波,用於具有19行之一交錯器組態之228資料子載波,以及用於具有20行之一交錯器組態之240資料子載波,並且用於低密度同位檢查(LDPC)編碼之20MHz資源分配單元的預定數目之資料子載波是234、228和240資料子載波之一者。 In another example, for processing longer-latency OFDM symbols by 256-point fast Fourier transform (FFT) without a code rate mutual exclusion, a predetermined number of 20 MHz resource allocation units for binary convolutional code (BCC) coding The data subcarrier is one of the following: 234 data subcarriers for one of the 26 rows of interleaver configurations, 228 data subcarriers with one of the 19 rows of interleaver configurations, and for 20 rows One of the interleaver configured 240 data subcarriers, and the predetermined number of data subcarriers for the low density parity check (LDPC) encoded 20 MHz resource allocation unit is one of the 234, 228, and 240 data subcarriers.

在另一範例中,站台係進一步地組配以進行:使用256點快速傅立葉轉換而處理來自二使用者站台在一20MHz資源分配單元內所接收之較長延時OFDM符號,並且對於不具有用於256正交振幅調變(QAM)之5/6的碼率互斥而處理來自二使用者站台之較長延時OFDM符號,用於二進制迴旋碼(BCC)編碼之20MHz資源分配單元的預定數目之資料子載波是下列之一者:用於具有6或17行之一交錯器組態之102資料子載波,以及用於具有18行之一交錯器組態之108資料子載波。對於具有用於256-QAM之5/6的碼率互斥而處理來自二使用者站台之較長延時OFDM符號,用於二進制迴旋碼(BCC)編碼之20MHz資源分配單元的預定數目之資料子載波是用於具有13行之一交錯器組態 之104資料子載波,並且用於低密度同位檢查編碼之20MHz資源分配單元的預定數目之資料子載波是102、108和104資料子載波之一者。 In another example, the station is further configured to: process a longer delayed OFDM symbol received from a second user station within a 20 MHz resource allocation unit using a 256-point fast Fourier transform, and for not having The 5/6 code rate of 256 Quadrature Amplitude Modulation (QAM) is mutually exclusive and handles the longer delay OFDM symbols from the two user stations for a predetermined number of 20 MHz resource allocation units for binary convolutional code (BCC) coding. The data subcarrier is one of the following: 102 data subcarriers for an interleaver configuration with 6 or 17 rows, and 108 data subcarriers for an interleaver configuration with 18 rows. For a longer delay OFDM symbol from a two-user station with a code rate mutual exclusion of 5/6 for 256-QAM, a predetermined number of pieces of information for a 20 MHz resource allocation unit of binary convolutional code (BCC) coding The carrier is used for an interleaver configuration with 13 rows The data subcarriers and the predetermined number of data subcarriers for the 20 MHz resource allocation unit of the low density parity check code are one of the 102, 108, and 104 data subcarriers.

在另一範例中,實體層電路包含具有一正交分頻多工符號之深度的一區塊交錯器,該區塊交錯器係可組配以當二進制迴旋碼編碼被使用時交錯一區塊之編碼資料且當低密度同位檢查被使用時則避免交錯,並且該等交錯器組態包括一數目之行和一數目之列,該等列之數目係基於每個串流之每個子載波的編碼位元數目。 In another example, the physical layer circuit includes a block interleaver having a depth of an orthogonal frequency division multiplex symbol, the block interleaver being configurable to interleave a block when binary convolutional code encoding is used Coding data and avoiding interleaving when low density parity check is used, and the interleaver configuration includes a number of rows and a number of columns, the number of columns being based on each subcarrier of each stream The number of encoded bits.

在另一範例中,通訊站進一步地包括:一編碼器,其用以依據複數個碼率之一者而在交錯之前先編碼輸入資料;以及一分佈映射器,其用以在交錯於一正交振幅調變(QAM)分佈之後映射所編碼資料。該編碼器和該映射器是依據用於該子載波分配的複數個預定調變和編碼方案(MCS)組合之一者而操作,並且用於該子載波分配之該等複數個預定調變和編碼方案(MCS)組合是受限制為每個OFDM符號之一整數的編碼位元(Ncbps)和每個OFDM符號之一整數的資料位元(Ndbps)。 In another example, the communication station further includes: an encoder for encoding the input data prior to interleaving according to one of the plurality of code rates; and a distribution mapper for interleaving at a positive The encoded data is mapped after the amplitude modulation (QAM) distribution. The encoder and the mapper operate in accordance with one of a plurality of predetermined modulation and coding scheme (MCS) combinations for the subcarrier allocation, and the plurality of predetermined modulation sums for the subcarrier allocation A coding scheme (MCS) combination is a coding bit (Ncbps) limited to one integer per OFDM symbol and an integer number of data bits (Ndbps) per OFDM symbol.

在另一範例中,較長延時OFDM符號係選擇而供用於較大延遲擴展環境,並且標準延時OFDM符號係選擇供用於傳統通訊或較小延遲擴展環境之任一者。 In another example, longer delay OFDM symbols are selected for use in a larger delay spread environment, and standard delayed OFDM symbols are selected for use in either legacy communication or smaller delay extended environments.

在另一範例中,標準延時OFDM符號具有一符號延時,該符號延時之範圍是自包含一400奈秒(ns)短防護區間之3.6微秒(μs)至包含一800奈秒防護區間之4微秒。 In another example, the standard delayed OFDM symbol has a symbol delay ranging from 3.6 microseconds (μs) including a short period of 400 nanoseconds (ns) to a guard interval of 800 nanoseconds. Microseconds.

