TWI587222B - Neural networks based water level predicting system and method for reservoirs - Google Patents

Neural networks based water level predicting system and method for reservoirs Download PDF

Info

Publication number
TWI587222B
TWI587222B TW105120472A TW105120472A TWI587222B TW I587222 B TWI587222 B TW I587222B TW 105120472 A TW105120472 A TW 105120472A TW 105120472 A TW105120472 A TW 105120472A TW I587222 B TWI587222 B TW I587222B
Authority
TW
Taiwan
Prior art keywords
data
neural network
reservoir
water level
layer
Prior art date
Application number
TW105120472A
Other languages
Chinese (zh)
Other versions
TW201810133A (en
Inventor
周儷芬
曹昭陽
呂藝光
Original Assignee
台灣電力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣電力股份有限公司 filed Critical 台灣電力股份有限公司
Priority to TW105120472A priority Critical patent/TWI587222B/en
Application granted granted Critical
Publication of TWI587222B publication Critical patent/TWI587222B/en
Publication of TW201810133A publication Critical patent/TW201810133A/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

基於類神經網路之水庫水位預測系統及方法 Reservoir water level prediction system and method based on neural network

本發明係關於一種基於類神經網路之水庫水位預測系統及方法,特別是關於一種利用多類即時水文資料進行基於類神經網路之水庫水位預測系統及方法。 The invention relates to a reservoir-based water level prediction system and method based on a neural network, in particular to a reservoir-based water level prediction system and method using a plurality of types of real-time hydrological data.

水力電廠在考量如何有效率地發電時,須兼顧防洪及供水。因此,水力電廠的發電操作與水庫水位息息相關。在進行發電操作時,須將目前水庫水位及未來水庫水位一併列入考量,否則將無法同時達到高發電效率、防洪及供水的目的。 Hydropower plants must consider both flood control and water supply when considering how to generate electricity efficiently. Therefore, the power generation operation of hydropower plants is closely related to the water level of the reservoir. In the power generation operation, the current reservoir water level and the future reservoir water level must be taken into consideration together, otherwise it will not be able to achieve high power generation efficiency, flood control and water supply at the same time.

此外,由於水力電廠的發電量亦受天候及季節水量影響。而隨著全球氣候變遷日益加劇,位處於亞熱帶的台灣近年來極端暴雨現象愈趨頻繁。在進行水力電廠發電操作及水庫水位預測時,應同時將集水區雨量觀測值、集水區雨量預測值、排洪量等各種因素同時納入考量,才能有效預測水庫水位,藉此進行發電操作,以達到高發電效率、防洪及供水的目的。 In addition, the amount of electricity generated by hydropower plants is also affected by weather and seasonal water volume. With the global climate change intensifying, Taiwan's subtropical Taiwan has become more and more frequent in recent years. In the hydropower plant power generation operation and reservoir water level prediction, various factors such as the rainfall observation value of the catchment area, the rainfall forecast value of the catchment area, and the flood discharge amount should be taken into consideration at the same time, so as to effectively predict the water level of the reservoir and thereby carry out the power generation operation. In order to achieve high power generation efficiency, flood control and water supply.

然而,要將如此多樣且複雜的資訊同時列入考量範圍以預測 水庫水位,並非人力所能達成。目前水力電廠的發電操作,僅係由水力電廠運轉人員根據目前水庫水位高度值及部分相關資訊,憑藉個人經驗判斷來進行,而無法準確的預測水庫水位。因此,需要一種可將多類與水庫水位相關的因素同時列入考量的水庫水位預測系統及方法。 However, it is necessary to take such diverse and complex information into consideration. The water level of the reservoir is not achieved by manpower. At present, the power generation operation of hydropower plants is only carried out by the operating personnel of hydropower plants based on the current reservoir water level height value and some related information, based on personal experience judgment, and cannot accurately predict the reservoir water level. Therefore, there is a need for a reservoir water level prediction system and method that can be used to consider multiple factors related to reservoir water levels.

為了解決上述問題,本發明之目的在提供一種基於類神經網路之水庫水位預測系統及方法。 In order to solve the above problems, an object of the present invention is to provide a reservoir-based water level prediction system and method based on a neural network.

本發明之另一目的在提供一種可將多類因素同時列入預測考量的基於類神經網路之水庫水位預測系統及方法。 Another object of the present invention is to provide a neural network-based reservoir water level prediction system and method that can simultaneously incorporate various factors into prediction considerations.

本發明之再一目的在提供一種可根據歷史資料學習水庫水位與輸入資料之關係,並藉此預測水庫水位高度的基於類神經網路之水庫水位預測系統及方法。 A further object of the present invention is to provide a neural network-based reservoir water level prediction system and method for learning the relationship between reservoir water level and input data based on historical data and thereby predicting reservoir water level.

為達上述目的,本發明提供一種基於類神經網路之水庫水位預測系統,包含:一預測模組、一資料庫及一使用者操作介面。該預測模組更包含:一輸入資料儲存模組、一類神經網路學習模組及一預測資料運算模組。其中,該輸入資料儲存模組從複數個伺服器擷取並儲存至少一輸入資料,且該輸入資料至少包含水庫水位之即時資料與歷史資料。該類神經網路學習模組根據儲存於該輸入資料儲存模組的該歷史資料,塑模出至少一權重及至少一偏權值。該預測資料運算模組根據該類神經網路學習模組所塑模出之該權重及該偏權值,對該即時資料進行運算,以得出至少一預測資料,且該預測資料至少包含水庫水位之預測資料。而該資料庫接收 並儲存該預測資料及/或該輸入資料。該使用者操作介面,接收至少一使用者操作條件,並根據該使用者操作條件,以顯示該預測資料及/或該輸入資料及/或該預測資料所預測之圖形。 To achieve the above objective, the present invention provides a reservoir-based water level prediction system based on a neural network, comprising: a prediction module, a database, and a user operation interface. The prediction module further comprises: an input data storage module, a neural network learning module and a predictive data computing module. The input data storage module captures and stores at least one input data from a plurality of servers, and the input data includes at least real-time data and historical data of the reservoir water level. The neural network learning module molds at least one weight and at least one bias value according to the historical data stored in the input data storage module. The predictive data operation module calculates the current data according to the weight and the bias value molded by the neural network learning module to obtain at least one predicted data, and the predicted data includes at least a reservoir Forecast data for water level. And the database receives And storing the forecast data and/or the input data. The user operation interface receives at least one user operating condition and displays the predicted data and/or the input data and/or the predicted data of the predicted data according to the user operating conditions.

於本發明較佳之實施例中,該類神經網路學習模組具有第一層、第二層、第三層類神經網路。 In a preferred embodiment of the present invention, the neural network learning module has a first layer, a second layer, and a third layer neural network.

於本發明較佳之實施例中,該類神經網路學習模組根據至少該水庫水位之歷史資料塑模出該第一層類神經網路之該權重及該偏權值,該預測資料運算模組基於第一層塑模出之該權重及該偏權值對至少該水庫水位之即時資料進行運算出水庫入流量資料,且該水庫入流量資料為第二層類神經網路的輸入資料之一。 In a preferred embodiment of the present invention, the neural network learning module molds the weight of the first layer neural network and the bias value according to at least the historical data of the water level of the reservoir, and the prediction data operation mode The group calculates the inflow data of the reservoir based on the weight of the first layer of the mold and the bias value, and the inflow data of the reservoir is the input data of the second layer neural network. One.

