TWI566562B - Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations - Google Patents

Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations Download PDF

Info

Publication number
TWI566562B
TWI566562B TW104113863A TW104113863A TWI566562B TW I566562 B TWI566562 B TW I566562B TW 104113863 A TW104113863 A TW 104113863A TW 104113863 A TW104113863 A TW 104113863A TW I566562 B TWI566562 B TW I566562B
Authority
TW
Taiwan
Prior art keywords
delay
ofdm symbols
minimum bandwidth
data subcarriers
subcarriers
Prior art date
Application number
TW104113863A
Other languages
Chinese (zh)
Other versions
TW201547248A (en
Inventor
夏爾納茲 阿吉佶
湯瑪斯J 肯尼
艾爾戴德 佩瑞希亞
Original Assignee
英特爾Ip公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2014/057751 external-priority patent/WO2015076932A1/en
Application filed by 英特爾Ip公司 filed Critical 英特爾Ip公司
Publication of TW201547248A publication Critical patent/TW201547248A/en
Application granted granted Critical
Publication of TWI566562B publication Critical patent/TWI566562B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

高效能無線區域網路(HEW)通訊站台及用於使用具有音調配置之最小帶寬單元來傳遞較長延時正交分頻多工(OFDM)符號之方法 High performance wireless local area network (HEW) communication station and method for transmitting longer delay orthogonal frequency division multiplexing (OFDM) symbols using a minimum bandwidth unit having a tone configuration 優先權主張Priority claim

本申請案之美國對應申請案主張以下美國臨時專利申請案之優先權益:2013年11月19日申請之第61/906,059號,2014年4月1日申請之第61/973,376號,2014年4月8日申請之第61/976,951號,2014年4月30日申請之第61/986,256號,2014年4月30日申請之第61/986,250號,2014年5月12日申請之第61/991,730號,2014年6月18日申請之第62/013,869號,及2014年7月15日申請之第62/024,801號,其全文皆係以引用方式併入本文中。 The US corresponding application in this application claims the priority rights of the following US provisional patent applications: No. 61/906,059, filed on November 19, 2013, No. 61/973,376, filed on April 1, 2014, 2014 Application No. 61/976,951, filed on the 8th of the month, No. 61/986,256, filed on April 30, 2014, No. 61/986,250, filed on April 30, 2014, No. 61/ on May 12, 2014 991, 730, filed on Jun. 18, 2014, the disclosure of which is incorporated herein by reference.

發明領域 Field of invention

實施例係關於無線網路。一些實施例係關於包括根據IEEE 802.11標準家族而操作之網路的無線區域網路(WLAN)及Wi-Fi網路。一些實施例係關於高效能WLAN研究小組(HEW SG)(名稱為DensiFi且被稱作IEEE 802.11ax SG)。一些實施例係關於高效能無線通訊或高效能WLAN(HEW)通訊。 Embodiments relate to wireless networks. Some embodiments relate to wireless local area networks (WLANs) and Wi-Fi networks including networks operating in accordance with the IEEE 802.11 family of standards. Some embodiments relate to the High Performance WLAN Research Group (HEW SG) (named DensiFi and is referred to as IEEE 802.11ax SG). Some embodiments relate to high performance wireless communication or high performance WLAN (HEW) communication.

發明背景 Background of the invention

無線通訊已正朝向不斷增加之資料速率(例如,自IEEE 802.11a/g至IEEE 802.11n至IEEE 802.11ac)演進。在高密度部署情形中,總體系統效能相較於較高資料速率可變得更重要。舉例而言,在高密度熱點及蜂巢式卸載情境中,競爭無線媒體之許多裝置可具有低至中等資料速率要求(相對於IEEE 802.11ac之極高資料速率)。用於包括極高輸貫量(very-high throughput,VHT)通訊之習知及舊版IEEE 802.11通訊的框架結構可較不適合於此等高密度部署情形。被稱作IEEE 802.11 HEW SG(亦即,IEEE 802.11ax)的針對Wi-Fi演進之最近形成的研究小組正處理此等高密度部署情境。 Wireless communication has evolved towards increasing data rates (eg, from IEEE 802.11a/g to IEEE 802.11n to IEEE 802.11ac). In high-density deployment scenarios, overall system performance can become more important than higher data rates. For example, in high density hotspots and cellular offload scenarios, many devices competing for wireless media may have low to medium data rate requirements (relative to the extremely high data rate of IEEE 802.11ac). The framework for the well-known and very old-fashioned IEEE 802.11 communications, including very high-throughput (VHT) communications, is less suitable for such high-density deployment scenarios. A recently formed research group for Wi-Fi evolution, known as IEEE 802.11 HEW SG (ie, IEEE 802.11ax), is addressing these high-density deployment scenarios.

關於HEW之一個問題為界定能夠重新使用諸如區塊交錯器之至少一些802.11ac硬體的有效通訊結構。關於HEW之另一問題為界定適合於供較長OFDM符號延時使用之有效通訊結構。 One problem with HEW is to define an efficient communication structure that can reuse at least some of the 802.11ac hardware, such as block interleavers. Another problem with HEW is to define an efficient communication structure suitable for use with longer OFDM symbol delays.

因此,存在針對改良無線網路中之總體系統效能(特別是對於高密度部署情形)之裝置及方法的一般需要。亦 存在針對適合於HEW通訊之裝置及方法的一般需要。亦存在針對可根據有效通訊結構而通訊且能夠重新使用至少一些習知硬體的適合於HEW通訊之裝置及方法的一般需要。亦存在針對可根據用於使用較長延時之OFDM符號之有效通訊結構而通訊的適合於HEW通訊之裝置及方法的一般需要。 Therefore, there is a general need for an apparatus and method for improving overall system performance in a wireless network, particularly for high density deployment scenarios. also There is a general need for devices and methods suitable for HEW communication. There is also a general need for an apparatus and method suitable for HEW communication that can communicate in accordance with an effective communication structure and that can reuse at least some of the conventional hardware. There is also a general need for an apparatus and method suitable for HEW communication that can communicate in accordance with an efficient communication structure for OFDM symbols using longer delays.

依據本發明之一實施例,係特地提出一種高效能WLAN(HEW)通訊站台(STA),其包含實體層電路系統及媒體存取控制層電路系統以:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬單元以用於傳遞該等較長延時OFDM符號,其中該等較長延時OFDM符號具有為一標準OFDM符號延時之2倍或4倍的符號延時。 According to an embodiment of the present invention, a high performance WLAN (HEW) communication station (STA) is specifically proposed, which comprises a physical layer circuit system and a medium access control layer circuit system: according to an orthogonal frequency division multiple access ( OFDMA) techniques for passing longer delay orthogonal frequency division multiplexing (OFDM) symbols on channel resources, the channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit having a predetermined number of data subcarriers; Configuring the minimum bandwidth units for transmitting the longer delay OFDM symbols according to one of a plurality of subcarrier configurations for one of a plurality of interleaver combinations, wherein the longer delay OFDM signals The symbol has a symbol delay of 2 or 4 times the delay of a standard OFDM symbol.

100‧‧‧HEW網路 100‧‧‧HEW Network

102‧‧‧主控站台(STA) 102‧‧‧Master Station (STA)

104‧‧‧HEW站台/HEW裝置 104‧‧‧HEW platform/HEW device

106‧‧‧舊版站台/舊版裝置 106‧‧‧Old platform/old version

200‧‧‧PHY層電路系統 200‧‧‧ PHY layer circuit system

208‧‧‧編碼器 208‧‧‧Encoder

214‧‧‧區塊交錯器 214‧‧‧block interleaver

216‧‧‧群集映射器 216‧‧‧Cluster Mapper

300‧‧‧HEW裝置 300‧‧‧HEW device

301‧‧‧天線 301‧‧‧Antenna

302‧‧‧實體層(PHY)電路系統 302‧‧‧Physical Layer (PHY) circuitry

304‧‧‧媒體存取控制層電路系統(MAC) 304‧‧‧Media Access Control Layer Circuit System (MAC)

306‧‧‧其他處理電路系統 306‧‧‧Other processing circuitry

308‧‧‧記憶體 308‧‧‧ memory

400‧‧‧程序 400‧‧‧Program

402、404、406‧‧‧操作 402, 404, 406‧‧‧ operations

圖1說明根據一些實施例之HEW網路;圖2為根據一些實施例之HEW通訊站台的實體層方塊圖;圖3說明根據一些實施例之HEW裝置;以及圖4為根據一些實施例的用於使用最小帶寬單元而通訊之程序。 1 illustrates a HEW network in accordance with some embodiments; FIG. 2 is a block diagram of a physical layer of a HEW communication station in accordance with some embodiments; FIG. 3 illustrates a HEW device in accordance with some embodiments; and FIG. 4 is used in accordance with some embodiments. A program that communicates using a minimum bandwidth unit.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

以下描述及圖式充分地說明特定實施例以使熟習此項技術者能夠實踐該等實施例。其他實施例可併有結構改變、邏輯改變、電氣改變、處理程序改變及其他改變。一些實施例之部分及特徵可包括於其他實施例之部分及特徵中,或由其他實施例之部分及特徵取代。請求項中闡述之實施例涵蓋彼等請求項之所有可用等效者。 The description and drawings are to be considered as illustrative of the embodiments Other embodiments may incorporate structural changes, logic changes, electrical changes, process changes, and other changes. Portions and features of some embodiments may be included in or substituted for parts and features of other embodiments. The embodiments set forth in the claims are intended to cover all available equivalents of the claims.

本文中揭示之一些實施例提供用於HEW網路中之音調配置之系統及方法。在一些實施例中,主控站台可向HEW配置音調以提供最小正交分頻多重存取(OFDMA)帶寬單元(亦即,最小帶寬單元)。在一些實施例中,HEW通訊站台可經組配以在包含一或多個最小帶寬單元之通道資源上傳遞較長延時正交分頻多工(OFDM)符號。每一最小帶寬單元可具有一預定帶寬,且該等最小帶寬單元可根據用於多個交錯器組配中之一者的多個副載波(亦即,音調)配置中之一者而組配。在一些實施例中,提供最佳副載波配置及交錯器大小組合以供OFDMA最小帶寬單元使用,以用於使用較長延時OFDM符號之通訊。下文更詳細地論述此等實施例。本文中揭示之一些實施例適用於使用較長延時OFDM符號(例如,較大FFT大小)之通訊。 Some embodiments disclosed herein provide systems and methods for tone configuration in a HEW network. In some embodiments, the master station can configure the tone to the HEW to provide a minimum orthogonal frequency division multiple access (OFDMA) bandwidth unit (ie, a minimum bandwidth unit). In some embodiments, the HEW communication station can be configured to deliver longer delay orthogonal frequency division multiplexing (OFDM) symbols on channel resources that include one or more minimum bandwidth units. Each of the minimum bandwidth units can have a predetermined bandwidth, and the minimum bandwidth units can be assembled according to one of a plurality of subcarrier (ie, tone) configurations for one of the plurality of interleaver combinations . In some embodiments, an optimal subcarrier configuration and interleaver size combination is provided for use by the OFDMA minimum bandwidth unit for communication using longer delay OFDM symbols. These embodiments are discussed in more detail below. Some embodiments disclosed herein are suitable for communication using longer delay OFDM symbols (eg, larger FFT sizes).