在另一範例中,通訊站進一步地包括一個或多個處理器和記憶體,並且實體層電路包含一收發器。在另一範例中,通訊站進一步地包括耦合至收發器之一個或多個天線。 In another example, the communication station further includes one or more processors and memory, and the physical layer circuitry includes a transceiver. In another example, the communication station further includes one or more antennas coupled to the transceiver.

在另一範例中,一種用於高效能(HE)無線通訊之方法,該方法包括下列步驟:依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等頻道資源包括一個或多個資源分配單元,各資源分配單元包括一預定數目之資料子載波;依據複數個子載波分配之一者而組配該等資源分配單元以供用於該等較長延時正交分頻多工(OFDM)符號之通訊;以及藉由下列之至少一者而處理該等較長延時正交分頻多工(OFDM)符號:一512點快速傅立葉轉換(FFT),用於在包括一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊;及一1024點快速傅立葉轉換(FFT),用於在包括二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊。 In another example, a method for high performance (HE) wireless communication, the method comprising the steps of: transmitting a longer delay orthogonal to a channel resource according to an orthogonal frequency division multiplexing access (OFDMA) technique Frequency division multiplexing (OFDM) symbols, the channel resources including one or more resource allocation units, each resource allocation unit including a predetermined number of data subcarriers; allocating the resource allocations according to one of a plurality of subcarrier allocations Units for communication of the longer delay orthogonal frequency division multiplexing (OFDM) symbols; and processing the longer delay orthogonal frequency division multiplexing (OFDM) symbols by at least one of: 512 Point Fast Fourier Transform (FFT) for communication over a 40 MHz channel bandwidth including a 40 MHz resource allocation unit; and a 1024-point Fast Fourier Transform (FFT) for including two 40 MHz resource allocation units or Communication over an 80MHz channel bandwidth of any of the 80MHz resource allocation units.

在另一範例中,對於二進制迴旋碼(BCC)編碼,資源分配單元進一步地依據用於子載波分配的複數個交錯器組態之一者而組配以供用於較長延時OFDM符號之通訊,較長延時正交分頻多工符號具有一符號延時,該符號延時是為一標準正交分頻多工符號延時之四倍(4x)長。在這範例中,方法進一步地包括下列步驟:使用512點快速傅立葉轉換(FFT)針對一單一使用者站台處理較長延時 OFDM符號,以用於在一40MHz資源分配單元之內的通訊;使用1024點快速傅立葉轉換(FFT)針對一單一使用者站台處理較長延時OFDM符號,以用於在一80MHz資源分配單元之內的通訊;以及使用512點快速傅立葉轉換(FFT)針對二個使用者站台處理較長延時OFDM符號,以用於在一80MHz資源分配單元之內的通訊。 In another example, for binary convolutional code (BCC) encoding, the resource allocation unit is further configured for communication for longer delay OFDM symbols in accordance with one of a plurality of interleaver configurations for subcarrier allocation, The longer delay orthogonal frequency division multiplex symbol has a symbol delay which is four times (4x) longer than the delay of a standard orthogonal frequency division multiplex symbol. In this example, the method further includes the steps of: processing a longer delay for a single user station using a 512-point fast Fourier transform (FFT) OFDM symbols for communication within a 40 MHz resource allocation unit; processing of longer delay OFDM symbols for a single user station using 1024-point Fast Fourier Transform (FFT) for use within an 80 MHz resource allocation unit Communication; and processing of longer delay OFDM symbols for two user stations using 512-point Fast Fourier Transform (FFT) for communication within an 80 MHz resource allocation unit.

在另一範例中,方法進一步地包括下列步驟:使用512點快速傅立葉轉換而處理來自一或二個使用者站台在一40MHz資源分配單元內所接收之較長延時OFDM符號;以及使用256點快速傅立葉轉換而處理來自一使用者站台在一20MHz資源分配單元內所接收之較長延時OFDM符號。 In another example, the method further includes the steps of: processing the longer delay OFDM symbols received from one or two user stations in a 40 MHz resource allocation unit using 512-point fast Fourier transform; and using 256 points fast The Fourier transform processes the longer delay OFDM symbols received from a user station in a 20 MHz resource allocation unit.

在另一範例中,方法進一步地包括在一控制週期期間,依據一非競爭為基礎之通訊技術而傳遞包括一個或多個資源分配單元之較長延時OFDM符號。 In another example, the method further includes transmitting a longer delayed OFDM symbol comprising one or more resource allocation units in accordance with a non-contention based communication technique during a control period.

在另一範例中,一種儲存指令之非暫態電腦可讀取儲存器媒體,該等指令用以藉由一個或多個處理器而執行以進行操作而組配一高效能(HE)通訊站(STA)以進行:依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等頻道資源包括一個或多個資源分配單元,各資源分配單元包括一預定數目之資料子載波;依據複數個子載波分配之一者而組配該等資源分配單元以用於該等較長延時OFDM符號之通訊;並且藉由下列之至少一者而處理該等較長延時正交 分頻多工符號:一512點快速傅立葉轉換(FFT),用於在包括一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊;以及一1024點快速傅立葉轉換(FFT),用於在包括二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊。 In another example, a non-transitory computer storing instructions can read memory media for execution by one or more processors to operate to assemble a high performance (HE) communication station (STA) for: transmitting a longer delay orthogonal frequency division multiplexing (OFDM) symbol on a channel resource according to an orthogonal frequency division multiplexing access (OFDMA) technique, the channel resources including one or more resources An allocation unit, each resource allocation unit includes a predetermined number of data subcarriers; and the resource allocation units are configured for communication of the longer delay OFDM symbols according to one of the plurality of subcarrier allocations; and by the following Processing at least one of these longer delay orthogonalities Divided multiplex symbol: a 512-point Fast Fourier Transform (FFT) for communication over a 40 MHz channel bandwidth including a 40 MHz resource allocation unit; and a 1024-point Fast Fourier Transform (FFT) for Communication over an 80 MHz channel bandwidth including either of the 40 MHz resource allocation units or an 80 MHz resource allocation unit.