於本發明較佳之實施例中,該類神經網路學習模組根據至少該水庫入流量資料塑模出該第二層類神經網路之該權重及該偏權值,該預測資料運算模組基於第二層塑模出之該權重及該偏權值對至少該第一層類神經網路之即時輸出資料進行運算出水庫入流量之預測資料,且該水庫入流量之預測資料為第三層類神經網路的輸入資料之一。 In a preferred embodiment of the present invention, the neural network learning module molds the weight of the second layer neural network and the bias value according to at least the inflow data of the reservoir, and the prediction data operation module Based on the weight of the second layer molding and the bias value, the forecast data of the inflow of the reservoir is calculated for at least the real-time output data of the first layer neural network, and the forecast data of the inflow of the reservoir is the third One of the input data of the layered neural network.

於本發明較佳之實施例中,該類神經網路學習模組根據至少該水庫入流量之預測資料塑模出該第三層類神經網路之該權重及該偏權值,該預測資料運算模組基於第三層塑模出之該權重及該偏權值對至少該第二層類神經網路之即時輸出資料進行運算出該水庫水位之預測資料。 In a preferred embodiment of the present invention, the neural network learning module molds the weight of the third layer neural network and the bias value according to at least the predicted data of the reservoir inflow, and the prediction data operation The module calculates the predicted water level of the reservoir based on the weight of the third layer molding and the bias value to calculate the instantaneous output data of at least the second layer neural network.

於本發明較佳之實施例中,該類神經網路學習模組根據發電量與排洪量之歷史資料塑模出該第一層類神經網路之該權重及該偏權值, 該預測資料運算模組基於第一層塑模出之該權重及該偏權值對至少該水庫水位、發電量與排洪量之即時資料進行運算出該水庫入流量資料。 In a preferred embodiment of the present invention, the neural network learning module molds the weight of the first-level neural network and the bias value according to historical data of power generation and flood discharge. The predictive data calculation module calculates the inflow data of the reservoir based on the weight of the first layer of the mold and the bias value to calculate at least the real-time data of the water level, the power generation amount and the flood discharge amount of the reservoir.

於本發明較佳之實施例中,該類神經網路學習模組根據集水區雨量站觀測與集水區氣象預報之歷史資料塑模出該第二層類神經網路之該權重及該偏權值,該預測資料運算模組基於第二層塑模出之該權重及該偏權值對至少該第一層類神經網路之即時輸出資料、集水區雨量站觀測與集水區氣象預報之即時資料進行運算出水庫入流量之預測資料。 In a preferred embodiment of the present invention, the neural network learning module molds the weight and the bias of the second layer neural network according to the historical data of the rainfall station observation of the catchment area and the meteorological forecast of the catchment area. Weight, the predictive data operation module is based on the weight of the second layer of the mold and the bias value for at least the first layer of neural network real-time output data, the catchment rainfall station observation and the catchment area meteorological The forecasted real-time data is used to calculate the forecast data of the reservoir inflow.

於本發明較佳之實施例中,該類神經網路學習模組根據發電量與排洪量之歷史資料塑模出該第三層類神經網路之該權重及該偏權值,該預測資料運算模組基於第三層塑模出之該權重及該偏權值對至少該第二層類神經網路之即時輸出資料、發電量與排洪量之即時資料進行運算出該水庫水位之預測資料。 In a preferred embodiment of the present invention, the neural network learning module molds the weight of the third-level neural network and the bias value according to historical data of power generation and flood discharge, and the prediction data operation The module calculates the forecast data of the water level of the reservoir based on the weight of the third layer molding and the bias value to calculate at least the real-time data of the instantaneous output data, the power generation amount and the flood discharge amount of the second layer neural network.

於本發明較佳之實施例中,該預測資料包含水庫入流量預測資料。 In a preferred embodiment of the invention, the predictive data includes reservoir inflow prediction data.

該輸入資料包含發電量資料、排洪量資料、集水區雨量站觀測資料、集水區氣象預報資料其中之一或部分之即時資料與歷史資料。 The input data includes real-time data and historical data of one or part of the power generation data, the flood discharge data, the rainfall station observation data of the catchment area, and the meteorological forecast data of the catchment area.

根據本發明之目的,再提供一種基於類神經網路之水庫水位預測方法,包含:建構一類神經網路模型;決定訓練用的歷史資料;根據該訓練用歷史資料塑模出類神經網路的權重及偏權值;蒐集至少一即時輸入資料,該即時輸入資料至少包含水庫水位之即時資料;及根據該類神經網路所塑模出之該權重及該偏權值,對該即時輸入資料進行運算,以得出 至少一預測資料,且該預測資料至少包含水庫水位預測資料。 According to the object of the present invention, a reservoir-based water level prediction method based on a neural network is provided, which comprises: constructing a neural network model; determining historical data for training; and modeling a neural network based on the training historical data. The weight and the bias value; collecting at least one instant input data, the real-time input data includes at least the real-time data of the reservoir water level; and the input data according to the weight and the bias value molded by the neural network Perform an operation to get At least one forecast data, and the forecast data includes at least reservoir water level prediction data.

於本發明較佳之實施例中,該類神經網路模型具有複數層類神經網路。 In a preferred embodiment of the invention, the neural network model has a plurality of layers of neural networks.

於本發明較佳之實施例中,至少一層類神經網路運算出之輸出資料為水庫入流量預測資料,且該水庫入流量預測資料為該層類神經網路之下一層類神經網路的輸入資料之一。 In a preferred embodiment of the present invention, at least one layer of neural network computing output data is reservoir inflow prediction data, and the reservoir inflow prediction data is input of a layer of neural network under the layered neural network. One of the materials.

於本發明較佳之實施例中,該預測資料包含水庫入流量預測資料。 In a preferred embodiment of the invention, the predictive data includes reservoir inflow prediction data.

於本發明較佳之實施例中,該即時輸入資料包含發電量資料、排洪量資料、集水區雨量站觀測資料、集水區氣象預報資料其中之一或部分之即時資料。 In a preferred embodiment of the present invention, the instant input data includes real-time data of one or a part of power generation data, flood discharge data, rainfall station observation data of the catchment area, and meteorological forecast data of the catchment area.

本發明前述各方面及其它方面依據下述的非限制性具體實施例詳細說明以及參照附隨的圖式將更趨於明瞭。 The foregoing aspects and other aspects of the invention will be apparent from the description of the appended claims appended claims

