TWI618016B - Display system and method for water level predicting of reservoirs - Google Patents

Display system and method for water level predicting of reservoirs Download PDF

Info

Publication number
TWI618016B
TWI618016B TW105121206A TW105121206A TWI618016B TW I618016 B TWI618016 B TW I618016B TW 105121206 A TW105121206 A TW 105121206A TW 105121206 A TW105121206 A TW 105121206A TW I618016 B TWI618016 B TW I618016B
Authority
TW
Taiwan
Prior art keywords
data
reservoir
water level
historical
historical data
Prior art date
Application number
TW105121206A
Other languages
Chinese (zh)
Other versions
TW201802747A (en
Inventor
周儷芬
曹昭陽
呂藝光
Original Assignee
台灣電力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣電力股份有限公司 filed Critical 台灣電力股份有限公司
Priority to TW105121206A priority Critical patent/TWI618016B/en
Publication of TW201802747A publication Critical patent/TW201802747A/en
Application granted granted Critical
Publication of TWI618016B publication Critical patent/TWI618016B/en

Links

Abstract

一種水庫水位之預測顯示系統,包含:一預測模組,根據至少一輸入資料並透過一類神經網路演算法運算出至少一預測資料,該輸入資料至少包含水庫水位即時資料,而該預測資料至少包含水庫水位預測資料;一資料庫,自該預測模組接收及儲存該預測資料及/或該輸入資料;及一使用者操作介面,包含:一操作模組,接收使用者操作條件,該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料;及一預測資料顯示模組,根據該使用者操作條件,至該資料庫擷取該選定瀏覽之預測資料及/或歷史資料,並顯示該選定瀏覽之預測資料及/或歷史資料,以供使用者瀏覽。 A predictive display system for a water level of a reservoir, comprising: a predictive module, wherein at least one predictive data is calculated according to at least one input data and a type of neural network algorithm, wherein the input data includes at least real-time data of the reservoir water level, and the predicted data includes at least a reservoir water level forecasting data; a database for receiving and storing the forecasting data and/or the input data from the forecasting module; and a user operating interface comprising: an operating module for receiving user operating conditions, the user The operating conditions include at least the predicted data and/or historical data selected by the user; and a predictive data display module that retrieves the predicted and/or historical data of the selected browsing according to the user operating conditions. And display the predicted and/or historical data of the selected browsing for the user to browse.

Description

水庫水位之預測顯示系統及方法 Reservoir water level prediction display system and method

本發明係關於一種水庫水位預測之顯示系統,特別是關於一種利用多類即時水文資料進行水庫水位預測之顯示系統及方法。 The invention relates to a display system for predicting water level of a reservoir, in particular to a display system and method for predicting water level of a reservoir by using multiple types of real-time hydrological data.

水力電廠在考量如何有效率地發電時,須兼顧防洪及供水。因此,水力電廠的發電操作與水庫水位息息相關。在進行發電操作時,須將目前水庫水位及未來水庫水位一併列入考量,否則將無法同時達到高發電效率、防洪及供水的目的。 Hydropower plants must consider both flood control and water supply when considering how to generate electricity efficiently. Therefore, the power generation operation of hydropower plants is closely related to the water level of the reservoir. In the power generation operation, the current reservoir water level and the future reservoir water level must be taken into consideration together, otherwise it will not be able to achieve high power generation efficiency, flood control and water supply at the same time.

然而,目前在進行水庫水位高度的預測值判斷時,僅係由水力電廠運轉人員根據目前水庫水位高低及部份相關資訊,憑藉個人經驗判斷來進行。而由於資料量龐大且多樣性高,資料的彙整及統合分析極為不易,若僅憑人力將無法有效進行如此複雜的操作,並藉此做出適當的判斷或預測。缺乏一種可統整各類資料,並以易於理解的方式提供水力電廠運轉人員進行操作判斷的系統。 However, at present, when judging the predicted value of the water level of the reservoir, it is only carried out by the operating personnel of the hydropower plant based on the current water level of the reservoir and some relevant information, based on personal experience judgment. Due to the large amount of data and the high diversity, the data collection and integration analysis is extremely difficult. If only manpower is used, such complicated operations cannot be effectively carried out, and appropriate judgments or predictions can be made accordingly. There is a lack of a system that can synthesize all types of information and provide operational judgment by hydropower plant operators in an easy-to-understand manner.

因此,需要一種能蒐集、統整、分析水庫水位相關資料,且能將統整及分析後的資料以易於理解及易於操作的方式呈現給使用者,令使用者能輕易了解相關資訊的水庫水位之預測顯示系統及方法。 Therefore, there is a need for a collection, integration and analysis of reservoir water level related information, and the integrated and analyzed data can be presented to the user in an easy to understand and easy to operate manner, so that users can easily understand the relevant information of the reservoir water level. Forecast display system and method.

為了解決上述問題,本發明之目的在提供一種水庫水位之預測顯示系統及方法。 In order to solve the above problems, an object of the present invention is to provide a predictive display system and method for a reservoir water level.

本發明之另一目的在提供一種透過類神經網路演算法進行水庫水位預測的水庫水位之預測顯示系統及方法。 Another object of the present invention is to provide a system and method for predicting and displaying a reservoir water level through a neural network algorithm for reservoir water level prediction.

本發明之再一目的在提供一種可以圖形方式顯示預測資料及歷史資料的水庫水位之預測顯示系統及方法。 Still another object of the present invention is to provide a predictive display system and method for a reservoir water level that can graphically display predicted and historical data.

本發明之又一目的在提供一種透過模擬未來發電量、排洪量資料,可以圖形方式顯示水庫水位之預測顯示系統及方法。 Another object of the present invention is to provide a predictive display system and method for graphically displaying a reservoir water level by simulating future power generation and flood discharge data.

本發明之另一目的在提供一種可以圖形方式顯示水文、雨量、發電量等預測資料及歷史資料的水庫水位之預測顯示系統及方法。 Another object of the present invention is to provide a predictive display system and method for a reservoir water level that can graphically display predicted data and historical data such as hydrology, rainfall, and power generation.

為達上述目的,本發明提供一種水庫水位之預測顯示系統,包含:一預測模組、一資料庫及一使用者操作介面。該預測模組根據至少一輸入資料並透過一類神經網路演算法運算出至少一預測資料,該輸入資料至少包含水庫水位即時資料,而該預測資料至少包含水庫水位預測資料。該資料庫係自該預測模組接收及儲存該預測資料及/或該輸入資料。該使用者操作介面包含:一操作模組及一預測資料顯示模組。該操作模組接收使用者操作條件,該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料。而該預測資料顯示模組係根據該使用者操作條件,至該資料庫擷取該選定瀏覽之預測資料及/或歷史資料,並顯示該選定瀏覽之預測資料及/或歷史資料,以供使用者瀏覽。 To achieve the above objective, the present invention provides a predictive display system for a water level of a reservoir, comprising: a predictive module, a database, and a user interface. The prediction module calculates at least one prediction data according to at least one input data and through a neural network algorithm. The input data includes at least a reservoir water level real-time data, and the prediction data includes at least a reservoir water level prediction data. The database receives and stores the forecast data and/or the input data from the predictive module. The user operation interface includes: an operation module and a prediction data display module. The operation module receives a user operation condition, and the user operation condition includes at least a predicted data and/or historical data selected by the user. And the forecasting data display module is configured to retrieve the predicted data and/or historical data of the selected browsing according to the user operating conditions, and display the predicted and/or historical data of the selected browsing for use. Browse.