在另一範例中,對於二進制迴旋碼(BCC)編碼,資源分配單元係依據用於子載波分配的複數個交錯器組態之一者而進一步地組配,以供用於較長延時OFDM符號之通訊,該等較長延時OFDM符號具有一符號延時,該符號延時是為一標準正交分頻多工符號延時之四倍(4x)長,並且該等操作組配HEW通訊站以:使用512點快速傅立葉轉換(FFT)針對一單一使用者站台處理該等較長延時OFDM符號,以用於在一40MHz資源分配單元之內的通訊;使用1024點快速傅立葉轉換(FFT)針對一單一使用者站台處理該等較長延時OFDM工符號,以用於在一80MHz資源分配單元之內的通訊;以及使用512點快速傅立葉轉換(FFT)針對二個使用者站台處理該等較長延時OFDM符號,以用於在一80MHz資源分配單元之內的通訊。 In another example, for binary convolutional code (BCC) encoding, the resource allocation unit is further configured in accordance with one of a plurality of interleaver configurations for subcarrier allocation for use in longer delay OFDM symbols. Communication, the longer delay OFDM symbols have a symbol delay that is four times (4x) longer than a standard orthogonal frequency division multiplex symbol delay, and the operations are grouped with HEW communication stations to: use 512 Point Fast Fourier Transform (FFT) processes the longer delay OFDM symbols for a single user station for communication within a 40 MHz resource allocation unit; uses 1024 point Fast Fourier Transform (FFT) for a single user The station processes the longer delay OFDM symbols for communication within an 80 MHz resource allocation unit; and processes the longer delay OFDM symbols for two user stations using 512-point Fast Fourier Transform (FFT), Used for communication within an 80 MHz resource allocation unit.

在另一範例中,較長延時OFDM符號具有一符號延時,該符號延時是為一標準OFDM符號延時之四倍(4x)長,並且操作進一步地組配HEW通訊站,以在一控制週期的期間,依據一非競爭為基礎之通訊技術而傳遞包括一個或多個資源分配單元之較長延時OFDM符號。 In another example, the longer delay OFDM symbol has a symbol delay that is four times (4x) longer than a standard OFDM symbol delay, and the operation further groups the HEW communication station to be in a control cycle. During this time, longer delay OFDM symbols including one or more resource allocation units are delivered in accordance with a non-contention based communication technique.

摘要被提供以遵循於37 C.F.R.條款1.72(b)要求,一摘要將允許讀者確定技術性揭示之性質和主旨。應 理解到,其之提交將不是使用以限制或解釋申請專利範圍之範疇或涵義。下面之申請專利範圍將於此處配合詳細說明,而各個申請專利範圍主張其之本身作為一各自的實施例。 The Abstract is provided to comply with 37 C.F.R. Clause 1.72(b), and an abstract will allow the reader to ascertain the nature and substance of the technical disclosure. should It is understood that the submission will not be used to limit or explain the scope or meaning of the scope of the patent application. The scope of the following patent application is hereby incorporated by reference in its entirety in its entirety herein in its entirety in its entirety in its entirety in its entirety

Claims (17)