100‧‧‧類神經網路系統 100‧‧‧ class neural network system

200‧‧‧訓練資料 200‧‧‧ Training materials

220‧‧‧資料伺服器 220‧‧‧Data Server

240‧‧‧水庫水位預測系統 240‧‧‧ Reservoir Water Level Prediction System

250‧‧‧預測模組 250‧‧‧ Prediction Module

252‧‧‧類神經網路學習模組 252‧‧‧ Neural Network Learning Module

254‧‧‧預測資料運算模組 254‧‧‧ Forecast Data Calculation Module

256‧‧‧輸入資料儲存模組 256‧‧‧Input data storage module

260‧‧‧使用者操作介面 260‧‧‧User interface

262‧‧‧操作模組 262‧‧‧Operating module

264‧‧‧預測資料顯示模組 264‧‧‧ Forecast data display module

270‧‧‧資料庫 270‧‧‧Database

280‧‧‧使用者 280‧‧‧Users

300‧‧‧預測機制流程圖 300‧‧‧ forecasting mechanism flow chart

310-350‧‧‧操作 310-350‧‧‧ operation

400‧‧‧類神經網路模型 400‧‧‧ class neural network model

402‧‧‧發電量資料 402‧‧‧Power generation data

404‧‧‧水庫水位資料 404‧‧‧ Reservoir water level data

406‧‧‧排洪量資料 406‧‧‧ Flood discharge data

408a‧‧‧第一層類神經網路 408a‧‧‧First-class neural network

408b‧‧‧第二層類神經網路 408b‧‧‧Second-level neural network

408c‧‧‧第三層類神經網路 408c‧‧‧Layer 3 neural network

412‧‧‧水庫入流量資料 412‧‧‧ Reservoir Inflow Information

424‧‧‧集水區雨量站觀測資料 424‧‧‧Catchment observation data of catchment area

426‧‧‧集水區氣象預報資料 426‧‧‧Catchment meteorological forecast data

432‧‧‧水庫入流量預測資料 432‧‧‧ Reservoir Inflow Forecast Data

442‧‧‧水庫水位預測資料 442‧‧‧ Reservoir water level forecast data

500‧‧‧使用者操作顯示流程圖 500‧‧‧User operation display flow chart

510-550‧‧‧操作 510-550‧‧‧ operation

610‧‧‧圖形顯示區域 610‧‧‧Graphic display area

612‧‧‧縱軸 612‧‧‧ vertical axis

614‧‧‧水庫入流量預測折線圖 614‧‧‧ Reservoir Inflow Forecasting Line Chart

616‧‧‧水庫水位預測折線圖 616‧‧‧ Reservoir water level prediction line chart

618‧‧‧縱軸 618‧‧‧ vertical axis

619‧‧‧橫軸 619‧‧‧ horizontal axis

620‧‧‧圖形顯示區域 620‧‧‧Graphic display area

622‧‧‧縱軸 622‧‧‧ vertical axis

624‧‧‧橫軸 624‧‧‧ horizontal axis

626‧‧‧集水區雨量預測直條圖 626‧‧‧Watershed rainfall forecast bar chart

第一圖為一般類神經網路系統的示意圖。 The first picture is a schematic diagram of a general neural network system.

第二圖為本發明基於類神經網路之水庫水位預測系統的架構圖。 The second figure is an architectural diagram of a reservoir-based water level prediction system based on a neural network.

第三圖為本發明基於類神經網路之水庫水位預測方法之流程圖。 The third figure is a flow chart of the method for predicting the water level of the reservoir based on the neural network.

第四圖為本發明基於類神經網路之水庫水位預測系統一具體實施例的類神經網路模型圖。 The fourth figure is a neural network model diagram of a specific embodiment of a reservoir-based water level prediction system based on a neural network.

第五圖為本發明基於類神經網路之水庫水位預測方法的使用者操作顯示流程圖。 The fifth figure is a flow chart of the user operation display of the reservoir water level prediction method based on the neural network.

第六圖為本發明基於類神經網路之水庫水位預測系統的預測結果顯示之一具體實施例示意圖。 The sixth figure is a schematic diagram of a specific embodiment of the prediction result display of the reservoir-based water level prediction system based on the neural network.

本發明基於類神經網路之水庫水位預測的系統及其方法,係利用類神經網路具有在不需要提供轉換的數學函示條件下,即可學習輸入資料與輸出資料之關係的特性,先以大量訓練資料對類神經網路進行訓練,以塑模出各個輸入節點與各個隱藏層神經元的權重、各個隱藏層神經元與輸出節點之權重,及各個節點的偏權值,而後配合即時擷取的水文資料作為各個輸入節點的輸入資料,以進行水庫水位預測。以下將配合圖示進一步說明。 The invention is based on a neural network-based reservoir water level prediction system and method thereof, which utilizes a neural network having the characteristics of learning the relationship between input data and output data under the condition that no mathematical transformation is required. The neural network is trained with a large amount of training data to mold the weights of each input node and each hidden layer neuron, the weight of each hidden layer neuron and the output node, and the partial weight of each node. The hydrological data obtained is used as input data for each input node to predict the reservoir water level. The following will be further explained in conjunction with the drawings.

第一圖為一般類神經網路系統的示意圖。本發明基於類神經網路之水庫水位預測的系統,係利用如圖示之類神經網路系統100進行訓練,以塑模出各個權重及各個偏權值,於圖示中,該類神經網路系統100在第一層具有輸入節點S1、輸入節點S2,在第二層具有隱藏層神經元S3、隱藏層神經元S4、隱藏層神經元S5,在第三層具有輸出節點S6。 The first picture is a schematic diagram of a general neural network system. The invention is based on a neural network-based reservoir water level prediction system, which is trained by a neural network system 100 as shown in the figure to mold various weights and respective partial weight values. In the figure, the neural network of the type The road system 100 has an input node S1, an input node S2 in the first layer, a hidden layer neuron S3, a hidden layer neuron S4, a hidden layer neuron S5 in the second layer, and an output node S6 in the third layer.

應了解類神經網路系統100在此僅為例示,本發明並不限於使用單層的隱藏層神經元,而係可視需求使用一至多層的隱藏層神經元。類神經網路系統100之輸入節點個數、隱藏層神經元個數、輸出節點個數,亦非可限制本發明,本發明之輸入節點個數、隱藏層神經元個數、輸出節 點個數可視情況調整為任意個數。 It should be understood that the neural network-like system 100 is merely exemplary herein, and that the present invention is not limited to the use of a single layer of hidden layer neurons, but one or more layers of hidden layer neurons may be used as desired. The number of input nodes, the number of hidden layer neurons, and the number of output nodes of the neural network system 100 are also not limited to the present invention. The number of input nodes, the number of hidden layer neurons, and the output section of the present invention are not limited. The number of points can be adjusted to any number depending on the situation.

請繼續參考第一圖,類神經網路系統100的各個輸入節點與各個隱藏層神經元均有相對應的權重,例如輸入節點S1與隱藏層神經元S5具有一權重W15,輸入節點S2與隱藏層神經元S5具有一權重W25。同時,類神經網路系統100的各個隱藏層神經元與輸出節點亦有相對應的權重,例如隱藏層神經元S3與輸出節點S6具有一權重W36,隱藏層神經元S5與輸出節點S6具有一權重W56。而各個輸入節點、隱藏層神經元及輸出節點均具有各自的偏權值,例如輸入節點S2具有偏權值θ2,隱藏層神經元S5具有偏權值θ5,輸出節點S6具有偏權值θ6。而一節點傳輸至下個節點的傳輸數值之計算方式如下,假設共有n個節點將各自的傳輸數值傳輸至該節點Y,則節點Y傳輸至下一節點的傳輸數值y之公式為: 其中,Wi為將傳輸數值傳輸至節點Y的n個節點中之第i個節點與節點Y所對應的權重,Xi為該第i個節點傳輸至節點Y的傳輸數值,θ為節點Y的偏權值。 Referring to the first figure, each input node of the neural network system 100 has a corresponding weight with each hidden layer neuron. For example, the input node S1 and the hidden layer neuron S5 have a weight W15, and the input node S2 is hidden. The layer neuron S5 has a weight W25. At the same time, each hidden layer neuron of the neural network system 100 also has a corresponding weight. For example, the hidden layer neuron S3 and the output node S6 have a weight W36, and the hidden layer neuron S5 and the output node S6 have a weight. Weight W56. Each input node, hidden layer neuron, and output node each have a respective bias value. For example, the input node S2 has an offset weight θ2, the hidden layer neuron S5 has an offset weight θ5, and the output node S6 has an offset weight θ6. The calculation of the transmission value transmitted by one node to the next node is as follows. Assuming that a total of n nodes transmit their respective transmission values to the node Y, the formula of the transmission value y transmitted by the node Y to the next node is: Where Wi is the weight corresponding to the i-th node and the node Y of the n nodes transmitting the transmission value to the node Y, Xi is the transmission value of the i-th node transmitted to the node Y, and θ is the deviation of the node Y Weight.