圖1說明根據一些實施例之HEW網路。HEW網路100可包括主控站台(STA)102、多個HEW站台104(HEW裝置),及多個舊版站台106(舊版裝置)。主控站台102可經排列以根據IEEE 802.11標準中之一或多者而與HEW站台104 及舊版站台106通訊。根據一些HEW實施例,主控站台102且可經排列以爭用無線媒體(例如,在爭用時段期間)以接收該媒體之獨佔式控制歷時HEW控制時段(亦即,傳輸機會(transmission opportunity,TXOP))。主控站台102可(例如)在HEW控制時段開始時傳輸主控同步或控制傳輸,以尤其指示哪些HEW站台104經排程用於在HEW控制時段期間通訊。在HEW控制時段期間,經排程HEW站台104可根據基於非爭用之多重存取技術而與主控站台102通訊。此通訊不同於裝置根據基於爭用之通訊技術而非基於非爭用之多重存取技術而通訊的習知Wi-Fi通訊。在HEW控制時段期間,主控站台102可與HEW站台104通訊(例如,使用一或多個HEW訊框)。在HEW控制時段期間,舊版站台106可抑制通訊。在一些實施例中,主控同步傳輸可被稱作控制與排程傳輸(control and schedule transmission)。 FIG. 1 illustrates a HEW network in accordance with some embodiments. The HEW network 100 can include a master station (STA) 102, a plurality of HEW stations 104 (HEW devices), and a plurality of legacy stations 106 (legacy devices). The master station 102 can be arranged to communicate with the HEW station 104 in accordance with one or more of the IEEE 802.11 standards. Communication with the old platform 106. According to some HEW embodiments, the master station 102 can be arranged to contend for wireless media (e.g., during a contention period) to receive the exclusive control duration of the media for a HEW control period (i.e., a transmission opportunity). TXOP)). The master station 102 can transmit master synchronization or control transmissions, for example, at the beginning of the HEW control period to specifically indicate which HEW stations 104 are scheduled for communication during the HEW control period. During the HEW control period, the scheduled HEW station 104 can communicate with the master station 102 in accordance with a non-contention based multiple access technique. This communication is different from conventional Wi-Fi communication in which the device communicates based on contention-based communication technology rather than non-contention-based multiple access technology. During the HEW control period, the master station 102 can communicate with the HEW station 104 (eg, using one or more HEW frames). The legacy station 106 can suppress communication during the HEW control period. In some embodiments, the master synchronous transmission may be referred to as a control and schedule transmission.

在一些實施例中,在HEW控制時段期間使用之多重存取技術可為經排程OFDMA技術,但此並非要求。在一些實施例中,多重存取技術可為可與OFDMA組合之分時多重存取(TDMA)技術或分頻多重存取(FDMA)技術。在一些實施例中,多重存取技術可為可與OFDMA組合的包括多使用者(MU)多輸入多輸出(MIMO)(MU-MIMO)技術之分空間多重存取(SDMA)技術。在HEW控制時段期間使用之此等多重存取技術可經組配用於上行鏈路資料通訊或下行鏈路資料通訊。 In some embodiments, the multiple access technology used during the HEW control period may be a scheduled OFDMA technique, but this is not a requirement. In some embodiments, the multiple access technology may be a Time Division Multiple Access (TDMA) technology or a Frequency Division Multiple Access (FDMA) technology that may be combined with OFDMA. In some embodiments, the multiple access technology may be a sub-space multiple access (SDMA) technology including multi-user (MU) multiple input multiple output (MIMO) (MU-MIMO) technology that may be combined with OFDMA. These multiple access techniques used during the HEW control period can be configured for uplink data communication or downlink data communication.

主控站台102亦可根據舊版IEEE 802.11通訊技術而與舊版站台106通訊(在控制時段外)。在一些實施例 中,主控站台102亦可為可組配的以根據舊版IEEE 802.11通訊技術而在HEW控制時段外與HEW站台104通訊,但此並非要求。 The master station 102 can also communicate with the legacy station 106 (outside the control period) in accordance with the legacy IEEE 802.11 communication technology. In some embodiments The master station 102 may also be configurable to communicate with the HEW station 104 outside of the HEW control period in accordance with the legacy IEEE 802.11 communication technology, but this is not a requirement.

在一些實施例中,在控制時段期間之HEW通訊可為可組配的以具有20MHz、40MHz或80MHz鄰接帶寬中之一者或80+80MHz(160MHz)非鄰接帶寬的帶寬。在一些實施例中,可使用320MHz通道寬度。在一些實施例中,亦可使用小於20MHz之子通道帶寬。在此等實施例中,HEW通訊之每一通道或子通道可經組配用於傳輸數個空間串流。在控制時段期間之HEW通訊可為上行鏈路通訊或下行鏈路通訊。 In some embodiments, the HEW communication during the control period can be a bandwidth that can be configured to have one of 20 MHz, 40 MHz, or 80 MHz contiguous bandwidth or 80+80 MHz (160 MHz) non-contiguous bandwidth. In some embodiments, a 320 MHz channel width can be used. In some embodiments, a subchannel bandwidth of less than 20 MHz can also be used. In these embodiments, each channel or subchannel of the HEW communication can be configured to transmit a plurality of spatial streams. The HEW communication during the control period can be uplink communication or downlink communication.

根據實施例,HEW站台(例如,主控站台102或HEW站台104)可經組配以根據OFDMA技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號。該等通道資源可包含一或多個最小帶寬單元,且每一最小帶寬單元可具有預定數目個資料副載波。較長延時OFDM符號可具有為標準OFDM符號延時(亦即,符號時間(例如,Tsymbol))之2倍或4倍的符號延時。最小帶寬單元可根據用於多個交錯器組配中之一者的多個副載波配置中之一者而組配。下文更詳細地論述此等實施例。本文中揭示之一些實施例可適用於以較長OFDM符號延時(例如,為標準符號延時之兩倍(2倍)及四倍(4倍))而操作之IEEE 802.11ax及HEW網路。 According to an embodiment, an HEW station (e.g., master station 102 or HEW station 104) may be configured to pass longer delay orthogonal frequency division multiplexing (OFDM) symbols on channel resources in accordance with OFDMA techniques. The channel resources may include one or more minimum bandwidth units, and each minimum bandwidth unit may have a predetermined number of data subcarriers. Longer delay OFDM symbols may have a symbol delay that is 2 or 4 times the standard OFDM symbol delay (ie, symbol time (eg, T symbol )). The minimum bandwidth unit may be assembled according to one of a plurality of subcarrier configurations for one of the plurality of interleaver combinations. These embodiments are discussed in more detail below. Some embodiments disclosed herein are applicable to IEEE 802.11ax and HEW networks operating with longer OFDM symbol delays (eg, twice (2 times) and four times (4 times) the standard symbol delay).

如下文更詳細地所論述,HEW站台可包含實體層(PHY)電路系統及媒體存取控制(MAC)層電路系統。在一些實施例中,PHY電路系統可包括具有一個OFDM符號之深 度的區塊交錯器。區塊交錯器可為可組配的以根據多個交錯器組配中之任一者來交錯經編碼資料之區塊。交錯器組配可包含行之數目及列之數目。 As discussed in more detail below, an HEW station can include physical layer (PHY) circuitry and media access control (MAC) layer circuitry. In some embodiments, the PHY circuitry can include a depth of one OFDM symbol Block interleaver. The block interleaver can be a block that can be configured to interleave encoded data according to any of a plurality of interleaver combinations. The interleaver combination can include the number of rows and the number of columns.

圖2為根據一些實施例之HEW通訊站台的實體層方塊圖。PHY層電路系統200可適合於用作HEW通訊站台(諸如,主控站台102(圖1)及/或HEW通訊站台104(圖1))之實體層之部分。如圖2所說明,PHY層電路系統200可尤其包括一或多個編碼器208、一或多個區塊交錯器214及一或多個群集映射器216。編碼器208中之每一者可經組配以在由交錯器214進行交錯之前編碼輸入資料。群集映射器216中之每一者可經組配以在交錯之後將經交錯資料映射至群集(例如,QAM群集)。每一交錯器214可經組配以根據多個交錯器組配中之任一者來交錯經編碼資料之區塊。在一些實施例中,編碼器208可為二進位迴旋碼(binary convolutional code,BCC)編碼器。可對由群集映射器提供之經群集映射符號執行FFT以產生時域信號以供傳輸。 2 is a block diagram of a physical layer of a HEW communication station in accordance with some embodiments. The PHY layer circuitry 200 can be adapted for use as part of a physical layer of a HEW communication station, such as the master station 102 (FIG. 1) and/or the HEW communication station 104 (FIG. 1). As illustrated in FIG. 2, PHY layer circuitry 200 may include, in particular, one or more encoders 208, one or more block interleavers 214, and one or more cluster mappers 216. Each of the encoders 208 can be configured to encode input data prior to interleaving by the interleaver 214. Each of the cluster mappers 216 can be configured to map the interleaved data to a cluster (eg, a QAM cluster) after interleaving. Each interleaver 214 can be configured to interleave blocks of encoded data according to any of a plurality of interleaver combinations. In some embodiments, encoder 208 can be a binary convolutional code (BCC) encoder. An FFT can be performed on the clustered mapped symbols provided by the cluster mapper to generate a time domain signal for transmission.

根據實施例,編碼器208及映射器216根據用於特定副載波配置(亦即,音調配置)之多個預定調變與寫碼方案(modulation and coding scheme,MCS)組合中之一者而操作。用於副載波配置之多個預定MCS組合可限於每OFDM符號的經寫碼位元之整數(Ncbps)及每OFDM符號的資料位元之整數(Ndbps)。在此等實施例中,每OFDM符號的經寫碼位元之數目(Ncbps)為整數,且每OFDM符號的資料位元之數目(Ndbps)為整數。可使用之預定MCS組合及副載波配置可包括BPSK、QPSK、16-QAM、64-QAM及256-QAM之 調變階以及1/2、3/4、2/3及5/6之寫碼速率,其限制條件為Ncbps及Ndbps兩者皆為整數。非整數Ndbps可引起非整數個填補位元或數目超過OFDM符號之數目的經編碼位元,此情形可導致僅由填補位元組成之一個額外OFDM符號的最小值。整數Ndbps可保證所有資料長度使用802.11 2012規格中的11n之「OFDM符號之數目(Number of OFDM Symbols)」之等式(20至32)而在無額外填補的情況下起作用。因此,本文中揭示之實施例可限於某些MCS組合及副載波配置。在此等實施例中,交錯器硬體架構組配係在IEEE 802.11交錯器之邊界內,從而允許針對HEW重新使用舊版802.11硬體區塊。 According to an embodiment, encoder 208 and mapper 216 operate in accordance with one of a plurality of predetermined modulation and coding scheme (MCS) combinations for a particular subcarrier configuration (ie, tone configuration). . The plurality of predetermined MCS combinations for the subcarrier configuration may be limited to integers (Ncbps) of coded bits per OFDM symbol and integers (Ndbps) of data bits per OFDM symbol. In these embodiments, the number of coded bits per OFDM symbol (Ncbps) is an integer, and the number of data bits per OFDM symbol (Ndbps) is an integer. The predetermined MCS combination and subcarrier configuration that can be used may include BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM. The modulation order and the code rate of 1/2, 3/4, 2/3, and 5/6 are limited to Ncbps and Ndbps, both of which are integers. Non-integer Ndbps may cause a non-integer number of padding bits or a number of encoded bits that exceed the number of OFDM symbols, which may result in a minimum of one additional OFDM symbol consisting of only padding bits. The integer Ndbps guarantees that all data lengths work with the equation (20 to 32) of 11n "Number of OFDM Symbols" in the 802.11 2012 specification without additional padding. Thus, embodiments disclosed herein may be limited to certain MCS combinations and subcarrier configurations. In these embodiments, the interleaver hardware architecture is tied within the boundaries of the IEEE 802.11 interleaver, allowing legacy 802.11 hardware blocks to be reused for HEW.

在此等實施例中,在交錯之前,通訊站台經組配以基於寫碼速率來編碼輸入資料,且在交錯之後,通訊站台可經組配以基於調變層級而將經交錯位元群集映射至QAM群集點。寫碼速率及調變層級可根據用於特定副載波配置之預定MCS組合中之一者。下文更詳細地描述此等實施例。 In such embodiments, prior to interleaving, the communication station is configured to encode the input data based on the write rate, and after interleaving, the communication station can be configured to map the interleaved bit cluster based on the modulation level To the QAM cluster point. The code rate and modulation level may be based on one of a predetermined MCS combination for a particular subcarrier configuration. These embodiments are described in more detail below.

在一些實施例中,每一最小帶寬單元可為可組配的以用於一個空間串流與四個位元串流之間的通訊。在此等實施例中,可在控制時段期間使用SDMA或MIMO技術以傳遞空間串流。 In some embodiments, each minimum bandwidth unit can be configurable for communication between one spatial stream and four bit streams. In such embodiments, SDMA or MIMO techniques may be used during the control period to deliver spatial streams.

本文中揭示之實施例針對二進位迴旋碼(BCC)寫碼之狀況提供副載波之數目、導頻副載波之數目及區塊交錯器之大小。在一些實施例中,美國臨時專利申請案第61/976,951號中描述的用於802.11ax之OFDMA波形之結構 可適合於使用,但此並非要求。本文中揭示之一些實施例描述用於OFDMA波形之最小帶寬單元,且描述副載波配置之架構。在一些實施例中,副載波配置可經組配以重新使用IEEE 802.11ac硬體來建立新OFDMA結構。 Embodiments disclosed herein provide the number of subcarriers, the number of pilot subcarriers, and the size of the block interleaver for the condition of binary coded (BCC) code writing. In some embodiments, the structure of an OFDMA waveform for 802.11ax described in U.S. Provisional Patent Application Serial No. 61/976,951 It is suitable for use, but this is not required. Some embodiments disclosed herein describe a minimum bandwidth unit for an OFDMA waveform and describe the architecture of the subcarrier configuration. In some embodiments, the subcarrier configuration can be assembled to re-use IEEE 802.11ac hardware to establish a new OFDMA structure.

如上文所概述,本文中揭示之各種實施例提供適合於IEEE 802.11ax組配式網路之最小OFDMA帶寬單元的設計,該等網路以較長符號延時(例如,11n/ac OFDM符號延時之2倍、4倍)(例如,較大FFT大小)而操作。此等實施例針對BCC寫碼之狀況提供資料副載波之數目、導頻副載波之數目及區塊交錯器之大小。本文中揭示與IEEE 802.11ac交錯組配一致之可能配置。一些更佳配置可提供縮減之附加項且提供實施簡易性,特別是當考慮IEEE 802.11ac架構之重新使用時。 As outlined above, various embodiments disclosed herein provide for the design of a minimum OFDMA bandwidth unit suitable for an IEEE 802.11ax teamed network with longer symbol delays (eg, 11n/ac OFDM symbol delay) 2x, 4x) (eg, larger FFT size) operates. These embodiments provide the number of data subcarriers, the number of pilot subcarriers, and the size of the block interleaver for the status of BCC code writing. Possible configurations consistent with IEEE 802.11ac interleaving are disclosed herein. Some of the better configurations provide reduced add-ons and provide ease of implementation, especially when considering the reuse of the IEEE 802.11ac architecture.

較長符號延時對於室外環境中之使用可受到特定關注,在室外環境中,可使用更有效之循環首碼(CP)以克服較長延遲擴展。相較於在室內環境中,其他益處可包括縮減之CP附加項及較寬鬆之時脈時序準確性。 Longer symbol delays can be specifically addressed for use in outdoor environments where a more efficient cycle first code (CP) can be used to overcome longer delay spreads. Other benefits may include reduced CP additions and looser timing timing accuracy than in an indoor environment.

用於區塊交錯器之較好組配可基於通道模型、MCS及其他參數,且可藉由系統模擬而判定。由於本文中揭示之實施例的意圖係界定副載波配置,故執行在邊界內之窮盡性搜尋以達到合理副載波配置。 A better combination for the block interleaver can be based on the channel model, MCS, and other parameters, and can be determined by system simulation. Since the intent of the embodiments disclosed herein is to define a subcarrier configuration, an exhaustive search within the boundaries is performed to achieve a reasonable subcarrier configuration.

此處揭示之實施例在很大程度上提供現有系統參數及系統區塊之重新使用。此情形經由現有系統區塊之重新使用且因此經由硬體之重新使用而使演進較不複雜且較小,且因此較不昂貴。因此,本文中揭示之實施例提供 當前界定之交錯器結構(具有針對較窄帶寬之延伸)、當前寫碼速率(具有修改速率之能力)及調變類型(具有修改調變大小之能力)的重新使用。 The embodiments disclosed herein provide, to a large extent, the reuse of existing system parameters and system blocks. This situation is made less re-use and less expensive, and therefore less expensive, via reuse of existing system blocks and thus via hardware reuse. Accordingly, embodiments disclosed herein provide The currently defined interleaver structure (with extensions for narrower bandwidths), the current write rate (the ability to modify the rate), and the modulation type (with the ability to modify the modulation size) are reused.

在OFDMA系統中,用於最小帶寬單元中之副載波的總數可為系統設計參數。自此總副載波計數,OFDMA系統具有被指派給資料(用於資料)、導頻(通常用於時間/頻率及通道追蹤)、保護(用以符合頻譜遮罩)之副載波,以及在DC處及在DC周圍之副載波(以簡化直接轉換(DC)接收器設計)。舉例而言,在20MHz 802.11ac中,固定副載波間距為312.5kHz,且因此,副載波之總數為64。在此等64個副載波之中,52個副載波用於資料,1個副載波用於DC(亦即,賦予空值),4個副載波用於導頻,且剩餘7個副載波用於保護(亦即,賦予空值)。 In an OFDMA system, the total number of subcarriers used in the minimum bandwidth unit can be a system design parameter. From this total subcarrier count, the OFDMA system has subcarriers assigned to data (for data), pilots (usually used for time/frequency and channel tracking), protection (to conform to spectral masks), and at DC Subcarriers around DC (to simplify direct conversion (DC) receiver design). For example, in 20 MHz 802.11ac, the fixed subcarrier spacing is 312.5 kHz, and therefore, the total number of subcarriers is 64. Among these 64 subcarriers, 52 subcarriers are used for data, 1 subcarrier is used for DC (that is, null is given), 4 subcarriers are used for pilot, and the remaining 7 subcarriers are used. Protected (ie, given null values).

本文中揭示之實施例基於用於先前系統中之調變類型集合(亦即,BPSK、QPSK、16-QAM、64 QAM及256 QAM)來提供副載波配置。用於先前系統中之寫碼速率(r)包括以下集合r=1/2、3/4、2/3及5/6。此集合並不用於先前系統中之所有調變類型,但此集合確實包括遍及整個調變集合而使用之所有當前速率。為了判定有效副載波配置,可使用與在先前系統(例如,IEEE 802.11a/.11n/.11ac)中所進行相同的調變及寫碼指派。如上文所概述,本文中揭示之實施例可利用用於先前802.11系統中之現有通道交錯器。通道交錯器界定於IEEE標準802.11ac-2013之章節22.3.10.8的「IEEE資訊技術標準-電信及系統間資訊交換-區域網路及都會區域網路-第11部分:無線LAN媒體 存取控制(MAC)及實體層(PHY)規格,修正4:針對低於6GHz之頻帶中操作之極高輸貫量的增強(IEEE Standard for Information Technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Part 11:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)specifications,Amendment 4:Enhancements for Very High Throughput for Operation in Bands below 6GHz)」中。在彼文字中,在表22-17之「交錯器中的列及行之數目(Number of Rows and columns in the interleaver)」中概述交錯器參數。此處出於完整性起見而針對1至4個空間串流之狀況提供該表。 Embodiments disclosed herein provide subcarrier configurations based on a set of modulation types used in prior systems (i.e., BPSK, QPSK, 16-QAM, 64 QAM, and 256 QAM). The code rate (r) used in previous systems includes the following sets r = 1/2, 3/4, 2/3, and 5/6. This collection is not used for all modulation types in the previous system, but this collection does include all current rates used throughout the entire modulation set. To determine the effective subcarrier configuration, the same modulation and code assignments as those performed in previous systems (eg, IEEE 802.11a/.11n/.11ac) can be used. As outlined above, embodiments disclosed herein may utilize existing channel interleavers for use in previous 802.11 systems. The channel interleaver is defined in IEEE Standard 802.11ac-2013 section 22.3.10.8 "IEEE Information Technology Standards - Telecommunications and Intersystem Information Exchange - Area Networks and Metropolitan Area Networks - Part 11: Wireless LAN Media Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 4: Enhancements to the extremely high throughput of operating in bands below 6 GHz (IEEE Standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan Area networks-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz). In the text, the interleaver parameters are outlined in "Number of Rows and columns in the interleaver" in Table 22-17. This table is provided here for the sake of integrity for 1 to 4 spatial streams.

在IEEE 802.11n中,40MHz帶寬通道之引入重新使用現有交錯器演算法,其中對矩陣大小之修改經界定以寫入及讀取資料。在IEEE 802.11ac中,在引入80MHz帶寬通道之情況下,利用相同交錯器演算法。此等參數界定儲存於交錯器中之經寫碼符號之數目。本文中揭示之一些實施例亦可重新使用現有交錯器演算法,其中新值用以界定用於最小帶寬單元之NCOL及NROW。NROT操作在存在一個以 上空間串流時界定值之旋轉,但並不界定交錯器大小,且因此將不影響副載波配置。 In IEEE 802.11n, the introduction of a 40 MHz bandwidth channel reuses the existing interleaver algorithm, where modifications to the matrix size are defined to write and read data. In IEEE 802.11ac, the same interleaver algorithm is utilized with the introduction of an 80 MHz bandwidth channel. These parameters define the number of coded symbols stored in the interleaver. Some embodiments disclosed herein may also reuse existing interleaver algorithms where new values are used to define N COL and N ROW for the smallest bandwidth unit. The N ROT operation defines the rotation of the value when more than one spatial stream is present, but does not define the interleaver size and therefore will not affect the subcarrier configuration.

在以上表中可看出,NROW為每串流每副載波的經寫碼位元之數目的常數倍。因此,交錯器實體大小為MCS之函數。本文中揭示之實施例可界定用來計算NROW之常數(y)。 As can be seen in the above table, N ROW is a constant multiple of the number of coded bits per subcarrier per stream. Therefore, the interleaver entity size is a function of the MCS. Embodiments disclosed herein may define a constant (y) used to calculate N ROW .

在使用以上約束的情況下,可達成一副載波配置集合。如上文所提及,此等實施例中之一些適用於針對最小帶寬單元之較長符號延時,其允許20MHz通道帶寬內的高達四個使用者之多工。此等實施例可藉由將配置均勻地劃分成較小配置而可擴展至四個以上使用者之多工。舉例而言,若八個使用者之多工受到關注,則針對四個使用者之狀況所發現的音調計數可在兩個使用者之間在每一配置中均勻地劃分以提供針對四個使用者之2倍的音調計數,此係假定音調計數可由二除盡。然而,若音調計數不可由2除盡,但音調計數可由3除盡,則四個使用者之3倍的多工將為可能的。 In the case of using the above constraints, a set of subcarrier configurations can be achieved. As mentioned above, some of these embodiments are applicable to longer symbol delays for minimum bandwidth units, which allows up to four users to work within a 20 MHz channel bandwidth. Such embodiments can be extended to more than four users by dividing the configuration evenly into smaller configurations. For example, if the multiplex of eight users is concerned, the pitch counts found for the situation of the four users can be evenly divided among the two users in each configuration to provide for four uses. The tone count is 2 times, which assumes that the tone count can be divided by two. However, if the pitch count cannot be divisible by 2, but the pitch count can be divided by 3, then 3 times the multiplex of four users will be possible.