於本發明較佳之實施例中,所述顯示該選定瀏覽之預測資料及/或歷史資料,係以圖形方式顯示。 In a preferred embodiment of the present invention, the predicted data and/or historical data showing the selected browsing is displayed graphically.

於本發明較佳之實施例中,所述顯示該選定瀏覽之預測資料及/或歷史資料,係以具有複數縱軸的圖形方式顯示其關聯性。 In a preferred embodiment of the present invention, the predictive data and/or historical data showing the selected browsing is displayed in a graphical manner having a plurality of vertical axes.

於本發明較佳之實施例中,所述顯示該選定瀏覽之預測資料及/或歷史資料,係顯示包含:水庫入流量預測資料、水庫入流量歷史資料、水庫水位預測資料、水庫水位歷史資料、雨量預測資料、雨量歷史資料、發電量模擬資料、發電量歷史資料、排洪量模擬資料、排洪量歷史資料或其組合。 In a preferred embodiment of the present invention, the forecasting data and/or historical data showing the selected browsing includes: reservoir inflow forecast data, reservoir inflow historical data, reservoir water level prediction data, reservoir water level historical data, Rainfall forecast data, rainfall historical data, power generation simulation data, power generation historical data, flood discharge simulation data, flood discharge historical data, or a combination thereof.

於本發明較佳之實施例中,該使用者操作條件包含該輸入資料之一部分。 In a preferred embodiment of the invention, the user operating condition includes a portion of the input data.

於本發明較佳之實施例中,該使用者操作條件包含防洪量模擬資料或發電量模擬資料。 In a preferred embodiment of the present invention, the user operating conditions include flood control simulation data or power generation simulation data.

於本發明較佳之實施例中,該預測資料包含水庫入流量預測資料。 In a preferred embodiment of the invention, the predictive data includes reservoir inflow prediction data.

根據本發明之目的,再提供一種水庫水位之預測顯示方法,包含:根據至少一輸入資料透過一類神經網路演算法運算出至少一預測資料,該輸入資料至少包含水庫水位即時資料,而該預測資料至少包含水庫水位預測資料;接收使用者操作條件,其中該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料;根據該使用者操作條件擷取該選定瀏覽之預測資料及/或歷史資料;顯示該選定瀏覽之預測資料及/或歷史 資料。 According to the object of the present invention, a method for predicting and displaying a water level of a reservoir is provided, comprising: calculating at least one forecast data by using at least one input data through a type of neural network algorithm, the input data including at least real-time data of the reservoir water level, and the forecast data At least the reservoir water level prediction data is received; the user operating conditions are received, wherein the user operating conditions include at least the predicted data and/or historical data selected by the user; and the predicted browsing data of the selected browsing is obtained according to the user operating conditions and / or historical data; display forecast data and / or history of the selected browsing data.

於本發明較佳之實施例中,所述顯示該選定瀏覽之預測資料及/或歷史資料,係以圖形方式顯示。 In a preferred embodiment of the present invention, the predicted data and/or historical data showing the selected browsing is displayed graphically.

於本發明較佳之實施例中,所述顯示該選定瀏覽之預測資料及/或歷史資料,係以具有複數縱軸的圖形方式顯示其關聯性。 In a preferred embodiment of the present invention, the predictive data and/or historical data showing the selected browsing is displayed in a graphical manner having a plurality of vertical axes.

於本發明較佳之實施例中,所述顯示該選定瀏覽之預測資料及/或歷史資料,係顯示包含:水庫入流量預測資料、水庫入流量歷史資料、水庫水位預測資料、水庫水位歷史資料、雨量預測資料、雨量歷史資料、發電量模擬資料、發電量歷史資料、排洪量模擬資料、排洪量歷史資料或其組合。 In a preferred embodiment of the present invention, the forecasting data and/or historical data showing the selected browsing includes: reservoir inflow forecast data, reservoir inflow historical data, reservoir water level prediction data, reservoir water level historical data, Rainfall forecast data, rainfall historical data, power generation simulation data, power generation historical data, flood discharge simulation data, flood discharge historical data, or a combination thereof.

於本發明較佳之實施例中,該使用者操作條件包含該輸入資料之一部分。 In a preferred embodiment of the invention, the user operating condition includes a portion of the input data.

於本發明較佳之實施例中,該使用者操作條件包含防洪量模擬資料或發電量模擬資料。 In a preferred embodiment of the present invention, the user operating conditions include flood control simulation data or power generation simulation data.

於本發明較佳之實施例中,該預測資料包含水庫入流量預測資料。 In a preferred embodiment of the invention, the predictive data includes reservoir inflow prediction data.

本發明前述各方面及其它方面依據下述的非限制性具體實施例詳細說明以及參照附隨的圖式將更趨於明瞭。 The foregoing aspects and other aspects of the invention will be apparent from the description of the appended claims appended claims