以節點S5為例,輸入節點S1與隱藏層神經元S5所對應的權重為W15,輸入節點S2與隱藏層神經元S5所對應的權重為W25,而隱藏層神經元S5的偏權值為θ5。設輸入節點S1傳輸至隱藏層神經元S5的傳輸數值為X1,而輸入節點S2傳輸至隱藏層神經元S5的傳輸數值為X2,則隱藏層神經元S5傳輸至輸出節點S6的傳輸數值為:(W15.X1+W25.X2)-θ5 Taking the node S5 as an example, the weight corresponding to the input node S1 and the hidden layer neuron S5 is W15, the weight corresponding to the input node S2 and the hidden layer neuron S5 is W25, and the bias value of the hidden layer neuron S5 is θ5. . Let the transmission value of the input node S1 transmitted to the hidden layer neuron S5 be X1, and the transmission value of the input node S2 transmitted to the hidden layer neuron S5 is X2, then the transmission value of the hidden layer neuron S5 to the output node S6 is: (W15.X1+W25.X2)-θ5

在訓練類神經網路系統100的過程中,首先以大量已知的輸入資料及輸出資料作為訓練用的輸入資料與輸出資料,對類神經網路系統100進行訓練,藉此塑模出各個權重及各個偏權值。傳統上可採用傳統梯度下降演算法以修正各個權重。在塑模出各個權重及各個偏權值後,即可利用類神經網路系統100,以即時的輸入資料,進行輸出資料的預測。 In the process of training the neural network system 100, a large amount of known input data and output data are first used as training input data and output data, and the neural network system 100 is trained to mold each weight. And each bias value. Traditional gradient descent algorithms have traditionally been employed to correct individual weights. After molding each weight and each bias value, the neural network system 100 can be utilized to predict the output data with instant input data.

第二圖為本發明基於類神經網路之水庫水位預測系統的架構圖,如圖所示,水庫水位預測系統240包含一預測模組250;一使用者操作介面260;及一資料庫270,該預測模組250包含一輸入資料儲存模組256,用以由複數個伺服器擷取及儲存至少一輸入資料,且該輸入資料至少包含水庫水位之即時資料與歷史資料;一類神經網路學習模組252,根據儲存於該輸入資料儲存模組256的該歷史資料,以塑模出至少一權重及至少一偏權值;及一預測資料運算模組254,根據該類神經網路學習模組252所塑模出之該權重及該偏權值,對該即時資料進行運算,以得出至少一預測資料,且該預測資料至少包含水庫水位之預測資料;該使用者操作介面260則包含一操作模組262,用以接收使用者操作條件,該使用者操作條件至少包含使用者所選定瀏覽之預測資料及/或歷史資料;及一預測資料顯示模組264,用以根據該使用者操作條件,至該資料庫270擷取該選定瀏覽之預測資料及/或歷史資料,並顯示該選定瀏覽之預測資料及/或歷史資料,以供使用者瀏覽。 The second figure is an architectural diagram of a neural network-based reservoir water level prediction system according to the present invention. As shown, the reservoir water level prediction system 240 includes a prediction module 250, a user operation interface 260, and a database 270. The prediction module 250 includes an input data storage module 256 for capturing and storing at least one input data by a plurality of servers, and the input data includes at least real-time data and historical data of the reservoir water level; The module 252 molds at least one weight and at least one bias value according to the historical data stored in the input data storage module 256; and a prediction data operation module 254, according to the neural network learning module The weight and the bias value of the group 252 are simulated, and the real-time data is calculated to obtain at least one forecast data, and the forecast data includes at least the forecast data of the reservoir water level; the user operation interface 260 includes An operation module 262 is configured to receive a user operating condition, where the user operating condition includes at least a predicted data and/or historical data selected by the user; and a prediction The data display module 264 is configured to: retrieve, according to the user operating conditions, the predicted data and/or historical data of the selected browsing to the database 270, and display the predicted and/or historical data of the selected browsing for providing User browsing.

其中,預測模組250係藉由大量的訓練資料200對類神經網路學習模組252進行訓練,藉此塑模出各個權重及各個偏權值。接著,由輸入 資料儲存模組256定期至一或多個資料伺服器220擷取各類所需的即時資料並儲存,再由預測資料運算模組254將儲存在輸入資料儲存模組256的資料作為輸入資料,並依據類神經網路學習模組252塑模出的各個權重及各個偏權值,以進一步運算出預測資料,並透過資料庫270儲存該些預測資料。其中,預測資料運算模組254在執行預測運算時所使用的輸入資料,除了儲存於輸入資料儲存模組的資料外,可進一步包含由使用者透過操作模組262所輸入的資料。使用者並可透過操作模組262決定欲顯示的預測資料及/或歷史資料範圍,而後,使用者操作介面260將根據使用者選取的預測資料範圍,至資料庫270擷取該些預測資料及/或歷史資料,並透過預測資料顯示模組264將該些預測資料及/或歷史資料呈現給使用者。 The prediction module 250 trains the neural network learning module 252 by a large amount of training data 200, thereby molding each weight and each bias value. Next, by input The data storage module 256 periodically collects and stores various types of real-time data from one or more data servers 220, and then uses the data stored in the input data storage module 256 as input data by the predictive data computing module 254. And according to the weights and the partial weights of the neural network learning module 252, the prediction data is further calculated, and the prediction data is stored through the database 270. The input data used by the prediction data calculation module 254 in performing the prediction calculation may further include data input by the user through the operation module 262 in addition to the data stored in the input data storage module. The user can determine the predicted data and/or historical data range to be displayed through the operation module 262. Then, the user operation interface 260 will retrieve the predicted data from the database 270 according to the predicted data range selected by the user. / or historical data, and through the forecast data display module 264 to present the predicted data and / or historical data to the user.

請參考第三圖並配合參考第四圖,其中第三圖為本發明基於類神經網路之水庫水位預測方法之流程圖;而第四圖係為本發明基於類神經網路之水庫水位預測系統一具體實施例的類神經網路模型圖。本發明基於類神經網路之水庫水位預測方法,包含以下步驟:首先,進行步驟310,由使用者先建構類神經網路模型,其包含決定各個輸入節點的輸入資料為何,其中該類神經網路模型可為單層類神經網路模型或多層類神經網路模型。 Please refer to the third figure and refer to the fourth figure. The third figure is the flow chart of the reservoir water level prediction method based on the neural network. The fourth picture is the water level prediction of the reservoir based on the neural network. A neural network model diagram of a particular embodiment of the system. The invention is based on a neural network-based reservoir water level prediction method, which comprises the following steps: First, in step 310, a user first constructs a neural network model, which includes determining input data of each input node, wherein the neural network The road model can be a single layer neural network model or a multilayer neural network model.

於本實施例中,在步驟310處,所建構之類神經網路模型為第四圖所示之類神經網路模型400,並以此類神經網路模型400對例如一甲水庫進行1至48小時的水庫水位預測。如圖所示,類神經網路模型400為三層之類神經網路模型,其中第一層類神經網路408a的隱藏層神經元個數可 為5至20個,第二層類神經網路408b的隱藏層神經元個數可為5至20個,第三層類神經網路408c的隱藏層神經元個數可為5至20個。 In this embodiment, at step 310, the constructed neural network model is a neural network model 400 such as shown in the fourth figure, and the neural network model 400 is used to perform, for example, a 48-hour reservoir water level forecast. As shown, the neural network model 400 is a three-layer neural network model in which the number of hidden layer neurons in the first layer of neural network 408a is For 5 to 20, the number of hidden layer neurons of the second layer neural network 408b may be 5 to 20, and the number of hidden layer neurons of the third layer neural network 408c may be 5 to 20.