一種高效能(HE)通訊站(STA)之設備,其包含:記憶體;以及耦接至該記憶體之實體層和媒體接取控制層電路,該實體層和媒體接取控制層電路用以:依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等頻道資源包含一或多個資源分配單元,各資源分配單元包含一預定數目之資料子載波;依據複數個子載波分配之一者而組配該等資源分配單元以用於該等較長延時正交分頻多工符號之通訊;並且藉由下列之至少一者而處理該等較長延時正交分頻多工符號:一512點快速傅立葉轉換(FFT),其用於在包含一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊;以及一1024點快速傅立葉轉換,其用於在包含二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊,其中對於二進制迴旋碼(BCC)編碼,該等資源分配單元係進一步依據用於該等子載波分配的複數個交錯器組態之一者而組配以用於該等較長延時正交分頻多工符號之通訊,其中該等較長延時正交分頻多工符號具有一符號延時,該符號 延時係為一標準正交分頻多工符號延時之四倍(4×)長,並且其中當該通訊站作為一主站台而操作時,該通訊站係可組配以:使用該512點快速傅立葉轉換針對一單一使用者站台處理該等較長延時正交分頻多工符號,以用於在一40MHz資源分配單元之內的通訊;使用該1024點快速傅立葉轉換針對一單一使用者站台處理該等較長延時正交分頻多工符號,以用於在一80MHz資源分配單元之內的通訊;以及使用該512點快速傅立葉轉換針對二個使用者站台處理該等較長延時正交分頻多工符號,以用於在一80MHz資源分配單元之內的通訊。 A high-performance (HE) communication station (STA) device, comprising: a memory; and a physical layer coupled to the memory and a media access control layer circuit, wherein the physical layer and the media access control layer circuit are used Transmitting a longer delay orthogonal frequency division multiplexing (OFDM) symbol on a channel resource according to an orthogonal frequency division multiplexing access (OFDMA) technique, the channel resources including one or more resource allocation units, and each resource The allocation unit includes a predetermined number of data subcarriers; the resource allocation units are configured for communication of the longer delay orthogonal frequency division multiplex symbols according to one of the plurality of subcarrier allocations; and by the following Processing the longer delay orthogonal frequency division multiplex symbols at least one of: a 512 point fast Fourier transform (FFT) for communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit; A 1024-point fast Fourier transform for communication over an 80 MHz channel bandwidth comprising either of a 40 MHz resource allocation unit or an 80 MHz resource allocation unit, wherein for binary convolutional code (BCC) encoding, Equal capital The source allocation unit is further configured to communicate with the longer delay orthogonal frequency division multiplex symbols according to one of a plurality of interleaver configurations for the subcarrier allocation, wherein the longer delays Orthogonal frequency division multiplexing symbol has a symbol delay, the symbol The delay is four times (4×) long of a standard orthogonal frequency division multiplex symbol delay, and wherein when the communication station operates as a master station, the communication station can be combined to: use the 512 points Fast Fourier Transform processes the longer delay orthogonal frequency division multiplex symbols for a single user station for communication within a 40 MHz resource allocation unit; using the 1024 point fast Fourier transform for a single user station Processing the longer delay orthogonal frequency division multiplex symbols for communication within an 80 MHz resource allocation unit; and processing the longer delay orthogonality for two user stations using the 512 point fast Fourier transform The frequency division multiplex symbol is used for communication within an 80 MHz resource allocation unit. 如請求項1之設備,其中對於藉由不具有用於256正交振幅調變(QAM)之5/6的一碼率互斥之該1024點快速傅立葉轉換而處理該等較長延時正交分頻多工符號,用於二進制迴旋碼編碼之該80MHz資源分配單元的該預定數目之資料子載波係下列中之一者:用於具有26行之一交錯器組態之936資料子載波,用於具有15或20行之一交錯器組態之960資料子載波,用於具有24或41行之一交錯器組態之984資料子載波,以及用於具有22、30或33行之一交錯器組態之990資料子載波,並且 用於低密度同位檢查(LDPC)編碼之該80MHz資源分配單元的該預定數目之資料子載波係936資料子載波、960資料子載波、984資料子載波、和990資料子載波中之一者。 The apparatus of claim 1, wherein the longer delay orthogonality is processed for the 1024-point fast Fourier transform without a code rate mutual exclusion of 5/6 for 256 Quadrature Amplitude Modulation (QAM) a frequency division multiplex symbol, the predetermined number of data subcarriers of the 80 MHz resource allocation unit for binary whirling code encoding, one of: one for 936 data subcarriers having an interleaver configuration of 26 rows, 960 data subcarrier for an interleaver configuration with 15 or 20 rows for 984 data subcarriers with one or 24 line interleaver configurations, and for one of 22, 30 or 33 rows 990 data subcarriers configured by the interleaver, and The predetermined number of data subcarriers 936 for the low density parity check (LDPC) encoding of the 80 MHz resource allocation unit is one of a data subcarrier, a 960 data subcarrier, a 984 data subcarrier, and a 990 data subcarrier. 如請求項1之設備,其中對於藉由不具有用於256正交振幅調變之5/6的一碼率互斥之該512點快速傅立葉轉換而處理該等較長延時正交分頻多工符號,用於二進制迴旋碼編碼之該40MHz資源分配單元的該預定數目之資料子載波係下列中之一者:用於具有26行之一交錯器組態之468資料子載波,以及用於具有18或27行之一交錯器組態之486資料子載波,其中對於藉由具有用於256正交振幅調變之5/6的一碼率互斥之該512點快速傅立葉轉換而處理該等較長延時正交分頻多工符號,用於二進制迴旋碼編碼之該40MHz資源分配單元的該預定數目之資料子載波係用於具有14或35行之一交錯器組態之490資料子載波,並且用於低密度同位檢查編碼之該40MHz資源分配單元的該預定數目之資料子載波係468、486和490資料子載波中之一者。 