如上文在20MHz 802.11ac中所提及,固定(亦即,標準)*副載波間距為312.5kHz,且因此,副載波之總數為64。在此等64個副載波之中,52個副載波用於資料,1個副載波用於DC(被假定為賦予空值),4個副載波用於導頻,且剩餘7個副載波用於保護(被假定為賦予空值)。根據實施例,對於2倍及4倍之符號延時,FFT大小可分別為128及256。本文中揭示之實施例可針對資料副載波提供用於四個使用者中之每一者之24個至32個副載波,此情形將接著 針對128點FFT允許分別用於4個使用者之4個至0個空值副載波;且本文中揭示之實施例可針對資料副載波提供用於四個使用者中之每一者之48個至64個副載波,此情形將接著針對256點FFT允許分別用於4個使用者之16個至0個空值副載波。為了判定組配是否適合於使用,可基於下文所界定之以下變數集合來使用一等式集合: As mentioned above in 20 MHz 802.11ac, the fixed (i.e., standard)* subcarrier spacing is 312.5 kHz, and therefore, the total number of subcarriers is 64. Of these 64 subcarriers, 52 subcarriers are used for data, 1 subcarrier is used for DC (assumed to be null), 4 subcarriers are used for pilot, and the remaining 7 subcarriers are used. For protection (presumed to give null values). According to an embodiment, for 2x and 4x symbol delays, the FFT sizes may be 128 and 256, respectively. Embodiments disclosed herein may provide 24 to 32 subcarriers for each of four users for data subcarriers, which will then be allowed for 4 users for a 128 point FFT, respectively. To zero null subcarriers; and embodiments disclosed herein may provide 48 to 64 subcarriers for each of four users for data subcarriers, which will then be followed by a 256 point FFT Allow 16 to 0 null subcarriers for 4 users, respectively. To determine if a fit is suitable for use, an equation set can be used based on the following set of variables defined below:

假定所有調變可以3/4及5/6之寫碼速率而如針對包括64QAM及256QAM之40MHz(在802.11ac中所引入)的IEEE 802.11ac一樣被支援,則針對256點FFT所允許之合 適配置展示於以下表I中且可包括: Assuming all modulations can be 3/4 and 5/6 of the code rate as supported by IEEE 802.11ac including 64QAM and 256QAM (introduced in 802.11ac), the appropriate for 256-point FFT is allowed. The configuration is shown in Table I below and may include:

表I展示針對如下資料音調數目之三種可能性:48、54及60,其在20MHz內將留下總計64個、40個及16個額外副載波。此等額外副載波可用於按每一子通道之導頻音調、在DC處之空值及用作保護頻帶之空值副載波,例 如,對於總計4×(54+3)+3+13+12=256個副載波,在20MHz通道中,54個資料副載波及3個導頻音調可被指派給四個使用者中之每一者加在DC處之三個空值以及在左側保護上之13個空值及在右側保護上之12個空值。此實例配置係在當前交錯器內,且支援在運用待進行選擇之若干交錯器尺寸之情況下引起的所有MCS。在針對交錯器尺寸之選擇當中,較接近於正方形形狀之尺寸可為較佳的(例如,NCOL=6,且NROW=9),但其他交錯器尺寸亦為合適的。 Table I shows three possibilities for the number of tone tones: 48, 54 and 60, which will leave a total of 64, 40 and 16 additional subcarriers within 20 MHz. These additional subcarriers can be used for pilot tones per subchannel, null at DC, and null subcarriers used as guard bands, for example, for a total of 4 x (54 + 3) + 3 + 13 + 12 = 256 subcarriers. In the 20 MHz channel, 54 data subcarriers and 3 pilot tones can be assigned to each of the four users plus three null values at the DC and on the left side protection. 13 null values and 12 null values on the right side of the protection. This example configuration is within the current interleaver and supports all MCSs that are caused by the use of several interleaver sizes to be selected. Among the choices for the size of the interleaver, a size closer to the square shape may be preferred (for example, N COL = 6 and N ROW = 9), but other interleaver sizes are also suitable.

在此等實施例中,主控站台102可經組配以運用快速傅立葉變換(FFT)來處理較長延時OFDM符號。為了在無寫碼速率排除的情況下運用256點FFT來處理較長延時OFDM符號,用於最小帶寬單元之預定數目個資料副載波可限於48個、54個及60個資料副載波中之一者。此等實施例之交錯器組配展示於表I中。 In such embodiments, the master station 102 can be configured to process the longer delay OFDM symbols using a Fast Fourier Transform (FFT). In order to process a longer delay OFDM symbol using a 256-point FFT without code rate exclusion, a predetermined number of data subcarriers for the minimum bandwidth unit may be limited to one of 48, 54 and 60 data subcarriers. By. The interleaver combinations of these embodiments are shown in Table I.

針對128點FFT所允許之合適配置展示於以下表II中: The appropriate configuration for the 128-point FFT is shown in Table II below:

在此等實施例中,為了在無寫碼速率排除的情況下運用128點FFT來處理較長延時OFDM符號,用於最小帶寬單元之數個資料副載波可限於28個及30個資料副載波中之一者。用於此等實施例之交錯器組配展示於表II中。 In these embodiments, in order to process longer delay OFDM symbols using a 128-point FFT without code rate exclusion, the number of data subcarriers for the smallest bandwidth unit may be limited to 28 and 30 data subcarriers. One of them. The interleaver combinations used in these embodiments are shown in Table II.

在不運用256 QAM來支援寫碼速率5/6的情況下用於256點FFT之合適配置展示於以下表III中(例如,802.11ac中用於20MHz之排除): A suitable configuration for a 256-point FFT without using 256 QAM to support a write rate of 5/6 is shown in Table III below (eg, for 802.11ac for 20 MHz exclusion):

在此等實施例中,為了在具有針對256-QAM的5/6之寫碼速率排除的情況下運用256點FFT來處理較長延時OFDM符號,用於最小帶寬單元之數個資料副載波可限於48個、50個、54個、52個、54個、56個、60個及62個資料副載波中之一者。用於此等實施例之交錯器組配展示於表III中。 In such embodiments, in order to process longer delay OFDM symbols with a 256 point FFT with 5/6 code rate exclusion for 256-QAM, the number of data subcarriers for the smallest bandwidth unit may be Limited to one of 48, 50, 54, 52, 54, 56, 60 and 62 data subcarriers. The interleaver combinations used in these embodiments are shown in Table III.

在不運用256 QAM來支援寫碼速率5/6的情況下用於128點FFT之合適配置展示於以下表IV中(例如,802.11ac中用於20MHz之排除): A suitable configuration for a 128-point FFT without using 256 QAM to support a write rate of 5/6 is shown in Table IV below (eg, for 802.11ac for 20 MHz exclusion):

在此等實施例中,為了在具有針對256-QAM的5/6之寫碼速率排除的情況下運用128點FFT來處理較長延時OFDM符號,用於最小帶寬單元之數個資料副載波可限於24個、26個、28個及30個資料副載波中之一者。用於此等實施例之交錯器組配展示於表IV中。 In such embodiments, in order to process a longer delay OFDM symbol with a 128 point FFT with 5/6 code rate exclusion for 256-QAM, the number of data subcarriers for the minimum bandwidth unit may be Limited to one of 24, 26, 28 and 30 data subcarriers. The interleaver combinations used in these embodiments are shown in Table IV.

在一些實施例中,主控站台102可經組配以根據OFDMA技術在控制時段期間於20MHz或40MHz之通道上使用高達四個該等最小帶寬單元而並行地通訊。在此等實施例中,當於一通道帶寬上使用四個最小帶寬單元而通訊時,主控站台102可根據OFDMA技術在控制時段期間與高達四個HEW站台104並行地通訊。在此等實施例中,當2倍之較長符號延時用於(例如)20MHz通道帶寬中時,副載波間距可縮減達原先的二分之一(例如,312.5KHz之一半),當4倍之較長符號延時用於20MHz通道帶寬中時,副載波間距可縮減達原先的四分之一。在此等實施例中,具有較多保護副載波之副載波配置可用於較緊密之副載波間距。在一些實施例中,站台102可經組配以使用40MHz通道、80MHz通道及160MHz通道之每一20MHz部分的高達四個該等最小帶寬單元而並行地通訊。 In some embodiments, the master station 102 can be configured to communicate in parallel using up to four of the minimum bandwidth units on a 20 MHz or 40 MHz channel during a control period in accordance with OFDMA techniques. In such embodiments, when four minimum bandwidth units are used for communication over a single channel bandwidth, the master station 102 can communicate in parallel with up to four HEW stations 104 during the control period in accordance with OFDMA techniques. In such embodiments, when 2 times longer symbol delay is used, for example, in a 20 MHz channel bandwidth, the subcarrier spacing can be reduced by a factor of two (eg, one and a half of 312.5 KHz), when 4 times When the longer symbol delay is used in the 20MHz channel bandwidth, the subcarrier spacing can be reduced by a factor of four. In such embodiments, the subcarrier configuration with more guard subcarriers can be used for tighter subcarrier spacing. In some embodiments, the station 102 can be configured to communicate in parallel using up to four of the minimum bandwidth units of each of the 20 MHz portions of the 40 MHz channel, the 80 MHz channel, and the 160 MHz channel.

在一些實施例中,對於具有用於256點FFT處理之54個資料副載波的最小帶寬單元,副載波配置之一個實例包含總計256個副載波,其包括:針對用於在20MHz或 40MHz之任一通道內通訊的四個最小帶寬單元中之每一者的54個資料副載波及3個導頻副載波、在DC處之2個至4個空值副載波,及在每一頻帶邊緣處之12個至13個保護副載波。對於此實例副載波配置,展示於表I中之交錯器組配可為合適的,且支援所有當前MCS組配(亦即,無任何寫碼速率限定)。 In some embodiments, for a minimum bandwidth unit having 54 data subcarriers for 256 point FFT processing, one instance of the subcarrier configuration includes a total of 256 subcarriers, including: for use at 20 MHz or 54 data subcarriers and 3 pilot subcarriers for each of the four minimum bandwidth units communicated in any of the 40 MHz channels, 2 to 4 null subcarriers at the DC, and at each 12 to 13 guard subcarriers at the edge of the band. For this example subcarrier configuration, the interleaver combinations shown in Table I may be suitable and support all current MCS combinations (i.e., without any write rate limiting).

在一些實施例中,對於具有用於256點FFT處理之54個資料副載波的最小帶寬單元,包含總計256個副載波之副載波配置之一個實例可針對總計256個副載波(亦即,4×(54+3)+3+12+13=256)包括針對用於在20MHz或40MHz通道帶寬內通訊的四個最小帶寬單元中之每一者的54個資料副載波及3個導頻副載波、在DC處之3個空值副載波、在一個頻帶邊緣處之12個保護副載波及在另一頻帶邊緣處之13個保護副載波(例如,左側及右側)。對於此實例副載波配置,展示於表I中之交錯器組配可為合適的,且支援所有當前MCS組配(亦即,無任何寫碼速率限定)。其他副載波配置亦可適合於使用。 In some embodiments, for a minimum bandwidth unit having 54 data subcarriers for 256 point FFT processing, an instance of a subcarrier configuration comprising a total of 256 subcarriers may be for a total of 256 subcarriers (ie, 4 ×(54+3)+3+12+13=256) includes 54 data subcarriers and 3 pilot pairs for each of the four minimum bandwidth units used for communication within the 20MHz or 40MHz channel bandwidth The carrier, 3 null subcarriers at the DC, 12 guard subcarriers at one band edge, and 13 guard subcarriers at the edge of the other band (eg, left and right). For this example subcarrier configuration, the interleaver combinations shown in Table I may be suitable and support all current MCS combinations (i.e., without any write rate limiting). Other subcarrier configurations may also be suitable for use.

在一些實施例中,區塊交錯器214可具有一個OFDM符號之深度,且可為可組配的以交錯經編碼資料之區塊。交錯器組配可包含行之數目(NCol)及列之數目(Nrow),且列之該數目可基於每串流每副載波的經寫碼位元之數目(NBPSCS)。 In some embodiments, block interleaver 214 can have a depth of one OFDM symbol and can be a block that can be configured to interleave encoded data. The interleaver combination may include the number of rows (NCol) and the number of columns (Nrow), and the number of columns may be based on the number of coded bits per subcarrier per carrier (N BPSCS ).

在一些實施例中,對於具有用於256點FFT處理之54個資料副載波的最小帶寬單元,實例交錯器組配具有9 個行,及數目等於每單副載波的經寫碼位元之數目(NBPSCS)之3倍的列(Nrow)(亦即,9×3交錯器組配)。在此等實施例中,副載波之數目(Nsd)乘調變階(1-BPSK、2-QPSK等等)為每符號的經寫碼位元之數目。每單載波的經寫碼位元之數目可藉由乘以接著設定交錯器大小的串流之數目(NROW*NCOL)予以計算,其中NROW為y*NBPSCSIn some embodiments, for a minimum bandwidth unit having 54 data subcarriers for 256 point FFT processing, the instance interleaver group has 9 rows and the number is equal to the number of coded bits per single subcarrier. (N BPSCS) the column three times (nrow) (i.e., 9 × 3 interleaver ligand group). In these embodiments, the number of subcarriers (Nsd) multipliers (1-BPSK, 2-QPSK, etc.) is the number of coded bits per symbol. The number of coded bits per single carrier can be calculated by multiplying by the number of streams (N ROW * N COL ) that are then set to the interleaver size, where N ROW is y*N BPSCS .

在一些實施例中,較長延時OFDM符號可經選擇用於較大延遲擴展環境(例如,室外),且標準延時OFDM符號可經選擇用於較小延遲擴展環境(例如,室內)。在此等實施例中,可使用更有效之循環首碼(CP)以克服較大延遲擴展,且可提供尤其諸如縮減之CP附加項及寬鬆之時脈時序準確性的其他益處。標準延時OFDM符號可具有範圍為包括400奈秒(ns)短保護區間(例如,對於40MHz通道)之3.6微秒(us)至包括800ns保護區間(例如,對於20MHz通道)之4us的符號延時。較長延時OFDM符號可具有為標準延時OFDM符號之延時的2倍或4倍中之一者的符號延時。 In some embodiments, longer delayed OFDM symbols may be selected for larger delay extended environments (eg, outdoor), and standard delayed OFDM symbols may be selected for use in smaller delay extended environments (eg, indoors). In such embodiments, a more efficient cyclic first code (CP) can be used to overcome large delay spreads, and other benefits such as reduced CP additions and loose clock timing accuracy can be provided. The standard delayed OFDM symbol may have a symbol delay ranging from 3.6 microseconds (us) including a 400 nanosecond (ns) short guard interval (eg, for a 40 MHz channel) to 4 us including a 800 ns guard interval (eg, for a 20 MHz channel). The longer delay OFDM symbol may have a symbol delay that is one of 2 or 4 times the delay of the standard delayed OFDM symbol.

圖3說明根據一些實施例之HEW裝置。HEW裝置300可為HEW相容裝置,其可經排列以與諸如HEW站台及/或主控站台之一或多個其他HEW裝置通訊,以及與舊版裝置通訊。HEW裝置300可適合於作為主控站台或HEW站台而操作。根據實施例,HEW裝置300可尤其包括實體層(PHY)電路系統302及媒體存取控制層電路系統(MAC)304。PHY 302及MAC 304可為HEW相容層,且亦可與一或多個舊版IEEE 802.11標準相容。PHY 302可經排列以傳輸 HEW訊框。HEW裝置300亦可包括經組配以執行本文中描述之各種操作的其他處理電路系統306及記憶體308。 FIG. 3 illustrates a HEW device in accordance with some embodiments. The HEW device 300 can be a HEW compatible device that can be arranged to communicate with one or more other HEW devices, such as an HEW station and/or a master station, and with legacy devices. The HEW device 300 can be adapted to operate as a master station or an HEW station. According to an embodiment, HEW device 300 may include, in particular, physical layer (PHY) circuitry 302 and media access control layer circuitry (MAC) 304. PHY 302 and MAC 304 may be HEW compatible layers and may also be compatible with one or more legacy IEEE 802.11 standards. PHY 302 can be arranged to transmit HEW frame. HEW device 300 may also include other processing circuitry 306 and memory 308 that are assembled to perform the various operations described herein.

根據一些實施例,MAC 304可經排列以在爭用時段期間爭用無線媒體以接收該媒體之控制歷時HEW控制時段且組配HEW訊框。PHY 302可經排列以傳輸如上文所論述之HEW訊框。PHY 302亦可經排列以自HEW站台接收HEW訊框。MAC 304亦可經排列以經由PHY 302而執行傳輸及接收操作。PHY 302可包括用於調變/解調變、增頻轉換及/或降頻轉換、濾波、放大等等之電路系統。在一些實施例中,處理電路系統306可包括一或多個處理器。在一些實施例中,兩個或兩個以上天線可耦接至經排列用於發送及接收信號(包括HEW訊框之傳輸)之實體層電路系統。記憶體308可儲存用於組配處理電路系統306以執行用於組配及傳輸HEW訊框之操作且執行本文中描述之各種操作的資訊。 According to some embodiments, the MAC 304 may be arranged to contend for the wireless medium during the contention period to receive the control duration HEW control period of the medium and to group the HEW frames. PHY 302 can be arranged to transmit HEW frames as discussed above. The PHY 302 can also be arranged to receive HEW frames from the HEW station. The MAC 304 may also be arranged to perform transmission and reception operations via the PHY 302. PHY 302 may include circuitry for modulation/demodulation, upconversion, and/or down conversion, filtering, amplification, and the like. In some embodiments, processing circuitry 306 can include one or more processors. In some embodiments, two or more antennas may be coupled to physical layer circuitry arranged to transmit and receive signals, including transmissions of HEW frames. Memory 308 can store information for assembling processing circuitry 306 to perform operations for assembling and transmitting HEW frames and performing various operations described herein.

在一些實施例中,HEW裝置300可經組配以使用OFDM通訊信號經由多載波通訊通道而通訊。在一些實施例中,HEW裝置300可經組配以根據特定通訊標準(諸如,包括IEEE 802.11-2012、802.11n-2009及/或802.11ac-2013標準之電機電子工程師學會(IEEE)標準及/或包括所提議HEW標準的用於WLAN之所提議規格)來接收信號,但本發明之範疇在此方面並不受到限制,此係因為其亦可適合於根據其他技術及標準來傳輸及/或接收通訊。在一些其他實施例中,HEW裝置300可經組配以接收使用諸如以下各者之 一或多個其他調變技術而傳輸之信號:展頻調變(例如,直接序列分碼多重存取(DS-CDMA)及/或跳頻分碼多重存取(FH-CDMA))、分時多工(TDM)調變,及/或分頻多工(FDM)調變,但實施例之範疇在此方面並不受到限制。 In some embodiments, HEW device 300 can be configured to communicate via a multi-carrier communication channel using OFDM communication signals. In some embodiments, HEW device 300 can be configured to conform to a particular communication standard (such as the Institute of Electrical and Electronics Engineers (IEEE) standards including the IEEE 802.11-2012, 802.11n-2009, and/or 802.11ac-2013 standards and/or Or including the proposed specification for the WLAN of the proposed HEW standard), but the scope of the invention is not limited in this respect, as it may also be adapted to be transmitted and/or according to other technologies and standards. Receive communications. In some other embodiments, HEW device 300 can be assembled to receive usage such as the following Signals transmitted by one or more other modulation techniques: spread spectrum modulation (eg, direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)), points Time multiplex (TDM) modulation, and/or frequency division multiplexing (FDM) modulation, but the scope of the embodiments is not limited in this respect.

在一些實施例中,HEW裝置300可為攜帶型無線通訊裝置之部分,諸如,個人數位助理(PDA)、具有無線通訊能力之膝上型電腦或攜帶型電腦、網路平板電腦、無線電話或智慧型電話、無線耳機、呼叫器、即時傳訊裝置、數位攝影機、存取點、電視、醫療裝置(例如,心跳速率監測器、血壓監測器等等),或可以無線方式接收及/或傳輸資訊之其他裝置。在一些實施例中,HEW裝置300可包括以下各者中之一或多者:鍵盤、顯示器、非依電性記憶體埠、多個天線、圖形處理器、應用程式處理器、揚聲器及其他行動裝置元件。顯示器可為包括觸控螢幕之LCD螢幕。 In some embodiments, the HEW device 300 can be part of a portable wireless communication device, such as a personal digital assistant (PDA), a wireless communication capable laptop or laptop, a web tablet, a wireless telephone, or Smart phones, wireless headsets, pagers, instant messaging devices, digital cameras, access points, televisions, medical devices (eg, heart rate monitors, blood pressure monitors, etc.), or wirelessly receive and/or transmit information Other devices. In some embodiments, HEW device 300 can include one or more of the following: a keyboard, a display, a non-electric memory cartridge, multiple antennas, a graphics processor, an application processor, a speaker, and other actions. Device component. The display can be an LCD screen including a touch screen.

HEW裝置300之天線301可包含一或多個單向或全向天線,包括(例如)偶極天線、單極天線、平片天線、環形天線、微帶天線,或適合於傳輸RF信號的其他類型之天線。在一些多輸入多輸出(MIMO)實施例中,可有效地分離天線301以利用可在天線中之每一者與傳輸站台之天線之間引起的空間分集及不同通道特性。 The antenna 301 of the HEW device 300 can include one or more unidirectional or omnidirectional antennas including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas, or other suitable for transmitting RF signals. Type of antenna. In some multiple input multiple output (MIMO) embodiments, antenna 301 can be effectively separated to take advantage of the spatial diversity and different channel characteristics that can be induced between each of the antennas and the antenna of the transmission station.

儘管HEW裝置300被說明為具有若干單獨功能元件,但該等功能元件中之一或多者可被組合,且可由軟體組配式元件(諸如,包括數位信號處理器(DSP)之處理元件)及/或其他硬體元件之組合實施。舉例而言,一些元件可 包含一或多個微處理器、DSP、場可規劃閘陣列(FPGA)、特殊應用積體電路(ASIC)、射頻積體電路(RFIC),及用於至少執行本文中描述之功能的各種硬體及邏輯電路系統之組合。在一些實施例中,HEW裝置300之功能元件可指代在一或多個處理元件上操作之一或多個處理程序。 Although the HEW device 300 is illustrated as having a number of separate functional elements, one or more of the functional elements can be combined and can be a software-associated component (such as a processing component including a digital signal processor (DSP)) And/or a combination of other hardware components. For example, some components can Includes one or more microprocessors, DSPs, field programmable gate arrays (FPGAs), special application integrated circuits (ASICs), radio frequency integrated circuits (RFICs), and various hard functions for performing at least the functions described herein A combination of physical and logical circuitry. In some embodiments, the functional elements of HEW device 300 may refer to operating one or more processing programs on one or more processing elements.

實施例可以硬體、韌體及軟體中之一者或其組合予以實施。實施例亦可被實施為儲存於電腦可讀儲存裝置上之指令,該等指令可由至少一個處理器讀取及執行以執行本文中描述之操作。電腦可讀儲存裝置可包括用於以可由機器(例如,電腦)讀取之形式儲存資訊的任何非暫時性機構。舉例而言,電腦可讀儲存裝置可包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置以及其他儲存裝置及媒體。一些實施例可包括一或多個處理器,且可經組配有儲存於電腦可讀儲存裝置上之指令。 Embodiments can be practiced in one or a combination of hardware, firmware, and software. Embodiments can also be implemented as instructions stored on a computer readable storage device, which can be read and executed by at least one processor to perform the operations described herein. The computer readable storage device can include any non-transitory mechanism for storing information in a form readable by a machine (eg, a computer). For example, computer readable storage devices may include read only memory (ROM), random access memory (RAM), disk storage media, optical storage media, flash memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be associated with instructions stored on a computer readable storage device.

圖4為根據一些實施例的用於使用最小帶寬單元來傳遞較長延時OFDM符號之程序。程序400可由HEW裝置(諸如,HEW站台104或HEW主控裝置或站台102)執行。 4 is a process for transmitting a longer delayed OFDM symbol using a minimum bandwidth unit, in accordance with some embodiments. Program 400 may be performed by a HEW device, such as HEW station 104 or HEW master device or station 102.

操作402包含組配區塊交錯器以根據針對用於較長延時OFDM符號之最小帶寬單元之副載波配置所判定的多個交錯器組配中之一者來交錯經編碼輸入資料之區塊。 Operation 402 includes assembling a block interleaver to interleave blocks of encoded input data according to one of a plurality of interleaver combinations determined for a subcarrier configuration for a minimum bandwidth unit of a longer delay OFDM symbol.

操作404包含運用128點FFT或256點FFT來處理符號以產生時域OFDMA波形。為了在無寫碼速率排除的情況下運用256點FFT來處理較長延時OFDM符號,用於最小 帶寬單元之預定數目個資料副載波可限於48個、54個及60個資料副載波中之一者。為了在無寫碼速率排除的情況下運用128點FFT來處理較長延時OFDM符號,用於最小帶寬單元之數個資料副載波可限於28個及30個資料副載波中之一者。為了在具有針對256-QAM的5/6之寫碼速率排除的情況下運用256點FFT來處理較長延時OFDM符號,用於最小帶寬單元之數個資料副載波可限於48個、50個、54個、52個、54個、56個、60個及62個資料副載波中之一者。為了在具有針對256-QAM的5/6之寫碼速率排除的情況下運用128點FFT來處理較長延時OFDM符號,用於最小帶寬單元之數個資料副載波可限於24個、26個、28個及30個資料副載波中之一者 Operation 404 includes processing the symbols using a 128-point FFT or a 256-point FFT to generate a time domain OFDMA waveform. For processing longer-delay OFDM symbols with a 256-point FFT without code rate exclusion, for minimum The predetermined number of data subcarriers of the bandwidth unit may be limited to one of 48, 54 and 60 data subcarriers. In order to process a longer delay OFDM symbol with a 128 point FFT without code rate exclusion, the number of data subcarriers for the smallest bandwidth unit may be limited to one of 28 and 30 data subcarriers. In order to process a longer delay OFDM symbol with a 256-point FFT with 5/6 code rate exclusion for 256-QAM, the number of data subcarriers for the minimum bandwidth unit can be limited to 48, 50, One of 54, 52, 54, 56, 60, and 62 data subcarriers. In order to process a longer delay OFDM symbol with a 128-point FFT with 5/6 code rate exclusion for 256-QAM, the number of data subcarriers for the minimum bandwidth unit can be limited to 24, 26, One of 28 and 30 data subcarriers

操作406包含根據基於非爭用之通訊技術而在包含一或多個最小帶寬單元之通道資源上傳遞較長延時OFDM符號(呈時域OFDMA波形之形式)。在一些實施例中,可根據MU-MIMO技術而在控制時段(例如,TXOP)期間傳遞較長延時OFDM符號。 Operation 406 includes transmitting a longer delay OFDM symbol (in the form of a time domain OFDMA waveform) over channel resources comprising one or more minimum bandwidth units in accordance with a non-contention based communication technique. In some embodiments, longer delay OFDM symbols may be delivered during a control period (eg, TXOP) according to MU-MIMO techniques.

在一實例中,一種包含實體層電路系統及媒體存取控制層電路系統之高效能WLAN(HEW)通訊站台(STA)經組配以:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬 單元以用於傳遞該等較長延時OFDM符號。該等較長延時OFDM符號具有為一標準OFDM符號延時之2倍或4倍的符號延時。 In an example, a high performance WLAN (HEW) communication station (STA) including a physical layer circuitry and a medium access control layer circuitry is configured to: according to an orthogonal frequency division multiple access (OFDMA) technique Transmitting a longer delay orthogonal frequency division multiplexing (OFDM) symbol on a channel resource, the channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit having a predetermined number of data subcarriers; One of a plurality of subcarrier configurations of one of the interleaver combinations to match the minimum bandwidth Units are used to pass the longer delay OFDM symbols. The longer delay OFDM symbols have a symbol delay of 2 or 4 times the delay of a standard OFDM symbol.

在另一實例中,該站台經組配以運用一快速傅立葉變換(FFT)來處理該等較長延時OFDM符號。為了在無寫碼速率排除的情況下運用一256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該預定數目個資料副載波係為48個、54個或60個資料副載波。為了在無寫碼速率排除的情況下運用一128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為28個或30個資料副載波。為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為48個、50個、54個、52個、54個、56個、60個或62個資料副載波。為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為24個、26個、28個或30個資料副載波。 In another example, the station is configured to process the longer delay OFDM symbols using a Fast Fourier Transform (FFT). In order to process the longer delay OFDM symbols using a 256-point FFT without code rate exclusion, the predetermined number of data subcarriers for the minimum bandwidth unit are 48, 54 or 60 data. Subcarrier. In order to process the longer delay OFDM symbols with a 128-point FFT without code rate exclusion, the number of data subcarriers for the minimum bandwidth unit is 28 or 30 data subcarriers. In order to process the longer delay OFDM symbols with the 256-point FFT with 5/6 one code rate exclusion for 256-QAM, the number of data subcarriers for the minimum bandwidth unit is 48. , 50, 54, 52, 54, 56, 60 or 62 data subcarriers. In order to process the longer delay OFDM symbols with the one-point write rate of 5/6 for 256-QAM, the number of data subcarriers for the minimum bandwidth unit is 24 , 26, 28 or 30 data subcarriers.

在另一實例中,該站台經進一步組配以根據該OFDMA技術在一控制時段期間於20MHz或40MHz之通道上使用高達四個該等最小帶寬單元而並行地通訊。 In another example, the station is further configured to communicate in parallel using up to four of the minimum bandwidth units on a 20 MHz or 40 MHz channel during a control period in accordance with the OFDMA technique.

在另一實例中,對於具有用於256點FFT處理之54個資料副載波的一最小帶寬單元,該副載波配置包含總計256個副載波,其包括:針對用於在20MHz或40MHz之 任一通道內通訊的該四個最小帶寬單元中之每一者的54個資料副載波及3個導頻副載波、在DC處之2個至4個空值副載波,及在每一頻帶邊緣處之12個至13個保護副載波。 In another example, for a minimum bandwidth unit having 54 data subcarriers for 256 point FFT processing, the subcarrier configuration includes a total of 256 subcarriers, including: for use at 20 MHz or 40 MHz 54 data subcarriers and 3 pilot subcarriers for each of the four minimum bandwidth units communicated in any channel, 2 to 4 null subcarriers at the DC, and in each frequency band 12 to 13 guard subcarriers at the edge.

在另一實例中,該PHY電路系統包括具有一個OFDM符號之一深度的一區塊交錯器。該區塊交錯器可為可組配的以交錯經編碼資料之一區塊,且該等交錯器組配可包含行之數目及列之數目,列之該數目係基於每串流每副載波的經寫碼位元之一數目。 In another example, the PHY circuitry includes a block interleaver having a depth of one of the OFDM symbols. The block interleaver can be a block that can be configured to interleave encoded data, and the interleaver combinations can include the number of rows and the number of columns, the number of which is based on each subcarrier per stream The number of one of the coded bits.

在另一實例中,對於具有用於256點FFT處理之54個資料副載波的一最小帶寬單元,該交錯器組配具有9個行,及一數目等於每單副載波的經寫碼位元之一數目之3倍的列。 In another example, for a minimum bandwidth unit having 54 data subcarriers for 256 point FFT processing, the interleaver combination has 9 rows, and a number equal to the coded bits per single subcarrier. One of the three times the number of columns.

在另一實例中,該通訊站台進一步包含:一編碼器,其經組配以根據多個寫碼速率中之一者而在交錯之前編碼輸入資料;以及一群集映射器,其用以在該交錯之後將該經編碼資料映射至一QAM群集。該編碼器及該映射器根據用於該副載波配置之多個預定調變與寫碼方案(MCS)組合中之一者而操作。用於該副載波配置之該多個預定MCS組合限於每OFDM符號的經寫碼位元之一整數(Ncbps)及每OFDM符號的資料位元之一整數(Ndbps)。 In another example, the communication station further includes: an encoder configured to encode the input data prior to interleaving according to one of a plurality of write code rates; and a cluster mapper for The encoded data is mapped to a QAM cluster after interleaving. The encoder and the mapper operate in accordance with one of a plurality of predetermined modulation and write code scheme (MCS) combinations for the subcarrier configuration. The plurality of predetermined MCS combinations for the subcarrier configuration are limited to one integer (Ncbps) of coded bits per OFDM symbol and one integer (Ndbps) of data bits per OFDM symbol.

在另一實例中,該等較長延時OFDM符號經選擇用於較大延遲擴展環境,且標準延時OFDM符號經選擇用於較小延遲擴展環境。 In another example, the longer delay OFDM symbols are selected for a larger delay spread environment and the standard delayed OFDM symbols are selected for a smaller delay spread environment.

在另一實例中,該等標準延時OFDM符號具有範 圍為包括一400奈秒(ns)短保護區間之3.6微秒(us)至包括一800ns保護區間之4us的一符號延時,且該等較長延時OFDM符號具有為該等標準延時OFDM符號之該延時的2倍或4倍中之一者的一符號延時。 In another example, the standard delayed OFDM symbols have a van Surrounded by a symbol delay of 3.6 microseconds (us) including a 400 nanosecond (ns) short guard interval to 4 us including an 800 ns guard interval, and the longer delay OFDM symbols have the same standard delay OFDM symbol A symbol delay of one of 2 or 4 times the delay.

在另一實例中,該通訊站台進一步包含一或多個處理器及記憶體,且該實體層電路系統包括一收發器。 In another example, the communication station further includes one or more processors and memory, and the physical layer circuitry includes a transceiver.

在另一實例中,該通訊站台進一步包含耦接至該收發器之兩個天線。 In another example, the communication station further includes two antennas coupled to the transceiver.

在另一實例中,一種由一高效能WLAN(HEW)通訊站台(STA)執行之方法包含:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬單元以用於傳遞該等較長延時OFDM符號。該等較長延時OFDM符號具有為一標準OFDM符號延時之2倍或4倍的符號延時。 In another example, a method performed by a high performance WLAN (HEW) communication station (STA) includes transmitting a longer delay orthogonal segment on a channel resource according to an orthogonal frequency division multiple access (OFDMA) technique Frequency multiplexed (OFDM) symbols, the channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit having a predetermined number of data subcarriers; and according to one of a plurality of interleaver combinations One of the subcarrier configurations to assemble the minimum bandwidth units for communicating the longer delay OFDM symbols. The longer delay OFDM symbols have a symbol delay of 2 or 4 times the delay of a standard OFDM symbol.

在另一實例中,該方法進一步包含運用一快速傅立葉變換(FFT)來處理該等較長延時OFDM符號。為了在無寫碼速率排除的情況下運用一256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該預定數目個資料副載波係為48個、54個或60個資料副載波。為了在無寫碼速率排除的情況下運用一128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載數目係為 有28個或30個資料副載波。 In another example, the method further includes processing the longer delay OFDM symbols using a fast Fourier transform (FFT). In order to process the longer delay OFDM symbols using a 256-point FFT without code rate exclusion, the predetermined number of data subcarriers for the minimum bandwidth unit are 48, 54 or 60 data. Subcarrier. In order to process the longer delay OFDM symbols using a 128-point FFT without code rate exclusion, the number of data subcarriers for the minimum bandwidth unit is There are 28 or 30 data subcarriers.

在另一實例中,為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為48個、50個、54個、52個、54個、56個、60個或62個資料副載波,且為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為24個、26個、28個或30個資料副載波。 In another example, to process the longer delay OFDM symbols using the 256 point FFT with 5/6 one code rate exclusion for 256-QAM, the data for the minimum bandwidth unit The number of subcarriers is 48, 50, 54, 52, 54, 56, 60, or 62 data subcarriers, and is excluded in order to have a write rate of 5/6 for 256-QAM. The 128-point FFT is used to process the longer-delay OFDM symbols, and the number of data subcarriers used for the minimum bandwidth unit is 24, 26, 28, or 30 data subcarriers.

在另一實例中,該方法包含選擇該等較長延時OFDM符號以用於較大延遲擴展環境,以及選擇該等標準延時OFDM符號以用於較小延遲擴展環境。 In another example, the method includes selecting the longer delay OFDM symbols for a larger delay spread environment, and selecting the standard delayed OFDM symbols for a smaller delay spread environment.

在另一實例中,一種非暫時性電腦可讀儲存媒體儲存指令,該等指令供一或多個處理器執行以執行操作來組配一高效能WLAN(HEW)通訊站台(STA)以:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬單元以用於傳遞該等較長延時OFDM符號。該等較長延時OFDM符號具有為一標準OFDM符號延時之2倍或4倍的符號延時。 In another example, a non-transitory computer readable storage medium stores instructions for execution by one or more processors to perform operations to assemble a high performance WLAN (HEW) communication station (STA) to: An orthogonal frequency division multiple access (OFDMA) technique for transmitting longer delay orthogonal frequency division multiplexing (OFDM) symbols on channel resources, the channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit Having a predetermined number of data subcarriers; and assembling the minimum bandwidth units for delivering the longer delay OFDM according to one of a plurality of subcarrier configurations for one of the plurality of interleaver combinations symbol. The longer delay OFDM symbols have a symbol delay of 2 or 4 times the delay of a standard OFDM symbol.

提供【發明摘要】以遵守需要將允許讀者確定技術揭示內容之本質及要點之發明摘要的37 C.F.R.章節 1.72(b)。其係在以下理解的情況下提交:其將不用於限制或解譯請求項之範疇或意義。以下請求項據此併入實施方式中,其中每一請求項就其自身而言作為單獨實施例。 The Abstract of the Invention is provided to comply with the requirements of the 37 C.F.R. section of the abstract of the invention that will allow the reader to ascertain the nature and essentials of the technical disclosure. 1.72(b). It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claim. The following claims are hereby incorporated into the embodiments, each of which is a separate embodiment in its entirety.

400‧‧‧程序 400‧‧‧Program

402、404、406‧‧‧操作 402, 404, 406‧‧‧ operations

Claims (20)

一種高效能WLAN(HEW)通訊站台(STA),其包含實體層電路系統及媒體存取控制層電路系統以:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬單元以用於傳遞該等較長延時OFDM符號,其中該等較長延時OFDM符號具有為標準延時OFDM符號的延時之2倍或4倍的符號延時。 A high-performance WLAN (HEW) communication station (STA) comprising a physical layer circuit system and a medium access control layer circuit system for transmitting a long delay on a channel resource according to an orthogonal frequency division multiple access (OFDMA) technique Time orthogonal frequency division multiplexing (OFDM) symbols, the channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit having a predetermined number of data subcarriers; and being used in a plurality of interleaver combinations One of a plurality of subcarrier configurations of one of the plurality of subcarrier configurations for communicating the longer delay OFDM symbols, wherein the longer delay OFDM symbols have a delay of 2 as a standard delayed OFDM symbol Double or 4 times the symbol delay. 如請求項1之通訊站台,其中該通訊站台用以運用一快速傅立葉變換(FFT)來處理該等較長延時OFDM符號,其中為了在無寫碼速率排除的情況下運用一256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該預定數目個資料副載波係為48個、54個或60個資料副載波,且其中為了在無寫碼速率排除的情況下運用一128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為28個或30個資料副載波。 A communication station as claimed in claim 1, wherein the communication station is configured to process the longer delay OFDM symbols using a Fast Fourier Transform (FFT), wherein the processing is performed using a 256-point FFT for no code rate exclusion. The longer delay OFDM symbols, the predetermined number of data subcarriers for the minimum bandwidth unit are 48, 54 or 60 data subcarriers, and wherein one is used in order to eliminate the code rate without A 128-point FFT is used to process the longer delay OFDM symbols, and the number of data subcarriers used for the minimum bandwidth unit is 28 or 30 data subcarriers. 如請求項2之通訊站台,其中為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該256點FFT來處 理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為48個、50個、54個、52個、54個、56個、60個或62個資料副載波,且其中為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為24個、26個、28個或30個資料副載波。 The communication station of claim 2, wherein the 256-point FFT is used in order to eliminate the code rate of one of 5/6 for 256-QAM. For the longer delay OFDM symbols, the number of data subcarriers used for the minimum bandwidth unit is 48, 50, 54, 52, 54, 56, 60 or 62 data subcarriers. And wherein in order to process the longer delay OFDM symbols using the 128-point FFT with 5/6 one code rate exclusion for 256-QAM, the number of data subcarriers for the minimum bandwidth unit is There are 24, 26, 28 or 30 data subcarriers. 如請求項3之通訊站台,其中該通訊站台進一步用以根據該OFDMA技術在一控制時段期間於20MHz或40MHz之通道上使用高達四個該等最小帶寬單元而並行地通訊。 The communication station of claim 3, wherein the communication station is further configured to communicate in parallel using up to four of the minimum bandwidth units on a 20 MHz or 40 MHz channel during a control period in accordance with the OFDMA technique. 如請求項4之通訊站台,其中對於具有用於256點FFT處理之54個資料副載波的一最小帶寬單元,該副載波配置包含總計256個副載波,其包括:針對用於在20MHz或40MHz之任一通道內通訊的該四個最小帶寬單元中之每一者的54個資料副載波及3個導頻副載波,在DC處之2個至4個空值副載波,及在每一頻帶邊緣處之12個至13個保護副載波。 The communication station of claim 4, wherein for a minimum bandwidth unit having 54 data subcarriers for 256 point FFT processing, the subcarrier configuration comprises a total of 256 subcarriers, including: for use at 20 MHz or 40 MHz 54 data subcarriers and 3 pilot subcarriers of each of the four minimum bandwidth units communicated in any one of the channels, 2 to 4 null subcarriers at the DC, and at each 12 to 13 guard subcarriers at the edge of the band. 如請求項4之通訊站台,其中該實體層電路系統包括具有一個OFDM符號之一深度的一區塊交錯器,該區塊交錯器為可組配的以交錯經編碼資料之一區塊,且其中該等交錯器組配包含行之數目及列之數目,列之該數目係基於每串流每副載波的經寫碼位元之一數 目。 The communication station of claim 4, wherein the physical layer circuitry comprises a block interleaver having a depth of one OFDM symbol, the block interleaver being a block that can be configured to interleave encoded data, and Wherein the interleaver combinations include the number of rows and the number of columns, the number of columns being based on one of the number of coded bits per subcarrier per stream Head. 如請求項6之通訊站台,其中對於具有用於256點FFT處理之54個資料副載波的一最小帶寬單元,該交錯器組配具有9個行,及一數目等於每單副載波的經寫碼位元之一數目之3倍的列。 A communication station as claimed in claim 6, wherein for a minimum bandwidth unit having 54 data subcarriers for 256-point FFT processing, the interleaver combination has 9 rows, and a number equal to the writing of each single subcarrier A column that is 3 times the number of code bits. 如請求項6之通訊站台,其中該通訊站台進一步包含:一編碼器,其用以根據多個寫碼速率中之一者而在交錯之前編碼輸入資料;以及一群集映射器,其用以在該交錯之後將該經編碼資料映射至一QAM群集,其中該編碼器及該映射器根據用於該副載波配置之多個預定調變與寫碼方案(MCS)組合中之一者而操作,其中用於該副載波配置之該多個預定MCS組合限於每OFDM符號的經寫碼位元之一整數(Ncbps)及每OFDM符號的資料位元之一整數(Ndbps)。 The communication station of claim 6, wherein the communication station further comprises: an encoder for encoding the input data prior to interleaving according to one of the plurality of write rates; and a cluster mapper for The interleaving then maps the encoded data to a QAM cluster, wherein the encoder and the mapper operate according to one of a plurality of predetermined modulation and write code scheme (MCS) combinations for the subcarrier configuration, The plurality of predetermined MCS combinations for the subcarrier configuration are limited to one integer (Ncbps) of coded bits per OFDM symbol and one integer (Ndbps) of data bits per OFDM symbol. 如請求項1之通訊站台,其中該等較長延時OFDM符號經選擇用於較大延遲擴展環境,且其中標準延時OFDM符號經選擇用於較小延遲擴展環境。 A communication station as claimed in claim 1, wherein the longer delay OFDM symbols are selected for a larger delay spread environment, and wherein the standard delayed OFDM symbols are selected for use in a smaller delay spread environment. 如請求項9之通訊站台,其中該等標準延時OFDM符號具有範圍為包括一400奈秒(ns)短保護區間之3.6微秒(us)至包括一800ns保護區間之4us的一符號延時,且其中該等較長延時OFDM符號具有為該等標準延 時OFDM符號之該延時的2倍或4倍中之一者的一符號延時。 The communication station of claim 9, wherein the standard delayed OFDM symbols have a symbol delay ranging from 3.6 microseconds (us) of a 400 nanosecond (ns) short guard interval to 4 us including an 800 ns guard interval, and Where the longer delay OFDM symbols have such standard delays A symbol delay of one of 2 or 4 times the delay of the OFDM symbol. 如請求項1之通訊站台,其進一步包含一或多個處理器及記憶體,且其中該實體層電路系統包括一收發器。 The communication station of claim 1, further comprising one or more processors and memory, and wherein the physical layer circuitry comprises a transceiver. 如請求項11之通訊站台,其進一步包含耦接至該收發器之兩個天線。 The communication station of claim 11, further comprising two antennas coupled to the transceiver. 一種由一高效能WLAN(HEW)通訊站台(STA)執行之方法,該方法包含:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬單元以用於傳遞該等較長延時OFDM符號,其中該等較長延時OFDM符號具有為標準延時OFDM符號的延時之2倍或4倍的符號延時。 A method performed by a high performance WLAN (HEW) communication station (STA), the method comprising: transmitting a longer delay orthogonal frequency division multiplexing on a channel resource according to an orthogonal frequency division multiple access (OFDMA) technique (OFDM) symbols, the equal channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit having a predetermined number of data subcarriers; and a plurality of subcarriers according to one of a plurality of interleaver combinations One of the configurations to assemble the minimum bandwidth units for communicating the longer delay OFDM symbols, wherein the longer delay OFDM symbols have a symbol delay of 2 or 4 times the delay of the standard delayed OFDM symbol . 如請求項13之方法,其進一步包含運用一快速傅立葉變換(FFT)來處理該等較長延時OFDM符號,其中為了在無寫碼速率排除的情況下運用一256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該預定數目個資料副載波係為48個、54個或60個資料副載波,且 其中為了在無寫碼速率排除的情況下運用一128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為28個或30個資料副載波。 The method of claim 13, further comprising processing the longer delay OFDM symbols using a fast Fourier transform (FFT), wherein the longer delay is processed using a 256-point FFT in the absence of write rate exclusion. OFDM symbol, the predetermined number of data subcarriers for the minimum bandwidth unit being 48, 54 or 60 data subcarriers, and In order to process the longer delay OFDM symbols by using a 128-point FFT without the erasure of the code rate, the number of data subcarriers used for the minimum bandwidth unit is 28 or 30 data subcarriers. 如請求項14之方法,其中為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為48個、50個、54個、52個、54個、56個、60個或62個資料副載波,且其中為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為24個、26個、28個或30個資料副載波。 The method of claim 14, wherein the longer-latency OFDM symbols are processed for use in the minimum bandwidth unit in order to process the 256-point FFT with a 5/6 write rate penalty exclusion for 256-QAM The number of subcarriers of the data is 48, 50, 54, 52, 54, 56, 60 or 62 data subcarriers, and wherein in order to write in one of 5/6 for 256-QAM The 128-point FFT is used to process the longer-delay OFDM symbols in the case of code rate exclusion, and the number of data subcarriers used for the minimum bandwidth unit is 24, 26, 28, or 30 data subcarriers. 如請求項13之方法,其進一步包含:選擇該等較長延時OFDM符號以用於較大延遲擴展環境;以及選擇該等標準延時OFDM符號以用於較小延遲擴展環境。 The method of claim 13, further comprising: selecting the longer delay OFDM symbols for use in a larger delay spread environment; and selecting the standard delayed OFDM symbols for use in a smaller delay spread environment. 一種儲存指令之非暫時性電腦可讀儲存媒體,該等指令供一或多個處理器執行以執行操作來組配一高效能WLAN(HEW)通訊站台(STA)以:根據一正交分頻多重存取(OFDMA)技術而在通道資源上傳遞較長延時正交分頻多工(OFDM)符號,該等通道資源包含一或多個最小帶寬單元,每一最小帶寬單元具有預定數目個資料副載波;以及 根據用於多個交錯器組配中之一者的多個副載波配置中之一者來組配該等最小帶寬單元以用於傳遞該等較長延時OFDM符號,其中該等較長延時OFDM符號具有為標準延時OFDM符號的延時之2倍或4倍的符號延時。 A non-transitory computer readable storage medium storing instructions for execution by one or more processors to perform operations to assemble a high performance WLAN (HEW) communication station (STA) to: according to an orthogonal frequency division Multiple Access (OFDMA) technology to pass longer delay orthogonal frequency division multiplexing (OFDM) symbols on channel resources, the channel resources comprising one or more minimum bandwidth units, each minimum bandwidth unit having a predetermined number of data Subcarrier; Configuring the minimum bandwidth units for transmitting the longer delay OFDM symbols according to one of a plurality of subcarrier configurations for one of a plurality of interleaver combinations, wherein the longer delay OFDM signals The symbol has a symbol delay of 2 or 4 times the delay of the standard delayed OFDM symbol. 如請求項17之非暫時性電腦可讀儲存媒體,其中該等較長延時OFDM符號係運用一快速傅立葉變換(FFT)而處理,其中為了在無寫碼速率排除的情況下運用一256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該預定數目個資料副載波係為48個、54個或60個資料副載波,且其中為了在無寫碼速率排除的情況下運用一128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為28個或30個資料副載波。 The non-transitory computer readable storage medium of claim 17, wherein the longer delay OFDM symbols are processed using a Fast Fourier Transform (FFT), wherein a 256-point FFT is used in order to eliminate the code rate without erasure. Processing the longer delay OFDM symbols, the predetermined number of data subcarriers for the minimum bandwidth unit being 48, 54 or 60 data subcarriers, and wherein in the case of no code rate exclusion The 128-point FFT is used to process the longer delay OFDM symbols, and the number of data subcarriers used for the minimum bandwidth unit is 28 or 30 data subcarriers. 如請求項18之非暫時性電腦可讀儲存媒體,其中為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該256點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為48個、50個、54個、52個、54個、56個、60個或62個資料副載波,且其中為了在具有針對256-QAM的5/6之一寫碼速率排除的情況下運用該128點FFT來處理該等較長延時OFDM符號,用於該最小帶寬單元之該資料副載波數目係為24個、26個、28個或30個資料副載波。 The non-transitory computer readable storage medium of claim 18, wherein the longer delay OFDM symbols are processed for use in the case of having a 5/6 one code rate exclusion for 256-QAM, The number of data subcarriers used for the minimum bandwidth unit is 48, 50, 54, 52, 54, 56, 60 or 62 data subcarriers, and wherein there is for 256-QAM The 128-point FFT is used to process the longer-delay OFDM symbols when the 5/6 code rate is excluded. The number of data subcarriers used for the minimum bandwidth unit is 24, 26, and 28 Or 30 data subcarriers. 如請求項17之非暫時性電腦可讀儲存媒體,其中該等較長延時OFDM符號經選擇用於較大延遲擴展環境,且該等標準延時OFDM符號經選擇用於較小延遲擴展環境。 The non-transitory computer readable storage medium of claim 17, wherein the longer delay OFDM symbols are selected for a larger delay spread environment, and the standard delayed OFDM symbols are selected for use in a smaller delay extended environment.
TW104113863A 2014-04-30 2015-04-30 Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations TWI566562B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201461986256P 2014-04-30 2014-04-30
US201461986250P 2014-04-30 2014-04-30
US201461991730P 2014-05-12 2014-05-12
US201462013869P 2014-06-18 2014-06-18
US201462024801P 2014-07-15 2014-07-15
PCT/US2014/057751 WO2015076932A1 (en) 2013-11-19 2014-09-26 Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations

Publications (2)

Publication Number Publication Date
TW201547248A TW201547248A (en) 2015-12-16
TWI566562B true TWI566562B (en) 2017-01-11

Family

ID=55407631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104113863A TWI566562B (en) 2014-04-30 2015-04-30 Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations

Country Status (1)

Country Link
TW (1) TWI566562B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016008789B1 (en) 2013-11-19 2022-12-27 SOLiD, INC MAIN STATION CONFIGURED FOR HIGH-EFFICIENCY WIRELESS LOCAL AREA NETWORK COMMUNICATION, METHOD PERFORMED BY A MAIN STATION, STORAGE MEDIA AND HIGH-EFFICIENCY WIRELESS LOCAL AREA NETWORK STATION
CN105659681B (en) 2013-11-19 2019-09-20 英特尔Ip公司 The method, apparatus and computer-readable medium of multi-subscriber dispatching are used in WLAN
US9325463B2 (en) 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147521A1 (en) * 2005-12-22 2007-06-28 Samsung Electronics Co., Ltd. Interleaver design with multiple encoders for more than two transmit antennas in high throughput WLAN communication systems
US20090122882A1 (en) * 2005-02-09 2009-05-14 Mujtaba Syed A Method and apparatus for preamble training with shortened long training field in a multiple antenna communication system
WO2012106635A1 (en) * 2011-02-04 2012-08-09 Marvell World Trade Ltd. Control mode phy for wlan
TW201301827A (en) * 2011-04-24 2013-01-01 Broadcom Corp Preamble for use within single user, multiple user, multiple access, and/or MIMO wireless communications
TW201306533A (en) * 2011-04-18 2013-02-01 Broadcom Corp Frequency selective transmission within single user, multiple user, multiple access, and/or MIMO wireless communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090122882A1 (en) * 2005-02-09 2009-05-14 Mujtaba Syed A Method and apparatus for preamble training with shortened long training field in a multiple antenna communication system
US20070147521A1 (en) * 2005-12-22 2007-06-28 Samsung Electronics Co., Ltd. Interleaver design with multiple encoders for more than two transmit antennas in high throughput WLAN communication systems
WO2012106635A1 (en) * 2011-02-04 2012-08-09 Marvell World Trade Ltd. Control mode phy for wlan
TW201306533A (en) * 2011-04-18 2013-02-01 Broadcom Corp Frequency selective transmission within single user, multiple user, multiple access, and/or MIMO wireless communications
TW201301827A (en) * 2011-04-24 2013-01-01 Broadcom Corp Preamble for use within single user, multiple user, multiple access, and/or MIMO wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RENU PANCHAL ET AL., "VHDL Implementation of Reconfigurable Multimode Block Interleaver for OFDM Based WLAN", IJARECE, vol. 1, ISSUE 4, pp. 82-84, 2012-10-01. *

Also Published As

Publication number Publication date
TW201547248A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
US9838961B2 (en) Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
US9680603B2 (en) High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
CN106797659B (en) Method for signaling of channel resource allocation, and high-efficiency WI-FI station and access point
EP3636024A1 (en) Method and apparatus for uplink transmission in wireless communication system
CN106899385B (en) Master station and method for HEW communication
WO2018203727A1 (en) Method and apparatus for uplink transmission in wireless communication system
US10090964B2 (en) Apparatus, computer readable medium, and method for an interleaver for higher quadrature amplitude modulation (QAM) in a high efficiency wireless local-area network
TWI626839B (en) High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations
KR20210122279A (en) Method and apparatus for establishment of RACH offense in unlicensed NR
TWI642292B (en) Apparatus of wireless device and high-efficiency station, method performed by apparatus and non-transitory computer-readable stoage medium
TWI566562B (en) Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations
WO2018126870A1 (en) Resource block waveform transmission structures for uplink communications
US20160204915A1 (en) Apparatus, computer readable medium, and method for generating and receiving signal fields in a high efficiency wireless local-area network
CN106465360A (en) Method, apparatus, and computer readable medium for transmitting pilots in wireless local area networks
US9729284B2 (en) High-efficiency Wi-Fi (HEW) station and access point (AP) and method for resource allocation signaling
EP3117554B1 (en) Enb, ue and method for physical resource block allocation in mtc ue
CN106464638B (en) High Efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40MHz and 80MHz bandwidth allocations
WO2019029592A1 (en) Slot aggregation
US9935737B2 (en) Access point (AP), user station (STA) and method for spatial modulation orthogonal frequency division multiplexing (SM-OFDM) communication
WO2016120726A1 (en) Method of configuring carrier indication field in downlink control indicator
US9980228B2 (en) Low-power wake-up packet generation