應了解,各層類神經網路的隱藏層神經元個數在此僅為例示,本發明並不限於使用5-20個隱藏層神經元,而係可視需求設置任意個數的隱藏層神經元。 It should be understood that the number of hidden layer neurons of each layer of neural network is merely exemplified herein, and the present invention is not limited to the use of 5-20 hidden layer neurons, and any number of hidden layer neurons may be set as needed.

另外,於本實施例中,在步驟310處,係以發電量資料402、水庫水位資料404及排洪量資料406作為第一層類神經網路408a的輸入資料,以水庫入流量資料412作為第一層類神經網路408a的輸出資料。而第二層類神經網路408b的輸入資料為水庫入流量資料412、集水區雨量站觀測資料424及集水區氣象預報資料426,第二層類神經網路408b的輸出資料為水庫入流量預測資料432。第三層類神經網路408c的輸入資料則為水庫入流量預測資料432、發電量資料402及排洪量資料406,第三層類神經網路408c的輸出資料為水庫水位預測資料442。 In addition, in the embodiment, at step 310, the power generation amount data 402, the reservoir water level data 404, and the flood discharge amount data 406 are used as input data of the first layer type neural network 408a, and the reservoir inflow data 412 is used as the first Output data of a layer of neural network 408a. The input data of the second layer neural network 408b is the reservoir inflow data 412, the catchment rainfall station observation data 424, and the catchment weather forecast data 426, and the output data of the second layer neural network 408b is the reservoir inlet. Traffic prediction data 432. The input data of the third layer neural network 408c is the reservoir inflow prediction data 432, the power generation data 402 and the flood discharge data 406, and the output data of the third layer neural network 408c is the reservoir water level prediction data 442.

在完成步驟310後,則進行步驟320,在步驟320處,使用者進一步決定以何項歷史資料作為訓練各層類神經網路的訓練資料,並藉此塑模出各層類神經網路模型的各個權重及偏權值。 After step 310 is completed, step 320 is performed. At step 320, the user further determines which historical data is used as training data for training each layer of neural network, and thereby molding each layer of neural network models. Weight and bias value.

於實施例中,該歷史資料,係以2012年至2013年甲水庫的發電量資料402、水庫水位資料404及排洪量資料406作為第一層類神經網路408a的訓練用輸入資料,且以2012年至2013年甲水庫的水庫入流量資料412作為第一層類神經網路408a的訓練用輸出資料。並以2012年至2013年甲水庫的水庫入流量資料412、集水區雨量站觀測資料424及集水區氣象預報資 料426作為第二層類神經網路408b的訓練用輸入資料,且以2012年至2013年甲水庫的水庫入流量預測資料432作為第二層類神經網路408b的訓練用輸出資料。再以2012年至2013年甲水庫的水庫入流量預測資料432、發電量資料402及排洪量資料406作為第三層類神經網路408c的訓練用輸入資料,並再以2012年至2013年甲水庫的水庫水位預測資料442作為第三層類神經網路408c的訓練用輸出資料。其中,第二層類神經網路408b的訓練用之水庫入流量預測資料432之資料時間點,較第二層類神經網路408b的訓練用之集水區雨量站觀測資料424,及訓練用之集水區氣象預報資料426的資料時間點延後1至48小時,以此模擬第二層類神經網路408b的輸入資料與輸出資料之關係,係為輸入資料與預測資料之關係。而第三層類神經網路408c的訓練用之水庫水位預測資料442之資料時間點,較第三層類神經網路408c的訓練用之發電量資料,及訓練用之排洪量資料的資料時間點延後1至48小時,以此模擬第三層類神經網路408c的輸入資料與輸出資料之關係,係為輸入資料與預測資料之關係。 In the embodiment, the historical data is used as the training input data of the first layer type neural network 408a from the power generation data 402 of the A reservoir from 2012 to 2013, the reservoir water level data 404, and the flood discharge amount data 406, and From 2012 to 2013, the reservoir inflow data 412 of the A reservoir was used as training output data for the first layer of neural network 408a. From 2012 to 2013, the reservoir inflow data 412 of the Jia reservoir, the observation data of the rainfall station of the catchment area 424 and the meteorological forecast of the catchment area Material 426 is used as training input data for the second layer type neural network 408b, and the reservoir inflow prediction data 432 of the A reservoir from 2012 to 2013 is used as the training output data of the second layer type neural network 408b. From 2012 to 2013, the reservoir inflow forecast data 432, power generation data 402 and flood discharge data 406 of the A reservoir are used as training input materials for the third layer neural network 408c, and then from 2012 to 2013. The reservoir water level prediction data 442 of the reservoir is used as training output data for the third layer neural network 408c. Wherein, the data time point of the reservoir inflow prediction data 432 for the training of the second layer neural network 408b is compared with the observation data 424 of the catchment rainfall station for training of the second layer neural network 408b, and training The data time of the catchment weather forecast data 426 is delayed by 1 to 48 hours to simulate the relationship between the input data and the output data of the second layer neural network 408b, which is the relationship between the input data and the predicted data. The data time point of the reservoir water level prediction data 442 for the training of the third layer neural network 408c is higher than that of the training data for the training of the third layer neural network 408c, and the data time of the flood discharge data for training. The relationship between the input data and the output data of the third-layer neural network 408c is simulated by 1 to 48 hours, which is the relationship between the input data and the predicted data.

在決定以何歷史資料作為訓練各層類神經網路的訓練資料200後,進行步驟330,在步驟330處,以所決定的歷史資料對類神經網路學習模組252的各層類神經網路進行訓練,以塑模出各層類神經網路的各個權重及各個偏權值。 After determining the historical data as the training material 200 for training the neural networks of the various layers, proceeding to step 330, at step 330, performing the hierarchical neural networks of the neural network learning module 252 with the determined historical data. Training to mold the various weights and individual bias values of each layer of neural networks.

於本實施例中,在步驟330處,係以上述2012年至2013年各訓練用輸入資料及各訓練用輸出資料對類神經網路模型400進行訓練,以塑模出第一層類神經網路408a、第二層類神經網路408b及第三層類神經網路 408c的各個權重及偏權值。 In this embodiment, at step 330, the neural network model 400 is trained by using the training input data and the training output data of the above 2012 to 2013 to mold the first layer neural network. Road 408a, second layer neural network 408b and third layer neural network The weights and partial weights of 408c.

接著,進行步驟340,在步驟340處,由輸入資料儲存模組256定期至資料伺服器220擷取所需的即時資料並儲存,所擷取的該些資料亦可於日後作為訓練用之歷史資料及/或作為提供使用者瀏覽之歷史資料。其中,該些所擷取的即時資料可同時儲存於資料庫270,供使用者操作介面260使用。 Then, step 340 is performed. At step 340, the input data storage module 256 periodically retrieves the required real-time data from the data server 220 and stores the data. The captured data can also be used as a training history in the future. Information and/or as historical information for the user to view. The captured real-time data can be simultaneously stored in the database 270 for use by the user operation interface 260.

於本實施例中,在步驟340處,係以一小時為間隔,由輸入資料儲存模組256每小時至A伺服器擷取甲水庫水位資料、發電量資料,及水庫集水區雨量站資料並儲存,至B伺服器擷取集水區氣象預報資料並儲存。並於預測資料儲存模組254執行預測運算時,提供該些資料對甲水庫進行1至48小時的水庫水位預測。 In this embodiment, at step 340, the water level data, the power generation data, and the rainfall station data of the reservoir catchment area are retrieved from the input data storage module 256 to the A server every hour at an interval of one hour. And store, go to the B server to collect the meteorological forecast data of the catchment area and store it. And when the predictive data storage module 254 performs the predictive calculation, the data is provided for the reservoir to predict the water level of the reservoir for 1 to 48 hours.