The apparatus of claim 1, wherein the longer delay orthogonal frequency division is processed for the 512-point fast Fourier transform without a code rate mutual exclusion of 5/6 for 256 orthogonal amplitude modulation The work symbol, the predetermined number of data subcarriers of the 40 MHz resource allocation unit for binary whirling code encoding is one of: for 468 data subcarriers having an interleaver configuration of 26 rows, and for 486 data subcarrier having an interleaver configuration of 18 or 27 rows, wherein the 512 point fast Fourier transform is performed by a 512 point fast Fourier transform with a code rate mutual exclusion of 5/6 for 256 quadrature amplitude modulation The longer delay orthogonal frequency division multiplexing symbol, the predetermined number of data subcarriers of the 40 MHz resource allocation unit for binary whirling code encoding is used for 490 data sub-array configuration with one or 14 rows of interleaver configurations Carrier, and one of the predetermined number of data subcarrier systems 468, 486, and 490 data subcarriers for the 40 MHz resource allocation unit of the low density parity check code. 如請求項1之設備,其中該主站台係進一步可組配以:使用該512點快速傅立葉轉換而處理來自一或二個 使用者站台在一40MHz資源分配單元內所接收之該等較長延時正交分頻多工符號;以及使用該256點快速傅立葉轉換而處理來自一使用者站台在一20MHz資源分配單元內所接收之該等較長延時正交分頻多工符號。 The device of claim 1, wherein the primary station is further configurable to: process the one or two using the 512-point fast Fourier transform The longer delay orthogonal frequency division multiplexing symbols received by the user station in a 40 MHz resource allocation unit; and processing received from a user station in a 20 MHz resource allocation unit using the 256-point fast Fourier transform The longer delay orthogonal frequency division multiplex symbols. 如請求項4之設備,其中對於藉由不具有一碼率互斥之該256點快速傅立葉轉換而處理該等較長延時正交分頻多工符號,用於二進制迴旋碼編碼之該20MHz資源分配單元的該預定數目之資料子載波係下列中之一者:用於具有26行之一交錯器組態之234資料子載波,用於具有19行之一交錯器組態之228資料子載波,以及用於具有20行之一交錯器組態之240資料子載波,並且用於低密度同位檢查編碼之該20MHz資源分配單元的該預定數目之資料子載波係234、228和240資料子載波中之一者。 The apparatus of claim 4, wherein the longer delay orthogonal frequency division multiplex symbol is processed by the 256-point fast Fourier transform without a code rate mutual exclusion, the 20 MHz resource for binary whirling code encoding The predetermined number of data subcarriers of the allocation unit is one of: 234 data subcarriers for one of the 26 rows of interleaver configurations, 228 data subcarriers for one of the 19 rows of interleaver configurations And the 240 data subcarriers having an interleaver configuration of 20 rows, and the predetermined number of data subcarrier systems 234, 228, and 240 data subcarriers for the 20 MHz resource allocation unit of low density parity check coding One of them. 如請求項4之設備,其中該主站台係進一步可組配以:使用該256點快速傅立葉轉換而處理來自二使用者站台在一20MHz資源分配單元內所接收之該等較長延時正交分頻多工符號,並且其中對於不具有用於256正交振幅調變之5/6的一碼率互斥而處理來自二使用者站台之該等較長延時正交分頻多工符號,用於二進制迴旋碼編碼之該20MHz 資源分配單元的該預定數目之資料子載波係下列中之一者:用於具有6或17行之一交錯器組態之102資料子載波,以及用於具有18行之一交錯器組態之108資料子載波,其中對於具有用於256正交振幅調變之5/6的一碼率互斥而處理來自二使用者站台之該等較長延時正交分頻多工符號,用於二進制迴旋碼編碼之該20MHz資源分配單元的該預定數目之資料子載波係用於具有13行之一交錯器組態之104資料子載波,並且用於低密度同位檢查編碼之該20MHz資源分配單元的該預定數目之資料子載波係102、108和104資料子載波中之一者。 The device of claim 4, wherein the primary station is further configurable to: process the longer delay orthogonal received from a second user station in a 20 MHz resource allocation unit using the 256-point fast Fourier transform a frequency division multiplex symbol, and wherein the longer delay orthogonal frequency division multiplex symbols from the two user stations are processed for a code rate exclusive exclusion of 5/6 for 256 quadrature amplitude modulation, 20MHz for binary whirling code encoding The predetermined number of data subcarriers of the resource allocation unit are one of: 102 data subcarriers having an interleaver configuration of 6 or 17 rows, and for an interleaver configuration having 18 rows. 108 data subcarriers, wherein the longer delay orthogonal frequency division multiplex symbols from the two user stations are processed for a code rate mutual exclusion of 5/6 for 256 quadrature amplitude modulation for binary The predetermined number of data subcarriers of the 20 MHz resource allocation unit of the convolutional code are used for 104 data subcarriers having an interleaver configuration of 13 rows, and for the 20 MHz resource allocation unit of low density parity check coding One of the predetermined number of data subcarrier systems 102, 108, and 104 data subcarriers. 如請求項1之設備,其中該實體層電路包括具有一正交分頻多工符號之深度的一區塊交錯器,該區塊交錯器係可組配以當二進制迴旋碼編碼被使用時交錯一區塊之編碼資料且當低密度同位檢查(LDPC)被使用時則避免交錯,並且其中該等交錯器組態包含一數目之行和一數目之列,該數目之列係基於每個串流之每個子載波的一數目之編碼位元。 The device of claim 1, wherein the physical layer circuit comprises a block interleaver having a depth of an orthogonal frequency division multiplex symbol, the block interleaver being configurable to interleave when the binary convolutional code is used Encoded data for a block and avoids interleaving when Low Density Parity Check (LDPC) is used, and wherein the interleaver configuration includes a number of rows and a number of columns, the number of which is based on each string A number of coded bits per subcarrier of the stream. 如請求項7之設備,其中該通訊站進一步包含:一編碼器,其用以在依據複數個碼率之一者而交錯之前先編碼輸入資料;以及 一分佈映射器,其用以在交錯於一正交振幅調變分佈之後映射經編碼之該資料,其中該編碼器和該映射器依據用於該子載波分配的複數個預定調變和編碼方案(MCS)組合之一者而操作,其中用於該子載波分配之該等複數個預定調變和編碼方案組合係受限制為每個正交分頻多工符號之一整數的編碼位元(Ncbps)和每個正交分頻多工符號之一整數的資料位元(Ndbps)。 