100‧‧‧類神經網路系統 100‧‧‧ class neural network system

200‧‧‧訓練資料 200‧‧‧ Training materials

220‧‧‧資料伺服器 220‧‧‧Data Server

240‧‧‧水庫水位預測系統 240‧‧‧ Reservoir Water Level Prediction System

250‧‧‧預測模組 250‧‧‧ Prediction Module

252‧‧‧類神經網路學習模組 252‧‧‧ Neural Network Learning Module

254‧‧‧預測資料運算模組 254‧‧‧ Forecast Data Calculation Module

256‧‧‧輸入資料儲存模組 256‧‧‧Input data storage module

260‧‧‧使用者操作介面 260‧‧‧User interface

262‧‧‧操作模組 262‧‧‧Operating module

264‧‧‧預測資料顯示模組 264‧‧‧ Forecast data display module

270‧‧‧資料庫 270‧‧‧Database

280‧‧‧使用者 280‧‧‧Users

300‧‧‧預測機制流程圖 300‧‧‧ forecasting mechanism flow chart

310-350‧‧‧操作 310-350‧‧‧ operation

400‧‧‧類神經網路模型 400‧‧‧ class neural network model

402‧‧‧發電量資料 402‧‧‧Power generation data

404‧‧‧水庫水位資料 404‧‧‧ Reservoir water level data

406‧‧‧排洪量資料 406‧‧‧ Flood discharge data

408a‧‧‧第一層類神經網路 408a‧‧‧First-class neural network

408b‧‧‧第二層類神經網路 408b‧‧‧Second-level neural network

408c‧‧‧第三層類神經網路 408c‧‧‧Layer 3 neural network

412‧‧‧水庫入流量資料 412‧‧‧ Reservoir Inflow Information

424‧‧‧集水區雨量站觀測資料 424‧‧‧Catchment observation data of catchment area

426‧‧‧集水區氣象預報資料 426‧‧‧Catchment meteorological forecast data

432‧‧‧水庫入流量預測資料 432‧‧‧ Reservoir Inflow Forecast Data

442‧‧‧水庫水位預測資料 442‧‧‧ Reservoir water level forecast data

500‧‧‧使用者操作顯示流程圖 500‧‧‧User operation display flow chart

510-550‧‧‧操作 510-550‧‧‧ operation

610‧‧‧圖形顯示區域 610‧‧‧Graphic display area

612‧‧‧縱軸 612‧‧‧ vertical axis

614‧‧‧水庫入流量預測折線圖 614‧‧‧ Reservoir Inflow Forecasting Line Chart

616‧‧‧水庫水位預測折線圖 616‧‧‧ Reservoir water level prediction line chart

618‧‧‧縱軸 618‧‧‧ vertical axis

619‧‧‧橫軸 619‧‧‧ horizontal axis

620‧‧‧圖形顯示區域 620‧‧‧Graphic display area

622‧‧‧縱軸 622‧‧‧ vertical axis

624‧‧‧橫軸 624‧‧‧ horizontal axis

626‧‧‧集水區雨量預測直條圖 626‧‧‧Watershed rainfall forecast bar chart

720‧‧‧圖形顯示區域 720‧‧‧Graphic display area

722‧‧‧縱軸 722‧‧‧ vertical axis

724‧‧‧橫軸 724‧‧‧ horizontal axis

728‧‧‧歷史雨量直條圖 728‧‧‧ Historical rainfall bar chart

730‧‧‧預測雨量直條圖 730‧‧‧ Forecasting rainfall direct bar chart

第一圖為一般類神經網路系統的示意圖。 The first picture is a schematic diagram of a general neural network system.

第二圖為本發明基於類神經網路之水庫水位預測系統的架 構圖。 The second figure is a frame of a reservoir-based water level prediction system based on a neural network. Composition.

第三圖為本發明基於類神經網路之水庫水位預測方法之流程圖。 The third figure is a flow chart of the method for predicting the water level of the reservoir based on the neural network.

第四圖為本發明基於類神經網路之水庫水位預測系統一具體實施例的類神經網路模型圖。 The fourth figure is a neural network model diagram of a specific embodiment of a reservoir-based water level prediction system based on a neural network.

第五圖為本發明基於類神經網路之水庫水位預測方法的使用者操作顯示流程圖。 The fifth figure is a flow chart of the user operation display of the reservoir water level prediction method based on the neural network.

第六圖為本發明基於類神經網路之水庫水位預測系統的預測結果顯示之一具體實施例示意圖。 The sixth figure is a schematic diagram of a specific embodiment of the prediction result display of the reservoir-based water level prediction system based on the neural network.

第七圖為本發明基於類神經網路之水庫水位預測系統的預測結果顯示之另一具體實施例示意圖。 The seventh figure is a schematic diagram of another specific embodiment of the prediction result display of the reservoir-based water level prediction system based on the neural network.

本發明基於類神經網路之水庫水位預測的系統及其方法,係利用類神經網路具有在不需要提供轉換的數學函示條件下,即可學習輸入資料與輸出資料之關係的特性,先以大量訓練資料對類神經網路進行訓練,以塑模出各個輸入節點與各個隱藏層神經元的權重、各個隱藏層神經元與輸出節點之權重,及各個節點的偏權值,而後配合即時擷取的水文資料作為各個輸入節點的輸入資料,以進行水庫水位預測。以下將配合圖示進一步說明。 The invention is based on a neural network-based reservoir water level prediction system and method thereof, which utilizes a neural network having the characteristics of learning the relationship between input data and output data under the condition that no mathematical transformation is required. The neural network is trained with a large amount of training data to mold the weights of each input node and each hidden layer neuron, the weight of each hidden layer neuron and the output node, and the partial weight of each node. The hydrological data obtained is used as input data for each input node to predict the reservoir water level. The following will be further explained in conjunction with the drawings.

第一圖為一般類神經網路系統的示意圖。本發明基於類神經網路之水庫水位預測的系統,係利用如圖示之類神經網路系統100進行訓 練,以塑模出各個權重及各個偏權值,於圖示中,該類神經網路系統100在第一層具有輸入節點S1、輸入節點S2,在第二層具有隱藏層神經元S3、隱藏層神經元S4、隱藏層神經元S5,在第三層具有輸出節點S6。 The first picture is a schematic diagram of a general neural network system. The invention is based on a neural network-based reservoir water level prediction system, which is trained by using a neural network system 100 as shown. Practicing to mold each weight and each bias value. In the figure, the neural network system 100 has an input node S1 and an input node S2 in the first layer, and a hidden layer neuron S3 in the second layer. The hidden layer neuron S4, the hidden layer neuron S5, has an output node S6 at the third layer.

應了解類神經網路系統100在此僅為例示,本發明並不限於使用單層的隱藏層神經元,而係可視需求使用一至多層的隱藏層神經元。類神經網路系統100之輸入節點個數、隱藏層神經元個數、輸出節點個數,亦非可限制本發明,本發明之輸入節點個數、隱藏層神經元個數、輸出節點個數可視情況調整為任意個數。 It should be understood that the neural network-like system 100 is merely exemplary herein, and that the present invention is not limited to the use of a single layer of hidden layer neurons, but one or more layers of hidden layer neurons may be used as desired. The number of input nodes, the number of hidden layer neurons, and the number of output nodes of the neural network system 100 are also not limited to the present invention. The number of input nodes, the number of hidden layer neurons, and the number of output nodes of the present invention are not limited. Adjust to any number depending on the situation.

請繼續參考第一圖,類神經網路系統100的各個輸入節點與各個隱藏層神經元均有相對應的權重,例如輸入節點S1與隱藏層神經元S5具有一權重W15,輸入節點S2與隱藏層神經元S5具有一權重W25。同時,類神經網路系統100的各個隱藏層神經元與輸出節點亦有相對應的權重,例如隱藏層神經元S3與輸出節點S6具有一權重W36,隱藏層神經元S5與輸出節點S6具有一權重W56。而各個輸入節點、隱藏層神經元及輸出節點均具有各自的偏權值,例如輸入節點S2具有偏權值θ2,隱藏層神經元S5具有偏權值θ5,輸出節點S6具有偏權值θ6。而一節點傳輸至下個節點的傳輸數值之計算方式如下,假設共有n個節點將各自的傳輸數值傳輸至該節點Y,則節點Y傳輸至下一節點的傳輸數值y之公式為: 其中,Wi為將傳輸數值傳輸至節點Y的n個節點中之第i個節點與節點Y所對應的權重,Xi為該第i個節點傳輸至節點Y的傳輸數值,θ為節點Y的偏權 值。 Referring to the first figure, each input node of the neural network system 100 has a corresponding weight with each hidden layer neuron. For example, the input node S1 and the hidden layer neuron S5 have a weight W15, and the input node S2 is hidden. The layer neuron S5 has a weight W25. At the same time, each hidden layer neuron of the neural network system 100 also has a corresponding weight. For example, the hidden layer neuron S3 and the output node S6 have a weight W36, and the hidden layer neuron S5 and the output node S6 have a weight. Weight W56. Each input node, hidden layer neuron, and output node each have a respective bias value. For example, the input node S2 has an offset weight θ2, the hidden layer neuron S5 has an offset weight θ5, and the output node S6 has an offset weight θ6. The calculation of the transmission value transmitted by one node to the next node is as follows. Assuming that a total of n nodes transmit their respective transmission values to the node Y, the formula of the transmission value y transmitted by the node Y to the next node is: Where Wi is the weight corresponding to the i-th node and the node Y of the n nodes transmitting the transmission value to the node Y, Xi is the transmission value of the i-th node transmitted to the node Y, and θ is the deviation of the node Y Weight.

以節點S5為例,輸入節點S1與隱藏層神經元S5所對應的權重為W15,輸入節點S2與隱藏層神經元S5所對應的權重為W25,而隱藏層神經元S5的偏權值為θ5。設輸入節點S1傳輸至隱藏層神經元S5的傳輸數值為X1,而輸入節點S2傳輸至隱藏層神經元S5的傳輸數值為X2,則隱藏層神經元S5傳輸至輸出節點S6的傳輸數值為:(W15.X1+W25.X2)-θ5 Taking the node S5 as an example, the weight corresponding to the input node S1 and the hidden layer neuron S5 is W15, the weight corresponding to the input node S2 and the hidden layer neuron S5 is W25, and the bias value of the hidden layer neuron S5 is θ5. . Let the transmission value of the input node S1 transmitted to the hidden layer neuron S5 be X1, and the transmission value of the input node S2 transmitted to the hidden layer neuron S5 is X2, then the transmission value of the hidden layer neuron S5 to the output node S6 is: (W15.X1+W25.X2)-θ5

在訓練類神經網路系統100的過程中,首先以大量已知的輸入資料及輸出資料作為訓練用的輸入資料與輸出資料,對類神經網路系統100進行訓練,藉此塑模出各個權重及各個偏權值。傳統上可採用傳統梯度下降演算法以修正各個權重。在塑模出各個權重及各個偏權值後,即可利用類神經網路系統100,以即時的輸入資料,進行輸出資料的預測。 In the process of training the neural network system 100, a large amount of known input data and output data are first used as training input data and output data, and the neural network system 100 is trained to mold each weight. And each bias value. Traditional gradient descent algorithms have traditionally been employed to correct individual weights. After molding each weight and each bias value, the neural network system 100 can be utilized to predict the output data with instant input data.

第二圖為本發明基於類神經網路之水庫水位預測系統的架構圖,如圖所示,水庫水位預測系統240包含一預測模組250;一使用者操作介面260;及一資料庫270,該預測模組250包含一輸入資料儲存模組256,用以由複數個伺服器擷取及儲存至少一輸入資料,且該輸入資料至少包含水庫水位即時資料;一類神經網路學習模組252,根據儲存於該輸入資料儲存模組256的該輸入資料,以塑模出至少一權重及至少一偏權值;及一預測資料運算模組254,根據該類神經網路學習模組252所塑模出之該權重及該偏權值,對該輸入資料進行運算,以得出至少一預測資料,且該預測資料至少包含水庫水位預測資料;該使用者操作介面260則包含一操作模組 262,用以接收使用者操作條件,該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料;及一預測資料顯示模組264,用以根據該使用者操作條件,至該資料庫270擷取該選定瀏覽之預測資料及/或歷史資料,並顯示該選定瀏覽之預測資料及/或歷史資料,以供使用者瀏覽。 The second figure is an architectural diagram of a neural network-based reservoir water level prediction system according to the present invention. As shown, the reservoir water level prediction system 240 includes a prediction module 250, a user operation interface 260, and a database 270. The prediction module 250 includes an input data storage module 256 for capturing and storing at least one input data by a plurality of servers, and the input data includes at least reservoir water level real-time data; a neural network learning module 252, Forming at least one weight and at least one bias value according to the input data stored in the input data storage module 256; and a predictive data computing module 254, according to the neural network learning module 252 Simulating the weight and the bias value, calculating the input data to obtain at least one prediction data, and the prediction data includes at least reservoir water level prediction data; the user operation interface 260 includes an operation module 262, for receiving user operating conditions, the user operating conditions include at least the predicted data and/or historical data selected by the user; and a predictive data display module 264 for using the user operating conditions to The database 270 retrieves the predicted and/or historical data of the selected browsing and displays the predicted and/or historical data of the selected browsing for the user to browse.

其中,預測模組250係藉由大量的訓練資料200對類神經網路學習模組252進行訓練,藉此塑模出各個權重及各個偏權值。接著,由輸入資料儲存模組256定期至一或多個資料伺服器220擷取各類所需的即時資料並儲存,再由預測資料運算模組254將儲存在輸入資料儲存模組256的資料作為輸入資料,並依據類神經網路學習模組252塑模出的各個權重及各個偏權值,以進一步運算出預測資料,並透過資料庫270儲存該些預測資料。其中,預測資料運算模組254在執行預測運算時所使用的輸入資料,除了儲存於輸入資料儲存模組的資料外,可進一步包含由使用者透過操作模組262所輸入的資料。使用者並可透過操作模組262決定欲顯示的預測資料及/或歷史資料範圍,而後,使用者操作介面260將根據使用者選取的預測資料範圍,至資料庫270擷取該些預測資料及/或歷史資料,並透過預測資料顯示模組264將該些預測資料及/或歷史資料呈現給使用者。 The prediction module 250 trains the neural network learning module 252 by a large amount of training data 200, thereby molding each weight and each bias value. Then, the input data storage module 256 periodically collects and stores various types of real-time data required by the data server 220, and then stores the data stored in the input data storage module 256 by the prediction data computing module 254. As input data, each weight and each bias value molded by the neural network learning module 252 are used to further calculate the predicted data, and the predicted data is stored through the database 270. The input data used by the prediction data calculation module 254 in performing the prediction calculation may further include data input by the user through the operation module 262 in addition to the data stored in the input data storage module. The user can determine the predicted data and/or historical data range to be displayed through the operation module 262. Then, the user operation interface 260 will retrieve the predicted data from the database 270 according to the predicted data range selected by the user. / or historical data, and through the forecast data display module 264 to present the predicted data and / or historical data to the user.

請參考第三圖並配合參考第四圖,其中第三圖為本發明基於類神經網路之水庫水位預測方法之流程圖;而第四圖係為本發明基於類神經網路之水庫水位預測系統一具體實施例的類神經網路模型圖。本發明基於類神經網路之水庫水位預測方法,包含以下步驟:首先,進行步驟310,由使用者先建構類神經網路模型,其包含決定各個輸入節點的輸入資料為 何,其中該類神經網路模型可為單層類神經網路模型或多層類神經網路模型。 Please refer to the third figure and refer to the fourth figure. The third figure is the flow chart of the reservoir water level prediction method based on the neural network. The fourth picture is the water level prediction of the reservoir based on the neural network. A neural network model diagram of a particular embodiment of the system. The invention is based on a neural network-based reservoir water level prediction method, and includes the following steps: First, in step 310, a user first constructs a neural network model, which includes determining input data of each input node as He, wherein the neural network model can be a single-layer neural network model or a multi-layer neural network model.

於本實施例中,在步驟310處,所建構之類神經網路模型為第四圖所示之類神經網路模型400,並以此類神經網路模型400對例如一甲水庫進行1至48小時的水庫水位預測。如圖所示,類神經網路模型400為三層之類神經網路模型,其中第一層類神經網路408a的隱藏層神經元個數可為5至20個,第二層類神經網路408b的隱藏層神經元個數可為5至20個,第三層類神經網路408c的隱藏層神經元個數可為5至20個。 In this embodiment, at step 310, the constructed neural network model is a neural network model 400 such as shown in the fourth figure, and the neural network model 400 is used to perform, for example, a 48-hour reservoir water level forecast. As shown, the neural network model 400 is a three-layer neural network model, in which the number of hidden layer neurons of the first layer neural network 408a can be 5 to 20, and the second layer neural network The number of hidden layer neurons of the road 408b may be 5 to 20, and the number of hidden layer neurons of the third layer type neural network 408c may be 5 to 20.

應了解,各層類神經網路的隱藏層神經元個數在此僅為例示,本發明並不限於使用5-20個隱藏層神經元,而係可視需求設置任意個數的隱藏層神經元。 It should be understood that the number of hidden layer neurons of each layer of neural network is merely exemplified herein, and the present invention is not limited to the use of 5-20 hidden layer neurons, and any number of hidden layer neurons may be set as needed.

另外,於本實施例中,在步驟310處,係以發電量資料402、水庫水位資料404及排洪量資料406作為第一層類神經網路408a的輸入資料,以水庫入流量資料412作為第一層類神經網路408a的輸出資料。而第二層類神經網路408b的輸入資料為水庫入流量資料412、集水區雨量站觀測資料424及集水區氣象預報資料426,第二層類神經網路408b的輸出資料為水庫入流量預測資料432。第三層類神經網路408c的輸入資料則為水庫入流量預測資料432、發電量資料402及排洪量資料406,第三層類神經網路408c的輸出資料為水庫水位預測資料442。 In addition, in the embodiment, at step 310, the power generation amount data 402, the reservoir water level data 404, and the flood discharge amount data 406 are used as input data of the first layer type neural network 408a, and the reservoir inflow data 412 is used as the first Output data of a layer of neural network 408a. The input data of the second layer neural network 408b is the reservoir inflow data 412, the catchment rainfall station observation data 424, and the catchment weather forecast data 426, and the output data of the second layer neural network 408b is the reservoir inlet. Traffic prediction data 432. The input data of the third layer neural network 408c is the reservoir inflow prediction data 432, the power generation data 402 and the flood discharge data 406, and the output data of the third layer neural network 408c is the reservoir water level prediction data 442.

在完成步驟310後,則進行步驟320,在步驟320處,使用者進一步決定以何項歷史資料作為訓練各層類神經網路的訓練資料,並藉此 塑模出各層類神經網路模型的各個權重及偏權值。 After step 310 is completed, step 320 is performed. At step 320, the user further determines which historical data is used as training data for training each layer of neural network, and thereby Each weight and partial weight of each layer of neural network model is molded.

於實施例中,該歷史資料,係以2012年至2013年甲水庫的發電量資料402、水庫水位資料404及排洪量資料406作為第一層類神經網路408a的訓練用輸入資料,且以2012年至2013年甲水庫的水庫入流量資料412作為第一層類神經網路408a的訓練用輸出資料。並以2012年至2013年甲水庫的水庫入流量資料412、集水區雨量站觀測資料424及集水區氣象預報資料426作為第二層類神經網路408b的訓練用輸入資料,且以2012年至2013年甲水庫的水庫入流量預測資料432作為第二層類神經網路408b的訓練用輸出資料。再以2012年至2013年甲水庫的水庫入流量預測資料432、發電量資料402及排洪量資料406作為第三層類神經網路408c的訓練用輸入資料,並再以2012年至2013年甲水庫的水庫水位預測資料442作為第三層類神經網路408c的訓練用輸出資料。其中,第二層類神經網路408b的訓練用之水庫入流量預測資料432之資料時間點,較第二層類神經網路408b的訓練用之集水區雨量站觀測資料424,及訓練用之集水區氣象預報資料426的資料時間點延後1至48小時,以此模擬第二層類神經網路408b的輸入資料與輸出資料之關係,係為輸入資料與預測資料之關係。而第三層類神經網路408c的訓練用之水庫水位預測資料442之資料時間點,較第三層類神經網路408c的訓練用之發電量資料,及訓練用之排洪量資料的資料時間點延後1至48小時,以此模擬第三層類神經網路408c的輸入資料與輸出資料之關係,係為輸入資料與預測資料之關係。 In the embodiment, the historical data is used as the training input data of the first layer type neural network 408a from the power generation data 402 of the A reservoir from 2012 to 2013, the reservoir water level data 404, and the flood discharge amount data 406, and From 2012 to 2013, the reservoir inflow data 412 of the A reservoir was used as training output data for the first layer of neural network 408a. From 2012 to 2013, the reservoir inflow data 412 of the A reservoir, the catchment area observation data 424 and the catchment meteorological forecast data 426 are used as training input materials for the second layer neural network 408b, and 2012. From 2017 to 2013, the reservoir inflow prediction data 432 of the A reservoir is used as training output data for the second-layer neural network 408b. From 2012 to 2013, the reservoir inflow forecast data 432, power generation data 402 and flood discharge data 406 of the A reservoir are used as training input materials for the third layer neural network 408c, and then from 2012 to 2013. The reservoir water level prediction data 442 of the reservoir is used as training output data for the third layer neural network 408c. Wherein, the data time point of the reservoir inflow prediction data 432 for the training of the second layer neural network 408b is compared with the observation data 424 of the catchment rainfall station for training of the second layer neural network 408b, and training The data time of the catchment weather forecast data 426 is delayed by 1 to 48 hours to simulate the relationship between the input data and the output data of the second layer neural network 408b, which is the relationship between the input data and the predicted data. The data time point of the reservoir water level prediction data 442 for the training of the third layer neural network 408c is higher than that of the training data for the training of the third layer neural network 408c, and the data time of the flood discharge data for training. The relationship between the input data and the output data of the third-layer neural network 408c is simulated by 1 to 48 hours, which is the relationship between the input data and the predicted data.

在決定以何歷史資料作為訓練各層類神經網路的訓練資料 200後,進行步驟330,在步驟330處,以所決定的歷史資料對類神經網路學習模組252的各層類神經網路進行訓練,以塑模出各層類神經網路的各個權重及各個偏權值。 In deciding what historical data to use as training materials for training various layers of neural networks After 200, step 330 is performed. At step 330, the neural network of each layer of the neural network learning module 252 is trained with the determined historical data to mold each weight and each of the neural networks of each layer. Partial weight.

於本實施例中,在步驟330處,係以上述2012年至2013年各訓練用輸入資料及各訓練用輸出資料對類神經網路模型400進行訓練,以塑模出第一層類神經網路408a、第二層類神經網路408b及第三層類神經網路408c的各個權重及偏權值。 In this embodiment, at step 330, the neural network model 400 is trained by using the training input data and the training output data of the above 2012 to 2013 to mold the first layer neural network. The respective weights and bias values of the road 408a, the second layer neural network 408b, and the third layer neural network 408c.

接著,進行步驟340,在步驟340處,由輸入資料儲存模組256定期至資料伺服器220擷取所需的即時資料並儲存,所擷取的該些資料亦可於日後作為訓練用之歷史資料及/或作為提供使用者瀏覽之歷史資料。其中,該些所擷取的即時資料可同時儲存於資料庫270,供使用者操作介面260使用。 Then, step 340 is performed. At step 340, the input data storage module 256 periodically retrieves the required real-time data from the data server 220 and stores the data. The captured data can also be used as a training history in the future. Information and/or as historical information for the user to view. The captured real-time data can be simultaneously stored in the database 270 for use by the user operation interface 260.

於本實施例中,在步驟340處,係以一小時為間隔,由輸入資料儲存模組256每小時至A伺服器擷取甲水庫水位資料、發電量資料,及水庫集水區雨量站資料並儲存,至B伺服器擷取集水區氣象預報資料並儲存。並於預測資料儲存模組254執行預測運算時,提供該些資料對甲水庫進行1至48小時的水庫水位預測。 In this embodiment, at step 340, the water level data, the power generation data, and the rainfall station data of the reservoir catchment area are retrieved from the input data storage module 256 to the A server every hour at an interval of one hour. And store, go to the B server to collect the meteorological forecast data of the catchment area and store it. And when the predictive data storage module 254 performs the predictive calculation, the data is provided for the reservoir to predict the water level of the reservoir for 1 to 48 hours.

應了解,上述實施例僅為示例,本發明並非限於每小時執行一次資料擷取,而係可視需求,以數分鐘至數天作為資料擷取之執行間隔。同時,本發明並非僅可用於預測1至48小時後的水庫水位,而係可視需求進行至少數小時至數天、週、月、年的水庫預測。 It should be understood that the above embodiments are merely examples, and the present invention is not limited to performing data capture every hour, but for several minutes to several days as the execution interval of data retrieval. At the same time, the present invention is not only used to predict reservoir water levels after 1 to 48 hours, but reservoir predictions of at least hours to days, weeks, months, and years may be performed as needed.

接著,進行步驟350,在步驟350處,由預測資料運算模組254藉由類神經網路學習模組252塑模出的各個權重及各個偏權值進行預測運算,其係將儲存在輸入資料儲存模組256的資料作為輸入資料,並針對該些輸入資料運算出預測資料,而後,將該些運算出的預測資料儲存於資料庫270。 Next, step 350 is performed. At step 350, the prediction data calculation module 254 performs prediction operations by using the weights and the partial weight values molded by the neural network learning module 252, and the system is stored in the input data. The data of the storage module 256 is used as input data, and the predicted data is calculated for the input data, and then the calculated predicted data is stored in the database 270.

於本實施例中,係藉由上述塑模出的第一層類神經網路408a、第二層類神經網路408b及第三層類神經網路408c的各個權重及偏權值,以類神經網路模型400進行甲水庫水位預測,並將該些預測資料儲存至資料庫270。其中,用以預測的各輸入資料係來自輸入資料儲存模組256於A伺服器及B伺服器所擷取並儲存之資料,即完成本發明基於類神經網路之水庫水位預測方法。 In this embodiment, the weights and partial weights of the first layer neural network 408a, the second layer neural network 408b, and the third layer neural network 408c are molded by the above-mentioned modeling. The neural network model 400 performs a water level prediction of the A reservoir and stores the predicted data in the database 270. The input data for prediction is obtained from the data collected and stored by the input data storage module 256 on the A server and the B server, that is, the method for predicting the water level of the reservoir based on the neural network is completed.

第五圖為本發明基於類神經網路之水庫水位預測系統的使用者操作顯示流程圖,使用者操作顯示流程圖500開始於步驟510,由操作模組262確認一使用者是否為合法使用者。在一具體實施例中,係由使用者輸入帳號密碼,以供操作模組262進行確認。 The fifth figure is a user operation display flow chart of the neural network-based reservoir water level prediction system of the present invention. The user operation display flow chart 500 starts at step 510, and the operation module 262 confirms whether a user is a legitimate user. . In one embodiment, the user enters an account password for confirmation by the operating module 262.

在確認使用者合法登入後,於步驟520處,由操作模組262提供該使用者進行操作介面的使用,並於步驟530處,由操作模組262接收使用者輸入的操作條件。該些操作條件可包含使用者所選定瀏覽之資料範圍及/或部分用以進行預測的輸入資料(例如排洪量模擬資料及/或發電量模擬資料)等,但並不以此為限。其中,使用者所選定瀏覽之資料可為預測資料及/或歷史資料。 After confirming that the user is legally logged in, the operation module 262 is provided by the operation module 262 to use the operation interface, and at step 530, the operation module 262 receives the operation condition input by the user. The operating conditions may include, but are not limited to, the range of data selected by the user and/or some of the input data (for example, flooding simulation data and/or power generation simulation data) for prediction. The information selected by the user may be predicted data and/or historical data.

接著,於步驟540處,根據使用者輸入的操作條件,由預測資料顯示模組264至資料庫270及/或輸入資料儲存模組256擷取使用者所選定瀏覽之預測資料及/或使用者選定瀏覽之歷史資料。並於步驟550處,由預測資料顯示模組264顯示該些擷取自資料庫270及/或輸入資料儲存模組256之資料,以供使用者瀏覽。所述顯示該些擷取自資料庫270及/或輸入資料儲存模組256之資料,可為直接顯示資料的數值及/或將該些資料以圖形方式顯示。所述以圖形方式顯示,可為以折線圖及/或直條圖的方式顯示,但不以此為限。 Then, in step 540, based on the operating conditions entered by the user, the predicted data display module 264 to the database 270 and/or the input data storage module 256 retrieves the predicted data and/or the user selected by the user. Selected historical data for browsing. At step 550, the predicted data display module 264 displays the data retrieved from the database 270 and/or the input data storage module 256 for viewing by the user. The displaying of the data from the database 270 and/or the input data storage module 256 may be performed by directly displaying the values of the data and/or graphically displaying the data. The graphic display may be displayed in the form of a line graph and/or a bar graph, but is not limited thereto.

第六圖為本發明基於類神經網路之水庫水位預測系統的預測結果顯示之一具體實施例示意圖,如圖所示,在使用者選定欲瀏覽之預測資料範圍後,預測資料顯示模組264即根據使用者選定之預測資料範圍,至資料庫270擷取對應的預測資料。並於圖形顯示區域610處,以折線圖的形式顯示使用者選定之水庫入流量預測折線圖614及水庫水位預測折線圖616,其中,水庫入流量預測折線圖614的對應縱軸612標示水庫預測入流量數值(CMS),橫軸619標示預測時間點。而水庫水位預測折線圖616的對應縱軸618標示水庫預測水位高度(m),橫軸619標示預測時間點。圖形顯示區域620則以直條圖的形式顯示集水區雨量預測直條圖626,其對應縱軸622標示預測雨量數值(mm),橫軸624標示預測時間點。 The sixth figure is a schematic diagram of a specific embodiment of the prediction result display of the reservoir-based water level prediction system based on the neural network. As shown in the figure, after the user selects the predicted data range to be browsed, the prediction data display module 264 That is, according to the predicted data range selected by the user, the corresponding forecast data is retrieved from the database 270. And in the graphic display area 610, the user-introduced reservoir inflow forecasting line graph 614 and the reservoir water level prediction line graph 616 are displayed in the form of a line graph, wherein the corresponding vertical axis 612 of the reservoir inflow forecasting line graph 614 indicates the reservoir prediction. Inflow value (CMS), horizontal axis 619 indicates the predicted time point. The corresponding vertical axis 618 of the reservoir water level prediction line chart 616 indicates the predicted water level height (m) of the reservoir, and the horizontal axis 619 indicates the predicted time point. The graphical display area 620 displays the catchment rainfall prediction bar graph 626 in the form of a bar graph, with the corresponding vertical axis 622 indicating the predicted rainfall amount (mm) and the horizontal axis 624 indicating the predicted time point.

應了解,第六圖僅為一示意圖,本發明最終顯示之圖形並不以此為限,例如,圖形顯示區域610亦可同時顯示水庫入流量預測資料、水庫入流量歷史資料、水庫水位預測資料及水庫水位歷史資料。又例如,圖 形顯示區域620亦可視狀況具有兩組縱軸,並可以折線圖的形式顯示使用者所選定瀏覽之預測資料及/或歷史資料。 It should be understood that the sixth figure is only a schematic diagram, and the final display graphic of the present invention is not limited thereto. For example, the graphic display area 610 can also display the reservoir inflow prediction data, the reservoir inflow historical data, and the reservoir water level prediction data. And reservoir water level history data. Again, for example, The shape display area 620 also has two sets of vertical axes depending on the situation, and can display the predicted data and/or historical data of the browsing selected by the user in the form of a line graph.

第七圖為本發明基於類神經網路之水庫水位預測系統的預測結果顯示之另一具體實施例示意圖,如圖所示,其係於圖形顯示區域720處,以直條圖的形式顯示各雨量站在各時間點的歷史雨量直條圖728及預測雨量直條圖730。其中,歷史雨量直條圖728及預測雨量直條圖730的對應縱軸722標示雨量數值(mm),對應的橫軸724標示時間點。同時,如圖所示,在同一時間點的歷史雨量直條圖728及預測雨量直條圖730係相互緊鄰,以方便使用者辨識各個時間點所對應的的歷史雨量與預測雨量。 The seventh figure is a schematic diagram of another specific embodiment of the prediction result display of the reservoir-based water level prediction system based on the neural network. As shown in the figure, it is displayed in the graphic display area 720, and each of them is displayed in the form of a bar graph. The rainfall is standing at the historical rainfall direct bar graph 728 and the predicted rainfall direct bar graph 730 at each time point. The corresponding vertical axis 722 of the historical rainfall bar graph 728 and the predicted rainfall bar graph 730 indicates the rainfall amount value (mm), and the corresponding horizontal axis 724 indicates the time point. At the same time, as shown in the figure, the historical rainfall bar graph 728 and the predicted rainfall bar graph 730 at the same time point are closely adjacent to each other, so that the user can recognize the historical rainfall amount and the predicted rainfall amount corresponding to each time point.

如第七圖所示,當使用者所選定欲瀏覽之資料範圍為歷史資料時,即於圖形顯示區域720處,以歷史雨量直條圖728及預測雨量直條圖730顯示出所選定的各時間點的歷史資料及預測資料,使用者可藉此比較在各時間點,各個集水區的實際雨量值及預測雨量值,以分析預測值的準確度。 As shown in the seventh figure, when the range of data selected by the user to be browsed is historical data, that is, at the graphic display area 720, the selected time is displayed by the historical rainfall bar graph 728 and the predicted rainfall bar graph 730. The historical data and forecast data of the point can be used by the user to compare the actual rainfall value and the predicted rainfall value of each catchment at each time point to analyze the accuracy of the predicted value.

應了解,第七圖僅為一示意圖,本發明最終顯示之圖形並不以此為限。 It is to be understood that the seventh drawing is only a schematic view, and the final display of the present invention is not limited thereto.

Claims (10)

一種水庫水位之預測顯示系統,包含:一預測模組,根據至少一輸入資料並透過一類神經網路演算法運算出至少一預測資料,該輸入資料至少包含水庫水位即時資料與集水區氣象預報資料,而該預測資料至少包含水庫水位預測資料;一資料庫,自該預測模組接收及儲存該預測資料及/或該輸入資料;及一使用者操作介面,包含:一操作模組,接收使用者操作條件,該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料;及一預測資料顯示模組,根據該使用者操作條件,至該資料庫擷取該選定瀏覽之預測資料及/或歷史資料,並顯示該選定瀏覽之預測資料及/或歷史資料,以供使用者瀏覽;其中該使用者操作條件包含該輸入資料之一部分;其中該使用者操作條件包含作為該輸入資料之一部分的排洪量模擬資料或發電量模擬資料。 A predictive display system for a water level of a reservoir, comprising: a predictive module, wherein at least one predictive data is calculated according to at least one input data and a type of neural network algorithm, the input data comprising at least a reservoir water level real-time data and a catchment area weather forecast data And the forecasting data includes at least the reservoir water level forecasting data; a database for receiving and storing the forecasting data and/or the input data from the forecasting module; and a user operating interface comprising: an operating module for receiving and using Operating conditions, the user operating conditions include at least the predicted data and/or historical data selected by the user; and a predictive data display module that retrieves the selected browsing according to the user operating conditions Predicting data and/or historical data, and displaying the predicted and/or historical data of the selected browsing for viewing by the user; wherein the user operating condition includes a portion of the input data; wherein the user operating condition includes Enter the amount of flood discharge simulation data or power generation simulation data in one part of the data. 如申請專利範圍第1項所述之水庫水位之預測顯示系統,其中所述顯示該選定瀏覽之預測資料及/或歷史資料,係以圖形方式顯示。 The predictive display system for a reservoir water level according to claim 1, wherein the forecasting data and/or historical data showing the selected browsing are displayed graphically. 如申請專利範圍第1項所述之水庫水位之預測顯示系統,其中所述顯示該選定瀏覽之預測資料及/或歷史資料,係以具有複數縱軸的圖形方式顯示其關聯性。 The predictive display system for a reservoir water level as described in claim 1, wherein the predictive data and/or historical data showing the selected browsing is displayed in a graphical manner having a plurality of vertical axes. 如申請專利範圍第1項所述之水庫水位之預測顯示系統,其中所述顯示 該選定瀏覽之預測資料及/或歷史資料,係顯示包含:水庫入流量預測資料、水庫入流量歷史資料、水庫水位預測資料、水庫水位歷史資料、雨量預測資料、雨量歷史資料、發電量模擬資料、發電量歷史資料、排洪量模擬資料、排洪量歷史資料或其組合。 A predictive display system for a reservoir water level as described in claim 1 wherein said display The forecasted data and/or historical data of the selected browsing include: reservoir inflow forecast data, reservoir inflow historical data, reservoir water level forecast data, reservoir water level historical data, rainfall forecast data, rainfall historical data, and power generation simulation data. Historical data of power generation, simulated data of flood discharge, historical data of flood discharge, or a combination thereof. 如申請專利範圍第1項所述之水庫水位之預測顯示系統,其中該預測資料包含水庫入流量預測資料。 For example, the forecasting display system for the reservoir water level described in claim 1 of the patent scope, wherein the forecast data includes reservoir inflow forecast data. 一種水庫水位之預測顯示方法,包含:根據至少一輸入資料透過一類神經網路演算法運算出至少一預測資料,該輸入資料至少包含水庫水位即時資料與集水區氣象預報資料,而該預測資料至少包含水庫水位預測資料;接收使用者操作條件,其中該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料;根據該使用者操作條件擷取該選定瀏覽之預測資料及/或歷史資料;顯示該選定瀏覽之預測資料及/或歷史資料;其中該使用者操作條件包含該輸入資料之一部分;其中該使用者操作條件包含作為該輸入資料之一部分的排洪量模擬資料或發電量模擬資料。 A method for predicting and displaying a water level of a reservoir, comprising: calculating at least one forecast data according to at least one input data through a type of neural network algorithm, the input data comprising at least a reservoir water level real-time data and a catchment area weather forecast data, and the forecast data is at least Included in the reservoir water level prediction data; receiving the user operating conditions, wherein the user operating conditions include at least the predicted data and/or historical data selected by the user; and the predicted browsing data of the selected browsing is obtained according to the user operating conditions and/or Or historical data; displaying predicted data and/or historical data of the selected browsing; wherein the user operating condition includes a portion of the input data; wherein the user operating condition includes a flood discharge simulation data or a power generation as part of the input data Volume simulation data. 如申請專利範圍第6項所述之水庫水位之預測顯示方法,其中所述顯示該選定瀏覽之預測資料及/或歷史資料,係以圖形方式顯示。 The method for predicting and displaying a water level of a reservoir according to claim 6, wherein the forecasting data and/or historical data showing the selected browsing are displayed graphically. 如申請專利範圍第6項所述之水庫水位之預測顯示方法,其中所述顯示該選定瀏覽之預測資料及/或歷史資料,係以具有複數縱軸的圖形方式顯示其關聯性。 The method for predicting and displaying a water level of a reservoir according to claim 6, wherein the forecasting data and/or historical data showing the selected browsing is displayed in a graphical manner having a plurality of vertical axes. 如申請專利範圍第6項所述之水庫水位之預測顯示方法,其中所述顯示該選定瀏覽之預測資料及/或歷史資料,係顯示包含:水庫入流量預測資料、水庫入流量歷史資料、水庫水位預測資料、水庫水位歷史資料、雨量預測資料、雨量歷史資料、發電量模擬資料、發電量歷史資料、排洪量模擬資料、排洪量歷史資料或其組合。 The method for predicting the water level of a reservoir as described in claim 6 wherein the forecasting data and/or historical data showing the selected browsing includes: reservoir inflow prediction data, reservoir inflow historical data, reservoir Water level forecast data, reservoir water level historical data, rainfall forecast data, rainfall historical data, power generation simulation data, power generation historical data, flood discharge simulation data, flood discharge historical data or a combination thereof. 如申請專利範圍第6項所述之水庫水位之預測顯示方法,其中該預測資料包含水庫入流量預測資料。 The method for predicting the water level of a reservoir as described in claim 6 of the patent application scope, wherein the forecast data includes prediction data of the reservoir inflow.
TW105121206A 2016-07-05 2016-07-05 Display system and method for water level predicting of reservoirs TWI618016B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105121206A TWI618016B (en) 2016-07-05 2016-07-05 Display system and method for water level predicting of reservoirs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105121206A TWI618016B (en) 2016-07-05 2016-07-05 Display system and method for water level predicting of reservoirs

Publications (2)

Publication Number Publication Date
TW201802747A TW201802747A (en) 2018-01-16
TWI618016B true TWI618016B (en) 2018-03-11

Family

ID=61725151

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105121206A TWI618016B (en) 2016-07-05 2016-07-05 Display system and method for water level predicting of reservoirs

Country Status (1)

Country Link
TW (1) TWI618016B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690859B (en) * 2018-09-10 2020-04-11 陳柏蒼 Method and system for measuring water level by using graphic recognition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095054A1 (en) * 2006-12-22 2009-04-16 Groves Bruce D Methods and Systems for Analysis, Reporting and Display of Environmental Data
CN103175513B (en) * 2013-03-01 2013-11-06 戴会超 System and method for monitoring hydrology and water quality of river basin under influence of water projects based on Internet of Things
TWI490811B (en) * 2008-12-19 2015-07-01 Chugoku Electric Power Support facilities for storage facilities, use of reservoir support facilities and support facilities for storage facilities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095054A1 (en) * 2006-12-22 2009-04-16 Groves Bruce D Methods and Systems for Analysis, Reporting and Display of Environmental Data
TWI490811B (en) * 2008-12-19 2015-07-01 Chugoku Electric Power Support facilities for storage facilities, use of reservoir support facilities and support facilities for storage facilities
CN103175513B (en) * 2013-03-01 2013-11-06 戴会超 System and method for monitoring hydrology and water quality of river basin under influence of water projects based on Internet of Things

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690859B (en) * 2018-09-10 2020-04-11 陳柏蒼 Method and system for measuring water level by using graphic recognition

Also Published As

Publication number Publication date
TW201802747A (en) 2018-01-16

Similar Documents

Publication Publication Date Title
Nagpal et al. A methodology for auto-calibrating urban building energy models using surrogate modeling techniques
CN105868853B (en) Method for predicting short-term wind power combination probability
CN107480341A (en) A kind of dam safety comprehensive method based on deep learning
CN108172301A (en) A kind of mosquito matchmaker's epidemic Forecasting Methodology and system based on gradient boosted tree
CN116451879B (en) Drought risk prediction method and system and electronic equipment
CN111639787A (en) Spatio-temporal data prediction method based on graph convolution network
CN106951611A (en) A kind of severe cold area energy-saving design in construction optimization method based on user's behavior
CN112528365B (en) Method for predicting healthy evolution trend of underground infrastructure structure
CN108399470B (en) Indoor PM2.5 prediction method based on multi-example genetic neural network
Fragkias et al. Modeling urban growth in data-sparse environments: a new approach
CN106651007A (en) Method and device for GRU-based medium and long-term prediction of irradiance of photovoltaic power station
TWI587222B (en) Neural networks based water level predicting system and method for reservoirs
Henze et al. An energy signal tool for decision support in building energy systems
CN114493052B (en) Multi-model fusion self-adaptive new energy power prediction method and system
US20180248370A1 (en) Methods and systems for energy use normalization and forecasting
CN105809264B (en) Power load prediction method and device
CN106650977A (en) Short-term power prediction method used for newly-built wind farm
CN103942251A (en) Method and system for inputting high altitude meteorological data into database based on multiple quality control methods
TWI618016B (en) Display system and method for water level predicting of reservoirs
Papadopoulou et al. Evaluating predictive performance of sensor configurations in wind studies around buildings
CN112365082A (en) Public energy consumption prediction method based on machine learning
CN117318018A (en) Short-term prediction method and system for wind power output
CN116307287A (en) Prediction method, system and prediction terminal for effective period of photovoltaic power generation
Namrata et al. Data-Driven Hyperparameter Optimized Extreme Gradient Boosting Machine Learning Model for Solar Radiation Forecasting
CN111612227A (en) Load prediction method based on K-means clustering and bat optimization neural network