應了解,上述實施例僅為示例,本發明並非限於每小時執行一次資料擷取,而係可視需求,以數分鐘至數天作為資料擷取之執行間隔。同時,本發明並非僅可用於預測1至48小時後的水庫水位,而係可視需求進行至少數小時至數天、週、月、年的水庫預測。 It should be understood that the above embodiments are merely examples, and the present invention is not limited to performing data capture every hour, but for several minutes to several days as the execution interval of data retrieval. At the same time, the present invention is not only used to predict reservoir water levels after 1 to 48 hours, but reservoir predictions of at least hours to days, weeks, months, and years may be performed as needed.

接著,進行步驟350,在步驟350處,由預測資料運算模組254藉由類神經網路學習模組252塑模出的各個權重及各個偏權值進行預測運算,其係將儲存在輸入資料儲存模組256的資料作為輸入資料,並針對該些輸入資料運算出預測資料,而後,將該些運算出的預測資料儲存於資料庫270。 Next, step 350 is performed. At step 350, the prediction data calculation module 254 performs prediction operations by using the weights and the partial weight values molded by the neural network learning module 252, and the system is stored in the input data. The data of the storage module 256 is used as input data, and the predicted data is calculated for the input data, and then the calculated predicted data is stored in the database 270.

於本實施例中,係藉由上述塑模出的第一層類神經網路 408a、第二層類神經網路408b及第三層類神經網路408c的各個權重及偏權值,以類神經網路模型400進行甲水庫水位預測,並將該些預測資料儲存至資料庫270。其中,用以預測的各輸入資料係來自輸入資料儲存模組256於A伺服器及B伺服器所擷取並儲存之資料,即完成本發明基於類神經網路之水庫水位預測方法。 In this embodiment, the first layer-like neural network is molded by the above molding. The weights and partial weights of the 408a, the second layer neural network 408b, and the third layer neural network 408c are used to predict the water level of the A reservoir by the neural network model 400, and the predicted data is stored in the database. 270. The input data for prediction is obtained from the data collected and stored by the input data storage module 256 on the A server and the B server, that is, the method for predicting the water level of the reservoir based on the neural network is completed.

第五圖為本發明基於類神經網路之水庫水位預測系統的使用者操作顯示流程圖,使用者操作顯示流程圖500開始於步驟510,由操作模組262確認一使用者是否為合法使用者。在一具體實施例中,係由使用者輸入帳號密碼,以供操作模組262進行確認。 The fifth figure is a user operation display flow chart of the neural network-based reservoir water level prediction system of the present invention. The user operation display flow chart 500 starts at step 510, and the operation module 262 confirms whether a user is a legitimate user. . In one embodiment, the user enters an account password for confirmation by the operating module 262.

在確認使用者合法登入後,於步驟520處,由操作模組262提供該使用者進行操作介面的使用,並於步驟530處,由操作模組262接收使用者輸入的操作條件。該些操作條件可包含使用者所選定瀏覽之資料範圍及/或部分用以進行預測的輸入資料(例如排洪量模擬資料及/或發電量模擬資料)等,但並不以此為限。其中,使用者所選定瀏覽之資料可為預測資料及/或歷史資料。 After confirming that the user is legally logged in, the operation module 262 is provided by the operation module 262 to use the operation interface, and at step 530, the operation module 262 receives the operation condition input by the user. The operating conditions may include, but are not limited to, the range of data selected by the user and/or some of the input data (for example, flooding simulation data and/or power generation simulation data) for prediction. The information selected by the user may be predicted data and/or historical data.

接著,於步驟540處,根據使用者輸入的操作條件,由預測資料顯示模組264至資料庫270及/或輸入資料儲存模組256擷取使用者所選定瀏覽之預測資料及/或使用者選定瀏覽之歷史資料。並於步驟550處,由預測資料顯示模組264顯示該些擷取自資料庫270及/或輸入資料儲存模組256之資料,以供使用者瀏覽。所述顯示該些擷取自資料庫270及/或輸入資料儲存模組256之資料,可為直接顯示資料的數值及/或將該些資料以圖形方式顯 示。所述以圖形方式顯示,可為以折線圖及/或直條圖的方式顯示,但不以此為限。 Then, in step 540, based on the operating conditions entered by the user, the predicted data display module 264 to the database 270 and/or the input data storage module 256 retrieves the predicted data and/or the user selected by the user. Selected historical data for browsing. At step 550, the predicted data display module 264 displays the data retrieved from the database 270 and/or the input data storage module 256 for viewing by the user. Displaying the data from the database 270 and/or the input data storage module 256 may be used to directly display the value of the data and/or graphically display the data. Show. The graphic display may be displayed in the form of a line graph and/or a bar graph, but is not limited thereto.

第六圖為本發明基於類神經網路之水庫水位預測系統的預測結果顯示之一具體實施例示意圖,如圖所示,在使用者選定欲瀏覽之預測資料範圍後,預測資料顯示模組264即根據使用者選定之預測資料範圍,至資料庫270擷取對應的預測資料。並於圖形顯示區域610處,以折線圖的形式顯示使用者選定之水庫入流量預測折線圖614及水庫水位預測折線圖616,其中,水庫入流量預測折線圖614的對應縱軸612標示水庫預測入流量數值(CMS),橫軸619標示預測時間點。而水庫水位預測折線圖616的對應縱軸618標示水庫預測水位高度(m),橫軸619標示預測時間點。圖形顯示區域620則以直條圖的形式顯示集水區雨量預測直條圖626,其對應縱軸622標示預測雨量數值(mm),橫軸624標示預測時間點。 The sixth figure is a schematic diagram of a specific embodiment of the prediction result display of the reservoir-based water level prediction system based on the neural network. As shown in the figure, after the user selects the predicted data range to be browsed, the prediction data display module 264 That is, according to the predicted data range selected by the user, the corresponding forecast data is retrieved from the database 270. And in the graphic display area 610, the user-introduced reservoir inflow forecasting line graph 614 and the reservoir water level prediction line graph 616 are displayed in the form of a line graph, wherein the corresponding vertical axis 612 of the reservoir inflow forecasting line graph 614 indicates the reservoir prediction. Inflow value (CMS), horizontal axis 619 indicates the predicted time point. The corresponding vertical axis 618 of the reservoir water level prediction line chart 616 indicates the predicted water level height (m) of the reservoir, and the horizontal axis 619 indicates the predicted time point. The graphical display area 620 displays the catchment rainfall prediction bar graph 626 in the form of a bar graph, with the corresponding vertical axis 622 indicating the predicted rainfall amount (mm) and the horizontal axis 624 indicating the predicted time point.

應了解,第六圖僅為一示意圖,本發明最終顯示之圖形並不以此為限,例如,圖形顯示區域610亦可同時顯示水庫入流量預測資料、水庫入流量歷史資料、水庫水位預測資料及水庫水位歷史資料。又例如,圖形顯示區域620亦可視狀況具有兩組縱軸,並可以折線圖的形式顯示使用者所選定瀏覽之預測資料及/或歷史資料。 It should be understood that the sixth figure is only a schematic diagram, and the final display graphic of the present invention is not limited thereto. For example, the graphic display area 610 can also display the reservoir inflow prediction data, the reservoir inflow historical data, and the reservoir water level prediction data. And reservoir water level history data. For another example, the graphic display area 620 can also have two sets of vertical axes according to the situation, and can display the predicted data and/or historical data of the browsing selected by the user in the form of a line graph.

200‧‧‧訓練資料 200‧‧‧ Training materials

220‧‧‧資料伺服器 220‧‧‧Data Server

240‧‧‧水庫水位預測系統 240‧‧‧ Reservoir Water Level Prediction System

250‧‧‧預測模組 250‧‧‧ Prediction Module

252‧‧‧類神經網路學習模組 252‧‧‧ Neural Network Learning Module

254‧‧‧預測資料運算模組 254‧‧‧ Forecast Data Calculation Module

256‧‧‧輸入資料儲存模組 256‧‧‧Input data storage module

260‧‧‧使用者操作介面 260‧‧‧User interface

262‧‧‧操作模組 262‧‧‧Operating module

264‧‧‧預測資料顯示模組 264‧‧‧ Forecast data display module

270‧‧‧資料庫 270‧‧‧Database

280‧‧‧使用者 280‧‧‧Users

Claims (13)

一種基於類神經網路之水庫水位預測系統,包含:一預測模組,包含:一輸入資料儲存模組,從複數個伺服器擷取並儲存至少一輸入資料,且該輸入資料至少包含發電量資料、排洪量資料、集水區雨量站觀測資料、集水區氣象預報資料其中之一或部分之即時資料與歷史資料、水庫水位之即時資料與歷史資料;一類神經網路學習模組,根據儲存於該輸入資料儲存模組的該歷史資料,以塑模出至少一權重及至少一偏權值;及一預測資料運算模組,根據該類神經網路學習模組所塑模出之該權重及該偏權值,對該即時資料進行運算,以得出至少一預測資料,且該預測資料至少包含水庫水位之預測資料;一資料庫,接收及儲存該預測資料及/或該輸入資料;及一使用者操作介面,接收至少一使用者操作條件,並根據該使用者操作條件,以顯示該預測資料及/或該輸入資料及/或該預測資料所預測之圖形。 A reservoir-based water level prediction system based on a neural network includes: a prediction module comprising: an input data storage module, capturing and storing at least one input data from a plurality of servers, wherein the input data includes at least power generation Data, flood discharge data, observation data of rainfall stations in catchment areas, real-time data and historical data of one or part of meteorological forecast data, real-time data and historical data of reservoir water level; a type of neural network learning module, according to The historical data stored in the input data storage module is molded to at least one weight and at least one bias value; and a predictive data computing module is molded according to the neural network learning module The weight and the bias value, the real-time data is calculated to obtain at least one forecast data, and the forecast data includes at least a forecast data of a reservoir water level; a database for receiving and storing the forecast data and/or the input data And a user operation interface, receiving at least one user operating condition, and displaying the predicted data and/or according to the user operating condition Enter the information and graphics of the predicted / or the forecasts. 如申請專利範圍第1項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組具有第一層、第二層、第三層類神經網路。 For example, the neural network-based reservoir water level prediction system described in claim 1 wherein the neural network learning module has a first layer, a second layer, and a third layer neural network. 如申請專利範圍第2項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組根據至少該水庫水位之歷史資料塑模出該第一層類神經網路之該權重及該偏權值,該預測資料運算模組基於第一層塑模出之該權重及該偏權值對至少該水庫水位之即時資料進行運算出水庫入流量資料,且該水庫入流量資料為第二層類神經網路的輸入 資料之一。 For example, the neural network-based reservoir water level prediction system described in claim 2, wherein the neural network learning module molds the first layer neural network according to at least the historical data of the reservoir water level. The weighting and the biasing value, the predictive data computing module calculates the inflow data of the reservoir based on the weight of the first layer of the mold and the bias value, and calculates the inflow data of the reservoir water level, and the inflow of the reservoir Data for the input of the second-level neural network One of the materials. 如申請專利範圍第3項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組根據至少該水庫入流量資料塑模出該第二層類神經網路之該權重及該偏權值,該預測資料運算模組基於第二層塑模出之該權重及該偏權值對至少該第一層類神經網路之即時輸出資料進行運算出水庫入流量之預測資料,且該水庫入流量之預測資料為第三層類神經網路的輸入資料之一。 The neural network-based reservoir water level prediction system according to claim 3, wherein the neural network learning module molds the second layer neural network according to at least the reservoir inflow data. The weight and the bias value, the predictive data operation module calculates the reservoir inflow based on the weight of the second layer of the model and the bias value to calculate the instantaneous output data of at least the first layer of neural network The data, and the forecast data of the reservoir inflow is one of the input data of the third-level neural network. 如申請專利範圍第4項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組根據至少該水庫入流量之預測資料塑模出該第三層類神經網路之該權重及該偏權值,該預測資料運算模組基於第三層塑模出之該權重及該偏權值對至少該第二層類神經網路之即時輸出資料進行運算出該水庫水位之預測資料。 For example, the neural network-based reservoir water level prediction system described in claim 4, wherein the neural network learning module molds the third layer neural network according to at least the reservoir inflow prediction data. The weighting and the bias value, the predictive data computing module calculates the water level of the reservoir based on the weight of the third layer molding and the bias value for at least the instantaneous output data of the second layer neural network. Forecast data. 如申請專利範圍第3項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組根據發電量與排洪量之歷史資料塑模出該第一層類神經網路之該權重及該偏權值,該預測資料運算模組基於第一層塑模出之該權重及該偏權值對至少該水庫水位、發電量與排洪量之即時資料進行運算出該水庫入流量資料。 For example, the neural network-based reservoir water level prediction system described in claim 3, wherein the neural network learning module molds the first layer neural network according to historical data of power generation and flood discharge. The weighting and the bias value, the predictive data computing module calculates the current data of at least the water level, the power generation amount and the flood discharge amount of the reservoir based on the weight of the first layer molding and the bias value. Flow data. 如申請專利範圍第4項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組根據集水區雨量站觀測與集水區氣象預報之歷史資料塑模出該第二層類神經網路之該權重及該偏權值,該預測資料運算模組基於第二層塑模出之該權重及該偏權值對至少該第一層類神經網路之即時輸出資料、集水區雨量站觀測與集水區氣象預報之即時資料進行運算出水庫入流量之預測資料。 For example, the neural network-based reservoir water level prediction system described in claim 4, wherein the neural network learning module molds the historical data according to the rainfall station observation of the catchment area and the meteorological forecast of the catchment area. The weight of the second-level neural network and the bias value, the predictive data operation module is based on the weight of the second layer of the mold and the bias value for the immediate output of at least the first-level neural network The data, the rainfall station observation in the catchment area and the real-time data of the meteorological forecast in the catchment area are used to calculate the forecast data of the reservoir inflow. 如申請專利範圍第5項所述之基於類神經網路之水庫水位預測系統,其中該類神經網路學習模組根據發電量與排洪量之歷史資料塑模出該第三層類神經網路之該權重及該偏權值,該預測資料運算模組基於第三 層塑模出之該權重及該偏權值對至少該第二層類神經網路之即時輸出資料、發電量與排洪量之即時資料進行運算出該水庫水位之預測資料。 For example, the neural network-based reservoir water level prediction system described in claim 5, wherein the neural network learning module molds the third layer neural network according to historical data of power generation and flood discharge. The weighting and the bias value, the predictive data computing module is based on the third The weight of the layer molding and the bias value calculate the predicted data of the reservoir water level by calculating the instantaneous data of the instantaneous output data, the power generation amount and the flood discharge amount of the second layer neural network. 如申請專利範圍第1項所述之基於類神經網路之水庫水位預測系統,其中該預測資料包含水庫入流量預測資料。 For example, the neural network-based reservoir water level prediction system described in claim 1 includes the reservoir inflow prediction data. 一種基於類神經網路之水庫水位預測方法,包含:建構一類神經網路模型;決定訓練用的歷史資料;根據該訓練用歷史資料塑模出類神經網路的權重及偏權值;蒐集至少一即時輸入資料,該即時輸入資料至少包含發電量資料、排洪量資料、集水區雨量站觀測資料、集水區氣象預報資料其中之一或部分之即時資料、水庫水位之即時資料;及根據該類神經網路所塑模出之該權重及該偏權值,對該即時輸入資料進行運算,以得出至少一預測資料,且該預測資料至少包含水庫水位預測資料。 A reservoir-based water level prediction method based on a neural network includes: constructing a neural network model; determining historical data for training; modeling the weights and bias values of the neural network based on the training historical data; collecting at least An instant input data, the real-time input data includes at least the power generation data, the flood discharge data, the observation data of the catchment rainfall station, the real-time data of one or part of the meteorological forecast data, and the real-time data of the reservoir water level; The weight and the bias value of the neural network are simulated, and the real-time input data is calculated to obtain at least one prediction data, and the prediction data includes at least the reservoir water level prediction data. 如申請專利範圍第10項所述之基於類神經網路之水庫水位預測方法,其中該類神經網路模型具有複數層類神經網路。 For example, the neural network-based reservoir water level prediction method described in claim 10, wherein the neural network model has a plurality of layers of neural networks. 如申請專利範圍第11項所述之基於類神經網路之水庫水位預測方法,其中至少一層類神經網路運算出之輸出資料為水庫入流量預測資料,且該水庫入流量預測資料為該層類神經網路之下一層類神經網路的輸入資料之一。 For example, the neural network-based reservoir water level prediction method described in claim 11 wherein at least one layer of neural network calculation output data is reservoir inflow prediction data, and the reservoir inflow prediction data is the layer. One of the input data of a class of neural networks below the neural network. 如申請專利範圍第10項所述之基於類神經網路之水庫水位預測方法,其中該預測資料包含水庫入流量預測資料。 For example, the neural network-based reservoir water level prediction method described in claim 10, wherein the prediction data includes reservoir inflow prediction data.
TW105120472A 2016-06-29 2016-06-29 Neural networks based water level predicting system and method for reservoirs TWI587222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105120472A TWI587222B (en) 2016-06-29 2016-06-29 Neural networks based water level predicting system and method for reservoirs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105120472A TWI587222B (en) 2016-06-29 2016-06-29 Neural networks based water level predicting system and method for reservoirs

Publications (2)

Publication Number Publication Date
TWI587222B true TWI587222B (en) 2017-06-11
TW201810133A TW201810133A (en) 2018-03-16

Family

ID=59688003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105120472A TWI587222B (en) 2016-06-29 2016-06-29 Neural networks based water level predicting system and method for reservoirs

Country Status (1)

Country Link
TW (1) TWI587222B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623890B (en) * 2017-07-04 2018-05-11 台灣電力股份有限公司 System for predicating power generation by utilizing multiple neural networks and method thereof
TWI690859B (en) * 2018-09-10 2020-04-11 陳柏蒼 Method and system for measuring water level by using graphic recognition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724004B (en) * 2020-07-13 2021-03-23 浙江大学 Reservoir available water supply amount forecasting method based on improved quantum wolf algorithm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102855524A (en) * 2012-08-14 2013-01-02 贵州乌江水电开发有限责任公司 Carry-over storage year-end fluctuating level prediction method and system
CN102867275A (en) * 2012-08-14 2013-01-09 贵州乌江水电开发有限责任公司 Medium-term and long-term combined power generation optimal scheduling method and system in cascade reservoir group
TW201333649A (en) * 2012-02-15 2013-08-16 Nat Applied Res Laboratories Method of real-time correction of water stage forecast
CN203337216U (en) * 2013-04-24 2013-12-11 北京鼎盈视通安全科技有限公司 Water level monitoring and early warning system
CN104408900A (en) * 2014-11-10 2015-03-11 柳州师范高等专科学校 Dynamic optimization based neural network flood warning device and method
CN103679285B (en) * 2013-11-29 2015-04-15 河海大学 Reservoir group combined operation scheduling system and method for improving river and lake relationship

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201333649A (en) * 2012-02-15 2013-08-16 Nat Applied Res Laboratories Method of real-time correction of water stage forecast
CN103258109A (en) * 2012-02-15 2013-08-21 连和政 Method for real-time correction of water level forecast
CN102855524A (en) * 2012-08-14 2013-01-02 贵州乌江水电开发有限责任公司 Carry-over storage year-end fluctuating level prediction method and system
CN102867275A (en) * 2012-08-14 2013-01-09 贵州乌江水电开发有限责任公司 Medium-term and long-term combined power generation optimal scheduling method and system in cascade reservoir group
CN203337216U (en) * 2013-04-24 2013-12-11 北京鼎盈视通安全科技有限公司 Water level monitoring and early warning system
CN103679285B (en) * 2013-11-29 2015-04-15 河海大学 Reservoir group combined operation scheduling system and method for improving river and lake relationship
CN104408900A (en) * 2014-11-10 2015-03-11 柳州师范高等专科学校 Dynamic optimization based neural network flood warning device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623890B (en) * 2017-07-04 2018-05-11 台灣電力股份有限公司 System for predicating power generation by utilizing multiple neural networks and method thereof
TWI690859B (en) * 2018-09-10 2020-04-11 陳柏蒼 Method and system for measuring water level by using graphic recognition

Also Published As

Publication number Publication date
TW201810133A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
Nutkiewicz et al. Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow
Quan et al. A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids
CN105868853B (en) Method for predicting short-term wind power combination probability
Pan et al. Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies
Monfet et al. Development of an energy prediction tool for commercial buildings using case-based reasoning
CN107480341A (en) A kind of dam safety comprehensive method based on deep learning
CN116451879B (en) Drought risk prediction method and system and electronic equipment
CN111210082A (en) Optimized BP neural network algorithm-based precipitation prediction method
JP2009294969A (en) Demand forecast method and demand forecast device
TWI587222B (en) Neural networks based water level predicting system and method for reservoirs
CA2996731C (en) Methods and systems for energy use normalization and forecasting
KR20140103589A (en) Flood estimation method using MAPLE forecasted precipitation data and apparatus thereof
Fragkias et al. Modeling urban growth in data-sparse environments: a new approach
CN116090839B (en) Multiple risk analysis and evaluation method and system for water resource coupling system
Das et al. FORWARD: a model for forecasting reservoir water dynamics using spatial Bayesian network (SpaBN)
CN106651007A (en) Method and device for GRU-based medium and long-term prediction of irradiance of photovoltaic power station
CN114493052B (en) Multi-model fusion self-adaptive new energy power prediction method and system
CN115951014A (en) CNN-LSTM-BP multi-mode air pollutant prediction method combining meteorological features
CN109214565A (en) A kind of subregion system loading prediction technique suitable for the scheduling of bulk power grid subregion
CN109902344A (en) Short/Medium Span Bridge group structure performance prediction apparatus and system
TWI618016B (en) Display system and method for water level predicting of reservoirs
CN112365082A (en) Public energy consumption prediction method based on machine learning
Papadopoulou et al. Evaluating predictive performance of sensor configurations in wind studies around buildings
CN116307287A (en) Prediction method, system and prediction terminal for effective period of photovoltaic power generation
Li Application of the BP neural network model of gray relational analysis in economic management