The device of claim 7, wherein the communication station further comprises: an encoder for encoding the input data prior to interleaving according to one of a plurality of code rates; a distribution mapper for mapping the encoded data after interleaving to a quadrature amplitude modulation profile, wherein the encoder and the mapper are in accordance with a plurality of predetermined modulation and coding schemes for the subcarrier allocation The (MCS) combination operates, wherein the plurality of predetermined modulation and coding scheme combinations for the subcarrier allocation are coded bits that are limited to an integer of one of each orthogonal frequency division multiplex symbol ( Ncbps) and an integer number of data bits (Ndbps) for each of the orthogonal frequency division multiplex symbols. 如請求項1之設備,其中該等較長延時正交分頻多工符號係用以針對較大延遲擴展環境而被選擇,並且其中標準延時正交分頻多工符號係用以針對傳統通訊或較小延遲擴展環境之任一者而被選擇。 The device of claim 1, wherein the longer delay orthogonal frequency division multiplexing symbols are selected for a larger delay spread environment, and wherein the standard delay orthogonal frequency division multiplexing symbol is used for legacy communication Or any of the smaller delay extended environments are selected. 如請求項1之設備,其中該等標準延時正交分頻多工符號具有一符號延時,該符號延時之範圍是自包括一400奈秒(ns)短防護區間之3.6微秒(μs)至包括一800奈秒防護區間之4微秒。 The device of claim 1, wherein the standard delay orthogonal frequency division multiplexing symbols have a symbol delay ranging from 3.6 microseconds (μs) to a short guard interval of 400 nanoseconds (ns) to Includes a 4 microsecond guard interval of 800 nanoseconds. 如請求項1之設備,其進一步包含一或多個處理器和記憶體,並且其中該實體層電路包括一收發器。 The device of claim 1, further comprising one or more processors and memory, and wherein the physical layer circuitry comprises a transceiver. 如請求項10之設備,其進一步包含耦合至該收發器之一或多個天線。 The device of claim 10, further comprising one or more antennas coupled to the transceiver. 一種由一高效能(HE)無線通訊之設備所進行之方法,其包含: 依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等頻道資源包含一或多個資源分配單元,各資源分配單元包含一預定數目之資料子載波;依據複數個子載波分配之一者而組配該等資源分配單元以用於該等較長延時正交分頻多工符號之通訊;以及藉由下列之至少一者而處理該等較長延時正交分頻多工符號:一512點快速傅立葉轉換(FFT),其用於在包含一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊;以及一1024點快速傅立葉轉換,其用於在包含二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊,其中對於二進制迴旋碼(BCC)編碼,該等資源分配單元係進一步依據用於該等子載波分配的複數個交錯器組態之一者而組配以用於該等較長延時正交分頻多工符號之通訊,其中該等較長延時正交分頻多工符號具有一符號延時,該符號延時係為一標準正交分頻多工符號延時之四倍(4×)長,並且其中該方法進一步包含:使用該512點快速傅立葉轉換針對一單一使用者站台處理該等較長延時正交分頻多工符號,以用於在一40MHz資源分配單元之內的通訊; 使用該1024點快速傅立葉轉換針對一單一使用者站台處理該等較長延時正交分頻多工符號,以用於在一80MHz資源分配單元之內的通訊;以及使用該512點快速傅立葉轉換針對二個使用者站台處理該等較長延時正交分頻多工符號,以用於在一80MHz資源分配單元之內的通訊。 A method performed by a high performance (HE) wireless communication device, comprising: Transmitting a longer delay orthogonal frequency division multiplexing (OFDM) symbol on a channel resource according to an orthogonal frequency division multiplexing access (OFDMA) technique, the channel resources including one or more resource allocation units, and resource allocation The unit includes a predetermined number of data subcarriers; the resource allocation units are configured for communication of the longer delay orthogonal frequency division multiplex symbols according to one of the plurality of subcarrier allocations; and at least Processing the longer delay orthogonal frequency division multiplex symbols: a 512 point fast Fourier transform (FFT) for communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit; 1024-point fast Fourier transform for communication over an 80 MHz channel bandwidth comprising either of a 40 MHz resource allocation unit or an 80 MHz resource allocation unit, wherein for binary convolutional code (BCC) encoding, such The resource allocation unit is further configured to communicate with the longer delay orthogonal frequency division multiplex symbols according to one of a plurality of interleaver configurations for the subcarrier allocation, wherein the longer delays The orthogonal frequency division multiplexing symbol has a symbol delay, which is four times (4×) long of a standard orthogonal frequency division multiplexing symbol delay, and wherein the method further comprises: using the 512 point fast Fourier transform Processing the longer delay orthogonal frequency division multiplex symbols for a single user station for communication within a 40 MHz resource allocation unit; Processing the longer delay orthogonal frequency division multiplex symbols for a single user station using the 1024 point fast Fourier transform for communication within an 80 MHz resource allocation unit; and using the 512 point fast Fourier transform for The two user stations process the longer delay orthogonal frequency division multiplex symbols for communication within an 80 MHz resource allocation unit. 如請求項13之方法,其進一步包含:使用該512點快速傅立葉轉換而處理在來自一或二個使用者站台在一40MHz資源分配單元內所接收之該等較長延時正交分頻多工符號;以及使用該256點快速傅立葉轉換而處理來自一使用者站台在一20MHz資源分配單元內所接收之該等較長延時正交分頻多工符號。 The method of claim 13, further comprising: processing the longer delay orthogonal frequency division multiplexing received in a 40 MHz resource allocation unit from one or two user stations using the 512 point fast Fourier transform a symbol; and processing the longer delay orthogonal frequency division multiplex symbols received from a user station in a 20 MHz resource allocation unit using the 256-point fast Fourier transform. 如請求項13之方法,其進一步包含在一控制週期期間,依據一以非競爭為基礎之通訊技術而傳遞包含一或多個資源分配單元之該等較長延時正交分頻多工符號。 The method of claim 13, further comprising transmitting the longer delay orthogonal frequency division multiplex symbols comprising one or more resource allocation units during a control period in accordance with a non-contention based communication technique. 一種儲存指令之非暫態電腦可讀取儲存媒體,該等指令用於藉由一或多個處理器所執行以進行操作來組配一高效能(HE)通訊站(STA)之設備以:依據一正交分頻多工接取(OFDMA)技術而於頻道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等頻道資源包含一或多個資源分配單元,各資源分配單元包含一預定數目之資料子載波;依據複數個子載波分配之一者而組配該等資源分 配單元以用於該等較長延時正交分頻多工符號之傳遞;並且藉由下列之至少一者而處理該等較長延時正交分頻多工符號:一512點快速傅立葉轉換(FFT),其用於在包含一40MHz資源分配單元之一40MHz頻道頻寬之上的通訊;以及一1024點快速傅立葉轉換,其用於在包含二個40MHz資源分配單元或一個80MHz資源分配單元之任一者的一80MHz頻道頻寬之上的通訊,其中對於二進制迴旋碼(BCC)編碼,該等資源分配單元係進一步依據用於該等子載波分配的複數個交錯器組態之一者而組配以用於該等較長延時正交分頻多工符號之通訊,其中該等較長延時正交分頻多工符號具有一符號延時,該符號延時係為一標準正交分頻多工符號延時之四倍(4×)長,並且其中該等操作組配該HEW通訊站以:使用該512點快速傅立葉轉換針對一單一使用者站台處理該等較長延時正交分頻多工符號,以用於在一40MHz資源分配單元之內的通訊;使用該1024點快速傅立葉轉換針對一單一使用者站台處理該等較長延時正交分頻多工符號,以用於在一80MHz資源分配單元之內的通訊;以及使用該512點快速傅立葉轉換針對二個使用者站台處理該等較長延時正交分頻多工符號,以用於 在一80MHz資源分配單元之內的通訊。 A non-transitory computer readable storage medium storing instructions for use by one or more processors to operate to assemble a high performance (HE) communication station (STA) device to: Transmitting a longer delay orthogonal frequency division multiplexing (OFDM) symbol on a channel resource according to an orthogonal frequency division multiplexing access (OFDMA) technique, the channel resources including one or more resource allocation units, and resource allocation The unit includes a predetermined number of data subcarriers; the resource points are grouped according to one of the plurality of subcarrier allocations Arranging units for the transmission of the longer delay orthogonal frequency division multiplex symbols; and processing the longer delay orthogonal frequency division multiplex symbols by at least one of: a 512 point fast Fourier transform ( FFT) for communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit; and a 1024-point fast Fourier transform for containing two 40 MHz resource allocation units or an 80 MHz resource allocation unit Communication over any of the 80 MHz channel bandwidths, wherein for binary convolutional code (BCC) encoding, the resource allocation units are further dependent on one of a plurality of interleaver configurations for the subcarrier allocations Generating a communication for the longer delay orthogonal frequency division multiplexing symbols, wherein the longer delay orthogonal frequency division multiplexing symbols have a symbol delay, and the symbol delay is a standard orthogonal frequency division The symbol delay is four times (4×) long, and wherein the operations are grouped with the HEW communication station to: use the 512-point fast Fourier transform to process the longer delay orthogonal frequency division multiplexing for a single user station Symbol to Communication within a 40 MHz resource allocation unit; processing the longer delay orthogonal frequency division multiplex symbols for a single user station using the 1024-point fast Fourier transform for use within an 80 MHz resource allocation unit Communication; and processing the longer delay orthogonal frequency division multiplex symbols for the two user stations using the 512-point fast Fourier transform for Communication within an 80MHz resource allocation unit. 如請求項16之非暫態電腦可讀取儲存媒體,其中該等較長延時正交分頻多工符號具有一符號延,該符號延時係為一標準正交分頻多工符號延時之四倍(4x)長,並且其中該等操作進一步組配該HEW通訊站以在一控制週期期間,依據一以非競爭為基礎之通訊技術而傳遞包含一或多個資源分配單元之該等較長延時正交分頻多工符號。 The non-transitory computer readable storage medium of claim 16, wherein the longer delay orthogonal frequency division multiplexing symbols have a symbol delay, and the symbol delay is a standard orthogonal frequency division multiplexing symbol delay four Multiple (4x) long, and wherein the operations further assemble the HEW communication station to deliver the longer delays comprising one or more resource allocation units in accordance with a non-contention based communication technique during a control cycle Time orthogonal frequency division multiplex symbol.
TW104122567A 2014-07-15 2015-07-13 High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations TWI626839B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201462024801P 2014-07-15 2014-07-15
US62/024,801 2014-07-15
US14/447,254 2014-07-30
US14/447,254 US20150139118A1 (en) 2013-11-19 2014-07-30 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
US201462039320P 2014-08-19 2014-08-19
US62/039,320 2014-08-19
US14/573,912 US9680603B2 (en) 2014-04-08 2014-12-17 High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US14/573,912 2014-12-17
??PCT/US15/35313 2015-06-11
PCT/US2015/035313 WO2015195460A1 (en) 2014-06-18 2015-06-11 High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations

Publications (2)

Publication Number Publication Date
TW201608863A TW201608863A (en) 2016-03-01
TWI626839B true TWI626839B (en) 2018-06-11

Family

ID=56084882

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104122567A TWI626839B (en) 2014-07-15 2015-07-13 High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations

Country Status (1)

Country Link
TW (1) TWI626839B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348469B2 (en) 2013-11-19 2019-07-09 Intel IP Corporation Hew master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016008789B1 (en) 2013-11-19 2022-12-27 SOLiD, INC MAIN STATION CONFIGURED FOR HIGH-EFFICIENCY WIRELESS LOCAL AREA NETWORK COMMUNICATION, METHOD PERFORMED BY A MAIN STATION, STORAGE MEDIA AND HIGH-EFFICIENCY WIRELESS LOCAL AREA NETWORK STATION
CN106063146A (en) 2013-11-19 2016-10-26 英特尔Ip公司 HEW station and method for UL MU-MIMO HEW with improved receiver performance
CN105659681B (en) 2013-11-19 2019-09-20 英特尔Ip公司 The method, apparatus and computer-readable medium of multi-subscriber dispatching are used in WLAN
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200539601A (en) * 2004-05-20 2005-12-01 Ind Tech Res Inst Method and apparatus for papr reduction of an OFDM signal
US20070242600A1 (en) * 2004-05-01 2007-10-18 Neocific, Inc. Methods and Apparatus for Multi-Carrier Communications with Variable Channel Bandwidth
US20100080312A1 (en) * 2008-10-01 2010-04-01 Harris Corporation, Corporation Of The State Of Delaware Orthogonal frequency division multiplexing (ofdm) communications device and method that incorporates low papr preamble with circuit for measuring frequency response of the communications channel
US20110194544A1 (en) * 2009-07-17 2011-08-11 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US20130177090A1 (en) * 2012-01-06 2013-07-11 Qualcomm Incorporated Systems and methods for wireless communication of long data units
CN103703711A (en) * 2011-06-15 2014-04-02 马维尔国际贸易有限公司 Low bandwidth phy for wlan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070242600A1 (en) * 2004-05-01 2007-10-18 Neocific, Inc. Methods and Apparatus for Multi-Carrier Communications with Variable Channel Bandwidth
TW200539601A (en) * 2004-05-20 2005-12-01 Ind Tech Res Inst Method and apparatus for papr reduction of an OFDM signal
US20100080312A1 (en) * 2008-10-01 2010-04-01 Harris Corporation, Corporation Of The State Of Delaware Orthogonal frequency division multiplexing (ofdm) communications device and method that incorporates low papr preamble with circuit for measuring frequency response of the communications channel
US20110194544A1 (en) * 2009-07-17 2011-08-11 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
CN103703711A (en) * 2011-06-15 2014-04-02 马维尔国际贸易有限公司 Low bandwidth phy for wlan
US20130177090A1 (en) * 2012-01-06 2013-07-11 Qualcomm Incorporated Systems and methods for wireless communication of long data units

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348469B2 (en) 2013-11-19 2019-07-09 Intel IP Corporation Hew master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels

Also Published As

Publication number Publication date
TW201608863A (en) 2016-03-01

Similar Documents

Publication Publication Date Title
US9838961B2 (en) Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
TWI626839B (en) High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations
US9680603B2 (en) High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US10945158B2 (en) Long training field sequence construction
US11621875B2 (en) Method and apparatus for applying optimized phase rotation in consideration of various RF capabilities in broadband with 80MHZ based preamble puncturing in WLAN system
CN112655181B (en) Method and apparatus for transmitting and receiving very high throughput physical protocol data units in WLAN system
US9917933B2 (en) Method and apparatus for wide bandwidth PPDU transmission in a high efficiency wireless LAN
US20180351709A1 (en) Multiuser signaling and access request mechanisms
US20210250125A1 (en) Method and apparatus for transmitting ppdu in broadband having preamble puncturing performed in wireless lan system
EP3636024A1 (en) Method and apparatus for uplink transmission in wireless communication system
CN106899385B (en) Master station and method for HEW communication
WO2018203727A1 (en) Method and apparatus for uplink transmission in wireless communication system
US10090964B2 (en) Apparatus, computer readable medium, and method for an interleaver for higher quadrature amplitude modulation (QAM) in a high efficiency wireless local-area network
CN114245980B (en) Method and apparatus for receiving PPDU through broadband in wireless LAN system
TWI642292B (en) Apparatus of wireless device and high-efficiency station, method performed by apparatus and non-transitory computer-readable stoage medium
JP2023073260A (en) Encoded bit transmitting method and device
KR102571329B1 (en) Wireless communication method with wireless communication terminal for long-distance transmission and wireless communication terminal using the same
CN106465360A (en) Method, apparatus, and computer readable medium for transmitting pilots in wireless local area networks
WO2018126870A1 (en) Resource block waveform transmission structures for uplink communications
KR20160073319A (en) Transmission and reception method for multi user in wireless local area network
CN106464638B (en) High Efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40MHz and 80MHz bandwidth allocations
TWI566562B (en) Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations
KR102537595B1 (en) Transmission method for multi user in wireless local area network
CN115333908B (en) Transmitter in wireless local area network and method performed by the same
KR20160040432A (en) Transmission method for multi user in wireless local area network

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees